
Optimizing Pattern Matching

Fabrice Le Fessant, Luc MarangetINRIA Roquenourt, B.P. 105, 78153 Le Chesnay Cedex, Frane(Email: fFabrie.Le fessant, Lu.Marangetg�inria.fr)
ABSTRACTWe present improvements to the baktraking tehnique ofpattern-mathing ompilation. Several optimizations are in-trodued, suh as ommutation of patterns, use of exhaus-tiveness information, and ontrol ow optimization throughthe use of labeled stati exeptions and ontext information.These optimizations have been integrated in the Objetive-Caml ompiler. They have shown good results in inreasingthe speed of pattern-mathing intensive programs, withoutinreasing �nal ode size.
1. INTRODUCTIONPattern-mathing is a key feature of funtional languages.It allows to disriminate between the values of a deeplystrutured type, binding subparts of the value to variablesat the same time. ML users now routinely rely on their om-piler for suh a task; they write ompliated, nested, pat-terns. And indeed, transforming high-level pattern-mathinginto elementary tests is a ompiler job. Moreover, beauseit onsiders the mathing as a whole and that it knows someintimate details of runtime issues suh as the representationof values, ompiler ode is often better than human ode,both as regards ompatness and eÆieny.There are two approahes to pattern-mathing ompila-tion, the underlying model being either deision trees [5℄ orbaktraking automata [1℄. Using deision trees, one pro-dues a priori faster ode (beause eah position in a termis tested at most one), while using baktraking automata,one produes a priori less ode (beause patterns never getopied, hene never get ompiled more than one). The priepaid in eah ase is losing the advantage given by the othertehnique.This paper mostly fouses on produing faster ode in thebaktraking framework. Examining the ode generated bythe Objetive-Caml ompiler [11℄, whih basially used theAugustsson's original algorithm, on small frequently foundprograms, suh as a list-merge funtion, or on large exam-ples [14℄, we found that the baktraking sheme ould still
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP’01, September 3-5, 2001, Florence, Italy.
Copyright 2001 ACM 1-58113-415-0/01/0009 ...$5.00.

be improved.Our optimizations improve the produed baktraking au-tomaton by grouping elementary tests more often, removinguseless tests and avoiding the blind baktraking behaviorof previous shemes. To do so, the ompiler uses new in-formation and outputs a new onstrut. New informationinlude inompatibility between patterns, exhaustiveness in-formation and ontextual information at the time of bak-traking. As to the new onstrut, previous shemes used alone \exit" onstrut whose e�et is to jump to the nearestenlosing \trap-handler" ; we enrih both exits and traps-handlers with labels, resulting in �ner ontrol of exeutionow.Our optimizations also apply to or-patterns, a onvenientfeature to group lauses with idential ations. Unsharingof ations is avoided by using our labelled exit onstrut. Asor-patterns may ontain variables, the exit onstrut is alsoextended to take arguments.All our optimizations are now implemented in the latestversion of the Objetive-Caml ompiler, whose language ofaepted patterns has been extended by allowing variablesin or-patterns.The struture of this artile is the following: we �rst in-trodue some theoretial basis on pattern-mathing in se-tion 2 and desribe the ompilation sheme to baktrakingautomata in setion 3. Then, we briey introdue our op-timizations and or-pattern ompilation in an intuitive wayin setions 4 and 5, while setion 6 is a formalization of ouromplete ompilation sheme. Finally, some experimentalresults are shown in setion 7, and a omparison with otherapproahes is disussed in setion 8.
2. BASICSIn this setion, we introdue some notations and de�ni-tions. Most of the material here is folklore, save, perhaps,or-patterns.
2.1 Patterns and ValuesML is a typed language, where new types of values an beintrodued using type de�nitions suh as:type t = Nil | One of int | Cons of int * tThis de�nition introdues a type t, with three onstrutorsthat build values of type t. These three onstrutors de�nethe omplete signature of type t. Every onstrutor hasan arity, i.e. the number of arguments it takes. Here arityof Nil is zero, while the arities of One and Cons are oneand two respetively. A onstrutor of arity zero is alled

a onstant onstrutor, while other onstrutors are non-onstant onstrutors.Most native data types in ML { suh as integers, reords,arrays, tuples { an be seen as partiular instanes of suhtype de�nitions. For example, in the following we will on-sider lists (nil being the onstant onstrutor [℄ and onsthe in�x onstrutor ::), and tuples (the type of n-tuplesde�nes one onstrutor of arity n, pairs being written withthe in�x onstrutor \,"). For our purpose, integers areonstant onstrutors, and the signature of the integer typeis in�nite.More formally, patterns and values are de�ned as follows:p ::= Patternswildardx variable(p1; p2; : : : ; pa) onstrutor pattern(p1 j p2) or-patternv ::= Values(v1; v2; : : : ; va) onstrutor valueIn the following, we freely replae variables by wild-ards \ "when their names are irrelevant. While desribing ompila-tion, onvenient tools are vetors of values (~v = (v1 v2 : : : vn)and ~vn$m = (vn:::vm)), vetors of patterns (~p = (p1 p2 : : : pn)and ~pn$m = (pn:::pm)) and matries of patterns (P = (pij)).In this paper, we present pattern-mathing ompilation asa transformation on an intermediate ode in the ompiler,alled lambda-ode. Here, another useful objet is the lausematrix (P ! L):(P ! L) = 0BBB� p11 p12 � � � p1n ! l1p21 p22 � � � p2n ! l2...pm1 pm2 � � � pmn ! lm 1CCCAA lause matrix assoiates rows of patterns (pi1 pi2 : : : pin) tolambda-ode ations li.
2.2 Pattern Matching in MLA pattern an be seen as representing a set of values shar-ing a ommon pre�x.Definition 1 (Instane). Let p be a pattern and v bea value belonging to a ommon type. The value v is aninstane of the pattern p or p mathes v, written p � vwhen one of the following rules apply:� vx � v(p1 j p2) � v i� p1 � v or p2 � v(p1; : : : ; pa) � (v1; : : : ; va) i� (p1 : : : pa) � (v1 : : : va)(p1 : : : pa) � (v1 : : : va) i� pi � vi; 8i 2 [1::a℄Seeing a pattern as the set of its instanes, it is lear thator-patterns express set union.In ML, patterns are a binding onstrut, more spei�ally,a suessful math p � v, binds the variables of p to somesub-terms of v. Suh bindings an be omputed while hek-ing that p mathes v, provided that the following set V(p)

