

Oracle® Database
Performance Tuning Guide

11g Release 2 (11.2)

E41573-03

September 2013

Oracle Database Performance Tuning Guide, 11g Release 2 (11.2)

E41573-03

Copyright © 2000, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Immanuel Chan, Lance Ashdown

Contributors: Aditya Agrawal, Hermann Baer, Vladimir Barriere, Mehul Bastawala, Eric Belden, Pete
Belknap, Supiti Buranawatanachoke, Sunil Chakkappen, Maria Colgan, Benoit Dageville, Dinesh Das, Karl
Dias, Kurt Engeleiter, Marcus Fallen, Mike Feng, Leonidas Galanis, Ray Glasstone, Prabhaker Gongloor,
Kiran Goyal, Cecilia Grant, Connie Dialeris Green, Shivani Gupta, Karl Haas, Bill Hodak, Andrew
Holdsworth, Hakan Jacobsson, Shantanu Joshi, Ameet Kini, Sergey Koltakov, Vivekanada Kolla, Paul Lane,
Sue K. Lee, Herve Lejeune, Ilya Listvinsky, Bryn Llewellyn, George Lumpkin, Mughees Minhas, Gary Ngai,
Mark Ramacher, Yair Sarig, Uri Shaft, Vishwanath Sreeraman, Vinay Srihari, Randy Urbano, Amir Valiani,
Venkateshwaran Venkataramani, Yujun Wang, Graham Wood, Khaled Yagoub, Mohamed Zait, Mohamed
Ziauddin

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xv

Audience... xv
Documentation Accessibility ... xv
Related Documents ... xv
Conventions ... xvi

What's New in Oracle Database Performance Tuning Guide? xvii

Oracle Database 11g Release 2 (11.2.0.4) New Features in Oracle Database Performance............ xvii
Oracle Database 11g Release 2 (11.2.0.2) New Features in Oracle Database Performance............ xvii
Oracle Database 11g Release 2 (11.2.0.1) New Features in Oracle Database Performance........... xviii

Part I Performance Tuning

1 Performance Tuning Overview

Introduction to Performance Tuning .. 1-1
Performance Planning ... 1-1
Instance Tuning .. 1-1
SQL Tuning ... 1-4

Introduction to Performance Tuning Features and Tools ... 1-4
Automatic Performance Tuning Features .. 1-5
Additional Oracle Database Tools ... 1-6

Part II Performance Planning

2 Designing and Developing for Performance

Oracle Methodology .. 2-1
Understanding Investment Options... 2-1
Understanding Scalability.. 2-2

What is Scalability? .. 2-2
System Scalability... 2-3
Factors Preventing Scalability .. 2-4

System Architecture ... 2-5
Hardware and Software Components .. 2-5
Configuring the Right System Architecture for Your Requirements ... 2-7

iv

 Application Design Principles.. 2-9
Simplicity In Application Design.. 2-10
Data Modeling ... 2-10
Table and Index Design.. 2-10
Using Views ... 2-12
SQL Execution Efficiency... 2-13
Implementing the Application ... 2-14
Trends in Application Development.. 2-16

Workload Testing, Modeling, and Implementation ... 2-16
Sizing Data ... 2-17
Estimating Workloads .. 2-17
Application Modeling .. 2-18
Testing, Debugging, and Validating a Design.. 2-18

Deploying New Applications ... 2-19
Rollout Strategies .. 2-19
Performance Checklist.. 2-20

3 Performance Improvement Methods

The Oracle Performance Improvement Method .. 3-1
Steps in The Oracle Performance Improvement Method... 3-2
A Sample Decision Process for Performance Conceptual Modeling.. 3-3
Top Ten Mistakes Found in Oracle Systems .. 3-4

Emergency Performance Methods .. 3-6
Steps in the Emergency Performance Method... 3-6

Part III Optimizing Instance Performance

4 Configuring a Database for Performance

Performance Considerations for Initial Instance Configuration .. 4-1
Initialization Parameters ... 4-1
Configuring Undo Space... 4-3
Sizing Redo Log Files .. 4-3
Creating Subsequent Tablespaces.. 4-4

Creating and Maintaining Tables for Optimal Performance ... 4-5
Table Compression .. 4-5
Reclaiming Unused Space... 4-6
Indexing Data ... 4-7

Performance Considerations for Shared Servers ... 4-7
Identifying Contention Using the Dispatcher-Specific Views .. 4-8
Identifying Contention for Shared Servers... 4-9

5 Automatic Performance Statistics

Overview of Data Gathering.. 5-1
Database Statistics .. 5-2
Operating System Statistics .. 5-4
Interpreting Statistics... 5-7

v

Overview of the Automatic Workload Repository .. 5-8
Snapshots... 5-9
Baselines .. 5-9
Adaptive Thresholds .. 5-10
Space Consumption .. 5-12

Managing the Automatic Workload Repository ... 5-12
Managing Snapshots... 5-13
Managing Baselines .. 5-14
Managing Baseline Templates... 5-17
Transporting Automatic Workload Repository Data .. 5-19
Using Automatic Workload Repository Views .. 5-21
Generating Automatic Workload Repository Reports .. 5-22
Generating Automatic Workload Repository Compare Periods Reports 5-28
Generating Active Session History Reports .. 5-34
Using Active Session History Reports ... 5-38

6 Automatic Performance Diagnostics

Overview of the Automatic Database Diagnostic Monitor ... 6-1
ADDM Analysis ... 6-2
Using ADDM with Oracle Real Application Clusters .. 6-3
ADDM Analysis Results ... 6-4
Reviewing ADDM Analysis Results: Example.. 6-5

Setting Up ADDM ... 6-5
Diagnosing Database Performance Problems with ADDM .. 6-6

Running ADDM in Database Mode .. 6-7
Running ADDM in Instance Mode.. 6-7
Running ADDM in Partial Mode... 6-8
Displaying an ADDM Report... 6-8

Views with ADDM Information ... 6-9

7 Configuring and Using Memory

Understanding Memory Allocation Issues ... 7-1
Oracle Memory Caches ... 7-2
Automatic Memory Management ... 7-2
Automatic Shared Memory Management .. 7-2
Dynamically Changing Cache Sizes.. 7-3
Application Considerations.. 7-5
Operating System Memory Use... 7-5
Iteration During Configuration.. 7-6

Configuring and Using the Buffer Cache .. 7-6
Using the Buffer Cache Effectively.. 7-7
Sizing the Buffer Cache ... 7-7
Interpreting and Using the Buffer Cache Advisory Statistics .. 7-10
Considering Multiple Buffer Pools... 7-11
Buffer Pool Data in V$DB_CACHE_ADVICE .. 7-13
Buffer Pool Hit Ratios... 7-13

vi

Determining Which Segments Have Many Buffers in the Pool ... 7-13
KEEP Pool... 7-15
RECYCLE Pool .. 7-15

Configuring and Using the Shared Pool and Large Pool .. 7-16
Shared Pool Concepts ... 7-17
Using the Shared Pool Effectively .. 7-19
Sizing the Shared Pool.. 7-22
Interpreting Shared Pool Statistics ... 7-27
Using the Large Pool .. 7-28
Using CURSOR_SPACE_FOR_TIME... 7-31
Caching Session Cursors .. 7-31
Configuring the Reserved Pool ... 7-33
Keeping Large Objects to Prevent Aging .. 7-35
Sharing Cursors for Existing Applications.. 7-36
Maintaining Connections... 7-38

Configuring and Using the Redo Log Buffer... 7-38
Sizing the Log Buffer .. 7-39
Log Buffer Statistics .. 7-39

PGA Memory Management .. 7-39
Configuring Automatic PGA Memory .. 7-41
Configuring OLAP_PAGE_POOL_SIZE ... 7-53

Managing the Server and Client Result Caches.. 7-53
Managing the Server Result Cache... 7-54
Managing the Client Result Cache ... 7-57
Specifying Queries for Result Caching .. 7-59
Requirements for the Result Cache .. 7-62
Accessing Result Cache Information.. 7-63

8 I/O Configuration and Design

About I/O ... 8-1
I/O Configuration ... 8-2

Lay Out the Files Using Operating System or Hardware Striping... 8-2
Manually Distributing I/O ... 8-5
When to Separate Files .. 8-5
Three Sample Configurations... 8-7
Oracle Managed Files .. 8-8
Choosing Data Block Size ... 8-9

I/O Calibration Inside the Database.. 8-10
Prerequisites for I/O Calibration.. 8-10
Running I/O Calibration ... 8-11

I/O Calibration with the Oracle Orion Calibration Tool ... 8-12
Introduction to the Oracle Orion Calibration Tool .. 8-12
Getting Started with Orion .. 8-14
Orion Input Files ... 8-15
Orion Parameters .. 8-15
Orion Output Files .. 8-19
Orion Troubleshooting... 8-23

vii

9 Managing Operating System Resources

Understanding Operating System Performance Issues .. 9-1
Using Operating System Caches.. 9-2
Memory Usage.. 9-3
Using Operating System Resource Managers.. 9-4

Resolving Operating System Issues ... 9-5
Performance Hints on UNIX-Based Systems ... 9-5
Performance Hints on Windows Systems .. 9-5
Performance Hints on HP OpenVMS Systems .. 9-6

Understanding CPU ... 9-6
Resolving CPU Issues.. 9-7

Finding and Tuning CPU Utilization.. 9-8
Managing CPU Resources Using Oracle Database Resource Manager 9-10
Managing CPU Resources Using Instance Caging .. 9-11

10 Instance Tuning Using Performance Views

Instance Tuning Steps... 10-1
Define the Problem ... 10-2
Examine the Host System .. 10-3
Examine the Oracle Database Statistics ... 10-6
Implement and Measure Change.. 10-10

Interpreting Oracle Database Statistics .. 10-11
Examine Load .. 10-11
Using Wait Event Statistics to Drill Down to Bottlenecks... 10-12
Table of Wait Events and Potential Causes... 10-14
Additional Statistics.. 10-15

Wait Events Statistics .. 10-17
buffer busy waits... 10-19
db file scattered read... 10-21
db file sequential read .. 10-23
direct path read and direct path read temp .. 10-24
direct path write and direct path write temp.. 10-25
enqueue (enq:) waits ... 10-26
events in wait class other ... 10-28
free buffer waits... 10-28
Idle Wait Events .. 10-30
latch events... 10-31
log file parallel write... 10-35
library cache pin .. 10-35
library cache lock... 10-35
log buffer space.. 10-35
log file switch... 10-36
log file sync .. 10-36
rdbms ipc reply.. 10-37
SQL*Net Events ... 10-37

Real-Time SQL Monitoring... 10-39

viii

SQL Plan Monitoring.. 10-40
Parallel Execution Monitoring .. 10-40
Generating the SQL Monitor Report .. 10-40
Enabling and Disabling SQL Monitoring .. 10-42

Tuning Instance Recovery Performance: Fast-Start Fault Recovery .. 10-43
About Instance Recovery ... 10-43
Configuring the Duration of Cache Recovery: FAST_START_MTTR_TARGET 10-44
Tuning FAST_START_MTTR_TARGET and Using MTTR Advisor 10-46

Part IV Optimizing SQL Statements

11 The Query Optimizer

Overview of the Query Optimizer ... 11-1
Optimizer Operations... 11-1
Components of the Query Optimizer .. 11-3
Bind Variable Peeking .. 11-8

Overview of Optimizer Access Paths .. 11-13
Full Table Scans ... 11-13
Rowid Scans ... 11-15
Index Scans... 11-15
Cluster Access.. 11-21
Hash Access ... 11-21
Sample Table Scans... 11-21
How the Query Optimizer Chooses an Access Path.. 11-21

Overview of Joins ... 11-22
How the Query Optimizer Executes Join Statements ... 11-22
How the Query Optimizer Chooses Execution Plans for Joins .. 11-23
Nested Loop Joins ... 11-23
Hash Joins... 11-26
Sort Merge Joins .. 11-27
Cartesian Joins ... 11-28
Outer Joins.. 11-28

Reading and Understanding Execution Plans ... 11-32
Overview of EXPLAIN PLAN... 11-32
Steps in the Execution Plan.. 11-34

Controlling Optimizer Behavior .. 11-35
Enabling Query Optimizer Features .. 11-36
Choosing an Optimizer Goal... 11-36

12 Using EXPLAIN PLAN

Understanding EXPLAIN PLAN .. 12-1
How Execution Plans Can Change... 12-2
Minimizing Throw-Away.. 12-2
Looking Beyond Execution Plans ... 12-3
EXPLAIN PLAN Restrictions.. 12-4

The PLAN_TABLE Output Table ... 12-4

ix

Running EXPLAIN PLAN ... 12-4
Identifying Statements for EXPLAIN PLAN .. 12-5
Specifying Different Tables for EXPLAIN PLAN .. 12-5

Displaying PLAN_TABLE Output ... 12-5
Customizing PLAN_TABLE Output.. 12-6

Reading EXPLAIN PLAN Output .. 12-6
Viewing Parallel Execution with EXPLAIN PLAN... 12-7

Viewing Parallel Queries with EXPLAIN PLAN ... 12-9
Viewing Bitmap Indexes with EXPLAIN PLAN ... 12-9
Viewing Result Cache with EXPLAIN PLAN.. 12-10
Viewing Partitioned Objects with EXPLAIN PLAN .. 12-11

Examples of Displaying Range and Hash Partitioning with EXPLAIN PLAN................... 12-11
Examples of Pruning Information with Composite Partitioned Objects 12-12
Examples of Partial Partition-Wise Joins ... 12-14
Examples of Full Partition-wise Joins .. 12-15
Examples of INLIST ITERATOR and EXPLAIN PLAN.. 12-16
Example of Domain Indexes and EXPLAIN PLAN... 12-17

PLAN_TABLE Columns ... 12-17

13 Managing Optimizer Statistics

Overview of Optimizer Statistics... 13-1
Managing Automatic Optimizer Statistics Collection ... 13-2

Enabling and Disabling Automatic Optimizer Statistics Collection 13-2
Considerations When Gathering Statistics.. 13-3

Gathering Statistics Manually .. 13-5
Gathering Statistics with DBMS_STATS Procedures... 13-5
Setting Preferences for Manual Statistics Gathering.. 13-9
When to Gather Statistics ... 13-10
Comparing Statistics with DBMS_STATS Functions... 13-11

System Statistics .. 13-11
Workload Statistics ... 13-12
Noworkload Statistics... 13-13

Managing Statistics... 13-14
Pending Statistics .. 13-14
Managing Extended Statistics ... 13-15
Restoring Previous Versions of Statistics .. 13-20
Exporting and Importing Statistics... 13-20
Restoring Statistics Versus Importing or Exporting Statistics.. 13-21
Locking Statistics for a Table or Schema.. 13-21
Setting Statistics... 13-22
Handling Missing Statistics ... 13-22

Controlling Dynamic Statistics .. 13-22
Purpose of Dynamic Statistics ... 13-23
Dynamic Statistics Concepts.. 13-23
Setting Dynamic Statistics Levels Manually ... 13-25
Disabling Dynamic Statistics ... 13-27

Viewing Statistics ... 13-27

x

Statistics on Tables, Indexes and Columns.. 13-27
Viewing Histograms... 13-28

14 Using Indexes and Clusters

Understanding Index Performance.. 14-1
Tuning the Logical Structure... 14-1
Index Tuning using the SQLAccess Advisor .. 14-2
Choosing Columns and Expressions to Index .. 14-2
Choosing Composite Indexes.. 14-3
Writing Statements That Use Indexes .. 14-4
Writing Statements That Avoid Using Indexes .. 14-4
Re-creating Indexes... 14-5
Compacting Indexes ... 14-5
Using Nonunique Indexes to Enforce Uniqueness .. 14-6
Using Enabled Novalidated Constraints ... 14-6

Using Function-based Indexes for Performance ... 14-7
Using Partitioned Indexes for Performance ... 14-8
Using Index-Organized Tables for Performance... 14-8
Using Bitmap Indexes for Performance .. 14-9
Using Bitmap Join Indexes for Performance ... 14-9
Using Domain Indexes for Performance .. 14-9
Using Table Clusters for Performance .. 14-10
Using Hash Clusters for Performance ... 14-11

15 Using SQL Plan Management

Overview of SQL Plan Baselines ... 15-1
Purpose of SQL Plan Baselines.. 15-1
Architecture of SQL Plan Baselines .. 15-2

Managing SQL Plan Baselines ... 15-3
Capturing SQL Plan Baselines... 15-3
Selecting SQL Plan Baselines... 15-5
Evolving SQL Plan Baselines... 15-6

Using SQL Plan Baselines with SQL Tuning Advisor ... 15-7
Using Fixed SQL Plan Baselines .. 15-8
Displaying SQL Plan Baselines.. 15-8
SQL Management Base .. 15-10

Disk Space Usage .. 15-10
Purging Policy ... 15-10
SQL Management Base Configuration Parameters.. 15-11

Importing and Exporting SQL Plan Baselines... 15-11
Migrating Stored Outlines to SQL Plan Baselines .. 15-12

Overview of Stored Outline Migration.. 15-12
Preparing for Stored Outline Migration .. 15-17
Migrating Outlines to Utilize SQL Plan Management Features .. 15-18
Migrating Outlines to Preserve Stored Outline Behavior ... 15-19
Performing Follow-Up Tasks After Stored Outline Migration .. 15-20

xi

16 SQL Tuning Overview

Introduction to SQL Tuning .. 16-1
Goals for Tuning .. 16-1

Reduce the Workload ... 16-2
Balance the Workload... 16-2
Parallelize the Workload.. 16-2

Identifying High-Load SQL .. 16-2
Identifying Resource-Intensive SQL .. 16-2
Gathering Data on the SQL Identified ... 16-4

Automatic SQL Tuning Features .. 16-5
ADDM... 16-5
SQL Tuning Advisor... 16-5
SQL Tuning Sets .. 16-5
SQL Access Advisor.. 16-5

Developing Efficient SQL Statements .. 16-5
Verifying Optimizer Statistics ... 16-6
Reviewing the Execution Plan... 16-6
Restructuring the SQL Statements.. 16-7
Controlling the Access Path and Join Order with Hints ... 16-9
Restructuring the Indexes ... 16-12
Modifying or Disabling Triggers and Constraints ... 16-12
Restructuring the Data ... 16-12
Maintaining Execution Plans Over Time... 16-13
Visiting Data as Few Times as Possible .. 16-13

Building SQL Test Cases.. 16-14
Creating a Test Case.. 16-15

17 Automatic SQL Tuning

Overview of the Automatic Tuning Optimizer ... 17-1
Statistics Analysis.. 17-2
SQL Profiling ... 17-2
Access Path Analysis .. 17-2
SQL Structure Analysis .. 17-3
Alternative Plan Analysis .. 17-3

Managing the Automatic SQL Tuning Advisor .. 17-5
How Automatic SQL Tuning Works.. 17-5
Enabling and Disabling Automatic SQL Tuning.. 17-6
Configuring Automatic SQL Tuning.. 17-7
Viewing Automatic SQL Tuning Reports.. 17-8

Tuning Reactively with SQL Tuning Advisor ... 17-9
Input Sources ... 17-9
Tuning Options.. 17-10
 Advisor Output .. 17-10
Running SQL Tuning Advisor .. 17-10

Managing SQL Tuning Sets .. 17-15
Creating a SQL Tuning Set .. 17-16

xii

Loading a SQL Tuning Set ... 17-17
Displaying the Contents of a SQL Tuning Set .. 17-17
Modifying a SQL Tuning Set... 17-18
Transporting a SQL Tuning Set... 17-18
Dropping a SQL Tuning Set .. 17-19
Additional Operations on SQL Tuning Sets.. 17-19

Managing SQL Profiles.. 17-19
Overview of SQL Profiles .. 17-20
Accepting a SQL Profile ... 17-24
Altering a SQL Profile .. 17-25
Dropping a SQL Profile.. 17-25
Transporting a SQL Profile .. 17-25

SQL Tuning Views .. 17-26

18 SQL Access Advisor

Overview of SQL Access Advisor .. 18-1
Overview of Using SQL Access Advisor ... 18-3

Using SQL Access Advisor .. 18-5
Steps for Using SQL Access Advisor.. 18-5
Privileges Needed to Use SQL Access Advisor .. 18-6
Setting Up Tasks and Templates... 18-6
SQL Access Advisor Workloads ... 18-8
Working with Recommendations... 18-9
Performing a Quick Tune... 18-21
Managing Tasks... 18-22
Using SQL Access Advisor Constants ... 18-23
Examples of Using SQL Access Advisor ... 18-23

Tuning Materialized Views for Fast Refresh and Query Rewrite ... 18-28
DBMS_ADVISOR.TUNE_MVIEW Procedure.. 18-28

19 Using Optimizer Hints

Overview of Optimizer Hints ... 19-1
Types of Hints.. 19-1
Hints by Category ... 19-2

Specifying Hints .. 19-8
Specifying a Full Set of Hints .. 19-8
Specifying a Query Block in a Hint .. 19-8
Specifying Global Table Hints... 19-10
Specifying Complex Index Hints .. 19-12

Using Hints with Views ... 19-12
Hints and Complex Views ... 19-13
Hints and Mergeable Views .. 19-13
Hints and Nonmergeable Views... 19-14

20 Using Plan Stability

Using Plan Stability to Preserve Execution Plans ... 20-1

xiii

Using Hints with Plan Stability... 20-2
Storing Outlines... 20-3
Enabling Plan Stability ... 20-3
Using Supplied Packages to Manage Stored Outlines .. 20-3
Creating Outlines .. 20-4
Using Stored Outlines .. 20-5
Viewing Outline Data... 20-6
Moving Outline Tables... 20-6

Using Plan Stability with Query Optimizer Upgrades.. 20-8
Moving from RBO to the Query Optimizer .. 20-8
Moving to a New Oracle Release under the Query Optimizer .. 20-9

21 Using Application Tracing Tools

End-to-End Application Tracing... 21-1
Enabling and Disabling Statistic Gathering for End-to-End Tracing 21-3
Viewing Gathered Statistics for End-to-End Application Tracing .. 21-4
Enabling and Disabling for End-to-End Tracing.. 21-4
Viewing Enabled Traces for End-to-End Tracing... 21-6

Using the trcsess Utility ... 21-6
Syntax for trcsess... 21-7
Sample Output of trcsess ... 21-7

Understanding SQL Trace and TKPROF .. 21-8
Understanding the SQL Trace Facility... 21-8
Understanding TKPROF.. 21-9

Using the SQL Trace Facility and TKPROF ... 21-9
Step 1: Setting Initialization Parameters for Trace File Management 21-10
Step 2: Enabling the SQL Trace Facility ... 21-11
Step 3: Formatting Trace Files with TKPROF ... 21-12
Step 4: Interpreting TKPROF Output... 21-16
Step 5: Storing SQL Trace Facility Statistics .. 21-20

Avoiding Pitfalls in TKPROF Interpretation... 21-22
Avoiding the Argument Trap ... 21-22
Avoiding the Read Consistency Trap .. 21-22
Avoiding the Schema Trap .. 21-23
Avoiding the Time Trap... 21-24

Sample TKPROF Output ... 21-24
Sample TKPROF Header.. 21-25
Sample TKPROF Body ... 21-25
Sample TKPROF Summary ... 21-27

Glossary

Index

xiv

xv

Preface

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
Oracle Database Performance Tuning Guide is intended for database administrators
(DBAs) who are responsible for the operation, maintenance, and performance of
Oracle Database. This guide describes how to use Oracle Database performance tools
in the command-line interface to optimize database performance and tune SQL
statements. This guide also describes performance best practices for creating an initial
database and includes performance-related reference information.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
Before reading this guide, you should be familiar with the following manuals:

■ Oracle Database Concepts

■ Oracle Database 2 Day DBA

■ Oracle Database Advanced Application Developer's Guide

See Also: Oracle Database 2 Day + Performance Tuning Guide to learn
how to use Oracle Enterprise Manager to tune database performance

xvi

■ Oracle Database Administrator's Guide

To learn how to use Oracle Enterprise Manager to tune the performance of Oracle
Database, see Oracle Database 2 Day + Performance Tuning Guide.

To learn how to tune data warehouse environments, see Oracle Database Data
Warehousing Guide.

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option during an Oracle Database
installation. To learn how to install and use these schemas, see Oracle Database Sample
Schemas.

To learn about Oracle Database error messages, see Oracle Database Error Messages.
Oracle Database error message documentation is only available in HTML. If you are
accessing the error message documentation on the Oracle Documentation CD, you can
browse the error messages by range. After you find the specific range, use your
browser's find feature to locate the specific message. When connected to the Internet,
you can search for a specific error message using the error message search feature of
the Oracle online documentation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xvii

What's New in Oracle Database Performance
Tuning Guide?

This section describes new performance tuning features of Oracle Database 11g
Release 2 (11.2) and provides pointers to additional information. The features and
enhancements described in this section comprise the overall effort to optimize
database performance.

For a summary of all new features for Oracle Database 11g Release 2 (11.2), see Oracle
Database New Features Guide.

Oracle Database 11g Release 2 (11.2.0.4) New Features in Oracle
Database Performance

The new and updated performance tuning features include:

■ Dynamic statistics enhancements

In previous releases, Oracle Database only gathered dynamic statistics (previously
called dynamic sampling) when one or more of the tables in a query did not have
optimizer statistics. Starting in Oracle Database 11g Release 2 (11.2.0.4), the
optimizer can automatically decide whether dynamic statistics are useful and
which dynamic statistics level to use for all SQL statements. For example, the
optimizer automatically decides whether to gather dynamic statistics during table
scans, index access, joins, and GROUP BY operations. The enhanced behavior is
enabled only when the OPTIMIZER_DYNAMIC_SAMPLING initialization parameter is
set to the new value of 11.

See "Controlling Dynamic Statistics" on page 13-22.

Oracle Database 11g Release 2 (11.2.0.2) New Features in Oracle
Database Performance

The new and updated performance tuning features include:

■ Resource Manager enhancements for parallel statement queuing

You can use Resource Manager to control the order of statements in a parallel
statement queue. For example, you can ensure that high-priority statements spend
less time in the queue. Also, you can use a directive to prevent one consumer
group from monopolizing all of the parallel servers, and to specify the maximum
time in seconds that a parallel statement can wait to be launched.

For more information, see "Managing CPU Resources Using Oracle Database
Resource Manager" on page 9-10 and Oracle Database VLDB and Partitioning Guide.

xviii

■ Resource Manager enhancements for CPU utilization limit

You can use Resource Manager to limit the CPU consumption of a consumer
group. This feature restricts the CPU consumption of low-priority sessions and can
help provide more consistent performance for the workload in a consumer group.

For more information, see "Managing CPU Resources Using Oracle Database
Resource Manager" on page 9-10.

■ New package for Automatic SQL Tuning

The DBMS_AUTO_SQLTUNE package is the new interface for managing the Automatic
SQL Tuning task. Unlike the SQL Tuning Advisor package DBMS_SQLTUNE, which
requires ADVISOR privileges, DBMS_AUTO_SQLTUNE requires the DBA role.

For more information, see "Configuring Automatic SQL Tuning" on page 17-7.

■ Oracle Orion I/O Calibration Tool Documentation

Oracle Orion is a tool for predicting the performance of an Oracle database
without having to install Oracle or create a database. Unlike other I/O calibration
tools, Oracle Orion is expressly designed for simulating Oracle database I/O
workloads using the same I/O software stack as Oracle. Orion can also simulate
the effect of striping performed by Oracle Automatic Storage Management.

For more information, see "I/O Calibration with the Oracle Orion Calibration
Tool" on page 8-12.

Oracle Database 11g Release 2 (11.2.0.1) New Features in Oracle
Database Performance

The new and updated performance tuning features include:

■ New Automatic Workload Repository (AWR) views

AWR supports several new historical views, including
DBA_HIST_DB_CACHE_ADVICE and DBA_HIST_IOSTAT_DETAIL.

For more information, see "Using Automatic Workload Repository Views" on
page 5-21.

■ New Automatic Workload Repository reports

New AWR reports and AWR Compare Periods reports have been added for Oracle
Real Application Clusters (Oracle RAC).

For more information, see "Generating Automatic Workload Repository Reports"
on page 5-22 and "Generating Automatic Workload Repository Compare Periods
Reports" on page 5-28.

■ Table annotation support for the client result cache

The client result cache supports table annotations.

For more information, see "Using Result Cache Table Annotations" on page 7-61.

■ Enhancement to the RESULT_CACHE annotation for PL/SQL functions

In Oracle Database 11g Release 1 (11.1), PL/SQL functions that performed queries
referencing annotated tables required the RELIES_ON clause. This clause has been
deprecated and is no longer required.

■ Hints specifying parallelism at the statement level

The scope of the parallel hints has been extended to include the statement level.

xix

For more information, see "Hints for Parallel Execution" on page 19-5.

■ In-Memory Parallel Execution

When using parallel query, you can configure the database to use the database
buffer cache instead of performing direct reads into the PGA for a SQL statement.
This configuration may be appropriate when database servers have a large
amount of memory. Also, an Oracle Real Applications Cluster (Oracle RAC)
database can aggregate the size of the buffer cache of all nodes, thereby caching
larger objects and caching more queries.

For more information, see "Using the Buffer Cache Effectively" on page 7-7.

■ Hints for online application upgrades

The online application upgrade hints suggest how to handle conflicting INSERT
and UPDATE operations when performing an online application upgrade using
edition-based redefinition. For more information, see "Hints for Online
Application Upgrade" on page 19-4.

■ SQL Tuning Advisor enhancements

This release includes the following enhancements to SQL Tuning Advisor:

– While tuning a SQL statement, SQL Tuning Advisor searches real-time and
historical performance data for alternative execution plans for the statement. If
plans other than the original plan exist, then SQL Tuning Advisor reports an
alternative plan finding. See "Alternative Plan Analysis" on page 17-3.

– You can transport a SQL tuning set to any database created in Oracle Database
10g (Release 2) or later. This technique is useful when using SQL Performance
Analyzer to tune regressions on a test database. See "Transporting a SQL
Tuning Set" on page 17-18.

– Sometimes SQL Tuning Advisor may recommend accepting a profile that uses
the Automatic Degree of Parallelism (Auto DOP) feature. A parallel query
profile is only recommended when the original plan is serial and when
parallel execution can significantly reduce the elapsed time for a long-running
query. See "SQL Profile Recommendations" on page 17-21.

■ Migrating stored outlines to SQL plan baselines

Oracle Database enables you to safely migrate from stored outlines to SQL plan
baselines. After the migration, you can maintain the same plan stability you had
using stored outlines while being able to utilize the more advanced features
provided by the SQL Plan Management framework. For more information, see
"Migrating Stored Outlines to SQL Plan Baselines" on page 15-12.

xx

Part I
Part I Performance Tuning

Part I provides an introduction and overview of performance tuning.

The chapter in this part is:

■ Chapter 1, "Performance Tuning Overview"

1

Performance Tuning Overview 1-1

1 Performance Tuning Overview

This chapter provides an introduction to performance tuning and contains the
following sections:

■ Introduction to Performance Tuning

■ Introduction to Performance Tuning Features and Tools

Introduction to Performance Tuning
This guide provides information about tuning Oracle Database for performance.
Topics discussed in this guide include:

■ Performance Planning

■ Instance Tuning

■ SQL Tuning

Performance Planning
You should complete Part II, "Performance Planning" before proceeding to other parts
of this guide. Based on years of designing and performance experience, Oracle has
designed a performance methodology. This part describes activities that can
dramatically improve system performance and contains the following topics:

■ Understanding Investment Options

■ Understanding Scalability

■ System Architecture

■ Application Design Principles

■ Workload Testing, Modeling, and Implementation

■ Deploying New Applications

Instance Tuning
Part III, "Optimizing Instance Performance" discusses the factors involved in the
tuning and optimizing of an Oracle database instance.

When considering instance tuning, take care in the initial design of the database to
avoid bottlenecks that could lead to performance problems. In addition, you must
consider:

See Also: Oracle Database 2 Day + Performance Tuning Guide to learn
how to use Oracle Enterprise Manager to tune database performance

Introduction to Performance Tuning

1-2 Oracle Database Performance Tuning Guide

■ Allocating memory to database structures

■ Determining I/O requirements of different parts of the database

■ Tuning the operating system for optimal performance of the database

After the database instance has been installed and configured, you must monitor the
database as it is running to check for performance-related problems.

Performance Principles
Performance tuning requires a different, although related, method to the initial
configuration of a system. Configuring a system involves allocating resources in an
ordered manner so that the initial system configuration is functional.

Tuning is driven by identifying the most significant bottleneck and making the
appropriate changes to reduce or eliminate the effect of that bottleneck. Usually,
tuning is performed reactively, either while the system is in preproduction or after it is
live.

Baselines
The most effective way to tune is to have an established performance baseline that you
can use for comparison if a performance issue arises. Most database administrators
(DBAs) know their system well and can easily identify peak usage periods. For
example, the peak periods could be between 10.00am and 12.00pm and also between
1.30pm and 3.00pm. This could include a batch window of 12.00am midnight to 6am.

It is important to identify these peak periods at the site and install a monitoring tool
that gathers performance data for those high-load times. Optimally, data gathering
should be configured from when the application is in its initial trial phase during the
QA cycle. Otherwise, this should be configured when the system is first in production.

Ideally, baseline data gathered should include the following:

■ Application statistics (transaction volumes, response time)

■ Database statistics

■ Operating system statistics

■ Disk I/O statistics

■ Network statistics

In the Automatic Workload Repository, baselines are identified by a range of snapshots
that are preserved for future comparisons. See "Overview of the Automatic Workload
Repository" on page 5-8.

The Symptoms and the Problems
A common pitfall in performance tuning is to mistake the symptoms of a problem for
the actual problem itself. It is important to recognize that many performance statistics
indicate the symptoms, and that identifying the symptom is not sufficient data to
implement a remedy. For example:

■ Slow physical I/O

Generally, this is caused by poorly-configured disks. However, it could also be
caused by a significant amount of unnecessary physical I/O on those disks issued
by poorly-tuned SQL.

■ Latch contention

Introduction to Performance Tuning

Performance Tuning Overview 1-3

Rarely is latch contention tunable by reconfiguring the instance. Rather, latch
contention usually is resolved through application changes.

■ Excessive CPU usage

Excessive CPU usage usually means that there is little idle CPU on the system.
This could be caused by an inadequately-sized system, by untuned SQL
statements, or by inefficient application programs.

When to Tune
There are two distinct types of tuning:

■ Proactive Monitoring

■ Bottleneck Elimination

Proactive Monitoring Proactive monitoring usually occurs on a regularly scheduled
interval, where several performance statistics are examined to identify whether the
system behavior and resource usage has changed. Proactive monitoring can also be
considered as proactive tuning.

Usually, monitoring does not result in configuration changes to the system, unless the
monitoring exposes a serious problem that is developing. In some situations,
experienced performance engineers can identify potential problems through statistics
alone, although accompanying performance degradation is usual.

Experimenting with or tweaking a system when there is no apparent performance
degradation as a proactive action can be a dangerous activity, resulting in unnecessary
performance drops. Tweaking a system should be considered reactive tuning, and the
steps for reactive tuning should be followed.

Monitoring is usually part of a larger capacity planning exercise, where resource
consumption is examined to see changes in the way the application is being used, and
the way the application is using the database and host resources.

Bottleneck Elimination Tuning usually implies fixing a performance problem. However,
tuning should be part of the life cycle of an application—through the analysis, design,
coding, production, and maintenance stages. Often, the tuning phase is left until the
database is in production. At this time, tuning becomes a reactive process, where the
most important bottleneck is identified and fixed.

Usually, the purpose for tuning is to reduce resource consumption or to reduce the
elapsed time for an operation to complete. Either way, the goal is to improve the
effective use of a particular resource. In general, performance problems are caused by
the overuse of a particular resource. The overused resource is the bottleneck in the
system. There are several distinct phases in identifying the bottleneck and the
potential fixes. These are discussed in the sections that follow.

Remember that the different forms of contention are symptoms that can be fixed by
making changes in the following places:

■ Changes in the application, or the way the application is used

■ Changes in Oracle

■ Changes in the host hardware configuration

Often, the most effective way of resolving a bottleneck is to change the application.

Introduction to Performance Tuning Features and Tools

1-4 Oracle Database Performance Tuning Guide

SQL Tuning
Part IV, "Optimizing SQL Statements" of this guide discusses the process of tuning and
optimizing SQL statements.

Many application programmers consider SQL a messaging language, because queries
are issued and data is returned. However, client tools often generate inefficient SQL
statements. Therefore, a good understanding of the database SQL processing engine is
necessary for writing optimal SQL. This is especially true for high transaction
processing systems.

Typically, SQL statements issued by OLTP applications operate on relatively few rows
at a time. If an index can point to the exact rows that are required, then Oracle
Database can construct an accurate plan to access those rows efficiently through the
shortest possible path. In decision support system (DSS) environments, selectivity is
less important, because they often access most of a table's rows. In such situations, full
table scans are common, and indexes are not even used. This book is primarily
focussed on OLTP-type applications. For detailed information on DSS and mixed
environments, see the Oracle Database Data Warehousing Guide.

Query Optimizer and Execution Plans
When a SQL statement is executed on an Oracle database, the query optimizer
determines the most efficient execution plan after considering many factors related to
the objects referenced and the conditions specified in the query. This determination is
an important step in the processing of any SQL statement and can greatly affect
execution time.

During the evaluation process, the query optimizer reviews statistics gathered on the
system to determine the best data access path and other considerations. You can
override the execution plan of the query optimizer with hints inserted in SQL
statement.

Introduction to Performance Tuning Features and Tools
Effective data collection and analysis is essential for identifying and correcting
performance problems. Oracle Database provides several tools that allow a
performance engineer to gather information regarding database performance. In
addition to gathering data, Oracle Database provides tools to monitor performance,
diagnose problems, and tune applications.

The Oracle Database gathering and monitoring features are mainly automatic,
managed by Oracle background processes. To enable automatic statistics collection
and automatic performance features, the STATISTICS_LEVEL initialization parameter
must be set to TYPICAL or ALL. You can administer and display the output of the
gathering and tuning tools with Oracle Enterprise Manager, or with APIs and views.
For ease of use and to take advantage of its numerous automated monitoring and
diagnostic tools, Oracle Enterprise Manager Database Control is recommended.

Introduction to Performance Tuning Features and Tools

Performance Tuning Overview 1-5

Automatic Performance Tuning Features
The Oracle Database automatic performance tuning features include:

■ Automatic Workload Repository (AWR) collects, processes, and maintains
performance statistics for problem detection and self-tuning purposes. See
"Overview of the Automatic Workload Repository" on page 5-8.

■ Automatic Database Diagnostic Monitor (ADDM) analyzes the information
collected by the AWR for possible performance problems with the Oracle
database. See "Overview of the Automatic Database Diagnostic Monitor" on
page 6-1.

■ SQL Tuning Advisor allows a quick and efficient technique for optimizing SQL
statements without modifying any statements. See "Tuning Reactively with SQL
Tuning Advisor" on page 17-9.

■ SQLAccess Advisor provides advice on materialized views, indexes, and
materialized view logs. See "Automatic SQL Tuning Features" on page 16-5 and
"Overview of SQL Access Advisor" on page 18-1 for information about SQLAccess
Advisor.

■ End-to-End Application tracing identifies excessive workloads on the system by
specific user, service, or application component. See "End-to-End Application
Tracing" on page 21-1.

■ Server-generated alerts automatically provide notifications when impending
problems are detected. See Oracle Database Administrator's Guide to learn how to
monitor the operation of the database with server-generated alerts.

■ Additional advisors that can be launched from Oracle Enterprise Manager, such as
memory advisors to optimize memory for an instance. The memory advisors are
commonly used when automatic memory management is not set up for the
database. Other advisors are used to optimize mean time to recovery (MTTR),
shrinking of segments, and undo tablespace settings. To learn about the advisors
available with Oracle Enterprise Manager, see Oracle Database 2 Day + Performance
Tuning Guide.

■ The Database Performance page in Oracle Enterprise Manager displays host,
instance service time, and throughput information for real time monitoring and
diagnosis. The page can be set to refresh automatically in selected intervals or
manually. To learn about the Database Performance page, see Oracle Database 2
Day + Performance Tuning Guide.

See Also:

■ Oracle Database 2 Day DBA to learn how to use Oracle
Enterprise Manager to manage Oracle Database

■ Oracle Database 2 Day + Performance Tuning Guide to learn how
to use Oracle Enterprise Manager to tune database performance

■ Oracle Database PL/SQL Packages and Types Reference for detailed
information on the DBMS_ADVISOR, DBMS_SQLTUNE,
DBMS_AUTO_SQLTUNE, and DBMS_WORKLOAD_REPOSITORY packages

■ Oracle Database Reference for information about the
STATISTICS_LEVEL initialization parameter

Introduction to Performance Tuning Features and Tools

1-6 Oracle Database Performance Tuning Guide

Additional Oracle Database Tools
This section describes additional Oracle Database tools that you can use for
determining performance problems.

V$ Performance Views
The V$ views are the performance information sources used by all Oracle Database
performance tuning tools. The V$ views are based on memory structures initialized at
instance startup. The memory structures, and the views that represent them, are
automatically maintained by Oracle Database for the life of the instance. See
Chapter 10, "Instance Tuning Using Performance Views" for information diagnosing
tuning problems using the V$ performance views.

See Also: Oracle Database Reference to learn more about dynamic
performance views

Note: Oracle recommends using the Automatic Workload
Repository to gather performance data. These tools have been
designed to capture all of the data needed for performance analysis.

Part II
Part II Performance Planning

Part II describes ways to improve Oracle Database performance by starting with
sound application design and using statistics to monitor application performance. It
explains the Oracle Performance Improvement Method and emergency performance
techniques for dealing with performance problems.

The chapters in this part include:

■ Chapter 2, "Designing and Developing for Performance"

■ Chapter 3, "Performance Improvement Methods"

2

Designing and Developing for Performance 2-1

2 Designing and Developing for Performance

Optimal system performance begins with design and continues throughout the life of
your system. Carefully consider performance issues during the initial design phase so
that you can tune your system more easily during production.

This chapter contains the following sections:

■ Oracle Methodology

■ Understanding Investment Options

■ Understanding Scalability

■ System Architecture

■ Application Design Principles

■ Workload Testing, Modeling, and Implementation

■ Deploying New Applications

Oracle Methodology
System performance has become increasingly important as computer systems get
larger and more complex as the Internet plays a bigger role in business applications. To
accommodate this, Oracle has produced a performance methodology based on years
of designing and performance experience. This methodology explains clear and simple
activities that can dramatically improve system performance.

Performance strategies vary in their effectiveness, and systems with different
purposes—such as operational systems and decision support systems—require
different performance skills. This book examines the considerations that any database
designer, administrator, or performance expert should focus their efforts on.

System performance is designed and built into a system. It does not just happen.
Performance problems are usually the result of contention for, or exhaustion of, some
system resource. When a system resource is exhausted, the system cannot scale to
higher levels of performance. This new performance methodology is based on careful
planning and design of the database, to prevent system resources from becoming
exhausted and causing down-time. By eliminating resource conflicts, systems can be
made scalable to the levels required by the business.

Understanding Investment Options
With the availability of relatively inexpensive, high-powered processors, memory, and
disk drives, there is a temptation to buy more system resources to improve
performance. In many situations, new CPUs, memory, or more disk drives can indeed

Understanding Scalability

2-2 Oracle Database Performance Tuning Guide

provide an immediate performance improvement. However, any performance
increases achieved by adding hardware should be considered a short-term relief to an
immediate problem. If the demand and load rates on the application continue to grow,
then the chance of the same problem occurring soon is likely.

In other situations, additional hardware does not improve the system's performance at
all. Poorly designed systems perform poorly no matter how much extra hardware is
allocated. Before purchasing additional hardware, ensure that serialization or single
threading is not occurring within the application. Long-term, it is generally more
valuable to increase the efficiency of your application in terms of the number of
physical resources used for each business transaction.

Understanding Scalability
The word scalability is used in many contexts in development environments. The
following section provides an explanation of scalability that is aimed at application
designers and performance specialists.

This section covers the following topics:

■ What is Scalability?

■ System Scalability

■ Factors Preventing Scalability

What is Scalability?
Scalability is a system's ability to process more workload, with a proportional increase
in system resource usage. In other words, in a scalable system, if you double the
workload, then the system uses twice as many system resources. This sounds obvious,
but due to conflicts within the system, the resource usage might exceed twice the
original workload.

Examples of poor scalability due to resource conflicts include the following:

■ Applications requiring significant concurrency management as user populations
increase

■ Increased locking activities

■ Increased data consistency workload

■ Increased operating system workload

■ Transactions requiring increases in data access as data volumes increase

■ Poor SQL and index design resulting in a higher number of logical I/Os for the
same number of rows returned

■ Reduced availability, because database objects take longer to maintain

An application is said to be unscalable if it exhausts a system resource to the point
where no more throughput is possible when its workload is increased. Such
applications result in fixed throughputs and poor response times.

Examples of resource exhaustion include the following:

■ Hardware exhaustion

■ Table scans in high-volume transactions causing inevitable disk I/O shortages

■ Excessive network requests, resulting in network and scheduling bottlenecks

Understanding Scalability

Designing and Developing for Performance 2-3

■ Memory allocation causing paging and swapping

■ Excessive process and thread allocation causing operating system thrashing

This means that application designers must create a design that uses the same
resources, regardless of user populations and data volumes, and does not put loads on
the system resources beyond their limits.

System Scalability
Applications that are accessible through the Internet have more complex performance
and availability requirements. Some applications are designed and written only for
Internet use, but even typical back-office applications—such as a general ledger
application—might require some or all data to be available online.

Characteristics of Internet age applications include the following:

■ Availability 24 hours a day, 365 days a year

■ Unpredictable and imprecise number of concurrent users

■ Difficulty in capacity planning

■ Availability for any type of query

■ Multitier architectures

■ Stateless middleware

■ Rapid development timescale

■ Minimal time for testing

Figure 2–1 illustrates the classic workload growth curve, with demand growing at an
increasing rate. Applications must scale with the increase of workload and also when
additional hardware is added to support increasing demand. Design errors can cause
the implementation to reach its maximum, regardless of additional hardware resources
or re-design efforts.

Figure 2–1 Workload Growth Curve

Applications are challenged by very short development timeframes with limited time
for testing and evaluation. However, bad design typically means that you must later

Time

R
eq

u
ir

ed
 W

o
rk

lo
ad

Understanding Scalability

2-4 Oracle Database Performance Tuning Guide

rearchitect and reimplement the system. If you deploy an application with known
architectural and implementation limitations on the Internet, and if the workload
exceeds the anticipated demand, then failure is a real possibility. From a business
perspective, poor performance can mean a loss of customers. If Web users do not get a
response in seven seconds, then the user's attention could be lost forever.

In many cases, the cost of re-designing a system with the associated downtime costs in
migrating to new implementations exceeds the costs of properly building the original
system. The moral of the story is simple: design and implement with scalability in
mind from the start.

Factors Preventing Scalability
When building applications, designers and architects should aim for as close to perfect
scalability as possible. This is sometimes called linear scalability, where system
throughput is directly proportional to the number of CPUs.

In real life, linear scalability is impossible for reasons beyond a designer's control.
However, making the application design and implementation as scalable as possible
should ensure that current and future performance objectives can be achieved through
expansion of hardware components and the evolution of CPU technology.

Factors that may prevent linear scalability include:

■ Poor application design, implementation, and configuration

 The application has the biggest impact on scalability. For example:

■ Poor schema design can cause expensive SQL that do not scale.

■ Poor transaction design can cause locking and serialization problems.

■ Poor connection management can cause poor response times and unreliable
systems.

However, the design is not the only problem. The physical implementation of the
application can be the weak link. For example:

■ Systems can move to production environments with bad I/O strategies.

■ The production environment could use different execution plans than those
generated in testing.

■ Memory-intensive applications that allocate a large amount of memory
without much thought for freeing the memory at run time can cause excessive
memory usage.

■ Inefficient memory usage and memory leaks put a high stress on the operating
virtual memory subsystem. This impacts performance and availability.

■ Incorrect sizing of hardware components

Bad capacity planning of all hardware components is becoming less of a problem
as relative hardware prices decrease. However, too much capacity can mask
scalability problems as the workload is increased on a system.

■ Limitations of software components

All software components have scalability and resource usage limitations. This
applies to application servers, database servers, and operating systems.
Application design should not place demands on the software beyond what it can
handle.

■ Limitations of Hardware Components

System Architecture

Designing and Developing for Performance 2-5

Hardware is not perfectly scalable. Most multiprocessor computers can get close to
linear scaling with a finite number of CPUs, but after a certain point each
additional CPU can increase performance overall, but not proportionately. There
might come a time when an additional CPU offers no increase in performance, or
even degrades performance. This behavior is very closely linked to the workload
and the operating system setup.

System Architecture
There are two main parts to a system's architecture:

■ Hardware and Software Components

■ Configuring the Right System Architecture for Your Requirements

Hardware and Software Components
This section discusses:

■ Hardware Components

■ Software Components

Hardware Components
Today's designers and architects are responsible for sizing and capacity planning of
hardware at each tier in a multitier environment. It is the architect's responsibility to
achieve a balanced design. This is analogous to a bridge designer who must consider
all the various payload and structural requirements for the bridge. A bridge is only as
strong as its weakest component. As a result, a bridge is designed in balance, such that
all components reach their design limits simultaneously.

The main hardware components include:

■ CPU

■ Memory

■ I/O Subsystem

■ Network

CPU There can be one or more CPUs, and they can vary in processing power from
simple CPUs found in hand-held devices to high-powered server CPUs. Sizing of
other hardware components is usually a multiple of the CPUs on the system. See
Chapter 9, "Managing Operating System Resources".

Memory Database and application servers require considerable amounts of memory to
cache data and avoid time-consuming disk access. See Chapter 7, "Configuring and
Using Memory".

I/O Subsystem The I/O subsystem can vary between the hard disk on a client PC and
high performance disk arrays. Disk arrays can perform thousands of I/Os each second
and provide availability through redundancy in terms of multiple I/O paths and hot
pluggable mirrored disks. See Chapter 8, "I/O Configuration and Design".

Note: These factors are based on Oracle Server Performance
group's experience of tuning unscalable systems.

System Architecture

2-6 Oracle Database Performance Tuning Guide

Network All computers in a system are connected to a network, from a modem line to a
high speed internal LAN. The primary concerns with network specifications are
bandwidth (volume) and latency (speed).

Software Components
The same way computers have common hardware components, applications have
common functional components. By dividing software development into functional
components, it is possible to better comprehend the application design and
architecture. Some components of the system are performed by existing software
bought to accelerate application implementation, or to avoid re-development of
common components.

The difference between software components and hardware components is that while
hardware components only perform one task, a piece of software can perform the roles
of various software components. For example, a disk drive only stores and retrieves
data, but a client program can manage the user interface and perform business logic.

Most applications involve the following components:

■ Managing the User Interface

■ Implementing Business Logic

■ Managing User Requests and Resource Allocation

■ Managing Data and Transactions

Managing the User Interface This component is the most visible to application users, and
includes the following functions:

■ Displaying the screen to the user

■ Collecting user data and transferring it to business logic

■ Validating data entry

■ Navigating through levels or states of the application

Implementing Business Logic This component implements core business rules that are
central to the application function. Errors made in this component can be very costly
to repair. This component is implemented by a mixture of declarative and procedural
approaches. An example of a declarative activity is defining unique and foreign keys.
An example of procedure-based logic is implementing a discounting strategy.

Common functions of this component include:

■ Moving a data model to a relational table structure

■ Defining constraints in the relational table structure

■ Coding procedural logic to implement business rules

Managing User Requests and Resource Allocation This component is implemented in all
pieces of software. However, there are some requests and resources that can be
influenced by the application design and some that cannot.

In a multiuser application, most resource allocation by user requests are handled by
the database server or the operating system. However, in a large application where the
number of users and their usage pattern is unknown or growing rapidly, the system
architect must be proactive to ensure that no single software component becomes
overloaded and unstable.

Common functions of this component include:

System Architecture

Designing and Developing for Performance 2-7

■ Connection management with the database

■ Executing SQL efficiently (cursors and SQL sharing)

■ Managing client state information

■ Balancing the load of user requests across hardware resources

■ Setting operational targets for hardware and software components

■ Persistent queuing for asynchronous execution of tasks

Managing Data and Transactions This component is largely the responsibility of the
database server and the operating system.

Common functions of this component include:

■ Providing concurrent access to data using locks and transactional semantics

■ Providing optimized access to the data using indexes and memory cache

■ Ensuring that data changes are logged in the event of a hardware failure

■ Enforcing any rules defined for the data

Configuring the Right System Architecture for Your Requirements
Configuring the initial system architecture is a largely iterative process. System
architects must satisfy the system requirements within budget and schedule
constraints. If the system requires interactive users transacting business-making
decisions based on the contents of a database, then user requirements drive the
architecture. If there are few interactive users on the system, then the architecture is
process-driven.

Examples of interactive user applications:

■ Accounting and bookkeeping applications

■ Order entry systems

■ Email servers

■ Web-based retail applications

■ Trading systems

Examples of process-driven applications:

■ Utility billing systems

■ Fraud detection systems

■ Direct mail

In many ways, process-driven applications are easier to design than multiuser
applications because the user interface element is eliminated. However, because the
objectives are process-oriented, system architects not accustomed to dealing with large
data volumes and different success factors can become confused. Process-driven
applications draw from the skills sets used in both user-based applications and data
warehousing. Therefore, this book focuses on evolving system architectures for
interactive users.

System Architecture

2-8 Oracle Database Performance Tuning Guide

The following questions should stimulate thought on system architecture, though they
are not a definitive guide to system architecture. These questions demonstrate how
business requirements can influence the architecture, ease of implementation, and
overall performance and availability of a system. For example:

■ How many users must the system support?

Most applications fall into one of the following categories:

– Very few users on a lightly-used or exclusive computer

For this type of application, there is usually one user. The focus of the
application design is to make the single user as productive as possible by
providing good response time, yet make the application require minimal
administration. Users of these applications rarely interfere with each other and
have minimal resource conflicts.

– A medium to large number of users in a corporation using shared applications

For this type of application, the users are limited by the number of employees
in the corporation actually transacting business through the system. Therefore,
the number of users is predictable. However, delivering a reliable service is
crucial to the business. The users must share a resource, so design efforts must
address response time under heavy system load, escalation of resource for
each session usage, and room for future growth.

– An infinite user population distributed on the Internet

For this type of application, extra engineering effort is required to ensure that
no system component exceeds its design limits. This creates a bottleneck that
halts or destabilizes the system. These applications require complex load
balancing, stateless application servers, and efficient database connection
management. In addition, use statistics and governors to ensure that the user
receives feedback if the database cannot satisfy their requests because of
system overload.

■ What will be the user interaction method?

The choices of user interface range from a simple Web browser to a custom client
program.

■ Where are the users located?

The distance between users influences how the application is engineered to cope
with network latencies. The location also affects which times of the day are busy,
when it is impossible to perform batch or system maintenance functions.

■ What is the network speed?

Network speed affects the amount of data and the conversational nature of the
user interface with the application and database servers. A highly conversational
user interface can communicate with back-end servers on every key stroke or field
level validation. A less conversational interface works on a screen-sent and a
screen-received model. On a slow network, it is impossible to achieve high data
entry speeds with a highly conversational user interface.

Note: Generating a system architecture is not a deterministic
process. It requires careful consideration of business requirements,
technology choices, existing infrastructure and systems, and actual
physical resources, such as budget and manpower.

Application Design Principles

Designing and Developing for Performance 2-9

■ How much data will the user access, and how much of that data is largely read
only?

The amount of data queried online influences all aspects of the design, from table
and index design to the presentation layers. Design efforts must ensure that user
response time is not a function of the size of the database. If the application is
largely read only, then replication and data distribution to local caches in the
application servers become a viable option. This also reduces workload on the core
transactional server.

■ What is the user response time requirement?

Consideration of the user type is important. If the user is an executive who
requires accurate information to make split second decisions, then user response
time cannot be compromised. Other types of users, such as users performing data
entry activities, might not need such a high level of performance.

■ Do users expect 24 hour service?

This is mandatory for today's Internet applications where trade is conducted 24
hours a day. However, corporate systems that run in a single time zone might be
able to tolerate after-hours downtime. You can use this after-hours downtime to
run batch processes or to perform system administration. In this case, it might be
more economic not to run a fully-available system.

■ Must all changes be made in real time?

It is important to determine whether transactions must be executed within the
user response time, or if they can be queued for asynchronous execution.

The following are secondary questions, which can also influence the design, but really
have more impact on budget and ease of implementation. For example:

■ How big will the database be?

This influences the sizing of the database server. On servers with a very large
database, it might be necessary to have a bigger computer than dictated by the
workload. This is because the administration overhead with large databases is
largely a function of the database size. As tables and indexes grow, it takes
proportionately more CPUs to allow table reorganizations and index builds to
complete in an acceptable time limit.

■ What is the required throughput of business transactions?

■ What are the availability requirements?

■ Do skills exist to build and administer this application?

■ What compromises are forced by budget constraints?

 Application Design Principles
This section describes the following design decisions that are involved in building
applications:

■ Simplicity In Application Design

■ Data Modeling

■ Table and Index Design

■ Using Views

■ SQL Execution Efficiency

Application Design Principles

2-10 Oracle Database Performance Tuning Guide

■ Implementing the Application

■ Trends in Application Development

Simplicity In Application Design
Applications are no different than any other designed and engineered product.
Well-designed structures, computers, and tools are usually reliable, easy to use and
maintain, and simple in concept. In the most general terms, if the design looks correct,
then it probably is. This principle should always be kept in mind when building
applications.

Consider the following design issues:

■ If the table design is so complicated that nobody can fully understand it, then the
table is probably poorly designed.

■ If SQL statements are so long and involved that it would be impossible for any
optimizer to effectively optimize it in real time, then there is probably a bad
statement, underlying transaction, or table design.

■ If there are indexes on a table and the same columns are repeatedly indexed, then
there is probably a poor index design.

■ If queries are submitted without suitable qualification for rapid response for
online users, then there is probably a poor user interface or transaction design.

■ If the calls to the database are abstracted away from the application logic by many
layers of software, then there is probably a bad software development method.

Data Modeling
Data modeling is important to successful relational application design. You must
perform this modeling in a way that quickly represents the business practices. Heated
debates may occur about the correct data model. The important thing is to apply
greatest modeling efforts to those entities affected by the most frequent business
transactions. In the modeling phase, there is a great temptation to spend too much
time modeling the non-core data elements, which results in increased development
lead times. Use of modeling tools can then rapidly generate schema definitions and
can be useful when a fast prototype is required.

Table and Index Design
Table design is largely a compromise between flexibility and performance of core
transactions. To keep the database flexible and able to accommodate unforeseen
workloads, the table design should be very similar to the data model, and it should be
normalized to at least 3rd normal form. However, certain core transactions required by
users can require selective denormalization for performance purposes.

Examples of this technique include storing tables pre-joined, the addition of derived
columns, and aggregate values. Oracle Database provides numerous options for
storage of aggregates and pre-joined data by clustering and materialized view
functions. These features allow a simpler table design to be adopted initially.

Again, focus and resources should be spent on the business critical tables, so that
optimal performance can be achieved. For non-critical tables, shortcuts in design can
be adopted to enable a more rapid application development. However, if prototyping
and testing a non-core table becomes a performance problem, then remedial design
effort should be applied immediately.

Application Design Principles

Designing and Developing for Performance 2-11

Index design is also a largely iterative process, based on the SQL generated by
application designers. However, it is possible to make a sensible start by building
indexes that enforce primary key constraints and indexes on known access patterns,
such as a person's name. As the application evolves, and as you perform testing on
realistic amounts of data, you may need to improve the performance of specific
queries by building a better index. Consider the following list of indexing design ideas
when building a new index:

■ Appending Columns to an Index or Using Index-Organized Tables

■ Using a Different Index Type

■ Finding the Cost of an Index

■ Serializing within Indexes

■ Ordering Columns in an Index

Appending Columns to an Index or Using Index-Organized Tables
One of the easiest ways to speed up a query is to reduce the number of logical I/Os by
eliminating a table access from the execution plan. This can be done by appending to
the index all columns referenced by the query. These columns are the select list
columns, and any required join or sort columns. This technique is particularly useful
in speeding up online applications response times when time-consuming I/Os are
reduced. This is best applied when testing the application with properly sized data for
the first time.

The most aggressive form of this technique is to build an index-organized table (IOT).
However, you must be careful that the increased leaf size of an IOT does not
undermine the efforts to reduce I/O.

Using a Different Index Type
There are several index types available, and each index has benefits for certain
situations. The following list gives performance ideas associated with each index type.

B-Tree Indexes These indexes are the standard index type, and they are excellent for
primary key and highly-selective indexes. Used as concatenated indexes, the database
can use B-tree indexes to retrieve data sorted by the index columns.

Bitmap Indexes These indexes are suitable for low cardinality data. Through
compression techniques, they can generate a large number of rowids with minimal
I/O. Combining bitmap indexes on non-selective columns allows efficient AND and OR
operations with a great number of rowids with minimal I/O. Bitmap indexes are
particularly efficient in queries with COUNT(), because the query can be satisfied within
the index.

Function-based Indexes These indexes allow access through a B-tree on a value derived
from a function on the base data. Function-based indexes have some limitations with
regards to the use of nulls, and they require that you have the query optimizer
enabled.

Function-based indexes are particularly useful when querying on composite columns
to produce a derived result or to overcome limitations in the way data is stored in the
database. An example is querying for line items in an order exceeding a certain value
derived from (sales price - discount) x quantity, where these were columns in the table.
Another example is to apply the UPPER function to the data to allow case-insensitive
searches.

Application Design Principles

2-12 Oracle Database Performance Tuning Guide

Partitioned Indexes Partitioning a global index allows partition pruning to take place
within an index access, which results in reduced I/Os. By definition of good range or
list partitioning, fast index scans of the correct index partitions can result in very fast
query times.

Reverse Key Indexes These indexes are designed to eliminate index hot spots on insert
applications. These indexes are excellent for insert performance, but they are limited
because the database cannot use them for index range scans.

Finding the Cost of an Index
Building and maintaining an index structure can be expensive, and it can consume
resources such as disk space, CPU, and I/O capacity. Designers must ensure that the
benefits of any index outweigh the negatives of index maintenance.

Use this simple estimation guide for the cost of index maintenance: each index
maintained by an INSERT, DELETE, or UPDATE of the indexed keys requires about three
times as much resource as the actual DML operation on the table. Thus, if you INSERT
into a table with three indexes, then the insertion is approximately 10 times slower
than an INSERT into a table with no indexes. For DML, and particularly for
INSERT-heavy applications, the index design should be seriously reviewed, which
might require a compromise between the query and INSERT performance.

Serializing within Indexes
Use of sequences, or timestamps, to generate key values that are indexed themselves
can lead to database hotspot problems, which affect response time and throughput.
This is usually the result of a monotonically growing key that results in a
right-growing index. To avoid this problem, try to generate keys that insert over the
full range of the index. This results in a well-balanced index that is more scalable and
space efficient. You can achieve this by using a reverse key index or using a cycling
sequence to prefix and sequence values.

Ordering Columns in an Index
Designers should be flexible in defining any rules for index building. Depending on
your circumstances, use one of the following two ways to order the keys in an index:

■ Order columns with most selectivity first. This method is the most commonly used
because it provides the fastest access with minimal I/O to the actual rowids
required. This technique is used mainly for primary keys and for very selective
range scans.

■ Order columns to reduce I/O by clustering or sorting data. In large range scans,
I/Os can usually be reduced by ordering the columns in the least selective order,
or in a manner that sorts the data in the way it should be retrieved. See Chapter 14,
"Using Indexes and Clusters".

Using Views
Views can speed up and simplify application design. A simple view definition can
mask data model complexity from the programmers whose priorities are to retrieve,
display, collect, and store data.

However, while views provide clean programming interfaces, they can cause
sub-optimal, resource-intensive queries. The worst type of view use is when a view

See Also: Oracle Database Administrator's Guide to learn how to
monitor index usage

Application Design Principles

Designing and Developing for Performance 2-13

references other views, and when they are joined in queries. In many cases, developers
can satisfy the query directly from the table without using a view. Usually, because of
their inherent properties, views make it difficult for the optimizer to generate the
optimal execution plan.

SQL Execution Efficiency
In the design and architecture phase of any system development, care should be taken
to ensure that the application developers understand SQL execution efficiency. To
achieve this goal, the development environment must support the following
characteristics:

■ Good database connection management

Connecting to the database is an expensive operation that is highly unscalable.
Therefore, the number of concurrent connections to the database should be
minimized as much as possible. A simple system, where a user connects at
application initialization, is ideal. However, in a Web-based or multitiered
application, where application servers are used to multiplex database connections
to users, this can be difficult. With these types of applications, design efforts
should ensure that database connections are pooled and are not reestablished for
each user request.

■ Good cursor usage and management

Maintaining user connections is equally important to minimizing the parsing
activity on the system. Parsing is the process of interpreting a SQL statement and
creating an execution plan for it. This process has many phases, including syntax
checking, security checking, execution plan generation, and loading shared
structures into the shared pool. There are two types of parse operations:

– Hard parsing

A SQL statement is submitted for the first time, and no match is found in the
shared pool. Hard parses are the most resource-intensive and unscalable,
because they perform all the operations involved in a parse.

– Soft parsing

A SQL statement is submitted for the first time, and a match is found in the
shared pool. The match can be the result of previous execution by another
user. The SQL statement is shared, which is good for performance. However,
soft parses are not ideal, because they still require syntax and security
checking, which consume system resources.

Because parsing should be minimized as much as possible, application developers
should design their applications to parse SQL statements once and execute them
many times. This is done through cursors. Experienced SQL programmers should
be familiar with the concept of opening and re-executing cursors.

Application developers must also ensure that SQL statements are shared within
the shared pool. To achieve this goal, use bind variables to represent the parts of
the query that change from execution to execution. If this is not done, then the SQL
statement is likely to be parsed once and never re-used by other users. To ensure
that SQL is shared, use bind variables and do not use string literals with SQL
statements. For example:

Statement with string literals:

SELECT * FROM employees
 WHERE last_name LIKE 'KING';

Application Design Principles

2-14 Oracle Database Performance Tuning Guide

Statement with bind variables:

SELECT * FROM employees
 WHERE last_name LIKE :1;

The following example shows the results of some tests on a simple OLTP
application:

Test #Users Supported
No Parsing all statements 270
Soft Parsing all statements 150
Hard Parsing all statements 60
Re-Connecting for each Transaction 30

These tests were performed on a four-CPU computer. The differences increase as
the number of CPUs on the system increase. See Chapter 16, "SQL Tuning
Overview" for information about optimizing SQL statements.

Implementing the Application
The choice of development environment and programming language is largely a
function of the skills available in the development team and architectural decisions
made when specifying the application. There are, however, some simple performance
management rules that can lead to scalable, high-performance applications.

1. Choose a development environment suitable for software components, and do not
let it limit your design for performance decisions. If it does, then you probably
chose the wrong language or environment.

■ User interface

The programming model can vary between HTML generation and calling the
windowing system directly. The development method should focus on
response time of the user interface code. If HTML or Java is being sent over a
network, then try to minimize network volume and interactions.

■ Business logic

Interpreted languages, such as Java and PL/SQL, are ideal to encode business
logic. They are fully portable, which makes upgrading logic relatively easy.
Both languages are syntactically rich to allow code that is easy to read and
interpret. If business logic requires complex mathematical functions, then a
compiled binary language might be needed. The business logic code can be on
the client computer, the application server, and the database server. However,
the application server is the most common location for business logic.

■ User requests and resource allocation

Most of this is not affected by the programming language, but tools and fourth
generation languages that mask database connection and cursor management
might use inefficient mechanisms. When evaluating these tools and
environments, check their database connection model and their use of cursors
and bind variables.

■ Data management and transactions

Most of this is not affected by the programming language.

2. When implementing a software component, implement its function and not the
functionality associated with other components. Implementing another

Application Design Principles

Designing and Developing for Performance 2-15

component's functionality results in sub-optimal designs and implementations.
This applies to all components.

3. Do not leave gaps in functionality or have software components under-researched
in design, implementation, or testing. In many cases, gaps are not discovered until
the application is rolled out or tested at realistic volumes. This is usually a sign of
poor architecture or initial system specification. Data archival and purge modules
are most frequently neglected during initial system design, build, and
implementation.

4. When implementing procedural logic, implement in a procedural language, such
as C, Java, or PL/SQL. When implementing data access (queries) or data changes
(DML), use SQL. This rule is specific to the business logic modules of code where
procedural code is mixed with data access (nonprocedural SQL) code. There is
great temptation to put procedural logic into the SQL access. This tends to result in
poor SQL that is resource-intensive. SQL statements with DECODE case statements
are very often candidates for optimization, as are statements with a large amount
of OR predicates or set operators, such as UNION and MINUS.

5. Cache frequently accessed, rarely changing data that is expensive to retrieve on a
repeated basis. However, make this cache mechanism easy to use, and ensure that
it is indeed cheaper than accessing the data in the original method. This is
applicable to all modules where frequently used data values should be cached or
stored locally, rather than be repeatedly retrieved from a remote or expensive data
store.

The most common examples of candidates for local caching include the following:

■ Today's date. SELECT SYSDATE FROM DUAL can account for over 60% of the
workload on a database.

■ The current user name.

■ Repeated application variables and constants, such as tax rates, discounting
rates, or location information.

■ Caching data locally can be further extended into building a local data cache
into the application server middle tiers. This helps take load off the central
database servers. However, care should be taken when constructing local
caches so that they do not become so complex that they cease to give a
performance gain.

■ Local sequence generation.

The design implications of using a cache should be considered. For example, if a
user is connected at midnight and the date is cached, then the user's date value
becomes invalid.

6. Optimize the interfaces between components, and ensure that all components are
used in the most scalable configuration. This rule requires minimal explanation
and applies to all modules and their interfaces.

7. Use foreign key references. Enforcing referential integrity through an application is
expensive. You can maintain a foreign key reference by selecting the column value
of the child from the parent and ensuring that it exists. The foreign key constraint
enforcement supplied by Oracle—which does not use SQL—is fast, easy to
declare, and does not create network traffic.

8. Consider setting up action and module names in the application to use with
End-to-End Application Tracing. This allows greater flexibility in tracing workload
problems. See "End-to-End Application Tracing" on page 21-1.

Workload Testing, Modeling, and Implementation

2-16 Oracle Database Performance Tuning Guide

Trends in Application Development
The two biggest challenges in application development today are the increased use of
Java to replace compiled C or C++ applications, and increased use of object-oriented
techniques, influencing the schema design.

Java provides better portability of code and availability to programmers. However,
there are several performance implications associated with Java. Because Java is an
interpreted language, it is slower at executing similar logic than compiled languages,
such as C. As a result, resource usage of client computers increases. This requires more
powerful CPUs to be applied in the client or middle-tier computers and greater care
from programmers to produce efficient code.

Because Java is an object-oriented language, it encourages insulation of data access
into classes not performing the business logic. As a result, programmers might invoke
methods without knowledge of the efficiency of the data access method being used.
This tends to result in minimal database access and uses the simplest and crudest
interfaces to the database.

With this type of software design, queries do not always include all the WHERE
predicates to be efficient, and row filtering is performed in the Java program. This is
very inefficient. In addition, for DML operations—and especially for INSERTs—single
INSERTs are performed, making use of the array interface impossible. In some cases,
this is made more inefficient by procedure calls. More resources are used moving the
data to and from the database than in the actual database calls.

In general, it is best to place data access calls next to the business logic to achieve the
best overall transaction design.

The acceptance of object-orientation at a programming level has led to the creation of
object-oriented databases within the Oracle Server. This has manifested itself in many
ways, from storing object structures within BLOBs and only using the database
effectively as an indexed card file to the use of the Oracle Database object-relational
features.

If you adopt an object-oriented approach to schema design, then ensure that you do
not lose the flexibility of the relational storage model. In many cases, the
object-oriented approach to schema design ends up in a heavily denormalized data
structure that requires considerable maintenance and REF pointers associated with
objects. Often, these designs represent a step backward to the hierarchical and network
database designs that were replaced with the relational storage method.

In summary, if you are storing your data in your database for the long-term, and if you
anticipate a degree of ad hoc queries or application development on the same schema,
then the relational storage method probably gives the best performance and flexibility.

Workload Testing, Modeling, and Implementation
This section describes workload estimation, modeling, implementation, and testing.
This section covers the following topics:

■ Sizing Data

■ Estimating Workloads

■ Application Modeling

■ Testing, Debugging, and Validating a Design

Workload Testing, Modeling, and Implementation

Designing and Developing for Performance 2-17

Sizing Data
You could experience errors in your sizing estimates when dealing with variable
length data if you work with a poor sample set. As data volumes grow, your key
lengths could grow considerably, altering your assumptions for column sizes.

When the system becomes operational, it becomes more difficult to predict database
growth, especially for indexes. Tables grow over time, and indexes are subject to the
individual behavior of the application in terms of key generation, insertion pattern,
and deletion of rows. The worst case is where you insert using an ascending key, and
then delete most rows from the left-hand side but not all the rows. This leaves gaps
and wasted space. If you have index use like this, then ensure that you know how to
use the online index rebuild facility.

DBAs should monitor space allocation for each object and look for objects that may
grow out of control. A good understanding of the application can highlight objects that
may grow rapidly or unpredictably. This is a crucial part of both performance and
availability planning for any system. When implementing the production database,
the design should attempt to ensure that minimal space management takes place when
interactive users are using the application. This applies for all data, temp, and rollback
segments.

Estimating Workloads
Considering the number of variables involved, estimation of workloads for capacity
planning and testing purposes is extremely difficult. However, designers must specify
computers with CPUs, memory, and disk drives, and eventually roll out an
application. There are several techniques used for sizing, and each technique has
merit. When sizing, it is best to use the following two methods to validate your
decision-making process and provide supporting documentation:

■ Extrapolating From a Similar System

■ Benchmarking

Extrapolating From a Similar System
This is an entirely empirical approach where an existing system of similar
characteristics and known performance is used as a basis system. The specification of
this system is then modified by the sizing specialist according to the known
differences. This approach has merit in that it correlates with an existing system, but it
provides little assistance when dealing with the differences.

This approach is used in nearly all large engineering disciplines when preparing the
cost of an engineering project, such as a large building, a ship, a bridge, or an oil rig. If
the reference system is an order of magnitude different in size from the anticipated
system, then some components may have exceeded their design limits.

Benchmarking
The benchmarking process is both resource and time consuming, and it might not
produce the correct results. By simulating an application in early development or
prototype form, there is a danger of measuring something that has no resemblance to
the actual production system. This sounds strange, but over the many years of
benchmarking customer applications with the database development organization,
Oracle has yet to see reliable correlation between the benchmark application and the
actual production system. This is mainly due to the number of application
inefficiencies introduced in the development process.

Workload Testing, Modeling, and Implementation

2-18 Oracle Database Performance Tuning Guide

However, benchmarks have been used successfully to size systems to an acceptable
level of accuracy. In particular, benchmarks are very good at determining the actual
I/O requirements and testing recovery processes when a system is fully loaded.

Benchmarks by their nature stress all system components to their limits. As the
benchmark stresses all components, be prepared to see all errors in application design
and implementation manifest themselves while benchmarking. Benchmarks also test
database, operating system, and hardware components. Because most benchmarks are
performed in a rush, expect setbacks and problems when a system component fails.
Benchmarking is a stressful activity, and it takes considerable experience to get the
most out of a benchmarking exercise.

Application Modeling
Modeling the application can range from complex mathematical modeling exercises to
the classic simple calculations performed on the back of an envelope. Both methods
have merit, with one attempting to be very precise and the other making gross
estimates. The downside of both methods is that they do not allow for implementation
errors and inefficiencies.

The estimation and sizing process is an imprecise science. However, by investigating
the process, some intelligent estimates can be made. The whole estimation process
makes no allowances for application inefficiencies introduced by poor SQL, index
design, or cursor management. A sizing engineer should build in margin for
application inefficiencies. A performance engineer should discover the inefficiencies
and make the estimates look realistic. The Oracle performance method describes how
to discover the application inefficiencies.

Testing, Debugging, and Validating a Design
The testing process mainly consists of functional and stability testing. At some point in
the process, performance testing is performed.

The following list describes some simple rules for performance testing an application.
If correctly documented, then this list provides important information for the
production application and the capacity planning process after the application has
gone live.

■ Use the Automatic Database Diagnostic Monitor (ADDM) and SQL Tuning
Advisor for design validation

■ Test with realistic data volumes and distributions

All testing must be done with fully populated tables. The test database should
contain data representative of the production system in terms of data volume and
cardinality between tables. All the production indexes should be built and the
schema statistics should be populated correctly.

■ Use the correct optimizer mode

Perform all testing with the optimizer mode that you plan to use in production.
All Oracle Database research and development effort is focused on the query
optimizer. Therefore, the use of the query optimizer is recommended.

■ Test a single user performance

Test a single user on an idle or lightly-used database for acceptable performance. If
a single user cannot achieve acceptable performance under ideal conditions, then
multiple users cannot achieve acceptable performance under real conditions.

■ Obtain and document plans for all SQL statements

Deploying New Applications

Designing and Developing for Performance 2-19

Obtain an execution plan for each SQL statement. Use this process to verify that
the optimizer is obtaining an optimal execution plan, and that the relative cost of
the SQL statement is understood in terms of CPU time and physical I/Os. This
process assists in identifying the heavy use transactions that require the most
tuning and performance work in the future.

■ Attempt multiuser testing

This process is difficult to perform accurately, because user workload and profiles
might not be fully quantified. However, transactions performing DML statements
should be tested to ensure that there are no locking conflicts or serialization
problems.

■ Test with the correct hardware configuration

Test with a configuration as close to the production system as possible. Using a
realistic system is particularly important for network latencies, I/O subsystem
bandwidth, and processor type and speed. Failing to use this approach may result
in an incorrect analysis of potential performance problems.

■ Measure steady state performance

When benchmarking, it is important to measure the performance under steady
state conditions. Each benchmark run should have a ramp-up phase, where users
are connected to the application and gradually start performing work on the
application. This process allows for frequently cached data to be initialized into
the cache and single execution operations—such as parsing—to be completed
before the steady state condition. Likewise, at the end of a benchmark run, there
should be a ramp-down period, where resources are freed from the system and
users cease work and disconnect.

Deploying New Applications
This section describes the following design decisions involved in deploying
applications:

■ Rollout Strategies

■ Performance Checklist

Rollout Strategies
When new applications are rolled out, two strategies are commonly adopted:

■ Big Bang approach - all users migrate to the new system at once

■ Trickle approach - users slowly migrate from existing systems to the new one

Both approaches have merits and disadvantages. The Big Bang approach relies on
reliable testing of the application at the required scale, but has the advantage of
minimal data conversion and synchronization with the old system, because it is simply
switched off. The Trickle approach allows debugging of scalability issues as the
workload increases, but might mean that data must be migrated to and from legacy
systems as the transition takes place.

It is difficult to recommend one approach over the other, because each method has
associated risks that could lead to system outages as the transition takes place.
Certainly, the Trickle approach allows profiling of real users as they are introduced to
the new application, and allows the system to be reconfigured while only affecting the
migrated users. This approach affects the work of the early adopters, but limits the

Deploying New Applications

2-20 Oracle Database Performance Tuning Guide

load on support services. This means that unscheduled outages only affect a small
percentage of the user population.

The decision on how to roll out a new application is specific to each business. Any
adopted approach has its own unique pressures and stresses. The more testing and
knowledge that you derive from the testing process, the more you realize what is best
for the rollout.

Performance Checklist
To assist in the rollout, build a list of tasks that increase the chance of optimal
performance in production and enable rapid debugging of the application. Do the
following:

1. When you create the control file for the production database, allow for growth by
setting MAXINSTANCES, MAXDATAFILES, MAXLOGFILES, MAXLOGMEMBERS, and
MAXLOGHISTORY to values higher than what you anticipate for the rollout. This
technique results in more disk space usage and larger control files, but saves time
later should these need extension in an emergency.

2. Set block size to the value used to develop the application. Export the schema
statistics from the development or test environment to the production database if
the testing was done on representative data volumes and the current SQL
execution plans are correct.

3. Set the minimal number of initialization parameters. Ideally, most other
parameters should be left at default. If there is more tuning to perform, then this
appears when the system is under load. See Chapter 4, "Configuring a Database
for Performance" for information about parameter settings in an initial instance
configuration.

4. Be prepared to manage block contention by setting storage options of database
objects. Tables and indexes that experience high INSERT/UPDATE/DELETE rates
should be created with automatic segment space management. To avoid
contention of rollback segments, use automatic undo management. See Chapter 4,
"Configuring a Database for Performance" for information about undo and
temporary segments.

5. All SQL statements should be verified to be optimal and their resource usage
understood.

6. Validate that middleware and programs that connect to the database are efficient
in their connection management and do not logon or logoff repeatedly.

7. Validate that the SQL statements use cursors efficiently. The database should parse
each SQL statement once and then execute it multiple times. The most common
reason this does not happen is because bind variables are not used properly and
WHERE clause predicates are sent as string literals. If you use precompilers to
develop the application, then make sure to reset the parameters MAXOPENCURSORS,
HOLD_CURSOR, and RELEASE_CURSOR from the default values before precompiling
the application.