of variables de�ned by p is well-de�ned:V() = ;V(x) = fxgV((p1; : : : ; pa)) = V(p1 : : : pa)V(p1 : : : pa) = V(p1) [: : : [V(pa)if for all i 6= j;V(pi) \ V(pj) = ;V(p1 j p2) = V(p1); if V(p1) = V(p2)The �rst \if" ondition above is the linearity of patterns.The seond ondition is spei� to or-patterns, it meansthat mathing by either side of the or-pattern binds thesame variables (additionally, homonymous variables shouldpossess the same type).We then de�ne the now dominant, textual priority shemeto disambiguate the ase when several rows in a matrixmath:Definition 2 (Mathing prediate). Let P be a pat-tern matrix and ~v = (v1 : : : vn) be a value vetor. The valuev mathes line number i in P , if and only if the followingtwo onditions are satis�ed:� (pi1 : : : pin) � (v1 : : : vn)� 8j < i; (pj1 : : : pjn) 6� (v1 : : : vn)We will not give a full semantis for evaluating pattern-mathing expressions, and more generally lambda-ode. In-tuitively, given a lause matrix P ! L and a value ve-tor ~v suh that line number i in P mathes ~v, evaluatingthe mathing of ~v by P ! L in some environment � is eval-uating li in � extended by the bindings introdued whilemathing ~v by (pi1 : : : pin). If ~v is not mathed by any line inP , we say that the pattern-mathing P fails. If no suh ~vexists, then the pattern-mathing is said exhaustive.Like pattern vetors, pattern matries represent sets ofvalue vetors. More spei�ally, when some line in P mathes~v we simply say that P mathes ~v. This looks obvious, butrepresenting sets using matries is at the ore of our opti-mizations. One easily heks that the instanes of P arethe union of the instanes of the lines of P . That is, whenonsidering a matrix globally, the seond ondition in de�-nition 2 above is irrelevant. More important, row order isalso irrelevant.Finally, the instane relation indues relations on the pat-terns themselves.Definition 3 (Relations on patterns). We de�ne thefollowing three relations:1. Pattern p is less preise then pattern q, written p � q,when all instanes of q are instanes of p.2. Pattern p and q are equivalent, written p � q, when theirinstanes are the same.3. Patterns p and q are ompatible when p and q share aommon instane.Here some remarks are to be made. Beause of typing,heking the preision relation is neither obvious nor heap.More preisely, there is no simple way to deide whetherp � holds or not. For instane, ([℄| ::) � holds, while(Nil|One) � does not. Or-patterns are not responsi-ble for this ompliation, sine we also have (,) � .In suh ases one should \expand" p and onsider, whether

signatures are omplete or not (see [13, Setion 5.1℄). Byontrast, ompatibility an be heked by a simple reur-sive algorithm. When ompatible, patterns p and q admita least upper bound, written p " q, whih an be omputedwhile heking ompatibility:8>>><>>>: (p1 : : : pa) "(q1 : : : qa) = (p1 " q1 : : : pa " qa)" q = qp " = p(p1; : : : ; pa) " (q1; : : : ; qa) = (r1; : : : ; ra)where (r1 : : : ra) is (p1 : : : pa) "(q1 : : : qa)With the following additional rules for or-patterns:(p1 j p2) " q = 8<: p1 " q; when p2 and q not ompatiblep2 " q; when p1 and q not ompatible(p1 " q j p2 " q); otherwisep "(q1 j q2) = (q1 j q2) " pProving that p " q is indeed the least upper bound of p andq is easy, by onsidering patterns as sets of their instanes.Note that p " q is de�ned up to �-equivalene, and that itenodes instane intersetion.
3. COMPILATIONIn this setion, we present a ompilation sheme lose tothe one desribed in [20, 1℄, and implemented in ompilerssuh as the hb ompiler or the Objetive Caml ompiler.This lassial sheme will be re�ned later into an optimizedsheme, using same notations and onepts.
3.1 Output of the match compilerThe ompilation of pattern-mathing is desribed by thesheme C that maps a lause matrix to a lambda-ode expres-sion. We now desribe the spei� lambda-ode onstrutsthat the sheme C outputs while ompiling patterns.� Let-bindings: let (x lx) l, nested let-bindings are abbre-viated as:let (x1 l1) (x2 l2) � � �(xn ln) l� Stati exeptions, exit and traps, ath l1 with l2. If,when evaluating the body l1, exit is enountered, thenthe result of evaluating ath l1 with l2 is ther resultevaluating the handler l2, otherwise it is the result of eval-uating l1. By ontrast with dynami exeptions, statiexeptions are diretly ompiled as jumps to the assoi-ated handlers (plus some environment adjustment, suhas stak pops), whereas traps do not generate any ode.� Swith onstruts:swith l withase 1: l1� � � ase k: lkdefault: dThe result of a swith onstrut is the evaluation of the liorresponding to the onstrutor i appearing as the headof the value v of l. If the head onstrutor of v doesn'tappear in the ase list, the result is the evaluation of thedefault d expression.The default lause default: d an be omitted. In suh aase the swith behavior is unspei�ed on non-reognizedvalues. Sheme C an thus omit the default lause when

it is known that ase lists will over all possibilities atruntime. We use the keyword swith* to highlight swithonstruts with no default lause.Those swith onstruts are quite sophistiated, they om-pile later into more basi onstruts: tests, branhes andjump tables. We in fat modi�ed the Objetive Camlompiler to improve the ompilation of swith onstruts,using tehniques �rst introdued in the ontext of ompil-ing the ase statement of Pasal [3℄. The key points areusing range tests, whih an typially be performed byone single (unsigned) test and branh plus possibly oneaddition, utting sparse ase lists into denser ones, anddeiding whih of jump tables or test sequene is more ap-propriate to eah situation. A survey of these tehniquesan be found in [19℄.� Aessors: field n x, where x is a variable and n is aninteger o�set. By onvention, the �rst argument of non-onstant onstrutors stands at o�set zero.� Sequenes: l1; l2 and units: ()
3.2 Initial stateInput to the pattern mathing ompiler C onsists of twoarguments: a vetor of variables ~x of size n and a lausematrix P ! L of width n and height m.~x = (x1 x2 : : : xn); P ! L = 0BBB� p11 p12 � � � p1n ! l1p21 p22 � � � p2n ! l2...pm1 pm2 � � � pmn ! lm 1CCCAThe initial matrix is generated from soure input. Givena pattern-mathing expression (in Caml syntax):math x with | p1-> e1| p2-> e2 : : : | pm-> emThe initial all to C is:athC((x);0BB� p1 ! l1p2 ! l2!pm ! lm 1CCA)with (failwith "Partial math")Where the li's are the translations to lambda-ode of theei's, and (failwith "Partial math") is a runtime failurethat ours when the whole pattern mathing fails.
3.3 Classical schemeBy ontrast with previous presentations, we assume thatmatrix P ! L has at least one row (i.e. m > 0). Thisondition simpli�es our presentation, without restriting itsgenerality. Hene, sheme C is de�ned by ases on non-empty lause matries:1. If n is zero (i.e. when there are no more olumns), thenthe �rst row of P mathes the empty vetor ():C(();0BBB� ! l1! l2...! lm 1CCCA) = l1