8. Validate that all schema objects have been correctly migrated from the
development environment to the production database. This includes tables,
indexes, sequences, triggers, packages, procedures, functions, Java objects,
synonyms, grants, and views. Ensure that any modifications made in testing are
made to the production system.

Deploying New Applications

Designing and Developing for Performance 2-21

9. As soon as the system is rolled out, establish a baseline set of statistics from the
database and operating system. This first set of statistics validates or corrects any
assumptions made in the design and rollout process.

10. Start anticipating the first bottleneck (which is inevitable) and follow the Oracle
performance method to make performance improvement. For more information,
see Chapter 3, "Performance Improvement Methods".

Deploying New Applications

2-22 Oracle Database Performance Tuning Guide

3

Performance Improvement Methods 3-1

3 Performance Improvement Methods

This chapter discusses Oracle Database improvement methods and contains the
following sections:

■ The Oracle Performance Improvement Method

■ Emergency Performance Methods

The Oracle Performance Improvement Method
Oracle performance methodology helps you to identify performance problems in an
Oracle database. This involves identifying bottlenecks and fixing them. It is
recommended that changes be made to a system only after you have confirmed that
there is a bottleneck.

Performance improvement, by its nature, is iterative. For this reason, removing the
first bottleneck might not lead to performance improvement immediately, because
another bottleneck might be revealed. Also, in some cases, if serialization points move
to a more inefficient sharing mechanism, then performance could degrade. With
experience, and by following a rigorous method of bottleneck elimination, applications
can be debugged and made scalable.

Performance problems generally result from either a lack of throughput, unacceptable
user/job response time, or both. The problem might be localized between application
modules, or it might be for the entire system.

Before looking at any database or operating system statistics, it is crucial to get
feedback from the most important components of the system: the users of the system
and the people ultimately paying for the application. Typical user feedback includes
statements like the following:

■ "The online performance is so bad that it prevents my staff from doing their jobs."

■ "The billing run takes too long."

■ "When I experience high amounts of Web traffic, the response time becomes
unacceptable, and I am losing customers."

■ "I am currently performing 5000 trades a day, and the system is maxed out. Next
month, we roll out to all our users, and the number of trades is expected to
quadruple."

From candid feedback, it is easy to set critical success factors for any performance
work. Determining the performance targets and the performance engineer's exit
criteria make managing the performance process much simpler and more successful at
all levels. These critical success factors are better defined in terms of real business
goals rather than system statistics.

The Oracle Performance Improvement Method

3-2 Oracle Database Performance Tuning Guide

Some real business goals for these typical user statements might be:

■ "The billing run must process 1,000,000 accounts in a three-hour window."

■ "At a peak period on a Web site, the response time must not exceed five seconds
for a page refresh."

■ "The system must be able to process 25,000 trades in an eight-hour window."

The ultimate measure of success is the user's perception of system performance. The
performance engineer's role is to eliminate any bottlenecks that degrade performance.
These bottlenecks could be caused by inefficient use of limited shared resources or by
abuse of shared resources, causing serialization. Because all shared resources are
limited, the goal of a performance engineer is to maximize the number of business
operations with efficient use of shared resources. At a very high level, the entire
database server can be seen as a shared resource. Conversely, at a low level, a single
CPU or disk can be seen as shared resources.

You can apply the Oracle performance improvement method until performance goals
are met or deemed impossible. This process is highly iterative. Inevitably, some
investigations may have little or no impact on database performance. Time and
experience are necessary to develop the skills to accurately and quickly pinpoint
critical bottlenecks. However, prior experience can sometimes work against the
experienced engineer who neglects to use the data and statistics available. This type of
behavior encourages database tuning by myth and folklore. This is a very risky,
expensive, and unlikely to succeed method of database tuning.

The Automatic Database Diagnostic Monitor (ADDM) implements parts of the
performance improvement method and analyzes statistics to provide automatic
diagnosis of major performance issues. Using ADDM can significantly shorten the
time required to improve the performance of a system. See Chapter 6, "Automatic
Performance Diagnostics" for a description of ADDM.

Systems are so different and complex that hard and fast rules for performance analysis
are impossible. In essence, the Oracle performance improvement method defines a
way of working, but not a definitive set of rules. With bottleneck detection, the only
rule is that there are no rules! The best performance engineers use the data provided
and think laterally to determine performance problems.

Steps in The Oracle Performance Improvement Method
1. Perform the following initial standard checks:

a. Get candid feedback from users. Determine the performance project's scope
and subsequent performance goals, and performance goals for the future. This
process is key in future capacity planning.

b. Get a full set of operating system, database, and application statistics from the
system when the performance is both good and bad. If these are not available,
then get whatever is available. Missing statistics are analogous to missing
evidence at a crime scene: They make detectives work harder and it is more
time-consuming.

c. Sanity-check the operating systems of all computers involved with user
performance. By sanity-checking the operating system, you look for hardware
or operating system resources that are fully utilized. List any over-used
resources as symptoms for analysis later. In addition, check that all hardware
shows no errors or diagnostics.

2. Check for the top ten most common mistakes with Oracle Database, and
determine if any of these are likely to be the problem. List these as symptoms for

The Oracle Performance Improvement Method

Performance Improvement Methods 3-3

later analysis. These are included because they represent the most likely problems.
ADDM automatically detects and reports nine of these top ten issues. See
Chapter 6, "Automatic Performance Diagnostics" and "Top Ten Mistakes Found in
Oracle Systems" on page 3-4.

3. Build a conceptual model of what is happening on the system using the symptoms
as clues to understand what caused the performance problems. See "A Sample
Decision Process for Performance Conceptual Modeling" on page 3-3.

4. Propose a series of remedy actions and the anticipated behavior to the system,
then apply them in the order that can benefit the application the most. ADDM
produces recommendations each with an expected benefit. A golden rule in
performance work is that you only change one thing at a time and then measure
the differences. Unfortunately, system downtime requirements might prohibit
such a rigorous investigation method. If multiple changes are applied at the same
time, then try to ensure that they are isolated so that the effects of each change can
be independently validated.

5. Validate that the changes made have had the desired effect, and see if the user's
perception of performance has improved. Otherwise, look for more bottlenecks,
and continue refining the conceptual model until your understanding of the
application becomes more accurate.

6. Repeat the last three steps until performance goals are met or become impossible
due to other constraints.

This method identifies the biggest bottleneck and uses an objective approach to
performance improvement. The focus is on making large performance improvements
by increasing application efficiency and eliminating resource shortages and
bottlenecks. In this process, it is anticipated that minimal (less than 10%) performance
gains are made from instance tuning, and large gains (100% +) are made from isolating
application inefficiencies.

A Sample Decision Process for Performance Conceptual Modeling
Conceptual modeling is almost deterministic. However, as you gain experience in
performance tuning, you begin to appreciate that no real rules exist. A flexible
heads-up approach is required to interpret statistics and make good decisions.

For a quick and easy approach to performance tuning, use ADDM. ADDM
automatically monitors your Oracle system and provides recommendations for
solving performance problems should problems occur. For example, suppose a DBA
receives a call from a user complaining that the system is slow. The DBA simply
examines the latest ADDM report to see which of the recommendations should be
implemented to solve the problem. See Chapter 6, "Automatic Performance
Diagnostics" for information about the features that help monitor and diagnose Oracle
databases.

The following steps illustrate how a performance engineer might look for bottlenecks
without using automatic diagnostic features. These steps are only intended as a
guideline for the manual process. With experience, performance engineers add to the
steps involved. This analysis assumes that statistics for both the operating system and
the database have been gathered.

1. Is the response time/batch run time acceptable for a single user on an empty or
lightly loaded computer?

If it is not acceptable, then the application is probably not coded or designed
optimally, and it will never be acceptable in a multiple user situation when system
resources are shared. In this case, get application internal statistics, and get SQL

The Oracle Performance Improvement Method

3-4 Oracle Database Performance Tuning Guide

Trace and SQL plan information. Work with developers to investigate problems in
data, index, transaction SQL design, and potential deferral of work to batch and
background processing.

2. Is all the CPU being utilized?

If the kernel utilization is over 40%, then investigate the operating system for
network transfers, paging, swapping, or process thrashing. Continue to check CPU
utilization in user space to verify if there are any non-database jobs consuming
CPU on the system limiting the amount of shared CPU resources, such as backups,
file transforms, print queues, and so on. After determining that the database is
using most of the CPU, investigate the top SQL by CPU utilization. These
statements form the basis of all future analysis. Check the SQL and the
transactions submitting the SQL for optimal execution. Oracle Database provides
CPU statistics in V$SQL and V$SQLSTATS.

If the application is optimal and no inefficiencies exist in the SQL execution, then
consider rescheduling some work to off-peak hours or using a bigger computer.

3. At this point, the system performance is unsatisfactory, yet the CPU resources are
not fully utilized.

In this case, you have serialization and unscalable behavior within the server. Get
the WAIT_EVENTS statistics from the server, and determine the biggest serialization
point. If there are no serialization points, then the problem is most likely outside
the database, and this should be the focus of investigation. Elimination of
WAIT_EVENTS involves modifying application SQL and tuning database
parameters. This process is very iterative and requires the ability to drill down on
the WAIT_EVENTS systematically to eliminate serialization points.

Top Ten Mistakes Found in Oracle Systems
This section lists the most common mistakes found in Oracle databases. By following
the Oracle performance improvement methodology, you should be able to avoid these
mistakes altogether. If you find these mistakes in your system, then re-engineer the
application where the performance effort is worthwhile. See "Automatic Performance
Tuning Features" on page 1-5 for information about the features that help diagnose
and tune Oracle databases. See Chapter 10, "Instance Tuning Using Performance
Views" for a discussion on how wait event data reveals symptoms of problems that
can be impacting performance.

1. Bad connection management

The application connects and disconnects for each database interaction. This
problem is common with stateless middleware in application servers. It has over
two orders of magnitude impact on performance, and is totally unscalable.

2. Bad use of cursors and the shared pool

Not using cursors results in repeated parses. If bind variables are not used, then
there is hard parsing of all SQL statements. This has an order of magnitude impact
in performance, and it is totally unscalable. Use cursors with bind variables that
open the cursor and execute it many times. Be suspicious of applications
generating dynamic SQL.

3. Bad SQL

See Also: Oracle Database Reference for more information on V$SQL
and V$SQLSTATS

The Oracle Performance Improvement Method

Performance Improvement Methods 3-5

Bad SQL is SQL that uses more resources than appropriate for the application
requirement. This can be a decision support systems (DSS) query that runs for
more than 24 hours, or a query from an online application that takes more than a
minute. You should investigate SQL that consumes significant system resources
for potential improvement. ADDM identifies high load SQL. SQL Tuning Advisor
can provide recommendations for improvement. See Chapter 6, "Automatic
Performance Diagnostics" and Chapter 17, "Automatic SQL Tuning".

4. Use of nonstandard initialization parameters

These might have been implemented based on poor advice or incorrect
assumptions. Most databases provide acceptable performance using only the set of
basic parameters. In particular, parameters associated with SPIN_COUNT on latches
and undocumented optimizer features can cause a great deal of problems that can
require considerable investigation.

Likewise, optimizer parameters set in the initialization parameter file can override
proven optimal execution plans. For these reasons, schemas, schema statistics, and
optimizer settings should be managed as a group to ensure consistency of
performance.

5. Getting database I/O wrong

Many sites lay out their databases poorly over the available disks. Other sites
specify the number of disks incorrectly, because they configure disks by disk space
and not I/O bandwidth. See Chapter 8, "I/O Configuration and Design".

6. Online redo log setup problems

Many sites run with too few online redo log files and files that are too small. Small
redo log files cause system checkpoints to continuously put a high load on the
buffer cache and I/O system. If too few redo log files exist, then the archive cannot
keep up, and the database must wait for the archiver to catch up. See Chapter 4,
"Configuring a Database for Performance" for information about sizing redo log
files for performance.

7. Serialization of data blocks in the buffer cache due to lack of free lists, free list
groups, transaction slots (INITRANS), or shortage of rollback segments.

This is particularly common on INSERT-heavy applications, in applications that
have raised the block size above 8K, or in applications with large numbers of
active users and few rollback segments. Use automatic segment-space
management (ASSM) and automatic undo management to solve this problem.

8. Long full table scans

Long full table scans for high-volume or interactive online operations could
indicate poor transaction design, missing indexes, or poor SQL optimization. Long
table scans, by nature, are I/O intensive and unscalable.

9. High amounts of recursive (SYS) SQL

See Also:

■ Oracle Database Administrator's Guide for information about
initialization parameters and database creation

■ Oracle Database Reference for details on initialization parameters

■ "Performance Considerations for Initial Instance Configuration"
on page 4-1 for information about parameters and settings in an
initial instance configuration

Emergency Performance Methods

3-6 Oracle Database Performance Tuning Guide

Large amounts of recursive SQL executed by SYS could indicate space
management activities, such as extent allocations, taking place. This is unscalable
and impacts user response time. Use locally managed tablespaces to reduce
recursive SQL due to extent allocation. Recursive SQL executed under another
user ID is probably SQL and PL/SQL, and this is not a problem.

10. Deployment and migration errors

In many cases, an application uses too many resources because the schema owning
the tables has not been successfully migrated from the development environment
or from an older implementation. Examples of this are missing indexes or incorrect
statistics. These errors can lead to sub-optimal execution plans and poor
interactive user performance. When migrating applications of known
performance, export the schema statistics to maintain plan stability using the
DBMS_STATS package.

Although these errors are not directly detected by ADDM, ADDM highlights the
resulting high load SQL.

Emergency Performance Methods
This section provides techniques for dealing with performance emergencies. You
presumably have a methodology for establishing and improving application
performance. However, in an emergency situation, a component of the system has
changed to transform it from a reliable, predictable system to one that is unpredictable
and not satisfying user requests.

In this case, the performance engineer must rapidly determine what has changed and
take appropriate actions to resume normal service as quickly as possible. In many
cases, it is necessary to take immediate action, and a rigorous performance
improvement project is unrealistic.

After addressing the immediate performance problem, the performance engineer must
collect sufficient debugging information either to get better clarity on the performance
problem or to at least ensure that it does not happen again.

The method for debugging emergency performance problems is the same as the
method described in the performance improvement method earlier in this book.
However, shortcuts are taken in various stages because of the timely nature of the
problem. Keeping detailed notes and records of facts found as the debugging process
progresses is essential for later analysis and justification of any remedial actions. This
is analogous to a doctor keeping good patient notes for future reference.

Steps in the Emergency Performance Method
The Emergency Performance Method is as follows:

1. Survey the performance problem and collect the symptoms of the performance
problem. This process should include the following:

■ User feedback on how the system is underperforming. Is the problem
throughput or response time?

■ Ask the question, "What has changed since we last had good performance?"
This answer can give clues to the problem. However, getting unbiased
answers in an escalated situation can be difficult. Try to locate some reference
points, such as collected statistics or log files, that were taken before and after
the problem.

Emergency Performance Methods

Performance Improvement Methods 3-7

■ Use automatic tuning features to diagnose and monitor the problem. See
"Automatic Performance Tuning Features" on page 1-5 for information about
the features that help diagnose and tune Oracle systems. In addition, you can
use Oracle Enterprise Manager performance features to identify top SQL and
sessions.

2. Sanity-check the hardware utilization of all components of the application system.
Check where the highest CPU utilization is, and check the disk, memory usage,
and network performance on all the system components. This quick process
identifies which tier is causing the problem. If the problem is in the application,
then shift analysis to application debugging. Otherwise, move on to database
server analysis.

3. Determine if the database server is constrained on CPU or if it is spending time
waiting on wait events. If the database server is CPU-constrained, then investigate
the following:

■ Sessions that are consuming large amounts of CPU at the operating system
level and database; check V$SESS_TIME_MODEL for database CPU usage

■ Sessions or statements that perform many buffer gets at the database level;
check V$SESSTAT and V$SQLSTATS

■ Execution plan changes causing sub-optimal SQL execution; these can be
difficult to locate

■ Incorrect setting of initialization parameters

■ Algorithmic issues caused by code changes or upgrades of all components

If the database sessions are waiting on events, then follow the wait events listed in
V$SESSION_WAIT to determine what is causing serialization. The
V$ACTIVE_SESSION_HISTORY view contains a sampled history of session activity
which you can use to perform diagnosis even after an incident has ended and the
system has returned to normal operation. In cases of massive contention for the
library cache, it might not be possible to logon or submit SQL to the database. In
this case, use historical data to determine why there is suddenly contention on this
latch. If most waits are for I/O, then examine V$ACTIVE_SESSION_HISTORY to
determine the SQL being run by the sessions that are performing all of the inputs
and outputs. See Chapter 10, "Instance Tuning Using Performance Views" for a
discussion on wait events.

4. Apply emergency action to stabilize the system. This could involve actions that
take parts of the application off-line or restrict the workload that can be applied to
the system. It could also involve a system restart or the termination of job in
process. These naturally have service level implications.

5. Validate that the system is stable. Having made changes and restrictions to the
system, validate that the system is now stable, and collect a reference set of
statistics for the database. Now follow the rigorous performance method described
earlier in this book to bring back all functionality and users to the system. This
process may require significant application re-engineering before it is complete.

Emergency Performance Methods

3-8 Oracle Database Performance Tuning Guide

Part III
Part III Optimizing Instance Performance

Part III describes how to tune various elements of your database system to optimize
performance of an Oracle database instance.

The chapters in this part are:

■ Chapter 4, "Configuring a Database for Performance"

■ Chapter 5, "Automatic Performance Statistics"

■ Chapter 6, "Automatic Performance Diagnostics"

■ Chapter 7, "Configuring and Using Memory"

■ Chapter 8, "I/O Configuration and Design"

■ Chapter 9, "Managing Operating System Resources"

■ Chapter 10, "Instance Tuning Using Performance Views"

4

Configuring a Database for Performance 4-1

4 Configuring a Database for Performance

This chapter contains an overview of the Oracle methodology for configuring a
database for performance. Although performance modifications can be made to Oracle
Database on an ongoing basis, significant benefits can be gained by proper initial
configuration of the database.

This chapter contains the following sections:

■ Performance Considerations for Initial Instance Configuration

■ Creating and Maintaining Tables for Optimal Performance

■ Performance Considerations for Shared Servers

Performance Considerations for Initial Instance Configuration
This section discusses some initial database instance configuration options that have
important performance impacts.

If you use the Database Configuration Assistant (DBCA) to create a database, then the
supplied seed database includes the necessary basic initialization parameters and
meets the performance recommendations that are discussed in this chapter.

Initialization Parameters
A running Oracle database instance is configured using initialization parameters,
which are set in the initialization parameter file. These parameters influence the
behavior of the running instance, including influencing performance. In general, a
very simple initialization file with few relevant settings covers most situations, and the
initialization file should not be the first place you expect to do performance tuning,
except for the few parameters shown in Table 4–2.

Table 4–1 describes the parameters necessary in a minimal initialization file. Although
these parameters are necessary, they have no performance impact.

See Also:

■ Oracle Database Administrator's Guide to learn how to create a
database with the Database Configuration Assistant

■ Oracle Database Administrator's Guide to learn how to create a
database with a SQL statement

Performance Considerations for Initial Instance Configuration

4-2 Oracle Database Performance Tuning Guide

Table 4–2 includes the most important parameters to set with performance
implications:

Table 4–1 Necessary Initialization Parameters Without Performance Impact

Parameter Description

DB_NAME Name of the database. This should match the ORACLE_SID
environment variable.

DB_DOMAIN Location of the database in Internet dot notation.

OPEN_CURSORS Limit on the maximum number of cursors (active SQL
statements) for each session. The setting is
application-dependent; 500 is recommended.

CONTROL_FILES Set to contain at least two files on different disk drives to
prevent failures from control file loss.

DB_FILES Set to the maximum number of files that can assigned to the
database.

See Also: Oracle Database Administrator's Guide to learn more
about these initialization parameters

Table 4–2 Important Initialization Parameters With Performance Impact

Parameter Description

COMPATIBLE Specifies the release with which the Oracle database must
maintain compatibility. It lets you take advantage of the
maintenance improvements of a new release immediately in your
production systems without testing the new functionality in your
environment. If your application was designed for a specific
release of Oracle Database, and you are actually installing a later
release, then you might want to set this parameter to the version
of the previous release.

DB_BLOCK_SIZE Sets the size of the Oracle database blocks stored in the database
files and cached in the SGA. The range of values depends on the
operating system, but it is typically 8192 for transaction
processing systems and higher values for database warehouse
systems.

SGA_TARGET Specifies the total size of all SGA components. If SGA_TARGET is
specified, then the buffer cache (DB_CACHE_SIZE), Java pool
(JAVA_POOL_SIZE), large pool (LARGE_POOL_SIZE), and shared pool
(SHARED_POOL_SIZE) memory pools are automatically sized. See
"Automatic Shared Memory Management" on page 7-2.

PGA_AGGREGATE_TARGET Specifies the target aggregate PGA memory available to all server
processes attached to the instance. See "PGA Memory
Management" on page 7-39.

PROCESSES Sets the maximum number of processes that can be started by that
instance. This is the most important primary parameter to set,
because many other parameter values are deduced from this.

SESSIONS This is set by default from the value of processes. However, if you
are using the shared server, then the deduced value is likely to be
insufficient.

UNDO_MANAGEMENT Specifies the undo space management mode used by the
database. The default is AUTO. If unspecified, the database uses
AUTO.

UNDO_TABLESPACE Specifies the undo tablespace to be used when an instance starts.

Performance Considerations for Initial Instance Configuration

Configuring a Database for Performance 4-3

Configuring Undo Space
The database uses undo space to store data used for read consistency, recovery, and
rollback statements. This data exists in one or more undo tablespaces. If you use the
Database Configuration Assistant (DBCA) to create a database, then the undo
tablespace is created automatically. To manually create an undo tablespace, add the
UNDO TABLESPACE clause to the CREATE DATABASE statement.

To automate the management of undo data, Oracle Database uses automatic undo
management, which transparently creates and manages undo segments.To enable
automatic undo management, set the UNDO_MANAGEMENT initialization parameter to
AUTO (the default setting). If unspecified, then the UNDO_MANAGEMENT initialization
parameter uses the AUTO setting. Oracle strongly recommends using automatic undo
management because it significantly simplifies database management and eliminates
the need for any manual tuning of undo (rollback) segments. Manual undo
management using rollback segments is supported for backward compatibility.

The V$UNDOSTAT view contains statistics for monitoring and tuning undo space. Using
this view, you can better estimate the amount of undo space required for the current
workload. Oracle Database also uses this information to help tune undo usage. The
V$ROLLSTAT view contains information about the behavior of the undo segments in the
undo tablespace.

Sizing Redo Log Files
The size of the redo log files can influence performance, because the behavior of the
database writer and archiver processes depend on the redo log sizes. Generally, larger
redo log files provide better performance. Undersized log files increase checkpoint
activity and reduce performance.

Although the size of the redo log files does not affect LGWR performance, it can affect
DBWR and checkpoint behavior. Checkpoint frequency is affected by several factors,
including log file size and the setting of the FAST_START_MTTR_TARGET initialization
parameter. If the FAST_START_MTTR_TARGET parameter is set to limit the instance
recovery time, Oracle Database automatically tries to checkpoint as frequently as
necessary. Under this condition, the size of the log files should be large enough to
avoid additional checkpointing due to under sized log files. The optimal size can be
obtained by querying the OPTIMAL_LOGFILE_SIZE column from the

See Also:

■ Chapter 7, "Configuring and Using Memory"

■ Oracle Database Reference for information about initialization
parameters

■ Oracle Streams Concepts and Administration for information
about the STREAMS_POOL_SIZE initialization parameter

See Also:

■ Oracle Database 2 Day DBA and Oracle Enterprise Manager
online help to learn about the Undo Management Advisor

■ Oracle Database Administrator's Guide for information about
managing undo space using automatic undo management

■ Oracle Database Reference to learn about the V$ROLLSTAT and
V$UNDOSTAT views

Performance Considerations for Initial Instance Configuration

4-4 Oracle Database Performance Tuning Guide

V$INSTANCE_RECOVERY view. You can also obtain sizing advice on the Redo Log
Groups page of Oracle Enterprise Manager.

It may not always be possible to provide a specific size recommendation for redo log
files, but redo log files in the range of 100 MB to a few gigabytes are considered
reasonable. Size online redo log files according to the amount of redo your system
generates. A rough guide is to switch log files at most once every 20 minutes.

Creating Subsequent Tablespaces
If you use the Database Configuration Assistant (DBCA) to create a database, then the
seed database automatically includes the necessary tablespaces. If you choose not to
use DBCA, then you must create extra tablespaces after creating the database.

All databases should have several tablespaces in addition to the SYSTEM and SYSAUX
tablespaces. These additional tablespaces include:

■ A temporary tablespace, which is used for operations such as sorting

■ An undo tablespace to contain information for read consistency, recovery, and
undo statements

■ At least one tablespace for application use (in most cases, applications require
several tablespaces)

For extremely large tablespaces with many data files, you can run multiple ALTER
TABLESPACE . . . ADD DATAFILE statements in parallel. During tablespace creation, the
data files that make up the tablespace are initialized with special empty block images.
Temporary files are not initialized.

Oracle Database does this to ensure that it can write all data files in their entirety, but
this can obviously be a lengthy process if done serially. Therefore, run multiple CREATE
TABLESPACE statements concurrently to speed up tablespace creation. For permanent
tables, the choice between local and global extent management on tablespace creation
can greatly affect performance. For any permanent tablespace that has moderate to
large insert, modify, or delete operations compared to reads, choose local extent
management.

Creating Permanent Tablespaces - Automatic Segment-Space Management
For permanent tablespaces, Oracle recommends using automatic segment-space
management. Such tablespaces, often referred to as bitmap tablespaces, are locally
managed tablespaces with bitmap segment space management.

Creating Temporary Tablespaces
Properly configuring the temporary tablespace helps optimize disk sort performance.
Temporary tablespaces can be dictionary-managed or locally managed. Oracle

See Also: Oracle Database Administrator's Guide for information
about managing the online redo log

See Also:

■ Oracle Database Concepts for a discussion of free space
management

■ Oracle Database Administrator's Guide for more information on
creating and using automatic segment-space management for
tablespaces

Creating and Maintaining Tables for Optimal Performance

Configuring a Database for Performance 4-5

recommends the use of locally managed temporary tablespaces with a UNIFORM extent
size of 1 MB.

You should monitor temporary tablespace activity to check how many extents the
database allocates for the temporary segment. If an application extensively uses
temporary tables, as in a situation when many users are concurrently using temporary
tables, then the extent size could be set smaller, such as 256K, because every usage
requires at least one extent. The EXTENT MANAGEMENT LOCAL clause is optional for
temporary tablespaces because all temporary tablespaces are created with locally
managed extents of a uniform size. The default for SIZE is 1M.

Creating and Maintaining Tables for Optimal Performance
When installing applications, an initial step is to create all necessary tables and
indexes. When you create a segment, such as a table, the database allocates space for
the data. If subsequent database operations cause the data volume to increase and
exceed the space allocated, then Oracle Database extends the segment.

When creating tables and indexes, note the following:

■ Specify automatic segment-space management for tablespaces

In this way Oracle Database automatically manages segment space for best
performance.

■ Set storage options carefully

Applications should carefully set storage options for the intended use of the table
or index. This includes setting the value for PCTFREE. Note that using automatic
segment-space management eliminates the necessity of specifying PCTUSED.

Table Compression
You can store heap-organized tables in a compressed format that is transparent for any
kind of application. Compressed data in a database block is self-contained, which
means that all information needed to re-create the uncompressed data in a block is
available within the block. A block is also compressed in the buffer cache. Table
compression not only reduces the disk storage but also the memory usage, specifically
the buffer cache requirements. Performance improvements are accomplished by
reducing the amount of necessary I/O operations for accessing a table and by
increasing the probability of buffer cache hits.

See Also:

■ Oracle Database Administrator's Guide for more information on
managing temporary tablespaces

■ Oracle Database Concepts for more information on temporary
tablespaces

■ Oracle Database SQL Language Reference for more information on
using the CREATE and ALTER TABLESPACE statements with the
TEMPORARY clause

Note: Use of free lists is not recommended. To use automatic
segment-space management, create locally managed tablespaces,
with the segment space management clause set to AUTO.

Creating and Maintaining Tables for Optimal Performance

4-6 Oracle Database Performance Tuning Guide

Oracle Database has an advanced compression option that enables you to boost the
performance of any type of application workload—including data warehousing and
OLTP applications—while reducing the disk storage that is required by the database.
You can use the advanced compression feature for all types of data, including
structured data, unstructured data, backup data, and network data.

Estimating the Compression factor
Table compression works by eliminating column value repetitions within individual
blocks. Duplicate values in all the rows and columns in a block are stored once at the
beginning of the block, in what is called a symbol table for that block. All occurrences
of such values are replaced with a short reference to the symbol table. The
compression is higher in blocks that have more repeated values.

Before compressing large tables you should estimate the expected compression factor.
The compression factor is defined as the number of blocks necessary to store the
information in an uncompressed form divided by the number of blocks necessary for a
compressed storage. The compression factor can be estimated by sampling a small
number of representative data blocks of the table to be compressed and comparing the
average number of records for each block for the uncompressed and compressed case.
Experience shows that approximately 1000 data blocks provides a very accurate
estimation of the compression factor. Note that the more blocks you are sampling, the
more accurate the result become.

Tuning to Achieve a Better Compression Ratio
Oracle Database achieves a good compression factor in many cases with no special
tuning. As a DBA or application developer, you can try to tune the compression factor
by reorganizing the records when the compression takes place. Tuning can improve
the compression factor slightly in some cases and substantially in other cases.

To improve the compression factor you must increase the likelihood of value
repetitions within a data block. The achievable compression factor depends on the
cardinality of a specific column or column pairs (representing the likelihood of column
value repetitions) and on the average row length of those columns. Table compression
not only compresses duplicate values of a single column but tries to use multi-column
value pairs whenever possible. Without a detailed understanding of the data
distribution it is very difficult to predict the most optimal order.

Reclaiming Unused Space
Over time, it is common for segment space to become fragmented or for a segment to
acquire a lot of free space as the result of update and delete operations. The resulting
sparsely populated objects can suffer performance degradation during queries and
DML operations.

Oracle Database provides a Segment Advisor that provides advice on whether an
object has space available for reclamation based on the level of space fragmentation
within an object.

If an object does have space available for reclamation, then you can compact and
shrink segments or deallocate unused space at the end of a segment.

See Also: Oracle Database Data Warehousing Guide for information
about table compression and partitions

See Also: Oracle Database Administrator's Guide and Oracle
Database 2 Day DBA to learn about the Segment Advisor

Performance Considerations for Shared Servers

Configuring a Database for Performance 4-7

Indexing Data
The most efficient time to create indexes is after data has been loaded. In this way,
space management becomes simpler, and no index maintenance takes place for each
row inserted. SQL*Loader automatically uses this technique, but if you are using other
methods to do initial data load, then you may need to create indexes manually.
Additionally, you can perform index creation in parallel using the PARALLEL clause of
the CREATE INDEX statement. However, SQL*Loader is not able to parallelize index
creation, so you must manually create indexes in parallel after loading data.

Specifying Memory for Sorting Data
During index creation on tables that contain data, the data must be sorted. This sorting
is done in the fastest possible way, if all available memory is used for sorting. Oracle
recommends that you enable automatic sizing of SQL working areas by setting the
PGA_AGGREGATE_TARGET initialization parameter.

Performance Considerations for Shared Servers
Using shared servers reduces the number of processes and the amount of memory
consumed on the database host. Shared servers are beneficial for databases where
there are many OLTP users performing intermittent transactions.

Using shared servers rather than dedicated servers is also generally better for systems
that have a high connection rate to the database. With shared servers, when a connect
request is received, a dispatcher is available to handle concurrent connection requests.
With dedicated servers, however, a connection-specific dedicated server is sequentially
initialized for each connection request.

Performance of certain database features can improve when a shared server
architecture is used, and performance of certain database features can degrade slightly
when a shared server architecture is used. For example, a session can be prevented
from migrating to another shared server while parallel execution is active.

A session can remain nonmigratable even after a request from the client has been
processed, because not all the user information has been stored in the UGA. If a server
were to process the request from the client, then the part of the user state that was not
stored in the UGA would be inaccessible. To avoid this situation, individual shared
servers often need to remain bound to a user session.

See Also:

■ Oracle Database Administrator's Guide for a discussion of
reclaiming unused space

■ Oracle Database SQL Language Reference for details about SQL
statements used to shrink segments or deallocate unused space

See Also: Oracle Database Utilities for information about
SQL*Loader

See Also:

■ "PGA Memory Management" on page 7-39 for information
about PGA memory management

■ Oracle Database Reference for information about the
PGA_AGGREGATE_TARGET initialization parameter

Performance Considerations for Shared Servers

4-8 Oracle Database Performance Tuning Guide

When using some features, you may need to configure more shared servers, because
some servers might be bound to sessions for an excessive amount of time.

This section discusses how to reduce contention for processes used by Oracle Database
architecture:

■ Identifying Contention Using the Dispatcher-Specific Views

■ Identifying Contention for Shared Servers

Identifying Contention Using the Dispatcher-Specific Views
The following views provide dispatcher performance statistics:

■ V$DISPATCHER: general information about dispatcher processes

■ V$DISPATCHER_RATE: dispatcher processing statistics

The V$DISPATCHER_RATE view contains current, average, and maximum dispatcher
statistics for several categories. Statistics with the prefix CUR_ are statistics for the
current sample. Statistics with the prefix AVG_ are the average values for the statistics
after the collection period began. Statistics with the prefix MAX_ are the maximum
values for these categories after statistics collection began.

To assess dispatcher performance, query the V$DISPATCHER_RATE view and compare
the current values with the maximums. If your present system throughput provides
adequate response time and current values from this view are near the average and
less than the maximum, then you likely have an optimally tuned shared server
environment.

If the current and average rates are significantly less than the maximums, then
consider reducing the number of dispatchers. Conversely, if current and average rates
are close to the maximums, then you might need to add more dispatchers. A general
rule is to examine V$DISPATCHER_RATE statistics during both light and heavy system
use periods. After identifying your shared server load patterns, adjust your
parameters accordingly.

If necessary, you can also mimic processing loads by running system stress tests and
periodically polling V$DISPATCHER_RATE statistics. Proper interpretation of these
statistics varies from platform to platform. Different types of applications also can
cause significant variations on the statistical values recorded in V$DISPATCHER_RATE.

Reducing Contention for Dispatcher Processes
To reduce contention, consider the following:

■ Adding dispatcher processes

See Also:

■ Oracle Database Administrator's Guide to learn how to manage
shared servers

■ Oracle Database Net Services Administrator's Guide to learn how
to configure dispatchers for shared servers

See Also:

■ Oracle Database Reference for detailed information about the
V$DISPATCHER and V$DISPATCHER_RATE views

Performance Considerations for Shared Servers

Configuring a Database for Performance 4-9

The total number of dispatcher processes is limited by the value of the
initialization parameter MAX_DISPATCHERS. You might need to increase this value
before adding dispatcher processes.

■ Enabling connection pooling

When system load increases and dispatcher throughput is maximized, it is not
necessarily a good idea to immediately add more dispatchers. Instead, consider
configuring the dispatcher to support more users with connection pooling.

■ Enabling Session Multiplexing

Multiplexing is used by a connection manager process to establish and maintain
network sessions from multiple users to individual dispatchers. For example,
several user processes can connect to one dispatcher by way of a single connection
from a connection manager process. Session multiplexing is beneficial because it
maximizes use of the dispatcher process connections. Multiplexing is also useful
for multiplexing database link sessions between dispatchers.

Identifying Contention for Shared Servers
Steadily increasing wait times in the requests queue indicate contention for shared
servers. To examine wait time data, use the dynamic performance view V$QUEUE. This
view contains statistics showing request queue activity for shared servers. By default,
this view is available only to the user SYS and to other users with SELECT ANY TABLE
system privilege, such as SYSTEM. Table 4–3 lists the columns showing the wait times
for requests and the number of requests in the queue.

Monitor these statistics occasionally while your application is running by issuing the
following SQL statement:

SELECT DECODE(TOTALQ, 0, 'No Requests',
 WAIT/TOTALQ || ' HUNDREDTHS OF SECONDS') "AVERAGE WAIT TIME PER REQUESTS"
 FROM V$QUEUE
 WHERE TYPE = 'COMMON';

This query returns the results of a calculation that show the following:

AVERAGE WAIT TIME PER REQUEST

.090909 HUNDREDTHS OF SECONDS

See Also:

■ Oracle Database Administrator's Guide to learn how to configure
dispatcher processes

■ Oracle Database Net Services Administrator's Guide to learn how
to configure connection pooling

■ Oracle Database Reference to learn about the DISPATCHERS and
MAX_DISPATCHERS initialization parameters

Table 4–3 Wait Time and Request Columns in V$QUEUE

Column Description

WAIT Displays the total waiting time, in hundredths of a second, for
all requests that have ever been in the queue

TOTALQ Displays the total number of requests that have ever been in
the queue

Performance Considerations for Shared Servers

4-10 Oracle Database Performance Tuning Guide

From the result, you can tell that a request waits an average of 0.09 hundredths of a
second in the queue before processing.

You can also determine how many shared servers are currently running by issuing the
following query:

SELECT COUNT(*) "Shared Server Processes"
 FROM V$SHARED_SERVER
 WHERE STATUS != 'QUIT';

The result of this query could look like the following:

Shared Server Processes

10

If you detect resource contention with shared servers, then first ensure that this is not a
memory contention issue by examining the shared pool and the large pool. If
performance remains poor, then you might want to create more resources to reduce
shared server process contention. You can do this by modifying the optional server
process initialization parameters:

■ MAX_DISPATCHERS

■ MAX_SHARED_SERVERS

■ DISPATCHERS

■ SHARED_SERVERS

See Also: Oracle Database Administrator's Guide to learn how to set
the shared server process initialization parameters

5

Automatic Performance Statistics 5-1

5Automatic Performance Statistics

This chapter discusses the gathering of performance statistics. This chapter contains
the following topics:

■ Overview of Data Gathering

■ Overview of the Automatic Workload Repository

■ Managing the Automatic Workload Repository

Overview of Data Gathering
To effectively diagnose performance problems, statistics must be available. Oracle
Database generates many types of cumulative statistics for the system, sessions, and
individual SQL statements. Oracle Database also tracks cumulative statistics on
segments and services. When analyzing a performance problem in any of these scopes,
you typically look at the change in statistics (delta value) over the period you are
interested in. Specifically, you look at the difference between the cumulative value of a
statistic at the start of the period and the cumulative value at the end.

Cumulative values for statistics are generally available through dynamic performance
views, such as the V$SESSTAT and V$SYSSTAT views. Note that the cumulative values in
dynamic views are reset when the database instance is shutdown. The Automatic
Workload Repository (AWR) automatically persists the cumulative and delta values
for most of the statistics at all levels except the session level. This process is repeated
on a regular time period and the result is called an AWR snapshot. The delta values
captured by the snapshot represent the changes for each statistic over the time period.
See "Overview of the Automatic Workload Repository" on page 5-8.

A metric is another type of statistic collected by Oracle Database. A metric is defined
as the rate of change in some cumulative statistic. That rate can be measured against a
variety of units, including time, transactions, or database calls. For example, the
number database calls per second is a metric. Metric values are exposed in some V$
views, where the values are the average over a fairly small time interval, typically 60
seconds. A history of recent metric values is available through V$ views, and some
data is also persisted by AWR snapshots.

A third type of statistical data collected by Oracle is sampled data. The active session
history (ASH) sampler performs the sampling. ASH samples the current state of all
active sessions. The database collects this data into memory, where you can access it
with a V$ view. AWR snapshot processing also writes it to persistent storage. See
"Active Session History" on page 5-3.

A powerful tool for diagnosing performance problems is the use of statistical
baselines. A statistical baseline is collection of statistic rates usually taken over time
period where the system is performing well at peak load. Comparing statistics

Overview of Data Gathering

5-2 Oracle Database Performance Tuning Guide

captured during a period of bad performance to a baseline helps discover specific
statistics that have increased significantly and could be the cause of the problem.

AWR supports the capture of baseline data by enabling you to specify and preserve a
pair or range of AWR snapshots as a baseline. Carefully consider the time period you
choose as a baseline; the baseline should be a good representation of the peak load on
the system. In the future, you can compare these baselines with snapshots captured
during periods of poor performance.

Oracle Enterprise Manager is the recommended tool for viewing both real time data in
the dynamic performance views and historical data from the AWR history tables.
Enterprise Manager can also be used to capture operating system and network
statistical data that can be correlated with AWR data. For more information, see Oracle
Database 2 Day + Performance Tuning Guide.

This section covers the following topics:

■ Database Statistics

■ Operating System Statistics

■ Interpreting Statistics

Database Statistics
Database statistics provide information on the type of load on the database and the
internal and external resources used by the database. This section describes some of
the more important statistics.

Wait Events
Wait events are statistics that are incremented by a server process or thread to indicate
that it had to wait for an event to complete before being able to continue processing.
Wait event data reveals various symptoms of problems that might be impacting
performance, such as latch contention, buffer contention, and I/O contention.

To enable easier high-level analysis of the wait events, events are grouped into classes.
The classes include: Administrative, Application, Cluster, Commit, Concurrency,
Configuration, Idle, Network, Other, Scheduler, System I/O, and User I/O.

The wait classes are based on a common solution that usually applies to fixing a
problem with the wait event. For example, exclusive TX locks are generally an
application level issue and HW locks are generally a configuration issue.

The following list includes common examples of the waits in some of the classes:

■ Application: locks waits caused by row level locking or explicit lock commands

■ Commit: waits for redo log write confirmation after a commit

■ Idle: wait events that signify the session is inactive, such as SQL*Net message from
client

■ Network: waits for data to be sent over the network

■ User I/O: wait for blocks to be read off a disk

Wait event statistics for an instance include statistics for both background and
foreground processes. Because you would typically focus your effort in tuning
foreground activities, overall instance activity is broken down into foreground and
background statistics in the relevant V$ views to facilitate tuning.

The V$SYSTEM_EVENT view shows wait event statistics for the foreground activities of
an instance and the wait event statistics for the instance. The V$SYSTEM_WAIT_CLASS

Overview of Data Gathering

Automatic Performance Statistics 5-3

view shows these foreground and wait event instance statistics after aggregating to
wait classes. V$SESSION_EVENT and V$SESSION_WAIT_CLASS show wait event and wait
class statistics at the session level.

Time Model Statistics
When tuning an Oracle database, each component has its own set of statistics. To look
at the system as a whole, it is necessary to have a common scale for comparisons. For
this reason, most Oracle Database advisories and reports describe statistics in terms of
time. In addition, the V$SESS_TIME_MODEL and V$SYS_TIME_MODEL views provide time
model statistics. Using the common time instrumentation helps to identify quantitative
effects on the database operations.

The most important of the time model statistics is DB time. This statistics represents the
total time spent in database calls and is an indicator of the total instance workload. It is
calculated by aggregating the CPU and wait times of all sessions not waiting on idle
wait events (non-idle user sessions).

DB time is measured cumulatively from the time of instance startup. Because DB time it
is calculated by combining the times from all non-idle user sessions, it is possible that
the DB time can exceed the actual time elapsed after the instance started. For example,
an instance that has been running for 30 minutes could have four active user sessions
whose cumulative DB time is approximately 120 minutes.

The objective for tuning an Oracle system could be stated as reducing the time that
users spend in performing some action on the database, or simply reducing DB time.
Other time model statistics provide quantitative effects (in time) on specific actions,
such as logon operations and hard and soft parses.

Active Session History
The V$ACTIVE_SESSION_HISTORY view provides sampled session activity in the
instance. Active sessions are sampled every second and are stored in a circular buffer
in SGA. Any session that is connected to the database and is waiting for an event that
does not belong to the Idle wait class is considered as an active session. This includes
any session that was on the CPU at the time of sampling.

Each session sample is a set of rows and the V$ACTIVE_SESSION_HISTORY view returns
one row for each active session per sample, returning the latest session sample rows
first. Because the active session samples are stored in a circular buffer in SGA, the
greater the system activity, the smaller the number of seconds of session activity that
can be stored in the circular buffer. This means that the duration for which a session
sample appears in the V$ view, or the number of seconds of session activity that is
displayed in the V$ view, is completely dependent on the database activity.

As part of the AWR snapshots, the content of V$ACTIVE_SESSION_HISTORY is also
flushed to disk. Because the content of this V$ view can get quite large during heavy
system activity, only a portion of the session samples is written to disk.

By capturing only active sessions, a manageable set of data is represented with the size
being directly related to the work being performed rather than the number of sessions
allowed on the system. Using ASH enables you to examine and perform detailed
analysis on both current data in the V$ACTIVE_SESSION_HISTORY view and historical
data in the DBA_HIST_ACTIVE_SESS_HISTORY view, often avoiding the need to replay

See Also: Oracle Database Reference for more information about
Oracle wait events

See Also: Oracle Database Reference to learn about the
V$SESS_TIME_MODEL and V$SYS_TIME_MODEL views

Overview of Data Gathering

5-4 Oracle Database Performance Tuning Guide

the workload to gather additional performance tracing information. ASH also contains
execution plan information for each captured SQL statement. You can use this
information to identify which part of SQL execution contributed most to the SQL
elapsed time. The data present in ASH can be rolled up on various dimensions that it
captures, including the following:

■ SQL identifier of SQL statement

■ SQL plan identifier and hash value of the SQL plan used to execute the SQL
statement

■ SQL execution plan information

■ Object number, file number, and block number

■ Wait event identifier and parameters

■ Session identifier and session serial number

■ Module and action name

■ Client identifier of the session

■ Service hash identifier

■ Consumer group identifier

You can gather ASH information over a specified duration into a report. For more
information, see "Generating Active Session History Reports" on page 5-34.

Active session history sampling is also available for Active Data Guard physical
standby instances and Oracle Automatic Storage Management (Oracle ASM) instances.
On these instances, the current session activity is collected and displayed in the
V$ACTIVE_SESSION_HISTORY view, but not written to disk.

System and Session Statistics
A large number of cumulative database statistics are available on a system and session
level through the V$SYSSTAT and V$SESSTAT views.

Operating System Statistics
Operating system statistics provide information on the usage and performance of the
main hardware components of the system, and the performance of the operating
system itself. This information is crucial for detecting potential resource exhaustion,
such as CPU cycles and physical memory, and for detecting bad performance of
peripherals, such as disk drives.

Operating system statistics are an indication of how the hardware and operating
system are working. Many system analysts react to a hardware resource shortage by
installing more hardware. This is a reactionary response to a series of symptoms
shown in the operating system statistics. It is best to consider operating system

See Also:

■ Oracle Database Reference for more information about the
V$ACTIVE_SESSION_HISTORY view

■ Oracle Database High Availability Overview for more information
about using ASH in an Active Data Guard physical standby
environment

See Also: Oracle Database Reference to learn about the V$SYSSTAT
and V$SESSTAT views

Overview of Data Gathering

Automatic Performance Statistics 5-5

statistics as a diagnostic tool, similar to the way doctors use body temperature, pulse
rate, and patient pain when making a diagnosis. To help identify bottlenecks, gather
operating system statistics for all servers in the system under performance analysis.

Operating system statistics include the following:

■ CPU Statistics

■ Virtual Memory Statistics

■ Disk I/O Statistics

■ Network Statistics

CPU Statistics
CPU utilization is the most important operating system statistic in the tuning process.
Get CPU utilization for the entire system and for each individual CPU on
multi-processor environments. Utilization for each CPU can detect single-threading
and scalability issues.

Most operating systems report CPU usage as time spent in user space or mode and
time spent in kernel space or mode. These additional statistics allow better analysis of
what is actually being executed on the CPU.

On a system running Oracle Database, where only one application is typically
running, the system runs database activity in user space. Activities required to service
database requests (such as scheduling, synchronization, I/O, memory management,
and process/thread creation and tear down) run in kernel mode. In a system where
CPU is fully utilized, a healthy Oracle database runs between 65% and 95% in user
space.

The V$OSSTAT view captures machine-level information in the database, making it
easier for you to determine if hardware-level resource issues exist. The
V$SYSMETRIC_HISTORY view shows a one-hour history of the Host CPU Utilization
metric, a representation of percentage of CPU usage at each one-minute interval. The
V$SYS_TIME_MODEL view supplies statistics on the CPU usage by the Oracle database.
Using both sets of statistics enable you to determine whether the Oracle database or
other system activity is the cause of the CPU problems.

Virtual Memory Statistics
Virtual memory statistics should mainly be used as a check to validate that there is
very little paging or swapping activity on the system. System performance degrades
rapidly and unpredictably when paging or swapping occurs.

Individual process memory statistics can detect memory leaks due to a programming
failure to deallocate memory taken from the process heap. These statistics are
necessary to validate that memory usage does not increase after the system has
reached a steady state after startup. This problem is particularly acute on shared server
applications on middle tier computers where session state may persist across user
interactions, and on completion state information that is not fully deallocated.

Disk I/O Statistics
Because the database resides on a set of disks, the performance of the I/O subsystem is
very important to the performance of the database. Most operating systems provide
extensive statistics on disk performance. The most important disk statistics are the

See Also: "Operating System Data Gathering Tools" on page 5-6 for
information about tools for gathering operating statistics

Overview of Data Gathering

5-6 Oracle Database Performance Tuning Guide

current response time and the length of the disk queues. These statistics show if the
disk is performing optimally or if the disk is being overworked.

Measure the normal performance of the I/O system; typical values for a single block
read range from 5 to 20 milliseconds, depending on the hardware used. If the
hardware shows response times much higher than the normal performance value, then
it is performing badly or is overworked. This is your bottleneck. If disk queues start to
exceed two, then the disk is a potential bottleneck of the system.

Oracle Database also maintains a consistent set of I/O statistics for the I/O calls it
issues. These statistics are captured for both single and multi block read and write
operations in the following dimensions:

■ Consumer group

When Oracle Database Resource Manager is enabled, the
V$IOSTAT_CONSUMER_GROUP view captures I/O statistics for all consumer groups
that are part of the currently enabled resource plan. The database samples
cumulative statistics every hour and stores them as historical statistics in the AWR.

■ Database file

I/O statistics of database files that are or have been accessed are captured in the
V$IOSTAT_FILE view.

■ Database function

I/O statistics for database functions (such as the LGWR and DBWR) are captured
in the V$IOSTAT_FUNCTION view.

Network Statistics
You can use network statistics in much the same way as disk statistics to determine if a
network or network interface is overloaded or not performing optimally. In today's
networked applications, network latency can be a large portion of the actual user
response time. For this reason, these statistics are a crucial debugging tool.

Oracle Database maintains a set of network I/O statistics in the V$IOSTAT_NETWORK
view.

Operating System Data Gathering Tools
Table 5–1 shows the various tools for gathering operating statistics on UNIX. For
Windows, use the Performance Monitor tool.

See Also: "Identifying I/O Problems Using V$ Views" on page 10-4
to learn how to use views in Oracle Database to identify I/O problems

See Also: "Identifying Network Issues" on page 10-6 to learn how to
use the V$IOSTAT_NETWORK view to identify network issues

Table 5–1 UNIX Tools for Operating Statistics

Component UNIX Tool

CPU sar, vmstat, mpstat, iostat

Memory sar, vmstat

Disk sar, iostat

Network netstat

Overview of Data Gathering

Automatic Performance Statistics 5-7

Interpreting Statistics
When initially examining performance data, you can formulate potential theories by
examining your statistics. One way to ensure that your interpretation of the statistics is
correct is to perform cross-checks with other data. This establishes whether a statistic
or event is really of interest. Also, because foreground activities are tunable, it is better
to first analyze the statistics from foreground activities before analyzing the statistics
from background activities.

Some pitfalls are discussed in the following sections:

■ Hit ratios

When tuning, it is common to compute a ratio that helps determine whether there
is a problem. Such ratios include the buffer cache hit ratio, the soft-parse ratio, and
the latch hit ratio. Do not use these ratios as definitive identifiers of whether a
performance bottleneck exists. Rather, use them as indicators. To identify whether
a bottleneck exists, examine other related evidence. See "Calculating the Buffer
Cache Hit Ratio" on page 7-9.

■ Wait events with timed statistics

Setting TIMED_STATISTICS to true at the instance level directs the database to
gather wait time for events, in addition to available wait counts. This data is useful
for comparing the total wait time for an event to the total elapsed time between
the data collections. For example, if the wait event accounts for only 30 seconds
out of a 2-hour period, then little is to be gained by investigating this event,
although it may be the highest ranked wait event when ordered by time waited.
However, if the event accounts for 30 minutes of a 45-minute period, then the
event is worth investigating. See "Wait Events" on page 5-2.

■ Comparing Oracle Database statistics with other factors

When looking at statistics, it is important to consider other factors that influence
whether the statistic is of value. Such factors include the user load and the
hardware capability. Even an event that had a wait of 30 minutes in a 45-minute
period might not be indicative of a problem if you discover that there were 2000
users on the system, and the host hardware was a 64-node computer.

■ Wait events without timed statistics

If TIMED_STATISTICS is false, then the amount of time waited for an event is not
available. Therefore, it is only possible to order wait events by the number of times
each event was waited for. Although the events with the largest number of waits
might indicate the potential bottleneck, they might not be the main bottleneck.
This can happen when an event is waited for a large number of times, but the total
time waited for that event is small. The converse is also true: an event with fewer

Note: Timed statistics are automatically collected for the database
if the initialization parameter STATISTICS_LEVEL is set to TYPICAL
or ALL. If STATISTICS_LEVEL is set to BASIC, then you must set
TIMED_STATISTICS to TRUE to enable collection of timed statistics.
Note that setting STATISTICS_LEVEL to BASIC disables many
automatic features and is not recommended.

If you explicitly set DB_CACHE_ADVICE, TIMED_STATISTICS, or
TIMED_OS_STATISTICS, either in the initialization parameter file or
by using ALTER_SYSTEM or ALTER SESSION, then the explicitly set
value overrides the value derived from STATISTICS_LEVEL.

Overview of the Automatic Workload Repository

5-8 Oracle Database Performance Tuning Guide

waits might be a problem if the wait time is a significant proportion of the total
wait time. Without having the wait times to use for comparison, it is difficult to
determine whether a wait event is really of interest.

■ Idle wait events

Oracle Database uses some wait events to indicate if the Oracle server process is
idle. Typically, these events are of no value when investigating performance
problems, and they should be ignored when examining the wait events. See "Idle
Wait Events" on page 10-30.

■ Computed statistics

When interpreting computed statistics (such as rates, statistics normalized over
transactions, or ratios), it is important to cross-verify the computed statistic with
the actual statistic counts. This confirms whether the derived rates are really of
interest: small statistic counts usually can discount an unusual ratio. For example,
on initial examination, a soft-parse ratio of 50% generally indicates a potential
tuning area. If, however, there was only one hard parse and one soft parse during
the data collection interval, then the soft-parse ratio would be 50%, even though
the statistic counts show this is not an area of concern. In this case, the ratio is not
of interest due to the low raw statistic counts.

Overview of the Automatic Workload Repository
The Automatic Workload Repository (AWR) collects, processes, and maintains
performance statistics for problem detection and self-tuning purposes. This data is
both in memory and stored in the database. The gathered data can be displayed in
both reports and views.

The statistics collected and processed by AWR include:

■ Object statistics that determine both access and usage statistics of database
segments

■ Time model statistics based on time usage for activities, displayed in the
V$SYS_TIME_MODEL and V$SESS_TIME_MODEL views

■ Some of the system and session statistics collected in the V$SYSSTAT and V$SESSTAT
views

■ SQL statements that are producing the highest load on the system, based on
criteria such as elapsed time and CPU time

■ ASH statistics, representing the history of recent sessions activity

Gathering database statistics using the AWR is enabled by default and is controlled by
the STATISTICS_LEVEL initialization parameter. The STATISTICS_LEVEL parameter
should be set to the TYPICAL or ALL to enable statistics gathering by the AWR. The
default setting is TYPICAL. Setting STATISTICS_LEVEL to BASIC disables many Oracle
Database features, including the AWR, and is not recommended. If STATISTICS_LEVEL
is set to BASIC, you can still manually capture AWR statistics using the
DBMS_WORKLOAD_REPOSITORY package. However, because in-memory collection of many
system statistics—such as segments statistics and memory advisor information—will

See Also:

■ "Setting the Level of Statistics Collection" on page 10-7 to learn
about the STATISTICS_LEVEL settings

■ Oracle Database Reference for information about the
STATISTICS_LEVEL initialization parameter

Overview of the Automatic Workload Repository

Automatic Performance Statistics 5-9

be disabled, the statistics captured in these snapshots may not be complete. For
information about the STATISTICS_LEVEL initialization parameter, see Oracle Database
Reference.

Snapshots
Snapshots are sets of historical data for specific time periods that are used for
performance comparisons by ADDM. By default, Oracle Database automatically
generates snapshots of the performance data once every hour and retains the statistics
in the workload repository for 8 days. You can also manually create snapshots, but this
is usually not necessary. The data in the snapshot interval is then analyzed by the
Automatic Database Diagnostic Monitor (ADDM). For information about ADDM, see
"Overview of the Automatic Database Diagnostic Monitor" on page 6-1.

AWR compares the difference between snapshots to determine which SQL statements
to capture based on the effect on the system load. This reduces the number of SQL
statements that must be captured over time.

For information about managing snapshots, see "Managing Snapshots" on page 5-13.

Baselines
A baseline contains performance data from a specific time period that is preserved for
comparison with other similar workload periods when performance problems occur.
The snapshots contained in a baseline are excluded from the automatic AWR purging
process and are retained indefinitely.

There are several types of available baselines in Oracle Database:

■ Fixed Baselines

■ Moving Window Baseline

■ Baseline Templates

Fixed Baselines
A fixed baseline corresponds to a fixed, contiguous time period in the past that you
specify. Before creating a fixed baseline, carefully consider the time period you choose
as a baseline, because the baseline should represent the system operating at an optimal
level. In the future, you can compare the baseline with other baselines or snapshots
captured during periods of poor performance to analyze performance degradation
over time.

Moving Window Baseline
A moving window baseline corresponds to all AWR data that exists within the AWR
retention period. This is useful when using adaptive thresholds because the database
can use AWR data in the entire AWR retention period to compute metric threshold
values.

Oracle Database automatically maintains a system-defined moving window baseline.
The default window size for the system-defined moving window baseline is the
current AWR retention period, which by default is 8 days. If you are planning to use
adaptive thresholds, consider using a larger moving window—such as 30 days—to
accurately compute threshold values. You can resize the moving window baseline by
changing the number of days in the moving window to a value that is equal to or less

See Also: "Managing Baselines" on page 5-14 for information about
managing fixed baselines

Overview of the Automatic Workload Repository

5-10 Oracle Database Performance Tuning Guide

than the number of days in the AWR retention period. Therefore, to increase the size of
a moving window, you must first increase the AWR retention period accordingly.

Baseline Templates
You can also create baselines for a contiguous time period in the future using baseline
templates. There are two types of baseline templates: single and repeating.

You can use a single baseline template to create a baseline for a single contiguous time
period in the future. This technique is useful if you know beforehand of a time period
that you intend to capture in the future. For example, you may want to capture the
AWR data during a system test that is scheduled for the upcoming weekend. In this
case, you can create a single baseline template to automatically capture the time period
when the test occurs.

You can use a repeating baseline template to create and drop baselines based on a
repeating time schedule. This is useful if you want Oracle Database to automatically
capture a contiguous time period on an ongoing basis. For example, you may want to
capture the AWR data during every Monday morning for a month. In this case, you
can create a repeating baseline template to automatically create baselines on a
repeating schedule for every Monday, and automatically remove older baselines after
a specified expiration interval, such as one month.

Adaptive Thresholds
Adaptive thresholds enable you to monitor and detect performance issues while
minimizing administrative overhead. Adaptive thresholds can automatically set
warning and critical alert thresholds for some system metrics using statistics derived
from metric values captured in the moving window baseline. The statistics for these
thresholds are recomputed weekly and might result in new thresholds as system
performance evolves over time. In addition to recalculating thresholds weekly,
adaptive thresholds might compute different thresholds values for different times of
the day or week based on periodic workload patterns.

For example, many databases support an online transaction processing (OLTP)
workload during the day and batch processing at night. The performance metric for
response time per transaction can be useful for detecting degradation in OLTP
performance during the day. However, a useful OLTP threshold value is almost
certainly too low for batch workloads, where long-running transactions might be
common. As a result, threshold values appropriate to OLTP might trigger frequent
false performance alerts during batch processing. Adaptive thresholds can detect such
a workload pattern and automatically set different threshold values for the daytime
and nighttime.

There are two types of adaptive thresholds:

See Also: "Modifying the Window Size of the Default Moving
Window Baseline" on page 5-17 for information about resizing the
moving window baseline

See Also: "Managing Baseline Templates" on page 5-17 for
information about managing baseline templates

Note: In Oracle Database 11g Release 2 (11.2), Oracle Database
automatically determines the appropriate time groupings for a
database. However, before Oracle Database 11g Release 2 (11.2), time
groupings were specified manually by the database administrator.

Overview of the Automatic Workload Repository

Automatic Performance Statistics 5-11

■ Percentage of maximum: The threshold value is computed as a percentage
multiple of the maximum value observed for the data in the moving window
baseline.

■ Significance level: The threshold value is set to a statistical percentile that
represents how unusual it is to observe values above the threshold value based the
data in the moving window baseline. Specify one of the following percentiles:

– High (.95): Only 5 in 100 observations are expected to exceed this value.

– Very High (.99): Only 1 in 100 observations are expected to exceed this value.

– Severe (.999): Only 1 in 1,000 observations are expected to exceed this value.

– Extreme (.9999): Only 1 in 10,000 observations are expected to exceed this
value.

Percentage of maximum thresholds are most useful when a system is sized for peak
workloads, and you want to be alerted when the current workload volume is
approaching or exceeding previous high values. Metrics that have an unknown but
definite limiting value are good candidates for these settings. For example, the redo
generated per second metric is typically a good candidate for a percentage of
maximum threshold.

Significance level thresholds are most useful for metrics that should exhibit statistically
stable behavior when the system is operating normally, but might vary over a wide
range when the system is performing poorly. For example, the response time per
transaction metric should be stable for a well-tuned OLTP system, but may fluctuate
widely when performance issues arise. Significance level thresholds are meant to
generate alerts when conditions produce both unusual metric values and unusual
system performance.

Note: When you specify Severe (.999) or Extreme (.9999), Oracle
Database performs an internal calculation to set the threshold value.
In some cases, Oracle Database cannot establish the threshold value at
these levels using the data in the baseline, and the significance level
threshold is not set.

If you are not receiving alerts as expected, and you specified a Severe
(.999) or Extreme (.9999) significance level threshold, then you can try
setting the significance level threshold to a lower value, such as Very
High (.99) or High (.95). Alternatively, you can set a percentage of
maximum threshold instead of a significance level threshold. If you
change the threshold and find that you are receiving too many alerts,
then you can try increasing the number of occurrences to cause an
alert.

Note: The primary interface for managing baseline metrics is Oracle
Enterprise Manager. To create an adaptive threshold for a baseline
metric, use Oracle Enterprise Manager, as described in Oracle Database
2 Day + Performance Tuning Guide.

See Also: "Moving Window Baseline" on page 5-9

Managing the Automatic Workload Repository

5-12 Oracle Database Performance Tuning Guide

Space Consumption
The space consumed by the AWR is determined by several factors:

■ Number of active sessions in the system at any given time

■ Snapshot interval

The snapshot interval determines the frequency at which snapshots are captured.
A smaller snapshot interval increases the frequency, which increases the volume of
data collected by the AWR.

■ Historical data retention period

The retention period determines how long this data is retained before being
purged. A longer retention period increases the space consumed by the AWR.

By default, snapshots are captured once every hour and are retained in the database
for 8 days. With these default settings, a typical system with an average of 10
concurrent active sessions can require approximately 200 to 300 MB of space for its
AWR data. It is possible to change the default values for both snapshot interval and
retention period. See "Modifying Snapshot Settings" on page 5-14 to learn how to
modify AWR settings.

The AWR space consumption can be reduced by the increasing the snapshot interval
and reducing the retention period. When reducing the retention period, note that
several Oracle Database self-managing features depend on AWR data for proper
functioning. Not having enough data can affect the validity and accuracy of these
components and features, including:

■ Automatic Database Diagnostic Monitor

■ SQL Tuning Advisor

■ Undo Advisor

■ Segment Advisor

If possible, Oracle recommends that you set the AWR retention period large enough to
capture at least one complete workload cycle. If your system experiences weekly
workload cycles, such as OLTP workload during weekdays and batch jobs during the
weekend, you do not need to change the default AWR retention period of 8 days.
However if your system is subjected to a monthly peak load during month end book
closing, you may have to set the retention period to one month.

Under exceptional circumstances, you can turn off automatic snapshot collection by
setting the snapshot interval to 0. Under this condition, the automatic collection of the
workload and statistical data is stopped and much of the Oracle Database
self-management functionality is not operational. In addition, you cannot manually
create snapshots. For this reason, Oracle strongly recommends that you do not turn off
automatic snapshot collection.

Managing the Automatic Workload Repository
This section describes how to manage the AWR and contains the following topics:

■ Managing Snapshots

■ Managing Baselines

■ Managing Baseline Templates

■ Transporting Automatic Workload Repository Data

Managing the Automatic Workload Repository

Automatic Performance Statistics 5-13

■ Using Automatic Workload Repository Views

■ Generating Automatic Workload Repository Reports

■ Generating Automatic Workload Repository Compare Periods Reports

■ Generating Active Session History Reports

■ Using Active Session History Reports

Managing Snapshots
By default, Oracle Database generates snapshots once every hour, and retains the
statistics in the workload repository for 8 days. When necessary, you can use
DBMS_WORKLOAD_REPOSITORY procedures to manually create, drop, and modify the
snapshots. To invoke these procedures, a user must be granted the DBA role.

The primary interface for managing snapshots is Oracle Enterprise Manager.
Whenever possible, you should manage snapshots using Oracle Enterprise Manager,
as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle Enterprise
Manager is unavailable, you can manage snapshots using the
DBMS_WORKLOAD_REPOSITORY package, as described in the following sections:

■ Creating Snapshots

■ Dropping Snapshots

■ Modifying Snapshot Settings

Creating Snapshots
You can manually create snapshots with the CREATE_SNAPSHOT procedure to capture
statistics at times different than those of the automatically generated snapshots. For
example:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT ();
END;
/

In this example, a snapshot for the instance is created immediately with the flush level
specified to the default flush level of TYPICAL. You can view this snapshot in the
DBA_HIST_SNAPSHOT view.

Dropping Snapshots
You can drop a range of snapshots using the DROP_SNAPSHOT_RANGE procedure. To view
a list of the snapshot IDs along with database IDs, check the DBA_HIST_SNAPSHOT view.
For example, you can drop the following range of snapshots:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.DROP_SNAPSHOT_RANGE (low_snap_id => 22,
 high_snap_id => 32, dbid => 3310949047);

See Also: "Overview of the Automatic Workload Repository" on
page 5-8 for a description of the AWR

See Also:

■ "Snapshots" on page 5-9 for more information about snapshots

■ Oracle Database PL/SQL Packages and Types Reference for detailed
information on the DBMS_WORKLOAD_REPOSITORY package

Managing the Automatic Workload Repository

5-14 Oracle Database Performance Tuning Guide

END;
/

In the example, the range of snapshot IDs to drop is specified from 22 to 32. The
optional database identifier is 3310949047. If you do not specify a value for dbid, the
local database identifier is used as the default value.

Active Session History data (ASH) that belongs to the time period specified by the
snapshot range is also purged when the DROP_SNAPSHOT_RANGE procedure is called.

Modifying Snapshot Settings
You can adjust the interval, retention, and captured Top SQL of snapshot generation
for a specified database ID, but note that this can affect the precision of the Oracle
Database diagnostic tools.

The INTERVAL setting affects how often the database automatically generates
snapshots. The RETENTION setting affects how long the database stores snapshots in the
workload repository. The TOPNSQL setting affects the number of Top SQL to flush for
each SQL criteria (Elapsed Time, CPU Time, Parse Calls, sharable Memory, and
Version Count). The value for this setting is not affected by the statistics/flush level
and will override the system default behavior for the AWR SQL collection. It is
possible to set the value for this setting to MAXIMUM to capture the complete set of SQL
in the shared SQL area, though by doing so (or by setting the value to a very high
number) may lead to possible space and performance issues because there will more
data to collect and store. To adjust the settings, use the MODIFY_SNAPSHOT_SETTINGS
procedure. For example:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS(retention => 43200,
 interval => 30, topnsql => 100, dbid => 3310949047);
END;
/

In this example, the retention period is specified as 43200 minutes (30 days), the
interval between each snapshot is specified as 30 minutes, and the number of Top SQL
to flush for each SQL criteria as 100. If NULL is specified, the existing value is
preserved. The optional database identifier is 3310949047. If you do not specify a value
for dbid, the local database identifier is used as the default value. You can check the
current settings for your database instance with the DBA_HIST_WR_CONTROL view.

Managing Baselines
This section describes how to manage baselines. The primary interface for managing
baselines is Oracle Enterprise Manager. Whenever possible, you should manage
baselines using Oracle Enterprise Manager, as described in Oracle Database 2 Day +
Performance Tuning Guide. If Oracle Enterprise Manager is unavailable, you can
manage baselines using the DBMS_WORKLOAD_REPOSITORY package, as described in the
following sections:

■ Creating a Baseline

■ Dropping a Baseline

■ Renaming a Baseline

■ Displaying Baseline Metrics

■ Modifying the Window Size of the Default Moving Window Baseline

Managing the Automatic Workload Repository

Automatic Performance Statistics 5-15

Creating a Baseline
This section describes how to create a baseline using an existing range of snapshots.

To create a baseline:

1. Review the existing snapshots in the DBA_HIST_SNAPSHOT view to determine the
range of snapshots to use.

2. Use the CREATE_BASELINE procedure to create a baseline using the desired range of
snapshots:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE (start_snap_id => 270,
 end_snap_id => 280, baseline_name => 'peak baseline',
 dbid => 3310949047, expiration => 30);
END;
/

In this example, 270 is the start snapshot sequence number and 280 is the end
snapshot sequence. The name of baseline is peak baseline. The optional database
identifier is 3310949047. If you do not specify a value for dbid, then the local
database identifier is used as the default value. The optional expiration
parameter is set to 30, so the baseline will expire and be dropped automatically
after 30 days. If you do not specify a value for expiration, the baseline will never
expire.

The system automatically assign a unique baseline ID to the new baseline when the
baseline is created. The baseline ID and database identifier are displayed in the
DBA_HIST_BASELINE view.

Dropping a Baseline
This section describes how to drop an existing baseline. Periodically, you may want to
drop a baseline that is no longer used to conserve disk space. The snapshots associated
with a baseline are retained indefinitely until you explicitly drop the baseline or the
baseline has expired.

To drop a baseline:

1. Review the existing baselines in the DBA_HIST_BASELINE view to determine the
baseline to drop.

2. Use the DROP_BASELINE procedure to drop the desired baseline:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE (baseline_name => 'peak baseline',
 cascade => FALSE, dbid => 3310949047);
END;
/

In the example, the name of baseline is peak baseline. The cascade parameter is
set to FALSE, which specifies that only the baseline is dropped. Setting this
parameter to TRUE specifies that the drop operation will also remove the snapshots
associated with the baseline. The optional dbid parameter specifies the database

See Also:

■ "Baselines" on page 5-9 for more information about baselines

■ Oracle Database PL/SQL Packages and Types Reference for detailed
information on the DBMS_WORKLOAD_REPOSITORY package

Managing the Automatic Workload Repository

5-16 Oracle Database Performance Tuning Guide

identifier, which in this example is 3310949047. If you do not specify a value for
dbid, then the local database identifier is used as the default value.

Renaming a Baseline
This section describes how to rename a baseline.

To rename a baseline:

1. Review the existing baselines in the DBA_HIST_BASELINE view to determine the
baseline to rename.

2. Use the RENAME_BASELINE procedure to rename the desired baseline:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.RENAME_BASELINE (
 old_baseline_name => 'peak baseline',
 new_baseline_name => 'peak mondays',
 dbid => 3310949047);
END;
/

In this example, the name of the baseline is renamed from peak baseline, as
specified by the old_baseline_name parameter, to peak mondays, as specified by
the new_baseline_name parameter. The optional dbid parameter specifies the
database identifier, which in this example is 3310949047. If you do not specify a
value for dbid, then the local DBID is the default value.

Displaying Baseline Metrics
This section describes how to display metric threshold settings during the time period
captured in a baseline. When used with adaptive thresholds, a baseline contains AWR
data that the database can use to compute metric threshold values. The
SELECT_BASELINE_METRICS function enables you to display the summary statistics for
metric values in a baseline period.

To display metric information in a baseline:

1. Review the existing baselines in the DBA_HIST_BASELINE view to determine the
baseline for which you want to display metric information.

2. Use the SELECT_BASELINE_METRICS function to display the metric information for
the desired baseline:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.SELECT_BASELINE_METRICS (
 baseline_name => 'peak baseline',
 dbid => 3310949047,
 instance_num => '1');
END;
/

In this example, the name of baseline is peak baseline. The optional dbid
parameter specifies the database identifier, which in this example is 3310949047. If
you do not specify a value for dbid, then the local database identifier is used as the
default value. The optional instance_num parameter specifies the instance
number, which in this example is 1. If you do not specify a value for
instance_num, then the local instance is used as the default value.

Managing the Automatic Workload Repository

Automatic Performance Statistics 5-17

Modifying the Window Size of the Default Moving Window Baseline
This section describes how to modify the window size of the default moving window
baseline. For information about the default moving window baseline, see "Moving
Window Baseline" on page 5-9.

To resize the default moving window baseline, use the MODIFY_BASELINE_WINDOW_SIZE
procedure:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.MODIFY_BASELINE_WINDOW_SIZE (
 window_size => 30,
 dbid => 3310949047);
END;
/

The window_size parameter is used to specify the new window size, in number of
days, for the default moving window size. In this example, the window_size parameter
is set to 30. The window size must be set to a value that is equal to or less than the
value of the AWR retention setting. To set a window size that is greater than the
current AWR retention period, you must first increase the value of the retention
parameter, as described in "Modifying Snapshot Settings" on page 5-14.

In this example, the optional dbid parameter specifies the database identifier is
3310949047. If you do not specify a value for dbid, then the local database identifier is
used as the default value.

Managing Baseline Templates
This section describes how to manage baseline templates. You can automatically create
baselines to capture specified time periods in the future using baseline templates. For
information about baseline templates, see "Baseline Templates" on page 5-10.

The primary interface for managing baseline templates is Oracle Enterprise Manager.
Whenever possible, you should manage baseline templates using Oracle Enterprise
Manager, as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle
Enterprise Manager is unavailable, you can manage baseline templates using the
DBMS_WORKLOAD_REPOSITORY package, as described in the following sections:

■ Creating a Single Baseline Template

■ Creating a Repeating Baseline Template

■ Dropping a Baseline Template

Creating a Single Baseline Template
This section describes how to create a single baseline template. You can use a single
baseline template to create a baseline during a single, fixed time interval in the future.
For example, you can create a single baseline template to generate a baseline that is
captured on April 2, 2009 from 5:00 p.m. to 8:00 p.m.

To create a single baseline template, use the CREATE_BASELINE_TEMPLATE procedure:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE_TEMPLATE (
 start_time => '2009-04-02 17:00:00 PST',
 end_time => '2009-04-02 20:00:00 PST',
 baseline_name => 'baseline_090402',

See Also: Oracle Database PL/SQL Packages and Types Reference for
detailed information on the DBMS_WORKLOAD_REPOSITORY package

Managing the Automatic Workload Repository

5-18 Oracle Database Performance Tuning Guide

 template_name => 'template_090402', expiration => 30,
 dbid => 3310949047);
END;
/

The start_time parameter specifies the start time for the baseline to be created. The
end_time parameter specifies the end time for the baseline to be created. The
baseline_name parameter specifies the name of the baseline to be created. The
template_name parameter specifies the name of the baseline template. The optional
expiration parameter specifies the expiration, in number of days, for the baseline. If
unspecified, then the baseline never expires. The optional dbid parameter specifies the
database identifier. If unspecified, then the local database identifier is used as the
default value.

In this example, a baseline template named template_090402 is created that will
generate a baseline named baseline_090402 for the time period from 5:00 p.m. to 8:00
p.m. on April 2, 2009 on the database with a database ID of 3310949047. The baseline
will expire after 30 days.

Creating a Repeating Baseline Template
This section describes how to create a repeating baseline template. A repeating
baseline template can be used to automatically create baselines that repeat during a
particular time interval over a specific period in the future. For example, you can
create a repeating baseline template to generate a baseline that repeats every Monday
from 5:00 p.m. to 8:00 p.m. for the year 2009.

To create a repeating baseline template, use the CREATE_BASELINE_TEMPLATE procedure:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE_TEMPLATE (
 day_of_week => 'monday', hour_in_day => 17,
 duration => 3, expiration => 30,
 start_time => '2009-04-02 17:00:00 PST',
 end_time => '2009-12-31 20:00:00 PST',
 baseline_name_prefix => 'baseline_2009_mondays_',
 template_name => 'template_2009_mondays',
 dbid => 3310949047);
END;
/

The day_of_week parameter specifies the day of the week on which the baseline will
repeat. The hour_in_day parameter specifies the hour in the day when the baseline
will start. The duration parameter specifies the duration, in number of hours, that the
baseline will last. The expiration parameter specifies the number of days to retain
each created baseline. If set to NULL, then the baselines never expires. The start_time
parameter specifies the start time for the baseline to be created. The end_time
parameter specifies the end time for the baseline to be created. The
baseline_name_prefix parameter specifies the name of the baseline prefix that will be
appended to the data information when the baseline is created. The template_name
parameter specifies the name of the baseline template. The optional dbid parameter
specifies the database identifier. If unspecified, then the local database identifier is
used as the default value.

In this example, a baseline template named template_2009_mondays is created that
will generate a baseline on every Monday from 5:00 p.m. to 8:00 p.m. beginning on
April 2, 2009 at 5:00 p.m. and ending on December 31, 2009 at 8:00 p.m. on the
database with a database ID of 3310949047. Each of the baselines will be created with a
baseline name with the prefix baseline_2009_mondays_ and will expire after 30 days.

Managing the Automatic Workload Repository

Automatic Performance Statistics 5-19

Dropping a Baseline Template
This section describes how to drop an existing baseline template. Periodically, you
may want to remove baselines templates that are no longer used to conserve disk
space.

To drop a baseline template:

1. Review the existing baselines in the DBA_HIST_BASELINE_TEMPLATE view to
determine the baseline template you want to drop.

2. Use the DROP_BASELINE_TEMPLATE procedure to drop the desired baseline template:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE_TEMPLATE (
 template_name => 'template_2009_mondays',
 dbid => 3310949047);
END;
/

The template_name parameter specifies the name of the baseline template that will
be dropped. In the example, the name of baseline template that will be dropped is
template_2009_mondays. The optional dbid parameter specifies the database
identifier, which in this example is 3310949047. If you do not specify a value for
dbid, then the local database identifier is used as the default value.

Transporting Automatic Workload Repository Data
Oracle Database enables you to transport AWR data between systems. This is useful in
cases where you want to use a separate system to perform analysis of the AWR data.
To transport AWR data, you must first extract the AWR snapshot data from the
database on the source system, then load the data into the database on the target
system, as described in the following sections:

■ Extracting AWR Data

■ Loading AWR Data

Extracting AWR Data
The awrextr.sql script extracts the AWR data for a range of snapshots from the
database into a Data Pump export file. After it is created, you can transport this dump
file to another database where you can load the extracted data. To run the awrextr.sql
script, you must be connected to the database as the SYS user.

To extract AWR data:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrextr.sql

A list of the databases in the AWR schema is displayed.

2. Specify the database from which the AWR data will be extracted:

Enter value for db_id: 1377863381

In this example, the database with the database identifier of 1377863381 is
selected.

3. Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 2

Managing the Automatic Workload Repository

5-20 Oracle Database Performance Tuning Guide

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

4. Define the range of snapshots for which AWR data will be extracted by specifying
a beginning and ending snapshot ID:

Enter value for begin_snap: 30
Enter value for end_snap: 40

In this example, the snapshot with a snapshot ID of 30 is selected as the beginning
snapshot, and the snapshot with a snapshot ID of 40 is selected as the ending
snapshot.

5. A list of directory objects is displayed.

Specify the directory object pointing to the directory where the export dump file
will be stored:

Enter value for directory_name: DATA_PUMP_DIR

In this example, the directory object DATA_PUMP_DIR is selected.

6. Specify the prefix for name of the export dump file (the .dmp suffix will be
automatically appended):

Enter value for file_name: awrdata_30_40

In this example, an export dump file named awrdata_30_40 will be created in the
directory corresponding to the directory object you specified:

Dump file set for SYS.SYS_EXPORT_TABLE_01 is:
C:\ORACLE\PRODUCT\11.1.0.5\DB_1\RDBMS\LOG\AWRDATA_30_40.DMP
Job "SYS"."SYS_EXPORT_TABLE_01" successfully completed at 08:58:20

Depending on the amount of AWR data that must be extracted, the AWR extract
operation may take a while to complete. After the dump file is created, you can
use Data Pump to transport the file to another system.

Loading AWR Data
After the export dump file is transported to the target system, you can load the
extracted AWR data using the awrload.sql script. The awrload.sql script will first
create a staging schema where the snapshot data is transferred from the Data Pump
file into the database. The data is then transferred from the staging schema into the
appropriate AWR tables. To run the awrload.sql script, you must be connected to the
database as the SYS user.

To load AWR data:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrload.sql

A list of directory objects is displayed.

2. Specify the directory object pointing to the directory where the export dump file is
located:

Enter value for directory_name: DATA_PUMP_DIR

In this example, the directory object DATA_PUMP_DIR is selected.

See Also: Oracle Database Utilities for information about using Data
Pump

Managing the Automatic Workload Repository

Automatic Performance Statistics 5-21

3. Specify the prefix for name of the export dump file (the .dmp suffix will be
automatically appended):

Enter value for file_name: awrdata_30_40

In this example, the export dump file named awrdata_30_40 is selected.

4. Specify the name of the staging schema where the AWR data will be loaded:

Enter value for schema_name: AWR_STAGE

In this example, a staging schema named AWR_STAGE will be created where the
AWR data will be loaded.

5. Specify the default tablespace for the staging schema:

Enter value for default_tablespace: SYSAUX

In this example, the SYSAUX tablespace is selected.

6. Specify the temporary tablespace for the staging schema:

Enter value for temporary_tablespace: TEMP

In this example, the TEMP tablespace is selected.

7. A staging schema named AWR_STAGE will be created where the AWR data will be
loaded. After the AWR data is loaded into the AWR_STAGE schema, the data will be
transferred into the AWR tables in the SYS schema:

Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Completed 113 CONSTRAINT objects in 11 seconds
Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT
Completed 1 REF_CONSTRAINT objects in 1 seconds
Job "SYS"."SYS_IMPORT_FULL_03" successfully completed at 09:29:30
... Dropping AWR_STAGE user
End of AWR Load

Depending on the amount of AWR data that must be loaded, the AWR load
operation may take a while to complete. After the AWR data is loaded, the staging
schema will be dropped automatically.

Using Automatic Workload Repository Views
Typically, you would view the AWR data through Oracle Enterprise Manager or AWR
reports. However, you can also view the statistics using the following views:

■ V$ACTIVE_SESSION_HISTORY

This view displays active database session activity, sampled once every second.
See "Active Session History" on page 5-3.

■ V$ metric views provide metric data to track the performance of the system

The metric views are organized into various groups, such as event, event class,
system, session, service, file, and tablespace metrics. These groups are identified in
the V$METRICGROUP view.

■ DBA_HIST views

The DBA_HIST views displays historical data stored in the database. This group of
views includes:

■ DBA_HIST_ACTIVE_SESS_HISTORY displays the history of the contents of the
in-memory active session history for recent system activity

Managing the Automatic Workload Repository

5-22 Oracle Database Performance Tuning Guide

■ DBA_HIST_BASELINE displays information about the baselines captured on the
system, such as the time range of each baseline and the baseline type

■ DBA_HIST_BASELINE_DETAILS displays details about a specific baseline

■ DBA_HIST_BASELINE_TEMPLATE displays information about the baseline
templates used by the system to generate baselines

■ DBA_HIST_DATABASE_INSTANCE displays information about the database
environment

■ DBA_HIST_DB_CACHE_ADVICE displays historical predictions of the number of
physical reads for the cache size corresponding to each row

■ DBA_HIST_DISPATCHER displays historical information for each dispatcher
process at the time of the snapshot

■ DBA_HIST_DYN_REMASTER_STATS displays statistical information about the
dynamic remastering process

■ DBA_HIST_IOSTAT_DETAIL displays historical I/O statistics aggregated by file
type and function

■ DBA_HIST_SHARED_SERVER_SUMMARY displays historical information for shared
servers, such as shared server activity, common queues and dispatcher queues

■ DBA_HIST_SNAPSHOT displays information on snapshots in the system

■ DBA_HIST_SQL_PLAN displays the SQL execution plans

■ DBA_HIST_WR_CONTROL displays the settings for controlling AWR

Generating Automatic Workload Repository Reports
An AWR report shows data captured between two snapshots (or two points in time).
The AWR reports are divided into multiple sections. The HTML report includes links
that can be used to navigate quickly between sections. The content of the report
contains the workload profile of the system for the selected range of snapshots.

The primary interface for generating AWR reports is Oracle Enterprise Manager.
Whenever possible, you should generate AWR reports using Oracle Enterprise
Manager, as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle
Enterprise Manager is unavailable, you can generate AWR reports by running SQL
scripts, as described in the following sections:

■ Generating an AWR Report

■ Generating an Oracle RAC AWR Report

■ Generating an AWR Report on a Specific Database Instance

■ Generating an Oracle RAC AWR Report on Specific Database Instances

■ Generating an AWR Report for a SQL Statement

■ Generating an AWR Report for a SQL Statement on a Specific Database Instance

To run these scripts, you must be granted the DBA role.

See Also: Oracle Database Reference for information about dynamic
and static data dictionary views

Managing the Automatic Workload Repository

Automatic Performance Statistics 5-23

Generating an AWR Report
The awrrpt.sql SQL script generates an HTML or text report that displays statistics
for a range of snapshot IDs.

To generate an AWR report:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrrpt.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.

3. Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

4. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 150
Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the
ending snapshot.

5. Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrrpt_1_150_160

In this example, the default name is accepted and an AWR report named
awrrpt_1_150_160 is generated.

Generating an Oracle RAC AWR Report
The awrgrpt.sql SQL script generates an HTML or text report that displays statistics
for a range of snapshot IDs using the current database identifier and all available
database instances in an Oracle Real Application Clusters (Oracle RAC) environment.

To generate an AWR report in an Oracle RAC environment:

1. At the SQL prompt, enter:

Note: If you run a report on a database that does not have any
workload activity during the specified range of snapshots,
calculated percentages for some report statistics can be less than 0
or greater than 100. This result simply means that there is no
meaningful value for the statistic.

Note: In an Oracle RAC environment, you should always try to
generate an HTML report (instead of a text report) because they are
much easier to read.

Managing the Automatic Workload Repository

5-24 Oracle Database Performance Tuning Guide

@$ORACLE_HOME/rdbms/admin/awrgrpt.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

3. Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last day are displayed.

4. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 150
Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the
ending snapshot.

5. Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrrpt_rac_150_160.html

In this example, the default name is accepted and an AWR report named
awrrpt_rac_150_160.html is generated.

Generating an AWR Report on a Specific Database Instance
The awrrpti.sql SQL script generates an HTML or text report that displays statistics
for a range of snapshot IDs using a specific database and instance. This script enables
you to specify a database identifier and instance for which the AWR report will be
generated.

To generate an AWR report on a specific database instance:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrrpti.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.

A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   DB Id    Inst Num DB Name      Instance     Host
----------- -------- ------------ ------------ ------------
 3309173529        1 MAIN         main         examp1690
 3309173529        1 TINT251      tint251      samp251

3. Enter the values for the database identifier (dbid) and instance number 
(inst_num):

Enter value for dbid: 3309173529
Using 3309173529 for database Id



Managing the Automatic Workload Repository

Automatic Performance Statistics 5-25

Enter value for inst_num: 1

4. Specify the number of days for which you want to list snapshot IDs. 

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this 
example, snapshots captured in the last 2 days are displayed.

5. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 150
Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the 
beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the 
ending snapshot.

6. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name awrrpt_1_150_160

In this example, the default name is accepted and an AWR report named 
awrrpt_1_150_160 is generated on the database instance with a database ID value 
of 3309173529.

Generating an Oracle RAC AWR Report on Specific Database Instances
The awrgrpti.sql SQL script generates an HTML or text report that displays statistics 
for a range of snapshot IDs using specific databases and instances running in an 
Oracle RAC environment. This script enables you to specify database identifiers and a 
comma-delimited list of database instances for which the AWR report will be 
generated.

To generate an AWR report on a specific database instance in an Oracle RAC 
environment:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrgrpti.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 DB Id Inst Num DB Name Instance Host
----------- -------- ------------ ------------ ------------
 3309173529 1 MAIN main examp1690
 3309173529 1 TINT251 tint251 samp251
 3309173529 2 TINT251 tint252 samp252

Note: In an Oracle RAC environment, you should always try to
generate an HTML report (instead of a text report) because they are
much easier to read.

Managing the Automatic Workload Repository

5-26 Oracle Database Performance Tuning Guide

3. Enter the value for the database identifier (dbid):

Enter value for dbid: 3309173529
Using 3309173529 for database Id

4. Enter the value for the instance numbers (instance_numbers_or_all) of the Oracle
RAC instances you want to include in the report:

Enter value for instance_numbers_or_all: 1,2

5. Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

6. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 150
Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the
ending snapshot.

7. Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrrpt_rac_150_160.html

In this example, the default name is accepted and an AWR report named
awrrpt_rac_150_160.html is generated on the database instance with a database
ID value of 3309173529.

Generating an AWR Report for a SQL Statement
The awrsqrpt.sql SQL script generates an HTML or text report that displays statistics
of a particular SQL statement for a range of snapshot IDs. Run this report to inspect or
debug the performance of a SQL statement.

To generate an AWR report for a particular SQL statement:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrsqrpt.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

3. Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

4. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 146
Enter value for end_snap: 147

Managing the Automatic Workload Repository

Automatic Performance Statistics 5-27

In this example, the snapshot with a snapshot ID of 146 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 147 is selected as the
ending snapshot.

5. Specify the SQL ID of a particular SQL statement to display statistics:

Enter value for sql_id: 2b064ybzkwf1y

In this example, the SQL statement with a SQL ID of 2b064ybzkwf1y is selected.

6. Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrrpt_1_146_147.html

In this example, the default name is accepted and an AWR report named
awrrpt_1_146_147 is generated.

Generating an AWR Report for a SQL Statement on a Specific Database Instance
The awrsqrpi.sql SQL script generates an HTML or text report that displays statistics
of a particular SQL statement for a range of snapshot IDs using a specific database and
instance.This script enables you to specify a database identifier and instance for which
the AWR report will be generated. Run this report to inspect or debug the performance
of a SQL statement on a specific database and instance.

To generate an AWR report for a particular SQL statement on a specified database
instance:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrsqrpi.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   DB Id    Inst Num DB Name      Instance     Host
----------- -------- ------------ ------------ ------------
 3309173529        1 MAIN         main         examp1690
 3309173529        1 TINT251      tint251      samp251

3. Enter the values for the database identifier (dbid) and instance number 
(inst_num):

Enter value for dbid: 3309173529
Using 3309173529 for database Id
Enter value for inst_num: 1
Using 1 for instance number

4. Specify the number of days for which you want to list snapshot IDs. 

Enter value for num_days: 1

A list of existing snapshots for the specified time range is displayed. In this 
example, snapshots captured in the previous day are displayed.



Managing the Automatic Workload Repository

5-28 Oracle Database Performance Tuning Guide

5. Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 146
Enter value for end_snap: 147

In this example, the snapshot with a snapshot ID of 146 is selected as the 
beginning snapshot, and the snapshot with a snapshot ID of 147 is selected as the 
ending snapshot.

6. Specify the SQL ID of a particular SQL statement to display statistics:

Enter value for sql_id: 2b064ybzkwf1y

In this example, the SQL statement with a SQL ID of 2b064ybzkwf1y is selected.

7. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name awrrpt_1_146_147.html

In this example, the default name is accepted and an AWR report named 
awrrpt_1_146_147 is generated on the database instance with a database ID value 
of 3309173529.

Generating Automatic Workload Repository Compare Periods Reports
While an AWR report shows AWR data between two snapshots (or two points in 
time), the AWR Compare Periods report shows the difference between two periods (or 
two AWR reports, which equates to four snapshots). Using the AWR Compare Periods 
report helps you to identify detailed performance attributes and configuration settings 
that differ between two time periods.

For example, if the application workload is known to be stable between 10:00 p.m. and 
midnight every night, but the performance on a particular Thursday was poor 
between 10:00 p.m. and 11:00 p.m., generating an AWR Compare Periods report for 
Thursday from 10:00 p.m. to 11:00 p.m. and Wednesday from 10:00 p.m. to 11:00 p.m. 
should identify configuration settings, workload profile, and statistics that were 
different in these time periods. Based on the differences, you can more easily diagnose 
the cause of the performance degradation. The two time periods selected for the AWR 
Compare Periods Report can be of different durations because the report normalizes 
the statistics by the amount of time spent on the database for each time period, and 
presents statistical data ordered by the largest difference between the periods.

The AWR Compare Periods reports are divided into multiple sections. The HTML 
report includes links that can be used to navigate quickly between sections. The 
content of the report contains the workload profile of the system for the selected range 
of snapshots.

The primary interface for generating AWR Compare Periods reports is Oracle 
Enterprise Manager. Whenever possible, you should generate AWR Compare Periods 
reports using Oracle Enterprise Manager, as described in Oracle Database 2 Day + 
Performance Tuning Guide. If Oracle Enterprise Manager is unavailable, you can 
generate AWR Compare Periods reports by running SQL scripts, as described in the 
following sections:

■ Generating an AWR Compare Periods Report

■ Generating an Oracle RAC AWR Compare Periods Report

■ Generating an AWR Compare Periods Report on a Specific Database Instance



Managing the Automatic Workload Repository

Automatic Performance Statistics 5-29

■ Generating an Oracle RAC AWR Compare Periods Report on Specific Database 
Instances

To run these scripts, you must be granted the DBA role.

Generating an AWR Compare Periods Report
The awrddrpt.sql SQL script generates an HTML or text report that compares 
detailed performance attributes and configuration settings between two selected time 
periods.

To generate an AWR Compare Periods report:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrddrpt.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

3. Specify the number of days for which you want to list snapshot IDs in the first 
time period. 

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this 
example, snapshots captured in the last 2 days are displayed.

4. Specify a beginning and ending snapshot ID for the first time period:

Enter value for begin_snap: 102
Enter value for end_snap: 103

In this example, the snapshot with a snapshot ID of 102 is selected as the 
beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the 
ending snapshot for the first time period.

5. Specify the number of days for which you want to list snapshot IDs in the second 
time period. 

Enter value for num_days2: 1

A list of existing snapshots for the specified time range is displayed. In this 
example, snapshots captured in the previous day are displayed.

6. Specify a beginning and ending snapshot ID for the second time period:

Enter value for begin_snap2: 126
Enter value for end_snap2: 127

In this example, the snapshot with a snapshot ID of 126 is selected as the 
beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the 
ending snapshot for the second time period.

7. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name awrdiff_1_102_1_126.txt

In this example, the default name is accepted and an AWR report named 
awrdiff_1_102_126 is generated.



Managing the Automatic Workload Repository

5-30 Oracle Database Performance Tuning Guide

Generating an Oracle RAC AWR Compare Periods Report
The awrgdrpt.sql SQL script generates an HTML or text report that compares 
detailed performance attributes and configuration settings between two selected time 
periods using the current database identifier and all available database instances in an 
Oracle RAC environment.

To generate an AWR Compare Periods report in an Oracle RAC environment:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrgdrpt.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

3. Specify the number of days for which you want to list snapshot IDs in the first 
time period. 

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this 
example, snapshots captured in the last 2 days are displayed.

4. Specify a beginning and ending snapshot ID for the first time period:

Enter value for begin_snap: 102
Enter value for end_snap: 103

In this example, the snapshot with a snapshot ID of 102 is selected as the 
beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the 
ending snapshot for the first time period.

5. Specify the number of days for which you want to list snapshot IDs in the second 
time period. 

Enter value for num_days2: 1

A list of existing snapshots for the specified time range is displayed. In this 
example, snapshots captured in the previous day are displayed.

6. Specify a beginning and ending snapshot ID for the second time period:

Enter value for begin_snap2: 126
Enter value for end_snap2: 127

In this example, the snapshot with a snapshot ID of 126 is selected as the 
beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the 
ending snapshot for the second time period.

7. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name awrracdiff_1st_1_2nd_1.html

Note: In an Oracle RAC environment, you should always try to 
generate an HTML report (instead of a text report) because they are 
much easier to read. 



Managing the Automatic Workload Repository

Automatic Performance Statistics 5-31

In this example, the default name is accepted and an AWR report named 
awrrac_1st_1_2nd_1.html is generated.

Generating an AWR Compare Periods Report on a Specific Database Instance
The awrddrpi.sql SQL script generates an HTML or text report that compares 
detailed performance attributes and configuration settings between two selected time 
periods on a specific database and instance. This script enables you to specify a 
database identifier and instance for which the AWR Compare Periods report will be 
generated.

To generate an AWR Compare Periods report on a specified database instance:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrddrpi.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.

3. A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 DB Id Inst Num DB Name Instance Host
----------- -------- ------------ ------------ ------------
 3309173529 1 MAIN main examp1690
 3309173529 1 TINT251 tint251 samp251

Enter the values for the database identifier (dbid) and instance number
(inst_num) for the first time period:

Enter value for dbid: 3309173529
Using 3309173529 for Database Id for the first pair of snapshots
Enter value for inst_num: 1
Using 1 for Instance Number for the first pair of snapshots

4. Specify the number of days for which you want to list snapshot IDs in the first
time period.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the last 2 days are displayed.

5. Specify a beginning and ending snapshot ID for the first time period:

Enter value for begin_snap: 102
Enter value for end_snap: 103

In this example, the snapshot with a snapshot ID of 102 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the
ending snapshot for the first time period.

6. Enter the values for the database identifier (dbid) and instance number
(inst_num) for the second time period:

Enter value for dbid2: 3309173529
Using 3309173529 for Database Id for the second pair of snapshots
Enter value for inst_num2: 1
Using 1 for Instance Number for the second pair of snapshots

Managing the Automatic Workload Repository

5-32 Oracle Database Performance Tuning Guide

7. Specify the number of days for which you want to list snapshot IDs in the second
time period.

Enter value for num_days2: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

8. Specify a beginning and ending snapshot ID for the second time period:

Enter value for begin_snap2: 126
Enter value for end_snap2: 127

In this example, the snapshot with a snapshot ID of 126 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the
ending snapshot for the second time period.

9. Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrdiff_1_102_1_126.txt

In this example, the default name is accepted and an AWR report named
awrdiff_1_102_126 is generated on the database instance with a database ID
value of 3309173529.

Generating an Oracle RAC AWR Compare Periods Report on Specific Database
Instances
The awrgdrpi.sql SQL script generates an HTML or text report that compares
detailed performance attributes and configuration settings between two selected time
periods using specific databases and instances in an Oracle RAC environment. This
script enables you to specify database identifiers and a comma-delimited list of
database instances for which the AWR Compare Periods report will be generated.

To generate an AWR Compare Periods report on a specified database instance in an
Oracle RAC environment:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrgdrpi.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

3. A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   DB Id    Inst Num DB Name      Instance     Host
----------- -------- ------------ ------------ ------------
 3309173529        1 MAIN         main         examp1690
 3309173529        1 TINT251      tint251      samp251

Note: In an Oracle RAC environment, you should always try to 
generate an HTML report (instead of a text report) because they are 
much easier to read. 



Managing the Automatic Workload Repository

Automatic Performance Statistics 5-33

 3309173529        2 TINT251      tint252      samp252
 3309173529        3 TINT251      tint253      samp253
 3309173529        4 TINT251      tint254      samp254

Enter the values for the database identifier (dbid) and instance number 
(instance_numbers_or_all) for the first time period:

Enter value for dbid: 3309173529
Using 3309173529 for Database Id for the first pair of snapshots
Enter value for inst_num: 1,2
Using instances 1 for the first pair of snapshots

4. Specify the number of days for which you want to list snapshot IDs in the first 
time period. 

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this 
example, snapshots captured in the last 2 days are displayed.

5. Specify a beginning and ending snapshot ID for the first time period:

Enter value for begin_snap: 102
Enter value for end_snap: 103

In this example, the snapshot with a snapshot ID of 102 is selected as the 
beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the 
ending snapshot for the first time period.

6. A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 DB Id Inst Num DB Name Instance Host
----------- -------- ------------ ------------ ------------
 3309173529 1 MAIN main examp1690
 3309173529 1 TINT251 tint251 samp251
 3309173529 2 TINT251 tint252 samp252
 3309173529 3 TINT251 tint253 samp253
 3309173529 4 TINT251 tint254 samp254
INSTNUM1

1,2

Enter the values for the database identifier (dbid2) and instance numbers
(instance_numbers_or_all2) for the second time period:

Enter value for dbid2: 3309173529
Using 3309173529 for Database Id for the second pair of snapshots
Enter value for instance_numbers_or_all2: 3,4

7. Specify the number of days for which you want to list snapshot IDs in the second
time period.

Enter value for num_days2: 1

A list of existing snapshots for the specified time range is displayed. In this
example, snapshots captured in the previous day are displayed.

8. Specify a beginning and ending snapshot ID for the second time period:

Enter value for begin_snap2: 126
Enter value for end_snap2: 127

Managing the Automatic Workload Repository

5-34 Oracle Database Performance Tuning Guide

In this example, the snapshot with a snapshot ID of 126 is selected as the
beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the
ending snapshot for the second time period.

9. Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrracdiff_1st_1_2nd_1.html

In this example, the default name is accepted and an AWR report named
awrrac_1st_1_2nd_1.html is generated.

Generating Active Session History Reports
Use Active Session History (ASH) reports to perform analysis of:

■ Transient performance problems that typically last for a few minutes

■ Scoped or targeted performance analysis by various dimensions or their
combinations, such as time, session, module, action, or SQL_ID

Transient performance problems are short-lived and do not appear in the Automatic
Database Diagnostics Monitor (ADDM) analysis. ADDM tries to report the most
significant performance problems during an analysis period in terms of their impact
on DB time. If a particular problem lasts for a very short duration, then its severity
might be averaged out or minimized by other performance problems in the analysis
period. Therefore, the problem may not appear in the ADDM findings. Whether a
performance problem is captured by ADDM depends on its duration compared to the
interval between the AWR snapshots.

If a performance problem lasts for a significant portion of the time between snapshots,
it will be captured by ADDM. For example, if the snapshot interval is set to one hour, a
performance problem that lasts for 30 minutes should not be considered as a transient
performance problem because its duration represents a significant portion of the
snapshot interval and will likely be captured by ADDM.

However, a performance problem that lasts for only 2 minutes could be a transient
performance problem because its duration represents a small portion of the snapshot
interval and will likely not show up in the ADDM findings. For example, if the user
notifies you that the system was slow between 10:00 p.m. and 10:10 p.m., but the
ADDM analysis for the time period between 10:00 p.m. and 11:00 p.m. does not show a
performance problem, a transient performance problem probably occurred that lasted
for only a few minutes of the 10-minute interval reported by the user.

The ASH reports are divided into multiple sections. The HTML report includes links
that can be used to navigate quickly between sections. The content of the report
contains ASH information used to identify blocker and waiter identities and their
associated transaction identifiers and SQL for a specified duration. For more
information on ASH, see "Active Session History" on page 5-3.

The primary interface for generating ASH reports is Oracle Enterprise Manager.
Whenever possible, you should generate ASH reports using Oracle Enterprise
Manager, as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle
Enterprise Manager is unavailable, you can generate ASH reports by running SQL
scripts, as described in the following sections:

■ Generating an ASH Report

■ Generating an ASH Report on a Specific Database Instance

■ Generating an Oracle RAC ASH Report

Managing the Automatic Workload Repository

Automatic Performance Statistics 5-35

Generating an ASH Report
The ashrpt.sql SQL script generates an HTML or text report that displays ASH
information for a specified duration.

To generate an ASH report:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/ashrpt.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.

3. Specify the begin time in minutes before the system date:

Enter value for begin_time: -10

In this example, 10 minutes before the current time is selected.

4. Enter the duration in minutes that the report for which you want to capture ASH
information from the begin time.

Enter value for duration:

In this example, the default duration of system date minus begin time is accepted.

5. Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name ashrpt_1_0310_0131.txt

In this example, the default name is accepted and an ASH report named
ashrpt_1_0310_0131 is generated. The report will gather ASH information
beginning from 10 minutes before the current time and ending at the current time.

Generating an ASH Report on a Specific Database Instance
The ashrpti.sql SQL script generates an HTML or text report that displays ASH
information for a specified duration for a specified database and instance. This script
enables you to specify a database and instance before setting the time frame to collect
ASH information.

To generate an ASH report on a specified database instance:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/ashrpti.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

3. A list of available database IDs and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   DB Id    Inst Num DB Name      Instance     Host
----------- -------- ------------ ------------ ------------
 3309173529        1 MAIN         main         examp1690
 3309173529        1 TINT251      tint251      samp251



Managing the Automatic Workload Repository

5-36 Oracle Database Performance Tuning Guide

Enter the values for the database identifier (dbid) and instance number 
(inst_num):

Enter value for dbid: 3309173529
Using 3309173529 for database id
Enter value for inst_num: 1

4. This step is applicable only if you are generating an ASH report on an Active Data 
Guard physical standby instance. If this is not the case, you may skip this step.

To generate an ASH report on a physical standby instance, the standby database 
must be opened read-only. The ASH data on disk represents activity on the 
primary database and the ASH data in memory represents activity on the standby 
database.

Specify whether to generate the report using data sampled from the primary or 
standby database:

You are running ASH report on a Standby database.
To generate the report over data sampled on the Primary database, enter 'P'.
Defaults to 'S' - data sampled in the Standby database.
Enter value for stdbyflag:
Using Primary (P) or Standby (S): S

In this example, the default value of Standby (S) is selected.

5. Specify the begin time in minutes before the system date:

Enter value for begin_time: -10

In this example, 10 minutes before the current time is selected.

6. Enter the duration in minutes that the report for which you want to capture ASH 
information from the begin time.

Enter value for duration:

In this example, the default duration of system date minus begin time is accepted.

7. Specify the slot width in seconds that will be used in the Activity Over Time 
section of the report:

Enter value for slot_width: 

In this example, the default value is accepted. For more information about the 
Activity Over Time section and how to specify the slot width, see "Activity Over 
Time" on page 5-41.

8. Follow the instructions as explained in the subsequent prompts and enter values 
for the following report targets:

■ target_session_id

■ target_sql_id

■ target_wait_class

■ target_service_hash

■ target_module_name

■ target_action_name

■ target_client_id



Managing the Automatic Workload Repository

Automatic Performance Statistics 5-37

■ target_plsql_entry

9. Enter a report name, or accept the default report name:

Enter value for report_name: 
Using the report name ashrpt_1_0310_0131.txt

In this example, the default name is accepted and an ASH report named 
ashrpt_1_0310_0131 is generated. The report will gather ASH information on the 
database instance with a database ID value of 3309173529 beginning from 10 
minutes before the current time and ending at the current time.

Generating an Oracle RAC ASH Report
The ashrpti.sql SQL script generates an HTML or text report that displays ASH 
information for a specified duration for specified databases and instances in an Oracle 
RAC environment. Only ASH data that is written to disk will be used to generate the 
report. This report will only use ASH samples from the last 10 minutes that are found 
in the DBA_HIST_ACTIVE_SESS_HISTORY table.

To generate an ASH report in an Oracle RAC environment:

1. At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/ashrpti.sql

2. Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

3. A list of available database IDs and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 DB Id Inst Num DB Name Instance Host
----------- -------- ------------ ------------ ------------
 3309173529 1 MAIN main examp1690
 3309173529 1 TINT251 tint251 samp251
 3309173529 2 TINT251 tint252 samp252
 3309173529 3 TINT251 tint253 samp253
 3309173529 4 TINT251 tint254 samp254

Enter the values for the database identifier (dbid) and instance number
(inst_num):

Enter value for dbid: 3309173529
Using database id: 3309173529
Enter instance numbers. Enter 'ALL' for all instances in an Oracle
RAC cluster or explicitly specify list of instances (e.g., 1,2,3).
Defaults to current instance.
Enter value for inst_num: ALL
Using instance number(s): ALL

4. Specify the begin time in minutes before the system date:

Enter value for begin_time: -1:10

In this example, 1 hour and 10 minutes before the current time is selected.

5. Enter the duration in minutes that the report for which you want to capture ASH
information from the begin time:

Managing the Automatic Workload Repository

5-38 Oracle Database Performance Tuning Guide

Enter value for duration: 10

In this example, the duration is set to 10 minutes.

6. Specify the slot width in seconds that will be used in the Activity Over Time
section of the report:

Enter value for slot_width:

In this example, the default value is accepted. For more information about the
Activity Over Time section and how to specify the slot width, see "Activity Over
Time" on page 5-41.

7. Follow the instructions as explained in the subsequent prompts and enter values
for the following report targets:

■ target_session_id

■ target_sql_id

■ target_wait_class

■ target_service_hash

■ target_module_name

■ target_action_name

■ target_client_id

■ target_plsql_entry

8. Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name ashrpt_rac_0310_0131.txt

In this example, the default name is accepted and an ASH report named
ashrpt_rac_0310_0131 is generated. The report will gather ASH information on
all instances belonging to the database with a database ID value of 3309173529
beginning from 1 hour and 10 minutes before the current time and ending at 1
hour before the current time.

Using Active Session History Reports
After generating an ASH report, you can review the contents to identify transient
performance problems.

The contents of the ASH report are divided into the following sections:

■ Top Events

■ Load Profile

■ Top SQL

■ Top PL/SQL

■ Top Java

■ Top Sessions

■ Top Objects/Files/Latches

■ Activity Over Time

Managing the Automatic Workload Repository

Automatic Performance Statistics 5-39

Top Events
The Top Events section describes the top wait events of the sampled session activity
categorized by user, background, and priority. Use the information in this section to
identify the wait events that may be the cause of the transient performance problem.

The Top Events section contains the following subsections:

■ Top User Events

This subsection lists the top wait events from user processes that accounted for the
highest percentages of sampled session activity.

■ Top Background Events

This subsection lists the top wait events from backgrounds that accounted for the
highest percentages of sampled session activity.

■ Top Event P1/P2/P3

This subsection lists the wait event parameter values of the top wait events that
accounted for the highest percentages of sampled session activity, ordered by the
percentage of total wait time (% Event). For each wait event, values in the P1
Value, P2 Value, P3 Value column correspond to wait event parameters displayed
in the Parameter 1, Parameter 2, and Parameter 3 columns.

Load Profile
The Load Profile section describes the load analyzed in the sampled session activity.
Use the information in this section to identify the service, client, or SQL command
type that may be the cause of the transient performance problem.

The Load Profile section contains the following subsections:

■ Top Service/Module

This subsection lists the services and modules that accounted for the highest
percentages of sampled session activity.

■ Top Client IDs

This subsection lists the clients that accounted for the highest percentages of
sampled session activity based on their client ID, which is the application-specific
identifier of the database session.

■ Top SQL Command Types

This subsection lists the SQL command types, such as SELECT or UPDATE, that
accounted for the highest percentages of sampled session activity.

■ Top Phases of Execution

This subsection lists the phases of execution, such as SQL, PL/SQL, and Java
compilation and execution, that accounted for the highest percentages of sampled
session activity.

See Also: Oracle Real Application Clusters Administration and
Deployment Guide for information about sections in the ASH report
that are specific to Oracle Real Application Clusters (Oracle RAC)

Managing the Automatic Workload Repository

5-40 Oracle Database Performance Tuning Guide

Top SQL
The Top SQL section describes the top SQL statements of the sampled session activity.
Use this information to identify high-load SQL statements that may be the cause of the
transient performance problem.

The Top SQL section contains the following subsections:

■ Top SQL with Top Events

■ Top SQL with Top Row Sources

■ Top SQL Using Literals

■ Top Parsing Module/Action

■ Complete List of SQL Text

Top SQL with Top Events The Top SQL with Top Events subsection lists the SQL
statements that accounted for the highest percentages of sampled session activity and
the top wait events that were encountered by these SQL statements. The Sampled # of
Executions column shows how many distinct executions of a particular SQL statement
were sampled.

Top SQL with Top Row Sources The Top SQL with Top Row Sources subsection lists the
SQL statements that accounted for the highest percentages of sampled session activity
and their detailed execution plan information. You can use this information to identify
which part of the SQL execution contributed significantly to the SQL elapsed time.

Top SQL Using Literals The Top SQL Using Literals subsection lists the SQL statements
using literals that accounted for the highest percentages of sampled session activity.
You should review the statements listed in this report to determine whether the literals
can be replaced with bind variables.

Top Parsing Module/Action The Top Parsing Module/Action subsection lists the module
and action that accounted for the highest percentages of sampled session activity while
parsing the SQL statement.

Complete List of SQL Text The Complete List of SQL Text subsection displays the entire
text of the Top SQL statements shown in this section.

Top PL/SQL
The Top PL/SQL section lists the PL/SQL procedures that accounted for the highest
percentages of sampled session activity. The PL/SQL Entry Subprogram column lists
the application's top-level entry point into PL/SQL. The PL/SQL Current Subprogram
column lists the PL/SQL subprogram being executed at the point of sampling. If the
value of this column is SQL, then the % Current column shows the percentage of time
spent executing SQL for this subprogram.

Top Java
The Top Java section describes the top Java programs in the sampled session activity.

Top Sessions
The Top Sessions section describes the sessions that were waiting for a particular wait
event. Use this information to identify the sessions that accounted for the highest
percentages of sampled session activity, which may be the cause of the transient
performance problem.

Managing the Automatic Workload Repository

Automatic Performance Statistics 5-41

The Top Sessions section contains the following subsections:

■ Top Sessions

■ Top Blocking Sessions

■ Top Sessions Running PQs

Top Sessions The Top Session subsection lists the sessions that were waiting for a
particular wait event that accounted for the highest percentages of sampled session
activity.

Top Blocking Sessions The Top Blocking Sessions subsection lists the blocking sessions
that accounted for the highest percentages of sampled session activity.

Top Sessions Running PQs The Top Sessions Running PQs subsection lists the sessions
running parallel queries (PQs) that were waiting for a particular wait event, which
accounted for the highest percentages of sampled session activity.

Top Objects/Files/Latches
The Top Objects/Files/Latches section provides additional information about the most
commonly-used database resources and contains the following subsections:

■ Top DB Objects

■ Top DB Files

■ Top Latches

Top DB Objects The Top DB Objects subsection lists the database objects (such as tables
and indexes) that accounted for the highest percentages of sampled session activity.

Top DB Files The Top DB Files subsection lists the database files that accounted for the
highest percentages of sampled session activity.

Top Latches The Top Latches subsection lists the latches that accounted for the highest
percentages of sampled session activity.

Latches are simple, low-level serialization mechanisms to protect shared data
structures in the System Global Area (SGA). For example, latches protect the list of
users currently accessing the database and the data structures describing the blocks in
the buffer cache. A server or background process acquires a latch for a very short time
while manipulating or looking at one of these structures. The implementation of
latches is operating system-dependent, particularly regarding whether and how long a
process waits for a latch.

Activity Over Time
The Activity Over Time section is one of the most informative sections of the ASH
report. This section is particularly useful for longer time periods because it provides
in-depth details about activities and workload profiles during the analysis period. The
Activity Over Time section is divided into 10 time slots. The size of each time slot
varies based on the duration of the analysis period. The first and last slots are usually
odd-sized. All inner slots are equally sized and can be compared to each other. For
example, if the analysis period lasts for 10 minutes, then all time slots will 1 minute
each. However, if the analysis period lasts for 9 minutes and 30 seconds, then the outer
slots may be 15 seconds each and the inner slots will be 1 minute each.

Managing the Automatic Workload Repository

5-42 Oracle Database Performance Tuning Guide

Each of the time slots contains information regarding that particular time slot, as
described in Table 5–2.

When comparing the inner slots, perform a skew analysis by identifying spikes in the
Event Count and Slot Count columns. A spike in the Event Count column indicates an
increase in the number of sampled sessions waiting for a particular event. A spike in
the Slot Count column indicates an increase in active sessions, because ASH data is
sampled from active sessions only and a relative increase in database workload.
Typically, when the number of active session samples and the number of sessions
associated with a wait event increases, the slot may be the cause of the transient
performance problem.

To generate the ASH report with a user-defined slot size, run the ashrpti.sql script,
as described in "Generating an ASH Report on a Specific Database Instance" on
page 5-35.

Table 5–2 Activity Over Time

Column Description

Slot Time (Duration) Duration of the slot

Slot Count Number of sampled sessions in the slot

Event Top three wait events in the slot

Event Count Number of ASH samples waiting for the wait event

% Event Percentage of ASH samples waiting for wait events in the entire
analysis period

6

Automatic Performance Diagnostics 6-1

6Automatic Performance Diagnostics

This chapter describes Oracle Database automatic features for performance diagnosing
and tuning.

This chapter contains the following topics:

■ Overview of the Automatic Database Diagnostic Monitor

■ Setting Up ADDM

■ Diagnosing Database Performance Problems with ADDM

■ Views with ADDM Information

Overview of the Automatic Database Diagnostic Monitor
When problems occur with a system, it is important to perform accurate and timely
diagnosis of the problem before making any changes to a system. Oftentimes, a
database administrator (DBA) simply looks at the symptoms and immediately starts
changing the system to fix those symptoms. However, an accurate diagnosis of the
actual problem in the initial stage significantly increases the probability of success in
resolving the problem.

With Oracle Database, the statistical data needed for accurate diagnosis of a problem is
stored in the Automatic Workload Repository (AWR). The Automatic Database
Diagnostic Monitor (ADDM):

■ Analyzes the AWR data on a regular basis

■ Diagnoses the root causes of performance problems

■ Provides recommendations for correcting any problems

■ Identifies non-problem areas of the system

Because AWR is a repository of historical performance data, ADDM can analyze
performance issues after the event, often saving time and resources in reproducing a
problem. For information about the AWR, see "Overview of the Automatic Workload
Repository" on page 5-8.

In most cases, ADDM output should be the first place that a DBA looks when notified
of a performance problem. ADDM provides the following benefits:

■ Automatic performance diagnostic report every hour by default

See Also: Oracle Database 2 Day + Performance Tuning Guide for
information about using Oracle Enterprise Manager to diagnose and
tune the database with the Automatic Database Diagnostic Monitor

Overview of the Automatic Database Diagnostic Monitor

6-2 Oracle Database Performance Tuning Guide

■ Problem diagnosis based on decades of tuning expertise

■ Time-based quantification of problem impacts and recommendation benefits

■ Identification of root cause, not symptoms

■ Recommendations for treating the root causes of problems

■ Identification of non-problem areas of the system

■ Minimal overhead to the system during the diagnostic process

It is important to realize that tuning is an iterative process, and fixing one problem can
cause the bottleneck to shift to another part of the system. Even with the benefit of
ADDM analysis, it can take multiple tuning cycles to reach acceptable system
performance. ADDM benefits apply beyond production systems; on development and
test systems, ADDM can provide an early warning of performance issues.

This section contains the following topics:

■ ADDM Analysis

■ Using ADDM with Oracle Real Application Clusters

■ ADDM Analysis Results

■ Reviewing ADDM Analysis Results: Example

ADDM Analysis
An ADDM analysis can be performed on a pair of AWR snapshots and a set of
instances from the same database. The pair of AWR snapshots define the time period
for analysis, and the set of instances define the target for analysis.

If you are using Oracle Real Application Clusters (Oracle RAC), ADDM has three
analysis modes:

■ Database

In Database mode, ADDM analyzes all instances of the database.

■ Instance

In Instance mode, ADDM analyzes a particular instance of the database.

■ Partial

In Partial mode, ADDM analyzes a subset of all database instances.

If you are not using Oracle RAC, ADDM can only function in Instance mode because
there is only one instance of the database.

An ADDM analysis is performed each time an AWR snapshot is taken and the results
are saved in the database. The time period analyzed by ADDM is defined by the last
two snapshots (the last hour by default). ADDM will always analyze the specified
instance in Instance mode. For non-Oracle RAC or single instance environments, the
analysis performed in the Instance mode is the same as a database-wide analysis. If
you are using Oracle RAC, ADDM will also analyze the entire database in Database
mode, as described in "Using ADDM with Oracle Real Application Clusters" on
page 6-3. After an ADDM completes its analysis, you can view the results using Oracle
Enterprise Manager, or by viewing a report in a SQL*Plus session.

ADDM analysis is performed top down, first identifying symptoms, and then refining
them to reach the root causes of performance problems. The goal of the analysis is to
reduce a single throughput metric called DB time. DB time is the cumulative time spent
by the database in processing user requests. It includes wait time and CPU time of all

Overview of the Automatic Database Diagnostic Monitor

Automatic Performance Diagnostics 6-3

non-idle user sessions. DB time is displayed in the V$SESS_TIME_MODEL and
V$SYS_TIME_MODEL views.

By reducing DB time, the database is able to support more user requests using the same
resources, which increases throughput. The problems reported by ADDM are sorted
by the amount of DB time they are responsible for. System areas that are not
responsible for a significant portion of DB time are reported as non-problem areas.

The types of problems that ADDM considers include the following:

■ CPU bottlenecks - Is the system CPU bound by Oracle Database or some other
application?

■ Undersized Memory Structures - Are the Oracle Database memory structures,
such as the SGA, PGA, and buffer cache, adequately sized?

■ I/O capacity issues - Is the I/O subsystem performing as expected?

■ High load SQL statements - Are there any SQL statements which are consuming
excessive system resources?

■ High load PL/SQL execution and compilation, and high-load Java usage

■ Oracle RAC specific issues - What are the global cache hot blocks and objects; are
there any interconnect latency issues?

■ Sub-optimal use of Oracle Database by the application - Are there problems with
poor connection management, excessive parsing, or application level lock
contention?

■ Database configuration issues - Is there evidence of incorrect sizing of log files,
archiving issues, excessive checkpoints, or sub-optimal parameter settings?

■ Concurrency issues - Are there buffer busy problems?

■ Hot objects and top SQL for various problem areas

ADDM also documents the non-problem areas of the system. For example, wait event
classes that are not significantly impacting the performance of the system are
identified and removed from the tuning consideration at an early stage, saving time
and effort that would be spent on items that do not impact overall system
performance.

Using ADDM with Oracle Real Application Clusters
If you are using Oracle RAC, you can run ADDM in Database analysis mode to
analyze the throughput performance of all instances of the database. In Database
mode, ADDM considers DB time as the sum of the database time for all database

See Also:

■ Oracle Database Reference for information about the
V$SESS_TIME_MODEL and V$SYS_TIME_MODEL views

■ "Time Model Statistics" on page 5-3 for a discussion of time
model statistics and DB time

■ Oracle Database Concepts for information about server processes

Note: This is not a comprehensive list of all problem types that
ADDM considers in its analysis.

Overview of the Automatic Database Diagnostic Monitor

6-4 Oracle Database Performance Tuning Guide

instances. Using the Database analysis mode enables you to view all findings that are
significant to the entire database in a single report, instead of reviewing a separate
report for each instance.

The Database mode report includes findings about database resources (such as I/O
and interconnect). The report also aggregates findings from the various instances if
they are significant to the entire database. For example, if the CPU load on a single
instance is high enough to affect the entire database, the finding will appear in the
Database mode analysis, which will point to the particular instance responsible for the
problem.

ADDM Analysis Results
In addition to problem diagnostics, ADDM recommends possible solutions. ADDM
analysis results are represented as a set of findings. See Example 6–1 on page 6-5 for an
example of ADDM analysis result. Each ADDM finding can belong to one of the
following types:

■ Problem findings describe the root cause of a database performance problem.

■ Symptom findings contain information that often lead to one or more problem
findings.

■ Information findings are used for reporting information that are relevant to
understanding the performance of the database, but do not constitute a
performance problem (such as non-problem areas of the database and the activity
of automatic database maintenance).

■ Warning findings contain information about problems that may affect the
completeness or accuracy of the ADDM analysis (such as missing data in the
AWR).

Each problem finding is quantified by an impact that is an estimate of the portion of DB
time caused by the finding's performance issue. A problem finding can be associated
with a list of recommendations for reducing the impact of the performance problem.
The types of recommendations include:

■ Hardware changes: adding CPUs or changing the I/O subsystem configuration

■ Database configuration: changing initialization parameter settings

■ Schema changes: hash partitioning a table or index, or using automatic
segment-space management (ASSM)

■ Application changes: using the cache option for sequences or using bind
variables

■ Using other advisors: running SQL Tuning Advisor on high-load SQL or running
the Segment Advisor on hot objects

A list of recommendations can contain various alternatives for solving the same
problem; you do not have to apply all the recommendations to solve a specific
problem. Each recommendation has a benefit which is an estimate of the portion of DB
time that can be saved if the recommendation is implemented. Recommendations are
composed of actions and rationales. You must apply all the actions of a
recommendation to gain the estimated benefit. The rationales are used for explaining
why the set of actions were recommended and to provide additional information to
implement the suggested recommendation.

See Also: Oracle Database 2 Day + Real Application Clusters Guide for
information about using ADDM with Oracle RAC

Setting Up ADDM

Automatic Performance Diagnostics 6-5

Reviewing ADDM Analysis Results: Example
Consider the following section of an ADDM report in Example 6–1.

Example 6–1 Example ADDM Report

FINDING 1: 31% impact (7798 seconds)

SQL statements were not shared due to the usage of literals. This resulted in
additional hard parses which were consuming significant database time.

RECOMMENDATION 1: Application Analysis, 31% benefit (7798 seconds)
 ACTION: Investigate application logic for possible use of bind variables
 instead of literals. Alternatively, you may set the parameter
 "cursor_sharing" to "force".
 RATIONALE: SQL statements with PLAN_HASH_VALUE 3106087033 were found to be
 using literals. Look in V$SQL for examples of such SQL statements.

In Example 6–1, the finding points to a particular root cause, the usage of literals in
SQL statements, which is estimated to have an impact of about 31% of total DB time in
the analysis period.

The finding has a recommendation associated with it, composed of one action and one
rationale. The action specifies a solution to the problem found and is estimated to have
a maximum benefit of up to 31% DB time in the analysis period. Note that the benefit is
given as a portion of the total DB time and not as a portion of the finding's impact. The
rationale provides additional information on tracking potential SQL statements that
were using literals and causing this performance issue. Using the specified plan hash
value of SQL statements that could be a problem, a DBA could quickly examine a few
sample statements.

When a specific problem has multiple causes, the ADDM may report multiple problem
and symptom findings. In this case, the impacts of these multiple findings can contain
the same portion of DB time. Because the performance issues of findings can overlap,
the sum of the impacts of the findings can exceed 100% of DB time. For example, if a
system performs many reads, then ADDM might report a SQL statement responsible
for 50% of DB time due to I/O activity as one finding, and an undersized buffer cache
responsible for 75% of DB time as another finding.

When multiple recommendations are associated with a problem finding, the
recommendations may contain alternatives for solving the problem. In this case, the
sum of the recommendations' benefits may be higher than the finding's impact.

When appropriate, an ADDM action may have multiple solutions for you to choose
from. In the example, the most effective solution is to use bind variables. However, it is
often difficult to modify the application. Changing the value of the CURSOR_SHARING
initialization parameter is much easier to implement and can provide significant
improvement.

Setting Up ADDM
Automatic database diagnostic monitoring is enabled by default and is controlled by
the CONTROL_MANAGEMENT_PACK_ACCESS and the STATISTICS_LEVEL initialization
parameters.

The CONTROL_MANAGEMENT_PACK_ACCESS parameter should be set to DIAGNOSTIC or
DIAGNOSTIC+TUNING to enable automatic database diagnostic monitoring. The default
setting is DIAGNOSTIC+TUNING. Setting CONTROL_MANAGEMENT_PACK_ACCESS to NONE
disables ADDM.

Diagnosing Database Performance Problems with ADDM

6-6 Oracle Database Performance Tuning Guide

The STATISTICS_LEVEL parameter should be set to the TYPICAL or ALL to enable
automatic database diagnostic monitoring. The default setting is TYPICAL. Setting
STATISTICS_LEVEL to BASIC disables many Oracle Database features, including
ADDM, and is strongly discouraged.

ADDM analysis of I/O performance partially depends on a single argument,
DBIO_EXPECTED, that describes the expected performance of the I/O subsystem. The
value of DBIO_EXPECTED is the average time it takes to read a single database block in
microseconds. Oracle Database uses the default value of 10 milliseconds, which is an
appropriate value for most modern hard drives. If your hardware is significantly
different, such as very old hardware or very fast RAM disks, consider using a different
value.

To determine the correct setting for DBIO_EXPECTED parameter:

1. Measure the average read time of a single database block read for your hardware.
Note that this measurement is for random I/O, which includes seek time if you
use standard hard drives. Typical values for hard drives are between 5000 and
20000 microseconds.

2. Set the value one time for all subsequent ADDM executions. For example, if the
measured value if 8000 microseconds, you should execute the following command
as SYS user:

EXECUTE DBMS_ADVISOR.SET_DEFAULT_TASK_PARAMETER(
 'ADDM', 'DBIO_EXPECTED', 8000);

Diagnosing Database Performance Problems with ADDM
To diagnose database performance problems, first review the ADDM analysis results
that are automatically created each time an AWR snapshot is taken. If a different
analysis is required (such as a longer analysis period, using a different DBIO_EXPECTED
setting, or changing the analysis mode), you can run ADDM manually as described in
this section.

ADDM can analyze any two AWR snapshots (on the same database), as long as both
snapshots are still stored in the AWR (have not been purged). ADDM can only analyze
instances that are started before the beginning snapshot and remain running until the
ending snapshot. Additionally, ADDM will not analyze instances that experience
significant errors when generating the AWR snapshots. In such cases, ADDM will
analyze the largest subset of instances that did not experience these problems.

The primary interface for diagnostic monitoring is Oracle Enterprise Manager.
Whenever possible, you should run ADDM using Oracle Enterprise Manager, as
described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle Enterprise
Manager is unavailable, you can run ADDM using the DBMS_ADDM package. In order to
run the DBMS_ADDM APIs, the user must be granted the ADVISOR privilege.

This section contains the following topics:

■ Running ADDM in Database Mode

■ Running ADDM in Instance Mode

■ Running ADDM in Partial Mode

■ Displaying an ADDM Report

See Also: Oracle Database Reference for information about the
CONTROL_MANAGEMENT_PACK_ACCESS and STATISTICS_LEVEL
initialization parameters

Diagnosing Database Performance Problems with ADDM

Automatic Performance Diagnostics 6-7

Running ADDM in Database Mode
For Oracle RAC configurations, you can run ADDM in Database mode to analyze all
instances of the databases. For single-instance configurations, you can still run ADDM
in Database mode; ADDM will simply behave as if running in Instance mode.

To run ADDM in Database mode, use the DBMS_ADDM.ANALYZE_DB procedure:

BEGIN
DBMS_ADDM.ANALYZE_DB (
 task_name IN OUT VARCHAR2,
 begin_snapshot IN NUMBER,
 end_snapshot IN NUMBER,
 db_id IN NUMBER := NULL);
END;
/

The task_name parameter specifies the name of the analysis task that will be created.
The begin_snapshot parameter specifies the snapshot number of the beginning
snapshot in the analysis period. The end_snapshot parameter specifies the snapshot
number of the ending snapshot in the analysis period. The db_id parameter specifies
the database identifier of the database that will be analyzed. If unspecified, this
parameter defaults to the database identifier of the database to which you are
currently connected.

The following example creates an ADDM task in database analysis mode, and
executes it to diagnose the performance of the entire database during the time period
defined by snapshots 137 and 145:

VAR tname VARCHAR2(30);
BEGIN
 :tname := 'ADDM for 7PM to 9PM';
 DBMS_ADDM.ANALYZE_DB(:tname, 137, 145);
END;
/

Running ADDM in Instance Mode
To analyze a particular instance of the database, you can run ADDM in Instance mode.
To run ADDM in Instance mode, use the DBMS_ADDM.ANALYZE_INST procedure:

BEGIN
DBMS_ADDM.ANALYZE_INST (
 task_name IN OUT VARCHAR2,
 begin_snapshot IN NUMBER,
 end_snapshot IN NUMBER,
 instance_number IN NUMBER := NULL,
 db_id IN NUMBER := NULL);
END;
/

The task_name parameter specifies the name of the analysis task that will be created.
The begin_snapshot parameter specifies the snapshot number of the beginning
snapshot in the analysis period. The end_snapshot parameter specifies the snapshot
number of the ending snapshot in the analysis period. The instance_number
parameter specifies the instance number of the instance that will be analyzed. If

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_ADDM package

Diagnosing Database Performance Problems with ADDM

6-8 Oracle Database Performance Tuning Guide

unspecified, this parameter defaults to the instance number of the instance to which
you are currently connected. The db_id parameter specifies the database identifier of
the database that will be analyzed. If unspecified, this parameter defaults to the
database identifier of the database to which you are currently connected.

The following example creates an ADDM task in instance analysis mode, and executes
it to diagnose the performance of instance number 1 during the time period defined by
snapshots 137 and 145:

VAR tname VARCHAR2(30);
BEGIN
 :tname := 'my ADDM for 7PM to 9PM';
 DBMS_ADDM.ANALYZE_INST(:tname, 137, 145, 1);
END;
/

Running ADDM in Partial Mode
To analyze a subset of all database instances, you can run ADDM in Partial mode. To
run ADDM in Partial mode, use the DBMS_ADDM.ANALYZE_PARTIAL procedure:

BEGIN
DBMS_ADDM.ANALYZE_PARTIAL (
 task_name IN OUT VARCHAR2,
 instance_numbers IN VARCHAR2,
 begin_snapshot IN NUMBER,
 end_snapshot IN NUMBER,
 db_id IN NUMBER := NULL);
END;
/

The task_name parameter specifies the name of the analysis task that will be created.
The instance_numbers parameter specifies a comma-delimited list of instance
numbers of instances that will be analyzed. The begin_snapshot parameter specifies
the snapshot number of the beginning snapshot in the analysis period. The
end_snapshot parameter specifies the snapshot number of the ending snapshot in the
analysis period. The db_id parameter specifies the database identifier of the database
that will be analyzed. If unspecified, this parameter defaults to the database identifier
of the database to which you are currently connected.

The following example creates an ADDM task in partial analysis mode, and executes it
to diagnose the performance of instance numbers 1, 2, and 4, during the time period
defined by snapshots 137 and 145:

VAR tname VARCHAR2(30);
BEGIN
 :tname := 'my ADDM for 7PM to 9PM';
 DBMS_ADDM.ANALYZE_PARTIAL(:tname, '1,2,4', 137, 145);
END;
/

Displaying an ADDM Report
To display a text report of an executed ADDM task, use the DBMS_ADDM.GET_REPORT
function:

DBMS_ADDM.GET_REPORT (
 task_name IN VARCHAR2
 RETURN CLOB);

Views with ADDM Information

Automatic Performance Diagnostics 6-9

The following example displays a text report of the ADDM task specified by its task
name using the tname variable:

SET LONG 1000000 PAGESIZE 0;
SELECT DBMS_ADDM.GET_REPORT(:tname) FROM DUAL;

Note that the return type of a report is a CLOB, formatted to fit line size of 80. For
information about reviewing the ADDM analysis results in an ADDM report, see
"ADDM Analysis Results" on page 6-4.

Views with ADDM Information
Typically, you should view output and information from ADDM using Oracle
Enterprise Manager or ADDM reports.

However, you can display ADDM information through the DBA_ADVISOR views. This
group of views includes:

■ DBA_ADVISOR_FINDINGS

This view displays all the findings discovered by all advisors. Each finding is
displayed with an associated finding ID, name, and type. For tasks with multiple
executions, the name of each task execution associated with each finding is also
listed.

■ DBA_ADDM_FINDINGS

This view contains a subset of the findings displayed in the related
DBA_ADVISOR_FINDINGS view. This view only displays the ADDM findings
discovered by all advisors. Each ADDM finding is displayed with an associated
finding ID, name, and type.

■ DBA_ADVISOR_FINDING_NAMES

List of all finding names registered with the advisor framework.

■ DBA_ADVISOR_RECOMMENDATIONS

This view displays the results of completed diagnostic tasks with
recommendations for the problems identified in each execution. The
recommendations should be reviewed in the order of the RANK column, as this
relays the magnitude of the problem for the recommendation. The BENEFIT
column displays the benefit to the system you can expect after the
recommendation is performed. For tasks with multiple executions, the name of
each task execution associated with each advisor task is also listed.

■ DBA_ADVISOR_TASKS

This view provides basic information about existing tasks, such as the task ID, task
name, and when the task was created. For tasks with multiple executions, the
name and type of the last or current execution associated with each advisor task is
also listed.

See Also: Oracle Database Reference for information about static data
dictionary views

Views with ADDM Information

6-10 Oracle Database Performance Tuning Guide

7

Configuring and Using Memory 7-1

7Configuring and Using Memory

This chapter explains how to allocate memory to Oracle Database memory caches, and
how to use those caches. Proper sizing and effective use of the Oracle Database
memory caches greatly improves database performance. Oracle recommends using
automatic memory management to manage the memory on your system. However,
you can choose to manually adjust the memory pools on your system, as described in
this chapter.

This chapter contains the following sections:

■ Understanding Memory Allocation Issues

■ Configuring and Using the Buffer Cache

■ Configuring and Using the Shared Pool and Large Pool

■ Configuring and Using the Redo Log Buffer

■ PGA Memory Management

■ Managing the Server and Client Result Caches

Understanding Memory Allocation Issues
Oracle Database stores information in memory caches and on disk. Memory access is
much faster than disk access. Disk access (physical I/O) take a significant amount of
time, compared with memory access, typically in the order of 10 milliseconds. Physical
I/O also increases the CPU resources required, because of the path length in device
drivers and operating system event schedulers. For this reason, it is more efficient for
data requests of frequently accessed objects to be perform by memory, rather than also
requiring disk access.

A performance goal is to reduce the physical I/O overhead as much as possible, either
by making it more likely that the required data is in memory, or by making the process
of retrieving the required data more efficient.

This section contains the following topics:

■ Oracle Memory Caches

■ Automatic Memory Management

■ Automatic Shared Memory Management

■ Dynamically Changing Cache Sizes

■ Application Considerations

See Also: Oracle Database Concepts for information about the
memory architecture of an Oracle database

Understanding Memory Allocation Issues

7-2 Oracle Database Performance Tuning Guide

■ Operating System Memory Use

■ Iteration During Configuration

Oracle Memory Caches
The main Oracle Database memory caches that affect performance are:

■ Shared pool

■ Large pool

■ Java pool

■ Buffer cache

■ Streams pool size

■ Log buffer

■ Process-private memory, such as memory used for sorting and hash joins

Automatic Memory Management
Oracle strongly recommends the use of automatic memory management to manage
the memory on your system. Automatic memory management enables Oracle
Database to automatically manage and tune the instance memory. Automatic memory
management can be configured using a target memory size initialization parameter
(MEMORY_TARGET) and a maximum memory size initialization parameter
(MEMORY_MAX_TARGET). The database tunes to the target memory size, redistributing
memory as needed between the system global area (SGA) and the instance program
global area (instance PGA). Before setting any memory pool sizes, consider using the
automatic memory management feature of Oracle Database. If you must configure
memory allocations, consider using the Memory Advisor for managing memory.

Automatic Shared Memory Management
Automatic Shared Memory Management simplifies the configuration of the SGA. To
use Automatic Shared Memory Management, set the SGA_TARGET initialization
parameter to a nonzero value and set the STATISTICS_LEVEL initialization parameter to
TYPICAL or ALL. Set the value of the SGA_TARGET parameter to the amount of memory
that you intend to dedicate for the SGA. In response to the workload on the system,
the automatic SGA management distributes the memory appropriately for the
following memory pools:

■ Database buffer cache (default pool)

■ Shared pool

■ Large pool

■ Java pool

■ Streams pool

See Also:

■ Oracle Database Administrator's Guide for information about
using automatic memory management

■ Oracle Database 2 Day DBA for information about using the
Memory Advisor

Understanding Memory Allocation Issues

Configuring and Using Memory 7-3

If these automatically tuned memory pools had been set to nonzero values, those
values are used as minimum levels by Automatic Shared Memory Management. You
would set minimum values if an application component needs a minimum amount of
memory to function properly.

SGA_TARGET is a dynamic parameter that can be changed by accessing the SGA Size
Advisor from the Memory Parameters SGA page in Oracle Enterprise Manager, or by
querying the V$SGA_TARGET_ADVICE view and using the ALTER SYSTEM command.
SGA_TARGET can be set less than or equal to the value of SGA_MAX_SIZE initialization
parameter. Changes in the value of SGA_TARGET automatically resize the automatically
tuned memory pools.

If you dynamically disable SGA_TARGET by setting its value to 0 at instance startup,
Automatic Shared Memory Management will be disabled and the current auto-tuned
sizes will be used for each memory pool. If necessary, you can manually resize each
memory pool using the DB_CACHE_SIZE, SHARED_POOL_SIZE, LARGE_POOL_SIZE,
JAVA_POOL_SIZE, and STREAMS_POOL_SIZE initialization parameters. See "Dynamically
Changing Cache Sizes" on page 7-3.

The following pools are manually sized components and are not affected by
Automatic Shared Memory Management:

■ Log buffer

■ Other buffer caches (such as KEEP, RECYCLE, and other nondefault block size)

■ Fixed SGA and other internal allocations

To manually size these memory pools, you must set the DB_KEEP_CACHE_SIZE,
DB_RECYCLE_CACHE_SIZE, DB_nK_CACHE_SIZE, and LOG_BUFFER initialization
parameters. The memory allocated to these pools is deducted from the total available
for SGA_TARGET when Automatic Shared Memory Management computes the values of
the automatically tuned memory pools.

Dynamically Changing Cache Sizes
If the system is not using Automatic Memory Management or Automatic Shared
Memory Management, you can choose to dynamically reconfigure the sizes of the
shared pool, the large pool, the buffer cache, and the process-private memory. The
following sections contain details on sizing of caches:

■ Configuring and Using the Buffer Cache

See Also:

■ Oracle Database Concepts for information about the System
Global Area (SGA)

■ Oracle Database Administrator's Guide for information about
managing the System Global Area (SGA)

See Also:

■ Oracle Database Administrator's Guide for information about
managing initialization parameters

■ Oracle Streams Replication Administrator's Guide for information
about the STREAMS_POOL_SIZE initialization parameter

■ Oracle Database Java Developer's Guide for information about
Java memory usage

Understanding Memory Allocation Issues

7-4 Oracle Database Performance Tuning Guide

■ Configuring and Using the Shared Pool and Large Pool

■ Configuring and Using the Redo Log Buffer

The size of these memory caches is configurable using initialization configuration
parameters, such as DB_CACHE_SIZE, JAVA_POOL_SIZE, LARGE_POOL_SIZE, LOG_BUFFER,
and SHARED_POOL_SIZE. The values for these parameters are also dynamically
configurable using the ALTER SYSTEM statement except for the log buffer pool and
process-private memory, which are static after startup.

Memory for the shared pool, large pool, java pool, and buffer cache is allocated in
units of granules. The granule size is 4MB if the SGA size is less than 1GB. If the SGA
size is greater than 1GB, the granule size changes to 16MB. The granule size is
calculated and fixed when the instance starts up. The size does not change during the
lifetime of the instance.

The granule size that is currently being used for SGA can be viewed in the view
V$SGA_DYNAMIC_COMPONENTS. The same granule size is used for all dynamic
components in the SGA.

You can expand the total SGA size to a value equal to the SGA_MAX_SIZE parameter. If
the SGA_MAX_SIZE is not set, you can decrease the size of one cache and reallocate that
memory to another cache if necessary. SGA_MAX_SIZE defaults to the aggregate setting
of all the components.

The maximum amount of memory usable by the instance is determined at instance
startup by the initialization parameter SGA_MAX_SIZE. You can specify SGA_MAX_SIZE to
be larger than the sum of all of the memory components, such as buffer cache and
shared pool. Otherwise, SGA_MAX_SIZE defaults to the actual size used by those
components. Setting SGA_MAX_SIZE larger than the sum of memory used by all of the
components lets you dynamically increase a cache size without needing to decrease
the size of another cache.

Viewing Information About Dynamic Resize Operations
The following views provide information about dynamic resize operations:

■ V$MEMORY_CURRENT_RESIZE_OPS displays information about memory resize
operations (both automatic and manual) which are currently in progress.

■ V$MEMORY_DYNAMIC_COMPONENTS displays information about the current sizes of all
dynamically tuned memory components, including the total sizes of the SGA and
instance PGA.

■ V$MEMORY_RESIZE_OPS displays information about the last 800 completed memory
resize operations (both automatic and manual). This does not include in-progress
operations.

■ V$MEMORY_TARGET_ADVICE displays tuning advice for the MEMORY_TARGET
initialization parameter.

■ V$SGA_CURRENT_RESIZE_OPS displays information about SGA resize operations
that are currently in progress. An operation can be a grow or a shrink of a dynamic
SGA component.

Note: SGA_MAX_SIZE cannot be dynamically resized.

See Also: Your operating system's documentation for information
about managing dynamic SGA

Understanding Memory Allocation Issues

Configuring and Using Memory 7-5

■ V$SGA_RESIZE_OPS displays information about the last 800 completed SGA resize
operations. This does not include any operations currently in progress.

■ V$SGA_DYNAMIC_COMPONENTS displays information about the dynamic components
in SGA. This view summarizes information based on all completed SGA resize
operations that occurred after startup.

■ V$SGA_DYNAMIC_FREE_MEMORY displays information about the amount of SGA
memory available for future dynamic SGA resize operations.

Application Considerations
When configuring memory, size the cache appropriately for the application's needs.
Conversely, tuning the application's use of the caches can greatly reduce resource
requirements. Efficient use of Oracle Database memory caches also reduces the load on
related resources such as the latches, the CPU, and the I/O system.

For best performance, you should consider the following:

■ The cache should be optimally designed to use the operating system and database
resources most efficiently.

■ Memory allocations to Oracle Database memory structures should best reflect the
needs of the application.

Making changes or additions to an existing application might require resizing Oracle
Database memory structures to meet the needs of your modified application.

If your application uses Java, you should investigate whether you need to modify the
default configuration for the Java pool. See the Oracle Database Java Developer's Guide
for information about Java memory usage.

Operating System Memory Use
For most operating systems, it is important to consider the following:

■ Reduce Paging

■ Fit the SGA into Main Memory

■ Allow Adequate Memory to Individual Users

Reduce Paging
Paging occurs when an operating system transfers memory-resident pages to disk
solely to allow new pages to be loaded into memory. Many operating systems page to
accommodate large amounts of information that do not fit into real memory. On most
operating systems, paging reduces performance.

Use operating system utilities to examine the operating system, to identify whether
there is a lot of paging on your system. If so, then the total system memory may not be
large enough to hold everything for which you have allocated memory. Either increase
the total memory on your system, or decrease the amount of memory allocated.

See Also:

■ Oracle Database Concepts for more information about dynamic
SGA

■ Oracle Database Reference for detailed column information for
these views

Configuring and Using the Buffer Cache

7-6 Oracle Database Performance Tuning Guide

Fit the SGA into Main Memory
Because the purpose of the SGA is to store data in memory for fast access, the SGA
should be within main memory. If pages of the SGA are swapped to disk, then the data
is no longer quickly accessible. On most operating systems, the disadvantage of
paging significantly outweighs the advantage of a large SGA.

To see how much memory is allocated to the SGA and each of its internal structures,
enter the following SQL*Plus statement:

SHOW SGA

The output of this statement will look similar to the following:

Total System Global Area 840205000 bytes
Fixed Size 279240 bytes
Variable Size 520093696 bytes
Database Buffers 318767104 bytes
Redo Buffers 1064960 bytes

Allow Adequate Memory to Individual Users
When sizing the SGA, ensure that you allow enough memory for the individual server
processes and any other programs running on the system.

Iteration During Configuration
Configuring memory allocation involves distributing available memory to Oracle
Database memory structures, depending on the needs of the application. The
distribution of memory to Oracle Database structures can affect the amount of physical
I/O necessary for Oracle Database t operate. Having a good first initial memory
configuration also provides an indication of whether the I/O system is effectively
configured.

It might be necessary to repeat the steps of memory allocation after the initial pass
through the process. Subsequent passes let you make adjustments in earlier steps,
based on changes in later steps. For example, decreasing the size of the buffer cache
lets you increase the size of another memory structure, such as the shared pool.

Configuring and Using the Buffer Cache
For many types of operations, Oracle Database uses the buffer cache to store blocks
read from disk. Oracle Database bypasses the buffer cache for particular operations,
such as sorting and parallel reads. For operations that use the buffer cache, this section
explains the following:

■ Using the Buffer Cache Effectively

Note: You can use the LOCK_SGA parameter to lock the SGA into
physical memory and prevent it from being paged out. The
database does not use the MEMORY_TARGET and MEMORY_MAX_TARGET
parameters when the LOCK_SGA parameter is enabled.

See Also: Your operating system hardware and software
documentation, and the Oracle documentation specific to your
operating system, for more information on tuning operating system
memory usage

Configuring and Using the Buffer Cache

Configuring and Using Memory 7-7

■ Sizing the Buffer Cache

■ Interpreting and Using the Buffer Cache Advisory Statistics

■ Considering Multiple Buffer Pools

Using the Buffer Cache Effectively
To use the buffer cache effectively, tune SQL statements for the application to avoid
unnecessary resource consumption. To meet this goal, verify that frequently executed
SQL statements and SQL statements that perform many buffer gets have been tuned.

When using parallel query, you can configure the database to use the database buffer
cache instead of performing direct reads into the PGA. This configuration may be
appropriate when the database servers have a large amount of memory.

Sizing the Buffer Cache
When configuring a new instance, it is impossible to know the correct size for the
buffer cache. Typically, a database administrator makes a first estimate for the cache
size, then runs a representative workload on the instance and examines the relevant
statistics to see whether the cache is under or over configured.

Buffer Cache Advisory Statistics
You can use several statistics to examine buffer cache activity, including the following:

■ V$DB_CACHE_ADVICE

■ Buffer cache hit ratio

Using V$DB_CACHE_ADVICE
This view is populated when the DB_CACHE_ADVICE initialization parameter is set to ON.
This view shows the simulated miss rates for a range of potential buffer cache sizes.

Each cache size simulated has its own row in this view, with the predicted physical
I/O activity that would take place for that size. The DB_CACHE_ADVICE parameter is
dynamic, so the advisory can be enabled and disabled dynamically to allow you to
collect advisory data for a specific workload.

There is some overhead associated with this advisory. When the advisory is enabled,
there is a small increase in CPU usage, because additional bookkeeping is required.

Oracle Database uses DBA-based sampling to gather cache advisory statistics.
Sampling substantially reduces both CPU and memory overhead associated with
bookkeeping. Sampling is not used for a buffer pool if the number of buffers in that
buffer pool is small to begin with.

To use V$DB_CACHE_ADVICE, the parameter DB_CACHE_ADVICE should be set to ON, and a
representative workload should be running on the instance. Allow the workload to
stabilize before querying the V$DB_CACHE_ADVICE view.

The following SQL statement returns the predicted I/O requirement for the default
buffer pool for various cache sizes:

See Also:

■ Chapter 16, "SQL Tuning Overview"

■ Oracle Database VLDB and Partitioning Guide to learn more using
parallel execution

Configuring and Using the Buffer Cache

7-8 Oracle Database Performance Tuning Guide

COLUMN size_for_estimate FORMAT 999,999,999,999 heading 'Cache Size (MB)'
COLUMN buffers_for_estimate FORMAT 999,999,999 heading 'Buffers'
COLUMN estd_physical_read_factor FORMAT 999.90 heading 'Estd Phys|Read Factor'
COLUMN estd_physical_reads FORMAT 999,999,999 heading 'Estd Phys| Reads'

SELECT size_for_estimate, buffers_for_estimate, estd_physical_read_factor,
estd_physical_reads
 FROM V$DB_CACHE_ADVICE
 WHERE name = 'DEFAULT'
 AND block_size = (SELECT value FROM V$PARAMETER WHERE name =
'db_block_size')
 AND advice_status = 'ON';

The following output shows that if the cache was 212 MB, rather than the current size
of 304 MB, the estimated number of physical reads would increase by a factor of 1.74
or 74%. This means it would not be advisable to decrease the cache size to 212MB.

However, increasing the cache size to 334MB would potentially decrease reads by a
factor of .93 or 7%. If an additional 30MB memory is available on the host computer
and the SGA_MAX_SIZE setting allows the increment, it would be advisable to increase
the default buffer cache pool size to 334MB.

 Estd Phys Estd Phys
 Cache Size (MB) Buffers Read Factor Reads
---------------- ------------ ----------- ------------
 30 3,802 18.70 192,317,943 10% of Current Size
 60 7,604 12.83 131,949,536
 91 11,406 7.38 75,865,861
 121 15,208 4.97 51,111,658
 152 19,010 3.64 37,460,786
 182 22,812 2.50 25,668,196
 212 26,614 1.74 17,850,847
 243 30,416 1.33 13,720,149
 273 34,218 1.13 11,583,180
 304 38,020 1.00 10,282,475 Current Size
 334 41,822 .93 9,515,878
 364 45,624 .87 8,909,026
 395 49,426 .83 8,495,039
 424 53,228 .79 8,116,496
 456 57,030 .76 7,824,764
 486 60,832 .74 7,563,180
 517 64,634 .71 7,311,729
 547 68,436 .69 7,104,280
 577 72,238 .67 6,895,122
 608 76,040 .66 6,739,731 200% of Current Size

This view assists in cache sizing by providing information that predicts the number of
physical reads for each potential cache size. The data also includes a physical read
factor, which is a factor by which the current number of physical reads is estimated to
change if the buffer cache is resized to a given value.

The relationship between successfully finding a block in the cache and the size of the
cache is not always a smooth distribution. When sizing the buffer pool, avoid the use
of additional buffers that contribute little or nothing to the cache hit ratio. In the

Note: With Oracle Database, physical reads do not necessarily
indicate disk reads; physical reads may well be satisfied from the
file system cache.

Configuring and Using the Buffer Cache

Configuring and Using Memory 7-9

example illustrated in Figure 7–1 on page 7-9, only narrow bands of increments to the
cache size may be worthy of consideration.

Figure 7–1 Physical I/O and Buffer Cache Size

Examining Figure 7–1 leads to the following observations:

■ The benefit from increasing buffers from point A to point B is considerably higher
than from point B to point C.

■ The decrease in the physical I/O between points A and B and points B and C is
not smooth, as indicated by the dotted line in the graph.

Calculating the Buffer Cache Hit Ratio
The buffer cache hit ratio calculates how often a requested block has been found in the
buffer cache without requiring disk access. This ratio is computed using data selected
from the dynamic performance view V$SYSSTAT. You can use the buffer cache hit ratio
to verify the physical I/O as predicted by V$DB_CACHE_ADVICE.

The statistics in Table 7–1 are used to calculate the hit ratio.

Example 7–1 has been simplified by using values selected directly from the V$SYSSTAT
table, rather than over an interval. It is best to calculate the delta of these statistics over
an interval while your application is running, then use them to determine the hit ratio.

Table 7–1 Statistics for Calculating the Hit Ratio

Statistic Description

consistent gets from cache Number of times a consistent read was requested for a
block from the buffer cache.

db block gets from cache Number of times a CURRENT block was requested from
the buffer cache.

physical reads cache Total number of data blocks read from disk into buffer
cache.

See Also: Chapter 6, "Automatic Performance Diagnostics" for
more information on collecting statistics over an interval

Buffers

P
hy

s
I/O

 R
at

io

~0.5

~0.1

Actual

Intuitive

A

B

C

Configuring and Using the Buffer Cache

7-10 Oracle Database Performance Tuning Guide

Example 7–1 Calculating the Buffer Cache Hit Ratio

SELECT NAME, VALUE
 FROM V$SYSSTAT
WHERE NAME IN ('db block gets from cache', 'consistent gets from cache', 'physical
reads cache');

Using the values in the output of the query, calculate the hit ratio for the buffer cache
with the following formula:

1 - (('physical reads cache') / ('consistent gets from cache' + 'db block gets
from cache'))

Interpreting and Using the Buffer Cache Advisory Statistics
There are many factors to examine before considering whether to increase or decrease
the buffer cache size. For example, you should examine V$DB_CACHE_ADVICE data and
the buffer cache hit ratio.

A low cache hit ratio does not imply that increasing the size of the cache would be
beneficial for performance. A good cache hit ratio could wrongly indicate that the
cache is adequately sized for the workload.

To interpret the buffer cache hit ratio, you should consider the following:

■ Repeated scanning of the same large table or index can artificially inflate a poor
cache hit ratio. Examine frequently executed SQL statements with a large number
of buffer gets, to ensure that the execution plan for such SQL statements is
optimal. If possible, avoid repeated scanning of frequently accessed data by
performing all of the processing in a single pass or by optimizing the SQL
statement.

■ If possible, avoid requerying the same data, by caching frequently accessed data in
the client program or middle tier.

■ Database blocks accessed during a long full table scan are put on the tail end of the
least recently used LRU list and not on the head of the list. Therefore, the blocks
are aged out faster than blocks read when performing indexed lookups or small
table scans. When interpreting the buffer cache data, poor hit ratios when valid
large full table scans are occurring should also be considered.

■ In any large database running OLTP applications in any given unit of time, most
rows are accessed either one or zero times. On this basis, there might be little
purpose in keeping the block in memory for very long following its use.

■ A common mistake is to continue increasing the buffer cache size. Such increases
have no effect if you are doing full table scans or operations that do not use the
buffer cache.

See Also: Oracle Database Reference for information about the
V$SYSSTAT view

Note: Short table scans are scans performed on tables under a
certain size threshold. The definition of a small table is the
maximum of 2% of the buffer cache and 20, whichever is bigger.

Configuring and Using the Buffer Cache

Configuring and Using Memory 7-11

Increasing Memory Allocated to the Buffer Cache
As a general rule, investigate increasing the size of the cache if the cache hit ratio is
low and your application has been tuned to avoid performing full table scans.

To increase cache size, first set the DB_CACHE_ADVICE initialization parameter to ON, and
let the cache statistics stabilize. Examine the advisory data in the V$DB_CACHE_ADVICE
view to determine the next increment required to significantly decrease the amount of
physical I/O performed. If it is possible to allocate the required extra memory to the
buffer cache without causing the host operating system to page, then allocate this
memory. To increase the amount of memory allocated to the buffer cache, increase the
value of the DB_CACHE_SIZE initialization parameter.

If required, resize the buffer pools dynamically, rather than shutting down the instance
to perform this change.

The DB_CACHE_SIZE parameter specifies the size of the default cache for the database's
standard block size. To create and use tablespaces with block sizes different than the
database's standard block sizes (such as to support transportable tablespaces), you
must configure a separate cache for each block size used. You can use the
DB_nK_CACHE_SIZE parameter to configure the nonstandard block size needed (where n
is 2, 4, 8, 16 or 32 and n is not the standard block size).

Reducing Memory Allocated to the Buffer Cache
If the cache hit ratio is high, then the cache is probably large enough to hold the most
frequently accessed data. Check V$DB_CACHE_ADVICE data to see whether decreasing
the cache size significantly causes the number of physical I/Os to increase. If not, and
if you require memory for another memory structure, then you might be able to reduce
the cache size and still maintain good performance. To make the buffer cache smaller,
reduce the size of the cache by changing the value for the parameter DB_CACHE_SIZE.

Considering Multiple Buffer Pools
A single default buffer pool is generally adequate for most systems. However, users
with detailed knowledge of an application's buffer pool might benefit from
configuring multiple buffer pools.

With segments that have atypical access patterns, store blocks from those segments in
two different buffer pools: the KEEP pool and the RECYCLE pool. A segment's access
pattern may be atypical if it is constantly accessed (that is, hot) or infrequently
accessed (for example, a large segment accessed by a batch job only once a day).

Note: When the cache is resized significantly (greater than 20%),
the old cache advisory value is discarded and the cache advisory is
set to the new size. Otherwise, the old cache advisory value is
adjusted to the new size by the interpolation of existing values.

Note: The process of choosing a cache size is the same, regardless
of whether the cache is the default standard block size cache, the
KEEP or RECYCLE cache, or a nonstandard block size cache.

See Also: Oracle Database Reference and Oracle Database
Administrator's Guide for more information on using the
DB_nK_CACHE_SIZE parameters

Configuring and Using the Buffer Cache

7-12 Oracle Database Performance Tuning Guide

Multiple buffer pools let you address these differences. You can use a KEEP buffer pool
to maintain frequently accessed segments in the buffer cache, and a RECYCLE buffer
pool to prevent objects from consuming unnecessary space in the cache. When an
object is associated with a cache, all blocks from that object are placed in that cache.
Oracle Database maintains a DEFAULT buffer pool for objects that have not been
assigned to a specific buffer pool. The default buffer pool is of size DB_CACHE_SIZE.
Each buffer pool uses the same Least Recently Used (LRU) replacement policy (for
example, if the KEEP pool is not large enough to store all of the segments allocated to it,
then the oldest blocks age out of the cache).

By allocating objects to appropriate buffer pools, you can:

■ Reduce or eliminate I/Os

■ Isolate or limit an object to a separate cache

Random Access to Large Segments
A problem can occur with an LRU aging method when a very large segment is
accessed with a large or unbounded index range scan. Here, very large means large
compared to the size of the cache. Any single segment that accounts for a substantial
portion (more than 10%) of nonsequential physical reads can be considered very large.
Random reads to a large segment can cause buffers that contain data for other
segments to be aged out of the cache. The large segment ends up consuming a large
percentage of the cache, but it does not benefit from the cache.