2. If n is not zero, then a simple ompilation is possible,using the following four rules.(a) If all patterns in the �rst olumn of p are variables, y1,y2, : : : , ym, then:C(~x; P ! L) = C((x2 x3 : : : xn); P 0 ! L0)whereP 0 ! L0 = 0BBB� p12 � � � p1n ! let (y1 x1) l1p22 � � � p2n ! let (y2 x1) l2...pm2 � � � pmn ! let (ym x1) lm 1CCCA)We all this rule, the variable rule. This ase also han-dles wild-ard patterns: they are treated like variablesexept that the let-binding is omitted.(b) If all patterns in the �rst olumn of P are onstrutorpatterns (q1; : : : ; qa), then let C be the set of mathedonstrutors, that is, the set of the head onstrutors ofthe pi1's.Then, for eah onstrutor in C, we de�ne the spe-ialized lause matrix S(; P ! L) by mapping the fol-lowing transformation on the rows of P .pi1 S(; P ! L)(qi1; : : : ; qia) qi1 � � �qia pi2 � � �pin ! li0(qi1; : : : ; qia0) (0 6=) No row(Matries S(; P ! L) and P ! L de�ne the samemathing prediate when x1 is bound to some value(v1; : : : ; va).) Furthermore, for a given onstrutor of arity a, let y1; : : : ; ya be fresh variables. Then, forany onstrutor in C, we de�ne the lambda-expressionr():(let (y1 (field 0 x1))...(ya (field (a�1) x1))C((y1; : : : ; ya; x2; : : : ; xn);S(; P ! L)))Finally, assuming C = f1; : : : ; kg, the ompilationresult is:swith x1 withase 1: r(1)� � �ase k: r(k)default: exit(Note that the default lause an be omitted when Cmakes up a full signature.) We all this rule, the on-strutor rule.() If P has only one row and that this row starts with anor-pattern:P = � (q1 j ::: j qo) p2 � � � pn ! l �;Then, ompilation result is:C((x1);0B� q1 ! ()...qo ! () 1CA); C((x2 : : : xn); (p2 : : : pn ! l))This rule is the orpat rule. Observe that it does notdupliate any pattern nor ation. However, variables in

or-patterns are not supported, sine, in lause qi ! (),the sope of qi variables is the ation \()".(d) Finally, if none of the previous rules applies, the lausematrix P ! L is ut in two lause matries P1 ! L1and P2 ! L2, suh that P1 ! L1 is the largest pre�xof P ! L for whih one of the variable, onstrutor ororpat rule applies.Then, ompilation result is:ath C(~x; P1 ! L1) with C(~x; P2 ! L2)This rule is the mixture rule.This paper doesn't deal with optimizing let-bindings, whihare arelessly introdued by sheme C. This job is left to alater ompilation phase.
4. OPTIMIZATIONSWe now desribe some improvement to the lassial om-pilation sheme. For simpliity, we present examples anddefer the full presentation of our sheme to setion 6. Inall these examples, we fous on pattern-mathing ompi-lation, replaing potentially arbitrary ations more simpleones, suh as integers or variables.
4.1 Optimizing the mixture ruleIn this setion and in the following, our running exampleis the lassial list-merge:let merge lx ly = math lx,ly with| [℄, _ -> 1| _, [℄ -> 2| x::xs, y::ys -> 3Suh a mathing on pairs enodes mathing on two argu-ments. As a onsequene, we onsider the following initialall to sheme C: C((lx ly); (P ! L))Where (P ! L) is:(P ! L) = 0� [℄ ! 1[℄ ! 2x::xs y::ys ! 3 1AApplying the mixture rule twie yields three matries:P1 ! L1 = � [℄ ! 1 �P2 ! L2 = � [℄ ! 2 �P3 ! L3 = � x::xs y::ys ! 3 �Now, onsider another lause matrix (P 0 ! L0):(P 0 ! L0) = 0� [℄ ! 1x::xs y::ys ! 3[℄ ! 2 1ABoth lause matries de�ne the same mathing funtion,namely they both map ([℄ v) to 1, (v1::v2 [℄) to 2 and(v1::v2 v01::v02) to 3. Furthermore, (P 0 ! L0) an be ob-tained from (P ! L) by swapping its seond and third row.More generally, one easily heks that swapping two ontigu-ous inompatible rows is legal. Then applying the mixturerule to (P 0 ! L0), yields two matries only:P 01 ! L01 = � [℄ ! 1x::xs y::ys ! 3 �;P 02 ! L02 = � [℄ ! 2 �

ath(ath(swith lx with ase [℄: 1default: exit)with (ath(swith ly with ase [℄: 2default: exit)with (ath(swith lx withase (::):(swith ly withase (::) : 3default: exit)default: exit))))with (failwith "Partial math")
ath(ath(swith* lx withase [℄: 1ase (::) :(swith ly withase (::): 3default: exit))with(swith ly withase [℄: 2default: exit)with (failwith "Partial math")Figure 1: Mixture optimizationFinal outputs for P ! L and P 0 ! L0 are displayed onFigure 1. Hene, as a result of replaing P ! L by P 0 ! L0,the two tests on lx that were performed separately on theleft ode are now merged in a single swith in the right ode.Also notie that one trap disappears.More generally, an optimized mixture rule should takeadvantage of pattern-mathing semantis to swap rows whenpossible, so that as few uts as possible are performed.

4.2 Using exhaustiveness informationThe Objetive Caml ompiler heks the exhaustivenessof pattern mathing expressions and issues a warning be-fore ompiling non-exhaustive pattern mathings. However,the exhaustiveness information an also be used for avoid-ing tests. Matrix P 0 of the previous setion is exhaus-tive; this means that there will be no "Partial math" fail-ure at runtime. As an immediate onsequene, the swith:(swith ly with ase [℄: 2 default: exit) always su-eeds (this swith is the last one performed by the optimizedode in �gure 1). Thus, we replae it by 2. We an also sup-press the outermost trap. Hene, applying both optimiza-tions desribed up to now, ompilation of P ! L �nallyyields:ath(swith* lx withase [℄: 1ase (::): (swith ly withase [℄: 3default: exit))with 2In the general ase, exhaustiveness information is exploitedby slightly modifying sheme C. It suÆes to avoid emittingdefault lauses in swith onstruts, when it is known thatno exit should esape from produed ode. This propertyholds initially for exhaustive pattern mathings, and trans-mits to all reursive alls, exept for the all on P1 ! L1 inthe mixture rule.
4.3 Optimizing exitsThe two previous optimizations yield optimal ode for themerge example. Hene we ompliate the running exampleby onsidering a mathing on objets of type t from se-

tion 2:P ! L = 0BBB� Nil ! 1Nil ! 2One x ! 3One y ! 4Cons (x,xs) Cons (y,ys) ! 5 1CCCAThe optimized mixture rule yields four matries:P1 ! L1 = � Nil ! 1Cons (x,xs) Cons (y,ys) ! 5 �P2 ! L2 = � Nil ! 2 �P3 ! L3 = � One x ! 3 �P4 ! L4 = � One y ! 4 �For reasons that will appear immediately, we apply the mix-ture rule from bottom to top, thereby nesting trap handlers.The math being exhaustive, ompilation yields the odedisplayed on the left part of Figure 2.Now, onsider what happens at run-time when (lx ly) is(Cons (v1, v2) One v). A �rst swith on lx leads to line 7,where a swith on ly is performed. This swith fails, andthe default ation jumps to the nearest enlosing handler(line 13), where ly is tested against Nil resulting in anotherswith failure. Here, in our ase, ontrol goes to line 17,where another swith on lx (against One x) fails, resultingin �nal jump to line 20.Hene, it would be appropriate to jump to line 20 rightfrom the �rst test on ys. To do so, both exits and traphandlers are now labelled by integers. Note that this newfeature does not really ompliate the ompilation of statiexeptions. Then, it beomes possible to jump to di�erenttrap handlers from the same point and a better ompilationof P ! L is displayed in the right part of �gure 2.The ode above maps vetors (Cons (v1, v2) One v) to4 by exeuting two swithes, while previous ode neededfour swithes to perform the same task. Hene, exit opti-mization has a notieable bene�t as regards run-time eÆ-ieny. As regards ode size, exit optimization may inreaseit, sine some swithes may have larger ase lists. However,ode size remains under ontrol, sine no extra swithes aregenerated. Hene, �nal ode size ritially depends on howswithes translate to mahine-level onstruts. For instane,mahine-level ode size obviously does not inrease when

1 ath2 (ath3 (ath4 (swith lx with5 ase Nil: 16 ase Cons:7 (swith ly with8 ase Cons: 59 default: exit)1011 default: exit)12 with13 (swith ly with14 ase Nil: 215 default: exit))16 with17 (swith lx with18 ase One: 319 default: exit))20 with 4

1 ath2 (ath3 (ath4 (swith lx with5 ase Nil: 16 ase Cons:7 (swith* ly with8 ase Cons: 59 ase Nil: (exit 2)10 ase One: (exit 4))11 default: (exit 2))12 with (2)13 (swith ly with14 ase Nil: 215 default: (exit 3)))16 with (3)17 (swith lx with18 ase One: 319 default: (exit 4)))20 with (4) 4Unoptimized ode Optimized odeFigure 2: Exit optimizationswithes are translated to jump tables1.Surprisingly, performing exit optimization is quite simpleand heap: the needed information is available at ompile-time by inspeting pattern matries only. Reahable traphandlers are de�ned as pairs (P; e) of a pattern matrix andan integer. Reahable trap handlers originate from the di-vision performed by the mixture rule. Here, P1 ! L1 isompiled with the reahable trap-handlers (P2; 2), (P3; 3)and (P4; 4). Then, the onstrutor rule speializes reahabletrap handlers. Here, in the ase where lx is Cons (v1, v2),speializing reahable trap handlers results in ((Nil); 2) and((One y); 4) (note that speializing P3 yields an empty ma-trix, whih is disarded). Hene, while generating the �rstswith on ly (line 7), it is known that the ode produedby ompiling trap handlers number 2 and 3 will surely exitwhen ly is One v, and a jump to trap handler number 4 anbe generated by the ompiler in that ase.
4.4 Aggressive control flow optimizationThe ode produed by exit optimization still ontains re-dundant tests, some of whih an be removed without al-tering the handler struture introdued by the mixture rule.More spei�ally, we onsider trap handler number 3 (line 16).It results from ompiling P3 and is a swith of lx againstOne.The only (exit 3) lies in trap handler number 2 (line 15)and results from ly not being Nil, this gives us no diretinformation on lx. Now, looking upwards for (exit 2), wean infer that trap handler number 2 is entered from twodi�erent points. In the �rst ase (line 9), (lx ly) is fullyknown as (Cons (v1, v2) Nil), in the seond ase (line 11),only lx is know to be One v. As (exit 3) on line 15 gets ex-euted only when ly is not Nil, we an �nally dedue that1Given the Objetive Caml enoding of onstrutors, we arehere in the same desirable situation where the ompilationof apparently larger swithes does not result in produingmore ode.

the �rst ase never results in entering trap handler num-ber 3. As a onsequene, trap handler number 3 is exeutedin a ontext where lx neessarily is One v, the swith it per-forms is useless and line 16 an be simpli�ed into \3". Thiselimination of useless tests[4℄ is usually performed at a lowerlevel by ombining dead ode elimination[9℄ and onditionalonstant propagation[21, 6℄.Finally, after all optimizations, there remains one redun-dant swith in produed ode, in trap-handler number 2(line 12). As a result, vetors (Cons (v1, v2) Nil) are mappedto 2 by testing ly twie. One should notie that this is pre-isely the test that would get dupliated by ompilation todeision trees.Desribing what is known on values while entering traphandlers is slightly involved. The key idea is representingset of value vetors as pattern matries. We all suh a set aontext. Contexts for the three trap handlers of our exampleare: Trap number Context2 � OneCons (,) Nil �3 � One (One j Cons (,)) �4 � Cons (,) One �If preise enough and exploited fully, we onjeture that on-texts subsume exhaustiveness information. However as in-tuition suggests and experiene on�rms, ontexts get largerwhile ompilation progresses, potentially reahing huge sizesat the end of matries. We ure this by safely approximatingontexts when they get too large, replaing some patterns inthem by wild-ards. Hene the optimizations of setion 4.2is still worth onsidering, as being heap and always appli-able.
5. COMPILING OR-PATTERNSUntil now, the ode produed for or-patterns is ineÆient,beause only one or-pattern an be ompiled at a time, re-

quiring multiple appliations of the mixture rule before andafter eah or-pattern. Thanks to integer labelled exits, oneeasily avoids dividing matries before or-patterns. Considera \ar" funtion for our three-onstrutors list:let ar list = math list with| Nil -> -1| (One x | Cons (x,_)) -> xCompilation proeeds by alloating a new trap-handlernumber 2 and expanding the lause \One x | Cons (x,_)"into two lauses with patterns \One x" and \Cons (x,_)".Ations for the new lauses are exits to 2:athC((list);0� Nil ! -1One x' ! (exit 2 x')Cons (x',) ! (exit 2 x') 1A)with (2 x) C((); � ! x �)Note that both exits and trap handlers now take yet an-other extra argument, the ourrenes of x' in exits arenon-binding and refer to pattern variables, while the our-rene of x in handler is binding. This new onstrut allowsthe ompilation of or-patterns with variables. Implemen-tation is not very triky: the ath : : : with (2 x) : : :onstrut alloates one mutable variable; an exit updatesthis variable, whih is read before entering the handler. Ina native ode ompiler, suh a variable is a temporary andultimately a mahine register. The generated lambda-odeis as follow:athswith* list withase Nil: -1ase One: (exit 2 (field 0 list))ase Cons: (exit 2 (field 0 list))with (2 x) xMoreover, by the semantis of pattern-mathing, uts af-ter or-patterns an also be avoided in many situations. Inthe ase of one olumn matries, where the expanded or-patterns express the full mathing performed, all uts anbe avoided. Things get a bit more ompliated when ma-tries have more than one olumn. Consider the followinglause matrix,P ! L = � (1|2) p2 ! l1(3|4) q2 ! l2 �We further assume a math on (x y) and that math fail-ure should result in (exit 1) (the stati exeption labelorresponding to math failure an be given as a third argu-ment to the ompilation sheme). Writing p1 = (1|2) andq1 = (3|4), there are obviously no value vetors (v1 v2) suhthat v1 is an instane of both p1 and q1. As a onsequene,the following ompilation is orret:ath(ath(swith x withase 1: (exit 2) ase 2: (exit 2)ase 3: (exit 3) ase 4: (exit 3)default: (exit 1))with (2) C((y); � p2 ! l1 �; 1))with (3) C((y); � q2 ! l2 �; 1)