Very frequently accessed segments are not affected by large segment reads because
their buffers are warmed frequently enough that they do not age out of the cache.
However, the problem affects warm segments that are not accessed frequently enough
to survive the buffer aging caused by the large segment reads. There are three options
for solving this problem:

1. If the object accessed is an index, find out whether the index is selective. If not,
tune the SQL statement to use a more selective index.

2. If the SQL statement is tuned, you can move the large segment into a separate
RECYCLE cache so that it does not affect the other segments. The RECYCLE cache
should be smaller than the DEFAULT buffer pool, and it should reuse buffers more
quickly than the DEFAULT buffer pool.

3. Alternatively, you can move the small warm segments into a separate KEEP cache
that is not used at all for large segments. The KEEP cache can be sized to minimize
misses in the cache. You can make the response times for specific queries more
predictable by putting the segments accessed by the queries in the KEEP cache to
ensure that they do not age out.

Oracle Real Application Clusters Instances
You can create multiple buffer pools for each database instance. The same set of buffer
pools need not be defined for each instance of the database. Among instances, the
buffer pools can be different sizes or not defined at all. Tune each instance according to
the application requirements for that instance.

Using Multiple Buffer Pools
To define a default buffer pool for an object, use the BUFFER_POOL keyword of the
STORAGE clause. This clause is valid for CREATE and ALTER TABLE, CLUSTER, and INDEX
SQL statements. After a buffer pool has been specified, all subsequent blocks read for
the object are placed in that pool.

Configuring and Using the Buffer Cache

Configuring and Using Memory 7-13

If a buffer pool is defined for a partitioned table or index, then each partition of the
object inherits the buffer pool from the table or index definition, unless you override it
with a specific buffer pool.

When the buffer pool of an object is changed using the ALTER statement, all buffers
currently containing blocks of the altered segment remain in the buffer pool they were
in before the ALTER statement. Newly loaded blocks and any blocks that have aged out
and are reloaded go into the new buffer pool.

Buffer Pool Data in V$DB_CACHE_ADVICE
You can use V$DB_CACHE_ADVICE to size all pools configured on a database instance.
Make the initial cache size estimate, run the representative workload, then simply
query the V$DB_CACHE_ADVICE view for the pool you want to use.

For example, to query data from the KEEP pool:

SELECT SIZE_FOR_ESTIMATE, BUFFERS_FOR_ESTIMATE, ESTD_PHYSICAL_READ_FACTOR,
ESTD_PHYSICAL_READS
 FROM V$DB_CACHE_ADVICE
 WHERE NAME = 'KEEP'
 AND BLOCK_SIZE = (SELECT VALUE FROM V$PARAMETER WHERE NAME =
'db_block_size')
 AND ADVICE_STATUS = 'ON';

Buffer Pool Hit Ratios
The data in V$SYSSTAT reflects the logical and physical reads for all buffer pools within
one set of statistics. To determine the hit ratio for the buffer pools individually, query
the V$BUFFER_POOL_STATISTICS view. This view maintains statistics for each pool on
the number of logical reads and writes.

The buffer pool hit ratio can be determined using the following formula:

1 - (physical_reads/(db_block_gets + consistent_gets))

The ratio can be calculated with the following query:

SELECT NAME, PHYSICAL_READS, DB_BLOCK_GETS, CONSISTENT_GETS,
 1 - (PHYSICAL_READS / (DB_BLOCK_GETS + CONSISTENT_GETS)) "Hit Ratio"
 FROM V$BUFFER_POOL_STATISTICS;

Determining Which Segments Have Many Buffers in the Pool
The V$BH view shows the data object ID of all blocks that currently reside in the SGA.
To determine which segments have many buffers in the pool, you can use one of the
two methods described in this section. You can either look at the buffer cache usage
pattern for all segments (Method 1) or examine the usage pattern of a specific segment,
(Method 2).

See Also: Oracle Database SQL Language Reference for information
about specifying BUFFER_POOL in the STORAGE clause

See Also: Oracle Database Reference for information about the
V$BUFFER_POOL_STATISTICS view

Configuring and Using the Buffer Cache

7-14 Oracle Database Performance Tuning Guide

Method 1
The following query counts the number of blocks for all segments that reside in the
buffer cache at that point in time. Depending on buffer cache size, this might require a
lot of sort space.

COLUMN OBJECT_NAME FORMAT A40
COLUMN NUMBER_OF_BLOCKS FORMAT 999,999,999,999

SELECT o.OBJECT_NAME, COUNT(*) NUMBER_OF_BLOCKS
 FROM DBA_OBJECTS o, V$BH bh
 WHERE o.DATA_OBJECT_ID = bh.OBJD
 AND o.OWNER != 'SYS'
 GROUP BY o.OBJECT_NAME
 ORDER BY COUNT(*);

OBJECT_NAME NUMBER_OF_BLOCKS
-- ----------------
OA_PREF_UNIQ_KEY 1
SYS_C002651 1
..
DS_PERSON 78
OM_EXT_HEADER 701
OM_SHELL 1,765
OM_HEADER 5,826
OM_INSTANCE 12,644

Method 2
Use the following steps to determine the percentage of the cache used by an individual
object at a given point in time:

1. Find the Oracle Database internal object number of the segment by entering the
following query:

SELECT DATA_OBJECT_ID, OBJECT_TYPE
 FROM DBA_OBJECTS
 WHERE OBJECT_NAME = UPPER('segment_name');

Because two objects can have the same name (if they are different types of objects),
use the OBJECT_TYPE column to identify the object of interest.

2. Find the number of buffers in the buffer cache for SEGMENT_NAME:

SELECT COUNT(*) BUFFERS
 FROM V$BH
 WHERE OBJD = data_object_id_value;

where data_object_id_value is from step 1.

3. Find the number of buffers in the instance:

SELECT NAME, BLOCK_SIZE, SUM(BUFFERS)
 FROM V$BUFFER_POOL
 GROUP BY NAME, BLOCK_SIZE
 HAVING SUM(BUFFERS) 0;

4. Calculate the ratio of buffers to total buffers to obtain the percentage of the cache
currently used by SEGMENT_NAME:

% cache used by segment_name = [buffers(Step2)/total buffers(Step3)]

Configuring and Using the Buffer Cache

Configuring and Using Memory 7-15

KEEP Pool
If there are certain segments in your application that are referenced frequently, then
store the blocks from those segments in a separate cache called the KEEP buffer pool.
Memory is allocated to the KEEP buffer pool by setting the parameter
DB_KEEP_CACHE_SIZE to the required size. The memory for the KEEP pool is not a subset
of the default pool. Typical segments that can be kept are small reference tables that
are used frequently. Application developers and DBAs can determine which tables are
candidates.

You can check the number of blocks from candidate tables by querying V$BH, as
described in "Determining Which Segments Have Many Buffers in the Pool" on
page 7-13.

The goal of the KEEP buffer pool is to retain objects in memory, thus avoiding I/O
operations. The size of the KEEP buffer pool, therefore, depends on the objects to be
kept in the buffer cache. You can compute an approximate size for the KEEP buffer pool
by adding the blocks used by all objects assigned to this pool. If you gather statistics
on the segments, you can query DBA_TABLES.BLOCKS and DBA_TABLES.EMPTY_BLOCKS to
determine the number of blocks used.

Calculate the hit ratio by taking two snapshots of system performance at different
times, using the previous query. Subtract the more recent values for physical reads,
block gets, and consistent gets from the older values, and use the results to
compute the hit ratio.

A buffer pool hit ratio of 100% might not be optimal. Often, you can decrease the size
of your KEEP buffer pool and still maintain a sufficiently high hit ratio. Allocate blocks
removed from the KEEP buffer pool to other buffer pools.

Each object kept in memory results in a trade-off. It is beneficial to keep
frequently-accessed blocks in the cache, but retaining infrequently-used blocks results
in less space for other, more active blocks.

RECYCLE Pool
It is possible to configure a RECYCLE buffer pool for blocks belonging to those segments
that you do not want to remain in memory. The RECYCLE pool is good for segments
that are scanned rarely or are not referenced frequently. If an application accesses the
blocks of a very large object in a random fashion, then there is little chance of reusing a
block stored in the buffer pool before it is aged out. This is true regardless of the size of
the buffer pool (given the constraint of the amount of available physical memory).
Consequently, the object's blocks need not be cached; those cache buffers can be
allocated to other objects.

Note: This technique works only for a single segment. You must
run the query for each partition for a partitioned object.

Note: The NOCACHE clause has no effect on a table in the KEEP
cache.

Note: If an object grows in size, then it might no longer fit in the
KEEP buffer pool. You will begin to lose blocks out of the cache.

Configuring and Using the Shared Pool and Large Pool

7-16 Oracle Database Performance Tuning Guide

Memory is allocated to the RECYCLE buffer pool by setting the parameter
DB_RECYCLE_CACHE_SIZE to the required size. This memory for the RECYCLE buffer pool
is not a subset of the default pool.

Do not discard blocks from memory too quickly. If the buffer pool is too small, then
blocks can age out of the cache before the transaction or SQL statement has completed
execution. For example, an application might select a value from a table, use the value
to process some data, and then update the record. If the block is removed from the
cache after the SELECT statement, then it must be read from disk again to perform the
update. The block should be retained for the duration of the user transaction.

Configuring and Using the Shared Pool and Large Pool
Oracle Database uses the shared pool to cache many different types of data. Cached
data includes the textual and executable forms of PL/SQL blocks and SQL statements,
dictionary cache data, result cache data, and other data.

Proper use and sizing of the shared pool can reduce resource consumption in at least
four ways:

■ Parse overhead is avoided if the SQL statement is in the shared pool. This saves
CPU resources on the host and elapsed time for the end user.

■ Latching resource usage is significantly reduced, which results in greater
scalability.

■ Shared pool memory requirements are reduced, because all applications use the
same pool of SQL statements and dictionary resources.

■ I/O resources are saved, because dictionary elements that are in the shared pool
do not require disk access.

This section covers the following:

■ Shared Pool Concepts

■ Using the Shared Pool Effectively

■ Sizing the Shared Pool

■ Interpreting Shared Pool Statistics

■ Using the Large Pool

■ Using CURSOR_SPACE_FOR_TIME

■ Caching Session Cursors

■ Configuring the Reserved Pool

■ Keeping Large Objects to Prevent Aging

■ Sharing Cursors for Existing Applications

■ Maintaining Connections

Note: The server result cache is an optional cache of query and
function results within the shared pool. Information related to result
caching is consolidated in "Managing the Server and Client Result
Caches" on page 7-53.

Configuring and Using the Shared Pool and Large Pool

Configuring and Using Memory 7-17

Shared Pool Concepts
The main components of the shared pool are the library cache, the dictionary cache,
and, depending on your configuration, the server result cache. The library cache stores
the executable (parsed or compiled) form of recently referenced SQL and PL/SQL
code. The dictionary cache stores data referenced from the data dictionary. The server
result cache stores the results of queries and PL/SQL function results.

Many of the caches in the shared pool automatically increase or decrease in size, as
needed, including the library cache and the dictionary cache. Old entries are aged out
to accommodate new entries when the shared pool does not have free space.

A cache miss on the data dictionary cache or library cache is more expensive than a
miss on the buffer cache. For this reason, the shared pool should be sized to ensure
that frequently used data is cached.

Several features make large memory allocations in the shared pool: for example, the
shared server, parallel query, or Recovery Manager. Oracle recommends segregating
the SGA memory used by these features by configuring a distinct memory area, called
the large pool.

Allocation of memory from the shared pool is performed in chunks. This chunking
enables large objects (over 5 KB) to be loaded into the cache without requiring a single
contiguous area. In this way, the database reduces the possibility of running out of
enough contiguous memory due to fragmentation.

Infrequently, Java, PL/SQL, or SQL cursors may make allocations out of the shared
pool that are larger than 5 KB. To allow these allocations to occur most efficiently,
Oracle Database segregates a small amount of the shared pool. This memory is used if
the shared pool does not have enough space. The segregated area of the shared pool is
called the reserved pool.

Dictionary Cache Concepts
Information stored in the data dictionary cache includes usernames, segment
information, profile data, tablespace information, and sequence numbers. The
dictionary cache also stores descriptive information, or metadata, about schema
objects. Oracle Database uses this metadata when parsing SQL cursors or during the
compilation of PL/SQL programs.

Library Cache Concepts
The library cache holds executable forms of SQL cursors, PL/SQL programs, and Java
classes. This section focuses on tuning as it relates to cursors, PL/SQL programs, and
Java classes. These are collectively referred to as application code.

When application code is run, Oracle Database attempts to reuse existing code if it has
been executed previously and can be shared. If the parsed representation of the
statement does exist in the library cache and it can be shared, then the database reuses
the existing code. This is known as a soft parse, or a library cache hit. If Oracle
Database cannot use existing code, then the database must build a new executable
version of the application code. This is known as a hard parse, or a library cache miss.

See Also:

■ "Configuring the Reserved Pool" on page 7-33 for more
information on the reserved area of the shared pool

■ "Using the Large Pool" on page 7-28 for more information on
configuring the large pool

Configuring and Using the Shared Pool and Large Pool

7-18 Oracle Database Performance Tuning Guide

See "SQL Sharing Criteria" on page 7-18 for details on when a SQL and PL/SQL
statements can be shared.

Library cache misses can occur on either the parse step or the execute step when
processing a SQL statement. When an application makes a parse call for a SQL
statement, if the parsed representation of the statement does not exist in the library
cache, then Oracle Database parses the statement and stores the parsed form in the
shared pool. This is a hard parse. You might be able to reduce library cache misses on
parse calls by ensuring that all sharable SQL statements are in the shared pool
whenever possible.

If an application makes an execute call for a SQL statement, and if the executable
portion of the previously built SQL statement has been aged out (that is, deallocated)
from the library cache to make room for another statement, then Oracle Database
implicitly reparses the statement, creating a new shared SQL area for it, and executes
it. This also results in a hard parse. Usually, you can reduce library cache misses on
execution calls by allocating more memory to the library cache.

In order to perform a hard parse, Oracle Database uses more resources than during a
soft parse. Resources used for a soft parse include CPU and library cache latch gets.
Resources required for a hard parse include additional CPU, library cache latch gets,
and shared pool latch gets. See "SQL Execution Efficiency" on page 2-13 for a
discussion of hard and soft parsing.

SQL Sharing Criteria
Oracle Database automatically determines whether a SQL statement or PL/SQL block
being issued is identical to another statement currently in the shared pool.

Oracle Database performs the following steps to compare the text of the SQL statement
to existing SQL statements in the shared pool:

1. The text of the statement is hashed. If there is no matching hash value, then the
SQL statement does not currently exist in the shared pool, and a hard parse is
performed.

2. If there is a matching hash value for an existing SQL statement in the shared pool,
then Oracle Database compares the text of the matched statement to the text of the
statement hashed to see if they are identical. The text of the SQL statements or
PL/SQL blocks must be identical, character for character, including spaces, case,
and comments. For example, the following statements cannot use the same shared
SQL area:

SELECT * FROM employees;
SELECT * FROM Employees;
SELECT * FROM employees;

Usually, SQL statements that differ only in literals cannot use the same shared SQL
area. For example, the following statements do not resolve to the same SQL area:

SELECT count(1) FROM employees WHERE manager_id = 121;
SELECT count(1) FROM employees WHERE manager_id = 247;

The only exception to this rule is when the parameter CURSOR_SHARING has been set
to FORCE. Similar statements can share SQL areas when the CURSOR_SHARING is set
to FORCE. The costs and benefits involved in using CURSOR_SHARING are explained
in "When to Set CURSOR_SHARING to a Nondefault Value" on page 7-37.

See Also: Oracle Database Reference for more information on the
CURSOR_SHARING initialization parameter

Configuring and Using the Shared Pool and Large Pool

Configuring and Using Memory 7-19

3. The objects referenced in the issued statement are compared to the referenced
objects of all existing statements in the shared pool to ensure that they are
identical.

References to schema objects in the SQL statements or PL/SQL blocks must
resolve to the same object in the same schema. For example, if two users each issue
the following SQL statement and they each have their own employees table, then
this statement is not considered identical, because the statement references
different tables for each user:

SELECT * FROM employees;

4. Bind variables in the SQL statements must match in name, data type, and length.

For example, the following statements cannot use the same shared SQL area,
because the bind variable names differ:

SELECT * FROM employees WHERE department_id = :department_id;
SELECT * FROM employees WHERE department_id = :dept_id;

Many Oracle products, such as Oracle Forms and the precompilers, convert the
SQL before passing statements to the database. Characters are uniformly changed
to uppercase, white space is compressed, and bind variables are renamed so that a
consistent set of SQL statements is produced.

5. The session's environment must be identical. For example, SQL statements must
be optimized using the same optimization goal.

Using the Shared Pool Effectively
An important purpose of the shared pool is to cache the executable versions of SQL
and PL/SQL statements. This allows multiple executions of the same SQL or PL/SQL
code to be performed without the resources required for a hard parse, which results in
significant reductions in CPU, memory, and latch usage.

The shared pool is also able to support unshared SQL in data warehousing
applications, which execute low-concurrency, high-resource SQL statements. In this
situation, using unshared SQL with literal values is recommended. Using literal values
rather than bind variables allows the optimizer to make good column selectivity
estimates, thus providing an optimal data access plan.

In an OLTP system, there are several ways to ensure efficient use of the shared pool
and related resources. Discuss the following items with application developers and
agree on strategies to ensure that the shared pool is used effectively:

■ Shared Cursors

■ Single-User Logon and Qualified Table Reference

■ Use of PL/SQL

■ Avoid Performing DDL

■ Cache Sequence Numbers

■ Cursor Access and Management

Efficient use of the shared pool in high-concurrency OLTP systems significantly
reduces the probability of parse-related application scalability issues.

See Also: Oracle Database Data Warehousing Guide

Configuring and Using the Shared Pool and Large Pool

7-20 Oracle Database Performance Tuning Guide

Shared Cursors
Reuse of shared SQL for multiple users running the same application, avoids hard
parsing. Soft parses provide a significant reduction in the use of resources such as the
shared pool and library cache latches. To share cursors, do the following:

■ Use bind variables rather than literals in SQL statements whenever possible. For
example, the following two statements cannot use the same shared area because
they do not match character for character:

SELECT employee_id FROM employees WHERE department_id = 10;
SELECT employee_id FROM employees WHERE department_id = 20;

By replacing the literals with a bind variable, only one SQL statement would
result, which could be executed twice:

SELECT employee_id FROM employees WHERE department_id = :dept_id;

■ Avoid application designs that result in large numbers of users issuing dynamic,
unshared SQL statements. Typically, the majority of data required by most users
can be satisfied using preset queries. Use dynamic SQL where such functionality is
required.

■ Ensure that users of the application do not change the optimization approach and
goal for their individual sessions.

■ Establish the following policies for application developers:

– Standardize naming conventions for bind variables and spacing conventions
for SQL statements and PL/SQL blocks.

– Consider using stored procedures whenever possible. Multiple users issuing
the same stored procedure use the same shared PL/SQL area automatically.
Because stored procedures are stored in a parsed form, their use reduces
run-time parsing.

■ For SQL statements which are identical but are not being shared, you can query
V$SQL_SHARED_CURSOR to determine why the cursors are not shared. This would
include optimizer settings and bind variable mismatches.

Single-User Logon and Qualified Table Reference
Large OLTP systems where users log in to the database as their own user ID can
benefit from explicitly qualifying the segment owner, rather than using public
synonyms. This significantly reduces the number of entries in the dictionary cache. For
example:

SELECT employee_id FROM hr.employees WHERE department_id = :dept_id;

An alternative to qualifying table names is to connect to the database through a single
user ID, rather than individual user IDs. User-level validation can take place locally on
the middle tier. Reducing the number of distinct userIDs also reduces the load on the
dictionary cache.

Note: For existing applications where rewriting the code to use
bind variables is impractical, you can use the CURSOR_SHARING
initialization parameter to avoid some of the hard parse overhead.
See "Sharing Cursors for Existing Applications" on page 7-36.

Configuring and Using the Shared Pool and Large Pool

Configuring and Using Memory 7-21

Use of PL/SQL
Using stored PL/SQL packages can overcome many of the scalability issues for
systems with thousands of users, each with individual user sign-on and public
synonyms. This is because a package is executed as the owner, rather than the caller,
which reduces the dictionary cache load considerably.

Avoid Performing DDL
Avoid performing DDL operations on high-usage segments during peak hours.
Performing DDL on such segments often results in the dependent SQL being
invalidated and hence reparsed on a later execution.

Cache Sequence Numbers
Allocating sufficient cache space for frequently updated sequence numbers
significantly reduces the frequency of dictionary cache locks, which improves
scalability. The CACHE keyword on the CREATE SEQUENCE or ALTER SEQUENCE statement
lets you configure the number of cached entries for each sequence.

Cursor Access and Management
Depending on the application tool that you are using, you can control how frequently
your application performs parse calls.

The frequency with which your application either closes cursors or reuses existing
cursors for new SQL statements affects the amount of memory used by a session and
often the amount of parsing performed by that session.

An application that closes cursors or reuses cursors (for a different SQL statement),
does not need as much session memory as an application that keeps cursors open.
Conversely, that same application may need to perform more parse calls, using extra
CPU and Oracle Database resources.

Cursors associated with SQL statements that are not executed frequently can be closed
or reused for other statements, because the likelihood of reexecuting (and reparsing)
that statement is low.

Extra parse calls are required when a cursor containing a SQL statement that will be
reexecuted is closed or reused for another statement. Had the cursor remained open, it
could have been reused without the overhead of issuing a parse call.

The ways in which you control cursor management depends on your application
development tool. The following sections introduce the methods used for some Oracle
Database t.

Note: Oracle encourages the use of definer's rights packages to
overcome scalability issues. The benefits of reduced dictionary
cache load are not as obvious with invoker's rights packages.

See Also: Oracle Database SQL Language Reference for details on
the CREATE SEQUENCE and ALTER SEQUENCE statements

See Also:

■ The tool-specific documentation for more information about
each tool

■ Oracle Database Concepts for more information on cursors
shared SQL

Configuring and Using the Shared Pool and Large Pool

7-22 Oracle Database Performance Tuning Guide

Reducing Parse Calls with OCI When using Oracle Call Interface (OCI), do not close and
reopen cursors that you will be reexecuting. Instead, leave the cursors open, and
change the literal values in the bind variables before execution.

Avoid reusing statement handles for new SQL statements when the existing SQL
statement will be reexecuted in the future.

Reducing Parse Calls with the Oracle Precompilers When using the Oracle precompilers,
you can control when cursors are closed by setting precompiler clauses. In Oracle
mode, the clauses are as follows:

■ HOLD_CURSOR = YES

■ RELEASE_CURSOR = NO

■ MAXOPENCURSORS = desired_value

Oracle Database recommends that you not use ANSI mode, in which the values of
HOLD_CURSOR and RELEASE_CURSOR are switched.

The precompiler clauses can be specified on the precompiler command line or within
the precompiler program. With these clauses, you can employ different strategies for
managing cursors during execution of the program.

Reducing Parse Calls with SQLJ Prepare the statement, then reexecute the statement with
the new values for the bind variables. The cursor stays open for the duration of the
session.

Reducing Parse Calls with JDBC Avoid closing cursors if they will be reexecuted, because
the new literal values can be bound to the cursor for reexecution. Alternatively, JDBC
provides a SQL statement cache within the JDBC client using the setStmtCacheSize()
method. Using this method, JDBC creates a SQL statement cache that is local to the
JDBC program.

Reducing Parse Calls with Oracle Forms With Oracle Forms, it is possible to control some
aspects of cursor management. You can exercise this control either at the trigger level,
at the form level, or at run time.

Sizing the Shared Pool
When configuring a brand new instance, it is impossible to know the correct size to
make the shared pool cache. Typically, a DBA makes a first estimate for the cache size,
then runs a representative workload on the instance, and examines the relevant
statistics to see whether the cache is under-configured or over-configured.

For most OLTP applications, shared pool size is an important factor in application
performance. Shared pool size is less important for applications that issue a very
limited number of discrete SQL statements, such as decision support systems (DSS).

If the shared pool is too small, then extra resources are used to manage the limited
amount of available space. This consumes CPU and latching resources, and causes
contention. Optimally, the shared pool should be just large enough to cache frequently
accessed objects. Having a significant amount of free memory in the shared pool is a

See Also: Your language's precompiler manual for more
information on these clauses

See Also: Oracle Database JDBC Developer's Guide for more
information on using the JDBC SQL statement cache

Configuring and Using the Shared Pool and Large Pool

Configuring and Using Memory 7-23

waste of memory. When examining the statistics after the database has been running, a
DBA should check that none of these mistakes are in the workload.

Shared Pool: Library Cache Statistics
When sizing the shared pool, the goal is to ensure that SQL statements that will be
executed multiple times are cached in the library cache, without allocating too much
memory.

The statistic that shows the amount of reloading (that is, reparsing) of a previously
cached SQL statement that was aged out of the cache is the RELOADS column in the
V$LIBRARYCACHE view. In an application that reuses SQL effectively, on a system with
an optimal shared pool size, the RELOADS statistic will have a value near zero.

The INVALIDATIONS column in V$LIBRARYCACHE view shows the number of times
library cache data was invalidated and had to be reparsed. INVALIDATIONS should be
near zero. This means SQL statements that could have been shared were invalidated
by some operation (for example, a DDL). This statistic should be near zero on OLTP
systems during peak loads.

Another key statistic is the amount of free memory in the shared pool at peak times.
The amount of free memory can be queried from V$SGASTAT, looking at the free
memory for the shared pool. Optimally, free memory should be as low as possible,
without causing any reloads on the system.

Lastly, a broad indicator of library cache health is the library cache hit ratio. This value
should be considered along with the other statistics discussed in this section and other
data, such as the rate of hard parsing and whether there is any shared pool or library
cache latch contention.

These statistics are discussed in more detail in the following section.

V$LIBRARYCACHE
You can monitor statistics reflecting library cache activity by examining the dynamic
performance view V$LIBRARYCACHE. These statistics reflect all library cache activity
after the most recent instance startup.

Each row in this view contains statistics for one type of item kept in the library cache.
The item described by each row is identified by the value of the NAMESPACE column.
Rows with the following NAMESPACE values reflect library cache activity for SQL
statements and PL/SQL blocks:

■ SQL AREA

■ TABLE/PROCEDURE

■ BODY

■ TRIGGER

Rows with other NAMESPACE values reflect library cache activity for object definitions
that Oracle Database uses for dependency maintenance.

To examine each namespace individually, use the following query:

SELECT NAMESPACE, PINS, PINHITS, RELOADS, INVALIDATIONS
 FROM V$LIBRARYCACHE
 ORDER BY NAMESPACE;

See Also: Oracle Database Reference for information about the
dynamic performance V$LIBRARYCACHE view

Configuring and Using the Shared Pool and Large Pool

7-24 Oracle Database Performance Tuning Guide

The output of this query could look like the following:

NAMESPACE PINS PINHITS RELOADS INVALIDATIONS
--------------- ---------- ---------- ---------- -------------
BODY 8870 8819 0 0
CLUSTER 393 380 0 0
INDEX 29 0 0 0
OBJECT 0 0 0 0
PIPE 55265 55263 0 0
SQL AREA 21536413 21520516 11204 2
TABLE/PROCEDURE 10775684 10774401 0 0
TRIGGER 1852 1844 0 0

To calculate the library cache hit ratio, use the following formula:

Library Cache Hit Ratio = sum(pinhits) / sum(pins)

Using the library cache hit ratio formula, the cache hit ratio is the following:

SUM(PINHITS)/SUM(PINS)

 .999466248

Examining the returned data leads to the following observations:

■ For the SQL AREA namespace, there were 21,536,413 executions.

■ 11,204 of the executions resulted in a library cache miss, requiring Oracle Database
t implicitly reparse a statement or block or reload an object definition because it
aged out of the library cache (that is, a RELOAD).

■ SQL statements were invalidated two times, again causing library cache misses.

■ The hit percentage is about 99.94%. This means that only .06% of executions
resulted in reparsing.

The amount of free memory in the shared pool is reported in V$SGASTAT. Report the
current value from this view using the following query:

SELECT * FROM V$SGASTAT
 WHERE NAME = 'free memory'
 AND POOL = 'shared pool';

The output will be similar to the following:

POOL NAME BYTES
----------- -------------------------- ----------
shared pool free memory 4928280

If free memory is always available in the shared pool, then increasing the size of the
pool offers little or no benefit. However, just because the shared pool is full does not
necessarily mean there is a problem. It may be indicative of a well-configured system.

Note: These queries return data from instance startup, rather than
statistics gathered during an interval; interval statistics can better
identify the problem.

See Also: Chapter 6, "Automatic Performance Diagnostics" to
learn how to gather information over an interval

Configuring and Using the Shared Pool and Large Pool

Configuring and Using Memory 7-25

Shared Pool Advisory Statistics
The amount of memory available for the library cache can drastically affect the parse
rate of an Oracle database instance. The shared pool advisory statistics provide a
database administrator with information about library cache memory, allowing a DBA
to predict how changes in the size of the shared pool can affect aging out of objects in
the shared pool.

The shared pool advisory statistics track the library cache's use of shared pool memory
and predict how the library cache will behave in shared pools of different sizes. Two
fixed views provide the information to determine how much memory the library cache
is using, how much is currently pinned, how much is on the shared pool's LRU list,
and how much time might be lost or gained by changing the size of the shared pool.

The following views of the shared pool advisory statistics are available. These views
display any data when shared pool advisory is on. These statistics reset when the
advisory is turned off.

V$SHARED_POOL_ADVICE This view displays information about estimated parse time
in the shared pool for different pool sizes. The sizes range from 10% of the current
shared pool size or the amount of pinned library cache memory, whichever is higher,
to 200% of the current shared pool size, in equal intervals. The value of the interval
depends on the current size of the shared pool.

V$LIBRARY_CACHE_MEMORY This view displays information about memory allocated
to library cache memory objects in different namespaces. A memory object is an
internal grouping of memory for efficient management. A library cache object may
consist of one or more memory objects.

V$JAVA_POOL_ADVICE and V$JAVA_LIBRARY_CACHE_MEMORY These views contain Java
pool advisory statistics that track information about library cache memory used for
Java and predict how changes in the size of the Java pool can affect the parse rate.

V$JAVA_POOL_ADVICE displays information about estimated parse time in the Java pool
for different pool sizes. The sizes range from 10% of the current Java pool size or the
amount of pinned Java library cache memory, whichever is higher, to 200% of the
current Java pool size, in equal intervals. The value of the interval depends on the
current size of the Java pool.

Shared Pool: Dictionary Cache Statistics
Typically, if the shared pool is adequately sized for the library cache, it will also be
adequate for the dictionary cache data.

Misses on the data dictionary cache are to be expected in some cases. On instance
startup, the data dictionary cache contains no data. Therefore, any SQL statement
issued is likely to result in cache misses. As more data is read into the cache, the
likelihood of cache misses decreases. Eventually, the database reaches a steady state, in
which the most frequently used dictionary data is in the cache. At this point, very few
cache misses occur.

Each row in the V$ROWCACHE view contains statistics for a single type of data dictionary
item. These statistics reflect all data dictionary activity since the most recent instance

See Also: Oracle Database Reference for information about the
dynamic performance V$SHARED_POOL_ADVICE,
V$LIBRARY_CACHE_MEMORY, V$JAVA_POOL_ADVICE, and
V$JAVA_LIBRARY_CACHE_MEMORY view

Configuring and Using the Shared Pool and Large Pool

7-26 Oracle Database Performance Tuning Guide

startup. The columns in the V$ROWCACHE view that reflect the use and effectiveness of
the data dictionary cache are listed in Table 7–2.

Use the following query to monitor the statistics in the V$ROWCACHE view over a period
while your application is running. The derived column PCT_SUCC_GETS can be
considered the item-specific hit ratio:

column parameter format a21
column pct_succ_gets format 999.9
column updates format 999,999,999

SELECT parameter
 , sum(gets)
 , sum(getmisses)
 , 100*sum(gets - getmisses) / sum(gets) pct_succ_gets
 , sum(modifications) updates
 FROM V$ROWCACHE
 WHERE gets > 0
 GROUP BY parameter;

The output of this query will be similar to the following:

PARAMETER SUM(GETS) SUM(GETMISSES) PCT_SUCC_GETS UPDATES
--------------------- ---------- -------------- ------------- ------------
dc_database_links 81 1 98.8 0
dc_free_extents 44876 20301 54.8 40,453
dc_global_oids 42 9 78.6 0
dc_histogram_defs 9419 651 93.1 0
dc_object_ids 29854 239 99.2 52
dc_objects 33600 590 98.2 53
dc_profiles 19001 1 100.0 0
dc_rollback_segments 47244 16 100.0 19
dc_segments 100467 19042 81.0 40,272
dc_sequence_grants 119 16 86.6 0
dc_sequences 26973 16 99.9 26,811
dc_synonyms 6617 168 97.5 0
dc_tablespace_quotas 120 7 94.2 51
dc_tablespaces 581248 10 100.0 0
dc_used_extents 51418 20249 60.6 42,811
dc_user_grants 76082 18 100.0 0
dc_usernames 216860 12 100.0 0
dc_users 376895 22 100.0 0

Table 7–2 V$ROWCACHE Columns

Column Description

PARAMETER Identifies a particular data dictionary item. For each row, the
value in this column is the item prefixed by dc_. For example, in
the row that contains statistics for file descriptions, this column
has the value dc_files.

GETS Shows the total number of requests for information about the
corresponding item. For example, in the row that contains
statistics for file descriptions, this column has the total number
of requests for file description data.

GETMISSES Shows the number of data requests which were not satisfied by
the cache, requiring an I/O.

MODIFICATIONS Shows the number of times data in the dictionary cache was
updated.

Configuring and Using the Shared Pool and Large Pool

Configuring and Using Memory 7-27

Examining the data returned by the sample query leads to these observations:

■ There are large numbers of misses and updates for used extents, free extents, and
segments. This implies that the instance had a significant amount of dynamic
space extension.

■ Based on the percentage of successful gets, and comparing that statistic with the
actual number of gets, the shared pool is large enough to store dictionary cache
data adequately.

It is also possible to calculate an overall dictionary cache hit ratio using the following
formula; however, summing up the data over all the caches will lose the finer
granularity of data:

SELECT (SUM(GETS - GETMISSES - FIXED)) / SUM(GETS) "ROW CACHE" FROM V$ROWCACHE;

Interpreting Shared Pool Statistics
Shared pool statistics indicate adjustments that can be made. The following sections
describe some of your choices.

Increasing Memory Allocation
Increasing the amount of memory for the shared pool increases the amount of memory
available to the library cache, the dictionary cache, and the result cache (see "Managing
Server Result Cache Memory with Initialization Parameters" on page 7-56).

Allocating Additional Memory for the Library Cache To ensure that shared SQL areas remain
in the cache after their SQL statements are parsed, increase the amount of memory
available to the library cache until the V$LIBRARYCACHE.RELOADS value is near zero. To
increase the amount of memory available to the library cache, increase the value of the
initialization parameter SHARED_POOL_SIZE. The maximum value for this parameter
depends on your operating system. This measure reduces implicit reparsing of SQL
statements and PL/SQL blocks on execution.

Allocating Additional Memory to the Data Dictionary Cache Examine cache activity by
monitoring the GETS and GETMISSES columns. For frequently accessed dictionary
caches, the ratio of total GETMISSES to total GETS should be less than 10% or 15%,
depending on the application.

Consider increasing the amount of memory available to the cache if all of the
following are true:

■ Your application is using the shared pool effectively. See "Using the Shared Pool
Effectively" on page 7-19.

■ Your system has reached a steady state, any of the item-specific hit ratios are low,
and there are a large numbers of gets for the caches with low hit ratios.

Increase the amount of memory available to the data dictionary cache by increasing
the value of the initialization parameter SHARED_POOL_SIZE.

Reducing Memory Allocation
If your RELOADS are near zero, and if you have a small amount of free memory in the
shared pool, then the shared pool is probably large enough to hold the most frequently
accessed data.

If you always have significant amounts of memory free in the shared pool, and if you
would like to allocate this memory elsewhere, then you might be able to reduce the
shared pool size and still maintain good performance.

Configuring and Using the Shared Pool and Large Pool

7-28 Oracle Database Performance Tuning Guide

To make the shared pool smaller, reduce the size of the cache by changing the value for
the parameter SHARED_POOL_SIZE.

Using the Large Pool
Unlike the shared pool, the large pool does not have an LRU list. Oracle Database does
not attempt to age objects out of the large pool.

You should consider configuring a large pool if your instance uses any of the
following:

■ Parallel query

Parallel query uses shared pool memory to cache parallel execution message
buffers.

■ Recovery Manager

Recovery Manager uses the shared pool to cache I/O buffers during backup and
restore operations. For I/O server processes and backup and restore operations,
Oracle Database allocates buffers that are a few hundred kilobytes in size.

■ Shared server

In a shared server architecture, the session memory for each client process is
included in the shared pool.

Tuning the Large Pool and Shared Pool for the Shared Server Architecture
As Oracle Database allocates shared pool memory for shared server session memory,
the amount of shared pool memory available for the library cache and dictionary cache
decreases. If you allocate this session memory from a different pool, then Oracle
Database can use the shared pool primarily for caching shared SQL and not incur the
performance overhead from shrinking the shared SQL cache.

Oracle Database recommends using the large pool to allocate the shared server-related
User Global Area (UGA), rather that using the shared pool. This is because Oracle
Database uses the shared pool to allocate System Global Area (SGA) memory for other
purposes, such as shared SQL and PL/SQL procedures. Using the large pool instead of
the shared pool decreases fragmentation of the shared pool.

To store shared server-related UGA in the large pool, specify a value for the
initialization parameter LARGE_POOL_SIZE. To see which pool (shared pool or large
pool) the memory for an object resides in, check the column POOL in V$SGASTAT. The
large pool is not configured by default; its minimum value is 300K. If you do not
configure the large pool, then Oracle Database uses the shared pool for shared server
user session memory.

See Also:

■ Oracle Database VLDB and Partitioning Guide to learn how to
perform parallel execution

■ Oracle Database Data Warehousing Guide for more information on
sizing the large pool with parallel query

See Also: Oracle Database Backup and Recovery User's Guide for
more information on sizing the large pool when using Recovery
Manager

Configuring and Using the Shared Pool and Large Pool

Configuring and Using Memory 7-29

Configure the size of the large pool based on the number of simultaneously active
sessions. Each application requires a different amount of memory for session
information, and your configuration of the large pool or SGA should reflect the
memory requirement. For example, assuming that the shared server requires 200K to
300K to store session information for each active session. If you anticipate 100 active
sessions simultaneously, then configure the large pool to be 30M, or increase the
shared pool accordingly if the large pool is not configured.

Determining an Effective Setting for Shared Server UGA Storage The exact amount of UGA
that Oracle Database uses depends on each application. To determine an effective
setting for the large or shared pools, observe UGA use for a typical user and multiply
this amount by the estimated number of user sessions.

Even though use of shared memory increases with shared servers, the total amount of
memory use decreases. This is because there are fewer processes; therefore, Oracle
Database uses less PGA memory with shared servers when compared to dedicated
server environments.

Checking System Statistics in the V$SESSTAT View Oracle Database collects statistics on
total memory used by a session and stores them in the dynamic performance view
V$SESSTAT. Table 7–3 lists these statistics.

To find the value, query V$STATNAME. If you are using a shared server, you can use the
following query to decide how much larger to make the shared pool. Issue the
following queries while your application is running:

Note: If a shared server architecture is used, then Oracle Database
allocates some fixed amount of memory (about 10K) for each
configured session from the shared pool, even if you have
configured the large pool. The CIRCUITS initialization parameter
specifies the maximum number of concurrent shared server
connections that the database allows.

See Also:

■ Oracle Database Concepts for more information about the large
pool

■ Oracle Database Reference for complete information about
initialization parameters

Note: For best performance with sorts using shared servers, set
SORT_AREA_SIZE and SORT_AREA_RETAINED_SIZE to the same value.
This keeps the sort result in the large pool instead of having it
written to disk.

Table 7–3 V$SESSTAT Statistics Reflecting Memory

Statistic Description

session UGA memory The value of this statistic is the amount of memory in
bytes allocated to the session.

Session UGA memory max The value of this statistic is the maximum amount of
memory in bytes ever allocated to the session.

Configuring and Using the Shared Pool and Large Pool

7-30 Oracle Database Performance Tuning Guide

SELECT SUM(VALUE) || ' BYTES' "TOTAL MEMORY FOR ALL SESSIONS"
 FROM V$SESSTAT, V$STATNAME
 WHERE NAME = 'session uga memory'
 AND V$SESSTAT.STATISTIC# = V$STATNAME.STATISTIC#;

SELECT SUM(VALUE) || ' BYTES' "TOTAL MAX MEM FOR ALL SESSIONS"
 FROM V$SESSTAT, V$STATNAME
 WHERE NAME = 'session uga memory max'
 AND V$SESSTAT.STATISTIC# = V$STATNAME.STATISTIC#;

These queries also select from the dynamic performance view V$STATNAME to obtain
internal identifiers for session memory and max session memory. The results of
these queries could look like the following:

TOTAL MEMORY FOR ALL SESSIONS

157125 BYTES

TOTAL MAX MEM FOR ALL SESSIONS

417381 BYTES

The result of the first query indicates that the memory currently allocated to all
sessions is 157,125 bytes. This value is the total memory with a location that depends
on how the sessions are connected to Oracle. If the sessions are connected to dedicated
server processes, then this memory is part of the memories of the user processes. If the
sessions are connected to shared server processes, then this memory is part of the
shared pool.

The result of the second query indicates that the sum of the maximum size of the
memory for all sessions is 417,381 bytes. The second result is greater than the first
because some sessions have deallocated memory since allocating their maximum
amounts.

If you use a shared server architecture, you can use the result of either of these queries
to determine how much larger to make the shared pool. The first value is likely to be a
better estimate than the second unless nearly all sessions are likely to reach their
maximum allocations at the same time.

Limiting Memory Use for Each User Session by Setting PRIVATE_SGA You can set the
PRIVATE_SGA resource limit to restrict the memory used by each client session from the
SGA. PRIVATE_SGA defines the number of bytes of memory used from the SGA by a
session. However, this parameter is used rarely, because most DBAs do not limit SGA
consumption on a user-by-user basis.

Reducing Memory Use with Three-Tier Connections If you have a high number of connected
users, then you can reduce memory usage by implementing three-tier connections.
This by-product of using a transaction process (TP) monitor is feasible only with pure
transactional models because locks and uncommitted DMLs cannot be held between
calls. A shared server environment offers the following advantages:

■ It is much less restrictive of the application design than a TP monitor.

■ It dramatically reduces operating system process count and context switches by
enabling users to share a pool of servers.

See Also: Oracle Database SQL Language Reference, ALTER
RESOURCE COST statement, for more information about setting the
PRIVATE_SGA resource limit

Configuring and Using the Shared Pool and Large Pool

Configuring and Using Memory 7-31

■ It substantially reduces overall memory usage, even though more SGA is used in
shared server mode.

Using CURSOR_SPACE_FOR_TIME
If you have no library cache misses, then you might be able to accelerate execution
calls by setting the value of the initialization parameter CURSOR_SPACE_FOR_TIME to
true. This parameter specifies whether a cursor can be deallocated from the library
cache to make room for a new SQL statement. CURSOR_SPACE_FOR_TIME has the
following values meanings:

■ If CURSOR_SPACE_FOR_TIME is set to false (the default), then a cursor can be
deallocated from the library cache regardless of whether application cursors
associated with its SQL statement are open. In this case, Oracle Database must
verify that the cursor containing the SQL statement is in the library cache.

■ If CURSOR_SPACE_FOR_TIME is set to true, then a cursor can be deallocated only
when all application cursors associated with its statement are closed. In this case,
Oracle Database need not verify that a cursor is in the cache because it cannot be
deallocated while an application cursor associated with it is open.

Setting the value of the parameter to true saves Oracle Database a small amount of
time and can slightly improve the performance of execution calls. This value also
prevents the deallocation of cursors until associated application cursors are closed.

Do not set the value of CURSOR_SPACE_FOR_TIME to true if you have found library
cache misses on execution calls. Such library cache misses indicate that the shared pool
is not large enough to hold the shared SQL areas of all concurrently open cursors. If
the value is true, and if the shared pool has no space for a new SQL statement, then
the statement cannot be parsed, and Oracle Database returns an error saying that there
is no more shared memory. If the value is false, and if there is no space for a new
statement, then Oracle Database deallocates an existing cursor. Although deallocating
a cursor could result in a library cache miss later (only if the cursor is reexecuted), it is
preferable to an error halting your application because a SQL statement cannot be
parsed.

Do not set the value of CURSOR_SPACE_FOR_TIME to true if the amount of memory
available to each user for private SQL areas is scarce. This value also prevents the
deallocation of private SQL areas associated with open cursors. If the private SQL
areas for all concurrently open cursors fills your available memory so that there is no
space for a new SQL statement, then the statement cannot be parsed. Oracle Database
returns an error indicating that there is not enough memory.

Caching Session Cursors
The session cursor cache contains closed session cursors for SQL and PL/SQL,
including recursive SQL.

This cache can be useful for applications that use Oracle Forms because switching
from one form to another closes all session cursors associated with the first form. If an
application repeatedly issues parse calls on the same set of SQL statements, then
reopening session cursors can degrade performance. By reusing cursors, the database
can reduce parse times, leading to faster overall execution times.

How the Session Cursor Cache Works
A session cursor represents an instantiation of a shared child cursor, which is stored
in the shared pool, for a specific session. Each session cursor stores a reference to a
child cursor that it has instantiated.

Configuring and Using the Shared Pool and Large Pool

7-32 Oracle Database Performance Tuning Guide

Oracle Database checks the library cache to determine whether more than three parse
requests have been issued on a given statement. If a cursor has been closed three times,
then Oracle Database assumes that the session cursor associated with the statement
should be cached and moves the cursor into the session cursor cache.

Subsequent requests to parse a SQL statement by the same session search an array for
pointers to the shared cursor. If the pointer is found, then the database dereferences
the pointer to determine whether the shared cursor exists. To reuse a cursor from the
cache, the cache manager checks whether the cached states of the cursor match the
current session and system environment.

An LRU algorithm removes entries in the session cursor cache to make room for new
entries when needed. The cache also uses an internal time-based algorithm to evict
cursors that have been idle for an certain amount of time.

Enabling the Session Cursor Cache
The following initialization parameters are relevant to the cursor cache:

■ SESSION_CACHED_CURSORS

This parameter sets the maximum number of cached closed cursors for each
session. The default setting is 50. You can use this parameter to prevent a session
from opening an excessive number of cursors, thereby filling the library cache or
forcing excessive hard parses.

■ OPEN_CURSORS

This parameter specifies the maximum number of cursors a session can have open
simultaneously. For example, if OPEN_CURSORS is set to 1000, then each session can
have up to 1000 cursors open at one time.

SESSION_CACHED_CURSORS and OPEN_CURSORS parameters are independent. For
example, you can set SESSION_CACHED_CURSORS higher than OPEN_CURSORS because
session cursors are not cached in an open state.

To enable caching of session cursors:

1. Determine the maximum number of session cursors to keep in the cache.

2. Do one of the following:

■ To enable caching statically, set the initialization parameter
SESSION_CACHED_CURSORS to the number determined in the previous step.

■ To enable caching dynamically, execute the following statement:

ALTER SESSION SET SESSION_CACHED_CURSORS = value;

Tuning the Session Cursor Cache
You can query V$SYSSTAT to determine whether the session cursor cache is sufficiently
large for the database instance.

To tune the session cursor cache:

1. Determine how many cursors are currently cached in a particular session.

For example, enter the following query for session 35:

Note: Reuse of a cached cursor still registers as a parse, even though
it is not a hard parse.

Configuring and Using the Shared Pool and Large Pool

Configuring and Using Memory 7-33

sys@DBS1> SELECT a.value curr_cached, p.value max_cached,
 2 s.username, s.sid, s.serial#
 3 FROM v$sesstat a, v$statname b, v$session s, v$parameter2 p
 4 WHERE a.statistic# = b.statistic# and s.sid=a.sid and a.sid=&sid
 5 AND p.name='session_cached_cursors'
 6 AND b.name = 'session cursor cache count';
Enter value for sid: 35
old 4: WHERE a.statistic# = b.statistic# and s.sid=a.sid and a.sid=&sid
new 4: WHERE a.statistic# = b.statistic# and s.sid=a.sid and a.sid=35

CURR_CACHED MAX_CACHED USERNAME SID SERIAL#
----------- ---------- -------- ----- ----------
 49 50 APP 35 263

The preceding result shows that the number of cursors currently cached for
session 35 is close to the maximum.

2. Find the percentage of parse calls that found a cursor in the session cursor cache.

For example, enter the following query for session 35:

SQL> SELECT cach.value cache_hits, prs.value all_parses,
 2 round((cach.value/prs.value)*100,2) as "% found in cache"
 3 FROM v$sesstat cach, v$sesstat prs, v$statname nm1, v$statname nm2
 4 WHERE cach.statistic# = nm1.statistic#
 5 AND nm1.name = 'session cursor cache hits'
 6 AND prs.statistic#=nm2.statistic#
 7 AND nm2.name= 'parse count (total)'
 8 AND cach.sid= &sid and prs.sid= cach.sid;
Enter value for sid: 35
old 8: AND cach.sid= &sid and prs.sid= cach.sid
new 8: AND cach.sid= 35 and prs.sid= cach.sid

CACHE_HITS ALL_PARSES % found in cache
---------- ---------- ----------------
 34 700 4.57

The preceding result shows that the number of hits in the session cursor cache for
session 35 is low compared to the total number of parses.

3. Consider increasing SESSION_CACHED_CURSORS when the following statements are
true:

■ The session cursor cache count is close to the maximum.

■ The percentage of session cursor cache hits is low relative to the total parses.

■ The application repeatedly makes parse calls for the same queries.

In this example, setting SESSION_CACHED_CURSORS to 100 may help boost
performance.

Configuring the Reserved Pool
Although Oracle Database breaks down very large requests for memory into smaller
chunks, on some systems there might still be a requirement to find a contiguous chunk
(for example, over 5 KB) of memory. (The default minimum reserved pool allocation is
4,400 bytes.)

If there is not enough free space in the shared pool, then Oracle Database must search
for and free enough memory to satisfy this request. This operation could conceivably

Configuring and Using the Shared Pool and Large Pool

7-34 Oracle Database Performance Tuning Guide

hold the latch resource for detectable periods of time, causing minor disruption to
other concurrent attempts at memory allocation.

Thus, Oracle Database internally reserves a small memory area in the shared pool that
the database can use if the shared pool does not have enough space. This reserved pool
makes allocation of large chunks more efficient.

By default, Oracle Database configures a small reserved pool. The database can use
this memory for operations such as PL/SQL and trigger compilation or for temporary
space while loading Java objects. After the memory allocated from the reserved pool is
freed, it returns to the reserved pool.

You probably will not need to change the default amount of space Oracle Database
reserves. However, if necessary, the reserved pool size can be changed by setting the
SHARED_POOL_RESERVED_SIZE initialization parameter. This parameter sets aside space
in the shared pool for unusually large allocations.

For large allocations, Oracle Database attempts to allocate space in the shared pool in
the following order:

1. From the unreserved part of the shared pool.

2. From the reserved pool. If there is not enough space in the unreserved part of the
shared pool, then Oracle Database checks whether the reserved pool has enough
space.

3. From memory. If there is not enough space in the unreserved and reserved parts of
the shared pool, then Oracle Database attempts to free enough memory for the
allocation. It then retries the unreserved and reserved parts of the shared pool.

Using SHARED_POOL_RESERVED_SIZE
The default value for SHARED_POOL_RESERVED_SIZE is 5% of the SHARED_POOL_SIZE.
This means that, by default, the reserved list is configured.

If you set SHARED_POOL_RESERVED_SIZE to more than half of SHARED_POOL_SIZE, then
Oracle Database signals an error. Oracle Database does not let you reserve too much
memory for the reserved pool. The amount of operating system memory, however,
might constrain the size of the shared pool. In general, set
SHARED_POOL_RESERVED_SIZE to 10% of SHARED_POOL_SIZE. For most systems, this
value is sufficient if you have tuned the shared pool. If you increase this value, then
the database takes memory from the shared pool. (This reduces the amount of
unreserved shared pool memory available for smaller allocations.)

Statistics from the V$SHARED_POOL_RESERVED view help you tune these parameters. On
a system with ample free memory to increase the size of the SGA, the goal is to have
the value of REQUEST_MISSES equal zero. If the system is constrained for operating
system memory, then the goal is to not have REQUEST_FAILURES or at least prevent this
value from increasing.

If you cannot achieve these target values, then increase the value for
SHARED_POOL_RESERVED_SIZE. Also, increase the value for SHARED_POOL_SIZE by the
same amount, because the reserved list is taken from the shared pool.

When SHARED_POOL_RESERVED_SIZE Is Too Small
The reserved pool is too small when the value for REQUEST_FAILURES is more than zero
and increasing. To resolve this, increase the value for the SHARED_POOL_RESERVED_SIZE

See Also: Oracle Database Reference for details on setting the
LARGE_POOL_SIZE parameter

Configuring and Using the Shared Pool and Large Pool

Configuring and Using Memory 7-35

and SHARED_POOL_SIZE accordingly. The settings you select for these parameters
depend on your system's SGA size constraints.

Increasing the value of SHARED_POOL_RESERVED_SIZE increases the amount of memory
available on the reserved list without having an effect on users who do not allocate
memory from the reserved list.

When SHARED_POOL_RESERVED_SIZE Is Too Large
Too much memory might have been allocated to the reserved list if:

■ REQUEST_MISSES is zero or not increasing

■ FREE_SPACE is greater than or equal to 50% of SHARED_POOL_RESERVED_SIZE
minimum

If either of these conditions is true, then decrease the value for
SHARED_POOL_RESERVED_SIZE.

When SHARED_POOL_SIZE is Too Small
The V$SHARED_POOL_RESERVED fixed view can also indicate when the value for
SHARED_POOL_SIZE is too small. This can be the case if REQUEST_FAILURES is greater
than zero and increasing.

If you have enabled the reserved list, then decrease the value for
SHARED_POOL_RESERVED_SIZE. If you have not enabled the reserved list, then you could
increase SHARED_POOL_SIZE.

Keeping Large Objects to Prevent Aging
After an entry has been loaded into the shared pool, it cannot be moved. Sometimes,
as entries are loaded and aged, the free memory can become fragmented.

Use the PL/SQL package DBMS_SHARED_POOL to manage the shared pool. Shared SQL
and PL/SQL areas age out of the shared pool according to a least recently used LRU
algorithm, similar to database buffers. To improve performance and prevent reparsing,
you might want to prevent large SQL or PL/SQL areas from aging out of the shared
pool.

The DBMS_SHARED_POOL package enables you to keep objects in shared memory, so that
they do not age out with the normal LRU mechanism. By using the DBMS_SHARED_POOL
package and by loading the SQL and PL/SQL areas before memory fragmentation
occurs, the database can keep objects in memory. This technique ensures that memory
is available, and it prevents the sudden, inexplicable slowdowns in user response time
that occur when SQL and PL/SQL areas are accessed after aging out.

The DBMS_SHARED_POOL package is useful for the following:

■ When loading large PL/SQL objects, such as the STANDARD and DIUTIL packages

When large PL/SQL objects are loaded, user response time may be affected if
smaller objects that must age out of the shared pool to make room. In some cases,
there might be insufficient memory to load the large objects.

■ Frequently executed triggers

You might want to keep compiled triggers on frequently used tables in the shared
pool.

■ Sequences

Configuring and Using the Shared Pool and Large Pool

7-36 Oracle Database Performance Tuning Guide

Sequence numbers are lost when a sequence ages out of the shared pool.
DBMS_SHARED_POOL keeps sequences in the shared pool, thus preventing the loss of
sequence numbers.

To use the DBMS_SHARED_POOL package to pin a SQL or PL/SQL area, complete the
following steps:

1. Decide which packages or cursors to pin in memory.

2. Start up the database.

3. Make the call to DBMS_SHARED_POOL.KEEP to pin your objects.

This procedure ensures that your system does not run out of shared memory
before the kept objects are loaded. By pinning the objects early in the life of the
instance, you prevent memory fragmentation that could result from pinning a
large portion of memory in the middle of the shared pool.

Sharing Cursors for Existing Applications
In the context of SQL parsing, an identical statement is a statement whose text is
identical to another, character for character, including spaces, case, and comments. A
similar statement is identical except for the values of some literals.

The parse phase compares the statement text with statements in the shared pool to
determine whether the statement can be shared. If the initialization parameter
CURSOR_SHARING=EXACT (default), and if a statement in the pool is not identical, then
the database does not share the SQL area. Each statement has its own parent cursor
and its own execution plan based on the literal in the statement.

How Similar Statements Can Share SQL Areas
When SQL statements use literals rather than bind variables, a nondefault setting for
CURSOR_SHARING enables the database to replace literals with system-generated bind
variables. Using this technique, the database can sometimes reduce the number of
parent cursors in the shared SQL area.

When CURSOR_SHARING is set to a nondefault value, the database performs the
following steps during the parse:

1. Searches for an identical statement in the shared pool

If an identical statement is found, then the database skips to Step 3. Otherwise, the
database proceeds to the next step.

2. Searches for a similar statement in the shared pool

If a similar statement is not found, then the database performs a hard parse. If a
similar statement is found, then the database proceeds to the next step.

3. Proceeds through the remaining steps of the parse phase to ensure that the
execution plan of the existing statement is applicable to the new statement

If the plan is not applicable, then the database performs a hard parse. If the plan is
applicable, then the database proceeds to the next step.

4. Shares the SQL area of the statement

See Also: Oracle Database PL/SQL Packages and Types Reference for
specific information on using DBMS_SHARED_POOL procedures

Configuring and Using the Shared Pool and Large Pool

Configuring and Using Memory 7-37

When to Set CURSOR_SHARING to a Nondefault Value
The best practice is to write sharable SQL and use the default of EXACT for
CURSOR_SHARING. However, for applications with many similar statements, setting
CURSOR_SHARING can significantly improve cursor sharing, resulting in reduced
memory usage, faster parses, and reduced latch contention. Consider this approach
when statements in the shared pool differ only in the values of literals, and when
response time is poor because of a very high number of library cache misses.

If stored outlines were generated with CURSOR_SHARING set to EXACT, then the database
does not use stored outlines generated with literals. To avoid this problem, generate
outlines with CURSOR_SHARING set to FORCE and use the CREATE_STORED_OUTLINES
parameter.

Setting CURSOR_SHARING to FORCE has the following drawbacks:

■ The database must perform extra work during the soft parse to find a similar
statement in the shared pool.

■ There is an increase in the maximum lengths (as returned by DESCRIBE) of any
selected expressions that contain literals in a SELECT statement. However, the
actual length of the data returned does not change.

■ Star transformation is not supported.

When deciding whether to set CURSOR_SHARING to FORCE, consider the performance
implications of each setting. When CURSOR_SHARING is set to FORCE, the database uses
one parent cursor and one child cursor for each distinct SQL statement. The database
uses the same plan for each execution of the same statement. For example, consider the
following statement:

SELECT * FROM hr.employees WHERE employee_id = 101

If FORCE is used, then the database optimizes this statement as if it contained a bind
variable and uses bind peeking to estimate cardinality. Statements that differ only in
the bind variable share the same execution plan.

Note: The database does not perform literal replacement on the
ORDER BY clause because it is not semantically correct to consider the
constant column number as a literal. The column number in the ORDER
BY clause affects the query plan and execution, so the database cannot
share two cursors having different column numbers.

See Also: "SQL Sharing Criteria" on page 7-18 for more details on
the various checks performed

Note: Starting with Oracle Database 11g Release 2, setting the value
of the CURSOR_SHARING to SIMILAR is obsolete. Consider adaptive
cursor sharing instead.

See Also:

■ "Adaptive Cursor Sharing" on page 11-9

■ "Enabling Query Optimizer Features" on page 11-36

■ Oracle Database Reference to learn about the CURSOR_SHARING
initialization parameter

Configuring and Using the Redo Log Buffer

7-38 Oracle Database Performance Tuning Guide

Maintaining Connections
Large OLTP applications with middle tiers should maintain connections, rather than
connecting and disconnecting for each database request. Maintaining persistent
connections saves CPU resources and database resources, such as latches.

Configuring and Using the Redo Log Buffer
Server processes making changes to data blocks in the buffer cache generate redo data
into the log buffer. LGWR begins writing to copy entries from the redo log buffer to
the online redo log if any of the following are true:

■ The log buffer becomes at least one-third full

■ LGWR is posted by a server process performing a COMMIT or ROLLBACK

■ DBWR posts LGWR to do so

When LGWR writes redo entries from the redo log buffer to a redo log file or disk,
user processes can then copy new entries over the entries in memory that have been
written to disk. LGWR usually writes fast enough to ensure that space is available in
the buffer for new entries, even when access to the redo log is heavy.

A larger buffer makes it more likely that there is space for new entries, and also gives
LGWR the opportunity to efficiently write out redo records (too small a log buffer on a
system with large updates means that LGWR is continuously flushing redo to disk so
that the log buffer remains two-thirds empty).

On computers with fast processors and relatively slow disks, the processors might be
filling the rest of the buffer in the time it takes the redo log writer to move a portion of
the buffer to disk. A larger log buffer can temporarily mask the effect of slower disks
in this situation. Alternatively, you can do one of the following:

■ Improve the checkpointing or archiving process

■ Improve the performance of log writer (perhaps by moving all online logs to fast
raw devices)

Good usage of the redo log buffer is a simple matter of:

■ Batching commit operations for batch jobs, so that log writer is able to write redo
log entries efficiently

■ Using NOLOGGING operations when you are loading large quantities of data

The size of the redo log buffer is determined by the initialization parameter
LOG_BUFFER. You cannot modify the log buffer size after instance startup.

See Also: "Operating System Statistics" on page 5-4 for a
description of important operating system statistics

PGA Memory Management

Configuring and Using Memory 7-39

Figure 7–2 Redo Log Buffer

Sizing the Log Buffer
Applications that insert, modify, or delete large volumes of data usually need to
change the default log buffer size. The log buffer is small compared with the total SGA
size, and a modestly sized log buffer can significantly enhance throughput on systems
that perform many updates.

A reasonable first estimate for such systems is to the default value, which is:

MAX(0.5M, (128K * number of cpus))

On most systems, sizing the log buffer larger than 1M does not provide any
performance benefit. Increasing the log buffer size does not have any negative
implications on performance or recoverability. It merely uses extra memory.

Log Buffer Statistics
The statistic REDO BUFFER ALLOCATION RETRIES reflects the number of times a user
process waits for space in the redo log buffer. This statistic can be queried through the
dynamic performance view V$SYSSTAT.

Use the following query to monitor these statistics over a period while your
application is running:

SELECT NAME, VALUE
 FROM V$SYSSTAT
 WHERE NAME = 'redo buffer allocation retries';

The value of redo buffer allocation retries should be near zero over an interval.
If this value increments consistently, then processes have had to wait for space in the
redo log buffer. The wait can be caused by the log buffer being too small or by
checkpointing. Increase the size of the redo log buffer, if necessary, by changing the
value of the initialization parameter LOG_BUFFER. The value of this parameter is
expressed in bytes. Alternatively, improve the checkpointing or archiving process.

Another data source is to check whether the log buffer space wait event is not a
significant factor in the wait time for the instance; if not, the log buffer size is most
likely adequate.

PGA Memory Management
The Program Global Area (PGA) is a private memory region containing data and
control information for a server process. Access to it is exclusive to the server process

Being written to
disk by LGWR

Being filled by
DML users

PGA Memory Management

7-40 Oracle Database Performance Tuning Guide

and is read and written only by the Oracle Database code acting on behalf of it. An
example of such information is the run-time area of a cursor. Each time a cursor is
executed, a new run-time area is created for that cursor in the PGA memory region of
the server process executing that cursor.

For complex queries (for example, decision support queries), a big portion of the
run-time area is dedicated to work areas allocated by memory intensive operators,
such as the following:

■ Sort-based operators, such as ORDER BY, GROUP BY, ROLLUP, and window functions

■ Hash-join

■ Bitmap merge

■ Bitmap create

■ Write buffers used by bulk load operations

A sort operator uses a work area (the sort area) to perform the in-memory sort of a set
of rows. Similarly, a hash-join operator uses a work area (the hash area) to build a hash
table from its left input.

The size of a work area can be controlled and tuned. Generally, bigger work areas can
significantly improve the performance of a particular operator at the cost of higher
memory consumption. Ideally, the size of a work area is big enough that it can
accommodate the input data and auxiliary memory structures allocated by its
associated SQL operator. This is known as the optimal size of a work area. When the
size of the work area is smaller than optimal, the response time increases, because an
extra pass is performed over part of the input data. This is known as the one-pass size
of the work area. Under the one-pass threshold, when the size of a work area is far too
small compared to the input data size, multiple passes over the input data are needed.
This could dramatically increase the response time of the operator. This is known as
the multi-pass size of the work area. For example, a serial sort operation that must sort
10 GB of data needs a little more than 10 GB to run optimal and at least 40 MB to run
one-pass. If this sort gets less that 40 MB, then it must perform several passes over the
input data.

The goal is to have most work areas running with an optimal size (for example, more
than 90% or even 100% for pure OLTP systems), while a smaller fraction of them run
with a one-pass size (for example, less than 10%). Multi-pass execution should be
avoided. Even for DSS systems running large sorts and hash-joins, the memory
requirement for the one-pass executions is relatively small. A system configured with a
reasonable amount of PGA memory should not need to perform multiple passes over
the input data.

Automatic PGA memory management simplifies and improves the way PGA memory
is allocated. By default, PGA memory management is enabled. In this mode, Oracle
Database dynamically adjusts the size of the portion of the PGA memory dedicated to
work areas, based on 20% of the SGA memory size. The minimum value is 10MB.

Note: Part of the run-time area can be located in the SGA when
using shared servers.

PGA Memory Management

Configuring and Using Memory 7-41

Configuring Automatic PGA Memory
When running under the automatic PGA memory management mode, sizing of work
areas for all sessions becomes automatic and the *_AREA_SIZE parameters are ignored
by all sessions running in that mode. At any given time, the total amount of PGA
memory available to active work areas in the instance is automatically derived from
the PGA_AGGREGATE_TARGET initialization parameter. This amount is set to the value of
PGA_AGGREGATE_TARGET minus the amount of PGA memory allocated by other
components of the system (for example, PGA memory allocated by sessions). The
resulting PGA memory is then assigned to individual active work areas, based on their
specific memory requirements.

Under automatic PGA memory management mode, the main goal of Oracle Database
is to honor the PGA_AGGREGATE_TARGET limit set by the DBA, by controlling
dynamically the amount of PGA memory allotted to SQL work areas. At the same
time, Oracle Database t to maximize the performance of all the memory-intensive SQL
operations, by maximizing the number of work areas that are using an optimal
amount of PGA memory (cache memory). The rest of the work areas are executed in
one-pass mode, unless the PGA memory limit set by the DBA with the parameter
PGA_AGGREGATE_TARGET is so low that multi-pass execution is required to reduce even
more the consumption of PGA memory and honor the PGA target limit.

When configuring a brand new instance, it is hard to know precisely the appropriate
setting for PGA_AGGREGATE_TARGET. You can determine this setting in three stages:

1. Make a first estimate for PGA_AGGREGATE_TARGET. By default, Oracle Database uses
20% of the SGA size. However, this initial setting may be too low for a large DSS
system.

2. Run a representative workload on the instance and monitor performance, using
PGA statistics collected by Oracle Database, to see whether the maximum PGA
size is under-configured or over-configured.

3. Tune PGA_AGGREGATE_TARGET, using Oracle PGA advice statistics.

The following sections explain this in detail:

■ Setting PGA_AGGREGATE_TARGET Initially

■ Monitoring the Performance of the Automatic PGA Memory Management

■ Tuning PGA_AGGREGATE_TARGET

Note: For backward compatibility, automatic PGA memory
management can be disabled by setting the value of the
PGA_AGGREGATE_TARGET initialization parameter to 0. When
automatic PGA memory management is disabled, the maximum
size of a work area can be sized with the associated _AREA_SIZE
parameter, such as the SORT_AREA_SIZE initialization parameter.

See Also: For information about the PGA_AGGREGATE_TARGET,
SORT_AREA_SIZE, HASH_AREA_SIZE, BITMAP_MERGE_AREA_SIZE and
CREATE_BITMAP_AREA_SIZE initialization parameters, see Oracle
Database Reference.

See Also: Oracle Database Reference for information about the
PGA_AGGREGATE_TARGET initialization parameter

PGA Memory Management

7-42 Oracle Database Performance Tuning Guide

Setting PGA_AGGREGATE_TARGET Initially
The value of the PGA_AGGREGATE_TARGET initialization parameter (for example 100000
KB, 2500 MB, or 50 GB) should be set based on the total amount of memory available
for the Oracle database instance. This value can then be tuned and dynamically
modified at the instance level. Example 7–2 illustrates a typical situation.

Example 7–2 Initial Setting of PGA_AGGREGATE_TARGET

Assume that an Oracle database instance is configured to run on a system with 4 GB of
physical memory. Part of that memory should be left for the operating system and
other non-Oracle applications running on the same hardware system. You might
decide to dedicate only 80% (3.2 GB) of the available memory to the Oracle database
instance.

You must then divide the resulting memory between the SGA and the PGA.

■ For OLTP systems, the PGA memory typically accounts for a small fraction of the
total memory available (for example, 20%), leaving 80% for the SGA.

■ For DSS systems running large, memory-intensive queries, PGA memory can
typically use up to 70% of that total (up to 2.2 GB in this example).

Good initial values for the parameter PGA_AGGREGATE_TARGET might be:

■ For OLTP: PGA_AGGREGATE_TARGET = (total_mem * 80%) * 20%

■ For DSS: PGA_AGGREGATE_TARGET = (total_mem * 80%) * 50%

where total_mem is the total amount of physical memory available on the system.

In this example, with a value of total_mem equal to 4 GB, you can initially set
PGA_AGGREGATE_TARGET to 1600 MB for a DSS system and to 655 MB for an OLTP
system.

Monitoring the Performance of the Automatic PGA Memory Management
Before starting the tuning process, you need to know how to monitor and interpret the
key statistics collected by Oracle Database to help in assessing the performance of the
automatic PGA memory management component. Several dynamic performance
views are available for this purpose:

■ V$PGASTAT

■ V$PROCESS

■ V$PROCESS_MEMORY

■ V$SQL_WORKAREA_HISTOGRAM

■ V$SQL_WORKAREA_ACTIVE

■ V$SQL_WORKAREA

V$PGASTAT This view gives instance-level statistics on the PGA memory usage and the
automatic PGA memory manager. For example:

SELECT * FROM V$PGASTAT;

The output of this query might look like the following:

NAME VALUE UNIT
-- ---------- ------------
aggregate PGA target parameter 41156608 bytes
aggregate PGA auto target 21823488 bytes

PGA Memory Management

Configuring and Using Memory 7-43

global memory bound 2057216 bytes
total PGA inuse 16899072 bytes
total PGA allocated 35014656 bytes
maximum PGA allocated 136795136 bytes
total freeable PGA memory 524288 bytes
PGA memory freed back to OS 1713242112 bytes
total PGA used for auto workareas 0 bytes
maximum PGA used for auto workareas 2383872 bytes
total PGA used for manual workareas 0 bytes
maximum PGA used for manual workareas 8470528 bytes
over allocation count 291
bytes processed 2124600320 bytes
extra bytes read/written 39949312 bytes
cache hit percentage 98.15 percent

The main statistics displayed in V$PGASTAT are as follows:

■ aggregate PGA target parameter: This is the current value of the initialization
parameter PGA_AGGREGATE_TARGET. The default value is 20% of the SGA size. If you
set this parameter to 0, automatic management of the PGA memory is disabled.

■ aggregate PGA auto target: This gives the amount of PGA memory Oracle
Database can use for work areas running in automatic mode. This amount is
dynamically derived from the value of the parameter PGA_AGGREGATE_TARGET and
the current work area workload. Hence, it is continuously adjusted by Oracle. If
this value is small compared to the value of PGA_AGGREGATE_TARGET, then a lot of
PGA memory is used by other components of the system (for example, PL/SQL or
Java memory) and little is left for sort work areas. You must ensure that enough
PGA memory is left for work areas running in automatic mode.

■ global memory bound: This gives the maximum size of a work area executed in
AUTO mode. This value is continuously adjusted by Oracle Database to reflect the
current state of the work area workload. The global memory bound generally
decreases when the number of active work areas is increasing in the system. As a
rule of thumb, the value of the global bound should not decrease to less than one
megabyte. If it does, then the value of PGA_AGGREGATE_TARGET should probably be
increased.

■ total PGA allocated: This gives the current amount of PGA memory allocated
by the instance. Oracle Database tries to keep this number less than the value of
PGA_AGGREGATE_TARGET. However, it is possible for the PGA allocated to exceed
that value by a small percentage and for a short period, when the work area
workload is increasing very rapidly or when the initialization parameter
PGA_AGGREGATE_TARGET is set to a too small value.

■ total freeable PGA memory: This indicates how much allocated PGA memory
which can be freed.

■ total PGA used for auto workareas: This indicates how much PGA memory is
currently consumed by work areas running under automatic memory
management mode. This number can be used to determine how much memory is
consumed by other consumers of the PGA memory (for example, PL/SQL or
Java):

PGA other = total PGA allocated - total PGA used for auto workareas

■ over allocation count: This statistic is cumulative from instance startup.
Over-allocating PGA memory can happen if the value of PGA_AGGREGATE_TARGET is
too small to accommodate the PGA other component in the previous equation plus
the minimum memory required to execute the work area workload. When this

PGA Memory Management

7-44 Oracle Database Performance Tuning Guide

happens, Oracle Database cannot honor the initialization parameter
PGA_AGGREGATE_TARGET, and extra PGA memory must be allocated. If
over-allocation occurs, you should increase the value of PGA_AGGREGATE_TARGET
using the information provided by the advice view V$PGA_TARGET_ADVICE.

■ total bytes processed: This is the number of bytes processed by
memory-intensive SQL operators since instance startup. For example, the number
of byte processed is the input size for a sort operation. This number is used to
compute the cache hit percentage metric.

■ extra bytes read/written: When a work area cannot run optimally, one or more
extra passes is performed over the input data. extra bytes read/written
represents the number of bytes processed during these extra passes since instance
startup. This number is also used to compute the cache hit percentage. Ideally, it
should be small compared to total bytes processed.

■ cache hit percentage: This metric is computed by Oracle Database to reflect the
performance of the PGA memory component. It is cumulative from instance
startup. A value of 100% means that all work areas executed by the system since
instance startup have used an optimal amount of PGA memory. This is, of course,
ideal but rarely happens except maybe for pure OLTP systems. In reality, some
work areas run one-pass or even multi-pass, depending on the overall size of the
PGA memory. When a work area cannot run optimally, one or more extra passes is
performed over the input data. This reduces the cache hit percentage in
proportion to the size of the input data and the number of extra passes performed.
Example 7–3 shows how cache hit percentage is affected by extra passes.

Example 7–3 Calculating Cache Hit Percentage

Consider a simple example: Four sort operations have been executed, three were small
(1 MB of input data) and one was bigger (100 MB of input data). The total number of
bytes processed (BP) by the four operations is 103 MB. If one of the small sorts runs
one-pass, an extra pass over 1 MB of input data is performed. This 1 MB value is the
number of extra bytes read/written, or EBP. The cache hit percentage is calculated
by the following formula:

BP x 100 / (BP + EBP)

The cache hit percentage in this case is 99.03%, almost 100%. This value reflects the
fact that only one of the small sorts had to perform an extra pass while all other sorts
were able to run optimally. Hence, the cache hit percentage is almost 100%, because
this extra pass over 1 MB represents a tiny overhead. However, if the big sort is the one
to run one-pass, then EBP is 100 MB instead of 1 MB, and the cache hit percentage
falls to 50.73%, because the extra pass has a much bigger impact.

V$PROCESS This view has one row for each Oracle process connected to the instance.
The columns PGA_USED_MEM, PGA_ALLOC_MEM, PGA_FREEABLE_MEM and PGA_MAX_MEM can
be used to monitor the PGA memory usage of these processes. For example:

SELECT PROGRAM, PGA_USED_MEM, PGA_ALLOC_MEM, PGA_FREEABLE_MEM, PGA_MAX_MEM
 FROM V$PROCESS;

The output of this query might look like the following:

PROGRAM PGA_USED_MEM PGA_ALLOC_MEM PGA_FREEABLE_MEM PGA_MAX_MEM
-------------------------------------- ------------ ------------- ---------------- -----------
PSEUDO 0 0 0 0
oracle@examp1690 (PMON) 314540 685860 0 685860
oracle@examp1690 (MMAN) 313992 685860 0 685860
oracle@examp1690 (DBW0) 696720 1063112 0 1063112

PGA Memory Management

Configuring and Using Memory 7-45

oracle@examp1690 (LGWR) 10835108 22967940 0 22967940
oracle@examp1690 (CKPT) 352716 710376 0 710376
oracle@examp1690 (SMON) 541508 948004 0 1603364
oracle@examp1690 (RECO) 323688 685860 0 816932
oracle@examp1690 (q001) 233508 585128 0 585128
oracle@examp1690 (QMNC) 314332 685860 0 685860
oracle@examp1690 (MMON) 885756 1996548 393216 1996548
oracle@examp1690 (MMNL) 315068 685860 0 685860
oracle@examp1690 (q000) 330872 716200 65536 716200
oracle@examp1690 (TNS V1-V3) 635768 928024 0 1255704
oracle@examp1690 (CJQ0) 533476 1013540 0 1144612
oracle@examp1690 (TNS V1-V3) 430648 812108 0 812108

V$PROCESS_MEMORY This view displays dynamic PGA memory usage by named
component categories for each Oracle process. This view will contain up to six rows
for each Oracle process, one row for:

■ Each named component category: Java, PL/SQL, OLAP, and SQL.

■ Freeable: memory that has been allocated to the process by the operating system,
but not to a specific category.

■ Other: memory that has been allocated to a category, but not to one of the named
categories.

You can use the columns CATEGORY, ALLOCATED, USED, and MAX_ALLOCATED to
dynamically monitor the PGA memory usage of Oracle processes for each of the six
categories.

V$SQL_WORKAREA_HISTOGRAM This view shows the number of work areas executed
with optimal memory size, one-pass memory size, and multi-pass memory size since
instance startup. Statistics in this view are subdivided into buckets that are defined by
the optimal memory requirement of the work area. Each bucket is identified by a
range of optimal memory requirements specified by the values of the columns
LOW_OPTIMAL_SIZE and HIGH_OPTIMAL_SIZE.

Example 7–3 and Example 7–4 show two ways of using V$SQL_WORKAREA_HISTOGRAM.

Example 7–4 Querying V$SQL_WORKAREA_HISTOGRAM: Non-empty Buckets

Consider a sort operation that requires 3 MB of memory to run optimally (cached).
Statistics about the work area used by this sort are placed in the bucket defined by
LOW_OPTIMAL_SIZE = 2097152 (2 MB) and HIGH_OPTIMAL_SIZE = 4194303 (4 MB
minus 1 byte), because 3 MB falls within that range of optimal sizes. Statistics are
segmented by work area size, because the performance impact of running a work area
in optimal, one-pass or multi-pass mode depends mainly on the size of that work area.

The following query shows statistics for all non-empty buckets. Empty buckets are
removed with the predicate WHERE TOTAL_EXECUTION!= 0.

SELECT LOW_OPTIMAL_SIZE/1024 low_kb,
 (HIGH_OPTIMAL_SIZE+1)/1024 high_kb,
 OPTIMAL_EXECUTIONS, ONEPASS_EXECUTIONS, MULTIPASSES_EXECUTIONS
 FROM V$SQL_WORKAREA_HISTOGRAM
 WHERE TOTAL_EXECUTIONS != 0;

The result of the query might look like the following:

See Also: Oracle Database Reference for more information on the
V$PROCESS_MEMORY view.

PGA Memory Management

7-46 Oracle Database Performance Tuning Guide

LOW_KB HIGH_KB OPTIMAL_EXECUTIONS ONEPASS_EXECUTIONS MULTIPASSES_EXECUTIONS
------ ------- ------------------ ------------------ ----------------------
 8 16 156255 0 0
 16 32 150 0 0
 32 64 89 0 0
 64 128 13 0 0
 128 256 60 0 0
 256 512 8 0 0
 512 1024 657 0 0
 1024 2048 551 16 0
 2048 4096 538 26 0
 4096 8192 243 28 0
 8192 16384 137 35 0
 16384 32768 45 107 0
 32768 65536 0 153 0
 65536 131072 0 73 0
131072 262144 0 44 0
262144 524288 0 22 0

The query result shows that, in the 1024 KB to 2048 KB bucket, 551 work areas used an
optimal amount of memory, while 16 ran in one-pass mode and none ran in multi-pass
mode. It also shows that all work areas under 1 MB were able to run in optimal mode.

Example 7–5 Querying V$SQL_WORKAREA_HISTOGRAM: Percent Optimal

You can also use V$SQL_WORKAREA_HISTOGRAM to find the percentage of times work
areas were executed in optimal, one-pass, or multi-pass mode since startup. This query
only considers work areas of a certain size, with an optimal memory requirement of at
least 64 KB.