Intuitively, one x is heked, the hoie between �rst andseond row is made. Depending on the value of y, mathingmay still fail, but then, the whole mathing fails.Conversely, matrix division annot be avoided when math-ing by p1 does not exlude mathing by q1, that is, when p1and q1 are ompatible. This is the ase, for instane, whenp1 = (1|2) and q1 = (2|3). Then, a orret ompilation is:ath(ath(swith x withase 1: (exit 2) ase 2: (exit 2)default: (exit 3))with (2) C((y); � p2 ! l1 �; 3))with (3)(ath(swith x withase 2: (exit 4) ase 3: (exit 4)default: (exit 1))with (4) C((y); � q2 ! l2 �; 1))Note that the third argument to the �rst reursive all tothe ompilation sheme is \3" and not \1". As a onse-quene, vetors (2 v2) suh that p2 does not math v2 whileq2 mathes v2 get mapped orretly to l2. A slight inne�enyshows up, sine x is tested twie. More striking, perhaps,vetors (1 v2) suh that p2 does not math v2 also lead totesting x twie.An alternative ompilation rule for or-pattern would sim-ply expand or-patterns in a pre-proessing phase, yieldingthe matrix: 0BB� 1 p2 ! l12 p2 ! l12 q2 ! l23 q2 ! l2 1CCAThen, there are no extra run-time tests on x, sine the on-strutor rule applies. However, patterns p2 and q2 are nowompiled twie. Note that there is no simple solution foravoiding this dupliation of e�ort, sine, one the onstru-tor rule is applied, the two ourenes of these patterns ourin di�erent ontexts. More generally, ode size is now out ofontrol, a lear ontradition with the spirit of batrakingautomata.
6. OUR COMPILATION SCHEMEThe new sheme C� takes �ve arguments and a typialall is C�(~x; P ! L; ex; def; tx), where ~x = (x1 : : : xn) andP ! L is a lause matrix of width n:P ! L = 0BBB� p11 � � � p1n ! l1p21 � � � p2n ! l2...pm1 � � � pmn ! lm 1CCCAExtra arguments are:� The exhaustiveness argument ex is either partial or totaldepending on whether ompilation an produe esapingexit onstruts or not.� Reahable trap handlers def are sequenes (P1; e1); � � � ;(Pt; et), where the ei's are integers (trap handler numbers)and the Pi's are pattern matries of width n.

Figure 3: Operations on ontexts(a) Context speializationP �Q row S(; P �Q) rowpi1 � � � pik � (qi1; : : : ; qia) � � � qin pi1 � � � pik (; : : : ;) � qi1 � � � qia qia+1 � � � qinpi1 � � � pik � � � � qin pi1 � � � pik (; : : : ;) � � � � qia+1 � � � qinpi1 � � � pik � 0(qi1; : : : ; qia) � � � qin no row(b) Context olletionP �Q row COL(P �Q) rowpi1 � � � pik�1 (; : : : ;) � qi1 � � � qia qia+1 � � � qin pi1 � � � pik � (qi1; : : : ; qia) � � � qin() Context pushing and poppingP �Q row +(P �Q) row *(P �Q) rowpi1 � � � pik � qi1 � � � qin pi1 � � � pik qi1 � qi2 � � � qin pi1 � � � pik�1 � pik qi1 � � � qin� The ontext tx is a pattern matrix of width k+n, equiva-lent to a pair of matrixes P �Q, where eah row is dividedinto a pre�x (in P) of width k and a fringe (in Q) ofwidth n.P �Q = 0BBB� p11 � � � p1k � q11 � � � q1np21 � � � p2k � q21 � � � q2n...pm1 � � � pmk � qm1 � � � qmn 1CCCAInformally, at any point in ompilation, ontexts are pre-order representations of what is known about mathedvalues. The fringe reords the possible values for ~x, whilethe pre�x reords the same information for other sub-terms whih are relevant to pending alls to C�. Transfersof patterns from fringe to pre�x are performed on the ar-guments of reursive alls, while transfers in the oppositediretion are performed as results are olleted.The initial all to C� for an exhaustive math is:C�((x);0BBB� p1 ! l1p2 ! l2...pm ! lm 1CCCA; total ; ;; (�))For a non-exhaustive math, ex is partial , def is the one-element sequene ((); 1) and a trap handler is added as insetion 3.3. The ontext argument remains the same: itexpresses that nothing is known yet about the value of ~x.The new sheme returns a lambda-ode l and a jumpsummary, � = f: : : ; i 7! tx; : : : g, whih is a mappingfrom trap numbers to ontexts. Jump summaries desribewhat is known about mathed values at the plaes where(exit i : : :) our in l.
6.1 Operations on contextsWe de�ne the following four operations on ontexts :(a) Context speialization, S, by a onstrutor of arity a isde�ned by mapping the transformation of �gure 3-(a) onontext rows.

(b) Context olletion, COL, is the reverse of speialization.It ombines the the last element of the pre�x with theappropriate number of arguments standing at beginningof the fringe (see �gure 3-(b)).() Context pushing + and popping * move the fringe limitone step forward and bakward, without examining anypattern (see �gure 3-()).As ontexts are used to represent set of values, we natu-rally de�ne union and intersetion over ontexts. Contextunion P�Q[P 0 �Q0 yields a new matrix whose rows are therows of P �Q and P 0 �Q0 . Row order is not relevant. Con-text intersetion P�Q\P 0 �Q0 is de�ned as a ontext whoserows are the least upper bounds of the ompatible rows ofP � Q and P 0 � Q0 . Context extration EX is a partiularase of ontext intersetion.EX (p; P 0 �Q0) = (: : : � p : : :) \ P 0 �Q0For example, when p is (; : : : ;), ontext extration re-tains those value vetors represented by P 0 �Q0 whose k+1thomponents admit as head onstrutor. Observe that suha omputation involves extrating or-pattern arguments andmaking wild-ards more preise.Exept for olletion and popping, whih onsume pre-�x elements, all these operations an be extended to simplematries, by using an empty pre�x in input, and taking thefringe for output. Doing so, we obtain exatly the operationsof setion 3.3 used to ompute pattern matries (speializa-tion S in partiular).Operations on ontexts are extended to jump summariesin the natural manner. For instane, the union of � and �0is de�ned as:� [�0 = f: : : ; i 7! �(i) [�0(i); : : : gOperations on matries are extended to reahable traphandlers in a similar manner: for instane, pushing traphandlers is de�ned as pushing all matries in them :+((P1; e1); : : : ; (Pt; et)) = (+(P1); e1); : : : ; (+(Pt); et)

6.2 Compilation schemeWe now desribe sheme C� by onsidering ases over thetypial all.1. If n is zero. then we have:C�(();0BBB� ! l1! l2...! lm 1CCCA; ex; def; tx) = l1; ;Observe that the jump summary is empty sine no exit isoutputed.2. With respet to setion 3.3, the variable rule only hangesas regards the extra arguments ex, def and tx. We onlydesribe these hanges. The performed reursive all re-turns ode l and jump summary � :l; � = C�(: : : ; : : : ; ex;+(def);+(tx))Exhaustiveness information ex does not hange, while defand tx are pushed.The variable rule returns l unhanged and � popped.3. In the onstrutor rule, let C = f1; : : : ; kg be the mathedonstrutors, let also � be the signature of their type. Fora given onstrutor 2 C, the performed reursive all is:C�(: : : ; : : : ; ex;S(; def);S(; tx))Exhaustiveness information ex is passed unhanged, whilethe other two extra arguments are speialized (speializa-tion of trap handlers being the natural extension of matrixspeialization).Eah reursive all returns a lambda-ode l() and a jumpsummary �. Lambda-ode l() gets wrapped into let-bindings like in setion 3.3, yielding the �nal lambda-oder(). We then de�ne a ase list L and a jump summary�re as follows:L = ase 1: r(1) � � � ase k: r(k)�re = f : : : ; i 7! [2C COL(�(i)); : : : gThe ase list is as before, while the jump summary is theunion of the the jump summaries produed by reursivealls, one olleted.Optimizations are then performed. For larity, optimiza-tions are desribed as a two phase proess: �rst, extend(or not extend) the ase list L with onstrutors takenfrom � n C, and add (or not add) a default ase; then,ompute the �nal jump summary.A �rst easy ase is when � n C is empty or when ex istotal . Then, the ase list L is not augmented. Otherwise,we distinguish two ases :(a) If � n C is �nite, then for all onstrutors in this setwe onsider the ontextQ �Q0 = EX ((; : : : ;); tx)Then, trap handlers (P1; e1); : : : ; (Pt; et) are sannedleft-to-right, stopping at the smallest i, suh that theintersetion Q0 \ Pi is not empty. That is, we �nd the

trap handler where to jump to when the head onstru-tor of x1 is , in order to extend the ase list as follows :L = L ase : (exit ei)It is possible that ei does not exist (when Q0 is empty).This means that x1 head onstrutor will never be atruntime.(b) If � nC is in�nite (as in the ase of integers) or onsid-ered too large (as it might be in the ase of haraters),then, a default ase is added to the ase list :L = L default: (exit e1)That is, all non-reognized onstrutors lead to a jumpthe nearest enlosing reahable trap-handler.However it is still possible to extend the ase list forpartiular onstrutors, applying the previous proe-dure (a) to the onstrutors that appear in the �rstolumn of reahable trap handler matries and not in C.The �nal jump summary is omputed by onsidering the�nal ase list L. For a given trap handler number ei letf01; : : : ; 0k0g be the set of onstrutors suh that ase 0j:(exit ei) appears in L. Then the jump summary �ei isde�ned as:�ei = f ei 7! EX (01(; : : : ;) j � � � j 0k0(; : : : ;)); tx) gMoreover, if there is a default lause, the jump sum-mary �d is de�ned as:�d = f e1 7! txgFinally the onstrutor rule returns a swith on ase list Land the jump summary built by performing the union of�re, of all �ei 's and, when appropriate, of �d.The onstrutor rule performs many ontext unions, sothat ontexts may beome huge. Fortunately, ontextsan be made smaller using a simple observation. Namely,let ~p and ~q be two rows in a ontext, suh that ~p is lesspreise than ~q (i.e., all instanes of ~q are instanes of ~p).Then, row ~q an be removed from the ontext, withoutmodifying its meaning as a set of value vetors. Hene,while performing ontext union, one an leave aside somepattern rows. If the produed ontext is still too large,then ontexts are safely approximated by �rst replaingsome patterns in them by wild-ards (typially all the pat-tern in a given olumn) and then removing rows using theprevious remark. Rough experiments lead us to set themaximal admissible ontext size to 32 rows, yielding sat-isfatory ompilation time in pathologial examples andexat ontexts in pratial examples.4. Or-pattern ompilation operates on matries whose �rstolumn ontains at least one or-pattern. Additionally,when pi1 is a or-pattern, then for all j, i < j � m one ofthe following, mutually exlusive, onditions must hold:(a) pi1 and pj1 are not ompatible.(b) pi1 and pj1 are ompatible, and (pi2 : : : pin) is less preisethan (pj2 : : : pjn)Conditions (a) and (b) guarantee that, whenever pi1 mathesthe �rst value vetor v1 of a value ~v, but row i does notmath ~v, then no further row in P mathes ~v either. This

is neessary sine further rows of P won't be reahable inase of failure in the or-pattern trap handler.Now, onsider one row number i, suh that pi1 is the or-pattern q1 j � � � j qo. Further assume that this or-patternbinds the variables y1; : : : ; yv. First, we alloate a freshtrap number e and divide P ! L into the following or-body P 0 ! L0 and or-trap P 00 ! L00 lauses:P 0 ! L0 = 0BBBBBBBBBBBB�
...pi�11 : : : pi�1n ! li�1q1 : : : ! (exit e y1... yv)...qo : : : ! (exit e y1... yv)pi+11 : : : pi+1n ! lj+1...

1CCCCCCCCCCCCAP 00 ! L00 = � pi2 : : : pim ! li �In the or-body matrix, observe that the or-pattern is ex-panded, while the other patterns in row number i arereplaed by wild-ards and the ation is replaed by exits.Reursive alls are performed as follows:l0; �0 = C�(~x; P 0 ! L0; ex; def; tx)l00; �00 = : : :: : : C�(~x2$n; P 00 ! L00; ex;+(EX (p; def));+(EX (p; tx)))Outputed ode �nally is ath l0with (e y1... yv) l00and the returned jump summary is � = �0 [*(�00).5. The mixture rule is responsible for feeding the other ruleswith appropriate lause matries. We �rst onsider thease of a random division. Hene let us ut P ! L intoQ!M and R! N at some row. Then a fresh trap num-ber e is alloated and a �rst reursive all is performed:lq ; �q = C�(~x;Q!M; partial ; (R; e); def; tx)The exhaustiveness information is partial , sine nothingabout the exhaustiveness of Q derives from the exhaus-tiveness of P . Reahable trap handlers are extended.Then, a seond reursive all is performed:lr; �r = C�(~x;R! N; ex; def; �q(e))It is no surprise that the ontext argument to the new allis extrated from the jump summary of the previous all.Argument ex does not hange. Indeed, if mathing by Pannot fail, then mathing by R neither an.Then, the sheme an output the odel = ath lq with (e) lrand return the jump summary (�qnfeg)[�r, where �qnfegstands for �q with the binding for e removed.Of ourse, our optimizing ompiler does not perform arandom division into two matries. It instead dividesP ! L right away into several sub-matries. This anbe desribed formally as several, lever, appliations ofthe random mixture rule, so that one of the three previ-ous rules apply to eah matrix in the division. The aim ofthe optimizing mixture rule is thus to perform a divisionof P into as few sub-matries as possible. We present asimple, greedy, approah that sans P downwards.