SELECT optimal_count, round(optimal_count*100/total, 2) optimal_perc,
 onepass_count, round(onepass_count*100/total, 2) onepass_perc,
 multipass_count, round(multipass_count*100/total, 2) multipass_perc
FROM
 (SELECT decode(sum(total_executions), 0, 1, sum(total_executions)) total,
 sum(OPTIMAL_EXECUTIONS) optimal_count,
 sum(ONEPASS_EXECUTIONS) onepass_count,
 sum(MULTIPASSES_EXECUTIONS) multipass_count
 FROM v$sql_workarea_histogram
 WHERE low_optimal_size >= 64*1024);

The output of this query might look like the following:

OPTIMAL_COUNT OPTIMAL_PERC ONEPASS_COUNT ONEPASS_PERC MULTIPASS_COUNT MULTIPASS_PERC
------------- ------------ ------------- ------------ --------------- --------------
 2239 81.63 504 18.37 0 0

This result shows that 81.63% of these work areas have been able to run using an
optimal amount of memory. The rest (18.37%) ran one-pass. None of them ran
multi-pass. Such behavior is preferable, for the following reasons:

■ Multi-pass mode can severely degrade performance. A high number of multi-pass
work areas has an exponentially adverse effect on the response time of its
associated SQL operator.

■ Running one-pass does not require a large amount of memory; only 22 MB is
required to sort 1 GB of data in one-pass mode.

V$SQL_WORKAREA_ACTIVE You can use this view to display the work areas that are
active (or executing) in the instance. Small active sorts (under 64 KB) are excluded
from the view. Use this view to precisely monitor the size of all active work areas and

PGA Memory Management

Configuring and Using Memory 7-47

to determine if these active work areas spill to a temporary segment. Example 7–6
shows a typical query of this view:

Example 7–6 Querying V$SQL_WORKAREA_ACTIVE

SELECT to_number(decode(SID, 65535, NULL, SID)) sid,
 operation_type OPERATION,
 trunc(EXPECTED_SIZE/1024) ESIZE,
 trunc(ACTUAL_MEM_USED/1024) MEM,
 trunc(MAX_MEM_USED/1024) "MAX MEM",
 NUMBER_PASSES PASS,
 trunc(TEMPSEG_SIZE/1024) TSIZE
 FROM V$SQL_WORKAREA_ACTIVE
 ORDER BY 1,2;

The output of this query might look like the following:
SID OPERATION ESIZE MEM MAX MEM PASS TSIZE
--- ----------------- --------- --------- --------- ----- -------
 8 GROUP BY (SORT) 315 280 904 0
 8 HASH-JOIN 2995 2377 2430 1 20000
 9 GROUP BY (SORT) 34300 22688 22688 0
 11 HASH-JOIN 18044 54482 54482 0
 12 HASH-JOIN 18044 11406 21406 1 120000

This output shows that session 12 (column SID) is running a hash-join having its work
area running in one-pass mode (PASS column). This work area is currently using 11406
KB of memory (MEM column) and has used, in the past, up to 21406 KB of PGA memory
(MAX MEM column). It has also spilled to a temporary segment of size 120000 KB. Finally,
the column ESIZE indicates the maximum amount of memory that the PGA memory
manager expects this hash-join to use. This maximum is dynamically computed by the
PGA memory manager according to workload.

When a work area is deallocated—that is, when the execution of its associated SQL
operator is complete—the work area is automatically removed from the
V$SQL_WORKAREA_ACTIVE view.

V$SQL_WORKAREA Oracle Database maintains cumulative work area statistics for each
loaded cursor whose execution plan uses one or more work areas. Every time a work
area is deallocated, the V$SQL_WORKAREA table is updated with execution statistics for
that work area.

V$SQL_WORKAREA can be joined with V$SQL to relate a work area to a cursor. It can even
be joined to V$SQL_PLAN to precisely determine which operator in the plan uses a work
area.

Example 7–7 shows three typical queries on the V$SQL_WORKAREA dynamic view:

Example 7–7 Querying V$SQL_WORKAREA

The following query finds the top 10 work areas requiring most cache memory:

SELECT *
FROM (SELECT workarea_address, operation_type, policy, estimated_optimal_size
 FROM V$SQL_WORKAREA
 ORDER BY estimated_optimal_size DESC)
 WHERE ROWNUM <= 10;

The following query finds the cursors with one or more work areas that have been
executed in one or even multiple passes:

col sql_text format A80 wrap

PGA Memory Management

7-48 Oracle Database Performance Tuning Guide

SELECT sql_text, sum(ONEPASS_EXECUTIONS) onepass_cnt,
 sum(MULTIPASSES_EXECUTIONS) mpass_cnt
FROM V$SQL s, V$SQL_WORKAREA wa
WHERE s.address = wa.address
GROUP BY sql_text
HAVING sum(ONEPASS_EXECUTIONS+MULTIPASSES_EXECUTIONS)>0;

Using the hash value and address of a particular cursor, the following query displays
the cursor execution plan, including information about the associated work areas.

col "O/1/M" format a10
col name format a20
SELECT operation, options, object_name name, trunc(bytes/1024/1024) "input(MB)",
 trunc(last_memory_used/1024) last_mem,
 trunc(estimated_optimal_size/1024) optimal_mem,
 trunc(estimated_onepass_size/1024) onepass_mem,
 decode(optimal_executions, null, null,
 optimal_executions||'/'||onepass_executions||'/'||
 multipasses_executions) "O/1/M"
 FROM V$SQL_PLAN p, V$SQL_WORKAREA w
 WHERE p.address=w.address(+)
 AND p.hash_value=w.hash_value(+)
 AND p.id=w.operation_id(+)
 AND p.address='88BB460C'
 AND p.hash_value=3738161960;

OPERATION OPTIONS NAME input(MB) LAST_MEM OPTIMAL_ME ONEPASS_ME O/1/M
------------ -------- -------- --------- -------- ---------- ---------- ------
SELECT STATE
HASH GROUP BY 4582 8 16 16 16/0/0
HASH JOIN SEMI 4582 5976 5194 2187 16/0/0
TABLE ACCESS FULL ORDERS 51
TABLE ACCESS FUL LINEITEM 1000

You can get the address and hash value from the V$SQL view by specifying a pattern in
the query. For example:

SELECT address, hash_value
 FROM V$SQL
WHERE sql_text LIKE '%my_pattern%';

Tuning PGA_AGGREGATE_TARGET
To help you tune the initialization parameter PGA_AGGREGATE_TARGET, Oracle Database
provides the V$PGA_TARGET_ADVICE and V$PGA_TARGET_ADVICE_HISTOGRAM views. By
examining these views, you no longer need to use an empirical approach to tune the
value of PGA_AGGREGATE_TARGET. Instead, you can use these views to determine how
key PGA statistics will be impacted if you change the value of PGA_AGGREGATE_TARGET.

In both views, values of PGA_AGGREGATE_TARGET used for the prediction are derived
from fractions and multiples of the current value of that parameter, to assess possible
higher and lower values. Values used for the prediction range from 10 MB to a
maximum of 256 GB.

Oracle Database generates PGA advice performance views by recording the workload
history and then simulating this history for different values of PGA_AGGREGATE_TARGET.
The simulation process happens in the background and continuously updates the
workload history to produce the simulation result. You can view the result at any time
by querying V$PGA_TARGET_ADVICE or V$PGA_TARGET_ADVICE_HISTOGRAM.

PGA Memory Management

Configuring and Using Memory 7-49

To enable automatic generation of PGA advice performance views, make sure the
following parameters are set:

■ PGA_AGGREGATE_TARGET, to enable automatic PGA memory management (see
"Setting PGA_AGGREGATE_TARGET Initially" on page 7-42).

■ STATISTICS_LEVEL. Set this to TYPICAL (the default) or ALL; setting this parameter
to BASIC turns off generation of PGA performance advice views.

The content of these PGA advice performance views is reset at instance startup or
when PGA_AGGREGATE_TARGET is altered.

V$PGA_TARGET_ADVICE This view predicts how the statistics cache hit percentage
and over allocation count in V$PGASTAT will be impacted if you change the value of
the initialization parameter PGA_AGGREGATE_TARGET. Example 7–8 shows a typical
query of this view.

Example 7–8 Querying V$PGA_TARGET_ADVICE

SELECT round(PGA_TARGET_FOR_ESTIMATE/1024/1024) target_mb,
 ESTD_PGA_CACHE_HIT_PERCENTAGE cache_hit_perc,
 ESTD_OVERALLOC_COUNT
 FROM V$PGA_TARGET_ADVICE;

The output of this query might look like the following:

 TARGET_MB CACHE_HIT_PERC ESTD_OVERALLOC_COUNT
---------- -------------- --------------------
 63 23 367
 125 24 30
 250 30 3
 375 39 0
 500 58 0
 600 59 0
 700 59 0
 800 60 0
 900 60 0
 1000 61 0
 1500 67 0
 2000 76 0
 3000 83 0
 4000 85 0

The result of the this query can be plotted as shown in Figure 7–3:

Note: Simulation cannot include all factors of real execution, so
derived statistics may not exactly match up with real performance
statistics. Always monitor the system after changing
PGA_AGGREGATE_TARGET to verify that the new performance is what
you expect.

PGA Memory Management

7-50 Oracle Database Performance Tuning Guide

Figure 7–3 Graphical Representation of V$PGA_TARGET_ADVICE

The curve shows how the PGA cache hit percentage improves as the value of
PGA_AGGREGATE_TARGET increases. The shaded zone in the graph is the over
allocation zone, where the value of the column ESTD_OVERALLOCATION_COUNT is
nonzero. It indicates that PGA_AGGREGATE_TARGET is too small to even meet the
minimum PGA memory needs. If PGA_AGGREGATE_TARGET is set within the over
allocation zone, the memory manager will over-allocate memory and actual PGA
memory consumed will be more than the limit you set. It is therefore meaningless to
set a value of PGA_AGGREGATE_TARGET in that zone. In this particular example
PGA_AGGREGATE_TARGET should be set to at least 375 MB.

Cache
Hit

Percentage

85.00

80.00

75.00

70.00

65.00

60.00

55.00

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

0 500MB 1GB 1.5GB 2GB

PGA_AGGREGATE_TARGET

2.5GB 3GB 3.5GB 4GB

Optimal Value

Current setting

PGA Memory Management

Configuring and Using Memory 7-51

Beyond the over allocation zone, the value of the PGA cache hit percentage
increases rapidly. This is due to an increase in the number of work areas which run
optimally or one-pass and a decrease in the number of multi-pass executions. At some
point, around 500 MB in this example, an inflection in the curve corresponds to the
point where most (probably all) work areas can run optimally or at least one-pass.
After this inflection, the cache hit percentage keeps increasing, though at a lower
pace, up to the point where it starts to taper off and shows only slight improvement
with increase in PGA_AGGREGATE_TARGET. In Figure 7–3, this happens when
PGA_AGGREGATE_TARGET reaches 3 GB. At that point, the cache hit percentage is 83%
and only improves marginally (by 2%) with one extra gigabyte of PGA memory. In this
example, 3 GB is probably the optimal value for PGA_AGGREGATE_TARGET.

Ideally, PGA_AGGREGATE_TARGET should be set at the optimal value, or at least to the
maximum value possible in the region beyond the over allocation zone. As a rule of
thumb, the PGA cache hit percentage should be higher than 60%, because at 60% the
system is almost processing double the number of bytes it actually needs to process in
an ideal situation. Using this particular example, it makes sense to set
PGA_AGGREGATE_TARGET to at least 500 MB and as close as possible to 3 GB. But the
right setting for the parameter PGA_AGGREGATE_TARGET depends on how much memory
can be dedicated to the PGA component. Generally, adding PGA memory requires
reducing memory for some SGA components, like the shared pool or buffer cache,
because the overall memory dedicated to the instance is often bound by the amount of
physical memory available on the system. Thus, any decisions to increase PGA
memory must be taken in the larger context of the available memory in the system and
the performance of the various SGA components (which you monitor with shared
pool advisory and buffer cache advisory statistics). If you cannot take memory from
the SGA, consider adding physical memory to the computer.

How to Tune PGA_AGGREGATE_TARGET You can use the following steps as a tuning
guideline in tuning PGA_AGGREGATE_TARGET:

1. Set PGA_AGGREGATE_TARGET so there is no memory over-allocation; avoid setting it
in the over-allocation zone. In Example 7–8, PGA_AGGREGATE_TARGET should be set
to at least 375 MB.

2. After eliminating over-allocations, aim at maximizing the PGA cache hit
percentage, based on your response-time requirement and memory constraints. In
Example 7–8, assume you have a limit X on memory you can allocate to PGA.

■ If this limit X is beyond the optimal value, then you would set
PGA_AGGREGATE_TARGET to the optimal value. After this point, the incremental
benefit with higher memory allocation to PGA_AGGREGATE_TARGET is very small.
In Example 7–8, if you have 10 GB to dedicate to PGA, set
PGA_AGGREGATE_TARGET to 3 GB, the optimal value. The remaining 7 GB is
dedicated to the SGA.

Note: Although the theoretical maximum for the PGA cache hit
percentage is 100%, there is a practical limit on the maximum size
of a work area, which may prevent this theoretical maximum from
being reached, even if you further increase PGA_AGGREGATE_TARGET.
This should happen only in large DSS systems where the optimal
memory requirement is large and might cause the value of the
cache hit percentage to taper off at a lower percentage, like 90%.

See Also: "Shared Pool Advisory Statistics" on page 7-25 and
"Sizing the Buffer Cache" on page 7-7

PGA Memory Management

7-52 Oracle Database Performance Tuning Guide

■ If the limit X is less than the optimal value, then you would set
PGA_AGGREGATE_TARGET to X. In Example 7–8, if you have only 2 GB to
dedicate to PGA, set PGA_AGGREGATE_TARGET to 2 GB and accept a cache hit
percentage of 75%.

Finally, like most statistics collected by Oracle Database that are cumulative since
instance startup, you can take a snapshot of the view at the beginning and at the end
of a time interval. You can then derive the predicted statistics for that time interval as
follows:

 estd_overalloc_count = (difference in estd_overalloc_count between the two snapshots)

 (difference in bytes_processed between the two snapshots)
estd_pga_cache_hit_percentage = ---
 (difference in bytes_processed + extra_bytes_rw between the two snapshots)

V$PGA_TARGET_ADVICE_HISTOGRAM This view predicts how the statistics displayed by
the performance view V$SQL_WORKAREA_HISTOGRAM will be impacted if you change the
value of the initialization parameter PGA_AGGREGATE_TARGET. You can use the dynamic
view V$PGA_TARGET_ADVICE_HISTOGRAM to view detailed information on the predicted
number of optimal, one-pass and multi-pass work area executions for the set of
PGA_AGGREGATE_TARGET values you use for the prediction.

The V$PGA_TARGET_ADVICE_HISTOGRAM view is identical to the
V$SQL_WORKAREA_HISTOGRAM view, with two additional columns to represent the
PGA_AGGREGATE_TARGET values used for the prediction. Therefore, any query executed
against the V$SQL_WORKAREA_HISTOGRAM view can be used on this view, with an
additional predicate to select the desired value of PGA_AGGREGATE_TARGET.

Example 7–9 Querying V$PGA_TARGET_ADVICE_HISTOGRAM

The following query displays the predicted content of V$SQL_WORKAREA_HISTOGRAM for
a value of the initialization parameter PGA_AGGREGATE_TARGET set to twice its current
value.

SELECT LOW_OPTIMAL_SIZE/1024 low_kb, (HIGH_OPTIMAL_SIZE+1)/1024 high_kb,
 estd_optimal_executions estd_opt_cnt,
 estd_onepass_executions estd_onepass_cnt,
 estd_multipasses_executions estd_mpass_cnt
 FROM v$pga_target_advice_histogram
 WHERE pga_target_factor = 2
 AND estd_total_executions != 0
 ORDER BY 1;

The output of this query might look like the following.

LOW_KB HIGH_KB ESTD_OPTIMAL_CNT ESTD_ONEPASS_CNT ESTD_MPASS_CNT
------ ------- ---------------- ---------------- --------------
 8 16 156107 0 0
 16 32 148 0 0
 32 64 89 0 0
 64 128 13 0 0
 128 256 58 0 0
 256 512 10 0 0
 512 1024 653 0 0
 1024 2048 530 0 0
 2048 4096 509 0 0
 4096 8192 227 0 0
 8192 16384 176 0 0
 16384 32768 133 16 0

Managing the Server and Client Result Caches

Configuring and Using Memory 7-53

 32768 65536 66 103 0
 65536 131072 15 47 0
131072 262144 0 48 0
262144 524288 0 23 0

The output shows that increasing PGA_AGGREGATE_TARGET by a factor of 2 will allow all
work areas under 16 MB to execute in optimal mode.

V$SYSSTAT and V$SESSTAT
Statistics in the V$SYSSTAT and V$SESSTAT views show the total number of work areas
executed with optimal memory size, one-pass memory size, and multi-pass memory
size. These statistics are cumulative since the instance or the session was started.

The following query gives the total number and the percentage of times work areas
were executed in these three modes since the instance was started:

SELECT name profile, cnt, decode(total, 0, 0, round(cnt*100/total)) percentage
 FROM (SELECT name, value cnt, (sum(value) over ()) total
 FROM V$SYSSTAT
 WHERE name like 'workarea exec%');

The output of this query might look like the following:

PROFILE CNT PERCENTAGE
----------------------------------- ---------- ----------
workarea executions - optimal 5395 95
workarea executions - onepass 284 5
workarea executions - multipass 0 0

Configuring OLAP_PAGE_POOL_SIZE
The OLAP_PAGE_POOL_SIZE initialization parameter specifies (in bytes) the maximum
size of the paging cache to be allocated to an OLAP session.

For performance reasons, it is usually preferable to configure a small OLAP paging
cache and set a larger default buffer pool with DB_CACHE_SIZE. An OLAP paging cache
of 4 MB is fairly typical, with 2 MB used for systems with limited memory.

Managing the Server and Client Result Caches
A result cache is an area of memory, either in the SGA or client application memory,
that stores the result of a database query or query block for reuse. The cached rows are
shared across statements and sessions unless they become stale.

This section contains the following topics:

■ Managing the Server Result Cache

■ Managing the Client Result Cache

■ Managing Memory for the Server Result Cache

■ Specifying Queries for Result Caching

■ Requirements for the Result Cache

■ Accessing Result Cache Information

See Also: Oracle Database Reference

See Also: Oracle OLAP User's Guide

Managing the Server and Client Result Caches

7-54 Oracle Database Performance Tuning Guide

Managing the Server Result Cache
The server result cache is a memory pool within the shared pool. This pool contains a
SQL query result cache, which stores results of SQL queries, and a PL/SQL function
result cache, which stores values returned by PL/SQL functions.

OLAP applications can benefit significantly from the use of the server result cache. The
benefits highly depend on the application. Good candidates for caching are queries
that access a high number of rows but return a small number, as in a data warehouse.
For example, you can use advanced query rewrite with equivalences to create
materialized views that materialize queries in the result cache instead of using tables.

How the Server Result Cache Works
When a query executes, the database looks in the cache memory to determine whether
the result exists in the cache. If the result exists, then the database retrieves the result
from memory instead of executing the query. If the result is not cached, then the
database executes the query, returns the result as output, and stores the result in the
result cache.

When users execute queries and functions repeatedly, the database retrieves rows from
the cache, decreasing response time. Cached results become invalid when data in
dependent database objects is modified.

Example 7–10 queries hr.employees and uses the RESULT_CACHE hint to retrieve rows
from the server result cache. Example 7–10 includes a portion of the execution plan,
which shows that in step 1 the results are retrieved directly from the cache. The value
in the Name column is the cache ID of the result.

Example 7–10 Using the RESULT_CACHE Hint in a Query

SELECT /*+ RESULT_CACHE */ department_id, AVG(salary)
FROM hr.employees
GROUP BY department_id;
.
.
.
--
| Id | Operation | Name |Rows
--
| 0 | SELECT STATEMENT | | 11
| 1 | RESULT CACHE | 8fpza04gtwsfr6n595au15yj4y |
| 2 | HASH GROUP BY | | 11
| 3 | TABLE ACCESS FULL| EMPLOYEES | 107
--

As shown in Example 7–11, after the query is executed you can obtain detailed
statistics about the cached result by querying V$RESULT_CACHE_OBJECTS, where the
cache ID obtained from the explain plan is equal to the CACHE_ID value.

See Also:

■ Oracle Database Concepts for a conceptual overview of the server
result cache

■ Oracle Database PL/SQL Language Reference to learn how to use the
PL/SQL function result cache

■ Oracle Database Data Warehousing Guide for examples of how to use
the result cache and advance query rewrite with equivalences

Managing the Server and Client Result Caches

Configuring and Using Memory 7-55

Example 7–11 Querying Statistics for Cached Results

SELECT ID, TYPE, CREATION_TIMESTAMP, BLOCK_COUNT, COLUMN_COUNT,
 PIN_COUNT, ROW_COUNT
FROM V$RESULT_CACHE_OBJECTS
WHERE CACHE_ID = '8fpza04gtwsfr6n595au15yj4y';
.
.
.
 ID TYPE CREATION_ BLOCK_COUNT COLUMN_COUNT PIN_COUNT ROW_COUNT
---------- ---------- --------- ----------- ------------ ---------- ----------
 2 Result 06-MAR-09 1 2 0 12

Example 7–12 uses the RESULT_CACHE hint within a WITH clause view. The example
shows a portion of the execution plan. In step 3, the RESULT CACHE Operation indicates
that the summary view results are retrieved directly from the cache.

Example 7–12 Using the RESULT_CACHE Hint in a WITH Clause View

WITH summary AS
(SELECT /*+ RESULT_CACHE */ department_id, avg(salary) avg_sal
 FROM hr.employees
 GROUP BY department_id)
SELECT d.*, avg_sal
FROM hr.departments d, summary s
WHERE d.department_id = s.department_id;
.
.
.

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		11	517	7 (29)	00:00:01
* 1	HASH JOIN		11	517	7 (29)	00:00:01
2	VIEW		11	286	4 (25)	00:00:01
3	RESULT CACHE	8nknvkh64ctmz94a5muf2tyb8r				
4	HASH GROUP BY		11	77	4 (25)	00:00:01
5	TABLE ACCESS FULL	EMPLOYEES	107	749	3 (0)	00:00:01
6	TABLE ACCESS FULL	DEPARTMENTS	27	567	2 (0)	00:00:01

Server Result Cache Initialization Parameters
The following database initialization parameters control the server result cache:

■ RESULT_CACHE_MAX_SIZE

This parameter sets the memory allocated to the server result cache. The server
result cache is enabled unless you set this parameter to 0, in which case the cache
is disabled.

■ RESULT_CACHE_MAX_RESULT

This parameter sets the maximum amount of server result cache memory that can
be used for a single result. The default is 5%, but you can specify any percentage
value between 1 and 100. You can set this parameter at the system or session level.

■ RESULT_CACHE_REMOTE_EXPIRATION

This parameter specifies the expiration time for a result in the server result cache
that depends on remote database objects. The default value is 0 minutes, which
implies that results using remote objects should not be cached.

Managing the Server and Client Result Caches

7-56 Oracle Database Performance Tuning Guide

Managing Memory for the Server Result Cache
You can manage memory for the server result cache by setting database initialization
parameters and by using the DBMS_RESULT_CACHE package.

Managing Server Result Cache Memory with Initialization Parameters By default, on database
startup, Oracle Database allocates memory to the server result cache in the shared
pool. The memory size allocated depends on the memory size of the shared pool and
the memory management system. The database uses the following algorithm:

■ When using the MEMORY_TARGET initialization parameter to specify the memory
allocation, Oracle Database allocates 0.25% of MEMORY_TARGET to the result cache.

■ When you set the size of the shared pool using the SGA_TARGET initialization
parameter, Oracle Database allocates 0.50% of SGA_TARGET to the result cache.

■ If you specify the size of the shared pool using the SHARED_POOL_SIZE initialization
parameter, then Oracle Database allocates 1% of the shared pool size to the result
cache.

The size of the server result cache grows until reaching the maximum size. Query
results larger than the available space in the cache are not cached. The database
employs an LRU algorithm to age out cached results, but does not otherwise
automatically release memory from the server result cache. You can use the
DBMS_RESULT_CACHE.FLUSH procedure to purge memory.

You can change the memory allocated to the result cache by setting the
RESULT_CACHE_MAX_SIZE initialization parameter. In an Oracle RAC environment, the
result cache itself is specific to each instance and can be sized differently on each
instance. However, invalidations work across instances. To disable the server result
cache in a cluster, you must explicitly set this parameter to 0 for each instance startup.

Managing Server Result Cache Memory with DBMS_RESULT_CACHE The DBMS_RESULT_CACHE
package provides statistics, information, and operators that enable you to manage
memory allocation for the server result cache. You can use the DBMS_RESULT_CACHE
package to perform operations such as bypassing the cache, retrieving statistics on the
cache memory usage, flushing the cache, and so on.

For example, use the following SQL procedure to view the memory allocation statistics
for the result cache:

SQLSET SERVEROUTPUT ON
EXECUTE DBMS_RESULT_CACHE.MEMORY_REPORT

The output of this command will be similar to the following:

R e s u l t C a c h e M e m o r y R e p o r t
[Parameters]

Note: When you use a non zero value for this parameter, DML on
the remote database does not invalidate the server result cache.

See Also: Oracle Database Reference for details about the server
result cache initialization parameters

Note: Oracle Database will not allocate more than 75% of the shared
pool to the server result cache.

Managing the Server and Client Result Caches

Configuring and Using Memory 7-57

Block Size = 1024 bytes
Maximum Cache Size = 950272 bytes (928 blocks)
Maximum Result Size = 47104 bytes (46 blocks)
[Memory]
Total Memory = 46340 bytes [0.048% of the Shared Pool]
... Fixed Memory = 10696 bytes [0.011% of the Shared Pool]
... State Object Pool = 2852 bytes [0.003% of the Shared Pool]
... Cache Memory = 32792 bytes (32 blocks) [0.034% of the Shared Pool]
....... Unused Memory = 30 blocks
....... Used Memory = 2 blocks
........... Dependencies = 1 blocks
........... Results = 1 blocks
............... SQL = 1 blocks

PL/SQL procedure successfully completed.

To remove all existing results and clear the result cache memory, use the command:

EXECUTE DBMS_RESULT_CACHE.FLUSH

Managing the Client Result Cache
The Oracle Call Interface (OCI) client result cache is a memory area inside a client
process that caches SQL query result sets for OCI applications. This client cache exists
for each client process and is shared by all sessions inside the process. Oracle Database
recommends client result caching for queries of read-only or read-mostly tables.

OCI drivers such as OCCI, the JDBC OCI driver, and ODP.NET support client result
caching. Performance benefits of the client result cache include:

■ Reduced query response time

When queries are executed repeatedly, the application retrieves results directly
from the client cache memory, resulting in faster query response time.

■ More efficient use of database resources

The reduction in server round trips can result in huge performance savings for
server resources, for example, server CPU and I/O. These resources are freed for
other tasks, thereby making the server more scalable.

■ Reduced memory cost

The cache uses client memory that may be cheaper than server memory.

How the Client Result Cache Works
The client result cache stores the results of the outermost query, which are the columns
defined by the OCI application. Subqueries and query blocks are not cached.

Figure 7–4 shows a client process with a database login session. This client process has
one client result cache shared among multiple application sessions running in the

See Also: Oracle Database PL/SQL Packages and Types Reference for
detailed information on the DBMS_RESULT_CACHE package

Note: The client result cache is distinct from the server result cache,
which resides in the SGA. When client result caching is enabled, the
query result set can be cached on the client, server, or both. Client
caching can be enabled even if the server result cache is disabled.

Managing the Server and Client Result Caches

7-58 Oracle Database Performance Tuning Guide

client process. If the first application session runs a query, then it retrieves rows from
the database and caches them in the client result cache. If other application sessions
run the same query, then they also retrieve rows from the client result cache.

Figure 7–4 Client Result Cache

The client result cache transparently keeps the result set consistent with session state
or database changes that affect it. When a transaction changes the data or metadata of
database objects used to build the cached result, the database sends an invalidation to
the OCI client on its next round trip to the server.

Client Result Cache Initialization Parameters
Table 7–4 lists the database initialization parameters that enable or influence the
behavior of the client result cache.

See Also: Oracle Call Interface Programmer's Guide for details about
the client result cache

Table 7–4 Client Result Cache Initialization Parameters

Initialization Parameter Description

CLIENT_RESULT_CACHE_SIZE Sets the maximum size of the client result cache for each
client process. To enable the client result cache, set the size
to 32768 bytes or greater. A lesser value, including the
default of 0, disables the client result cache.

Note: If the CLIENT_RESULT_CACHE_SIZE setting disables the
client cache, then a client node cannot enable it. If the
CLIENT_RESULT_CACHE_SIZE setting enables the client
cache, however, then a client node can override the setting.
For example, a client node can disable client result caching
or increase the size of its cache.

Database

Keeps
Consistent

Client Result Cache

Result
Set

SELECT department_id�
FROM departments

SELECT department_id�
FROM departments

10,20,30,40,..

Client Process

Application
Session

Application
Session

Client Server

Managing the Server and Client Result Caches

Configuring and Using Memory 7-59

For the client result cache, an optional client configuration file overrides cache
parameters set in the server parameter file. Note that you can only set the client result
cache lag with a database initialization parameter.

Specifying Queries for Result Caching
If the server or client result cache is enabled, then Oracle Database gives you control
over which queries are eligible to be cached.

About the Result Cache Mode
The result cache mode is a database setting that determines which queries are eligible
to store result sets in the client and server result caches. Oracle Database recommends
that applications cache results for queries of read-only or read-mostly database objects.

The RESULT_CACHE_MODE initialization parameter determines the result cache behavior.
Table 7–5 describes the values for this initialization parameter.

CLIENT_RESULT_CACHE_LAG Specifies the amount of lag time for the client result cache.
If the OCI application performs no database calls for a
period, then the client cache lag setting forces the next
statement execution call to check for validations.

If the OCI application accesses the database infrequently,
then setting this parameter to a low value results in more
round trips from the OCI client to the database to keep the
client result cache synchronized with the database. The
client cache lag is specified in milliseconds, with a default
value of 3000 (3 seconds).

COMPATIBLE Specifies the release with which Oracle Database must
maintain compatibility. For the client result cache to be
enabled, this parameter must be set to 11.0.0.0 or higher.
For client caching on views, this parameter must be set to
11.2.0.0.0 or higher.

See Also:

■ Oracle Database Reference for details about the client result cache
initialization parameters

■ Oracle Call Interface Programmer's Guide for parameters that you
can set in a client configuration file

Table 7–5 Values for the RESULT_CACHE_MODE Initialization Parameter

Value Default Description

MANUAL Yes Query results can only be stored in the result cache by using a query hint
or table annotation. This is the recommended value.

Table 7–4 (Cont.) Client Result Cache Initialization Parameters

Initialization Parameter Description

Managing the Server and Client Result Caches

7-60 Oracle Database Performance Tuning Guide

You can set the RESULT_CACHE_MODE initialization parameter for the instance (ALTER
SYSTEM), session (ALTER SESSION), or in the server parameter file.

If a query is eligible for caching, then the application checks the result cache to
determine whether the query result set exists in the cache. If it exists, then the result is
retrieved directly from the result cache. Otherwise, the database executes the query
and returns the result as output and stores it in the result cache.

When the result cache is enabled, the database also caches queries that call
non-deterministic PL/SQL functions. When caching SELECT statements that call such
functions, the result cache tracks data dependencies for the PL/SQL functions and the
database objects. However, if the function uses data that are not being tracked (such as
sequences, SYSDATE, SYS_CONTEXT, and package variables), using the result cache on
queries that call this function can produce stale results. In this regard, the behavior of
the result cache is identical to caching PL/SQL functions. Therefore, always consider
data accuracy, as well as performance, when choosing to enable the result cache.

Using SQL Result Cache Hints
You can use result cache hints at the application level to control caching behavior. The
SQL result cache hints take precedence over the result cache mode and result cache
table annotations.

When the result cache mode is MANUAL, the /*+ RESULT_CACHE */ hint instructs the
database to cache the results of a query block and to use the cached results in future
executions. Example 7–13 instructs the database to cache rows for a query of the sales
table.

Example 7–13 RESULT_CACHE Hint

SELECT /*+ RESULT_CACHE */ prod_id, SUM(amount_sold)
FROM sales
GROUP BY prod_id
ORDER BY prod_id;

The /*+ NO_RESULT_CACHE */ hint instructs the database not to cache the results in
either the server or client result caches. Example 7–14 instructs the database not to
cache rows for a query of the sales table.

FORCE No All results are stored in the result cache. If a query result is not in the
cache, then the database executes the query and stores the result in the
cache. Subsequent executions of the same statement, including the result
cache hint, retrieve data from the cache.

Sessions uses these results if possible. To exclude query results from the
cache, you must use the /*+ NO_RESULT_CACHE */ query hint.

Note: FORCE mode is not recommended because the database and clients
attempt to cache all queries, which can create significant performance
and latching overhead. Moreover, because queries that call
non-deterministic PL/SQL functions are also cached, enabling the result
cache in such a broad-based manner may cause material changes to the
results.

See Also: Oracle Database Reference to learn about the
RESULT_CACHE_MODE initialization parameter

Table 7–5 (Cont.) Values for the RESULT_CACHE_MODE Initialization Parameter

Value Default Description

Managing the Server and Client Result Caches

Configuring and Using Memory 7-61

Example 7–14 NO_RESULT_CACHE Hint

SELECT /*+ NO_RESULT_CACHE */ prod_id, SUM(amount_sold)
FROM sales
GROUP BY prod_id
ORDER BY prod_id;

RESULT_CACHE Hint in Query Blocks: Example The RESULT_CACHE hint applies only to the
query block in which the hint is specified. If the hint is specified only in a view, then
only these results are cached. Note the following characteristics of view caching:

■ The view must be a standard view (a view created with the CREATE ... VIEW
statement), an inline view specified in the FROM clause of a SELECT statement, or an
inline view created with the WITH clause.

■ The result of a view query with a correlated column, which is a reference to an
outer query block, cannot be cached.

■ Query results are stored in the server result cache, not the client result cache.

■ A caching view is not merged into its outer (or referring) query block. Adding the
RESULT_CACHE hint to inline views disables optimizations between the outer query
and inline view to maximize reusability of the cached result.

Example 7–15 queries the inline view view1. The SELECT from view1 is the outer block,
whereas the SELECT from employees is the inner block. Because the RESULT_CACHE hint
is specified only in the inner block, the results of the outer query are not cached. The
results of the inner query are stored in the server result cache.

Example 7–15 RESULT_CACHE Hint Specified in Inline View

SELECT *
FROM (SELECT /*+ RESULT_CACHE */ department_id, manager_id, count(*) count
 FROM hr.employees
 GROUP BY department_id, manager_id) view1
WHERE department_id = 30;

Assume that the same session runs the statement in Example 7–16. This statement
queries view2. Because the RESULT_CACHE hint is specified only in the query block in
the WITH clause, the results of the employees query are eligible to be cached. Because
Example 7–15 cached these results, the SELECT statement in the WITH clause in
Example 7–16 can retrieve the cached rows.

Example 7–16 RESULT_CACHE Hint Specified in WITH View

WITH view2 AS
(SELECT /*+ RESULT_CACHE */ department_id, manager_id, count(*) count
 FROM hr.employees
 GROUP BY department_id, manager_id)
SELECT *
FROM view2
WHERE count BETWEEN 1 and 5;

Using Result Cache Table Annotations
You can use table annotations to control result caching. Table annotations are in effect
only for the whole query, not for query segments. The primary benefit of these

See Also: Oracle Database SQL Language Reference to learn about
the RESULT_CACHE and NO_RESULT_CACHE hints

Managing the Server and Client Result Caches

7-62 Oracle Database Performance Tuning Guide

annotations is avoiding the necessity of adding result cache hints to queries at the
application level.

A table annotation has a lower precedence than a SQL hint. Thus, you can override
table and session settings by using hints at the query level. Permitted values for the
RESULT_CACHE table annotation are as follows:

■ DEFAULT

If at least one table in a query is set to DEFAULT, then result caching is not enabled
at the table level for this query, unless the RESULT_CACHE_MODE initialization
parameter is set to FORCE or the RESULT_CACHE hint is specified. This is the default
value.

■ FORCE

If all the tables of a query are marked as FORCE, then the query result is considered
for caching. The table annotation FORCE takes precedence over the
RESULT_CACHE_MODE parameter value of MANUAL set at the session level.

Example 7–17 shows the creation of the sales table with a table annotation that
disables result caching. The example also shows a query of sales, whose results are
not considered for caching because of the table annotation.

Example 7–17 DEFAULT Table Annotation

CREATE TABLE sales (...) RESULT_CACHE (MODE DEFAULT);

SELECT prod_id, SUM(amount_sold)
FROM sales
GROUP BY prod_id
ORDER BY prod_id;

Assume that later you decide to force result caching for the sales table as shown in
Example 7–18. This example includes two queries of sales. The first query, which is
frequently used and returns few rows, is eligible for caching because of the table
annotation. The second query, which is a one-time query that returns many rows, uses
a hint to prevent result caching.

Example 7–18 FORCE Table Annotation

ALTER TABLE sales RESULT_CACHE (MODE FORCE);

SELECT prod_id, SUM(amount_sold)
FROM sales
GROUP BY prod_id
HAVING prod_id=136;

SELECT /*+ NO_RESULT_CACHE */ *
FROM sales
ORDER BY time_id DESC;

Requirements for the Result Cache
If you enable the result cache, then this setting does not guarantee that a specific result
set will be included in the client or server cache.

See Also: Oracle Database SQL Language Reference for CREATE
TABLE syntax and semantics

Managing the Server and Client Result Caches

Configuring and Using Memory 7-63

Read Consistency Requirements for the Result Cache
For a snapshot to be reusable, it must have read consistency. One of the following
statements must be true for a result set to be eligible to be cached:

■ The read-consistent snapshot used to build the result must retrieve the most
current committed state of the data.

■ The query points to an explicit point in time using flashback query.

If the current session has an active transaction referencing objects in a query, then the
results from this query are not eligible for caching.

Additional Requirements for the Result Cache
You cannot cache results when the following objects or functions are in a query:

■ Temporary tables and tables in the SYS or SYSTEM schemas

■ Sequence CURRVAL and NEXTVAL pseudo columns

■ SQL functions CURRENT_DATE, CURRENT_TIMESTAMP, LOCAL_TIMESTAMP,
USERENV/SYS_CONTEXT (with non-constant variables), SYS_GUID, SYSDATE, and
SYS_TIMESTAMP

The client result cache has additional limitations for result caching. Refer to Oracle Call
Interface Programmer's Guide for details.

Query Parameter Requirements for the Result Cache
Cache results can be reused when they are parameterized with variable values when
queries are equivalent and the parameter values are the same. Different values or bind
variable names may cause cache misses. Results are parameterized if any of the
following constructs are used in the query:

■ Bind variables

■ The SQL functions DBTIMEZONE, SESSIONTIMEZONE, USERENV/SYS_CONTEXT (with
constant variables), UID, and USER

■ NLS parameters

Accessing Result Cache Information
You can query database views and tables to obtain information about the server and
client result caches. Table 7–6 describes the most useful views and tables. The
description column specifies the result cache to which they are applicable.

Table 7–6 Views and Tables Related to the Server and Client Result Caches

View/Table Description

V$RESULT_CACHE_STATISTICS Lists various server result cache settings and memory
usage statistics.

V$RESULT_CACHE_MEMORY Lists all the memory blocks in the server result cache and
their corresponding statistics.

V$RESULT_CACHE_OBJECTS Lists all the objects whose results are in the server result
cache along with their attributes.

V$RESULT_CACHE_DEPENDENCY Lists the dependency details between the results in the
server cache and dependencies among these results.

Managing the Server and Client Result Caches

7-64 Oracle Database Performance Tuning Guide

The following sample query monitors the server result cache statistics (sample output
included):

COLUMN NAME FORMAT A20
SELECT NAME, VALUE
FROM V$RESULT_CACHE_STATISTICS;

NAME VALUE
-------------------- ----------
Block Size (Bytes) 1024
Block Count Maximum 3136
Block Count Current 32
Result Size Maximum (Blocks) 156
Create Count Success 2
Create Count Failure 0
Find Count 0
Invalidation Count 0
Delete Count Invalid 0
Delete Count Valid 0

The following sample query monitors the client result cache statistics (sample output
included):

SELECT STAT_ID, SUBSTR(NAME,1,20), VALUE, CACHE_ID
FROM CLIENT_RESULT_CACHE_STATS$
ORDER BY CACHE_ID, STAT_ID;

STAT_ID NAME OF STATISTICS VALUE CACHE_ID
======= ================== ===== ========
 1 Block Size 256 124
 2 Block Count Max 256 124
 3 Block Count Current 128 124
 4 Hash Bucket Count 1024 124
 5 Create Count Success 10 124
 6 Create Count Failure 0 124
 7 Find Count 12 124
 8 Invalidation Count 8 124
 9 Delete Count Invalid 0 124
 10 Delete Count Valid 0 124

The CLIENT_RESULT_CACHE_STATS$ table has statistics entries for each active client
process performing client result caching. Every client process has a unique cache ID.

CLIENT_RESULT_CACHE_STATS$ Stores cache settings and memory usage statistics for the
client result caches obtained from the OCI client
processes. This statistics table has entries for each client
process that is using result caching. After the client
processes terminate, the database removes their entries
from this table. The client table lists information similar
to V$RESULT_CACHE_STATISTICS.

See Also: Oracle Database Reference for details about
CLIENT_RESULT_CACHE_STATS$

DBA_TABLES, USER_TABLES,
ALL_TABLES

Includes a RESULT_CACHE column that shows the result
cache mode annotation for the table. If the table has not
been annotated, then this column shows DEFAULT. This
column applies to both server and client result caching.

Table 7–6 (Cont.) Views and Tables Related to the Server and Client Result Caches

View/Table Description

Managing the Server and Client Result Caches

Configuring and Using Memory 7-65

To find the client connection information (for example, process IDs) for the sessions
performing client caching, do the following:

■ Obtain the session IDs from GV$SESSION_CONNECT_INFO for the CLIENT_REGID that
exists in CLIENT_RESULT_CACHE_STATS$ (the column name is CACHE_ID)

■ Query the relevant columns from GV$SESSION_CONNECT_INFO and GV$SESSION

For both client and server result cache statistics, a database that makes good use of
result caching should show relatively low values for Create Count Failure and
Delete Count Valid, while showing relatively high values for Find Count.

See Also: Oracle Database Reference for details about these views

Managing the Server and Client Result Caches

7-66 Oracle Database Performance Tuning Guide

8

I/O Configuration and Design 8-1

8 I/O Configuration and Design

The I/O subsystem is a vital component of an Oracle database. This chapter introduces
fundamental I/O concepts, discusses the I/O requirements of different parts of the
database, and provides sample configurations for I/O subsystem design.

This chapter includes the following topics:

■ About I/O

■ I/O Configuration

■ I/O Calibration Inside the Database

■ I/O Calibration with the Oracle Orion Calibration Tool

About I/O
Every Oracle Database reads or write data on disk, the database generates disk I/O.
The performance of many software applications is inherently limited by disk I/O.
Applications that spend the majority of CPU time waiting for I/O activity to complete
are said to be I/O-bound.

Oracle Database is designed so that if an application is well written, its performance
should not be limited by I/O. Tuning I/O can enhance the performance of the
application if the I/O system is operating at or near capacity and is not able to service
the I/O requests within an acceptable time. However, tuning I/O cannot help
performance if the application is not I/O-bound (for example, when CPU is the
limiting factor).

Consider the following database requirements when designing an I/O system:

■ Storage, such as minimum disk capacity

■ Availability, such as continuous (24 x 7) or business hours only

■ Performance, such as I/O throughput and application response times

Many I/O designs plan for storage and availability requirements with the assumption
that performance will not be an issue. This is not always the case. Optimally, the
number of disks and controllers to be configured should be determined by I/O
throughput and redundancy requirements. The size of disks can then be determined
by the storage requirements.

When developing an I/O design plan, consider using Oracle Automatic Storage
Management (Oracle ASM). Oracle ASM is an integrated, high-performance database
file system and disk manager that is based on the principle that the database should
manage storage instead of requiring an administrator to do it.

I/O Configuration

8-2 Oracle Database Performance Tuning Guide

Oracle recommends that you use Oracle ASM for your database file storage, instead of
raw devices or the operating system file system. Oracle ASM provides the following
key benefits:

■ Striping

■ Mirroring

■ Online storage reconfiguration and dynamic rebalancing

■ Managed file creation and deletion

I/O Configuration
This section describes the basic information to be gathered and decisions to be made
when defining a system's I/O configuration. You want to keep the configuration as
simple as possible, while maintaining the required availability, recoverability, and
performance. The more complex a configuration becomes, the more difficult it is to
administer, maintain, and tune.

This section contains the following topics:

■ Lay Out the Files Using Operating System or Hardware Striping

■ Manually Distributing I/O

■ When to Separate Files

■ Three Sample Configurations

■ Oracle Managed Files

■ Choosing Data Block Size

Lay Out the Files Using Operating System or Hardware Striping
If your operating system has LVM software or hardware-based striping, then it is
possible to distribute I/O using these tools. Decisions to be made when using an
LVM or hardware striping include stripe depth and stripe width.

■ Stripe depth is the size of the stripe, sometimes called stripe unit.

■ Stripe width is the product of the stripe depth and the number of drives in the
striped set.

Choose these values wisely so that the system is capable of sustaining the required
throughput. For an Oracle database, reasonable stripe depths range from 256 KB to 1
MB. Different types of applications benefit from different stripe depths. The optimal
stripe depth and stripe width depend on the following:

■ Requested I/O Size

■ Concurrency of I/O Requests

■ Alignment of Physical Stripe Boundaries with Block Size Boundaries

■ Manageability of the Proposed System

Requested I/O Size
Table 8–1 lists the Oracle Database and operating system parameters that you can use
to set I/O size:

See Also: Oracle Automatic Storage Management Administrator's Guide
for additional information about Oracle ASM

I/O Configuration

I/O Configuration and Design 8-3

In addition to I/O size, the degree of concurrency also helps in determining the ideal
stripe depth. Consider the following when choosing stripe width and stripe depth:

■ On low-concurrency (sequential) systems, ensure that no single I/O visits the
same disk twice. For example, assume that the stripe width is four disks, and the
stripe depth is 32K. If a single 1MB I/O request (for example, for a full table scan)
is issued by an Oracle server process, then each disk in the stripe must perform
eight I/Os to return the requested data. To avoid this situation, the size of the
average I/O should be smaller than the stripe width multiplied by the stripe
depth. If this is not the case, then a single I/O request made by Oracle Database to
the operating system results in multiple physical I/O requests to the same disk.

■ On high-concurrency (random) systems, ensure that no single I/O request is
broken up into multiple physical I/O calls. Failing to do this multiplies the
number of physical I/O requests performed in your system, which in turn can
severely degrade the I/O response times.

Concurrency of I/O Requests
In a system with a high degree of concurrent small I/O requests, such as in a
traditional OLTP environment, it is beneficial to keep the stripe depth large. Using
stripe depths larger than the I/O size is called coarse grain striping. In
high-concurrency systems, the stripe depth can be as follows, where n > 1:

n * DB_BLOCK_SIZE

Coarse grain striping allows a disk in the array to service several I/O requests. In this
way, a large number of concurrent I/O requests can be serviced by a set of striped
disks with minimal I/O setup costs. Coarse grain striping strives to maximize overall
I/O throughput. Multiblock reads, as in full table scans, will benefit when stripe
depths are large and can be serviced from one drive. Parallel query in a data
warehouse environment is also a candidate for coarse grain striping because many
individual processes each issue separate I/Os. If coarse grain striping is used in
systems that do not have high concurrent requests, then hot spots could result.

In a system with a few large I/O requests, such as in a traditional DSS environment or
a low-concurrency OLTP system, then it is beneficial to keep the stripe depth small.
This is called fine grain striping. In such systems, the stripe depth is as follows, where

Table 8–1 Oracle Database and Operating System Operational Parameters

Parameter Description

DB_BLOCK_SIZE The size of single-block I/O requests. This parameter is also
used in combination with multiblock parameters to determine
multiblock I/O request size.

OS block size Determines I/O size for redo log and archive log operations.

Maximum OS I/O size Places an upper bound on the size of a single I/O request.

DB_FILE_MULTIBLOCK_READ
_COUNT

The maximum I/O size for full table scans is computed by
multiplying this parameter with DB_BLOCK_SIZE. (the upper
value is subject to operating system limits). If this value is not
set explicitly (or is set to 0), the default value corresponds to
the maximum I/O size that can be efficiently performed and is
platform-dependent.

SORT_AREA_SIZE Determines I/O sizes and concurrency for sort operations.

HASH_AREA_SIZE Determines the I/O size for hash operations.

I/O Configuration

8-4 Oracle Database Performance Tuning Guide

n is smaller than the multiblock read parameters, such as
DB_FILE_MULTIBLOCK_READ_COUNT:

n * DB_BLOCK_SIZE

Fine grain striping allows a single I/O request to be serviced by multiple disks. Fine
grain striping strives to maximize performance for individual I/O requests or
response time.

Alignment of Physical Stripe Boundaries with Block Size Boundaries
On some Oracle Database ports, a database block boundary may not align with the
stripe. If your stripe depth is the same size as the database block, then a single I/O
issued by Oracle Database may result in two physical I/O operations.

This is not optimal in an OLTP environment. To ensure a higher probability of one
logical I/O resulting in no more than one physical I/O, the minimum stripe depth
should be at least twice the Oracle block size. Table 8–2 shows recommended
minimum stripe depth for random access and for sequential reads.

Manageability of the Proposed System
With an LVM, the simplest configuration to manage is one with a single striped
volume over all available disks. In this case, the stripe width encompasses all available
disks. All database files reside within that volume, effectively distributing the load
evenly. This single-volume layout provides adequate performance in most situations.

A single-volume configuration is viable only when used in conjunction with RAID
technology that allows easy recoverability, such as RAID 1. Otherwise, losing a single
disk means losing all files concurrently and, hence, performing a full database restore
and recovery.

In addition to performance, there is a manageability concern: the design of the system
must allow disks to be added simply, to allow for database growth. The challenge is to
do so while keeping the load balanced evenly.

For example, an initial configuration can involve the creation of a single striped
volume over 64 disks, each disk being 16 GB. This is total disk space of 1 terabyte (TB)
for the primary data. Sometime after the system is operational, an additional 80 GB
(that is, five disks) must be added to account for future database growth.

The options for making this space available to the database include creating a second
volume that includes the five new disks. However, an I/O bottleneck might develop, if
these new disks are unable to sustain the I/O throughput required for the files placed
on them.

Another option is to increase the size of the original volume. LVMs are becoming
sophisticated enough to allow dynamic reconfiguration of the stripe width, which

Table 8–2 Minimum Stripe Depth

Disk Access Minimum Stripe Depth

Random reads and writes The minimum stripe depth is twice the Oracle block size.

Sequential reads The minimum stripe depth is twice the value of
DB_FILE_MULTIBLOCK_READ_COUNT, multiplied by the Oracle
block size.

See Also: The specific documentation for your platform

I/O Configuration

I/O Configuration and Design 8-5

allows disks to be added while the system is online. This begins to make the placement
of all files on a single striped volume feasible in a production environment.

If your LVM cannot support dynamically adding disks to the stripe, then it is likely
that you need to choose a smaller, more manageable stripe width. Then, when new
disks are added, the system can grow by a stripe width.

In the preceding example, eight disks might be a more manageable stripe width. This
is only feasible if eight disks are capable of sustaining the required number of I/Os
each second. Thus, when extra disk space is required, another eight-disk stripe can be
added, keeping the I/O balanced across the volumes.

Manually Distributing I/O
If your system does not have an LVM or hardware striping, then I/O must be
manually balanced across the available disks by distributing the files according to each
file's I/O requirements. In order to make decisions on file placement, you should be
familiar with the I/O requirements of the database files and the capabilities of the I/O
system. If you are not familiar with this data and do not have a representative
workload to analyze, you can make a first guess and then tune the layout as the usage
becomes known.

To stripe disks manually, you need to relate a file's storage requirements to its I/O
requirements.

1. Evaluate database disk-storage requirements by checking the size of the files and
the disks.

2. Identify the expected I/O throughput for each file. Determine which files have the
highest I/O rate and which do not have many I/Os. Lay out the files on all the
available disks so as to even out the I/O rate.

 One popular approach to manual I/O distribution suggests separating a frequently
used table from its index. This is not correct. During the course of a transaction, the
index is read first, and then the table is read. Because these I/Os occur sequentially, the
table and index can be stored on the same disk without contention. It is not sufficient
to separate a data file simply because the data file contains indexes or table data. The
decision to segregate a file should be made only when the I/O rate for that file affects
database performance.

When to Separate Files
Regardless of whether you use operating system striping or manual I/O distribution,
if the I/O system or I/O layout is not able to support the I/O rate required, then you
need to separate files with high I/O rates from the remaining files. You can identify
such files either at the planning stage or after the system is live.

The decision to segregate files should only be driven by I/O rates, recoverability
concerns, or manageability issues. (For example, if your LVM does not support
dynamic reconfiguration of stripe width, then you might need to create smaller stripe
widths to be able to add n disks at a time to create a new stripe of identical
configuration.)

Note: The smaller the stripe width becomes, the more likely it is
that you will need to spend time distributing the files on the
volumes, and the closer the procedure becomes to manually
distributing I/O.

I/O Configuration

8-6 Oracle Database Performance Tuning Guide

Before segregating files, verify that the bottleneck is truly an I/O issue. The data
produced from investigating the bottleneck identifies which files have the highest I/O
rates.

The following sections describe how to segregate the following file types:

■ Tables, Indexes, and TEMP Tablespaces

■ Redo Log Files

■ Archived Redo Logs

Tables, Indexes, and TEMP Tablespaces
If the files with high I/O are data files belonging to tablespaces that contain tables and
indexes, then identify whether the I/O for those files can be reduced by tuning SQL or
application code.

If the files with high-I/O are data files that belong to the TEMP tablespace, then
investigate whether to tune the SQL statements performing disk sorts to avoid this
activity, or to tune the sorting.

After the application has been tuned to avoid unnecessary I/O, if the I/O layout is still
not able to sustain the required throughput, then consider segregating the high-I/O
files.

Redo Log Files
If the high-I/O files are redo log files, then consider splitting the redo log files from the
other files. Possible configurations can include the following:

■ Placing all redo logs on one disk without any other files. Also consider availability;
members of the same group should be on different physical disks and controllers
for recoverability purposes.

■ Placing each redo log group on a separate disk that does not store any other files.

■ Striping the redo log files across several disks, using an operating system striping
tool. (Manual striping is not possible in this situation.)

■ Avoiding the use of RAID 5 for redo logs.

Redo log files are written sequentially by the Log Writer (LGWR) process. This
operation can be made faster if there is no concurrent activity on the same disk.
Dedicating a separate disk to redo log files usually ensures that LGWR runs smoothly
with no further tuning necessary. If your system supports asynchronous I/O but this
feature is not currently configured, then test to see if using this feature is beneficial.
Performance bottlenecks related to LGWR are rare.

Archived Redo Logs
If the archiver is slow, then it might be prudent to prevent I/O contention between the
archiver process and LGWR by ensuring that archiver reads and LGWR writes are
separated. This is achieved by placing logs on alternating drives.

For example, suppose a system has four redo log groups, each group with two
members. To create separate-disk access, the eight log files should be labeled 1a, 1b, 2a,
2b, 3a, 3b, 4a, and 4b. This requires at least four disks, plus one disk for archived files.

See Also: "Identifying High-Load SQL" on page 16-2

See Also: "Identifying High-Load SQL" on page 16-2

I/O Configuration

I/O Configuration and Design 8-7

Figure 8–1 illustrates how redo members should be distributed across disks to
minimize contention.

Figure 8–1 Distributing Redo Members Across Disks

In this example, LGWR switches out of log group 1 (member 1a and 1b) and writes to
log group 2 (2a and 2b). Concurrently, the archiver process reads from group 1 and
writes to its archive destination. Note how the redo log files are isolated from
contention.

Because redo logs are written serially, drives dedicated to redo log activity generally
require limited head movement. This significantly accelerates log writing.

Three Sample Configurations
This section contains three high-level examples of configuring I/O systems. These
examples include sample calculations that define the disk topology, stripe depths, and
so on:

■ Stripe Everything Across Every Disk

■ Move Archive Logs to Different Disks

■ Move Redo Logs to Separate Disks

Stripe Everything Across Every Disk
The simplest approach to I/O configuration is to build one giant volume, striped
across all available disks. To account for recoverability, the volume is mirrored (RAID
1). The striping unit for each disk should be larger than the maximum I/O size for the
frequent I/O operations. This provides adequate performance for most cases.

Move Archive Logs to Different Disks
If archived redo log files are striped on the same set of disks as other files, then any
I/O requests on those disks could suffer when the database is archiving the redo logs.
Moving archived redo log files to separate disks provides the following benefits:

Note: Mirroring redo log files, or maintaining multiple copies of
each redo log file on separate disks, does not slow LGWR
considerably. LGWR writes to each disk in parallel and waits until
each part of the parallel write is complete. Thus, a parallel write
does not take longer than the longest possible single-disk write.

2a
4a

1a
3a

2b
4b

1b
3b

arch
dest

arch

lgwr

I/O Configuration

8-8 Oracle Database Performance Tuning Guide

■ The archive can be performed at very high rate (using sequential I/O).

■ Nothing else is affected by the degraded response time on the archive destination
disks.

The number of disks for archive logs is determined by the rate of archive log
generation and the amount of archive storage required.

Move Redo Logs to Separate Disks
In high-update OLTP systems, the redo logs are write-intensive. Moving the redo log
files to disks that are separate from other disks and from archived redo log files has the
following benefits:

■ Writing redo logs is performed at the highest possible rate. Hence, transaction
processing performance is at its best.

■ Writing of the redo logs is not impaired with any other I/O.

The number of disks for redo logs is mostly determined by the redo log size, which is
generally small compared to current technology disk sizes. Typically, a configuration
with two disks (possibly mirrored to four disks for fault tolerance) is adequate. In
particular, by having the redo log files alternating on two disks, writing redo log
information to one file does not interfere with reading a completed redo log for
archiving.

Oracle Managed Files
When file systems can contain all Oracle Database data, database administration is
simplified by using Oracle Managed Files. Oracle Database internally uses standard
file system interfaces to create and delete files as needed for tablespaces, temp files,
online logs, and control files. Administrators only specify the file system directory to
be used for a particular type of file. You can specify one default location for data files
and up to five multiplexed locations for the control and online redo log files.

Oracle Database ensures that a unique file is created and then deleted when it is no
longer needed. This reduces corruption caused by administrators specifying the wrong
file, reduces wasted disk space consumed by obsolete files, and simplifies creation of
test and development databases. It also makes development of portable third-party
tools easier, because it eliminates the need to put operating system-specific file names
in SQL scripts.

New files can be created as Oracle Managed Files, while old ones are administered in
the old way. Thus, a database can have a mixture of Oracle Managed Files and
user-managed files.

Several points should be considered when tuning Oracle Managed Files:

■ Because Oracle Managed Files require the use of a file system, DBAs give up
control over how the data is laid out. Therefore, it is important to correctly
configure the file system.

■ Build the file system for Oracle Managed Files on top of an LVM that supports
striping. For load balancing and improved throughput, stripe the disks in the file
system.

Note: Oracle Managed Files cannot be used with raw devices.

I/O Configuration

I/O Configuration and Design 8-9

■ Oracle Managed Files work best if used on an LVM that supports dynamically
extensible logical volumes. Otherwise, configure the logical volumes as large as
possible.

■ Oracle Managed Files work best if the file system provides large extensible files.

Choosing Data Block Size
A block size of 8 KB is optimal for most systems. However, OLTP systems occasionally
use smaller block sizes and DSS systems occasionally use larger block sizes. This
section discusses considerations when choosing database block size for optimal
performance and contains the following topics:

■ Reads

■ Writes

■ Block Size Advantages and Disadvantages

Reads
Regardless of the size of the data, the goal is to minimize the number of reads required
to retrieve the desired data.

■ If the rows are small and access is predominantly random, then choose a smaller
block size.

■ If the rows are small and access is predominantly sequential, then choose a larger
block size.

■ If the rows are small and access is both random and sequential, then it might be
effective to choose a larger block size.

■ If the rows are large, such as rows containing large object (LOB) data, then choose
a larger block size.

Writes
For high-concurrency OLTP systems, consider appropriate values for INITRANS,
MAXTRANS, and FREELISTS when using a larger block size. These parameters affect the
degree of update concurrency allowed within a block. However, you do not need to
specify the value for FREELISTS when using automatic segment-space management.

If you are uncertain about which block size to choose, then try a database block size of
8 KB for most systems that process a large number of transactions. This represents a
good compromise and is usually effective. Only systems processing LOB data need
more than 8 KB.

Block Size Advantages and Disadvantages
Table 8–3 lists the advantages and disadvantages of different block sizes.

See Also: Oracle Database Administrator's Guide for detailed
information on using Oracle Managed Files

Note: The use of multiple block sizes in a single database instance
is not encouraged because of manageability issues.

See Also: The Oracle Database installation documentation
specific to your operating system for information about the
minimum and maximum block size on your platform

I/O Calibration Inside the Database

8-10 Oracle Database Performance Tuning Guide

I/O Calibration Inside the Database
The I/O calibration feature of Oracle Database enables you to assess the performance
of the storage subsystem, and determine whether I/O performance problems are
caused by the database or the storage subsystem. Unlike other external I/O calibration
tools that issue I/Os sequentially, the I/O calibration feature of Oracle Database issues
I/Os randomly using Oracle data files to access the storage media, producing results
that more closely match the actual performance of the database.

The section describes how to use the I/O calibration feature of Oracle Database and
contains the following topics:

■ Prerequisites for I/O Calibration

■ Running I/O Calibration

Oracle Database also provides Orion, an I/O calibration tool. Orion is a tool for
predicting the performance of an Oracle database without having to install Oracle or
create a database. Unlike other I/O calibration tools, Oracle Orion is expressly
designed for simulating Oracle database I/O workloads using the same I/O software
stack as Oracle. Orion can also simulate the effect of striping performed by Oracle
Automatic Storage Management. For more information, see "I/O Calibration with the
Oracle Orion Calibration Tool" on page 8-12.

Prerequisites for I/O Calibration
Before running I/O calibration, ensure that the following requirements are met:

■ The user must be granted the SYSDBA privilege

■ timed_statistics must be set to TRUE

■ Asynchronous I/O must be enabled

When using file systems, asynchronous I/O can be enabled by setting the
FILESYSTEMIO_OPTIONS initialization parameter to SETALL.

■ Ensure that asynchronous I/O is enabled for data files by running the following
query:

COL NAME FORMAT A50

Table 8–3 Block Size Advantages and Disadvantages

Block Size Advantages Disadvantages

Smaller Good for small rows with lots of random
access.

Reduces block contention.

Has relatively large space overhead due to metadata
(that is, block header).

Not recommended for large rows. There might only
be a few rows stored for each block, or worse, row
chaining if a single row does not fit into a block,

Larger Has lower overhead, so there is more
room to store data.

Permits reading several rows into the
buffer cache with a single I/O
(depending on row size and block size).

Good for sequential access or very large
rows (such as LOB data).

Wastes space in the buffer cache, if you are doing
random access to small rows and have a large block
size. For example, with an 8 KB block size and 50
byte row size, you waste 7,950 bytes in the buffer
cache when doing random access.

Not good for index blocks used in an OLTP
environment, because they increase block contention
on the index leaf blocks.

I/O Calibration Inside the Database

I/O Configuration and Design 8-11

SELECT NAME,ASYNCH_IO FROM V$DATAFILE F,V$IOSTAT_FILE I
WHERE F.FILE#=I.FILE_NO
AND FILETYPE_NAME='Data File';

Additionally, only one calibration can be performed on a database instance at a time.

Running I/O Calibration
The I/O calibration feature of Oracle Database is accessed using the
DBMS_RESOURCE_MANAGER.CALIBRATE_IO procedure. This procedure issues an I/O
intensive read-only workload, made up of one megabyte of random of I/Os, to the
database files to determine the maximum IOPS (I/O requests per second) and MBPS
(megabytes of I/O per second) that can be sustained by the storage subsystem.

The I/O calibration occurs in two steps:

■ In the first step of I/O calibration with the DBMS_RESOURCE_MANAGER.CALIBRATE_IO
procedure, the procedure issues random database-block-sized reads, by default, 8
KB, to all data files from all database instances. This step provides the maximum
IOPS, in the output parameter max_iops, that the database can sustain. The value
max_iops is an important metric for OLTP databases. The output parameter
actual_latency provides the average latency for this workload. When you need a
specific target latency, you can specify the target latency with the input parameter
max_latency (specifies the maximum tolerable latency in milliseconds for
database-block-sized IO requests).

■ The second step of calibration using the DBMS_RESOURCE_MANAGER.CALIBRATE_IO
procedure issues random, 1 MB reads to all data files from all database instances.
The second step yields the output parameter max_mbps, which specifies the
maximum MBPS of I/O that the database can sustain. This step provides an
important metric for data warehouses.

The calibration runs more efficiently if the user provides the num_physical_disks
input parameter, which specifies the approximate number of physical disks in the
database storage system.

Due to the overhead from running the I/O workload, I/O calibration should only be
performed when the database is idle, or during off-peak hours, to minimize the impact
of the I/O workload on the normal database workload.

To run I/O calibration and assess the I/O capability of the storage subsystem used by
Oracle Database, use the DBMS_RESOURCE_MANAGER.CALIBRATE_IO procedure:

SET SERVEROUTPUT ON
DECLARE
 lat INTEGER;
 iops INTEGER;
 mbps INTEGER;
BEGIN
-- DBMS_RESOURCE_MANAGER.CALIBRATE_IO (<DISKS>, <MAX_LATENCY>, iops, mbps, lat);
 DBMS_RESOURCE_MANAGER.CALIBRATE_IO (2, 10, iops, mbps, lat);

 DBMS_OUTPUT.PUT_LINE ('max_iops = ' || iops);
 DBMS_OUTPUT.PUT_LINE ('latency = ' || lat);
 dbms_output.put_line('max_mbps = ' || mbps);
end;
/

When running the DBMS_RESOURCE_MANAGER.CALIBRATE_IO procedure, consider the
following:

I/O Calibration with the Oracle Orion Calibration Tool

8-12 Oracle Database Performance Tuning Guide

■ Only run one calibration at a time on databases that use the same storage
subsystem. If you simultaneously run the calibration across separate databases
that use the same storage subsystem, the calibration will fail.

■ Quiesce the database to minimize I/O on the instance.

■ For Oracle Real Application Clusters (Oracle RAC) configurations, ensure that all
instances are opened to calibrate the storage subsystem across nodes.

■ For an Oracle Real Application Clusters (Oracle RAC) database, the workload is
simultaneously generated from all instances.

■ The num_physical_disks input parameter is optional. By setting the
num_physical_disks parameter to the approximate number of physical disks in
the database's storage system, the calibration can be faster and more accurate.

■ In some cases, asynchronous I/O is permitted for data files, but the I/O subsystem
for submitting asynchronous I/O may be maximized, and I/O calibration cannot
continue. In such cases, refer to the port-specific documentation for information
about checking the maximum limit for asynchronous I/O on the system.

At any time during the I/O calibration process, you can query the calibration status in
the V$IO_CALIBRATION_STATUS view. After I/O calibration is successfully completed,
you can view the results in the DBA_RSRC_IO_CALIBRATE table.

I/O Calibration with the Oracle Orion Calibration Tool

This section describes the Oracle Orion Calibration Tool and includes the following
sections:

■ Introduction to the Oracle Orion Calibration Tool

■ Getting Started with Orion

■ Orion Input Files

■ Orion Parameters

■ Orion Output Files

■ Orion Troubleshooting

Introduction to the Oracle Orion Calibration Tool
Oracle Orion is a tool for predicting the performance of an Oracle database without
having to install Oracle or create a database. Unlike other I/O calibration tools, Oracle
Orion is expressly designed for simulating Oracle database I/O workloads using the
same I/O software stack as Oracle. Orion can also simulate the effect of striping
performed by Oracle Automatic Storage Management.

Table 8–4 lists the types of I/O workloads that Orion supports.

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for more
information about running the
DBMS_RESOURCE_MANAGER.CALIBRATE_IO procedure

■ Oracle Database Reference for information about the
V$IO_CALIBRATION_STATUS view and DBA_RSRC_IO_CALIBRATE
table

I/O Calibration with the Oracle Orion Calibration Tool

I/O Configuration and Design 8-13

For each type of workload shown in Table 8–4, Orion can run tests using different I/O
loads to measure performance metrics such as MBPS, IOPS, and I/O latency. Load is
expressed in terms of the number of outstanding asynchronous I/Os. Internally, for
each such load level, the Orion software keeps issuing I/O requests as fast as they
complete to maintain the I/O load at that level. For random workloads, using either
large or small sized I/Os, the load level is the number of outstanding I/Os. For large
sequential workloads, the load level is a combination of the number of sequential
streams and the number of outstanding I/Os per stream. Testing a given workload at a
range of load levels can help you understand how performance is affected by load.

Note the following when you use Orion:

■ Run Orion when the storage is idle (or pretty close to idle). Orion calibrates the
performance of the storage based on the I/O load it generates; Orion is not able to
properly assess the performance if non-Orion I/O workloads run simultaneously.

■ If a database has been created on the storage, the storage can alternatively be
calibrated using the PL/SQL routine dbms_resource_manager.calibrate_io().

Each Orion data point is a test for a specific mix of small and large I/O loads sustained
for a duration. An Orion test consists of multiple data point tests. These data point
tests can be represented as a two-dimensional matrix. Each column in the matrix
represents data point tests with the same small I/O load, but varying large I/O loads.
Each row represents data point tests with the same large I/O load, but varying small
I/O loads. An Orion test can be for a single point, a single row, a single column, or for
the whole matrix.

Orion Test Targets
You can use Orion to test any disk-based character device that supports asynchronous
I/O. Orion has been tested on the following types of targets:

■ DAS (direct-attached) storage: You can use Orion to test the performance of one or
more local disks, volumes, or files on the local host.

Table 8–4 Orion I/O Workload Support

Workload Description

Small Random I/O OLTP applications typically generate random reads and writes whose size is equivalent to
the database block size, typically 8 KB. Such applications typically care about the
throughput in I/Os Per Second (IOPS) and about the average latency (I/O turn-around
time) per request. These parameters translate to the transaction rate and transaction
turn-around time at the application layer.

Orion simulates a random I/O workload with a given percentage of reads compared to
writes, a given I/O size, and a given number of outstanding I/Os. In this Orion workload
simulation, the I/Os are distributed across all disks.

Large Sequential I/O Data warehousing applications, data loads, backups, and restores generate sequential read
and write streams composed of multiple outstanding 1 MB I/Os. Such applications are
processing large amounts of data, such as a whole table or a whole database and they
typically care about the overall data throughput in MegaBytes Per Second (MBPS).

Orion can simulate a given number of sequential read or write streams of a given I/O size
with a given number of outstanding I/Os. Orion can optionally simulate Oracle Automatic
Storage Management striping when testing sequential streams.

Large Random I/O A sequential stream typically accesses the disks concurrently with other database traffic.
With striping, a sequential stream is spread across many disks. Consequently, at the disk
level, multiple sequential streams are seen as random 1 MB I/Os.

Mixed Workloads Orion can simulate two simultaneous workloads: Small Random I/O and either Large
Sequential I/O or Large Random I/O. This workload type enables you to simulate, for
example, an OLTP workload of 8 KB random reads and writes with a backup workload of
four sequential read streams of 1 MB I/Os.

I/O Calibration with the Oracle Orion Calibration Tool

8-14 Oracle Database Performance Tuning Guide

■ SAN (storage-area network) storage: Orion can be run on any host that has all or
parts of the SAN storage mapped as character devices. The devices can correspond
to striped or un-striped volumes exported by the storage array(s), or individual
disks, or one or more whole arrays.

■ NAS (network-attached storage): You can use Orion to test the performance on
data files on NAS storage. In general, the performance results on NAS storage are
dependent on the I/O patterns with which the data files have been created and
updated. Therefore, you should initialize the data files appropriately before
running Orion.

Orion for Oracle Administrators
Oracle administrators can use Orion to evaluate and compare different storage arrays,
based on the expected workloads. Oracle administrators can also use Orion to
determine the optimal number of network connections, storage arrays, storage array
controllers, and disks for the expected peak workloads.

Getting Started with Orion
To get started using Orion, do the following:

1. Select a test name to use with the Orion –testname parameter. This parameter
specifies a unique identifier for your Orion run. For example, use the test name
"mytest". For more information, see "Orion Parameters" on page 8-15.

2. Create an Orion input file, based on the test name. For example, create a file
named mytest.lun. In the input file list the raw volumes or files to test. Add one
volume name per line. Do not put comments or anything else in the .lun file.

For example, an Orion input file could contain the following:

/dev/raw/raw1
/dev/raw/raw2
/dev/raw/raw3
/dev/raw/raw4
/dev/raw/raw5
/dev/raw/raw6
/dev/raw/raw7
/dev/raw/raw8

For more information, see "Orion Input Files" on page 8-15.

3. Verify that the all volumes specified in the input file, for example mytest.lun, are
accessible using the command dd or another equivalent file viewing utility. For
example, for a typical sanity-check try the following on a Linux system:

$ dd if=/dev/raw/raw1 of=/dev/null bs=32k count=1024

Depending on your platform, the file viewing utility you use and its interface may
be different.

4. Verify that your platform has the necessary libraries installed to do asynchronous
I/Os. The Orion test is completely dependent on asynchronous I/O. On Linux and
Solaris, the library libaio must be in the standard lib directories or accessible
through the shell environment's library path variable (usually LD_LIBRARY_PATH or
LIBPATH, depending on your shell). Windows has built-in asynchronous I/O
libraries, so this issue does not apply.

I/O Calibration with the Oracle Orion Calibration Tool

I/O Configuration and Design 8-15

5. As a first test with Orion, use –run with either the oltp or dss option. If the
database is primarily OLTP, then use –run oltp. If the database is primarily for
data warehousing or analytics, then use –run dss.

For example, use the following command to run an OLTP-like workload using the
default input file name, orion.lun:

$./orion -run oltp

The I/O load levels generated by Orion take into account the number of disk
spindles being tested (or specified with the –num_disks parameter). Keep in mind
that the number of spindles may or may not be related to the number of volumes
specified in the input file, depending on how these volumes are mapped.

6. The section, "Orion Output Files" on page 8-19 provides sample results showing
the Orion output files. Using the sample file mytest_summary.txt is a good starting
point for verifying the input parameters and analyzing the output. The sample
files mytest_*.csv contain comma-delimited values for several I/O performance
measures. For more information, see "Orion Output Files" on page 8-19.

Orion Input Files
When you specify the Orion –testname <testname> parameter, this sets the test name
prefix for the Orion input and output filenames. The default value for the –testname
option is "orion".

The Orion input file, <testname>.lun should contain a carriage-return-separated list of
LUNs.

Orion Parameters
Use the Orion command parameters to specify the I/O workload type and to specify
other Orion options.

Orion Required Parameter
The –run parameter is required with the Orion command. Table 8–5 describes the –run
parameter.

I/O Calibration with the Oracle Orion Calibration Tool

8-16 Oracle Database Performance Tuning Guide

Table 8–5 Required Orion Parameter

Option Description Default

–run level Specifies the test run level to be level. This option provides the run level and allows complex
commands to be specified at the advanced level. If not set as –run advanced, then setting any other
parameter, besides –cache_size or –verbose, results in an error.

Except advanced, all of the –run level settings use a pre-specified set of parameters.

The level must be one of:

■ oltp

Tests with random small (8K) I/Os at increasing loads to determine the maximum IOPS.

This parameter corresponds to the following Orion invocation:

%> ./orion -run advanced \
-num_large 0 -size_small 8 -type rand \
-simulate concat -write 0 -duration 60 \
-matrix row

■ dss

Tests with random large (1M) I/Os at increasing loads to determine the maximum throughput.

This parameter corresponds to the following Orion invocation:

%> ./orion -run advanced \
-num_small 0 -size_large 1024 -type rand \
-simulate concat -write 0 -duration 60 \
-matrix column

■ simple

Generates the Small Random I/O and the Large Random I/O workloads for a range of load
levels. In this option, small and large I/Os are tested in isolation. The only optional parameters
that can be specified at this run level are –cache_size and –verbose.

This parameter corresponds to the following Orion invocation:

%> ./orion -run advanced \
-size_small 8 -size_large 1024 -type rand \
-simulate concat -write 0 -duration 60 \
-matrix basic

■ normal

Same as simple, but also generates combinations of the small random I/O and large random
I/O workloads for a range of loads. The only optional parameters that can be specified at this
run level are –cache_size and –verbose.

This parameter corresponds to the following Orion invocation:

%> ./orion -run advanced \
-size_small 8 -size_large 1024 -type rand \
-simulate concat -write 0 -duration 60 \
-matrix detailed

■ advanced

Tests the workload you specify with optional parameters. Any of the optional parameters can
be specified at this run level.

normal

I/O Calibration with the Oracle Orion Calibration Tool

I/O Configuration and Design 8-17

Orion Optional Parameters

Table 8–6 Optional Orion Parameters

Option Description Default

–cache_size num Size of the storage array's read or write cache (in MB). For Large
Sequential I/O workloads, Orion warms the cache by doing random
large I/Os before each data point. Orion uses the cache size to
determine the duration for this cache warming operation. If set to 0, do
not perform cache warming.

Unless this option is set to 0, Orion issues several unmeasured, random
I/Os before each large sequential data point. These I/Os fill up the
storage array's cache, if any, with random data so that I/Os from one
data point do not result in cache hits for the next data point. Read tests
are preceded with junk reads and write tests are preceded with junk
writes. If specified, this 'cache warming' is performed until num MBs of
I/O have been read or written.

Default Value:

If not specified, warming
occurs for a default amount
of time (two minutes). That
is, issue two minutes of
unmeasured random I/Os
before each data point.

–duration
num_seconds

Set the duration to test each data point in seconds to the value
num_seconds.

Default Value: 60

–help Prints Orion help information. All other options are ignored with help

set.

–matrix type Type of mixed workloads to test over a range of loads. An Orion test
consists of multiple data point tests. The data point tests can be
represented as a two-dimensional matrix.

Each column in the matrix represents data point tests with the same
small I/O load, but varying large I/O loads. Each row represents data
point tests with the same large I/O load, but varying small I/O loads.
An Orion test can be for a single point, a single row, a single column, or
the whole matrix, depending on the matrix type:

■ basic: No mixed workload. The Small Random and Large
Random/Sequential workloads are tested separately. Test small
I/Os only, then large I/Os only.

■ detailed: Small Random and Large Random/Sequential workloads
are tested in combination. Test entire matrix.

■ point: A single data point with S outstanding Small Random I/Os
and L outstanding Large Random I/Os or sequential streams. S is
set by the –num_small parameter. L is set by the –num_large
parameter. Test with –num_small small I/Os, –num_large large
I/Os.

■ col: Large Random/Sequential workloads only. Test a varying large
I/O load with –num_small small I/Os.

■ row: Small Random workloads only. Test a varying small I/O load
with –num_large large I/Os.

■ max: Same as detailed, but only tests the workload at the
maximum load, specified by the –num_small and –num_large
parameters. Test varying loads up to the –num_small and
–num_large limits.

Default Value: basic

–num_disks value Specify the number of physical disks used by the test. Used to generate a
range for the load. Specifies the number of disks (physical spindles).
This number value is used to gauge the range of loads that Orion should
test at. Increasing this parameter results in Orion using heavier I/O
loads.

Default Value: the number of
LUNs in <testname>.lun.

–num_large value Controls the large I/O load.

Note, this option only applies when –matrix is specified as: row, point,
or max.

When the –type option is set to rand, the parameter argument value
specifies the number of outstanding large I/Os.

When the –type option is set to seq, the parameter argument value
specifies the number of sequential I/O streams.

Default Value: no default

I/O Calibration with the Oracle Orion Calibration Tool

8-18 Oracle Database Performance Tuning Guide

–num_small Specify the maximum number of outstanding I/Os for the Small
Random I/O workload.

Note: this only applies when –matrix is specified as col, point, or max.

Default Value: no default

–num_streamIO num Specify the number of concurrent I/Os per stream as num.

Note: this parameter is only used if –type is seq.

Default Value: 4

–simulate type Data layout to simulate for Large Sequential I/O workload. Orion tests
on a virtual LUN formed by combining specified LUNs in one of these
ways. The type is one:

■ concat: A virtual volume is simulated by serially chaining the
specified LUNs. A sequential test over this virtual volume will go
from some point to the end of each one LUN, followed by the
beginning to end of the next LUN, and so on.

■ raid0: A virtual volume is simulated by striping across the
specified LUNs. Each sequential stream issues I/Os across all
LUNs using raid0 striping. The stripe depth is 1M by default, to
match the Oracle Automatic Storage Management stripe depth,
and can be changed with the –stripe parameter.