We only desribe the ase when p11 is a onstrutor pat-tern. Thus, having performed the lassial mixture rule,we are in a situation where the i topmost rows of P havea onstrutor pattern in �rst position (i.e. are onstru-tor rows for short) and where pi+11 is not a onstrutorpattern. At that point, a matrix C has been built, whihenompasses all the rows of P from 1 to i. Let us fur-ther write P 0 for what remains of P , and let O and Rbe two new, initially empty matries. We then san therows of P 0 from top to bottom, appending them at theend of C, O or R. That is, given row number j in P 0:(a) If p0j1 is a variable, then append row j at the end of R.(b) If p0j1 is a onstrutor pattern, then : : :i. If row j is not ompatible with all the rows of both Rand O, then append row j at the end of C (i.e., moverow j above all the rows that have been extratedfrom P 0 at previous stages).ii. If row j is not ompatible with all the rows of R andthat one of onditions (a) or (b) for applying the or-pattern rule are met by O with row j appended atthe end, then do suh an append.iii. Otherwise, append row j at the end of R.() If p0j1 is a or-pattern, then onsider ases (ii) and (iii).When the san of P 0 is over, three matries, C, O and Rhave been built. In the ase where O is empty, matrix C isvalid input to the onstrutor rule; otherwise, appendingthe rows of O at the end of C yields valid input for ap-plying (maybe more than one) the or-pattern rule, whihwill in turn yield valid input to the onstrutor rule (pro-vided that (_ | : : :) or patterns have been replaed bysemantially equivalent wild-ards in a previous phase).Thus, the matrix built by appending O at the end of C isreorded into the overall division and the division proessis restarted with input R, unless R is empty.Finally, the full proess divides the input matrix P intoseveral matries, eah of whih is valid input to the otherrules of the ompilation sheme.
7. EXPERIMENTAL RESULTSWe ompare the performane of the ode generated bythe Objetive-Caml ompilers version 3.00 and 3.01, wherethe former implements the sheme of setion 3.3 and thelatter implements our new optimizing sheme (there areother di�erenes of minor relevane to our purpose). Formost programs there is little di�erene; this is natural sinepattern-mathing usually aounts for a small fration ofmost programs running time. A full analysis of the eÆ-ieny of our optimizations would in fat require ountingrelevant instrutions (test, branhes and indiret branhesthrough jump tables), both statially and dynamially. Bylak of time, we only present some programs that demon-strate signi�ant improvement.Our �rst benhmark is the traditionnal fib, that we writeusing a or-pattern.let re fib n = math n with| (0|1) -> 1 | _ -> fib (n-1) + fib (n-2)Here, we simply measure the exeution time of omputingfib 38. Our seond benhmark, pf, is a byte-ode om-piler and interpreter for PCF. We ompute the geometri

mean of the exeution time for a set of �ve di�erent PCFprograms. The time-onsuming part of this program is thebyte-ode mahine whih we oded in the style of the byte-ode mahine inluded in [14℄, the winning entry of the2000 ICFP programming ontest. (we also give �gures forthis program under the name raytrae).Experiments were performed on a lightly loaded 366MhzPentium Pro Linux PC. The tables show wall-lok times(in seonds) and ratios:fib raytrae pfV 3.00 5.36 100 1.69 100 8.12 100V 3.01 3.74 71 1.62 96 5.08 63Obviously, as demonstrated by the fib example, ompila-tion of or-patterns has muh improved. Testing similar ex-amples on�rms that fat. Improvements also omes fromthe better ompilation of swithes. The pf example ismore interesting, it shows that our optimizations yield a 37%speed-up, in the ase of a typial ML appliation (a quiklywritten, ompat, prototype implementation of some pro-gramming language). The raytrae example exhibits lessimportant improvements on the whole test suite of the on-test; however, improvements are notieable for some inputs.It should also be notied that the new ompiler somehowequates the runtime performane of various oding styles, afeature that is important for a high-level onstrut suh aspattern-mathing. Variations in oding style inlude the rel-ative ordering of non-overlapping patterns and on the orderof arguments in pairs.We also performed measurements on a 500Mhz De Alphaserver. They suggest that the e�ets of our optimization donot depend on the targeted arhiteture.fib pfV 3.00 3.4 100 4.13 100V 3.01 2.5 74 2.86 69The raytrae example is is omitted beause it relies onIEEE oating point arithmeti, whih is not implementedin the Objetive Caml ompiler for this arhiteture.More detailed information on these benhmarks is avail-able at http://aml.inria.fr/pattern/speed.html.
8. RELATED WORK

8.1 Decision Treesvs BacktrackingCompiling to deision trees is the original approah topattern mathing ompilation; it �rst appeared in the Hopeompiler and is desribed in [5℄. It is urrently used in theSML-NJ ompiler [7℄.In this approah, there is no mixture rule: instead, theonstrutor rule applies as soon as there is at least one on-strutor in the �rst olumn, and a speialization matrix isreated for eah mathed onstrutor, plus one additionalmatrix for the remaining onstrutors in the signature ofthe types of mathed values, if any. Speialization is doneby following the rules of setion 6.1. This means that rowswhose �rst pattern is a variable get opied several times.On the one hand, this approah guarantees that one on-strutor test is never performed twie. On the other hand,opied pattern rows are ompiled independently and thisresult in potentially large ode size. Namely, examples ex-ist that make the SML-NJ ompiler produe exponentialode [12℄.

Compilation to baktraking automata is the lassial shemeof setion 3.3 (see also [1, 20℄). It is urrently in use in theHaskell-HBC and Objetive-Caml ompiler [11℄. As we al-ready argued, its main advantage is that patterns are neveropied, yielding linear output size. Of ourse, the prie paidis potentially testing the same sub-term several times, re-sulting in potentially poor runtime performane. In thataspet, our new ompilation sheme shows that this priean be redued signi�antly.Compilation to deision trees easily detets unused mathases and non-exhaustive mathings, sine there is no deadode in a deision tree. Deteting these situations is impor-tant, as programmers should be warned about them. How-ever, those problems are NP-omplete [17℄ and this givesus a hint about the potential size of deision trees. Moreonretely, a deision tree may have many leafs orrespond-ing to non-mathed values, whereas knowing that one suhvalues exist is the needed information. Rather, we hekunused math ases and exhaustiveness before ompilationwith a simple algorithm [13℄ that solves the used mathedase problem by basially traversing the deision tree with-out generating it. Advantages are not generating the tree,stopping searh as soon as used math ases are found andapplying various heuristis and matrix simpli�ations whihare not relevant to diret ompilation. Then, one of ouroptimizations uses exhaustiveness information.
8.2 Compiling or-patternsFrom available ML or Haskell ompilers, we only foundtwo ompilers dealing with or-patterns: the (old) Objetive-Caml ompiler and the SML-NJ ompiler. Our tehniquemakes the old Objetive-Caml sheme (see setion 3.3) ob-solete, by both produing more eÆient ode and allowingvariables in or-patterns.The SML-NJ approah is very simple to understand andimplement: or-patterns are expanded during a pre-proessingphase. However, as we already disussed at the end of se-tion 5, this may lead to many dupliations of patterns. Suha risk is ompatible with the very philosophy of ompilationto deision trees and is natural in that ontext.
8.3 OptimizationsMost optimizations dealing with pattern-mathing in theliterature try to improve the order in whih tests are per-formed. In the matrix-based desription, one onsiders al-ternatives to systematially hoosing the �rst olumn of ma-tries in the onstrutor rule. Hene, suh an approah anbe haraterized as \olumn optimization", while our ap-proah would rather be \row optimization". Sine hoos-ing the best olumn is thought to be NP-omplete (to ourknowledge, there is no published proof), most approahesdesribe heuristis. A typial and early work on suh heuris-tis is [2℄, a more reent and thorough study is [16℄. Another,related in pratie, approah relies on sequentiality theoryto identify diretions that are olumns that must be testedby all possible mathers [10, 15, 17, 13℄. However, omput-ing diretions is expansive, and one an onsider relying onheaper heuristis.These works rather apply to the deision trees, with aprimary fous on reduing ode size. It is unlear to us howto ombine olumn and row optimization in pratie andwhether this would yield notieable improvements or not.There also exists a partial-evaluation based approah to