The offsets for I/Os are determined as follows:

For Small Random and Large Random workloads:

■ The LUNs are concatenated into a single virtual LUN (VLUN) and
random offsets are chosen within the VLUN.

For Large Sequential workloads:

■ With striping (–simulate raid0). The LUNs are used to create a
single striped VLUN. With no concurrent Small Random workload,
the sequential streams start at fixed offsets within the striped
VLUN. For n streams, stream i start at offset VLUNsize * (i + 1) / (n
+ 1), unless n is 1, in which case the single stream start at offset 0.
With a concurrent Small Random workload, streams start at
random offsets within the striped VLUN.

■ Without striping (–simulate CONCAT). The LUNs are concatenated
into a single VLUN. The streams start at random offsets within the
single VLUN.

This parameter is typically only used if –type is seq.

Default Value: concat

–size_large num Specify the num, size of the I/Os (in KB) for the Large Random or
Sequential I/O workload.

Default Value: 1024

–size_small num Specify the num, size of the I/Os (in KB) for the Small Random I/O
workload.

Default Value: 8

–testname tname Specify the tname identifier for the test run. When specified, the input

file containing the LUN disk or file names must be named <tname>.lun.

The output files are named with the prefix <tname>_.

Default Value: orion

–type [rand | seq] Type of the Large I/O workload.

■ rand: Randomly distributed large I/Os.

■ seq: Sequential streams of large I/Os.

Default Value: rand

–verbose Prints status and tracing information to standard output. Default Value: option not set

–write num_write Specify the percentage of I/Os that are writes to num_write; the rest
being reads.

This parameter applies to both the Large and Small I/O workloads. For
Large Sequential I/Os, each stream is either read-only or write-only; the
parameter specifies the percentage of streams that are write-only. The
data written to disk is garbage and unrelated to any existing data on the
disk.

Caution: write tests obliterate all data on the specified LUNS.

Default Value: 0

Table 8–6 (Cont.) Optional Orion Parameters

Option Description Default

I/O Calibration with the Oracle Orion Calibration Tool

I/O Configuration and Design 8-19

Orion Command Line Samples
The following provides sample Orion commands for different types of I/O workloads:

1. To evaluate storage for an OLTP database:

-run oltp

2. To evaluate storage for a data warehouse:

-run dss

3. For a basic set of data:

-run normal

4. To understand your storage performance with read-only, small and large random
I/O workload:

$ orion -run simple

5. To understand your storage performance with a mixed small and large random
I/O workload:

$ orion -run normal

6. To generate combinations of 32KB and 1MB reads to random locations:

$ orion -run advanced -size_small 32 \
-size_large 1024 -type rand -matrix detailed

7. To generate multiple sequential 1 MB write streams, simulating 1 MB RAID-0
stripes:

$ orion -run advanced -simulate raid0 \
-stripe 1024 -write 100 -type seq -matrix col -num_small 0

8. To generate combinations of 32 KB and 1 MB reads to random locations:

 -run advanced -size_small 32 -size_large 1024 -type rand -matrix detailed

9. To generate multiple sequential 1 MB write streams, simulating RAID0 striping:

 -run advanced -simulate raid0 -write 100 -type seq -matrix col -num_small 0

Orion Output Files
The output files for a test run are prefixed by <testname>_<date> where date is
yyyymmdd_hhmm.

Table 8–7 lists the Orion output files.

Caution: Write tests obliterate all data on the specified LUNS.

Table 8–7 Orion Generated Output Files

Output File Description

<testname>_<date>_hist.csv Histogram of I/O latencies.

<testname>_<date>_iops.csv Performance results of small I/Os in IOPS.

<testname>_<date>_lat.csv Latency of small I/Os in microseconds.

I/O Calibration with the Oracle Orion Calibration Tool

8-20 Oracle Database Performance Tuning Guide

Orion Sample Output Files
Orion creates several output files as specified in Table 8–7. For the sample "mytest"
shown in the section, "Getting Started with Orion" on page 8-14, the output files are:

■ mytest_summary.txt: This file contains:

■ Input parameters

■ Maximum throughput observed for the Large Random/Sequential workload

■ Maximum I/O rate observed for the Small Random workload

■ Minimum latency observed for the Small Random workload

■ mytest_mbps.csv: comma-delimited value file containing the data transfer rate
(MBPS) results for the Large Random/Sequential workload. In the general case,
this and all other CSV files contains a two-dimensional table. Each row in the table
corresponds to a large I/O load level and each column corresponds to a specific
small I/O load level. Thus, the column headings are the number of outstanding
small I/Os and the row headings are the number of outstanding large I/Os (for
random large I/O tests) or the number of sequential streams (for sequential large
I/O tests).

Example 8–1 shows the first few data points of the Orion MBPS output CSV file
for "mytest". The simple mytest command-line does not test combinations of large
and small I/Os. Hence, the MBPS file has just one column corresponding to 0
outstanding small I/Os. In Example 8–1, at a load level of 8 outstanding large
reads and no small I/Os, the report data indicates a throughput of 103.06 MBPS.

Example 8–1 Mytest Sample Data Points

Large/Small, 0

1, 19.18
2, 37.59
4, 65.53
6, 87.03
8, 103.06
10, 109.67
.
.

Figure 8–2 shows a sample data transfer rate measured at different large I/O load
levels. This chart can be generated by loading mytest_mbps.csv into a spreadsheet
and graphing the data points. Orion does not directly generate such graphs. The

<testname>_<date>_mbps.csv Performance results of large I/Os in MBPS.

<testname>_<date>_summary.txt Summary of the input parameters, along with the minimum small I/O latency (in secs),
the maximum MBPS, and the maximum IOPS observed.

<testname>_<date>_trace.txt Extended, unprocessed output.

Caution: If you are performing write tests, be prepared to lose any
data stored on the LUNs.

Table 8–7 (Cont.) Orion Generated Output Files

Output File Description

I/O Calibration with the Oracle Orion Calibration Tool

I/O Configuration and Design 8-21

x-axis corresponds to the number of outstanding large reads and the y-axis
corresponds to the throughput observed.

The graph shown in Figure 8–2 shows typical storage system behavior. As the
number of outstanding I/O requests is increased, the throughput increases.
However, at a certain point the throughput level stabilizes, indicating the storage
system's maximum throughput value.

Figure 8–2 Sample I/O Load Levels

■ mytest_iops.csv: Comma-delimited value file containing the I/O throughput (in
IOPS) results for the Small Random workload. Like in the MBPS file, the column
headings are the number of outstanding small I/Os and the row headings are the
number of outstanding large I/Os, when testing large random, or the number of
sequential streams (for large sequential).

In the general case, a CSV file contains a two-dimensional table. However, for a
simple test where you are not testing combinations of large and small I/Os the
results file has just one row. Hence, the IOPS results file just has one row with 0
large I/Os. As shown in Example 8–2, an example data point with 12 outstanding
small reads and no large I/Os provides a sample throughput of 951 IOPS.

Example 8–2 Sample Data Points with 12 Small Reads and No Large Reads

Large/Small, 1, 2, 3, 6, 9, 12

0, 105, 208, 309, 569, 782, 951

The graph shown in Figure 8–3, generated by loading mytest_iops.csv into Excel
and charting the data, illustrates the IOPS throughput seen at different small I/O
load levels.

Figure 8–3 shows typical storage system behavior. As the number of outstanding
I/O requests is increased, the throughput increases. However, at a certain point,
the throughput level stabilizes, indicating the storage system reaches a maximum
throughput value. At higher throughput levels, the latency for the I/O requests
also increase significantly. Therefore, it is important to view this data with the
latency data provided in the generated latency results in mytest_lat.csv.

I/O Calibration with the Oracle Orion Calibration Tool

8-22 Oracle Database Performance Tuning Guide

Figure 8–3 I/O Throughput at Different Small I/O Load Levels

■ mytest_lat.csv: Comma-delimited value file containing the latency results for the
Small Random workload. As with the MBPS and IOPS files, the column headings
are the number of outstanding small I/Os and the row headings are the number of
outstanding large I/Os (when testing large random I/Os) or the number of
sequential streams.

In the general case, a CSV file contains a two-dimensional table. However, for a
simple test where you are not testing combinations of large and small I/Os the
results file has just one row. Hence, the IOPS results file just has one row with 0
large I/Os. In the example shown in Example 8–3, at a sustained load level of 12
outstanding small reads and no large I/Os, the generated results show an I/O
turn-around latency of 22.25 milliseconds.

Example 8–3 Sample CSV file with 12 Small Reads and No Large Reads

Large/Small, 1, 2, 3, 6, 9, 12

0, 14.22, 14.69, 15.09, 16.98, 18.91, 21.25

The graph in Figure 8–4, generated by loading mytest_lat.csv into Excel and
charting the data, illustrates the small I/O latency at different small I/O load
levels for mytest.

Figure 8–4 I/O Latency at Small I/O Load Levels

■ mytest_trace.txt: Contains the extended, unprocessed test output.

I/O Calibration with the Oracle Orion Calibration Tool

I/O Configuration and Design 8-23

Orion Troubleshooting
1. If you are getting an I/O error on one or more of the volumes specified in the

<testname>.lun file:

■ Verify that you can access the volume in the same mode as the test, read or
write, using a file copy program such as dd.

■ Verify that your host operating system version can do asynchronous I/O.

■ On Linux and Solaris, the library libaio must be in the standard lib
directories or accessible through the shell environment's library path variable
(usually LD_LIBRARY_PATH or LIBPATH, depending on your shell).

2. If you run on NAS storage:

■ The file system must be properly mounted for Orion to run. Please consult
your Oracle Installation Guide for directions (for example, the section,
Appendix B "Using NAS Devices" in the Database Installation Guide for Linux
x86).

■ The mytest.lun file should contain one or more paths of existing files. Orion
does not work on directories or mount points. The file has to be large enough
for a meaningful test. The size of this file should represent the eventual
expected size of your datafiles (say, after a few years of use).

■ You may see poor performance doing asynchronous I/O over NFS on Linux
(including 2.6 kernels).

■ If you are doing read tests and the reads are hitting untouched blocks of the
file that were not initialized or previously written, some smart NAS systems
may "fake" the read by returning zeroed-out blocks. When this occurs, you see
unexpectedly good performance.

The workaround is to write all blocks, using a tool such as dd, before
performing the read test.

3. If you run Orion on Windows: Testing on raw partitions requires temporarily
mapping the partitions to drive letters and specifying these drive letters in the
test.lun file.

4. If you run Orion 32-bit Linux/x86 binary on an x86_64 system: Please copy a
32-bit libaio.so file from a 32-bit computer running the same Linux version.

5. If you are testing with a lot of disks (num_disks greater than around 30):

■ You should use the -duration option (see the optional parameters section for
more details) to specify a long duration (like 120 seconds or more) for each
data point. Since Orion tries to keep all the spindles running at a particular
load level, each data point requires a ramp-up time, which implies a longer
duration for the test.

■ You may get the following error message, instructing you to increase the
duration value:

Specify a longer -duration value.

Note: Orion reports errors that occur during a test on standard
output.

I/O Calibration with the Oracle Orion Calibration Tool

8-24 Oracle Database Performance Tuning Guide

A duration of 2x the number of spindles seems to be a good rule of thumb.
Depending on your disk technology, your platform may need more or less
time.

6. If you get an error about libraries being used by Orion:

■ Linux/Solaris: See I/O error troubleshooting.

■ NT-Only: Do not move/remove the Oracle libraries included in the
distribution. These must be in the same directory as orion.exe.

7. If you are seeing performance numbers that are "unbelievably good":

■ You may have a large read or write cache, or read and write cache somewhere
between the Orion program and the disk spindles. Typically, the storage array
controller has the biggest effect. Find out the size of this cache and use the
-cache_size advanced option to specify it to Orion (see the optional parameters
section for more details).

■ The total size of your volumes may be really small compared to one or more
caches along the way. Try to turn off the cache. This is needed if the other
volumes sharing your storage show significant I/O activity in a production
environment (and end up using large parts of the shared cache).

8. If Orion is reporting a long estimated run time:

■ The run time increases when -num_disks is high. Orion internally uses a linear
formula to determine how long it takes to saturate the given number of disks.

■ The -cache_size parameter affects the run time, even when it is not specified.
Orion does cache warming for two minutes per data point by default. If you
have turned off the cache, specify -cache_size 0.

■ The run time increases when a long -duration value is specified, as expected.

9

Managing Operating System Resources 9-1

9 Managing Operating System Resources

This chapter explains how to tune the operating system for optimal performance of
Oracle Database.

This chapter contains the following sections:

■ Understanding Operating System Performance Issues

■ Resolving Operating System Issues

■ Understanding CPU

■ Resolving CPU Issues

Understanding Operating System Performance Issues
Operating system performance issues commonly involve process management,
memory management, and scheduling. If you have tuned the Oracle database instance
and still need to improve performance, verify your work or try to reduce system time.
Ensure that there is enough I/O bandwidth, CPU power, and swap space. Do not
expect, however, that further tuning of the operating system will have a significant
effect on application performance. Changes in the Oracle Database configuration or in
the application are likely to result in a more significant difference in operating system
efficiency than simply tuning the operating system.

For example, if an application experiences excessive buffer busy waits, then the
number of system calls increases. If you reduce the buffer busy waits by tuning the
application, then the number of system calls decreases.

This section covers the following topics related to operating system performance
issues:

■ Using Operating System Caches

■ Memory Usage

■ Using Operating System Resource Managers

See Also:

■ "Operating System Statistics" on page 5-4 for a discussion of the
importance of operating system statistics

■ Your operating system documentation

■ Your Oracle Database platform-specific documentation, which
contains tuning information specific to your platform

Understanding Operating System Performance Issues

9-2 Oracle Database Performance Tuning Guide

Using Operating System Caches
Operating systems and device controllers provide data caches that do not directly
conflict with Oracle Database cache management. Nonetheless, these structures can
consume resources while offering little or no performance benefit. This situation is
most noticeable when database files are stored in a Linux or UNIX file system. By
default, all database I/O goes through the file system cache.

On some Linux and UNIX systems, direct I/O is available to the filestore. This
arrangement allows the database files to be accessed within the file system, bypassing
the file system cache. Direct I/O saves CPU resources and allows the file system cache
to be dedicated to non-database activity, such as program texts and spool files.

Although the operating system cache is often redundant because the Oracle Database
buffer cache buffers blocks, in some cases the database does not use the database
buffer cache. In these cases, using direct I/O or raw devices may yield worse
performance than using operating system buffering. Examples include:

■ Reads or writes to the TEMP tablespace

■ Data stored in NOCACHE LOBs

■ Parallel Query slaves reading data

You may want to cache but not all files at the operating system level.

Asynchronous I/O
With synchronous I/O, when an I/O request is submitted to the operating system, the
writing process blocks until the write is confirmed as complete. It can then continue
processing. With asynchronous I/O, processing continues while the I/O request is
submitted and processed. Use asynchronous I/O when possible to avoid bottlenecks.

Some platforms support asynchronous I/O by default, others need special
configuration, and some only support asynchronous I/O for certain underlying file
system types.

FILESYSTEMIO_OPTIONS Initialization Parameter
You can use the FILESYSTEMIO_OPTIONS initialization parameter to enable or disable
asynchronous I/O or direct I/O on file system files. This parameter is
platform-specific and has a default value that is best for a particular platform.

FILESYTEMIO_OPTIONS can be set to one of the following values:

■ ASYNCH: enable asynchronous I/O on file system files, which has no timing
requirement for transmission.

■ DIRECTIO: enable direct I/O on file system files, which bypasses the buffer cache.

Note: This problem does not occur on Windows. All file requests by
the database bypass the caches in the file system.

Note: In some cases the database can cache parallel query data in the
database buffer cache instead of performing direct reads from disk
into the PGA. This configuration may be appropriate when the
database servers have a large amount of memory. See Oracle Database
VLDB and Partitioning Guide to learn more using parallel execution.

Understanding Operating System Performance Issues

Managing Operating System Resources 9-3

■ SETALL: enable both asynchronous and direct I/O on file system files.

■ NONE: disable both asynchronous and direct I/O on file system files.

Limiting Asynchronous I/O in NFS Server Environments
In some NFS server environments, performance may be impaired if a large number of
asynchronous I/O requests are made within a short period of time. In such cases, use
the DNFS_BATCH_SIZE initialization parameter to improve performance and increase
stability on your system by limiting the number of I/Os issued by an Oracle process.

The DNFS_BATCH_SIZE initialization parameter controls the number of asynchronous
I/Os that can be queued by an Oracle foreground process when Direct NFS is enabled.
In environments where the NFS server cannot handle a large number of outstanding
asynchronous I/O requests, Oracle recommends setting this parameter to a value of
128. You can then increase or decrease its value based on the performance of your NFS
server.

Memory Usage
Memory usage is affected by both buffer cache limits and initialization parameters.

Buffer Cache Limits
The UNIX buffer cache consumes operating system memory resources. Although in
some versions of UNIX, the UNIX buffer cache may be allocated a set amount of
memory, it is common today for more sophisticated memory management
mechanisms to be used. Typically, these will allow free memory pages to be used to
cache I/O. In such systems, it is common for operating system reporting tools to show
that there is no free memory, which is not generally a problem. If processes require
more memory, the memory caching I/O data is usually released to allow the process
memory to be allocated.

Parameters Affecting Memory Usage
The memory required by any one Oracle Database session depends on many factors.
Typically the major contributing factors are:

■ Number of open cursors

■ Memory used by PL/SQL, such as PL/SQL tables

■ SORT_AREA_SIZE initialization parameter

In Oracle Database, the PGA_AGGREGATE_TARGET initialization parameter gives greater
control over a session's memory usage.

See Also: Your platform-specific documentation for more details

Note: The default setting for the DNFS_BATCH_SIZE initialization
parameter is 4096. The recommended value of 128 is only applicable
on systems where the NFS server cannot handle a large number of
asynchronous I/O requests and severe latency is detected.

See Also: Oracle Database Reference for information about the
DNFS_BATCH_SIZE initialization parameter

Understanding Operating System Performance Issues

9-4 Oracle Database Performance Tuning Guide

Using Operating System Resource Managers
Some platforms provide operating system resource managers. These are designed to
reduce the impact of peak load use patterns by prioritizing access to system resources.
They usually implement administrative policies that govern which resources users can
access and how much of those resources each user is permitted to consume.

Operating system resource managers are different from domains or other similar
facilities. Domains provide one or more completely separated environments within
one system. Disk, CPU, memory, and all other resources are dedicated to each domain
and cannot be accessed from any other domain. Other similar facilities completely
separate just a portion of system resources into different areas, usually separate CPU
or memory areas. Like domains, the separate resource areas are dedicated only to the
processing assigned to that area; processes cannot migrate across boundaries. Unlike
domains, all other resources (usually disk) are accessed by all partitions on a system.

Oracle Database runs within domains, and within these other less complete
partitioning constructs, as long as the allocation of partitioned memory (RAM)
resources is fixed, not dynamic.

Operating system resource managers prioritize resource allocation within a global
pool of resources, usually a domain or an entire system. Processes are assigned to
groups, which are in turn assigned resources anywhere within the resource pool.

Note: Oracle Database is not supported for use with any UNIX
operating system resource manager's memory management and
allocation facility. Oracle Database Resource Manager, which
provides resource allocation capabilities within an Oracle database
instance, cannot be used with any operating system resource
manager.

Note: If you have multiple instances on a node, and you want to
distribute resources among them, then each instance should be
assigned to a dedicated operating-system resource manager group
or managed entity. To run multiple instances in the managed entity,
use instance caging to manage how the CPU resources within the
managed entity should be distributed among the instances. When
Oracle Database Resource Manager is managing CPU resources, it
expects a fixed amount of CPU resources for the instance. Without
instance caging, it expects the available CPU resources to be equal
to the number of CPUs in the managed entity. With instance caging,
it expects the available CPU resources to be equal to the value of
the CPU_COUNT initialization parameter. If there are less CPU
resources than expected, then Oracle Database Resource Manager is
not as effective at enforcing the resource allocations in the resource
plan.

Resolving Operating System Issues

Managing Operating System Resources 9-5

Resolving Operating System Issues
This section provides hints for tuning various systems by explaining the following
topics:

■ Performance Hints on UNIX-Based Systems

■ Performance Hints on Windows Systems

■ Performance Hints on HP OpenVMS Systems

Familiarize yourself with platform-specific issues so that you know what performance
options the operating system provides.

Performance Hints on UNIX-Based Systems
On UNIX systems, try to establish a good ratio between the amount of time the
operating system spends fulfilling system calls and doing process scheduling and the
amount of time the application runs. The goal should be to run most of the time in
application mode, also called user mode, rather than system mode.

The ratio of time spent in each mode is only a symptom of the underlying problem,
which might involve the following:

■ Paging or swapping

■ Executing too many operating system calls

■ Running too many processes

If such conditions exist, then there is less time available for the application to run. The
more time you can release from the operating system side, the more transactions an
application can perform.

Performance Hints on Windows Systems
On Windows systems, as with UNIX-based systems, establish an appropriate ratio
between time in application mode and time in system mode. You can easily monitor
many factors with the Windows administrative performance tool: CPU, network, I/O,
and memory are all displayed on the same graph to assist you in avoiding bottlenecks
in any of these areas.

See Also:

■ For a complete list of operating system resource management
and resource allocation and deallocation features that work
with Oracle Database and Oracle Database Resource Manager,
see your systems vendor and your Oracle representative.
Oracle does not certify these system features for compatibility
with specific release levels.

■ Oracle Database Administrator's Guide for information about
Oracle Database Resource Manager.

■ Oracle Database Administrator's Guide for information about
instance caging.

See Also: Your Oracle platform-specific documentation and your
operating system vendor's documentation

Understanding CPU

9-6 Oracle Database Performance Tuning Guide

Performance Hints on HP OpenVMS Systems
Consider the paging parameters on a mainframe, and remember that Oracle Database
can exploit a very large working set.

Free memory in HP OpenVMS environments is actually memory that is not mapped to
any operating system process. On a busy system, free memory likely contains a page
belonging to one or more currently active process. When that access occurs, a soft
page fault takes place, and the page is included in the working set for the process. If
the process cannot expand its working set, then one of the pages currently mapped by
the process must be moved to the free set.

Any number of processes might have pages of shared memory within their working
sets. The sum of the sizes of the working sets can thus markedly exceed the available
memory. When the Oracle server is running, the SGA, the Oracle Database kernel
code, and the Oracle Forms run-time executable are normally all sharable and account
for perhaps 80% or 90% of the pages accessed.

Understanding CPU
To address CPU problems, first establish appropriate expectations for the amount of
CPU resources your system should be using. Then, determine whether sufficient CPU
resources are available and recognize when your system is consuming too many
resources. Begin by determining the amount of CPU resources the Oracle database
instance utilizes with your system in the following three cases:

■ System is idle, when little Oracle Database and non-Oracle activity exists

■ System at average workloads

■ System at peak workloads

You can capture various workload snapshots using the Automatic Workload
Repository, Statspack, or the UTLBSTAT/UTLESTAT utility. Operating system
utilities—such as vmstat, sar, and iostat on UNIX and the administrative
performance monitoring tool on Windows—can be used along with the V$OSSTAT or
V$SYSMETRIC_HISTORY view during the same time interval as Automatic Workload
Repository, Statspack, or UTLBSTAT/UTLESTAT to provide a complimentary view of the
overall statistics.

Workload is an important factor when evaluating your system's level of CPU
utilization. During peak workload hours, 90% CPU utilization with 10% idle and
waiting time can be acceptable. Even 30% utilization at a time of low workload can be
understandable. However, if your system shows high utilization at normal workload,
then there is no room for a peak workload. For example, Figure 9–1 illustrates
workload over time for an application having peak periods at 10:00 AM and 2:00 PM.

See Also:

■ "Overview of the Automatic Workload Repository" on page 5-8

■ Chapter 6, "Automatic Performance Diagnostics" for more
information on Oracle Database tools

Resolving CPU Issues

Managing Operating System Resources 9-7

Figure 9–1 Average Workload and Peak Workload

This example application has 100 users working 8 hours a day. Each user entering one
transaction every 5 minutes translates into 9,600 transactions daily. Over an 8-hour
period, the system must support 1,200 transactions an hour, which is an average of 20
transactions a minute. If the demand rate were constant, then you could build a
system to meet this average workload.

However, usage patterns are not constant and in this context, 20 transactions a minute
can be understood as merely a minimum requirement. If the peak rate you need to
achieve is 120 transactions a minute, then you must configure a system that can
support this peak workload.

For this example, assume that at peak workload, Oracle Database uses 90% of the CPU
resource. For a period of average workload, then, Oracle Database uses no more than
about 15% of the available CPU resource, as illustrated in the following equation:

20 tpm / 120 tpm * 90% = 15% of available CPU resource
where tpm is transactions a minute.

If the system requires 50% of the CPU resource to achieve 20 tpm, then a problem
exists: the system cannot achieve 120 transactions a minute using 90% of the CPU.
However, if you tuned this system so that it achieves 20 tpm using only 15% of the
CPU, then, assuming linear scalability, the system might achieve 120 transactions a
minute using 90% of the CPU resources.

As users are added to an application, the workload can rise to what had previously
been peak levels. No further CPU capacity is then available for the new peak rate,
which is actually higher than the previous.

Resolving CPU Issues
You can resolve CPU capacity issues by:

■ Detecting and solving CPU problems from excessive consumption, as described in
"Finding and Tuning CPU Utilization" on page 9-8.

■ Reducing the impact of peak load use patterns by prioritizing CPU resource
allocation using Oracle Database Resource Manager, as described in "Managing
CPU Resources Using Oracle Database Resource Manager" on page 9-10.

Time

F
u

n
ct

io
n

al
 D

em
an

d

8:00 10:00 12:00 14:00 16:00

Peak Workload

Average Workload

Resolving CPU Issues

9-8 Oracle Database Performance Tuning Guide

■ Using instance caging to limit the number of CPUs that a database instance can
use simultaneously when running multiple database instances on a multi-CPU
system, as described in "Managing CPU Resources Using Instance Caging" on
page 9-11.

■ Increasing hardware capacity and improving the system architecture, as described
in "System Architecture" on page 2-5.

Finding and Tuning CPU Utilization
Every process running on your system affects the available CPU resources. Therefore,
tuning non-database factors can also improve database performance.

Use the V$OSSTAT or V$SYSMETRIC_HISTORY view to monitor system utilization
statistics from the operating system. Useful statistics contained in V$OSSTAT and
V$SYSMETRIC_HISTORY include:

■ Number of CPUs

■ CPU utilization

■ Load

■ Paging

■ Physical memory

You can use operating system monitoring tools to determine which processes run on
the system as a whole. If the system is too heavily loaded, check the memory, I/O, and
process management areas described later in this section.

You can use tools such as sar -u on many UNIX-based systems to examine the level of
CPU utilization on the system. In UNIX, statistics show user time, system time, idle
time, and time waiting for I/O. A CPU problem exists if idle time and time waiting for
I/O are both close to zero (less than 5%) at a normal or low workload.

On Windows, you can use the administrative performance tool to monitor CPU
utilization. This utility provides statistics on processor time, user time, privileged time,
interrupt time, and DPC time.

This section contains the following topics related to checking system CPU utilization:

■ Checking Memory Management

■ Checking I/O Management

■ Checking Network Management

■ Checking Process Management

Checking Memory Management
Check the following memory management areas:

■ Paging and Swapping

See Also: Oracle Database Reference for more information on
V$OSSTAT and V$SYSMETRIC_HISTORY

Note: This section describes how to check system CPU utilization
on most UNIX-based and Windows systems. For other platforms,
see your operating system documentation.

Resolving CPU Issues

Managing Operating System Resources 9-9

■ Oversize Page Tables

Paging and Swapping Use the V$OSSTAT view, utilities such as sar or vmstat on UNIX,
or the administrative performance tool on Windows, to investigate the cause of paging
and swapping.

Oversize Page Tables On UNIX, if the processing space becomes too large, then it can
result in the page tables becoming too large. This is not an issue on Windows systems.

Checking I/O Management
Thrashing is an I/O management issue. Ensure that your workload fits into memory,
so the computer is not thrashing (swapping and paging processes in and out of
memory). The operating system allocates fixed portions of time during which CPU
resources are available to your process. If the process wastes a large portion of each
time period checking to ensure that it can run and ensuring that all necessary
components are in the computer, then the process might be using only 50% of the time
allotted to actually perform work.

Checking Network Management
Check client/server round trips. There is an overhead in processing messages. When
an application generates many messages that need to be sent through the network, the
latency of sending a message can result in CPU overload. To alleviate this problem,
bundle multiple messages rather than perform lots of round trips. For example, you
can use array inserts, array fetches, and so on.

Checking Process Management
Several process management issues discussed in this section should be checked.

Scheduling and Switching The operating system can spend excessive time scheduling
and switching processes. Examine the way in which you are using the operating
system, because it is possible that too many processes are in use. On Windows
systems, do not overload the server with too many non-database processes.

Context Switching Due to operating system specific characteristics, your system could
be spending a lot of time in context switches. Context switching can be expensive,
especially with a large SGA. Context switching is not an issue on Windows, which has
only one process for each instance. All threads share the same page table.

Oracle Database has several features for context switching:

■ Post-wait driver

An Oracle process must be able to post another Oracle process (give it a message)
and also must be able to wait to be posted. For example, a foreground process may
need to post LGWR to tell it to write out all blocks up to a given point so that it
can acknowledge a commit.

Often this post-wait mechanism is implemented through UNIX Semaphores, but
these can be resource intensive. Therefore, some platforms supply a post-wait
driver, typically a kernel device driver that is a lightweight method of
implementing a post-wait interface.

■ Memory-mapped system timer

See Also: Chapter 8, "I/O Configuration and Design"

Resolving CPU Issues

9-10 Oracle Database Performance Tuning Guide

Oracle Database often needs to query the system time for timing information. This
can involve an operating system call that incurs a relatively costly context switch.
Some platforms implement a memory-mapped timer that uses an address within
the processes virtual address space to contain the current time information.
Reading the time from this memory-mapped timer is less expensive than the
overhead of a context switch for a system call.

■ List I/O interfaces to submit multiple asynchronous I/Os in One Call

List I/O is an application programming interface that allows several asynchronous
I/O requests to be submitted in a single system call, rather than submitting several
I/O requests through separate system calls. The main benefit of this feature is to
reduce the number of context switches required.

Starting New Operating System Processes There is a high cost in starting new operating
system processes. Developers often create a single-purpose process, exit the process,
and then create a new one. This technique re-creates and destroys the process each
time, consuming excessive amounts of CPU, especially in applications that have large
SGAs. The CPU is needed to build the page tables each time. The problem is
aggravated when you pin or lock shared memory because you must access every page.

For example, if you have a 1 gigabyte SGA, then you might have page table entries for
every 4 KB, and a page table entry might be 8 bytes. You could end up with (1 GB / 4
KB) * 8 byte entries. This becomes expensive, because you need to continually ensure
that the page table is loaded.

Managing CPU Resources Using Oracle Database Resource Manager
Oracle Database Resource Manager allocates and manages CPU resources among
database users and applications in the following ways:

■ Preventing CPU saturation

If the CPUs run at 100%, then you can use Oracle Database Resource Manager to
allocate a maximum amount of CPU to sessions in each consumer group. This
feature can ensure that high-priority sessions can run immediately and lower the
CPU consumption of low-priority sessions.

■ Limiting CPU usage for a consumer group

You can use the Resource Manager directive max_utilization_limit to place a
hard limit on the percentage of CPU that a consumer group can use. This feature
restricts the CPU consumption of low-priority sessions and can help provide more
consistent performance for the workload in a consumer group.

■ Limiting damage from runaway queries

Starting with Oracle Database 11g Release 2 (11.2.0.2), Oracle Database Resource
Manager can limit the damage from runaway queries by limiting the maximum
execution time for a call, or by moving a long-running query to a lower-priority
consumer group.

■ Limiting the parallel statement activity for a consumer group

Starting with Oracle Database 11g Release 2 (11.2.0.2), you can use the Resource
Manager directive parallel_target_percentage to prevent one consumer group
from monopolizing all parallel servers. The database queues parallel statements if
they would cause this limit to be exceeded.

For example, assume that the target number of parallel servers is 64, and the
consumer group ETL has this directive set to 50%. If consumer group ETL is using

Resolving CPU Issues

Managing Operating System Resources 9-11

30 parallel servers, and if a new parallel statement needs 4 parallel servers, then
the database would queue this statement.

Managing CPU Resources Using Instance Caging
When running multiple database instances on a single system, the instances compete
for CPU resources. One resource-intensive database instance may significantly
degrade the performance of the other instances. To avoid this problem, you can use
instance caging to limit the number of CPUs that can used by each instance. Oracle
Database Resource Manager then allocates CPU among the various database sessions
according to the resource plan that you set for the instance, thereby minimizing the
likelihood of the instance becoming CPU-bound.

See Also:

■ Oracle Database Administrator's Guide to learn how to use Oracle
Database Resource Manager

■ Oracle Database VLDB and Partitioning Guide to learn how to use
parallel query

See Also: Oracle Database Administrator's Guide for information
about using instance caging

Resolving CPU Issues

9-12 Oracle Database Performance Tuning Guide

10

Instance Tuning Using Performance Views 10-1

10 Instance Tuning Using Performance Views

After the initial configuration of a database, monitoring and tuning an instance
regularly is important to eliminate any potential performance bottlenecks. This chapter
discusses the tuning process using Oracle V$ performance views.

This chapter contains the following sections:

■ Instance Tuning Steps

■ Interpreting Oracle Database Statistics

■ Wait Events Statistics

■ Real-Time SQL Monitoring

■ Tuning Instance Recovery Performance: Fast-Start Fault Recovery

Instance Tuning Steps
These are the main steps in the Oracle performance method for instance tuning:

1. Define the Problem

Get candid feedback from users about the scope of the performance problem.

2. Examine the Host System and Examine the Oracle Database Statistics

■ After obtaining a full set of operating system, database, and application
statistics, examine the data for any evidence of performance problems.

■ Consider the list of common performance errors to see whether the data
gathered suggests that they are contributing to the problem.

■ Build a conceptual model of what is happening on the system using the
performance data gathered.

3. Implement and Measure Change

Propose changes to be made and the expected result of implementing the changes.
Then, implement the changes and measure application performance.

4. Determine whether the performance objective defined in step 1 has been met. If
not, then repeat steps 2 and 3 until the performance goals are met.

The remainder of this chapter discusses instance tuning using the Oracle Database
dynamic performance views. However, Oracle recommends using the Automatic

See Also: "The Oracle Performance Improvement Method" on
page 3-1 for a theoretical description of this performance method
and a list of common errors

Instance Tuning Steps

10-2 Oracle Database Performance Tuning Guide

Workload Repository (AWR) and Automatic Database Diagnostic Monitor (ADDM)
for statistics gathering, monitoring, and tuning due to the extended feature list. See
"Overview of the Automatic Workload Repository" on page 5-8 and "Overview of the
Automatic Database Diagnostic Monitor" on page 6-1.

Define the Problem
It is vital to develop a good understanding of the purpose of the tuning exercise and
the nature of the problem before attempting to implement a solution. Without this
understanding, it is virtually impossible to implement effective changes. The data
gathered during this stage helps determine the next step to take and what evidence to
examine.

Gather the following data:

1. Identify the performance objective.

What is the measure of acceptable performance? How many transactions an hour,
or seconds, response time will meet the required performance level?

2. Identify the scope of the problem.

What is affected by the slowdown? For example, is the whole instance slow? Is it a
particular application, program, specific operation, or a single user?

3. Identify the time frame when the problem occurs.

Is the problem only evident during peak hours? Does performance deteriorate
over the course of the day? Was the slowdown gradual (over the space of months
or weeks) or sudden?

4. Quantify the slowdown.

This helps identify the extent of the problem and also acts as a measure for
comparison when deciding whether changes implemented to fix the problem have
actually made an improvement. Find a consistently reproducible measure of the
response time or job run time. How much worse are the timings than when the
program was running well?

5. Identify any changes.

Identify what has changed since performance was acceptable. This may narrow
the potential cause quickly. For example, has the operating system software,
hardware, application software, or Oracle Database release been upgraded? Has
more data been loaded into the system, or has the data volume or user population
grown?

At the end of this phase, you should have a good understanding of the symptoms. If
the symptoms can be identified as local to a program or set of programs, then the
problem is handled in a different manner than instance-wide performance issues.

Note: If your site does not have the AWR and ADDM features,
then you can use Statspack to gather Oracle database instance
statistics.

See Also: Chapter 16, "SQL Tuning Overview" to learn how to
solve performance problems specific to an application or user

Instance Tuning Steps

Instance Tuning Using Performance Views 10-3

Examine the Host System
Look at the load on the database server and the database instance. Consider the
operating system, the I/O subsystem, and network statistics, because examining these
areas helps determine what might be worth further investigation. In multitier systems,
also examine the application server middle-tier hosts.

Examining the host hardware often gives a strong indication of the bottleneck in the
system. This determines which Oracle Database performance data could be useful for
cross-reference and further diagnosis.

Data to examine includes the following:

■ CPU Usage

■ Identifying I/O Problems

■ Identifying Network Issues

CPU Usage
If there is a significant amount of idle CPU, then there could be an I/O, application, or
database bottleneck. Note that wait I/O should be considered as idle CPU.

If there is high CPU usage, then determine whether the CPU is being used effectively.
Is the majority of CPU usage attributable to a small number of high-CPU using
programs, or is the CPU consumed by an evenly distributed workload?

If a small number of high-usage programs use the CPU, then look at the programs to
determine the cause. Check whether some processes alone consume the full power of
one CPU. Depending on the process, this could indicate a CPU or process-bound
workload that can be tackled by dividing or parallelizing process activity.

Non-Oracle Processes If the programs are not Oracle programs, then identify whether
they are legitimately requiring that amount of CPU. If so, determine whether their
execution be delayed to off-peak hours. Identifying these CPU intensive processes can
also help narrowing what specific activity, such as I/O, network, and paging, is
consuming resources and how can it be related to the database workload.

Oracle Processes If a small number of Oracle processes consumes most of the CPU
resources, then use SQL_TRACE and TKPROF to identify the SQL or PL/SQL statements
to see if a particular query or PL/SQL program unit can be tuned. For example, a
SELECT statement could be CPU-intensive if its execution involves many reads of data
in cache (logical reads) that could be avoided with better SQL optimization.

Oracle Database cPU Statistics Oracle Database CPU statistics are available in several V$
views:

■ V$SYSSTAT shows Oracle Database CPU usage for all sessions. The CPU used by
this session statistic shows the aggregate CPU used by all sessions. The parse
time cpu statistic shows the total CPU time used for parsing.

■ V$SESSTAT shows Oracle Database CPU usage for each session. Use this view to
determine which particular session is using the most CPU.

■ V$RSRC_CONSUMER_GROUP shows CPU utilization statistics for each consumer group
when the Oracle Database Resource Manager is running.

Interpreting CPU Statistics It is important to recognize that CPU time and real time are
distinct. With eight CPUs, for any given minute in real time, there are eight minutes of
CPU time available. On Windows and UNIX, this can be either user time or system

Instance Tuning Steps

10-4 Oracle Database Performance Tuning Guide

time (privileged mode on Windows). Thus, average CPU time utilized by all processes
(threads) on the system could be greater than one minute for every one minute real
time interval.

At any given moment, you know how much time Oracle Database has used on the
system. So, if eight minutes are available and Oracle Database uses four minutes of
that time, then you know that 50% of all CPU time is used by Oracle. If your process is
not consuming that time, then some other process is. Identify the processes that are
using CPU time, figure out why, and then attempt to tune them. See Chapter 21,
"Using Application Tracing Tools".

If the CPU usage is evenly distributed over many Oracle server processes, examine the
V$SYS_TIME_MODEL view to help get a precise understanding of where most time is
spent. See Table 10–1, " Wait Events and Potential Causes" on page 10-14.

Identifying I/O Problems
An overly active I/O system can be evidenced by disk queue lengths greater than two,
or disk service times that are over 20-30ms. If the I/O system is overly active, then
check for potential hot spots that could benefit from distributing the I/O across more
disks. Also identify whether the load can be reduced by lowering the resource
requirements of the programs using those resources. If the I/O problems are caused by
Oracle Database, then I/O tuning can begin. If Oracle Database is not consuming the
available I/O resources, then identify the process that is using up the I/O. Determine
why the process is using up the I/O, and then tune this process.

I/O problems can be identified using V$ views in Oracle Database and monitoring
tools in the operating system, as described in the following sections:

■ Identifying I/O Problems Using V$ Views

■ Identifying I/O Problems Using Operating System Monitoring Tools

Identifying I/O Problems Using V$ Views Check the Oracle wait event data in
V$SYSTEM_EVENT to see whether the top wait events are I/O related. I/O related events
include db file sequential read, db file scattered read, db file single write, db
file parallel write, and log file parallel write. These are all events
corresponding to I/Os performed against data files and log files. If any of these wait
events correspond to high average time, then investigate the I/O contention.

Cross reference the host I/O system data with the I/O sections in the Automatic
Repository report to identify hot data files and tablespaces. Also compare the I/O
times reported by the operating system with the times reported by Oracle Database to
see if they are consistent.

An I/O problem can also manifest itself with non-I/O related wait events. For
example, the difficulty in finding a free buffer in the buffer cache or high wait times for
logs to be flushed to disk can also be symptoms of an I/O problem. Before
investigating whether the I/O system should be reconfigured, determine if the load on
the I/O system can be reduced.

To reduce I/O load caused by Oracle Database, examine the I/O statistics collected for
all I/O calls made by the database using the following views:

■ V$IOSTAT_CONSUMER_GROUP

The V$IOSTAT_CONSUMER_GROUP view captures I/O statistics for consumer groups.
If Oracle Database Resource Manager is enabled, I/O statistics for all consumer
groups that are part of the currently enabled resource plan are captured.

■ V$IOSTAT_FILE

Instance Tuning Steps

Instance Tuning Using Performance Views 10-5

The V$IOSTAT_FILE view captures I/O statistics of database files that are or have
been accessed. The SMALL_SYNC_READ_LATENCY column displays the latency for
single block synchronous reads (in milliseconds), which translates directly to the
amount of time that clients need to wait before moving onto the next operation.
This defines the responsiveness of the storage subsystem based on the current
load. If there is a high latency for critical data files, you may want to consider
relocating these files to improve their service time. To calculate latency statistics,
timed_statistics must be set to TRUE.

■ V$IOSTAT_FUNCTION

The V$IOSTAT_FUNCTION view captures I/O statistics for database functions (such
as the LGWR and DBWR).

An I/O can be issued by various Oracle processes with different functionalities.
The top database functions are classified in the V$IOSTAT_FUNCTION view. In cases
when there is a conflict of I/O functions, the I/O is placed in the bucket with the
lower FUNCTION_ID. For example, if XDB issues an I/O from the buffer cache, the
I/O would be classified as an XDB I/O because it has a lower FUNCTION_ID value.
Any unclassified function is placed in the Others bucket. You can display the
FUNCTION_ID hierarchy by querying the V$IOSTAT_FUNCTION view:

select FUNCTION_ID, FUNCTION_NAME
from v$iostat_function
order by FUNCTION_ID;

FUNCTION_ID FUNCTION_NAME
----------- ------------------
 0 RMAN
 1 DBWR
 2 LGWR
 3 ARCH
 4 XDB
 5 Streams AQ
 6 Data Pump
 7 Recovery
 8 Buffer Cache Reads
 9 Direct Reads
 10 Direct Writes
 11 Others

These V$IOSTAT views contains I/O statistics for both single and multi block read and
write operations. Single block operations are small I/Os that are less than or equal to
128 kilobytes. Multi block operations are large I/Os that are greater than 128 kilobytes.
For each of these operations, the following statistics are collected:

■ Identifier

■ Total wait time (in milliseconds)

■ Number of waits executed (for consumer groups and functions)

■ Number of requests for each operation

■ Number of single and multi block bytes read

■ Number of single and multi block bytes written

You should also look at SQL statements that perform many physical reads by querying
the V$SQLAREA view, or by reviewing the "SQL ordered by Reads" section of the
Automatic Workload Repository report. Examine these statements to see how they can
be tuned to reduce the number of I/Os.

Instance Tuning Steps

10-6 Oracle Database Performance Tuning Guide

Identifying I/O Problems Using Operating System Monitoring Tools Use operating system
monitoring tools to determine what processes are running on the system as a whole
and to monitor disk access to all files. Remember that disks holding data files and redo
log files can also hold files that are not related to Oracle Database. Reduce any heavy
access to disks that contain database files. You can monitor access to non-database files
only through operating system facilities, rather than through the V$ views.

Utilities, such as sar -d (or iostat) on many UNIX systems and the administrative
performance monitoring tool on Windows systems, examine I/O statistics for the
entire system.

Identifying Network Issues
Using operating system utilities, look at the network round-trip ping time and the
number of collisions. If the network is causing large delays in response time, then
investigate possible causes.

To identify network I/O caused by remote access of database files, examine the
V$IOSTAT_NETWORK view. This view contains network I/O statistics caused by accessing
files on a remote database instance, including:

■ Database client initiating the network I/O (such as RMAN and PLSQL)

■ Number of read and write operations issued

■ Number of kilobytes read and written

■ Total wait time in milliseconds for read operations

■ Total wait in milliseconds for write operations

After the cause of the network issue is identified, network load can be reduced by
scheduling large data transfers to off-peak times, or by coding applications to batch
requests to remote hosts, rather than accessing remote hosts once (or more) for one
request.

Examine the Oracle Database Statistics
You should examine Oracle Database statistics and cross-reference them with
operating system statistics to ensure a consistent diagnosis of the problem. Operating
system statistics can indicate a good place to begin tuning. However, if the goal is to
tune the Oracle database instance, then look at the Oracle Database statistics to
identify the resource bottleneck from a database perspective before implementing
corrective action. See "Interpreting Oracle Database Statistics" on page 10-11.

See Also:

■ Chapter 8, "I/O Configuration and Design"

■ Chapter 16, "SQL Tuning Overview"

■ "db file scattered read" on page 10-21 and "db file sequential
read" on page 10-23 for the difference between a scattered read
and a sequential read, and how this affects I/O

■ Oracle Database Reference for information about the
V$IOSTAT_CONSUMER_GROUP, V$IOSTAT_FUNCTION,
V$IOSTAT_FILE, and V$SQLAREA views

See Also: Your operating system documentation for the tools
available on your platform

Instance Tuning Steps

Instance Tuning Using Performance Views 10-7

The following sections discuss the common Oracle data sources used while tuning.

Setting the Level of Statistics Collection
Oracle Database provides the initialization parameter STATISTICS_LEVEL, which
controls all major statistics collections or advisories in the database. This parameter
sets the statistics collection level for the database.

Depending on the setting of STATISTICS_LEVEL, certain advisories or statistics are
collected, as follows:

■ BASIC: No advisories or statistics are collected. Monitoring and many automatic
features are disabled. Oracle does not recommend this setting because it disables
important Oracle Database features.

■ TYPICAL: This is the default value and ensures collection for all major statistics
while providing best overall database performance. This setting should be
adequate for most environments.

■ ALL: All of the advisories or statistics that are collected with the TYPICAL setting are
included, plus timed operating system statistics and row source execution
statistics.

V$STATISTICS_LEVEL This view lists the status of the statistics or advisories controlled
by STATISTICS_LEVEL.

Wait Events
Wait events are statistics that are incremented by a server process or thread to indicate
that it had to wait for an event to complete before being able to continue processing.
Wait event data reveals various symptoms of problems that might be impacting
performance, such as latch contention, buffer contention, and I/O contention.
Remember that these are only symptoms of problems, not the actual causes.

Wait events are grouped into classes. The wait event classes include: Administrative,
Application, Cluster, Commit, Concurrency, Configuration, Idle, Network, Other,
Scheduler, System I/O, and User I/O.

A server process can wait for the following:

■ A resource to become available, such as a buffer or a latch.

■ An action to complete, such as an I/O.

■ More work to do, such as waiting for the client to provide the next SQL statement
to execute. Events that identify that a server process is waiting for more work are
known as idle events.

See Also:

■ Oracle Database Reference for more information on the
STATISTICS_LEVEL initialization parameter

■ "Interpreting Statistics" on page 5-7 for considerations when
setting the STATISTICS_LEVEL, DB_CACHE_ADVICE,
TIMED_STATISTICS, or TIMED_OS_STATISTICS initialization
parameters

See Also: Oracle Database Reference for information about the
dynamic performance V$STATISTICS_LEVEL view

Instance Tuning Steps

10-8 Oracle Database Performance Tuning Guide

Wait event statistics include the number of times an event was waited for and the time
waited for the event to complete. If the initialization parameter TIMED_STATISTICS is
set to true, then you can also see how long each resource was waited for.

To minimize user response time, reduce the time spent by server processes waiting for
event completion. Not all wait events have the same wait time. Therefore, it is more
important to examine events with the most total time waited rather than wait events
with a high number of occurrences. Usually, it is best to set the dynamic parameter
TIMED_STATISTICS to true at least while monitoring performance. See "Setting the
Level of Statistics Collection" on page 10-7 for information about STATISTICS_LEVEL
settings.

Dynamic Performance Views Containing Wait Event Statistics
These dynamic performance views can be queried for wait event statistics:

■ V$ACTIVE_SESSION_HISTORY

The V$ACTIVE_SESSION_HISTORY view displays active database session activity,
sampled once every second. See "Active Session History" on page 5-3.

■ V$SESS_TIME_MODEL and V$SYS_TIME_MODEL

The V$SESS_TIME_MODEL and V$SYS_TIME_MODEL views contain time model
statistics, including DB time which is the total time spent in database calls.

■ V$SESSION_WAIT

The V$SESSION_WAIT view displays information about the current or last wait for
each session (such as wait ID, class, and time).

■ V$SESSION

The V$SESSION view displays information about each current session and contains
the same wait statistics as those found in the V$SESSION_WAIT view. If applicable,
this view also contains detailed information about the object that the session is
currently waiting for (such as object number, block number, file number, and row
number), the blocking session responsible for the current wait (such as the
blocking session ID, status, and type), and the amount of time waited.

■ V$SESSION_EVENT

The V$SESSION_EVENT view provides summary of all the events the session has
waited for since it started.

■ V$SESSION_WAIT_CLASS

The V$SESSION_WAIT_CLASS view provides the number of waits and the time spent
in each class of wait events for each session.

■ V$SESSION_WAIT_HISTORY

The V$SESSION_WAIT_HISTORY view displays information about the last ten wait
events for each active session (such as event type and wait time).

■ V$SYSTEM_EVENT

The V$SYSTEM_EVENT view provides a summary of all the event waits on the
instance since it started.

■ V$EVENT_HISTOGRAM

See Also: Oracle Database Reference for more information about
Oracle wait events

Instance Tuning Steps

Instance Tuning Using Performance Views 10-9

The V$EVENT_HISTOGRAM view displays a histogram of the number of waits, the
maximum wait, and total wait time on an event basis.

■ V$FILE_HISTOGRAM

The V$FILE_HISTOGRAM view displays a histogram of times waited during single
block reads for each file.

■ V$SYSTEM_WAIT_CLASS

The V$SYSTEM_WAIT_CLASS view provides the instance wide time totals for the
number of waits and the time spent in each class of wait events.

■ V$TEMP_HISTOGRAM

The V$TEMP_HISTOGRAM view displays a histogram of times waited during single
block reads for each temporary file.

Investigate wait events and related timing data when performing reactive
performance tuning. The events with the most time listed against them are often
strong indications of the performance bottleneck. For example, by looking at
V$SYSTEM_EVENT, you might notice lots of buffer busy waits. It might be that many
processes are inserting into the same block and must wait for each other before they
can insert. The solution could be to use automatic segment space management or
partitioning for the object in question. See "Wait Events Statistics" on page 10-17 for a
description of the differences between the views V$SESSION_WAIT, V$SESSION_EVENT,
and V$SYSTEM_EVENT.

System Statistics
System statistics are typically used in conjunction with wait event data to find further
evidence of the cause of a performance problem.

For example, if V$SYSTEM_EVENT indicates that the largest wait event (in terms of wait
time) is the event buffer busy waits, then look at the specific buffer wait statistics
available in the view V$WAITSTAT to see which block type has the highest wait count
and the highest wait time.

After the block type has been identified, also look at V$SESSION real-time while the
problem is occurring or V$ACTIVE_SESSION_HISTORY and
DBA_HIST_ACTIVE_SESS_HISTORY views after the problem has been experienced to
identify the contended-for objects using the object number indicated. The combination
of this data indicates the appropriate corrective action.

Statistics are available in many V$ views. Some common views include the following:

■ V$ACTIVE_SESSION_HISTORY

■ V$SYSSTAT

■ V$FILESTAT

■ V$ROLLSTAT

■ V$ENQUEUE_STAT

■ V$LATCH

V$ACTIVE_SESSION_HISTORY This view displays active database session activity,
sampled once every second. See "Active Session History" on page 5-3.

See Also: Oracle Database Reference for information about the
dynamic performance views

Instance Tuning Steps

10-10 Oracle Database Performance Tuning Guide

V$SYSSTAT This contains overall statistics for many different parts of Oracle Database,
including rollback, logical and physical I/O, and parse data. Data from V$SYSSTAT is
used to compute ratios, such as the buffer cache hit ratio.

V$FILESTAT This contains detailed file I/O statistics for each file, including the number
of I/Os for each file and the average read time.

V$ROLLSTAT This contains detailed rollback and undo segment statistics for each
segment.

V$ENQUEUE_STAT This contains detailed enqueue statistics for each enqueue, including
the number of times an enqueue was requested and the number of times an enqueue
was waited for, and the wait time.

V$LATCH This contains detailed latch usage statistics for each latch, including the
number of times each latch was requested and the number of times the latch was
waited for.

Segment-Level Statistics
You can gather segment-level statistics to help you spot performance problems
associated with individual segments. Collecting and viewing segment-level statistics is
a good way to effectively identify hot tables or indexes in an instance.

After viewing wait events and system statistics to identify the performance problem,
you can use segment-level statistics to find specific tables or indexes that are causing
the problem. Consider, for example, that V$SYSTEM_EVENT indicates that buffer busy
waits cause a fair amount of wait time. You can select from V$SEGMENT_STATISTICS the
top segments that cause the buffer busy waits. Then you can focus your effort on
eliminating the problem in those segments.

You can query segment-level statistics through the following dynamic performance
views:

■ V$SEGSTAT_NAME This view lists the segment statistics being collected and the
properties of each statistic (for instance, if it is a sampled statistic).

■ V$SEGSTAT This is a highly efficient, real-time monitoring view that shows the
statistic value, statistic name, and other basic information.

■ V$SEGMENT_STATISTICS This is a user-friendly view of statistic values. In addition
to all the columns of V$SEGSTAT, it has information about such things as the
segment owner and table space name. It makes the statistics easy to understand,
but it is more costly.

Implement and Measure Change
Often at the end of a tuning exercise, it is possible to identify two or three changes that
could potentially alleviate the problem. To identify which change provides the most
benefit, it is recommended that only one change be implemented at a time. The effect
of the change should be measured against the baseline data measurements found in
the problem definition phase.

See Also: Oracle Database Reference for information about dynamic
performance views

See Also: Oracle Database Reference for information about
dynamic performance views

Interpreting Oracle Database Statistics

Instance Tuning Using Performance Views 10-11

Typically, most sites with dire performance problems implement several overlapping
changes at once, and thus cannot identify which changes provided any benefit.
Although this is not immediately an issue, this becomes a significant hindrance if
similar problems subsequently appear, because it is not possible to know which of the
changes provided the most benefit and which efforts to prioritize.

If it is not possible to implement changes separately, then try to measure the effects of
dissimilar changes. For example, measure the effect of making an initialization change
to optimize redo generation separately from the effect of creating a new index to
improve the performance of a modified query. It is impossible to measure the benefit
of performing an operating system upgrade if SQL is tuned, the operating system disk
layout is changed, and the initialization parameters are also changed at the same time.

Performance tuning is an iterative process. It is unlikely to find a 'silver bullet' that
solves an instance-wide performance problem. In most cases, excellent performance
requires iteration through the performance tuning phases, because solving one
bottleneck often uncovers another (sometimes worse) problem.

Knowing when to stop tuning is also important. The best measure of performance is
user perception, rather than how close the statistic is to an ideal value.

Interpreting Oracle Database Statistics
Gather statistics that cover the time when the instance had the performance problem.
If you previously captured baseline data for comparison, then you can compare the
current data to the data from the baseline that most represents the problem workload.

When comparing two reports, ensure that the two reports are from times where the
system was running comparable workloads.

Examine Load
Usually, wait events are the first data examined. However, if you have a baseline
report, then check to see if the load has changed. Regardless of whether you have a
baseline, it is useful to see whether the resource usage rates are high.

Load-related statistics to examine include redo size, session logical reads, db block
changes, physical reads, physical read total bytes, physical writes, physical
write total bytes, parse count (total), parse count (hard), and user calls. This
data is queried from V$SYSSTAT. It is best to normalize this data over seconds and over
transactions. It is also useful to examine the total I/O load in MB per second by using
the sum of physical read total bytes and physical write total bytes. The combined
value includes the I/O's used to buffer cache, redo logs, archive logs, by Recovery
Manager (RMAN) backup and recovery and any Oracle Database background process.

In the AWR report, look at the Load Profile section. The data has been normalized over
transactions and over seconds.

Changing Load
The load profile statistics over seconds show the changes in throughput (that is,
whether the instance is performing more work each second). The statistics over
transactions identify changes in the application characteristics by comparing these to
the corresponding statistics from the baseline report.

See Also: "Overview of Data Gathering" on page 5-1

Interpreting Oracle Database Statistics

10-12 Oracle Database Performance Tuning Guide

High Rates of Activity
Examine the statistics normalized over seconds to identify whether the rates of activity
are very high. It is difficult to make blanket recommendations on high values, because
the thresholds are different on each site and are contingent on the application
characteristics, the number and speed of CPUs, the operating system, the I/O system,
and the Oracle Database release.

The following are some generalized examples (acceptable values vary at each site):

■ A hard parse rate of more than 100 a second indicates that there is a very high
amount of hard parsing on the system. High hard parse rates cause serious
performance issues and must be investigated. Usually, a high hard parse rate is
accompanied by latch contention on the shared pool and library cache latches.

■ Check whether the sum of the wait times for library cache and shared pool latch
events (latch: library cache, latch: library cache pin, latch: library cache lock and
latch: shared pool) is significant compared to statistic DB time found in V$SYSSTAT.
If so, examine the SQL ordered by Parse Calls section of the AWR report.

■ A high soft parse rate could be in the rate of 300 a second or more. Unnecessary
soft parses also limit application scalability. Optimally, a SQL statement should be
soft parsed once in each session and executed many times.

Using Wait Event Statistics to Drill Down to Bottlenecks
Whenever an Oracle process waits for something, it records the wait using one of a set
of predefined wait events. These wait events are grouped in wait classes. The Idle wait
class groups all events that a process waits for when it does not have work to do and is
waiting for more work to perform. Non-idle events indicate nonproductive time spent
waiting for a resource or action to complete.

The most effective way to use wait event data is to order the events by the wait time.
This is only possible if TIMED_STATISTICS is set to true. Otherwise, the wait events can
only be ranked by the number of times waited, which is often not the ordering that
best represents the problem.

To get an indication of where time is spent, follow these steps:

1. Examine the data collection for V$SYSTEM_EVENT. The events of interest should be
ranked by wait time.

Identify the wait events that have the most significant percentage of wait time. To
determine the percentage of wait time, add the total wait time for all wait events,
excluding idle events, such as Null event, SQL*Net message from client, SQL*Net
message to client, and SQL*Net more data to client. Calculate the relative

Note: Not all symptoms can be evidenced by wait events. See
"Additional Statistics" on page 10-15 for the statistics that can be
checked.

See Also:

■ "Setting the Level of Statistics Collection" on page 10-7 for
information about STATISTICS_LEVEL settings

■ Oracle Database Reference for information about the
STATISTICS_LEVEL initialization parameter

Interpreting Oracle Database Statistics

Instance Tuning Using Performance Views 10-13

percentage of the five most prominent events by dividing each event's wait time
by the total time waited for all events.

Alternatively, look at the Top 5 Timed Events section at the beginning of the
Automatic Workload Repository report. This section automatically orders the wait
events (omitting idle events), and calculates the relative percentage:

Top 5 Timed Events
~~~~~~~~~~~~~~~~~~                                                % Total
Event                                         Waits    Time (s) Call Time
-------------------------------------- ------------ ----------- ---------
CPU time                                                    559     88.80
log file parallel write                       2,181          28      4.42
SQL*Net more data from client               516,611          27      4.24
db file parallel write                       13,383          13      2.04
db file sequential read                         563           2       .27

In some situations, there might be a few events with similar percentages. This can 
provide extra evidence if all the events are related to the same type of resource 
request (for example, all I/O related events).

2. Look at the number of waits for these events, and the average wait time. For 
example, for I/O related events, the average time might help identify whether the 
I/O system is slow. The following example of this data is taken from the Wait 
Event section of the AWR report:

                                                             Avg
                                                Total Wait   wait     Waits
Event                           Waits  Timeouts   Time (s)   (ms)      /txn
--------------------------- --------- --------- ---------- ------ ---------
log file parallel write         2,181         0         28     13      41.2
SQL*Net more data from clie   516,611         0         27      0   9,747.4
db file parallel write         13,383         0         13      1     252.5

3. The top wait events identify the next places to investigate. A table of common wait 
events is listed in Table 10–1. It is usually a good idea to also have quick look at 
high-load SQL.

4. Examine the related data indicated by the wait events to see what other 
information this data provides. Determine whether this information is consistent 
with the wait event data. In most situations, there is enough data to begin 
developing a theory about the potential causes of the performance bottleneck.

5. To determine whether this theory is valid, cross-check data you have examined 
with other statistics available for consistency. The appropriate statistics vary 
depending on the problem, but usually include load profile-related data in 
V$SYSSTAT, operating system statistics, and so on. Perform cross-checks with other 
data to confirm or refute the developing theory.

See Also: 

■ "Idle Wait Events" on page 10-30 for the list of idle wait events

■ Description of the V$EVENT_NAME view in Oracle Database 
Reference

■ Detailed wait event information in Oracle Database Reference



Interpreting Oracle Database Statistics

10-14 Oracle Database Performance Tuning Guide

Table of Wait Events and Potential Causes
Table 10–1 links wait events to possible causes and gives an overview of the Oracle 
data that could be most useful to review next.

You may also want to review the My Oracle Support notices on buffer busy waits 
(34405.1) and free buffer waits (62172.1). You can also access these notices and 
related notices by searching for "busy buffer waits" and "free buffer waits" at:

http://support.oracle.com/

Table 10–1  Wait Events and Potential Causes

Wait Event
General 
Area Possible Causes Look for / Examine

buffer busy 
waits 

Buffer cache, 
DBWR

Depends on buffer type. 
For example, waits for an 
index block may be caused 
by a primary key that is 
based on an ascending 
sequence.

Examine V$SESSION while the problem is 
occurring to determine the type of block in 
contention.

free buffer 
waits 

Buffer cache, 
DBWR, I/O

Slow DBWR (possibly due 
to I/O?) 

Cache too small

Examine write time using operating system 
statistics. Check buffer cache statistics for 
evidence of too small cache.

db file 
scattered read 

I/O, SQL 
statement 
tuning

Poorly tuned SQL

Slow I/O system

Investigate V$SQLAREA to see whether there are 
SQL statements performing many disk reads. 
Cross-check I/O system and V$FILESTAT for 
poor read time.

db file 
sequential read 

I/O, SQL 
statement 
tuning

Poorly tuned SQL

Slow I/O system

Investigate V$SQLAREA to see whether there are 
SQL statements performing many disk reads. 
Cross-check I/O system and V$FILESTAT for 
poor read time.

enqueue waits 
(waits starting with 
enq:)

Locks Depends on type of 
enqueue

Look at V$ENQUEUE_STAT.

library cache latch 
waits: library 
cache, library 
cache pin, and 
library cache 
lock 

Latch 
contention

SQL parsing or sharing Check V$SQLAREA to see whether there are SQL 
statements with a relatively high number of 
parse calls or a high number of child cursors 
(column VERSION_COUNT). Check parse 
statistics in V$SYSSTAT and their 
corresponding rate for each second.

log buffer space Log buffer, 
I/O

Log buffer small

Slow I/O system

Check the statistic redo buffer allocation 
retries in V$SYSSTAT. Check configuring log 
buffer section in configuring memory chapter. 
Check the disks that house the online redo 
logs for resource contention.

log file sync I/O, over- 
committing

Slow disks that store the 
online logs

Un-batched commits

Check the disks that house the online redo 
logs for resource contention. Check the 
number of transactions (commits + rollbacks) 
each second, from V$SYSSTAT.



Interpreting Oracle Database Statistics

Instance Tuning Using Performance Views 10-15

Additional Statistics
There are several statistics that can indicate performance problems that do not have 
corresponding wait events.

Redo Log Space Requests Statistic
The V$SYSSTAT statistic redo log space requests indicates how many times a server 
process had to wait for space in the online redo log, not for space in the redo log buffer. 
Use this statistic and the wait events as an indication that you must tune checkpoints, 
DBWR, or archiver activity, not LGWR. Increasing the size of the log buffer does not 
help.

Read Consistency 
Your system might spend excessive time rolling back changes to blocks in order to 
maintain a consistent view. Consider the following scenarios:

■ If there are many small transactions and an active long-running query is running 
in the background on the same table where the changes are happening, then the 
query might need to roll back those changes often, in order to obtain a 
read-consistent image of the table. Compare the following V$SYSSTAT statistics to 
determine whether this is happening:

– consistent: changes statistic indicates the number of times a database block 
has rollback entries applied to perform a consistent read on the block. 
Workloads that produce a great deal of consistent changes can consume a 
great deal of resources.

– consistent gets: statistic counts the number of logical reads in consistent 
mode.

■ If there are few very, large rollback segments, then your system could be spending 
a lot of time rolling back the transaction table during delayed block cleanout in 
order to find out exactly which system change number (SCN) a transaction was 
committed. When Oracle Database commits a transaction, all modified blocks are 
not necessarily updated with the commit SCN immediately. In this case, it is done 
later on demand when the block is read or updated. This is called delayed block 
cleanout.

The ratio of the following V$SYSSTAT statistics should be close to one: 

ratio = transaction tables consistent reads - undo records applied /
        transaction tables consistent read rollbacks

The recommended solution is to use automatic undo management. 

■ If there are insufficient rollback segments, then there is rollback segment (header 
or block) contention. Evidence of this problem is available by the following:

■ Comparing the number of WAITS to the number of GETS in V$ROLLSTAT; the 
proportion of WAITS to GETS should be small.

See Also: 

■ "Wait Events Statistics" on page 10-17 for detailed information 
on each event listed in Table 10–1 and for other information to 
cross-check

■  Oracle Database Reference for information about dynamic 
performance views



Interpreting Oracle Database Statistics

10-16 Oracle Database Performance Tuning Guide

■ Examining V$WAITSTAT to see whether there are many WAITS for buffers of 
CLASS 'undo header'.

The recommended solution is to use automatic undo management.

Table Fetch by Continued Row
You can detect migrated or chained rows by checking the number of table fetch 
continued row statistic in V$SYSSTAT. A small number of chained rows (less than 1%) is 
unlikely to impact system performance. However, a large percentage of chained rows 
can affect performance. 

Chaining on rows larger than the block size is inevitable. Consider using a tablespace 
with a larger block size for such data. 

However, for smaller rows, you can avoid chaining by using sensible space parameters 
and good application design. For example, do not insert a row with key values filled in 
and nulls in most other columns, then update that row with the real data, causing the 
row to grow in size. Rather, insert rows filled with data from the start.

If an UPDATE statement increases the amount of data in a row so that the row no longer 
fits in its data block, then Oracle Database tries to find another block with enough free 
space to hold the entire row. If such a block is available, then Oracle Database moves 
the entire row to the new block. This operation is called row migration. If the row is 
too large to fit into any available block, then the database splits the row into multiple 
pieces and stores each piece in a separate block. This operation is called row chaining. 
The database can also chain rows when they are inserted.

Migration and chaining are especially detrimental to performance with the following:

■ UPDATE statements that cause migration and chaining to perform poorly

■ Queries that select migrated or chained rows because these must perform 
additional input and output

The definition of a sample output table named CHAINED_ROWS appears in a SQL script 
available on your distribution medium. The common name of this script is 
UTLCHN1.SQL, although its exact name and location varies depending on your platform. 
Your output table must have the same column names, data types, and sizes as the 
CHAINED_ROWS table. 

Increasing PCTFREE can help to avoid migrated rows. If you leave more free space 
available in the block, then the row has room to grow. You can also reorganize or 
re-create tables and indexes that have high deletion rates. If tables frequently have 
rows deleted, then data blocks can have partially free space in them. If rows are 
inserted and later expanded, then the inserted rows might land in blocks with deleted 
rows but still not have enough room to expand. Reorganizing the table ensures that 
the main free space is totally empty blocks.

Note: PCTUSED is not the opposite of PCTFREE. 

See Also: 

■ Oracle Database Concepts for more information on PCTUSED

■ Oracle Database Administrator's Guide to learn how to reorganize 
tables



Wait Events Statistics

Instance Tuning Using Performance Views 10-17

Parse-Related Statistics
The more your application parses, the more potential for contention exists, and the 
more time your system spends waiting. If parse time CPU represents a large percentage 
of the CPU time, then time is being spent parsing instead of executing statements. If 
this is the case, then it is likely that the application is using literal SQL and so SQL 
cannot be shared, or the shared pool is poorly configured.

There are several statistics available to identify the extent of time spent parsing by 
Oracle. Query the parse related statistics from V$SYSSTAT. For example:

SELECT NAME, VALUE
  FROM V$SYSSTAT
 WHERE NAME IN (  'parse time cpu', 'parse time elapsed',
                  'parse count (hard)', 'CPU used by this session' );

There are various ratios that can be computed to assist in determining whether parsing 
may be a problem:

■ parse time CPU / parse time elapsed 

This ratio indicates how much of the time spent parsing was due to the parse 
operation itself, rather than waiting for resources, such as latches. A ratio of one is 
good, indicating that the elapsed time was not spent waiting for highly contended 
resources.

■ parse time CPU / CPU used by this session 

This ratio indicates how much of the total CPU used by Oracle server processes 
was spent on parse-related operations. A ratio closer to zero is good, indicating 
that the majority of CPU is not spent on parsing.

Wait Events Statistics
The V$SESSION, V$SESSION_WAIT, V$SESSION_HISTORY, V$SESSION_EVENT, and 
V$SYSTEM_EVENT views provide information on what resources were waited for, and, if 
the configuration parameter TIMED_STATISTICS is set to true, how long each resource 
was waited for.

Investigate wait events and related timing data when performing reactive 
performance tuning. The events with the most time listed against them are often 
strong indications of the performance bottleneck.

The following views contain related, but different, views of the same data:

■ V$SESSION lists session information for each current session. It lists either the event 
currently being waited for, or the event last waited for on each session. This view 
also contains information about blocking sessions, the wait state, and the wait 
time.

See Also: Chapter 7, "Configuring and Using Memory"

See Also: 

■ "Setting the Level of Statistics Collection" on page 10-7 for 
information about STATISTICS_LEVEL settings

■ Oracle Database Reference for a description of the V$ views and 
the Oracle wait events



Wait Events Statistics

10-18 Oracle Database Performance Tuning Guide

■ V$SESSION_WAIT is a current state view. It lists either the event currently being 
waited for, or the event last waited for on each session, the wait state, and the wait 
time.

■ V$SESSION_WAIT_HISTORY lists the last 10 wait events for each current session and 
the associated wait time.

■ V$SESSION_EVENT lists the cumulative history of events waited for on each session. 
After a session exits, the wait event statistics for that session are removed from this 
view.

■ V$SYSTEM_EVENT lists the events and times waited for by the whole instance (that 
is, all session wait events data rolled up) since instance startup.

Because V$SESSION_WAIT is a current state view, it also contains a finer-granularity of 
information than V$SESSION_EVENT or V$SYSTEM_EVENT. It includes additional 
identifying data for the current event in three parameter columns: P1, P2, and P3.

For example, V$SESSION_EVENT can show that session 124 (SID=124) had many waits 
on the db file scattered read, but it does not show which file and block number. 
However, V$SESSION_WAIT shows the file number in P1, the block number read in P2, 
and the number of blocks read in P3 (P1 and P2 let you determine for which segments 
the wait event is occurring).

This section concentrates on examples using V$SESSION_WAIT. However, Oracle 
recommends capturing performance data over an interval and keeping this data for 
performance and capacity analysis. This form of rollup data is queried from the 
V$SYSTEM_EVENT view by AWR. See "Overview of the Automatic Workload Repository" 
on page 5-8.

Most commonly encountered events are described in this chapter, listed in 
case-sensitive alphabetical order. Other event-related data to examine is also included. 
The case used for each event name is that which appears in the V$SYSTEM_EVENT view.

Oracle Database 11g accumulates wait counts and time outs for wait events (such as in 
the V$SYSTEM_EVENT view) differently than in past releases. Continuous waits for 
certain types of resources (such as enqueues) are internally divided into a set of shorter 
wait calls. In prior releases, each individual internal wait call was counted as a 
separate wait. Starting with release 11.1, a single resource wait is recorded as a single 
wait, irrespective of the number of internal time outs experienced by the session 
during the wait.

This change allows Oracle Database to display a more representative wait count, and 
an accurate total time spent waiting for the resource. Time outs now refer to the 
resource wait, instead of the individual internal wait calls. This change also affects the 
average wait time and the maximum wait time. For example, if a user session must 
wait for an enqueue in order for a transaction row lock to update a single row in a 
table, and it takes 10 seconds to acquire the enqueue, Oracle Database breaks down the 
enqueue wait into 3-second wait calls. In this example, there will be three 3-second 
wait calls, followed by a 1-second wait call. From the session's perspective, however, 
there is only one wait on an enqueue.

In prior releases, the V$SYSTEM_EVENT view would represent this wait scenario as 
follows:

■ TOTAL_WAITS: 4 waits (three 3-second waits, one 1-second wait)

■ TOTAL_TIMEOUTS: 3 time outs (the first three waits time out and the enqueue is 
acquired during the final wait)

■ TIME_WAITED: 10 seconds (sum of the times from the 4 waits)



Wait Events Statistics

Instance Tuning Using Performance Views 10-19

■ AVERAGE_WAIT: 2.5 seconds

■ MAX_WAIT: 3 seconds

In Oracle Database 11g, this wait scenario is represented as:

■ TOTAL_WAITS: 1 wait (one 10-second wait)

■ TOTAL_TIMEOUTS: 0 time outs (the enqueue is acquired during the resource wait)

■ TIME_WAITED: 10 seconds (time for the resource wait)

■ AVERAGE_WAIT: 10 seconds

■ MAX_WAIT: 10 seconds

The following common wait events are affected by this change:

■ Enqueue waits (such as enq: name - reason waits)

■ Library cache lock waits

■ Library cache pin waits

■ Row cache lock waits

The following statistics are affected by this change:

■ Wait counts

■ Wait time outs

■ Average wait time

■ Maximum wait time

The following views are affected by this change:

■ V$EVENT_HISTOGRAM

■ V$EVENTMETRIC

■ V$SERVICE_EVENT

■ V$SERVICE_WAIT_CLASS

■ V$SESSION_EVENT

■ V$SESSION_WAIT

■ V$SESSION_WAIT_CLASS

■ V$SESSION_WAIT_HISTORY

■ V$SYSTEM_EVENT

■ V$SYSTEM_WAIT_CLASS

■ V$WAITCLASSMETRIC

■ V$WAITCLASSMETRIC_HISTORY

buffer busy waits
This wait indicates that there are some buffers in the buffer cache that multiple 
processes are attempting to access concurrently. Query V$WAITSTAT for the wait 
statistics for each class of buffer. Common buffer classes that have buffer busy waits 
include data block, segment header, undo header, and undo block.

See Also: Oracle Database Reference for a description of the 
V$SYSTEM_EVENT view



Wait Events Statistics

10-20 Oracle Database Performance Tuning Guide

Check the following V$SESSION_WAIT parameter columns:

■ P1: File ID

■ P2: Block ID

■ P3: Class ID

Causes
To determine the possible causes, first query V$SESSION to identify the value of 
ROW_WAIT_OBJ# when the session waits for buffer busy waits. For example:

SELECT row_wait_obj# 
  FROM V$SESSION 
 WHERE EVENT = 'buffer busy waits';

To identify the object and object type contended for, query DBA_OBJECTS using the 
value for ROW_WAIT_OBJ# that is returned from V$SESSION. For example:

SELECT owner, object_name, subobject_name, object_type
  FROM DBA_OBJECTS
 WHERE data_object_id = &row_wait_obj;

Actions
The action required depends on the class of block contended for and the actual 
segment.

segment header  If the contention is on the segment header, then this is most likely free 
list contention.

Automatic segment-space management in locally managed tablespaces eliminates the 
need to specify the PCTUSED, FREELISTS, and FREELIST GROUPS parameters. If possible, 
switch from manual space management to automatic segment-space management 
(ASSM).

The following information is relevant if you are unable to use ASSM (for example, 
because the tablespace uses dictionary space management).

A free list is a list of free data blocks that usually includes blocks existing in several 
different extents within the segment. Free lists are composed of blocks in which free 
space has not yet reached PCTFREE or used space has shrunk below PCTUSED. 
Specify the number of process free lists with the FREELISTS parameter. The default 
value of FREELISTS is one. The maximum value depends on the data block size.

To find the current setting for free lists for that segment, run the following:

SELECT SEGMENT_NAME, FREELISTS
  FROM DBA_SEGMENTS
 WHERE SEGMENT_NAME = segment name
   AND SEGMENT_TYPE = segment type;

Set free lists, or increase the number of free lists. If adding more free lists does not 
alleviate the problem, then use free list groups (even in single instance this can make a 
difference). If using Oracle RAC, then ensure that each instance has its own free list 
group(s).

See Also: Oracle Database Concepts for information about 
automatic segment-space management, free lists, PCTFREE, and 
PCTUSED



Wait Events Statistics

Instance Tuning Using Performance Views 10-21

data block  If the contention is on tables or indexes (not the segment header):

■ Check for right-hand indexes. These are indexes that are inserted into at the same 
point by many processes. For example, those that use sequence number generators 
for the key values.

■ Consider using ASSM, global hash partitioned indexes, or increasing free lists to 
avoid multiple processes attempting to insert into the same block.

undo header  For contention on rollback segment header:

■ If you are not using automatic undo management, then add more rollback 
segments.

undo block  For contention on rollback segment block:

■ If you are not using automatic undo management, then consider making rollback 
segment sizes larger.

db file scattered read
This event signifies that the user process is reading buffers into the SGA buffer cache 
and is waiting for a physical I/O call to return. A db file scattered read issues a 
scattered read to read the data into multiple discontinuous memory locations. A 
scattered read is usually a multiblock read. It can occur for a fast full scan (of an index) 
in addition to a full table scan.

The db file scattered read wait event identifies that a full scan is occurring. When 
performing a full scan into the buffer cache, the blocks read are read into memory 
locations that are not physically adjacent to each other. Such reads are called scattered 
read calls, because the blocks are scattered throughout memory. This is why the 
corresponding wait event is called 'db file scattered read'. multiblock (up to 
DB_FILE_MULTIBLOCK_READ_COUNT blocks) reads due to full scans into the buffer cache 
show up as waits for 'db file scattered read'.

Check the following V$SESSION_WAIT parameter columns:

■ P1: The absolute file number

■ P2: The block being read

■ P3: The number of blocks (should be greater than 1)

Actions
On a healthy system, physical read waits should be the biggest waits after the idle 
waits. However, also consider whether there are direct read waits (signifying full table 
scans with parallel query) or db file scattered read waits on an operational (OLTP) 
system that should be doing small indexed accesses.

Other things that could indicate excessive I/O load on the system include the 
following:

■ Poor buffer cache hit ratio

■ These wait events accruing most of the wait time for a user experiencing poor 
response time

Managing Excessive I/O
There are several ways to handle excessive I/O waits. In the order of effectiveness, 
these are as follows:



Wait Events Statistics

10-22 Oracle Database Performance Tuning Guide

■ Reduce the I/O activity by SQL tuning.

■ Reduce the need to do I/O by managing the workload.

■ Gather system statistics with DBMS_STATS package, allowing the query optimizer to 
accurately cost possible access paths that use full scans.

■ Use Automatic Storage Management.

■ Add more disks to reduce the number of I/Os for each disk.

■ Alleviate I/O hot spots by redistributing I/O across existing disks.

The first course of action should be to find opportunities to reduce I/O. Examine the 
SQL statements being run by sessions waiting for these events and statements causing 
high physical I/Os from V$SQLAREA. Factors that can adversely affect the execution 
plans causing excessive I/O include the following:

■ Improperly optimized SQL

■ Missing indexes

■ High degree of parallelism for the table (skewing the optimizer toward scans)

■ Lack of accurate statistics for the optimizer

■ Setting the value for DB_FILE_MULTIBLOCK_READ_COUNT initialization parameter too 
high which favors full scans

Inadequate I/O Distribution
Besides reducing I/O, also examine the I/O distribution of files across the disks. Is 
I/O distributed uniformly across the disks, or are there hot spots on some disks? Are 
the number of disks sufficient to meet the I/O needs of the database? 

See the total I/O operations (reads and writes) by the database, and compare those 
with the number of disks used. Remember to include the I/O activity of LGWR and 
ARCH processes.

Finding the SQL Statement executed by Sessions Waiting for I/O
Use the following query to determine, at a point in time, which sessions are waiting 
for I/O:

SELECT SQL_ADDRESS, SQL_HASH_VALUE
  FROM V$SESSION 
 WHERE EVENT LIKE 'db file%read';  

Finding the Object Requiring I/O
To determine the possible causes, first query V$SESSION to identify the value of 
ROW_WAIT_OBJ# when the session waits for db file scattered read. For example:

SELECT row_wait_obj# 
  FROM V$SESSION 
 WHERE EVENT = 'db file scattered read';

To identify the object and object type contended for, query DBA_OBJECTS using the 
value for ROW_WAIT_OBJ# that is returned from V$SESSION. For example:

SELECT owner, object_name, subobject_name, object_type
  FROM DBA_OBJECTS

See Also: Chapter 8, "I/O Configuration and Design"



Wait Events Statistics

Instance Tuning Using Performance Views 10-23

 WHERE data_object_id = &row_wait_obj;

db file sequential read
This event signifies that the user process is reading a buffer into the SGA buffer cache 
and is waiting for a physical I/O call to return. A sequential read is a single-block 
read.

Single block I/Os are usually the result of using indexes. Rarely, full table scan calls 
could get truncated to a single block call because of extent boundaries, or buffers 
present in the buffer cache. These waits would also show up as db file sequential 
read.

Check the following V$SESSION_WAIT parameter columns:

■ P1: The absolute file number

■ P2: The block being read

■ P3: The number of blocks (should be 1)

Actions
On a healthy system, physical read waits should be the biggest waits after the idle 
waits. However, also consider whether there are db file sequential reads on a large 
data warehouse that should be seeing mostly full table scans with parallel query.

Figure 10–1 depicts the differences between the following wait events:

■ db file sequential read (single block read into one SGA buffer)

■ db file scattered read (multiblock read into many discontinuous SGA buffers)

■ direct read (single or multiblock read into the PGA, bypassing the SGA)

See Also: "db file scattered read" on page 10-21 for information 
about managing excessive I/O, inadequate I/O distribution, and 
finding the SQL causing the I/O and the segment the I/O is 
performed on



Wait Events Statistics

10-24 Oracle Database Performance Tuning Guide

Figure 10–1 Scattered Read, Sequential Read, and Direct Path Read

direct path read and direct path read temp
When a session is reading buffers from disk directly into the PGA (opposed to the 
buffer cache in SGA), it waits on this event. If the I/O subsystem does not support 
asynchronous I/Os, then each wait corresponds to a physical read request.

If the I/O subsystem supports asynchronous I/O, then the process is able to overlap 
issuing read requests with processing the blocks existing in the PGA. When the 
process attempts to access a block in the PGA that has not yet been read from disk, it 
then issues a wait call and updates the statistics for this event. Hence, the number of 
waits is not necessarily the same as the number of read requests (unlike db file 
scattered read and db file sequential read).

Check the following V$SESSION_WAIT parameter columns:

■ P1: File_id for the read call

■ P2: Start block_id for the read call

■ P3: Number of blocks in the read call

Causes
This situation occurs in the following situations:

■ The sorts are too large to fit in memory and some of the sort data is written out 
directly to disk. This data is later read back in, using direct reads. 

■ Parallel slaves are used for scanning data.

■ The server process is processing buffers faster than the I/O system can return the 
buffers. This can indicate an overloaded I/O system.



Wait Events Statistics

Instance Tuning Using Performance Views 10-25

Actions
The file_id shows if the reads are for an object in TEMP tablespace (sorts to disk) or 
full table scans by parallel slaves. This wait is the largest wait for large data warehouse 
sites. However, if the workload is not a Decision Support Systems (DSS) workload, 
then examine why this situation is happening.

Sorts to Disk   Examine the SQL statement currently being run by the session 
experiencing waits to see what is causing the sorts. Query V$TEMPSEG_USAGE to find the 
SQL statement that is generating the sort. Also query the statistics from V$SESSTAT for 
the session to determine the size of the sort. See if it is possible to reduce the sorting by 
tuning the SQL statement. If WORKAREA_SIZE_POLICY is MANUAL, then consider 
increasing the SORT_AREA_SIZE for the system (if the sorts are not too big) or for 
individual processes. If WORKAREA_SIZE_POLICY is AUTO, then investigate whether to 
increase PGA_AGGREGATE_TARGET. See "PGA Memory Management" on page 7-39.

Full Table Scans  If tables are defined with a high degree of parallelism, then this setting 
could skew the optimizer to use full table scans with parallel slaves. Check the object 
being read into using the direct path reads. If the full table scans are a valid part of the 
workload, then ensure that the I/O subsystem is adequate for the degree of 
parallelism. Consider using disk striping if you are not already using it or Oracle 
Automatic Storage Management (Oracle ASM).

Hash Area Size  For query plans that call for a hash join, excessive I/O could result from 
having HASH_AREA_SIZE too small. If WORKAREA_SIZE_POLICY is MANUAL, then consider 
increasing the HASH_AREA_SIZE for the system or for individual processes. If 
WORKAREA_SIZE_POLICY is AUTO, then investigate whether to increase 
PGA_AGGREGATE_TARGET.

direct path write and direct path write temp
When a process is writing buffers directly from PGA (as opposed to the DBWR writing 
them from the buffer cache), the process waits on this event for the write call to 
complete. Operations that could perform direct path writes include sorts on disk, 
parallel DML operations, direct-path INSERTs, parallel create table as select, and some 
LOB operations.

Like direct path reads, the number of waits is not the same as number of write calls 
issued if the I/O subsystem supports asynchronous writes. The session waits if it has 
processed all buffers in the PGA and cannot continue work until an I/O request 
completes.

Check the following V$SESSION_WAIT parameter columns:

■ P1: File_id for the write call

■ P2: Start block_id for the write call

■ P3: Number of blocks in the write call

See Also: 

■ "Managing Excessive I/O" on page 10-21

■ "PGA Memory Management" on page 7-39

See Also: Oracle Database Administrator's Guide for information 
about direct-path inserts



Wait Events Statistics

10-26 Oracle Database Performance Tuning Guide

Causes
This happens in the following situations:

■ Sorts are too large to fit in memory and are written to disk

■ Parallel DML are issued to create/populate objects

■ Direct path loads

Actions
For large sorts see "Sorts to Disk" on page 10-25.

For parallel DML, check the I/O distribution across disks and ensure that the I/O 
subsystem is adequately configured for the degree of parallelism.

enqueue (enq:) waits
Enqueues are locks that coordinate access to database resources. This event indicates 
that the session is waiting for a lock that is held by another session.

The name of the enqueue is included as part of the wait event name, in the form enq: 
enqueue_type - related_details. In some cases, the same enqueue type can be held 
for different purposes, such as the following related TX types:

■ enq: TX - allocate ITL entry 

■ enq: TX - contention 

■ enq: TX - index contention 

■ enq: TX - row lock contention 

The V$EVENT_NAME view provides a complete list of all the enq: wait events.

You can check the following V$SESSION_WAIT parameter columns for additional 
information:

■ P1: Lock TYPE (or name) and MODE

■ P2: Resource identifier ID1 for the lock

■ P3: Resource identifier ID2 for the lock

Finding Locks and Lock Holders
Query V$LOCK to find the sessions holding the lock. For every session waiting for the 
event enqueue, there is a row in V$LOCK with REQUEST <> 0. Use one of the following 
two queries to find the sessions holding the locks and waiting for the locks.

If there are enqueue waits, you can see these using the following statement:

SELECT * FROM V$LOCK WHERE request > 0;

To show only holders and waiters for locks being waited on, use the following: 

SELECT DECODE(request,0,'Holder: ','Waiter: ') || 
          sid sess, id1, id2, lmode, request, type
   FROM V$LOCK
 WHERE (id1, id2, type) IN (SELECT id1, id2, type FROM V$LOCK WHERE request > 0)
   ORDER BY id1, request;

See Also:  Oracle Database Reference for information about Oracle 
Database enqueues



Wait Events Statistics

Instance Tuning Using Performance Views 10-27

Actions
The appropriate action depends on the type of enqueue.

ST enqueue  If the contended-for enqueue is the ST enqueue, then the problem is most 
likely to be dynamic space allocation. Oracle Database dynamically allocates an extent 
to a segment when there is no more free space available in the segment. This enqueue 
is only used for dictionary managed tablespaces.

To solve contention on this resource:

■ Check to see whether the temporary (that is, sort) tablespace uses TEMPFILES. If 
not, then switch to using TEMPFILES.

■ Switch to using locally managed tablespaces if the tablespace that contains 
segments that are growing dynamically is dictionary managed.

■ If it is not possible to switch to locally managed tablespaces, then ST enqueue 
resource usage can be decreased by changing the next extent sizes of the growing 
objects to be large enough to avoid constant space allocation. To determine which 
segments are growing constantly, monitor the EXTENTS column of the 
DBA_SEGMENTS view for all SEGMENT_NAMEs. See Oracle Database Administrator's 
Guide for information about displaying information about space usage.

■ Preallocate space in the segment, for example, by allocating extents using the 
ALTER TABLE ALLOCATE EXTENT SQL statement.

HW enqueue  The HW enqueue is used to serialize the allocation of space beyond the 
high water mark of a segment.

■ V$SESSION_WAIT.P2 / V$LOCK.ID1 is the tablespace number.

■ V$SESSION_WAIT.P3 / V$LOCK.ID2 is the relative data block address (dba) of 
segment header of the object for which space is being allocated.

If this is a point of contention for an object, then manual allocation of extents solves the 
problem.

TM enqueue  The most common reason for waits on TM locks tend to involve foreign 
key constraints where the constrained columns are not indexed. Index the foreign key 
columns to avoid this problem.

TX enqueue  These are acquired exclusive when a transaction initiates its first change 
and held until the transaction does a COMMIT or ROLLBACK.

■ Waits for TX in mode 6: occurs when a session is waiting for a row level lock that 
is held by another session. This occurs when one user is updating or deleting a 
row, which another session wants to update or delete. This type of TX enqueue 
wait corresponds to the wait event enq: TX - row lock contention.

The solution is to have the first session holding the lock perform a COMMIT or 
ROLLBACK.

■ Waits for TX in mode 4 can occur if the session is waiting for an ITL (interested 
transaction list) slot in a block. This happens when the session wants to lock a row 
in the block but one or more other sessions have rows locked in the same block, 
and there is no free ITL slot in the block. Usually, Oracle Database dynamically 
adds another ITL slot. This may not be possible if there is insufficient free space in 

See Also: Oracle Database Concepts for detailed information on 
TEMPFILEs and locally managed tablespaces



Wait Events Statistics

10-28 Oracle Database Performance Tuning Guide

the block to add an ITL. If so, the session waits for a slot with a TX enqueue in 
mode 4. This type of TX enqueue wait corresponds to the wait event enq: TX - 
allocate ITL entry.

The solution is to increase the number of ITLs available, either by changing the 
INITRANS or MAXTRANS for the table (either by using an ALTER statement, or by 
re-creating the table with the higher values).

■ Waits for TX in mode 4 can also occur if a session is waiting due to potential 
duplicates in UNIQUE index. If two sessions try to insert the same key value the 
second session has to wait to see if an ORA-0001 should be raised or not. This type 
of TX enqueue wait corresponds to the wait event enq: TX - row lock contention.

The solution is to have the first session holding the lock perform a COMMIT or 
ROLLBACK.

■ Waits for TX in mode 4 is also possible if the session is waiting due to shared 
bitmap index fragment. Bitmap indexes index key values and a range of rowids. 
Each entry in a bitmap index can cover many rows in the actual table. If two 
sessions want to update rows covered by the same bitmap index fragment, then 
the second session waits for the first transaction to either COMMIT or ROLLBACK by 
waiting for the TX lock in mode 4. This type of TX enqueue wait corresponds to 
the wait event enq: TX - row lock contention.

■ Waits for TX in Mode 4 can also occur waiting for a PREPARED transaction.

■ Waits for TX in mode 4 also occur when a transaction inserting a row in an index 
has to wait for the end of an index block split being done by another transaction. 
This type of TX enqueue wait corresponds to the wait event enq: TX - index 
contention.

events in wait class other
This event belong to Other wait class and typically should not occur on a system. This 
event is an aggregate of all other events in the Other wait class, such as latch free, 
and is used in the V$SESSION_EVENT and V$SERVICE_EVENT views only. In these views, 
the events in the Other wait class will not be maintained individually in every session. 
Instead, these events will be rolled up into this single event to reduce the memory 
used for maintaining statistics on events in the Other wait class.

free buffer waits
This wait event indicates that a server process was unable to find a free buffer and has 
posted the database writer to make free buffers by writing out dirty buffers. A dirty 
buffer is a buffer whose contents have been modified. Dirty buffers are freed for reuse 
when DBWR has written the blocks to disk.

Causes
DBWR may not be keeping up with writing dirty buffers in the following situations:

■ The I/O system is slow.

■ There are resources it is waiting for, such as latches.

■ The buffer cache is so small that DBWR spends most of its time cleaning out 
buffers for server processes.

See Also: Oracle Database Advanced Application Developer's Guide 
for more information about referential integrity and locking data 
explicitly



Wait Events Statistics

Instance Tuning Using Performance Views 10-29

■ The buffer cache is so big that one DBWR process is not enough to free enough 
buffers in the cache to satisfy requests.

Actions
If this event occurs frequently, then examine the session waits for DBWR to see 
whether there is anything delaying DBWR.

Writes  If it is waiting for writes, then determine what is delaying the writes and fix it. 
Check the following:

■ Examine V$FILESTAT to see where most of the writes are happening.

■ Examine the host operating system statistics for the I/O system. Are the write 
times acceptable?

If I/O is slow:

■ Consider using faster I/O alternatives to speed up write times.

■ Spread the I/O activity across large number of spindles (disks) and controllers. See 
Chapter 8, "I/O Configuration and Design" for information about balancing I/O.

Cache is Too Small  It is possible DBWR is very active because the cache is too small. 
Investigate whether this is a probable cause by looking to see if the buffer cache hit 
ratio is low. Also use the V$DB_CACHE_ADVICE view to determine whether a larger cache 
size would be advantageous. See "Sizing the Buffer Cache" on page 7-7.

Cache Is Too Big for One DBWR  If the cache size is adequate and the I/O is evenly spread, 
then you can potentially modify the behavior of DBWR by using asynchronous I/O or 
by using multiple database writers.

Consider Multiple Database Writer (DBWR) Processes or I/O Slaves
Configuring multiple database writer processes, or using I/O slaves, is useful when 
the transaction rates are high or when the buffer cache size is so large that a single 
DBWn process cannot keep up with the load.

DB_WRITER_PROCESSES  The DB_WRITER_PROCESSES initialization parameter lets you 
configure multiple database writer processes (from DBW0 to DBW9 and from DBWa to 
DBWj). Configuring multiple DBWR processes distributes the work required to 
identify buffers to be written, and it also distributes the I/O load over these processes. 
Multiple db writer processes are highly recommended for systems with multiple CPUs 
(at least one db writer for every 8 CPUs) or multiple processor groups (at least as 
many db writers as processor groups). 

Based upon the number of CPUs and the number of processor groups, Oracle 
Database either selects an appropriate default setting for DB_WRITER_PROCESSES or 
adjusts a user-specified setting. 

DBWR_IO_SLAVES  If it is not practical to use multiple DBWR processes, then Oracle 
Database provides a facility whereby the I/O load can be distributed over multiple 
slave processes. The DBWR process is the only process that scans the buffer cache LRU 
list for blocks to be written out. However, the I/O for those blocks is performed by the 
I/O slaves. The number of I/O slaves is determined by the parameter 
DBWR_IO_SLAVES.

DBWR_IO_SLAVES is intended for scenarios where you cannot use multiple 
DB_WRITER_PROCESSES (for example, where you have a single CPU). I/O slaves are also 
useful when asynchronous I/O is not available, because the multiple I/O slaves 



Wait Events Statistics

10-30 Oracle Database Performance Tuning Guide

simulate nonblocking, asynchronous requests by freeing DBWR to continue 
identifying blocks in the cache to be written. Asynchronous I/O at the operating 
system level, if you have it, is generally preferred.

DBWR I/O slaves are allocated immediately following database open when the first 
I/O request is made. The DBWR continues to perform all of the DBWR-related work, 
apart from performing I/O. I/O slaves simply perform the I/O on behalf of DBWR. 
The writing of the batch is parallelized between the I/O slaves.

Choosing Between Multiple DBWR Processes and I/O Slaves  Configuring multiple DBWR 
processes benefits performance when a single DBWR process cannot keep up with the 
required workload. However, before configuring multiple DBWR processes, check 
whether asynchronous I/O is available and configured on the system. If the system 
supports asynchronous I/O but it is not currently used, then enable asynchronous I/O 
to see if this alleviates the problem. If the system does not support asynchronous I/O, 
or if asynchronous I/O is configured and there is still a DBWR bottleneck, then 
configure multiple DBWR processes.

Using multiple DBWRs parallelizes the gathering and writing of buffers. Therefore, 
multiple DBWn processes should deliver more throughput than one DBWR process 
with the same number of I/O slaves. For this reason, the use of I/O slaves has been 
deprecated in favor of multiple DBWR processes. I/O slaves should only be used if 
multiple DBWR processes cannot be configured.

Idle Wait Events
These events belong to Idle wait class and indicate that the server process is waiting 
because it has no work. This usually implies that if there is a bottleneck, then the 
bottleneck is not for database resources. The majority of the idle events should be 
ignored when tuning, because they do not indicate the nature of the performance 
bottleneck. Some idle events can be useful in indicating what the bottleneck is not. An 
example of this type of event is the most commonly encountered idle wait-event SQL 
Net message from client. This and other idle events (and their categories) are listed 
in Table 10–2.

Note: Implementing DBWR_IO_SLAVES requires that extra shared 
memory be allocated for I/O buffers and request queues. Multiple 
DBWR processes cannot be used with I/O slaves. Configuring I/O 
slaves forces only one DBWR process to start.

Note: If asynchronous I/O is not available on your platform, then 
asynchronous I/O can be disabled by setting the DISK_ASYNCH_IO 
initialization parameter to FALSE.

Table 10–2  Idle Wait Events

Wait Name

Background 
Process Idle 
Event

User Process 
Idle Event

Parallel Query 
Idle Event

Shared Server 
Idle Event

Oracle Real 
Application Clusters 
Idle Event

dispatcher timer . . . X .

pipe get . X . . .

pmon timer X . . . .

PX Idle Wait . . X . .



Wait Events Statistics

Instance Tuning Using Performance Views 10-31

latch events
A latch is a low-level internal lock used by Oracle Database to protect memory 
structures. The latch free event is updated when a server process attempts to get a 
latch, and the latch is unavailable on the first attempt.

There is a dedicated latch-related wait event for the more popular latches that often 
generate significant contention. For those events, the name of the latch appears in the 
name of the wait event, such as latch: library cache or latch: cache buffers 
chains. This enables you to quickly figure out if a particular type of latch is 
responsible for most of the latch-related contention. Waits for all other latches are 
grouped in the generic latch free wait event.

Actions
This event should only be a concern if latch waits are a significant portion of the wait 
time on the system as a whole, or for individual users experiencing problems.

■ Examine the resource usage for related resources. For example, if the library cache 
latch is heavily contended for, then examine the hard and soft parse rates.

■ Examine the SQL statements for the sessions experiencing latch contention to see if 
there is any commonality.

Check the following V$SESSION_WAIT parameter columns:

■ P1: Address of the latch

■ P2: Latch number

■ P3: Number of times process has slept, waiting for the latch

Example: Find Latches Currently Waited For
SELECT EVENT, SUM(P3) SLEEPS, SUM(SECONDS_IN_WAIT) SECONDS_IN_WAIT
  FROM V$SESSION_WAIT
 WHERE EVENT LIKE 'latch%'
  GROUP BY EVENT;

A problem with the previous query is that it tells more about session tuning or instant 
instance tuning than instance or long-duration instance tuning. 

PX Deq Credit: need buffer . . X . .

rdbms ipc message X . . . .

shared server idle wait . . . X .

smon timer X . . . .

SQL*Net message from client . X . . .

See Also: Oracle Database Reference for explanations of each idle 
wait event

See Also: Oracle Database Concepts for more information on 
latches and internal locks

Table 10–2 (Cont.) Idle Wait Events

Wait Name

Background 
Process Idle 
Event

User Process 
Idle Event

Parallel Query 
Idle Event

Shared Server 
Idle Event

Oracle Real 
Application Clusters 
Idle Event



Wait Events Statistics

10-32 Oracle Database Performance Tuning Guide

The following query provides more information about long duration instance tuning, 
showing whether the latch waits are significant in the overall database time.

SELECT EVENT, TIME_WAITED_MICRO, 
       ROUND(TIME_WAITED_MICRO*100/S.DBTIME,1) PCT_DB_TIME 
  FROM V$SYSTEM_EVENT, 
   (SELECT VALUE DBTIME FROM V$SYS_TIME_MODEL WHERE STAT_NAME = 'DB time') S
 WHERE EVENT LIKE 'latch%'
 ORDER BY PCT_DB_TIME ASC;

A more general query that is not specific to latch waits is the following:

SELECT EVENT, WAIT_CLASS, 
      TIME_WAITED_MICRO,ROUND(TIME_WAITED_MICRO*100/S.DBTIME,1) PCT_DB_TIME
  FROM V$SYSTEM_EVENT E, V$EVENT_NAME N,
    (SELECT VALUE DBTIME FROM V$SYS_TIME_MODEL WHERE STAT_NAME = 'DB time') S
   WHERE E.EVENT_ID = N.EVENT_ID
    AND N.WAIT_CLASS NOT IN ('Idle', 'System I/O')
  ORDER BY PCT_DB_TIME ASC;

Table 10–3  Latch Wait Event

Latch SGA Area Possible Causes Look For:

Shared pool, 
library cache

Shared pool Lack of statement reuse

Statements not using bind variables

Insufficient size of application cursor cache

Cursors closed explicitly after each 
execution

Frequent logins and logoffs

Underlying object structure being modified 
(for example truncate)

Shared pool too small

Sessions (in V$SESSTAT) with high:

■ parse time CPU

■ parse time elapsed

■ Ratio of parse count (hard) / execute 
count

■ Ratio of parse count (total) / execute 
count

Cursors (in V$SQLAREA/V$SQLSTATS) with:

■ High ratio of PARSE_CALLS / EXECUTIONS

■ EXECUTIONS = 1 differing only in literals 
in the WHERE clause (that is, no bind 
variables used)

■ High RELOADS

■ High INVALIDATIONS

■ Large (> 1mb) SHARABLE_MEM

cache buffers 
lru chain

Buffer cache 
LRU lists

Excessive buffer cache throughput. For 
example, inefficient SQL that accesses 
incorrect indexes iteratively (large index 
range scans) or many full table scans 

DBWR not keeping up with the dirty 
workload; hence, foreground process 
spends longer holding the latch looking for 
a free buffer

Cache may be too small

Statements with very high logical I/O or 
physical I/O, using unselective indexes

cache buffers 
chains

Buffer cache 
buffers

Repeated access to a block (or small 
number of blocks), known as a hot block

Sequence number generation code that updates 
a row in a table to generate the number, rather 
than using a sequence number generator

Index leaf chasing from very many processes 
scanning the same unselective index with very 
similar predicate

Identify the segment the hot block belongs to

row cache 
objects



Wait Events Statistics

Instance Tuning Using Performance Views 10-33

Shared Pool and Library Cache Latch Contention
A main cause of shared pool or library cache latch contention is parsing. There are 
several techniques that you can use to identify unnecessary parsing and several types 
of unnecessary parsing:

■ Unshared SQL

■ Reparsed Sharable SQL

■ By Session

■ cache buffers lru chain

■ cache buffers chains

■ row cache objects

Unshared SQL  This method identifies similar SQL statements that could be shared if 
literals were replaced with bind variables. The idea is to either:

■ Manually inspect SQL statements that have only one execution to see whether 
they are similar:

SELECT SQL_TEXT
  FROM V$SQLSTATS
 WHERE EXECUTIONS < 4
 ORDER BY SQL_TEXT;

■ Or, automate this process by grouping what may be similar statements. Estimate 
the number of bytes of a SQL statement that are likely the same, and group the 
SQL statements by this number of bytes. For example, the following example 
groups statements that differ only after the first 60 bytes.

SELECT SUBSTR(SQL_TEXT, 1, 60), COUNT(*)
  FROM V$SQLSTATS
 WHERE EXECUTIONS < 4 
 GROUP BY SUBSTR(SQL_TEXT, 1, 60)
 HAVING COUNT(*) > 1;

■ Or report distinct SQL statements that have the same execution plan. The 
following query selects distinct SQL statements that share the same execution plan 
at least four times. These SQL statements are likely to be using literals instead of 
bind variables.

SELECT SQL_TEXT FROM V$SQLSTATS WHERE PLAN_HASH_VALUE IN
  (SELECT PLAN_HASH_VALUE 
     FROM V$SQLSTATS 
    GROUP BY PLAN_HASH_VALUE HAVING COUNT(*) > 4)
  ORDER BY PLAN_HASH_VALUE;

Reparsed Sharable SQL  Check the V$SQLSTATS view. Enter the following query: 

SELECT SQL_TEXT, PARSE_CALLS, EXECUTIONS 
  FROM V$SQLSTATS
ORDER BY PARSE_CALLS;

When the PARSE_CALLS value is close to the EXECUTIONS value for a given statement, 
you might be continually reparsing that statement. Tune the statements with the 
higher numbers of parse calls.



Wait Events Statistics

10-34 Oracle Database Performance Tuning Guide

By Session  Identify unnecessary parse calls by identifying the session in which they 
occur. It might be that particular batch programs or certain types of applications do 
most of the reparsing. To achieve this goal, run the following query:

SELECT pa.SID, pa.VALUE "Hard Parses", ex.VALUE "Execute Count" 
  FROM V$SESSTAT pa, V$SESSTAT ex 
 WHERE pa.SID = ex.SID 
   AND pa.STATISTIC#=(SELECT STATISTIC# 
       FROM V$STATNAME WHERE NAME = 'parse count (hard)') 
   AND ex.STATISTIC#=(SELECT STATISTIC# 
       FROM V$STATNAME WHERE NAME = 'execute count') 
   AND pa.VALUE > 0; 

The result is a list of all sessions and the amount of reparsing they do. For each session 
identifier (SID), go to V$SESSION to find the name of the program that causes the 
reparsing.

The output is similar to the following:

   SID  Hard Parses  Execute Count
------  -----------  -------------
     7            1             20
     8            3          12690
     6           26            325
    11           84           1619

cache buffers lru chain  The cache buffers lru chain latches protect the lists of buffers in 
the cache. When adding, moving, or removing a buffer from a list, a latch must be 
obtained.

For symmetric multiprocessor (SMP) systems, Oracle Database automatically sets the 
number of LRU latches to a value equal to one half the number of CPUs on the system. 
For non-SMP systems, one LRU latch is sufficient.

Contention for the LRU latch can impede performance on SMP computers with a large 
number of CPUs. LRU latch contention is detected by querying V$LATCH, 
V$SESSION_EVENT, and V$SYSTEM_EVENT. To avoid contention, consider tuning the 
application, bypassing the buffer cache for DSS jobs, or redesigning the application.

cache buffers chains  The cache buffers chains latches are used to protect a buffer list in 
the buffer cache. These latches are used when searching for, adding, or removing a 
buffer from the buffer cache. Contention on this latch usually means that there is a 
block that is greatly contended for (known as a hot block).

To identify the heavily accessed buffer chain, and hence the contended for block, look 
at latch statistics for the cache buffers chains latches using the view 
V$LATCH_CHILDREN. If there is a specific cache buffers chains child latch that has 
many more GETS, MISSES, and SLEEPS when compared with the other child latches, 
then this is the contended for child latch.

This latch has a memory address, identified by the ADDR column. Use the value in the 
ADDR column joined with the X$BH table to identify the blocks protected by this latch. 

Note: Because this query counts all parse calls since instance 
startup, it is best to look for sessions with high rates of parse. For 
example, a connection which has been up for 50 days might show a 
high parse figure, but a second connection might have been up for 
10 minutes and be parsing at a much faster rate.



Wait Events Statistics

Instance Tuning Using Performance Views 10-35

For example, given the address (V$LATCH_CHILDREN.ADDR) of a heavily contended 
latch, this queries the file and block numbers:

SELECT OBJ data_object_id, FILE#, DBABLK,CLASS, STATE, TCH
  FROM X$BH
 WHERE HLADDR = 'address of latch'
  ORDER BY TCH;

X$BH.TCH is a touch count for the buffer. A high value for X$BH.TCH indicates a hot 
block.

Many blocks are protected by each latch. One of these buffers will probably be the hot 
block. Any block with a high TCH value is a potential hot block. Perform this query 
several times, and identify the block that consistently appears in the output. After you 
have identified the hot block, query DBA_EXTENTS using the file number and block 
number, to identify the segment. 

After you have identified the hot block, you can identify the segment it belongs to 
with the following query:

SELECT OBJECT_NAME, SUBOBJECT_NAME
  FROM DBA_OBJECTS
 WHERE DATA_OBJECT_ID = &obj;

In the query, &obj is the value of the OBJ column in the previous query on X$BH.

row cache objects  The row cache objects latches protect the data dictionary.

log file parallel write
This event involves writing redo records to the redo log files from the log buffer.

library cache pin
This event manages library cache concurrency. Pinning an object causes the heaps to 
be loaded into memory. If a client wants to modify or examine the object, the client 
must acquire a pin after the lock.

library cache lock
This event controls the concurrency between clients of the library cache. It acquires a 
lock on the object handle so that either:

■ One client can prevent other clients from accessing the same object 

■ The client can maintain a dependency for a long time which does not allow 
another client to change the object

This lock is also obtained to locate an object in the library cache.

log buffer space
This event occurs when server processes are waiting for free space in the log buffer, 
because all the redo is generated faster than LGWR can write it out.

Actions
Modify the redo log buffer size. If the size of the log buffer is reasonable, then ensure 
that the disks on which the online redo logs reside do not suffer from I/O contention. 
The log buffer space wait event could be indicative of either disk I/O contention on 



Wait Events Statistics

10-36 Oracle Database Performance Tuning Guide

the disks where the redo logs reside, or of a too-small log buffer. Check the I/O profile 
of the disks containing the redo logs to investigate whether the I/O system is the 
bottleneck. If the I/O system is not a problem, then the redo log buffer could be too 
small. Increase the size of the redo log buffer until this event is no longer significant.

log file switch
There are two wait events commonly encountered:

■ log file switch (archiving needed)

■ log file switch (checkpoint incomplete)

In both of the events, the LGWR cannot switch into the next online redo log file. All 
the commit requests wait for this event.

Actions
For the log file switch (archiving needed) event, examine why the archiver cannot 
archive the logs in a timely fashion. It could be due to the following:

■ Archive destination is running out of free space.

■ Archiver is not able to read redo logs fast enough (contention with the LGWR).

■ Archiver is not able to write fast enough (contention on the archive destination, or 
not enough ARCH processes). If you have ruled out other possibilities (such as 
slow disks or a full archive destination) consider increasing the number of ARCn 
processes. The default is 2. 

■ If you have mandatory remote shipped archive logs, check whether this process is 
slowing down because of network delays or the write is not completing because of 
errors. 

Depending on the nature of bottleneck, you might need to redistribute I/O or add 
more space to the archive destination to alleviate the problem. For the log file switch 
(checkpoint incomplete) event:

■ Check if DBWR is slow, possibly due to an overloaded or slow I/O system. Check 
the DBWR write times, check the I/O system, and distribute I/O if necessary. See 
Chapter 8, "I/O Configuration and Design".

■ Check if there are too few, or too small redo logs. If you have a few redo logs or 
small redo logs (for example, 2 x 100k logs), and your system produces enough 
redo to cycle through all of the logs before DBWR has been able to complete the 
checkpoint, then increase the size or number of redo logs. See "Sizing Redo Log 
Files" on page 4-3.

log file sync
When a user session commits (or rolls back), the session's redo information must be 
flushed to the redo logfile by LGWR. The server process performing the COMMIT or 
ROLLBACK waits under this event for the write to the redo log to complete.

Actions
If this event's waits constitute a significant wait on the system or a significant amount 
of time waited by a user experiencing response time issues or on a system, then 
examine the average time waited.



Wait Events Statistics

Instance Tuning Using Performance Views 10-37

If the average time waited is low, but the number of waits are high, then the 
application might be committing after every INSERT, rather than batching COMMITs. 
Applications can reduce the wait by committing after 50 rows, rather than every row.

If the average time waited is high, then examine the session waits for the log writer 
and see what it is spending most of its time doing and waiting for. If the waits are 
because of slow I/O, then try the following:

■ Reduce other I/O activity on the disks containing the redo logs, or use dedicated 
disks.

■ Alternate redo logs on different disks to minimize the effect of the archiver on the 
log writer.

■ Move the redo logs to faster disks or a faster I/O subsystem (for example, switch 
from RAID 5 to RAID 1).

■ Consider using raw devices (or simulated raw devices provided by disk vendors) 
to speed up the writes.

■ Depending on the type of application, it might be possible to batch COMMITs by 
committing every N rows, rather than every row, so that fewer log file syncs are 
needed.

rdbms ipc reply
This event is used to wait for a reply from one of the background processes.

SQL*Net Events
The following events signify that the database process is waiting for acknowledgment 
from a database link or a client process:

■ SQL*Net break/reset to client

■ SQL*Net break/reset to dblink

■ SQL*Net message from client

■ SQL*Net message from dblink

■ SQL*Net message to client

■ SQL*Net message to dblink

■ SQL*Net more data from client

■ SQL*Net more data from dblink

■ SQL*Net more data to client

■ SQL*Net more data to dblink

If these waits constitute a significant portion of the wait time on the system or for a 
user experiencing response time issues, then the network or the middle-tier could be a 
bottleneck.

Events that are client-related should be diagnosed as described for the event SQL*Net 
message from client. Events that are dblink-related should be diagnosed as described 
for the event SQL*Net message from dblink.

SQL*Net message from client
Although this is an idle event, it is important to explain when this event can be used to 
diagnose what is not the problem. This event indicates that a server process is waiting 



Wait Events Statistics

10-38 Oracle Database Performance Tuning Guide

for work from the client process. However, there are several situations where this 
event could accrue most of the wait time for a user experiencing poor response time. 
The cause could be either a network bottleneck or a resource bottleneck on the client 
process.

Network Bottleneck  A network bottleneck can occur if the application causes a lot of 
traffic between server and client and the network latency (time for a round-trip) is 
high. Symptoms include the following:

■ Large number of waits for this event

■ Both the database and client process are idle (waiting for network traffic) most of 
the time

To alleviate network bottlenecks, try the following:

■ Tune the application to reduce round trips.

■ Explore options to reduce latency (for example, terrestrial lines opposed to VSAT 
links).

■ Change system configuration to move higher traffic components to lower latency 
links.

Resource Bottleneck on the Client Process   If the client process is using most of the 
resources, then there is nothing that can be done in the database. Symptoms include 
the following: 

■ Number of waits might not be large, but the time waited might be significant

■ Client process has a high resource usage

In some cases, you can see the wait time for a waiting user tracking closely with the 
amount of CPU used by the client process. The term client here refers to any process 
other than the database process (middle-tier, desktop client) in the n-tier architecture.

SQL*Net message from dblink
This event signifies that the session has sent a message to the remote node and is 
waiting for a response from the database link. This time could go up because of the 
following:

■ Network bottleneck

For information, see "SQL*Net message from client" on page 10-37.

■ Time taken to execute the SQL on the remote node

It is useful to see the SQL being run on the remote node. Login to the remote 
database, find the session created by the database link, and examine the SQL 
statement being run by it.

■ Number of round trip messages

Each message between the session and the remote node adds latency time and 
processing overhead. To reduce the number of messages exchanged, use array 
fetches and array inserts.

SQL*Net more data to client
The server process is sending more data or messages to the client. The previous 
operation to the client was also a send.



Real-Time SQL Monitoring

Instance Tuning Using Performance Views 10-39

Real-Time SQL Monitoring
The real-time SQL monitoring feature of Oracle Database enables you to monitor the 
performance of SQL statements while they are executing. By default, SQL monitoring 
automatically starts when a SQL statement runs parallel, or when it has consumed at 
least 5 seconds of CPU or I/O time in a single execution. 

You can monitor the statistics for SQL statement execution using the V$SQL_MONITOR 
and V$SQL_PLAN_MONITOR views. You can use these views in conjunction with the 
following views to get additional information about the execution being monitored:

■ V$ACTIVE_SESSION_HISTORY

■ V$SESSION

■ V$SESSION_LONGOPS

■ V$SQL

■ V$SQL_PLAN

After monitoring is initiated, the database adds an entry to the dynamic performance 
view V$SQL_MONITOR. This entry tracks key performance metrics collected for the 
execution, including the elapsed time, CPU time, number of reads and writes, I/O 
wait time and various other wait times. These statistics are refreshed in near real-time 
as the statement executes, generally once every second. After the execution ends, 
monitoring information is not deleted immediately, but is kept in the V$SQL_MONITOR 
view for at least one minute. The entry will eventually be deleted so its space can be 
reclaimed as new statements are monitored.

The V$SQL_MONITOR view contains a subset of the statistics available in V$SQL. 
However, unlike V$SQL, monitoring statistics are not cumulative over several 
executions. Instead, one entry in V$SQL_MONITOR is dedicated to a single execution of a 
SQL statement. If the database monitors two executions of the same SQL statement, 
then each execution has a separate entry in V$SQL_MONITOR.

To uniquely identify two executions of the same SQL statement, a composite key 
called an execution key is generated. This execution key is composed of three 
attributes, each corresponding to a column in V$SQL_MONITOR:

■ SQL identifier to identify the SQL statement (SQL_ID)

■ Start execution timestamp (SQL_EXEC_START)

■ An internally generated identifier to ensure that this primary key is truly unique 
(SQL_EXEC_ID)

This section contains the following topics:

■ SQL Plan Monitoring

■ Parallel Execution Monitoring

■ Generating the SQL Monitor Report

■ Enabling and Disabling SQL Monitoring

See Also: Oracle Database Net Services Administrator's Guide for a 
detailed discussion on network optimization



Real-Time SQL Monitoring

10-40 Oracle Database Performance Tuning Guide

SQL Plan Monitoring
Real-time SQL monitoring also includes monitoring statistics for each operation in the 
execution plan of the SQL statement being monitored. This data is visible in the 
V$SQL_PLAN_MONITOR view. Similar to the V$SQL_MONITOR view, statistics in 
V$SQL_PLAN_MONITOR are updated every second as the SQL statement is being 
executed. These statistics persist after the execution ends, with the same duration as 
V$SQL_MONITOR. There will be multiple entries in V$SQL_PLAN_MONITOR for every SQL 
statement being monitored; each entry will correspond to an operation in the 
execution plan of the statement.

Parallel Execution Monitoring
The database automatically monitors parallel queries, DML, and DDL statements as 
soon as execution begins. The V$SQL_MONITOR and V$SQL_PLAN_MONITOR views records 
monitoring information for each process participating in the parallel execution is 
recorded as separate entries.

V$SQL_MONITOR has one entry for the parallel execution coordinator process, and one 
entry for each parallel execution server process. Each entry has corresponding entries 
in V$SQL_PLAN_MONITOR. Because the processes allocated for the parallel execution of a 
SQL statement are cooperating for the same execution, these entries share the same 
execution key (the composite SQL_ID, SQL_EXEC_START and SQL_EXEC_ID). You can 
therefore aggregate the execution key to determine the overall statistics for a parallel 
execution.

Generating the SQL Monitor Report
You can use the SQL monitor report to view SQL monitoring data. The SQL monitor 
report uses data from several views, including:

■ GV$SQL_MONITOR

■ GV$SQL_PLAN_MONITOR

■ GV$SQL

■ GV$SQL_PLAN

■ GV$ACTIVE_SESSION_HISTORY

■ GV$SESSION_LONGOPS

To generate the SQL monitor report, run the REPORT_SQL_MONITOR function in the 
DBMS_SQLTUNE package:

variable my_rept CLOB;
BEGIN
  :my_rept :=DBMS_SQLTUNE.REPORT_SQL_MONITOR();
END;
/

print :my_rept

The DBMS_SQLTUNE.REPORT_SQL_MONITOR function accepts several input parameters to 
specify the execution, the level of detail in the report, and the report type ('TEXT', 
'HTML', or 'XML'). By default, a text report is generated for the last execution that was 
monitored if no parameters are specified as shown in the example.

See Also: Oracle Database PL/SQL Packages and Types Reference for 
information about the DBMS_SQLTUNE package



Real-Time SQL Monitoring

Instance Tuning Using Performance Views 10-41

Example 10–1 shows the output of the SQL Monitor Report for the last execution of a 
SQL statement that was monitored.

Example 10–1 Sample SQL Monitor Report

set long 10000000
set longchunksize 10000000
set linesize 200
select dbms_sqltune.report_sql_monitor from dual;
 
SQL Text
----------------------------------------------------------------------------------------
select * from (select O_ORDERDATE, sum(O_TOTALPRICE)
               from  orders o, lineitem l
               where l.l_orderkey = o.o_orderkey
               group by o_orderdate
               order by o_orderdate) where rownum < 100
----------------------------------------------------------------------------------------
 
Global Information
 Status              :  EXECUTING
 Instance ID         :  1
 Session ID          :  980
 SQL ID              :  br4m75c20p97h
 SQL Execution ID    :  16777219
 Plan Hash Value     :  2992965678
 Execution Started   :  06/07/2007 08:36:42
 First Refresh Time  :  06/07/2007 08:36:46
 Last Refresh Time   :  06/07/2007 08:40:02
 
-----------------------------------------------------------------------------------
| Elapsed |   Cpu   |    IO    | Application |  Other   | Buffer | Reads | Writes |
| Time(s) | Time(s) | Waits(s) |  Waits(s)   | Waits(s) |  Gets  |       |        |
-----------------------------------------------------------------------------------
|     198 |     140 |       56 |        0.31 |     1.44 |  1195K | 1264K |  84630 |
-----------------------------------------------------------------------------------
 
SQL Plan Monitoring Details
=======================================================================================
| Id   |         Operation          |   Name   |  Rows   | Cost  |   Time    | Start  |
|      |                            |          | (Estim) |       | Active(s) | Active |
=======================================================================================
|    0 | SELECT STATEMENT           |          |         |  125K |           |        |
|    1 |   COUNT STOPKEY            |          |         |       |           |        |
|    2 |    VIEW                    |          |    2406 |  125K |           |        |
|    3 |     SORT GROUP BY STOPKEY  |          |    2406 |  125K |        99 |   +101 |
| -> 4 |      HASH JOIN             |          |   8984K |  123K |       189 |    +12 |
|      |                            |          |         |       |           |        |
|    5 |       INDEX FAST FULL SCAN | I_L_OKEY |   8984K | 63191 |        82 |     +1 |
|      |                            |          |         |       |           |        |
|    6 |       PARTITION RANGE ALL  |          |  44913K | 57676 |        94 |    +84 |
|    7 |        PARTITION HASH ALL  |          |  44913K | 57676 |        94 |    +84 |
|    8 |         TABLE ACCESS FULL  | ORDERS   |  44913K | 57676 |        95 |    +84 |
|      |                            |          |         |       |           |        |
|      |                            |          |         |       |           |        |
=======================================================================================
 
continuation of above table
=======================================================================================
 Starts |   Rows   | Memory | Temp | Activity  |      Activity Detail      | Progress |



Real-Time SQL Monitoring

10-42 Oracle Database Performance Tuning Guide

        | (Actual) |        |      | (percent) |        (sample #)         |          |
=======================================================================================
      1 |          |        |      |           |                           |          |
      1 |          |        |      |           |                           |          |
      1 |          |        |      |           |                           |          |
      1 |        0 |        |      |      4.02 | Cpu (8)                   |          |
      1 |   28130K | 10000K | 724M |     25.13 | Cpu (48)                  | 87%      |
        |          |        |      |           | direct path read temp (2) |          |
      1 |   32734K |        |      |     34.17 | Cpu (58)                  | 100%     |
        |          |        |      |           | direct path read (10)     |          |
      1 |   45000K |        |      |           |                           |          |
     84 |   45000K |        |      |           |                           |          |
    672 |   45000K |        |      |     36.68 | Cpu (28)                  |          |
        |          |        |      |           | reliable message (3)      |          |
        |          |        |      |           | direct path read (42)     |          |
=======================================================================================

In the Global Information section of this report, the Status field shows that this 
statement is still executing. The Time Active(s) column shows how long the operation 
has been active (the delta in seconds between the first and the last active time). The 
Start Active column shows, in seconds, when the operation in the execution plan 
started relative to the SQL statement execution start time. In this report, the fast full 
scan operation at ID 5 was the first to start (+1s Start Active) and ran for the first 82 
seconds.

The Starts column shows the number of times the operation in the execution plan was 
executed. The Rows (Actual) column indicates the number of rows produced, and the 
Rows (Estim) column shows the estimated cardinality from the optimizer. The 
Memory and Temp columns indicate the amount of memory and temporary space 
consumed by each operation of the execution plan.

The Activity (percent) and Activity Detail (sample #) columns are derived by joining 
the V$SQL_PLAN_MONITOR and V$ACTIVE_SESSION_HISTORY views. Activity (percent) 
shows the percentage of database time consumed by each operation of the execution 
plan. Activity Detail (sample#) shows the nature of that activity (such as CPU or wait 
event). In this report, this column shows that most of the database time, 36.68%, is 
consumed by operation ID 8 (TABLE ACCESS FULL of ORDERS). This activity consists of 
73 samples (28+3+42), of which more than half of the activity is attributed to direct 
path read (42 samples), and a third to CPU (28 samples).

The last column, Progress, shows progress monitoring information for the operation 
from the V$SESSION_LONGOPS view. In this report, it shows that the hash-join operation 
is 87% complete. 

Enabling and Disabling SQL Monitoring
The SQL monitoring feature is enabled by default when the STATISTICS_LEVEL 
initialization parameter is either set to ALL or TYPICAL (the default value). Additionally, 
the CONTROL_MANAGEMENT_PACK_ACCESS parameter must be set to DIAGNOSTIC+TUNING 
(the default value) because SQL monitoring is a feature of the Oracle Database Tuning 
Pack. SQL monitoring starts automatically for all long running queries.

Two statement-level hints are available to force or prevent a SQL statement from being 
monitored. To force SQL monitoring, use the MONITOR hint:

select /*+MONITOR*/ from dual;



Tuning Instance Recovery Performance: Fast-Start Fault Recovery

Instance Tuning Using Performance Views 10-43

This hint is effective only when the CONTROL_MANAGEMENT_PACK_ACCESS parameter is 
set to DIAGNOSTIC+TUNING. To prevent the hinted SQL statement from being monitored, 
use the NO_MONITOR reverse hint.

Tuning Instance Recovery Performance: Fast-Start Fault Recovery
This section describes instance recovery, and how Oracle's Fast-Start Fault Recovery 
improves availability in the event of a crash or instance failure. It also offers guidelines 
for tuning the time required to perform crash and instance recovery.

This section contains the following topics:

■ About Instance Recovery

■ Configuring the Duration of Cache Recovery: FAST_START_MTTR_TARGET

■ Tuning FAST_START_MTTR_TARGET and Using MTTR Advisor

About Instance Recovery
Instance and crash recovery are the automatic application of redo log records to Oracle 
data blocks after a crash or system failure. During normal operation, if an instance is 
shut down cleanly (as when using a SHUTDOWN IMMEDIATE statement), rather than 
terminated abnormally, then the in-memory changes that have not been written to the 
data files on disk are written to disk as part of the checkpoint performed during 
shutdown.

However, if a single instance database crashes or if all instances of an Oracle RAC 
configuration crash, then Oracle Database performs crash recovery at the next startup. 
If one or more instances of an Oracle RAC configuration crash, then a surviving 
instance performs instance recovery automatically. Instance and crash recovery occur 
in two steps: cache recovery followed by transaction recovery.

The database can be opened as soon as cache recovery completes, so improving the 
performance of cache recovery is important for increasing availability.

Cache Recovery (Rolling Forward)
During the cache recovery step, Oracle Database applies all committed and 
uncommitted changes in the redo log files to the affected data blocks. The work 
required for cache recovery processing is proportional to the rate of change to the 
database (update transactions each second) and the time between checkpoints.

Transaction Recovery (Rolling Back)
To make the database consistent, the changes that were not committed at the time of 
the crash must be undone (in other words, rolled back). During the transaction 
recovery step, Oracle Database applies the rollback segments to undo the 
uncommitted changes.

Checkpoints and Cache Recovery
Periodically, Oracle Database records a checkpoint. A checkpoint is the highest system 
change number (SCN) such that all data blocks less than or equal to that SCN are 
known to be written out to the data files. If a failure occurs, then only the redo records 
containing changes at SCNs higher than the checkpoint need to be applied during 
recovery. The duration of cache recovery processing is determined by two factors: the 

See Also: Oracle Database SQL Language Reference for information 
about using the MONITOR and NO_MONITOR hints



Tuning Instance Recovery Performance: Fast-Start Fault Recovery

10-44 Oracle Database Performance Tuning Guide

number of data blocks that have changes at SCNs higher than the SCN of the 
checkpoint, and the number of log blocks that need to be read to find those changes.

How Checkpoints Affect Performance  Frequent checkpointing writes dirty buffers to the 
data files more often than otherwise, and so reduces cache recovery time in the event 
of an instance failure. If checkpointing is frequent, then applying the redo records in 
the redo log between the current checkpoint position and the end of the log involves 
processing relatively few data blocks. This means that the cache recovery phase of 
recovery is fairly short.

However, in a high-update system, frequent checkpointing can reduce run-time 
performance, because checkpointing causes DBWn processes to perform writes.

Fast Cache Recovery Tradeoffs  To minimize the duration of cache recovery, you must 
force Oracle Database to checkpoint often, thus keeping the number of redo log 
records to be applied during recovery to a minimum. However, in a high-update 
system, frequent checkpointing increases the overhead for normal database 
operations.

If daily operational efficiency is more important than minimizing recovery time, then 
decrease the frequency of writes to data files due to checkpoints. This should improve 
operational efficiency, but also increase cache recovery time.

Configuring the Duration of Cache Recovery: FAST_START_MTTR_TARGET
The Fast-Start Fault Recovery feature reduces the time required for cache recovery, and 
makes the recovery bounded and predictable by limiting the number of dirty buffers 
and the number of redo records generated between the most recent redo record and 
the last checkpoint.

The foundation of Fast-Start Fault Recovery is the Fast-Start checkpointing 
architecture. Instead of conventional event-driven (that is, log switching) 
checkpointing, which does bulk writes, fast-start checkpointing occurs incrementally. 
Each DBWn process periodically writes buffers to disk to advance the checkpoint 
position. The oldest modified blocks are written first to ensure that every write lets the 
checkpoint advance. Fast-Start checkpointing eliminates bulk writes and the resultant 
I/O spikes that occur with conventional checkpointing.

With the Fast-Start Fault Recovery feature, the FAST_START_MTTR_TARGET initialization 
parameter simplifies the configuration of recovery time from instance or system 
failure. FAST_START_MTTR_TARGET specifies a target for the expected mean time to 
recover (MTTR), that is, the time (in seconds) that it should take to start up the 
instance and perform cache recovery. After FAST_START_MTTR_TARGET is set, the 
database manages incremental checkpoint writes in an attempt to meet that target. If 
you have chosen a practical value for FAST_START_MTTR_TARGET, you can expect your 
database to recover, on average, in approximately the number of seconds you have 
chosen.

Note: You must disable or remove the FAST_START_IO_TARGET, 
LOG_CHECKPOINT_INTERVAL, and LOG_CHECKPOINT_TIMEOUT 
initialization parameters when using FAST_START_MTTR_TARGET. 
Setting these parameters interferes with the mechanisms used to 
manage cache recovery time to meet FAST_START_MTTR_TARGET.



Tuning Instance Recovery Performance: Fast-Start Fault Recovery

Instance Tuning Using Performance Views 10-45

Practical Values for FAST_START_MTTR_TARGET
The maximum value for FAST_START_MTTR_TARGET is 3600 seconds (one hour). If you 
set the value to more than 3600, then Oracle Database rounds it to 3600.

The following example shows how to set the value of FAST_START_MTTR_TARGET:

SQL> ALTER SYSTEM SET FAST_START_MTTR_TARGET=30;

In principle, the minimum value for FAST_START_MTTR_TARGET is one second. 
However, the fact that you can set FAST_START_MTTR_TARGET this low does not mean 
that this target can be achieved. There are practical limits to the minimum achievable 
MTTR target, due to such factors as database startup time. 

The MTTR target that your database can achieve given the current value of 
FAST_START_MTTR_TARGET is called the effective MTTR target. You can view your 
current effective MTTR by viewing the TARGET_MTTR column of the 
V$INSTANCE_RECOVERY view.

The practical range of MTTR target values for your database is defined to be the range 
between the lowest achievable effective MTTR target for your database and the longest 
that startup and cache recovery will take in the worst-case scenario (that is, when the 
whole buffer cache is dirty). "Determine the Practical Range for 
FAST_START_MTTR_TARGET" on page 10-47 describes the procedure for 
determining the range of achievable MTTR target values, one step in the process of 
tuning your FAST_START_MTTR_TARGET value.

Reducing Checkpoint Frequency to Optimize Run-Time Performance
To reduce the checkpoint frequency and optimize run-time performance, you can do 
the following:

■ Set the value of FAST_START_MTTR_TARGET to 3600. This enables Fast-Start 
checkpointing and the Fast-Start Fault Recovery feature, but minimizes its effect 
on run-time performance while avoiding the need for performance tuning of 
FAST_START_MTTR_TARGET.

■ Size your online redo log files according to the amount of redo your system 
generates. Try to switch logs at most every twenty minutes. Having your log files 
too small can increase checkpoint activity and reduce performance. Also note that 
all redo log files should be the same size.

Note: It is usually not useful to set your FAST_START_MTTR_TARGET 
to a value outside the practical range. If your 
FAST_START_MTTR_TARGET value is shorter than the lower limit of 
the practical range, the effect is as if you set it to the lower limit of 
the practical range. In such a case, the effective MTTR target will be 
the best MTTR target the system can achieve, but checkpointing 
will be at a maximum, which can affect normal database 
performance. If you set FAST_START_MTTR_TARGET to a time longer 
than the practical range, the MTTR target will be no better than the 
worst-case situation.

See Also: Oracle Database Concepts for a complete discussion of 
checkpoints



Tuning Instance Recovery Performance: Fast-Start Fault Recovery

10-46 Oracle Database Performance Tuning Guide

Monitoring Cache Recovery with V$INSTANCE_RECOVERY
The V$INSTANCE_RECOVERY view displays the current recovery parameter settings. You 
can also use statistics from this view to determine which factor has the greatest 
influence on checkpointing. 

The following table lists those columns most useful in monitoring predicted cache 
recovery performance:

For more details on the columns in V$INSTANCE_RECOVERY, see Oracle Database 
Reference. 

As part of the ongoing monitoring of your database, you can periodically compare 
V$INSTANCE_RECOVERY.TARGET_MTTR to your FAST_START_MTTR_TARGET. The two values 
should generally be the same if the FAST_START_MTTR_TARGET value is in the practical 
range. If TARGET_MTTR is consistently longer than FAST_START_MTTR_TARGET, then set 
FAST_START_MTTR_TARGET to a value no less than TARGET_MTTR. If TARGET_MTTR is 
consistently shorter, then set FAST_START_MTTR_TARGET to a value no greater than 
TARGET_MTTR.

Tuning FAST_START_MTTR_TARGET and Using MTTR Advisor
To determine the appropriate value for FAST_START_MTTR_TARGET for your database, 
use the following four step process:

■ Calibrate the FAST_START_MTTR_TARGET

■ Determine the Practical Range for FAST_START_MTTR_TARGET

■ Evaluate Different Target Values with MTTR Advisor

■ Determine Optimal Size for Redo Logs

Calibrate the FAST_START_MTTR_TARGET
The FAST_START_MTTR_TARGET initialization parameter causes the database to calculate 
internal system trigger values, in order to limit the length of the redo log and the 
number of dirty data buffers in the data cache. This calculation uses estimated time to 
read a redo block, estimates of the time to read and write a data block and 
characteristics of typical workload of the system, such as how many dirty buffers 
corresponds to how many change vectors, and so on.

Initially, internal defaults are used in the calculation. These defaults are replaced over 
time by data gathered on I/O performance during system operation and actual cache 
recoveries. 

You will have to perform several instance recoveries in order to calibrate your 
FAST_START_MTTR_TARGET value properly. Before starting calibration, you must decide 
whether FAST_START_MTTR_TARGET is being calibrated for a database crash or a 
hardware crash. This is a consideration if your database files are stored in a file system 
or if your I/O subsystem has a memory cache, because there is a considerable 

Table 10–4  V$INSTANCE_RECOVERY Columns

Column Description

TARGET_MTTR Effective MTTR target in seconds. This field is 0 if 
FAST_START_MTTR_TARGET is not specified.

ESTIMATED_MTTR The current estimated MTTR in seconds, based on the current 
number of dirty buffers and log blocks. This field is always 
calculated, whether FAST_START_MTTR_TARGET is specified.



Tuning Instance Recovery Performance: Fast-Start Fault Recovery

Instance Tuning Using Performance Views 10-47

difference in the read and write time to disk depending on whether the files are 
cached. The appropriate value for FAST_START_MTTR_TARGET will depend upon which 
type of crash is more important to recover from quickly.

To effectively calibrate FAST_START_MTTR_TARGET, ensure that you run the typical 
workload of the system for long enough, and perform several instance recoveries to 
ensure that the time to read a redo block and the time to read or write a data block 
during recovery are recorded accurately.

Determine the Practical Range for FAST_START_MTTR_TARGET
After calibration, you can perform tests to determine the practical range for 
FAST_START_MTTR_TARGET for your database.

Determining Lower Bound for FAST_START_MTTR_TARGET: Scenario  To determine the lower 
bound of the practical range, set FAST_START_MTTR_TARGET to 1, and start up your 
database. Then check the value of V$INSTANCE_RECOVERY.TARGET_MTTR, and use this 
value as a good lower bound for FAST_START_MTTR_TARGET. Database startup time, 
rather than cache recovery time, is usually the dominant factor in determining this 
limit.

For example, set the FAST_START_MTTR_TARGET to 1:

SQL> ALTER SYSTEM SET FAST_START_MTTR_TARGET=1;

Then, execute the following query immediately after opening the database:

SQL> SELECT TARGET_MTTR, ESTIMATED_MTTR 
    FROM V$INSTANCE_RECOVERY;

Oracle Database responds with the following:

TARGET_MTTR ESTIMATED_MTTR 
18          15             

The TARGET_MTTR value of 18 seconds is the minimum MTTR target that the system can 
achieve, that is, the lowest practical value for FAST_START_MTTR_TARGET. This 
minimum is calculated based on the average database startup time.

The ESTIMATED_MTTR field contains the estimated mean time to recovery based on the 
current state of the running database. Because the database has just opened, the 
system contains few dirty buffers, so not much cache recovery would be required if the 
instance failed at this moment. That is why ESTIMATED_MTTR can, for the moment, be 
lower than the minimum possible TARGET_MTTR.

ESTIMATED_MTTR can be affected in the short term by recent database activity. Assume 
that you query V$INSTANCE_RECOVERY immediately after a period of heavy update 
activity in the database. Oracle Database responds with the following:

TARGET_MTTR ESTIMATED_MTTR 
18          30             

Now the effective MTTR target is still 18 seconds, and the estimated MTTR (if a crash 
happened at that moment) is 30 seconds. This is an acceptable result. This means that 
some checkpoints writes might not have finished yet, so the buffer cache contains 
more dirty buffers than targeted.

Now wait for sixty seconds and reissue the query to V$INSTANCE_RECOVERY. Oracle 
Database responds with the following:

TARGET_MTTR ESTIMATED_MTTR 
18          25             



Tuning Instance Recovery Performance: Fast-Start Fault Recovery

10-48 Oracle Database Performance Tuning Guide

The estimated MTTR at this time has dropped to 25 seconds, because some of the dirty 
buffers have been written out during this period

Determining Upper Bound for FAST_START_MTTR_TARGET  To determine the upper bound 
of the practical range, set FAST_START_MTTR_TARGET to 3600, and operate your database 
under a typical workload for a while. Then check the value of 
V$INSTANCE_RECOVERY.TARGET_MTTR. This value is a good upper bound for 
FAST_START_MTTR_TARGET. 

The procedure is substantially similar to that in "Determining Lower Bound for 
FAST_START_MTTR_TARGET: Scenario" on page 10-47. 

Selecting Preliminary Value for FAST_START_MTTR_TARGET  After you have determined the 
practical bounds for the FAST_START_MTTR_TARGET parameter, select a preliminary 
value for the parameter. Choose a higher value within the practical range if your 
concern is with database performance, and a lower value within the practical range if 
your priority is shorter recovery times. The narrower the practical range, of course, the 
easier the choice becomes.

For example, if you discovered that the practical range was between 17 and 19 
seconds, it would be quite simple to choose 19, because it makes relatively little 
difference in recovery time and at the same time minimizes the effect of checkpointing 
on system performance. However, if you found that the practical range was between 
18 and 40 seconds, you might choose a compromise value of 30, and set the parameter 
accordingly:

SQL> ALTER SYSTEM SET FAST_START_MTTR_TARGET=30;

You might then go on to use the MTTR Advisor to determine an optimal value.

Evaluate Different Target Values with MTTR Advisor
After you have selected a preliminary value for FAST_START_MTTR_TARGET, you can use 
MTTR Advisor to evaluate the effect of different FAST_START_MTTR_TARGET settings on 
system performance, compared to your chosen setting.

Enabling MTTR Advisor  To enable MTTR Advisor, set the two initialization parameters 
STATISTICS_LEVEL and FAST_START_MTTR_TARGET. 

STATISTICS_LEVEL governs whether all advisors are enabled and is not specific to 
MTTR Advisor. Ensure that it is set to TYPICAL or ALL. Then, when 
FAST_START_MTTR_TARGET is set to a nonzero value, the MTTR Advisor is enabled.

Using MTTR Advisor  After enabling MTTR Advisor, run a typical database workload for 
a while. When MTTR Advisor is ON, the database simulates checkpoint queue 
behavior under the current value of FAST_START_MTTR_TARGET, and up to four other 
different MTTR settings within the range of valid FAST_START_MTTR_TARGET values. 
(The database will in this case determine the valid range for FAST_START_MTTR_TARGET 
itself before testing different values in the range.)

Viewing MTTR Advisor Results: V$MTTR_TARGET_ADVICE  The dynamic performance view 
V$MTTR_TARGET_ADVICE lets you view statistics or advisories collected by MTTR 
Advisor.

The database populates V$MTTR_TARGET_ADVICE with advice about the effects of each of 
the FAST_START_MTTR_TARGET settings for your database. For each possible value of 
FAST_START_MTTR_TARGET, the row contains details about how many cache writes 



Tuning Instance Recovery Performance: Fast-Start Fault Recovery

Instance Tuning Using Performance Views 10-49

would be performed under the workload tested for that value of 
FAST_START_MTTR_TARGET. 

Specifically, each row contains information about cache writes, total physical writes 
(including direct writes), and total I/O (including reads) for that value of 
FAST_START_MTTR_TARGET, expressed both as a total number of operations and a ratio 
compared to the operations under your chosen FAST_START_MTTR_TARGET value. For 
instance, a ratio of 1.2 indicates 20% more cache writes. 

Knowing the effect of different FAST_START_MTTR_TARGET settings on cache write 
activity and other I/O enables you to decide better which FAST_START_MTTR_TARGET 
value best fits your recovery and performance needs. 

If MTTR Advisor is currently on, then V$MTTR_TARGET_ADVICE shows the Advisor 
information collected. If MTTR Advisor is currently OFF, then the view shows 
information collected the last time MTTR Advisor was ON since database startup, if 
any. If the database has been restarted since the last time the MTTR Advisor was used, 
or if it has never been used, the view will not show any rows.

Determine Optimal Size for Redo Logs
You can use the V$INSTANCE_RECOVERY view column OPTIMAL_LOGFILE_SIZE to 
determine the size of your online redo logs. This field shows the redo log file size in 
megabytes that is considered optimal based on the current setting of 
FAST_START_MTTR_TARGET. If this field consistently shows a value greater than the size 
of your smallest online log, then you should configure all your online logs to be at 
least this size.

Note, however, that the redo log file size affects the MTTR. In some cases, you may be 
able to refine your choice of the optimal FAST_START_MTTR_TARGET value by re-running 
the MTTR Advisor with your suggested optimal log file size.

See Also: Oracle Database Reference for column details of the 
V$MTTR_TARGET_ADVICE view



Tuning Instance Recovery Performance: Fast-Start Fault Recovery

10-50 Oracle Database Performance Tuning Guide



Part IV
Part IV Optimizing SQL Statements

This part explains how to tune your SQL statements for optimal performance and 
discusses Oracle SQL-related performance tools.

The chapters in this part include: 

■ Chapter 11, "The Query Optimizer"

■ Chapter 12, "Using EXPLAIN PLAN"

■ Chapter 13, "Managing Optimizer Statistics"

■ Chapter 14, "Using Indexes and Clusters"

■ Chapter 15, "Using SQL Plan Management"

■ Chapter 16, "SQL Tuning Overview"

■ Chapter 17, "Automatic SQL Tuning"

■ Chapter 18, "SQL Access Advisor"

■ Chapter 19, "Using Optimizer Hints"

■ Chapter 20, "Using Plan Stability"

■ Chapter 21, "Using Application Tracing Tools"





11

The Query Optimizer 11-1

11The Query Optimizer

This chapter discusses SQL processing, optimization methods, and how the query 
optimizer (usually called the optimizer) chooses a specific plan to execute SQL.

The chapter contains the following sections:

■ Overview of the Query Optimizer

■ Overview of Optimizer Access Paths

■ Overview of Joins

■ Reading and Understanding Execution Plans

■ Controlling Optimizer Behavior

Overview of the Query Optimizer
The optimizer is built-in software that determines the most efficient way to execute a 
SQL statement. 

This section contains the following topics:

■ Optimizer Operations

■ Components of the Query Optimizer

■ Bind Variable Peeking

Optimizer Operations
The database can execute a SQL statement in multiple ways, such as full table scans, 
index scans, nested loops, and hash joins. The optimizer considers many factors 
related to the objects and the conditions in the query when determining an execution 
plan. This determination is an important step in SQL processing and can greatly affect 
execution time.

When the user submits a SQL statement for execution, the optimizer performs the 
following steps: 

1. The optimizer generates a set of potential plans for the SQL statement based on 
available access paths and hints. 

Note: The optimizer might not make the same decisions from one 
version of Oracle Database to the next. In recent versions, the 
optimizer might make different decisions because better 
information is available.



Overview of the Query Optimizer

11-2 Oracle Database Performance Tuning Guide

2. The optimizer estimates the cost of each plan based on statistics in the data 
dictionary. Statistics include information on the data distribution and storage 
characteristics of the tables, indexes, and partitions accessed by the statement.

The cost is an estimated value proportional to the expected resource use needed to 
execute the statement with a particular plan. The optimizer calculates the cost of 
access paths and join orders based on the estimated computer resources, which 
includes I/O, CPU, and memory.

Serial plans with higher costs take longer to execute than those with smaller costs. 
When using a parallel plan, resource use is not directly related to elapsed time.

3. The optimizer compares the plans and chooses the plan with the lowest cost.

The output from the optimizer is an execution plan that describes the optimum 
method of execution. The plans shows the combination of the steps Oracle 
Database uses to execute a SQL statement. Each step either retrieves rows 
physically from the database or prepares them for the user issuing the statement.

For any SQL statement processed by Oracle Database, the optimizer performs the 
operations listed in Table 11–1.

Sometimes, you may have more information about a particular application's data than 
is available to the optimizer. In such cases you can use hints in SQL statements to 
instruct the optimizer about how a statement should be executed.

See Also: Chapter 19, "Using Optimizer Hints" for detailed 
information on hints

Table 11–1  Optimizer Operations

Operation Description

Evaluation of expressions 
and conditions

The optimizer first evaluates expressions and conditions 
containing constants as fully as possible.

Statement transformation For complex statements involving, for example, correlated 
subqueries or views, the optimizer might transform the original 
statement into an equivalent join statement.

Choice of optimizer goals The optimizer determines the goal of optimization. See 
"Choosing an Optimizer Goal" on page 11-36.

Choice of access paths For each table accessed by the statement, the optimizer chooses 
one or more of the available access paths to obtain table data. 
See "Overview of Optimizer Access Paths" on page 11-13.

Choice of join orders For a join statement that joins more than two tables, the 
optimizer chooses which pair of tables is joined first, and then 
which table is joined to the result, and so on. See "How the 
Query Optimizer Chooses Execution Plans for Joins" on 
page 11-23.

See Also: 

■ Chapter 13, "Managing Optimizer Statistics"

■ Chapter 19, "Using Optimizer Hints"

■ Oracle Database Concepts for an overview of SQL processing and 
the optimizer



Overview of the Query Optimizer

The Query Optimizer 11-3

Components of the Query Optimizer
The query optimizer operations include:

■ Query Transformation

■ Estimation

■ Plan Generation

Figure 11–1 illustrates optimizer components.

Figure 11–1 Optimizer Components

Query Transformation 
Each query portion of a statement is called a query block. The input to the query 
transformer is a parsed query, which is represented by a set of query blocks. 

In the following example, the SQL statement consists of two query blocks. The 
subquery in parentheses is the inner query block. The outer query block, which is the 
rest of the SQL statement, retrieves names of employees in the departments whose IDs 
were supplied by the subquery.

SELECT first_name, last_name
FROM   employees
WHERE  department_id 
IN     (SELECT department_id FROM departments WHERE location_id = 1800);

The query form determines how query blocks are interrelated. The transformer 
determines whether it is advantageous to rewrite the original SQL statement into a 
semantically equivalent SQL statement that can be processed more efficiently. 

The query transformer employs several query transformation techniques, including 
the following: 

■ View Merging

■ Predicate Pushing

Query 
Transformer

Estimator

Plan
Generator

Parsed Query
(from Parser)

Query Plan
(to Row Source Generator)

Transformed query

Query + estimates

Dictionarystatistics



Overview of the Query Optimizer

11-4 Oracle Database Performance Tuning Guide

■ Subquery Unnesting

■ Query Rewrite with Materialized Views

Any combination of these transformations can apply to a given query. 

View Merging  Each view referenced in a query is expanded by the parser into a separate 
query block. The block essentially represents the view definition, and thus the result of 
a view. One option for the optimizer is to analyze the view query block separately and 
generate a view subplan. The optimizer then processes the rest of the query by using 
the view subplan to generate an overall query plan. This technique usually leads to a 
suboptimal query plan because the view is optimized separately.

In view merging, the transformer merges the query block representing the view into 
the containing query block. For example, suppose you create a view as follows:

CREATE VIEW employees_50_vw AS