pattern-mathing optimization. [8℄ and later [18℄ speializean ultra-naive pattern-mathing interpreter to reate an eÆ-ient pattern-mathing ompiler. Both authors use ontextinformation as we do. By ontrast, their target is deisiontrees. In the end, the automati proess of partial evaluationdoes not �nd as many optimizations as we do.
9. CONCLUSIONThis paper ontribution is twofold. First, we propose animprovement on the lassial tehnique of ompiling pattern-mathing expressions into baktraking automata, a teh-nique that has remained virtually the same for about 15 years.Our improvements yield automata whih run faster, therebyalleviating the disadvantage of baktraking automata inpratial ases. Moreover the very struture of the produedautomata is not altered and hene the highly desirable prop-erty that output size is linear in the input size is preserved.As a seond ontribution, we propose a tehnique for eÆ-iently ompiling or-patterns with variables, still preserv-ing the linearity of output size. Using or-patterns in plaeof \ath-all" wild-ards results in more robust programs,while using one lause with a or-pattern in plae of sev-eral lauses with idential ations results in more ompat,sometime learer, programs. ML programmers an now en-joy these bene�ts, without being afraid of degraded runtimeeÆieny or ode size explosion.We would have wished to make a lear statement on om-paring batraking automata and deision trees. However,sophistiated ompilation tehniques exist that minimize thedrawbaks of both approahes. Those are our tehniques forbaktraking automata, and hash-onsing and olumn opti-mizations for deision trees. In the absene of a pratialomparison of full-eged algorithms, hoosing one tehniqueor the other reets one's ommitment to guaranteed odesize or guaranteed runtime performane.
10. REFERENCES[1℄ Augustsson, L. Compiling pattern mathing. InFuntional Programming Languages and ComputerArhiteture, J.-P. Jouannaud, Ed. Springer-Verlag,Berlin, DE, 1985, pp. 368{381. Leture Notes inComputer Siene 201Proeedings of. Conferene atNany.[2℄ Baudinet, M., and MaQueen, D. Tree patternmathing for ML,. unpublished paper, De. 1985.[3℄ Bernstein, R. L. Produing good ode for the asestatement. Software|Pratie and Experiene 15, 10(Ot. 1985), 1021{1024.[4℄ Bod��k, R., Gupta, R., and Soffa, M. L.Interproedural onditional branh elimination. InProeedings of the ACM SIGPLAN Conferene onProgramming Language Design and Implementation(PLDI-97) (New York, June 15{18 1997), vol. 32, 5 ofACM SIGPLAN Noties, ACM Press, pp. 146{158.[5℄ Cardelli, L. Compiling a funtional language. InConferene Reord of the 1984 ACM Symposium onLisp and Funtional Programming (Aug. 1984), ACM,ACM, pp. 208{217.[6℄ Fraser, C. W. A ompat, mahine-independentpeephole optimizer. In Conferene Reord of the SixthAnnual ACM Symposium on Priniples of

Programming Languages (Jan. 1979), ACM, ACM,pp. 1{6.[7℄ Harper, R. W., MaQueen, D. B., and Milner,R. Standard ML. Report ECS-LFCS-86-2,Department of Computer Siene, University ofEdinburgh, Edinburgh, UK, 1986. Also CSR-209-86.[8℄ J�rgensen, J. Generating a pattern mathingompiler by partial evaluation. In Glasgow Workshopon Funtional Programming, Ullapool (GlasgowUniversity, July 1990), P. C. J. van Rijsbergen, Ed.,Springer-Verlag, pp. 177{195.[9℄ Knoop, J., R�uthing, O., and Steffen, B. Partialdead ode elimination. In Proeedings of theConferene on Programming Language Design andImplementation (New York, NY, USA, June 1994),ACM Press, pp. 147{158.[10℄ Laville, A. Implementation of lazy pattern mathingalgorithms. In ESOP'88 (1988), H. Ganzinger, Ed.,vol. 300, pp. 298{316.[11℄ Leroy, X. The objetive aml system:Doumentation and user's manual, 2000. WithDamien Doligez, Jaques Garrigue, Didier R�emy, andJ�rôme Vouillon. Available fromhttp://aml.inria.fr.[12℄ Maranget, L. Compiling lazy pattern mathing. InPro. of the 1992 onferene on Lisp and FuntionalProgramming (1992), ACM Press.[13℄ Maranget, L. Two tehniques for ompiling lazypattern mathing. Researh Report 2385, INRIARoquenourt, Ot. 1994.[14℄ PLClub, and Caml'R Us. Objetive-aml: Winnerof the �rst and seond prizes of the p rogrammingontest. ACM SIGPLAN International Conferene onFuntional Programming (ICFP '2000).[15℄ Puel, L., and Su�arez, A. Compiling patternmathing by term deomposition. Journal of SymboliComputation 15, 1 (Jan. 1993), 1{26.[16℄ Sott, K., and Ramsey, N. When domath-ompilation heuristis matter? Teh. Rep.CS-2000-13, Department of Computer Siene,University of Virginia, May 2000.[17℄ Sekar, R. C., Ramesh, R., and Ramakrishnan,I. V. Adaptive pattern mathing. In Automata,Languages and Programming, 19th InternationalColloquium (Vienna, Austria, 13{17 July 1992),W. Kuih, Ed., vol. 623 of Leture Notes in ComputerSiene, Springer-Verlag, pp. 247{260.[18℄ Sestoft, P. ML pattern math ompilation andpartial evaluation, 1996.[19℄ Spuler, D. A. Compiler ode generation for multiwaybranh statements as a stati searh problem. Teh.Rep. 94/3, Department of Computer Siene, JamesCook University, 1994.[20℄ Wadler, P. Compilation of pattern mathing. In TheImplementation of Funtional ProgrammingLanguages, S. L. Peyton Jones, Ed. Prentie-HallInternational, 1987, h. 7.[21℄ Wegman, M., and Zadek, F. K. Constantpropagation with onditional branhes. In ConfereneReord of the 12th Annual ACM Symposium onPriniples of Programming Languages (New Orleans,LS, Jan. 1985), B. K. Reid, Ed., ACM Press,

pp. 291{299.