  SELECT employee_id, last_name, job_id, salary, commission_pct, department_id
  FROM   employees
  WHERE  department_id = 50;

You then query the view as follows:

SELECT employee_id
FROM   employees_50_vw 
WHERE  employee_id > 150;

The optimizer can use view merging to transform the query of employees_50_vw into 
the following equivalent query:

SELECT employee_id
FROM   employees
WHERE  department_id = 50 
AND    employee_id > 150;

The view merging optimization applies to views that contain only selections, 
projections, and joins. That is, mergeable views do not contain set operators, aggregate 
functions, DISTINCT, GROUP BY, CONNECT BY, and so on.

To enable the optimizer to use view merging for any query issued by the user, you 
must grant the MERGE ANY VIEW privilege to the user. Grant the MERGE VIEW privilege to a 
user on specific views to enable the optimizer to use view merging for queries on these 
views. These privileges are required only under specific conditions, such as when a 
view is not merged because the security checks fail.

Predicate Pushing  In predicate pushing, the optimizer "pushes" the relevant predicates 
from the containing query block into the view query block. For views that are not 
merged, this technique improves the subplan of the unmerged view because the 
database can use the pushed-in predicates to access indexes or to use as filters.

For example, suppose you create a view that references two employee tables. The view 
is defined with a compound query that uses the UNION set operator, as follows:

See Also: 

■ Oracle Database SQL Language Reference for more information about 
the MERGE ANY VIEW and MERGE VIEW privileges

■ Oracle Database Reference for more information about the 
OPTIMIZER_SECURE_VIEW_MERGING initialization parameter



Overview of the Query Optimizer

The Query Optimizer 11-5

CREATE VIEW all_employees_vw AS
  ( SELECT employee_id, last_name, job_id, commission_pct, department_id
    FROM   employees )
  UNION
  ( SELECT employee_id, last_name, job_id, commission_pct, department_id
    FROM   contract_workers );

You then query the view as follows:

SELECT last_name
FROM   all_employees_vw
WHERE  department_id = 50;

Because the view is a compound query, the optimizer cannot merge the view's query 
into the accessing query block. Instead, the optimizer can transform the accessing 
statement by pushing its predicate, the WHERE clause condition department_id=50, into 
the view's compound query. The equivalent transformed query is as follows:

SELECT last_name
FROM   ( SELECT employee_id, last_name, job_id, commission_pct, department_id
         FROM   employees
         WHERE  department_id=50
         UNION
         SELECT employee_id, last_name, job_id, commission_pct, department_id
         FROM   contract_workers
         WHERE  department_id=50 );

Subquery Unnesting  In subquery unnesting, the optimizer transforms a nested query 
into an equivalent join statement, and then optimizes the join. This transformation 
enables the optimizer to take advantage of the join optimizer technique. The optimizer 
can perform this transformation only if the resulting join statement is guaranteed to 
return exactly the same rows as the original statement, and if subqueries do not 
contain aggregate functions such as AVG.

For example, suppose you connect as user sh and execute the following query:

SELECT * 
FROM   sales
WHERE  cust_id IN ( SELECT cust_id FROM customers );

Because the customers.cust_id column is a primary key, the optimizer can transform 
the complex query into the following join statement that is guaranteed to return the 
same data:

SELECT sales.* 
FROM   sales, customers
WHERE  sales.cust_id = customers.cust_id;

If the optimizer cannot transform a complex statement into a join statement, it selects 
execution plans for the parent statement and the subquery as though they were 
separate statements. The optimizer then executes the subquery and uses the rows 
returned to execute the parent query. To improve execution speed of the overall query 
plan, the optimizer orders the subplans efficiently.

Query Rewrite with Materialized Views   A materialized view is like a query with a result 
that the database materializes and stores in a table. When the database finds a user 
query compatible with the query associated with a materialized view, then the 
database can rewrite the query in terms of the materialized view. This technique 
improves query execution because most of the query result has been precomputed.



Overview of the Query Optimizer

11-6 Oracle Database Performance Tuning Guide

The query transformer looks for any materialized views that are compatible with the 
user query and selects one or more materialized views to rewrite the user query. The 
use of materialized views to rewrite a query is cost-based. That is, the optimizer does 
not rewrite the query if the plan generated without the materialized views has a lower 
cost than the plan generated with the materialized views.

Consider the following materialized view, cal_month_sales_mv, which aggregates the 
dollar amount sold each month:

CREATE MATERIALIZED VIEW cal_month_sales_mv
  ENABLE QUERY REWRITE 
AS
  SELECT t.calendar_month_desc, SUM(s.amount_sold) AS dollars
  FROM   sales s, times t 
  WHERE  s.time_id = t.time_id
  GROUP BY t.calendar_month_desc;

Assume that sales number is around one million in a typical month. The view has the 
precomputed aggregates for the dollar amount sold for each month. Consider the 
following query, which asks for the sum of the amount sold for each month:

SELECT t.calendar_month_desc, SUM(s.amount_sold)
FROM   sales s, times t
WHERE  s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

Without query rewrite, the database must access sales directly and compute the sum 
of the amount sold. This method involves reading many million rows from sales, 
which invariably increases query response time. The join also further slows query 
response because the database must compute the join on several million rows. With 
query rewrite, the optimizer transparently rewrites the query as follows:

SELECT calendar_month, dollars
FROM   cal_month_sales_mv;

Estimation
The estimator determines the overall cost of a given execution plan. The estimator 
generates three different types of measures to achieve this goal:

■ Selectivity

This measure represents a fraction of rows from a row set. The selectivity is tied to 
a query predicate, such as last_name='Smith', or a combination of predicates.

■ Cardinality

This measure represents the number of rows in a row set.

■ Cost

This measure represents units of work or resource used. The query optimizer uses 
disk I/O, CPU usage, and memory usage as units of work.

If statistics are available, then the estimator uses them to compute the measures. The 
statistics improve the degree of accuracy of the measures.

Selectivity   The selectivity represents a fraction of rows from a row set. The row set can 
be a base table, a view, or the result of a join or a GROUP BY operator. The selectivity is 

See Also: Oracle Database Data Warehousing Guide to learn more 
about query rewrite



Overview of the Query Optimizer

The Query Optimizer 11-7

tied to a query predicate, such as last_name = 'Smith', or a combination of predicates, 
such as last_name = 'Smith' AND job_type = 'Clerk'.

A predicate filters a specific number of rows from a row set. Thus, the selectivity of a 
predicate indicates how many rows pass the predicate test. Selectivity ranges from 0.0 
to 1.0. A selectivity of 0.0 means that no rows are selected from a row set, whereas a 
selectivity of 1.0 means that all rows are selected. A predicate becomes more selective 
as the value approaches 0.0 and less selective (or more unselective) as the value 
approaches 1.0.

The optimizer estimates selectivity depending on whether statistics are available:

■ Statistics not available

Depending on the value of the OPTIMIZER_DYNAMIC_SAMPLING initialization 
parameter, the optimizer either uses dynamic statistics or an internal default 
value. The database uses different internal defaults depending on the predicate 
type. For example, the internal default for an equality predicate (last_name = 
'Smith') is lower than for a range predicate (last_name > 'Smith') because an 
equality predicate is expected to return a smaller fraction of rows. See "Controlling 
Dynamic Statistics" on page 13-22.

■ Statistics available

When statistics are available, the estimator uses them to estimate selectivity. 
Assume there are 150 distinct employee last names. For an equality predicate 
last_name = 'Smith', selectivity is the reciprocal of the number n of distinct 
values of last_name, which in this example is .006 because the query selects rows 
that contain 1 out of 150 distinct values.

If a histogram is available on the last_name column, then the estimator uses the 
histogram instead of the number of distinct values. The histogram captures the 
distribution of different values in a column, so it yields better selectivity estimates, 
especially for columns that contain skewed data. See "Viewing Histograms" on 
page 13-28.

Cardinality   Cardinality represents the number of rows in a row set. In this context, the 
row set can be a base table, a view, or the result of a join or GROUP BY operator.

Cost   The cost represents units of work or resource used in an operation. The 
optimizer uses disk I/O, CPU usage, and memory usage as units of work. The 
operation can be scanning a table, accessing rows from a table by using an index, 
joining two tables together, or sorting a row set. The cost is the number of work units 
expected to be incurred when the database executes the query and produces its result.

The access path determines the number of units of work required to get data from a 
base table. The access path can be a table scan, a fast full index scan, or an index scan.

■ Table scan or fast full index scan

During a table scan or fast full index scan, the database reads multiple blocks 
from disk in a single I/O. Therefore, the cost of the scan depends on the number of 
blocks to be scanned and the multiblock read count value.

■ Index scan

The cost of an index scan depends on the levels in the B-tree, the number of index 
leaf blocks to be scanned, and the number of rows to be fetched using the rowid in 
the index keys. The cost of fetching rows using rowids depends on the index 
clustering factor. See "Assessing I/O for Blocks, not Rows" on page 11-16.



Overview of the Query Optimizer

11-8 Oracle Database Performance Tuning Guide

The join cost represents the combination of the individual access costs of the two row 
sets being joined, plus the cost of the join operation.

Plan Generation
The plan generator explores various plans for a query block by trying out different 
access paths, join methods, and join orders. Many plans are possible because of the 
various combinations of different access paths, join methods, and join orders that the 
database can use to produce the same result. The purpose of the generator is to pick 
the plan with the lowest cost.

Join Order  A join order is the order in which different join items, such as tables, are 
accessed and joined together. Assume that the database joins table1, table2, and 
table3. The join order might be as follows:

1. The database accesses table1.

2. The database accesses table2 and joins its rows to table1.

3. The database accesses table3 and joins its data to the result of the join between 
table1 and table2.

Query Subplans  The optimizer represents each nested subquery or unmerged view by a 
separate query block and generates a subplan. The database optimizes query blocks 
separately from the bottom up. Thus, the database optimizes the innermost query 
block first and generates a subplan for it, and then lastly generates the outer query 
block representing the entire query.

The number of possible plans for a query block is proportional to the number of join 
items in the FROM clause. This number rises exponentially with the number of join 
items. For example, the possible plans for a join of five tables will be significantly 
higher than the possible plans for a join of two tables.

Cutoff for Plan Selection  The plan generator uses an internal cutoff to reduce the number 
of plans it tries when finding the lowest-cost plan. The cutoff is based on the cost of the 
current best plan. If the current best cost is large, then the plan generator explores 
alternative plans to find a lower cost plan. If the current best cost is small, then the 
generator ends the search swiftly because further cost improvement will not be 
significant.

The cutoff works well if the plan generator starts with an initial join order that 
produces a plan with cost close to optimal. Finding a good initial join order is a 
difficult problem.

Bind Variable Peeking
In bind variable peeking (also known as bind peeking), the optimizer looks at the 
value in a bind variable when the database performs a hard parse of a statement.

When a query uses literals, the optimizer can use the literal values to find the best 
plan. However, when a query uses bind variables, the optimizer must select the best 
plan without the presence of literals in the SQL text. This task can be extremely 
difficult. By peeking at bind values the optimizer can determine the selectivity of a 
WHERE clause condition as if literals had been used, thereby improving the plan.

See Also: "Overview of Joins" on page 11-22



Overview of the Query Optimizer

The Query Optimizer 11-9

Example 11–1 Bind Peeking

Assume that the following 100,000 row emp table exists in the database. The table has 
the following definition:

SQL> DESCRIBE emp

Name                   Null?    Type
---------------------- -------- ----------------------------------
ENAME                           VARCHAR2(20)
EMPNO                           NUMBER
PHONE                           VARCHAR2(20)
DEPTNO                          NUMBER

The data is significantly skewed in the deptno column. The value 10 is found in 99.9% 
of the rows. Each of the other deptno values (0 through 9) is found in 1% of the rows. 
You have gathered statistics for the table, resulting in a histogram on the deptno 
column. You define a bind variable and query emp using the bind value 9 as follows:

VARIABLE deptno NUMBER
EXEC :deptno := 9

SELECT /*ACS_1*/ count(*), max(empno) 
FROM   emp 
WHERE  deptno = :deptno;

The query returns 10 rows:

COUNT(*) MAX(EMPNO)
---------- ----------
    10         99

To generate the execution plan for the query, the database peeked at the value 9 during 
the hard parse. The optimizer generated selectivity estimates as if the user had 
executed the following query:

select /*ACS_1*/ count(*), max(empno)
from emp
where deptno = 9;

When choosing a plan, the optimizer only peeks at the bind value during the hard 
parse. This plan may not be optimal for all possible values.

Adaptive Cursor Sharing
The adaptive cursor sharing feature enables a single statement that contains bind 
variables to use multiple execution plans. Cursor sharing is "adaptive" because the 
cursor adapts its behavior so that the database does not always use the same plan for 
each execution or bind variable value.

For appropriate queries, the database monitors data accessed over time for different 
bind values, ensuring the optimal choice of cursor for a specific bind value. For 
example, the optimizer might choose one plan for bind value 9 and a different plan for 
bind value 10. Cursor sharing is "adaptive" because the cursor adapts its behavior so 
that the same plan is not always used for each execution or bind variable value.

Adaptive cursor sharing is enabled for the database by default and cannot be disabled. 
Note that adaptive cursor sharing does not apply to SQL statements containing more 
than 14 bind variables.



Overview of the Query Optimizer

11-10 Oracle Database Performance Tuning Guide

Bind-Sensitive Cursors  A bind-sensitive cursor is a cursor whose optimal plan may 
depend on the value of a bind variable. The database monitors the behavior of a 
bind-sensitive cursor that uses different bind values to determine whether a different 
plan is beneficial.

The criteria used by the optimizer to decide whether a cursor is bind-sensitive include 
the following:

■ The optimizer has peeked at the bind values to generate selectivity estimates.

■ A histogram exists on the column containing the bind value.

Example 11–2 Bind-Sensitive Cursors

In Example 11–1 you queried the emp table using the bind value 9 for deptno. Now you 
run the DBMS_XPLAN.DISPLAY_CURSOR function to show the query plan:

SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY_CURSOR);

The output is as follows:

----------------------------------------------------------------------------------
| Id  | Operation                    | Name   | Rows  | Bytes | Cost (%CPU)| Time|
----------------------------------------------------------------------------------
|  0 | SELECT STATEMENT             |        |      |       |   2 (100)|         |
|  1 |  SORT AGGREGATE              |        |    1 |    16 |          |         |
|  2 |   TABLE ACCESS BY INDEX ROWID| EMP    |    1 |    16 |   2   (0)| 00:00:01|
|* 3 |    INDEX RANGE SCAN          | EMP_I1 |    1 |       |   1   (0)| 00:00:01|
----------------------------------------------------------------------------------

The plan indicates that the optimizer chose an index range scan, which is expected 
because of the selectivity (only 1%) of the value 9. You can query V$SQL to view 
statistics about the cursor:

COL BIND_SENSI FORMAT a10
COL BIND_AWARE FORMAT a10
COL BIND_SHARE FORMAT a10
SELECT CHILD_NUMBER, EXECUTIONS, BUFFER_GETS, IS_BIND_SENSITIVE AS "BIND_SENSI", 
       IS_BIND_AWARE AS "BIND_AWARE", IS_SHAREABLE AS "BIND_SHARE"
FROM   V$SQL
WHERE  SQL_TEXT LIKE 'select /*ACS_1%';

As shown in the following output, one child cursor exists for this statement and has 
been executed once. A small number of buffer gets are associated with the child cursor. 
Because the deptno data is skewed, the database created a histogram. This histogram 
led the database to mark the cursor as bind-sensitive (IS_BIND_SENSITIVE is Y).

CHILD_NUMBER EXECUTIONS BUFFER_GETS BIND_SENSI BIND_AWARE BIND_SHARE
------------ ---------- ----------- ---------- ---------- ----------
           0          1          56 Y          N          Y

For each execution of the query with a new bind value, the database records the 
execution statistics for the new value and compares them to the execution statistics for 

Note: Adaptive cursor sharing is independent of the 
CURSOR_SHARING initialization parameter (see "Sharing Cursors for 
Existing Applications" on page 7-36). Adaptive cursor sharing is 
equally applicable to statements that contain user-defined and 
system-generated bind variables.



Overview of the Query Optimizer

The Query Optimizer 11-11

the previous value. If execution statistics vary greatly, then the database marks the 
cursor bind-aware.

Bind-Aware Cursors  A bind-aware cursor is a bind-sensitive cursor eligible to use 
different plans for different bind values. After a cursor has been made bind-aware, the 
optimizer chooses plans for future executions based on the bind value and its 
selectivity estimate.

When a statement with a bind-sensitive cursor executes, the database decides whether 
to mark the cursor bind-aware. The decision depends on whether the cursor produces 
significantly different data access patterns for different bind values. If the database 
marks the cursor bind-aware, then the next time that the cursor executes the database 
does the following:

■ Generates a new plan based on the new bind value.

■ Marks the original cursor generated for the statement as not shareable 
(V$SQL.IS_SHAREABLE is N). This cursor is no longer usable and will be among the 
first to be aged out of the shared SQL area.

Example 11–3 Bind-Aware Cursors

In Example 11–1 you queried emp using the bind value 9. Now you query emp using 
the bind value 10. The query returns 99,900 rows that contain the value 10:

COUNT(*)   MAX(EMPNO)
---------- ----------
99900      100000

Because the cursor for this statement is bind-sensitive, the optimizer assumes that the 
cursor can be shared. Consequently, the optimizer uses the same index range scan for 
the value 10 as for the value 9. 

The V$SQL output shows that the same bind-sensitive cursor was executed a second 
time (the query using 10) and required many more buffer gets than the first execution:

SELECT CHILD_NUMBER, EXECUTIONS, BUFFER_GETS, IS_BIND_SENSITIVE AS "BIND_SENSI", 
       IS_BIND_AWARE AS "BIND_AWARE", IS_SHAREABLE AS "BIND_SHARE"
FROM   V$SQL
WHERE  SQL_TEXT LIKE 'select /*ACS_1%';
 
CHILD_NUMBER EXECUTIONS BUFFER_GETS BIND_SENSI BIND_AWARE BIND_SHARE
------------ ---------- ----------- ---------- ---------- ----------
           0          2        1010 Y          N          Y

Now you execute the query using the value 10 a second time. The database compares 
statistics for previous executions and marks the cursor as bind-aware. In this case, the 
optimizer decides that a new plan is warranted, so it performs a hard parse of the 
statement and generates a new plan. The new plan uses a full table scan instead of an 
index range scan:

---------------------------------------------------------------------------
| Id  | Operation          | Name | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------
|   0 | SELECT STATEMENT   |      |       |       |   208 (100)|          |
|   1 |  SORT AGGREGATE    |      |     1 |    16 |            |          |
|*  2 |   TABLE ACCESS FULL| EMP  | 95000 |  1484K|   208   (1)| 00:00:03 |
---------------------------------------------------------------------------



Overview of the Query Optimizer

11-12 Oracle Database Performance Tuning Guide

A query of V$SQL shows that the database created an additional child cursor (child 
number 1) that represents the plan containing the full table scan. This new cursor 
shows a lower number of buffer gets and is marked bind-aware:

SELECT CHILD_NUMBER, EXECUTIONS, BUFFER_GETS, IS_BIND_SENSITIVE AS "BIND_SENSI", 
       IS_BIND_AWARE AS "BIND_AWARE", IS_SHAREABLE AS "BIND_SHARE"
FROM   V$SQL
WHERE  SQL_TEXT LIKE 'select /*ACS_1%';
 
CHILD_NUMBER EXECUTIONS BUFFER_GETS BIND_SENSI BIND_AWARE BIND_SHARE
------------ ---------- ----------- ---------- ---------- ----------
           0          2        1010 Y          N          Y
           1          2        1522 Y          Y          Y

After you execute the query twice with value 10, you execute it again using the more 
selective value 9. Because of adaptive cursor sharing, the optimizer "adapts" the cursor 
and chooses an index range scan rather than a full table scan for this value.

A query of V$SQL indicates that the database created a new child cursor (child number 
2) for the execution of the query:

CHILD_NUMBER EXECUTIONS BUFFER_GETS BIND_SENSI BIND_AWARE BIND_SHARE
------------ ---------- ----------- ---------- ---------- ----------
           0          2        1010 Y          N          N
           1          1        1522 Y          Y          Y
           2          1           7 Y          Y          Y

Because the database is now using adaptive cursor sharing, the database no longer 
uses the original cursor (child 0), which is not bind-aware. The shared SQL area will 
age out the defunct cursor.

Cursor Merging  If the optimizer creates a plan for a bind-aware cursor, and if this plan is 
the same as an existing cursor, then the optimizer can perform cursor merging. In this 
case, the database merges cursors to save space in the shared SQL area. The database 
increases the selectivity range for the cursor to include the selectivity of the new bind. 

Suppose you execute a query with a bind value that does not fall within the selectivity 
ranges of the existing cursors. The database performs a hard parse and generates a 
new plan and new cursor. If this new plan is the same plan used by an existing cursor, 
then the database merges these two cursors and deletes one of the old cursors.

Viewing Bind-Related Performance Data
You can use the V$ views for adaptive cursor sharing to see selectivity ranges, cursor 
information (such as whether a cursor is bind-aware or bind-sensitive), and execution 
statistics:

■ V$SQL shows whether a cursor is bind-sensitive or bind-aware

■ V$SQL_CS_HISTOGRAM shows the distribution of the execution count across a 
three-bucket execution history histogram

■ V$SQL_CS_SELECTIVITY shows the selectivity ranges stored for every predicate 
containing a bind variable if the selectivity was used to check cursor sharing

■ V$SQL_CS_STATISTICS summarizes the information that the optimizer uses to 
determine whether to mark a cursor bind-aware.



Overview of Optimizer Access Paths

The Query Optimizer 11-13

Overview of Optimizer Access Paths
Access paths are ways in which data is retrieved from the database. In general, index 
access paths are useful for statements that retrieve a small subset of table rows, 
whereas full scans are more efficient when accessing a large portion of the table. 
Online transaction processing (OLTP) applications, which consist of short-running 
SQL statements with high selectivity, often are characterized by the use of index access 
paths. Decision support systems, however, tend to use partitioned tables and perform 
full scans of the relevant partitions. 

This section describes the data access paths that the database can use to locate and 
retrieve any row in any table.

■ Full Table Scans

■ Rowid Scans

■ Index Scans

■ Cluster Access

■ Hash Access

■ Sample Table Scans

■ How the Query Optimizer Chooses an Access Path

Full Table Scans
This type of scan reads all rows from a table and filters out those that do not meet the 
selection criteria. During a full table scan, all blocks in the table that are under the high 
water mark are scanned. The high water mark indicates the amount of used space, or 
space that had been formatted to receive data. Each row is examined to determine 
whether it satisfies the statement's WHERE clause. 

When Oracle Database performs a full table scan, the blocks are read sequentially. 
Because the blocks are adjacent, the database can make I/O calls larger than a single 
block to speed up the process. The size of the read calls range from one block to the 
number of blocks indicated by the initialization parameter 
DB_FILE_MULTIBLOCK_READ_COUNT. Using multiblock reads, the database can perform a 
full table scan very efficiently. The database reads each block only once. 

Example 11–14, "EXPLAIN PLAN Output" on page 11-33 contains an example of a full 
table scan on the employees table.

Why a Full Table Scan Is Faster for Accessing Large Amounts of Data
Full table scans are cheaper than index range scans when accessing a large fraction of 
the blocks in a table. Full table scans can use larger I/O calls, and making fewer large 
I/O calls is cheaper than making many smaller calls.

When the Optimizer Uses Full Table Scans
The optimizer uses a full table scan in any of the following cases:

Lack of Index  If the query cannot use existing indexes, then it uses a full table scan. For 
example, if there is a function used on the indexed column in the query, then the 
optimizer cannot use the index and instead uses a full table scan.

If you need to use the index for case-independent searches, then either do not permit 
mixed-case data in the search columns or create a function-based index, such as 



Overview of Optimizer Access Paths

11-14 Oracle Database Performance Tuning Guide

UPPER(last_name), on the search column. See "Using Function-based Indexes for 
Performance" on page 14-7.

Large Amount of Data  If the optimizer thinks that the query requires most of the blocks 
in the table, then it uses a full table scan, even though indexes are available.

Small Table  If a table contains less than DB_FILE_MULTIBLOCK_READ_COUNT blocks under 
the high water mark, which the database can read in a single I/O call, then a full table 
scan might be cheaper than an index range scan, regardless of the fraction of tables 
being accessed or indexes present.

High Degree of Parallelism  A high degree of parallelism for a table skews the optimizer 
toward full table scans over range scans. Examine the DEGREE column in ALL_TABLES 
for the table to determine the degree of parallelism.

Full Table Scan Hints
Use the hint FULL(table alias) to instruct the optimizer to use a full table scan. For 
more information on the FULL hint, see "Hints for Access Paths" on page 19-3. 

You can use the CACHE and NOCACHE hints to indicate where the retrieved blocks are 
placed in the buffer cache. The CACHE hint instructs the optimizer to place the retrieved 
blocks at the most recently used end of the LRU list in the buffer cache when the 
database performs a full table scan.

Small tables are automatically cached according to the criteria in Table 11–2. 

Automatic caching of small tables is disabled for tables that are created or altered with 
the CACHE attribute.

Parallel Query Execution
When a full table scan is required, the database can improve response time by using 
multiple parallel execution servers. In some cases, as when the database has a large 
amount of memory, the database can cache parallel query data in the SGA instead of 
using direct reads into the PGA. Typically, parallel queries occur in low-concurrency 
data warehouses because of the potential resource usage.

Table 11–2  Table Caching Criteria

Table Size Size Criteria Caching

Small Number of blocks < 20 or 
2% of total cached blocks, 
whichever is larger

If STATISTICS_LEVEL is se to TYPICAL or 
higher, then Oracle Database decides whether 
to cache a table depending on the table scan 
history. The database caches the table only if a 
future table scan is likely to find the cached 
blocks. If STATISTICS_LEVEL is set to BASIC, 
then the table is not cached.

Medium Larger than a small table, 
but < 10% of total cached 
blocks

Oracle Database decides whether to cache a 
table based on its table scan and workload 
history. It caches the table only if a future 
table scan is likely to find the cached blocks.

Large > 10% of total cached blocks Not cached



Overview of Optimizer Access Paths

The Query Optimizer 11-15

Rowid Scans
The rowid of a row specifies the data file and data block containing the row and the 
location of the row in that block. Locating a row by specifying its rowid is the fastest 
way to retrieve a single row, because the exact location of the row in the database is 
specified. 

To access a table by rowid, Oracle Database first obtains the rowids of the selected 
rows, either from the statement's WHERE clause or through an index scan of one or more 
of the table's indexes. Oracle Database then locates each selected row in the table based 
on its rowid. 

In Example 11–14, "EXPLAIN PLAN Output" on page 11-33, the plan includes an 
index scan on the jobs and departments tables. The database uses the rowids retrieved 
to return the rows.

When the Optimizer Uses Rowids
This is generally the second step after retrieving the rowid from an index. The table 
access might be required for any columns in the statement not present in the index.

Access by rowid does not need to follow every index scan. If the index contains all the 
columns needed for the statement, then table access by rowid might not occur.

Index Scans
In this method, a row is retrieved by traversing the index, using the indexed column 
values specified by the statement. An index scan retrieves data from an index based on 
the value of one or more columns in the index. To perform an index scan, Oracle 
Database searches the index for the indexed column values accessed by the statement. 
If the statement accesses only columns of the index, then Oracle Database reads the 
indexed column values directly from the index, rather than from the table. 

The index contains not only the indexed value, but also the rowids of rows in the table 
having that value. Therefore, if the statement accesses other columns in addition to the 
indexed columns, then Oracle Database can find the rows in the table by using either a 
table access by rowid or a cluster scan. 

An index scan can be one of the following types: 

■ Assessing I/O for Blocks, not Rows

■ Index Unique Scans

■ Index Range Scans

See Also: 

■ Oracle Database Data Warehousing Guide 

■ Oracle Database VLDB and Partitioning Guide to learn more using 
parallel execution

Note: Rowids are an internal representation of where the database 
stores data. Rowids can change between versions. Accessing data 
based on position is not recommended because rows can move 
around due to row migration and chaining, export and import, and 
some other operations. Foreign keys should be based on primary 
keys. For more information on rowids, see Oracle Database Advanced 
Application Developer's Guide.



Overview of Optimizer Access Paths

11-16 Oracle Database Performance Tuning Guide

■ Index Range Scans Descending

■ Index Skip Scans

■ Full Scans

■ Fast Full Index Scans

■ Index Joins

■ Bitmap Indexes

Assessing I/O for Blocks, not Rows
Oracle Database performs I/O by blocks. Therefore, the optimizer's decision to use full 
table scans is influenced by the percentage of blocks accessed, not rows. This is called 
the index clustering factor. If blocks contain single rows, then rows accessed and 
blocks accessed are the same.

However, most tables have multiple rows in each block. Consequently, the desired 
number of rows may be clustered in a few blocks or spread out over a larger number 
of blocks.

 Although the clustering factor is a property of the index, the clustering factor actually 
relates to the spread of similar indexed column values within data blocks in the table. 
A lower clustering factor indicates that the individual rows are concentrated within 
fewer blocks in the table. Conversely, a high clustering factor indicates that the 
individual rows are scattered more randomly across blocks in the table. Therefore, a 
high clustering factor means that it costs more to use a range scan to fetch rows by 
rowid, because more blocks in the table need to be visited to return the data. 
Example 11–4 shows how the clustering factor can affect cost.

Example 11–4 Effects of Clustering Factor on Cost

Assume the following situation: 

■ There is a table with 9 rows.

■ There is a non-unique index on col1 for table.

■ The c1 column currently stores the values A, B, and C.

■ The table only has three data blocks.

Case 1: The index clustering factor is low for the rows as they are arranged in the 
following diagram. 

Block 1       Block 2        Block 3
-------       -------        -------
A  A  A       B  B  B        C  C  C

This is because the rows that have the same indexed column values for c1 are located 
within the same physical blocks in the table. The cost of using a range scan to return all 
rows that have the value A is low because only one block in the table must be read. 

Case 2: If the same rows in the table are rearranged so that the index values are 
scattered across the table blocks (rather than collocated), then the index clustering 
factor is higher. 

Block 1       Block 2        Block 3
-------       -------        -------
A  B  C       A  B  C        A  B  C



Overview of Optimizer Access Paths

The Query Optimizer 11-17

This is because all three blocks in the table must be read in order to retrieve all rows 
with the value A in col1. 

Index Unique Scans
This scan returns, at most, a single rowid. Oracle Database performs a unique scan if a 
statement contains a UNIQUE or a PRIMARY KEY constraint that guarantees that only a 
single row is accessed. 

In "EXPLAIN PLAN Output" on page 11-33 on page 11-33, the database performs an 
index scan on the jobs and departments tables, using the job_id_pk and dept_id_pk 
indexes respectively.

When the Optimizer Uses Index Unique Scans  The database uses this access path when the 
user specifies all columns of a unique (B-tree) index or an index created as a result of a 
primary key constraint with equality conditions.

Index Unique Scan Hints  In general, you should not need to use a hint to do a unique 
scan. There might be cases where the table is across a database link and being accessed 
from a local table, or where the table is small enough for the optimizer to prefer a full 
table scan.

The hint INDEX(alias index_name) specifies the index to use, but not an access path 
(range scan or unique scan). For more information on the INDEX hint, see "Hints for 
Access Paths" on page 19-3.

Index Range Scans
An index range scan is a common operation for accessing selective data. It can be 
bounded (bounded on both sides) or unbounded (on one or both sides). Data is 
returned in the ascending order of index columns. Multiple rows with identical values 
are sorted in ascending order by rowid.

If you require the data to be sorted by order, then use the ORDER BY clause, and do not 
rely on an index. If an index can satisfy an ORDER BY clause, then the optimizer uses this 
option and avoids a sort.

In Example 11–5, the order has been imported from a legacy system, and you are 
querying the order by the reference used in the legacy system. Assume this reference is 
the order_date. 

Example 11–5 Index Range Scan

SELECT order_status, order_id
  FROM orders
 WHERE order_date = :b1;

---------------------------------------------------------------------------------------
| Id  | Operation                   |  Name              | Rows  | Bytes | Cost (%CPU)|
---------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT            |                    |     1 |    20 |     3  (34)|
|   1 |  TABLE ACCESS BY INDEX ROWID| ORDERS             |     1 |    20 |     3  (34)|
|*  2 |   INDEX RANGE SCAN          | ORD_ORDER_DATE_IX  |     1 |       |     2  (50)|
---------------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   2 - access("ORDERS"."ORDER_DATE"=:Z)

See Also: Oracle Database Concepts for more details on index 
structures and for detailed information on how a B-tree is searched



Overview of Optimizer Access Paths

11-18 Oracle Database Performance Tuning Guide

This should be a highly selective query, and you should see the query using the index 
on the column to retrieve the desired rows. The data returned is sorted in ascending 
order by the rowids for the order_date. Because the index column order_date is 
identical for the selected rows here, the data is sorted by rowid.

When the Optimizer Uses Index Range Scans  The optimizer uses a range scan when it finds 
one or more leading columns of an index specified in conditions, such as the 
following:

■ col1 = :b1 

■ col1 < :b1 

■ col1 > :b1 

■ AND combination of the preceding conditions for leading columns in the index

■ col1 like 'ASD%' wild-card searches should not be in a leading position 
otherwise the condition col1 like '%ASD' does not result in a range scan

Range scans can use unique or non-unique indexes. Range scans avoid sorting when 
index columns constitute the ORDER BY/GROUP BY clause.

Index Range Scan Hints  A hint might be required if the optimizer chooses some other 
index or uses a full table scan. The hint INDEX(table_alias index_name) instructs the 
optimizer to use a specific index. For more information on the INDEX hint, see "Hints 
for Access Paths" on page 19-3.

Index Range Scans Descending
An index range scan descending is identical to an index range scan, except that the 
data is returned in descending order. Indexes, by default, are stored in ascending 
order. Usually, the database uses this scan when ordering data in a descending order to 
return the most recent data first, or when seeking a value less than a specified value.

When the Optimizer Uses Index Range Scans Descending  The optimizer uses index range 
scan descending when an index can satisfy an order by descending clause.

Index Range Scan Descending Hints  Use the hint INDEX_DESC(table_alias index_name) 
for this access path. For more information on the INDEX_DESC hint, see "Hints for 
Access Paths" on page 19-3.

Index Skip Scans
Index skip scans improve index scans by nonprefix columns. Often, scanning index 
blocks is faster than scanning table data blocks.

Skip scanning lets a composite index be split logically into smaller subindexes. In skip 
scanning, the initial column of the composite index is not specified in the query. In 
other words, it is skipped.

The database determines the number of logical subindexes by the number of distinct 
values in the initial column. Skip scanning is advantageous when there are few distinct 
values in the leading column of the composite index and many distinct values in the 
nonleading key of the index.

The database may choose an index skip scan when the leading column of the 
composite index is not specified in a query predicate. For example, assume that you 
run the following query for a customer in the sh.customers table:



Overview of Optimizer Access Paths

The Query Optimizer 11-19

SELECT * FROM sh.customers WHERE cust_email = 'Abbey@company.com';

The customers table has a column cust_gender whose values are either M or F. 
Assume that a composite index exists on the columns (cust_gender, cust_email) that 
was created as follows:

CREATE INDEX customers_gender_email ON sh.customers (cust_gender, cust_email);

Example 11–6 shows a portion of the index entries.

Example 11–6 Composite Index Entries

F,Wolf@company.com,rowid
F,Wolsey@company.com,rowid
F,Wood@company.com,rowid
F,Woodman@company.com,rowid
F,Yang@company.com,rowid
F,Zimmerman@company.com,rowid
M,Abbassi@company.com,rowid
M,Abbey@company.com,rowid

The database can use a skip scan of this index even though cust_gender is not 
specified in the WHERE clause.

In a skip scan, the number of logical subindexes is determined by the number of 
distinct values in the leading column. In Example 11–6, the leading column has two 
possible values. The database logically splits the index into one subindex with the key 
F and a second subindex with the key M. 

When searching for the record for the customer whose email is Abbey@company.com, 
the database searches the subindex with the value F first and then searches the 
subindex with the value M. Conceptually, the database processes the query as follows:

SELECT * FROM sh.customers WHERE cust_gender = 'F' 
  AND cust_email = 'Abbey@company.com'
UNION ALL
SELECT * FROM sh.customers WHERE cust_gender = 'M'
  AND cust_email = 'Abbey@company.com';

Full Scans
A full index scan eliminates a sort operation, because the data is ordered by the index 
key. It reads the blocks singly. Oracle Database may use a full scan in any of the 
following situations:

■ An ORDER BY clause that meets the following requirements is present in the query:

– All of the columns in the ORDER BY clause must be in the index.

– The order of the columns in the ORDER BY clause must match the order of the 
leading index columns.

The ORDER BY clause can contain all of the columns in the index or a subset of the 
columns in the index.

■ The query requires a sort merge join. The database can perform a full index scan 
instead of doing a full table scan followed by a sort when the query meets the 
following requirements:

– All of the columns referenced in the query must be in the index.

See Also: Oracle Database Concepts to learn more about skip scans



Overview of Optimizer Access Paths

11-20 Oracle Database Performance Tuning Guide

– The order of the columns referenced in the query must match the order of the 
leading index columns.

The query can contain all of the columns in the index or a subset of the columns in 
the index.

■ A GROUP BY clause is present in the query, and the columns in the GROUP BY clause 
are present in the index. The columns do not need to be in the same order in the 
index and the GROUP BY clause. The GROUP BY clause can contain all of the columns 
in the index or a subset of the columns in the index.

Fast Full Index Scans
Fast full index scans are an alternative to a full table scan when the index contains all 
the columns that are needed for the query, and at least one column in the index key 
has the NOT NULL constraint. A fast full scan accesses the data in the index itself, 
without accessing the table. The database cannot use this scan to eliminate a sort 
operation because the data is not ordered by the index key. The database reads the 
entire index using multiblock reads, unlike a full index scan, and can scan in parallel. 

You can specify fast full index scans with the initialization parameter 
OPTIMIZER_FEATURES_ENABLE or the INDEX_FFS hint. A fast full scan is faster than a 
normal full index scan because it can use multiblock I/O and can run in parallel just 
like a table scan.

Fast Full Index Scan Hints  The fast full scan has a special index hint, INDEX_FFS, which 
has the same format and arguments as the regular INDEX hint. For more information on 
the INDEX_FFS hint, see "Hints for Access Paths" on page 19-3.

Index Joins
An index join is a hash join of several indexes that together contain all the table 
columns referenced in the query. If the database uses an index join, then table access is 
not needed because the database can retrieve all the relevant column values from the 
indexes. The database cannot use an index join cannot to eliminate a sort operation. 

Index Join Hints  You can specify an index join with the INDEX_JOIN hint. For more 
information on the INDEX_JOIN hint, see "Hints for Access Paths" on page 19-3.

Bitmap Indexes
A bitmap join uses a bitmap for key values and a mapping function that converts each 
bit position to a rowid. Bitmaps can efficiently merge indexes that correspond to 
several conditions in a WHERE clause, using Boolean operations to resolve AND and OR 
conditions.

See Also: "Sort Merge Joins" on page 11-27

Note: Setting PARALLEL for indexes does not impact the cost 
calculation.

Note: Bitmap indexes and bitmap join indexes are available only 
in the Oracle Enterprise Edition.

See Also: Oracle Database Data Warehousing Guide for more 
information about bitmap indexes



Overview of Optimizer Access Paths

The Query Optimizer 11-21

Cluster Access
The database uses a cluster scan to retrieve all rows that have the same cluster key 
value from a table stored in an indexed cluster. In an indexed cluster, the database 
stores all rows with the same cluster key value in the same data block. To perform a 
cluster scan, Oracle Database first obtains the rowid of one of the selected rows by 
scanning the cluster index. Oracle Database then locates the rows based on this rowid. 

Hash Access
The database uses a hash scan to locate rows in a hash cluster based on a hash value. 
In a hash cluster, all rows with the same hash value are stored in the same data block. 
To perform a hash scan, Oracle Database first obtains the hash value by applying a 
hash function to a cluster key value specified by the statement. Oracle Database then 
scans the data blocks containing rows with that hash value. 

Sample Table Scans
A sample table scan retrieves a random sample of data from a simple table or a 
complex SELECT statement, such as a statement involving joins and views. The 
database uses this access path when a statement's FROM clause includes the SAMPLE 
clause or the SAMPLE BLOCK clause. To perform a sample table scan when sampling by 
rows with the SAMPLE clause, the database reads a specified percentage of rows in the 
table. To perform a sample table scan when sampling by blocks with the SAMPLE BLOCK 
clause, the database reads a specified percentage of table blocks. 

Example 11–7 uses a sample table scan to access 1% of the employees table, sampling 
by blocks.

Example 11–7 Sample Table Scan

SELECT * 
    FROM employees SAMPLE BLOCK (1); 

The EXPLAIN PLAN output for this statement might look like this: 

-------------------------------------------------------------------------
| Id  | Operation            |  Name       | Rows  | Bytes | Cost (%CPU)|
-------------------------------------------------------------------------
|   0 | SELECT STATEMENT     |             |     1 |    68 |     3  (34)|
|   1 |  TABLE ACCESS SAMPLE | EMPLOYEES   |     1 |    68 |     3  (34)|
-------------------------------------------------------------------------

How the Query Optimizer Chooses an Access Path
The query optimizer chooses an access path based on the following factors: 

■ The available access paths for the statement

■ The estimated cost of executing the statement, using each access path or 
combination of paths

To choose an access path, the optimizer first determines which access paths are 
available by examining the conditions in the statement's WHERE clause and its FROM 
clause. The optimizer then generates a set of possible execution plans using available 
access paths and estimates the cost of each plan, using the statistics for the index, 
columns, and tables accessible to the statement. Finally, the optimizer chooses the 
execution plan with the lowest estimated cost. 

When choosing an access path, the query optimizer is influenced by the following:



Overview of Joins

11-22 Oracle Database Performance Tuning Guide

■ Optimizer Hints

You can instruct the optimizer to use a specific access path using a hint, except 
when the statement's FROM clause contains SAMPLE or SAMPLE BLOCK. 

■ Old Statistics

For example, if a table has not been analyzed since it was created, and if it has less 
than DB_FILE_MULTIBLOCK_READ_COUNT blocks under the high water mark, then the 
optimizer thinks that the table is small and uses a full table scan. Review the 
LAST_ANALYZED and BLOCKS columns in the ALL_TABLES table to examine the 
statistics.

Overview of Joins 
Joins are statements that retrieve data from multiple tables. A join is characterized by 
multiple tables in the FROM clause. The existence of a join condition in the WHERE clause 
defines the relationship between the tables. In a join, one row set is called inner, and 
the other is called outer.

This section discusses:

■ How the Query Optimizer Executes Join Statements

■ How the Query Optimizer Chooses Execution Plans for Joins

■ Nested Loop Joins

■ Hash Joins

■ Sort Merge Joins

■ Cartesian Joins

■ Outer Joins

How the Query Optimizer Executes Join Statements 
To choose an execution plan for a join statement, the optimizer must make these 
interrelated decisions:

■ Access Paths 

As for simple statements, the optimizer must choose an access path to retrieve 
data from each table in the join statement. 

■ Join Method 

To join each pair of row sources, Oracle Database must perform a join operation. 
Join methods include nested loop, sort merge, cartesian, and hash joins.

■ Join Order 

To execute a statement that joins more than two tables, Oracle Database joins two 
of the tables and then joins the resulting row source to the next table. This process 
continues until all tables are joined into the result. 

See Also: Chapter 19, "Using Optimizer Hints" for information 
about hints in SQL statements

See Also: "Overview of Optimizer Access Paths" on page 11-13



Overview of Joins

The Query Optimizer 11-23

How the Query Optimizer Chooses Execution Plans for Joins
The query optimizer considers the following when choosing an execution plan: 

■ The optimizer first determines whether joining two or more tables definitely 
results in a row source containing at most one row. The optimizer recognizes such 
situations based on UNIQUE and PRIMARY KEY constraints on the tables. If such a 
situation exists, then the optimizer places these tables first in the join order. The 
optimizer then optimizes the join of the remaining set of tables. 

■ For join statements with outer join conditions, the table with the outer join 
operator must come after the other table in the condition in the join order. The 
optimizer does not consider join orders that violate this rule. Similarly, when a 
subquery has been converted into an antijoin or semijoin, the tables from the 
subquery must come after those tables in the outer query block to which they were 
connected or correlated. However, hash antijoins and semijoins are able to 
override this ordering condition in certain circumstances.

With the query optimizer, the optimizer generates a set of execution plans, according 
to possible join orders, join methods, and available access paths. The optimizer then 
estimates the cost of each plan and chooses the one with the lowest cost. The optimizer 
estimates costs in the following ways: 

■ The cost of a nested loops operation is based on the cost of reading each selected 
row of the outer table and each of its matching rows of the inner table into 
memory. The optimizer estimates these costs using the statistics in the data 
dictionary. 

■ The cost of a sort merge join is based largely on the cost of reading all the sources 
into memory and sorting them. 

■ The cost of a hash join is based largely on the cost of building a hash table on one 
of the input sides to the join and using the rows from the other of the join to probe 
it.

The optimizer also considers other factors when determining the cost of each 
operation. For example: 

■ A smaller sort area size is likely to increase the cost for a sort merge join because 
sorting takes more CPU time and I/O in a smaller sort area. See "PGA Memory 
Management" on page 7-39 to learn how to size SQL work areas.

■ A larger multiblock read count is likely to decrease the cost for a sort merge join in 
relation to a nested loop join. If the database can read a large number of sequential 
blocks from disk in a single I/O, then an index on the inner table for the nested 
loop join is less likely to improve performance over a full table scan. The 
multiblock read count is specified by the initialization parameter 
DB_FILE_MULTIBLOCK_READ_COUNT. 

You can use the ORDERED hint to override the optimizer's choice of join orders. If the 
ORDERED hint specifies a join order that violates the rule for an outer join, then the 
optimizer ignores the hint and chooses the order. Also, you can override the 
optimizer's choice of join method with hints. 

Nested Loop Joins
Nested loop joins are useful when the following conditions are true:

■ The database joins small subsets of data.

See Also:  Chapter 19, "Using Optimizer Hints" for more 
information about optimizer hints



Overview of Joins

11-24 Oracle Database Performance Tuning Guide

■ The join condition is an efficient method of accessing the second table.

It is important to ensure that the inner table is driven from (dependent on) the outer 
table. If the inner table's access path is independent of the outer table, then the same 
rows are retrieved for every iteration of the outer loop, degrading performance 
considerably. In such cases, hash joins joining the two independent row sources 
perform better.

A nested loop join involves the following steps:

1. The optimizer determines the driving table and designates it as the outer table.

2. The other table is designated as the inner table.

3. For every row in the outer table, Oracle Database accesses all the rows in the inner 
table. The outer loop is for every row in the outer table and the inner loop is for 
every row in the inner table. The outer loop appears before the inner loop in the 
execution plan, as follows:

NESTED LOOPS 
  outer_loop 
  inner_loop 

Original and New Implementation for Nested Loop Joins
Oracle Database 11g introduces a new implementation for nested loop joins. As a 
result, execution plans that include nested loops might appear different than they did 
in previous releases of Oracle Database. Both the new implementation and the original 
implementation for nested loop joins are possible in Oracle Database 11g. So, when 
analyzing execution plans, it is important to understand that the number of NESTED 
LOOPS join row sources might be different.

Original Implementation for Nested Loop Joins  Consider the following query:

SELECT e.first_name, e.last_name, e.salary, d.department_name
    FROM hr.employees e, hr.departments d
    WHERE d.department_name IN ('Marketing', 'Sales')
      AND e.department_id = d.department_id;

Before Oracle Database 11g, the execution plan for this query might appear similar to 
the following execution plan:

-------------------------------------------------------------------------------------------------
| Id  | Operation                   | Name              | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT            |                   |    19 |   722 |     3  (0)| 00:00:01 |
|   1 |  TABLE ACCESS BY INDEX ROWID| EMPLOYEES         |    10 |   220 |     1  (0)| 00:00:01 |
|   2 |   NESTED LOOPS              |                   |    19 |   722 |     3  (0)| 00:00:01 |
|*  3 |    TABLE ACCESS FULL        | DEPARTMENTS       |     2 |    32 |     2  (0)| 00:00:01 |
|*  4 |    INDEX RANGE SCAN         | EMP_DEPARTMENT_IX |    10 |       |     0  (0)| 00:00:01 |
-------------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
   3 - filter("D"."DEPARTMENT_NAME"='Marketing' OR "D"."DEPARTMENT_NAME"='Sales')
   4 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

In this example, the outer side of the join consists of a scan of the hr.departments 
table that returns the rows that match the condition department_name IN 

See Also: "Cartesian Joins" on page 11-28



Overview of Joins

The Query Optimizer 11-25

('Marketing', 'Sales'). The inner loop retrieves the employees in the hr.employees 
table that are associated with those departments.

New Implementation for Nested Loop Joins  Oracle Database 11g introduces a new 
implementation for nested loop joins to reduce overall latency for physical I/O. When 
an index or a table block is not in the buffer cache and is needed to process the join, a 
physical I/O is required. Oracle Database 11g can batch multiple physical I/O requests 
and process them using a vector I/O instead of processing them one at a time. 

As part of the new implementation for nested loop joins, two NESTED LOOPS join row 
sources might appear in the execution plan where only one would have appeared in 
prior releases. In such cases, Oracle Database allocates one NESTED LOOPS join row 
source to join the values from the table on the outer side of the join with the index on 
the inner side. A second row source is allocated to join the result of the first join, which 
includes the rowids stored in the index, with the table on the inner side of the join.

Consider the query in "Original Implementation for Nested Loop Joins" on page 11-24. 
In Oracle Database 11g, with the new implementation for nested loop joins, the 
execution plan for this query might appear similar to the following execution plan:

------------------------------------------------------------------------------------------------
| Id  | Operation                    | Name              | Rows  | Bytes | Cost(%CPU)| Time      |
-------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT             |                   |    19 |   722 |     3   (0)| 00:00:01 |
|   1 |  NESTED LOOPS                |                   |       |       |            |          |
|   2 |   NESTED LOOPS               |                   |    19 |   722 |     3   (0)| 00:00:01 |
|*  3 |    TABLE ACCESS FULL         | DEPARTMENTS       |     2 |    32 |     2   (0)| 00:00:01 |
|*  4 |    INDEX RANGE SCAN          | EMP_DEPARTMENT_IX |    10 |       |     0   (0)| 00:00:01 |
|   5 |   TABLE ACCESS BY INDEX ROWID| EMPLOYEES         |    10 |   220 |     1   (0)| 00:00:01 |
-------------------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
   3 - filter("D"."DEPARTMENT_NAME"='Marketing' OR "D"."DEPARTMENT_NAME"='Sales')
   4 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

In this case, the rows from the hr.departments table constitute the outer side of the 
first join. The inner side of the first join is the index emp_department_ix. The results of 
the first join constitute the outer side of the second join, which has the hr.employees 
table as its inner side.

There are cases where a second join row source is not allocated, and the execution plan 
looks the same as it did in prior releases. The following list describes such cases:

■ All of the columns needed from the inner side of the join are present in the index, 
and there is no table access required. In this case, Oracle Database allocates only 
one join row source.

■ The order of the rows returned might be different than it was in previous releases. 
Hence, when Oracle Database tries to preserve a specific ordering of the rows, for 
example to eliminate the need for an ORDER BY sort, Oracle Database might use the 
original implementation for nested loop joins.

■ The OPTIMIZER_FEATURES_ENABLE initialization parameter is set to a release before 
Oracle Database 11g. In this case, Oracle Database uses the original 
implementation for nested loop joins.



Overview of Joins

11-26 Oracle Database Performance Tuning Guide

When the Optimizer Uses Nested Loop Joins
The optimizer uses nested loop joins when joining small number of rows, with a good 
driving condition between the two tables. You drive from the outer loop to the inner 
loop, so the order of tables in the execution plan is important.

The outer loop is the driving row source. It produces a set of rows for driving the join 
condition. The row source can be a table accessed using an index scan or a full table 
scan. Also, the rows can be produced from any other operation. For example, the 
output from a nested loop join can serve as a row source for another nested loop join.

The inner loop is iterated for every row returned from the outer loop, ideally by an 
index scan. If the access path for the inner loop is not dependent on the outer loop, 
then you can end up with a Cartesian product; for every iteration of the outer loop, the 
inner loop produces the same set of rows. Therefore, you should use other join 
methods when two independent row sources are joined together.

Nested Loop Join Hints
If the optimizer chooses to use some other join method, then you can use the 
USE_NL(table1 table2) hint, where table1 and table2 are the aliases of the tables 
being joined. 

For some SQL examples, the data is small enough for the optimizer to prefer full table 
scans and use hash joins. This is the case for the SQL example shown in Example 11–8, 
"Hash Joins" on page 11-27. However, you can add a USE_NL to instruct the optimizer 
to change the join method to nested loop. For more information on the USE_NL hint, see 
"Hints for Join Operations" on page 19-4.

Nesting Nested Loops
The outer loop of a nested loop can be a nested loop itself. You can nest two or more 
outer loops to join as many tables as needed. Each loop is a data access method, as 
follows:

SELECT STATEMENT
 NESTED LOOP 3
  NESTED LOOP 2          (OUTER LOOP 3.1)
   NESTED LOOP 1         (OUTER LOOP 2.1)
    OUTER LOOP 1.1     - #1
    INNER LOOP 1.2     - #2
   INNER LOOP 2.2      - #3
  INNER LOOP 3.2       - #4

Hash Joins
The database uses hash joins to join large data sets. The optimizer uses the smaller of 
two tables or data sources to build a hash table on the join key in memory. It then 
scans the larger table, probing the hash table to find the joined rows.

This method is best when the smaller table fits in available memory. The cost is then 
limited to a single read pass over the data for the two tables.

When the Optimizer Uses Hash Joins
The optimizer uses a hash join to join two tables if they are joined using an equijoin 
and if either of the following conditions are true:

■ A large amount of data must be joined.

■ A large fraction of a small table must be joined.



Overview of Joins

The Query Optimizer 11-27

In Example 11–8, the database uses the table orders to build the hash table. The 
database scans the larger order_items later.

Example 11–8 Hash Joins

SELECT o.customer_id, l.unit_price * l.quantity
  FROM orders o ,order_items l
 WHERE l.order_id = o.order_id;

--------------------------------------------------------------------------
| Id  | Operation            |  Name        | Rows  | Bytes | Cost (%CPU)|
--------------------------------------------------------------------------
|   0 | SELECT STATEMENT     |              |   665 | 13300 |     8  (25)|
|*  1 |  HASH JOIN           |              |   665 | 13300 |     8  (25)|
|   2 |   TABLE ACCESS FULL  | ORDERS       |   105 |   840 |     4  (25)|
|   3 |   TABLE ACCESS FULL  | ORDER_ITEMS  |   665 |  7980 |     4  (25)|
--------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   1 - access("L"."ORDER_ID"="O"."ORDER_ID")

Hash Join Hints
Apply the USE_HASH hint to instruct the optimizer to use a hash join when joining two 
tables together. See "PGA Memory Management" on page 7-39 to learn how to size 
SQL work areas. See "Hints for Join Operations" on page 19-4 to learn about the 
USE_HASH hint.

Sort Merge Joins
Sort merge joins can join rows from two independent sources. Hash joins generally 
perform better than sort merge joins. However, sort merge joins can perform better 
than hash joins if both of the following conditions exist:

■ The row sources are sorted already.

■ A sort operation does not have to be done.

However, if a sort merge join involves choosing a slower access method (an index scan 
as opposed to a full table scan), then the benefit of using a sort merge might be lost.

Sort merge joins are useful when the join condition between two tables is an inequality 
condition such as <, <=, >, or >=. Sort merge joins perform better than nested loop joins 
for large data sets. You cannot use hash joins unless there is an equality condition.

In a merge join, there is no concept of a driving table. The join consists of two steps:

1. Sort join operation: Both the inputs are sorted on the join key.

2. Merge join operation: The sorted lists are merged together.

If the input is sorted by the join column, then a sort join operation is not performed for 
that row source. However, a sort merge join always creates a positionable sort buffer 
for the right side of the join so that it can seek back to the last match in the case where 
duplicate join key values come out of the left side of the join.

When the Optimizer Uses Sort Merge Joins
The optimizer can choose a sort merge join over a hash join for joining large amounts 
of data if any of the following conditions are true:

■ The join condition between two tables is not an equijoin.



Overview of Joins

11-28 Oracle Database Performance Tuning Guide

■ Because of sorts required by other operations, the optimizer finds it is cheaper to 
use a sort merge than a hash join.

Sort Merge Join Hints
To instruct the optimizer to use a sort merge join, apply the USE_MERGE hint. You might 
also need to give hints to force an access path. 

There are situations where it makes sense to override the optimizer with the 
USE_MERGE hint. For example, the optimizer can choose a full scan on a table and avoid 
a sort operation in a query. However, there is an increased cost because a large table is 
accessed through an index and single block reads, as opposed to faster access through 
a full table scan.

For more information on the USE_MERGE hint, see "Hints for Join Operations" on 
page 19-4.

Cartesian Joins
The database uses a Cartesian join when one or more of the tables does not have any 
join conditions to any other tables in the statement. The optimizer joins every row 
from one data source with every row from the other data source, creating the Cartesian 
product of the two sets.

When the Optimizer Uses Cartesian Joins
The optimizer uses Cartesian joins when it is asked to join two tables with no join 
conditions. In some cases, a common filter condition between the two tables could be 
picked up by the optimizer as a possible join condition. In other cases, the optimizer 
may decide to generate a Cartesian product of two very small tables that are both 
joined to the same large table.

Cartesian Join Hints
Applying the ORDERED hint, instructs the optimizer to use a Cartesian join. By 
specifying a table before its join table is specified, the optimizer does a Cartesian join. 

Outer Joins
An outer join extends the result of a simple join. An outer join returns all rows that 
satisfy the join condition and also returns some or all of those rows from one table for 
which no rows from the other satisfy the join condition.

Nested Loop Outer Joins
The database uses this operation to loop through an outer join between two tables. The 
outer join returns the outer (preserved) table rows, even when no corresponding rows 
are in the inner (optional) table. 

In a regular outer join, the optimizer chooses the order of tables (driving and driven) 
based on the cost. However, in a nested loop outer join, the join condition determines 
the order of tables. The database uses the outer table, with rows that are being 
preserved, to drive to the inner table.

The optimizer uses nested loop joins to process an outer join in the following 
circumstances:

■ It is possible to drive from the outer table to inner table.

■ Data volume is low enough to make the nested loop method efficient.



Overview of Joins

The Query Optimizer 11-29

For an example of a nested loop outer join, you can add the USE_NL hint to 
Example 11–9 to instruct the optimizer to use a nested loop. For example:

SELECT /*+ USE_NL(c o) */ cust_last_name, SUM(NVL2(o.customer_id,0,1)) "Count"
FROM   customers c, orders o
WHERE  c.credit_limit > 1000
AND    c.customer_id = o.customer_id(+)
GROUP BY cust_last_name;

Hash Join Outer Joins
The optimizer uses hash joins for processing an outer join in the following cases:

■ The data volume is large enough to make the hash join method efficient.

■ It is not possible to drive from the outer table to the inner table.

The order of tables is determined by cost. The outer table, including preserved rows, 
may be used to build the hash table, or it may be used to probe one.

Example 11–9 shows a typical query that uses a hash join outer join. This example 
queries all customers with credit limits greater than 1000. An outer join is needed to 
avoid missing customers who have no orders.

Example 11–9 Hash Join Outer Joins

SELECT cust_last_name, SUM(NVL2(o.customer_id,0,1)) "Count"
FROM   customers c, orders o
WHERE  c.credit_limit > 1000
AND    c.customer_id = o.customer_id(+)
GROUP BY cust_last_name;

---------------------------------------------------------------------------------
| Id  | Operation           | Name      | Rows  | Bytes | Cost (%CPU)| Time     |
---------------------------------------------------------------------------------
 
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------------
|   0 | SELECT STATEMENT    |           |       |       |     7 (100)|          |
|   1 |  HASH GROUP BY      |           |   168 |  3192 |     7  (29)| 00:00:01 |
|*  2 |   HASH JOIN OUTER   |           |   318 |  6042 |     6  (17)| 00:00:01 |
|*  3 |    TABLE ACCESS FULL| CUSTOMERS |   260 |  3900 |     3   (0)| 00:00:01 |
|*  4 |    TABLE ACCESS FULL| ORDERS    |   105 |   420 |     2   (0)| 00:00:01 |
---------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   2 - access("C"."CUSTOMER_ID"="O"."CUSTOMER_ID")
 
PLAN_TABLE_OUTPUT
----------------------------------------------------------------------------------
   3 - filter("C"."CREDIT_LIMIT">1000)
   4 - filter("O"."CUSTOMER_ID">0)

The query looks for customers which satisfy various conditions. An outer join returns 
NULL for the inner table columns along with the outer (preserved) table rows when it 
does not find any corresponding rows in the inner table. This operation finds all the 
customers rows that do not have any orders rows.

In this case, the outer join condition is the following:

customers.customer_id = orders.customer_id(+)



Overview of Joins

11-30 Oracle Database Performance Tuning Guide

The components of this condition represent the following:

■ The outer table is customers.

■ The inner table is orders.

■ The join preserves the customers rows, including those rows without a 
corresponding row in orders. 

You could use a NOT EXISTS subquery to return the rows. However, because you are 
querying all the rows in the table, the hash join performs better (unless the NOT EXISTS 
subquery is not nested).

In Example 11–10, the outer join is to a multitable view. The optimizer cannot drive 
into the view like in a normal join or push the predicates, so it builds the entire row set 
of the view.

Example 11–10 Outer Join to a Multitable View

SELECT c.cust_last_name, sum(revenue)
  FROM customers c, v_orders o
 WHERE c.credit_limit > 2000
   AND o.customer_id(+) = c.customer_id
 GROUP BY c.cust_last_name;

----------------------------------------------------------------------------
| Id  | Operation              |  Name        | Rows  | Bytes | Cost (%CPU)|
----------------------------------------------------------------------------
|   0 | SELECT STATEMENT       |              |   144 |  4608 |    16  (32)|
|   1 |  HASH GROUP BY         |              |   144 |  4608 |    16  (32)|
|*  2 |   HASH JOIN OUTER      |              |   663 | 21216 |    15  (27)|
|*  3 |    TABLE ACCESS FULL   | CUSTOMERS    |   195 |  2925 |     6  (17)|
|   4 |    VIEW                | V_ORDERS     |   665 | 11305 |            |
|   5 |     HASH GROUP BY      |              |   665 | 15960 |     9  (34)|
|*  6 |      HASH JOIN         |              |   665 | 15960 |     8  (25)|
|*  7 |       TABLE ACCESS FULL| ORDERS       |   105 |   840 |     4  (25)|
|   8 |       TABLE ACCESS FULL| ORDER_ITEMS  |   665 | 10640 |     4  (25)|
----------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   2 - access("O"."CUSTOMER_ID"(+)="C"."CUSTOMER_ID")
   3 - filter("C"."CREDIT_LIMIT">2000)
   6 - access("O"."ORDER_ID"="L"."ORDER_ID")
   7 - filter("O"."CUSTOMER_ID">0)

The view definition is as follows:

CREATE OR REPLACE view v_orders AS
SELECT l.product_id, SUM(l.quantity*unit_price) revenue, 
       o.order_id, o.customer_id
  FROM orders o, order_items l
 WHERE o.order_id = l.order_id
 GROUP BY l.product_id, o.order_id, o.customer_id;

Sort Merge Outer Joins
When an outer join cannot drive from the outer (preserved) table to the inner 
(optional) table, it cannot use a hash join or nested loop joins. Then it uses the sort 
merge outer join for performing the join operation.

The optimizer uses sort merge for an outer join:



Overview of Joins

The Query Optimizer 11-31

■ If a nested loop join is inefficient. A nested loop join can be inefficient because of 
data volumes.

■ The optimizer finds it is cheaper to use a sort merge over a hash join because of 
sorts required by other operations.

Full Outer Joins
A full outer join acts like a combination of the left and right outer joins. In addition to 
the inner join, rows from both tables that have not been returned in the result of the 
inner join are preserved and extended with nulls. In other words, full outer joins let 
you join tables together, yet still show rows that do not have corresponding rows in 
the joined tables. 

The query in Example 11–11 retrieves all departments and all employees in each 
department, but also includes: 

■ Any employees without departments 

■ Any departments without employees 

Example 11–11 Full Outer Join

SELECT d.department_id, e.employee_id
  FROM employees e
  FULL OUTER JOIN departments d
    ON e.department_id = d.department_id
 ORDER BY d.department_id;

The statement produces the following output: 

DEPARTMENT_ID EMPLOYEE_ID
------------- -----------
           10         200
           20         201
           20         202
           30         114
           30         115
           30         116
...
          270
          280
                      178
                      207

125 rows selected.

Starting with Oracle Database 11g, Oracle Database automatically uses a native 
execution method based on a hash join for executing full outer joins whenever 
possible. When the database uses the new method to execute a full outer join, the 
execution plan for the query contains HASH JOIN FULL OUTER. Example 11–12 shows the 
execution plan for the query in Example 11–11.

Example 11–12 Execution Plan for a Full Outer Join

----------------------------------------------------------------------------------------
| Id  | Operation               | Name       | Rows  | Bytes | Cost (%CPU)| Time      |
----------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT        |            |   122 |  4758 |     6  (34)| 00:0 0:01 |
|   1 |  SORT ORDER BY          |            |   122 |  4758 |     6  (34)| 00:0 0:01 |
|   2 |   VIEW                  | VW_FOJ_0   |   122 |  4758 |     5  (20)| 00:0 0:01 |
|*  3 |    HASH JOIN FULL OUTER |            |   122 |  1342 |     5  (20)| 00:0 0:01 |



Reading and Understanding Execution Plans

11-32 Oracle Database Performance Tuning Guide

|   4 |     INDEX FAST FULL SCAN| DEPT_ID_PK |    27 |   108 |     2   (0)| 00:0 0:01 |
|   5 |     TABLE ACCESS FULL   | EMPLOYEES  |   107 |   749 |     2   (0)| 00:0 0:01 |
----------------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
   3 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

Notice that HASH JOIN FULL OUTER is included in the plan. Therefore, the query uses the 
hash full outer join execution method. Typically, when the full outer join condition 
between two tables is an equi-join, the hash full outer join execution method is 
possible, and Oracle Database uses it automatically.

To instruct the optimizer to consider using the hash full outer join execution method, 
apply the NATIVE_FULL_OUTER_JOIN hint. To instruct the optimizer not to consider 
using the hash full outer join execution method, apply the 
NO_NATIVE_FULL_OUTER_JOIN hint. The NO_NATIVE_FULL_OUTER_JOIN hint instructs the 
optimizer to exclude the native execution method when joining each specified table. 
Instead, the full outer join is executed as a union of left outer join and an anti-join.

Reading and Understanding Execution Plans
To execute a SQL statement, Oracle Database may need to perform many steps. Each 
step either retrieves rows of data physically from the database or prepares them in 
some way for the user issuing the statement. The combination of the steps that Oracle 
Database uses to execute a statement is an execution plan. An execution plan includes 
an access path for each table that the statement accesses and an ordering of the tables 
(the join order) with the appropriate join method.

Overview of EXPLAIN PLAN
You can examine the execution plan chosen by the optimizer for a SQL statement by 
using the EXPLAIN PLAN statement. When the statement is issued, the optimizer 
chooses an execution plan and then inserts data describing the plan into a database 
table. Simply issue the EXPLAIN PLAN statement and then query the output table. 

These are the basics of using the EXPLAIN PLAN statement:

■ Use the SQL script CATPLAN.SQL to create a sample output table called PLAN_TABLE 
in your schema. See "The PLAN_TABLE Output Table" on page 12-4.

■ Include the EXPLAIN PLAN FOR clause before the SQL statement. See "Running 
EXPLAIN PLAN" on page 12-4.

■ After issuing the EXPLAIN PLAN statement, use one of the scripts or package 
provided by Oracle Database to display the most recent plan table output. See 
"Displaying PLAN_TABLE Output" on page 12-5.

■ The execution order in EXPLAIN PLAN output begins with the line that is the 
furthest indented to the right. The next step is the parent of that line. If two lines 
are indented equally, then the top line is normally executed first.

See Also: 

■ "Overview of Optimizer Access Paths" on page 11-13 

■ Chapter 12, "Using EXPLAIN PLAN"



Reading and Understanding Execution Plans

The Query Optimizer 11-33

Example 11–13 uses EXPLAIN PLAN to examine a SQL statement that selects the 
employee_id, job_title, salary, and department_name for the employees whose IDs 
are less than 103.

Example 11–13 Using EXPLAIN PLAN

EXPLAIN PLAN FOR
SELECT e.employee_id, j.job_title, e.salary, d.department_name
    FROM employees e, jobs j, departments d
    WHERE  e.employee_id < 103
       AND e.job_id = j.job_id 
       AND e.department_id = d.department_id;

The resulting output table in Example 11–14 shows the execution plan chosen by the 
optimizer to execute the SQL statement in the example: 

Example 11–14 EXPLAIN PLAN Output

-----------------------------------------------------------------------------------
| Id  | Operation                     |  Name        | Rows  | Bytes | Cost (%CPU)|
-----------------------------------------------------------------------------------
|   0 | SELECT STATEMENT              |              |     3 |   189 |    10  (10)|
|   1 |  NESTED LOOPS                 |              |     3 |   189 |    10  (10)|
|   2 |   NESTED LOOPS                |              |     3 |   141 |     7  (15)|
|*  3 |    TABLE ACCESS FULL          | EMPLOYEES    |     3 |    60 |     4  (25)|
|   4 |    TABLE ACCESS BY INDEX ROWID| JOBS         |    19 |   513 |     2  (50)|
|*  5 |     INDEX UNIQUE SCAN         | JOB_ID_PK    |     1 |       |            |
|   6 |   TABLE ACCESS BY INDEX ROWID | DEPARTMENTS  |    27 |   432 |     2  (50)|
|*  7 |    INDEX UNIQUE SCAN          | DEPT_ID_PK   |     1 |       |            |
-----------------------------------------------------------------------------------

Predicate Information (identified by operation id):
---------------------------------------------------
   3 - filter("E"."EMPLOYEE_ID"<103)
   5 - access("E"."JOB_ID"="J"."JOB_ID")
   7 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID"

-------------------------------------------------------------------------------------------------
| Id  | Operation                       | Name          | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                |               |     3 |   189 |     8  (13)| 00:00:01 |
|   1 |  NESTED LOOPS                   |               |       |       |            |          |
|   2 |   NESTED LOOPS                  |               |     3 |   189 |     8  (13)| 00:00:01 |
|   3 |    MERGE JOIN                   |               |     3 |   141 |     5  (20)| 00:00:01 |
|   4 |     TABLE ACCESS BY INDEX ROWID | JOBS          |    19 |   513 |     2   (0)| 00:00:01 |
|   5 |      INDEX FULL SCAN            | JOB_ID_PK     |    19 |       |     1   (0)| 00:00:01 |
|*  6 |     SORT JOIN                   |               |     3 |    60 |     3  (34)| 00:00:01 |
|   7 |      TABLE ACCESS BY INDEX ROWID| EMPLOYEES     |     3 |    60 |     2   (0)| 00:00:01 |
|*  8 |       INDEX RANGE SCAN          | EMP_EMP_ID_PK |     3 |       |     1   (0)| 00:00:01 |
|*  9 |    INDEX UNIQUE SCAN            | DEPT_ID_PK    |     1 |       |     0   (0)| 00:00:01 |
|  10 |   TABLE ACCESS BY INDEX ROWID   | DEPARTMENTS   |     1 |    16 |     1   (0)| 00:00:01 |
-------------------------------------------------------------------------------------------------

Notes: 

■ The EXPLAIN PLAN output tables in this chapter were displayed 
with the utlxpls.sql script. 

■ The steps in the EXPLAIN PLAN output in this chapter may be 
different on your system. The optimizer may choose different 
execution plans, depending on database configurations.



Reading and Understanding Execution Plans

11-34 Oracle Database Performance Tuning Guide

 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   6 - access("E"."JOB_ID"="J"."JOB_ID")
       filter("E"."JOB_ID"="J"."JOB_ID")
   8 - access("E"."EMPLOYEE_ID"<103)
   9 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")
 

Steps in the Execution Plan
Each row in the output table corresponds to a single step in the execution plan. Note 
that the step IDs with asterisks are listed in the Predicate Information section.

Each step of the execution plan returns a set of rows. The next step either uses these 
rows or, in the last step, returns the rows to the user or application issuing the SQL 
statement. A row set is a set of rows returned by a step.

The numbering of the step IDs reflects the order in which they are displayed in 
response to the EXPLAIN PLAN statement. Each step of the execution plan either 
retrieves rows from the database or accepts rows from one or more row sources as 
input.

■ The following steps in Example 11–14 physically retrieve data from an object in the 
database: 

■ Step 3 reads all rows of the employees table.

■ Step 5 looks up each job_id in JOB_ID_PK index and finds the rowids of the 
associated rows in the jobs table.

■ Step 4 retrieves the rows with rowids that were returned by Step 5 from the 
jobs table.

■ Step 7 looks up each department_id in DEPT_ID_PK index and finds the rowids 
of the associated rows in the departments table.

■ Step 6 retrieves the rows with rowids that were returned by Step 7 from the 
departments table.

■ The following steps in Example 11–14 operate on rows returned by the previous 
row source: 

■ Step 2 performs the nested loop operation on job_id in the jobs and 
employees tables, accepting row sources from Steps 3 and 4, joining each row 
from Step 3 source to its corresponding row in Step 4, and returning the 
resulting rows to Step 2.

■ Step 1 performs the nested loop operation, accepting row sources from Step 2 
and Step 6, joining each row from Step 2 source to its corresponding row in 
Step 6, and returning the resulting rows to Step 1.

See Also: Chapter 12, "Using EXPLAIN PLAN"

See Also: 

■ "Overview of Optimizer Access Paths" on page 11-13 for more 
information on access paths

■ "Overview of Joins" on page 11-22 for more information on the 
methods by which Oracle Database joins row sources



Controlling Optimizer Behavior

The Query Optimizer 11-35

Controlling Optimizer Behavior
Table 11–3 lists initialization parameters that you can use to control the behavior of the 
query optimizer. You can use these parameters to enable various optimizer features to 
improve the performance of SQL execution. 

Table 11–3  Initialization Parameters That Control Optimizer Behavior

Initialization Parameter Description

CURSOR_SHARING Converts literal values in SQL statements to bind 
variables. Converting the values improves cursor 
sharing and can affect the execution plans of SQL 
statements. The optimizer generates the execution 
plan based on the presence of the bind variables and 
not the actual literal values.

DB_FILE_MULTIBLOCK_READ_COUNT Specifies the number of blocks that are read in a 
single I/O during a full table scan or index fast full 
scan. The optimizer uses the value of 
DB_FILE_MULTIBLOCK_READ_COUNT to cost full table 
scans and index fast full scans. Larger values result 
in a cheaper cost for full table scans and can result in 
the optimizer choosing a full table scan over an 
index scan. If this parameter is not set explicitly (or 
is set is 0), then the default value corresponds to the 
maximum I/O size that can be efficiently performed 
and is platform-dependent.

OPTIMIZER_INDEX_CACHING Controls the costing of an index probe in conjunction 
with a nested loop. The range of values 0 to 100 
indicates percentage of index blocks in the buffer 
cache, which modifies the optimizer's assumptions 
about index caching for nested loops and IN-list 
iterators. A value of 100 infers that 100% of the index 
blocks are likely to be found in the buffer cache and 
the optimizer adjusts the cost of an index probe or 
nested loop accordingly. Use caution when using 
this parameter because execution plans can change 
in favor of index caching.

OPTIMIZER_INDEX_COST_ADJ Adjusts the cost of index probes. The range of values 
is 1 to 10000. The default value is 100, which means 
that indexes are evaluated as an access path based 
on the normal costing model. A value of 10 means 
that the cost of an index access path is one-tenth the 
normal cost of an index access path.

OPTIMIZER_MODE Sets the mode of the optimizer at instance startup. 
The possible values are ALL_ROWS, FIRST_ROWS_n, 
and FIRST_ROWS. For descriptions of these parameter 
values, see "Setting the OPTIMIZER_MODE 
Initialization Parameter" on page 11-37.

PGA_AGGREGATE_TARGET Controls the amount of memory allocated for sorts 
and hash joins. Larger amounts of memory allocated 
for sorts or hash joins reduce the optimizer cost of 
these operations.

STAR_TRANSFORMATION_ENABLED Enables the optimizer to cost a star transformation 
for star queries (if true). The star transformation 
combines the bitmap indexes on the various fact 
table columns.

See Also: Oracle Database Reference for complete information 
about each initialization parameter



Controlling Optimizer Behavior

11-36 Oracle Database Performance Tuning Guide

Enabling Query Optimizer Features
The OPTIMIZER_FEATURES_ENABLE initialization parameter enables a series of 
optimizer-related features, depending on the release. It accepts one of a list of valid 
string values corresponding to the release numbers, such as 10.2.0.1 or 11.2.0.1. 

You can use this parameter to preserve the old behavior of the optimizer after a 
database upgrade. For example, if you upgrade the Oracle Database 11g from Release 
1 (11.1.0.7) to Release 2 (11.2.0.2), then the default value of the 
OPTIMIZER_FEATURES_ENABLE parameter changes from 11.1.0.7 to 11.2.0.2. This 
upgrade results in the optimizer enabling optimization features based on 11.2.0.2.

For backward compatibility, you might not want the query plans to change because of 
new optimizer features in a new release. In such a case, you can set the 
OPTIMIZER_FEATURES_ENABLE parameter to an earlier version.

To set OPTIMIZER_FEATURES_ENABLE:

1. Query the current optimizer features settings.

For example, run the following SQL*Plus command:

SQL> SHOW PARAMETER optimizer_features_enable
 
NAME                                 TYPE        VALUE
------------------------------------ ----------- ------------------------------
optimizer_features_enable            string      11.2.0.2

2. Set the optimizer features setting at the instance or session level.

For example, run the following SQL statement to set the optimizer version to 
10.2.0.5:

SQL> ALTER SYSTEM SET optimizer_features_enable='10.2.0.5';

The preceding statement disables all new optimizer features that were added in 
releases following release 10.2.0.5. If you upgrade to a new release and you want 
to enable the features available with that release, then you do not need to explicitly 
set the OPTIMIZER_FEATURES_ENABLE initialization parameter.

Choosing an Optimizer Goal
You can influence the optimizer's choices by setting the optimizer goal and by 
gathering representative statistics for the query optimizer. You can set the following 
optimizer goals:

■ Best throughput (default)

Note: Oracle does not recommend explicitly setting the 
OPTIMIZER_FEATURES_ENABLE parameter to an earlier release. To 
avoid possible SQL performance regression that may result from 
execution plan changes, consider using SQL plan management 
instead. See Chapter 15, "Using SQL Plan Management."

See Also: Oracle Database Reference for information about 
optimizer features that are enabled when you set the 
OPTIMIZER_FEATURES_ENABLE parameter to each of the release 
values



Controlling Optimizer Behavior

The Query Optimizer 11-37

The database uses the least amount of resources necessary to process all rows 
accessed by the statement.

For applications performed in batch, such as Oracle Reports applications, optimize 
for best throughput. Usually, throughput is more important in batch applications, 
because the user initiating the application is only concerned with the time 
necessary for the application to complete. Response time is less important because 
the user does not examine the results of individual statements while the 
application is running.

■ Best response time

The database uses the least amount of resources necessary to process the first row 
accessed by a SQL statement.

For interactive applications such as Oracle Forms applications or SQL*Plus 
queries, optimize for best response time. Usually, response time is important in 
interactive applications because the interactive user is waiting to see the first row 
or first few rows accessed by the statement.

The optimizer behavior when choosing an optimization approach and goal for a SQL 
statement is affected by the following factors: 

■ Setting the OPTIMIZER_MODE Initialization Parameter

■ Using Hints to Change the Optimizer Goal

■ Optimizer Statistics in the Data Dictionary

Setting the OPTIMIZER_MODE Initialization Parameter
The OPTIMIZER_MODE initialization parameter establishes the default behavior for 
choosing an optimization approach for the instance. Table 11–4 lists the possible values 
and description.

You can change the goal of the query optimizer for all SQL statements in a session by 
changing the parameter value in initialization file or by the ALTER SESSION SET 
OPTIMIZER_MODE statement. For example:

■ The following statement in an initialization parameter file establishes the goal of 
the query optimizer for all sessions of the instance to best response time:

OPTIMIZER_MODE = FIRST_ROWS_1

Table 11–4  OPTIMIZER_MODE Initialization Parameter Values

Value Description

ALL_ROWS The optimizer uses a cost-based approach for all SQL statements in the 
session regardless of the presence of statistics and optimizes with a goal of 
best throughput (minimum resource use to complete the entire statement). 
This is the default value. 

FIRST_ROWS_n The optimizer uses a cost-based approach, regardless of the presence of 
statistics, and optimizes with a goal of best response time to return the first 
n number of rows, where n equals 1, 10, 100, or 1000.

FIRST_ROWS The optimizer uses a mix of cost and heuristics to find a best plan for fast 
delivery of the first few rows. 

Note that using heuristics sometimes leads the optimizer to generate a plan 
with a cost that is significantly larger than the cost of a plan without 
applying the heuristic. FIRST_ROWS is available for backward compatibility 
and plan stability; use FIRST_ROWS_n instead. 



Controlling Optimizer Behavior

11-38 Oracle Database Performance Tuning Guide

■ The following SQL statement changes the goal of the query optimizer for the 
current session to best response time:

ALTER SESSION SET OPTIMIZER_MODE = FIRST_ROWS_1;

If the optimizer uses the cost-based approach for a SQL statement, and if some tables 
accessed by the statement have no statistics, then the optimizer uses internal 
information, such as the number of data blocks allocated to these tables, to estimate 
other statistics for these tables. 

Using Hints to Change the Optimizer Goal
To specify the goal of the optimizer for an individual SQL statement, use a hint from 
Table 11–5. Any of these hints in an individual SQL statement can override the 
OPTIMIZER_MODE initialization parameter for that SQL statement.

Optimizer Statistics in the Data Dictionary 
The statistics used by the query optimizer are stored in the data dictionary. You can 
use the DBMS_STATS package to collect exact or estimated statistics about physical 
storage characteristics and data distribution in these schema objects. 

To maintain the effectiveness of the query optimizer, you must have statistics that are 
representative of the data. For table columns that contain values with large variations 
in number of duplicates, called skewed data, you should collect histograms.

The resulting statistics provide the query optimizer with information about data 
uniqueness and distribution. Using this information, the query optimizer is able to 
compute plan costs with a high degree of accuracy and choose the best execution plan 
based on the least cost.

By default, during the compilation of a SQL statement, the optimizer automatically 
decides whether to use dynamic statistics by considering whether the available 
statistics are sufficient to generate an optimal execution plan (see "When the Optimizer 
Uses Dynamic Statistics" on page 13-24). If the available statistics are insufficient, then 
the optimizer uses dynamic statistics to augment the existing statistics.

Starting in Oracle Database 11g Release 2 (11.2.0.4), the OPTIMIZER_DYNAMIC_SAMPLING 
initialization parameter has an 11 setting that enables the optimizer to gather dynamic 
statistics whenever it deems them necessary. For example, the optimizer can gather 
dynamic statistics for table scans, index access, joins, and GROUP BY operations, thus 
improving the quality of optimizer decisions.

See Also: Oracle Database Reference to learn about OPTIMIZER_MODE

Table 11–5  Hints for Changing the Query Optimizer Goal

Hint Description

FIRST_ROWS(n) This hint instructs Oracle Database to optimize an individual SQL 
statement with a goal of best response time to return the first n number of 
rows, where n equals any positive integer. The hint uses a cost-based 
approach for the SQL statement, regardless of the presence of statistic.

ALL_ROWS This hint explicitly chooses the cost-based approach to optimize a SQL 
statement with a goal of best throughput.

See Also: Chapter 19, "Using Optimizer Hints"

See Also: Chapter 13, "Managing Optimizer Statistics"



12

Using EXPLAIN PLAN 12-1

12 Using EXPLAIN PLAN 

This chapter introduces execution plans, describes the SQL statement EXPLAIN PLAN, 
and explains how to interpret its output. This chapter also provides procedures for 
managing outlines to control application performance characteristics. 

This chapter contains the following sections: 

■ Understanding EXPLAIN PLAN

■ The PLAN_TABLE Output Table

■ Running EXPLAIN PLAN

■ Displaying PLAN_TABLE Output

■ Reading EXPLAIN PLAN Output

■ Viewing Parallel Execution with EXPLAIN PLAN

■ Viewing Bitmap Indexes with EXPLAIN PLAN

■ Viewing Result Cache with EXPLAIN PLAN

■ Viewing Partitioned Objects with EXPLAIN PLAN

■ PLAN_TABLE Columns

Understanding EXPLAIN PLAN
The EXPLAIN PLAN statement displays execution plans chosen by the optimizer for 
SELECT, UPDATE, INSERT, and DELETE statements. A statement execution plan is the 
sequence of operations that the database performs to run the statement. 

The row source tree is the core of the execution plan. The tree shows the following 
information:

■ An ordering of the tables referenced by the statement

■ An access method for each table mentioned in the statement

■ A join method for tables affected by join operations in the statement

■ Data operations like filter, sort, or aggregation

See Also: 

■ Oracle Database SQL Language Reference for the syntax of the 
EXPLAIN PLAN statement

■ Chapter 11, "The Query Optimizer"



Understanding EXPLAIN PLAN

12-2 Oracle Database Performance Tuning Guide

In addition to the row source tree, the plan table contains information about the 
following:

■ Optimization, such as the cost and cardinality of each operation

■ Partitioning, such as the set of accessed partitions

■ Parallel execution, such as the distribution method of join inputs

The EXPLAIN PLAN results let you determine whether the optimizer selects a particular 
execution plan, such as, nested loops join. The results also help you to understand the 
optimizer decisions, such as why the optimizer chose a nested loops join instead of a 
hash join, and lets you understand the performance of a query.

How Execution Plans Can Change
With the query optimizer, execution plans can and do change as the underlying 
optimizer inputs change. EXPLAIN PLAN output shows how Oracle Database would run 
the SQL statement when the statement was explained. This plan can differ from the 
actual execution plan a SQL statement because of differences in the execution 
environment and explain plan environment. 

Execution plans can differ due to the following:

■ Different Schemas

■ Different Costs

Different Schemas 
■ The execution and explain plan occur on different databases.

■ The user explaining the statement is different from the user running the statement. 
Two users might be pointing to different objects in the same database, resulting in 
different execution plans.

■ Schema changes (usually changes in indexes) between the two operations.

Different Costs 
Even if the schemas are the same, the optimizer can choose different execution plans 
when the costs are different. Some factors that affect the costs include the following:

■ Data volume and statistics

■ Bind variable types and values

■ Initialization parameters set globally or at session level

Minimizing Throw-Away
Examining an explain plan lets you look for throw-away in cases such as the 
following:

■ Full scans

■ Unselective range scans

Note: To avoid possible SQL performance regression that may result 
from execution plan changes, consider using SQL plan management.

See Also: Chapter 15, "Using SQL Plan Management".



Understanding EXPLAIN PLAN

Using EXPLAIN PLAN 12-3

■ Late predicate filters

■ Wrong join order

■ Late filter operations

For example, in the following explain plan, the last step is a very unselective range 
scan that is executed 76563 times, accesses 11432983 rows, throws away 99% of them, 
and retains 76563 rows. Why access 11432983 rows to realize that only 76563 rows are 
needed?

Example 12–1 Looking for Throw-Away in an Explain Plan

Rows      Execution Plan
--------  ----------------------------------------------------
      12  SORT AGGREGATE
       2   SORT GROUP BY
   76563    NESTED LOOPS
   76575     NESTED LOOPS
      19      TABLE ACCESS FULL CN_PAYRUNS_ALL
   76570      TABLE ACCESS BY INDEX ROWID CN_POSTING_DETAILS_ALL
   76570       INDEX RANGE SCAN (object id 178321)
   76563     TABLE ACCESS BY INDEX ROWID CN_PAYMENT_WORKSHEETS_ALL
11432983      INDEX RANGE SCAN (object id 186024)

Looking Beyond Execution Plans
The execution plan operation alone cannot differentiate between well-tuned 
statements and those that perform poorly. For example, an EXPLAIN PLAN output that 
shows that a statement uses an index does not necessarily mean that the statement 
runs efficiently. Sometimes indexes are extremely inefficient. In this case, you should 
examine the following:

■ The columns of the index being used

■ Their selectivity (fraction of table being accessed)

It is best to use EXPLAIN PLAN to determine an access plan, and then later prove that it is 
the optimal plan through testing. When evaluating a plan, examine the statement's 
actual resource consumption. 

Using V$SQL_PLAN Views
In addition to running the EXPLAIN PLAN command and displaying the plan, you can 
use the V$SQL_PLAN views to display the execution plan of a SQL statement:

After the statement has executed, you can display the plan by querying the 
V$SQL_PLAN view. V$SQL_PLAN contains the execution plan for every statement stored 
in the shared SQL area. Its definition is similar to the PLAN_TABLE. See "PLAN_TABLE 
Columns" on page 12-17.

The advantage of V$SQL_PLAN over EXPLAIN PLAN is that you do not need to know the 
compilation environment that was used to execute a particular statement. For EXPLAIN 
PLAN, you would need to set up an identical environment to get the same plan when 
executing the statement.

The V$SQL_PLAN_STATISTICS view provides the actual execution statistics for every 
operation in the plan, such as the number of output rows and elapsed time. All 
statistics, except the number of output rows, are cumulative. For example, the statistics 
for a join operation also includes the statistics for its two inputs. The statistics in 
V$SQL_PLAN_STATISTICS are available for cursors that have been compiled with the 
STATISTICS_LEVEL initialization parameter set to ALL.



The PLAN_TABLE Output Table

12-4 Oracle Database Performance Tuning Guide

The V$SQL_PLAN_STATISTICS_ALL view enables side by side comparisons of the 
estimates that the optimizer provides for the number of rows and elapsed time. This 
view combines both V$SQL_PLAN and V$SQL_PLAN_STATISTICS information for every 
cursor.

EXPLAIN PLAN Restrictions
Oracle Database does not support EXPLAIN PLAN for statements performing implicit 
type conversion of date bind variables. With bind variables in general, the EXPLAIN 
PLAN output might not represent the real execution plan. 

From the text of a SQL statement, TKPROF cannot determine the types of the bind 
variables. It assumes that the type is CHARACTER, and gives an error message if this is 
not the case. You can avoid this limitation by putting appropriate type conversions in 
the SQL statement.

The PLAN_TABLE Output Table
The PLAN_TABLE is automatically created as a public synonym to a global temporary 
table. This temporary table holds the output of EXPLAIN PLAN statements for all users. 
PLAN_TABLE is the default sample output table into which the EXPLAIN PLAN statement 
inserts rows describing execution plans. See "PLAN_TABLE Columns" on page 12-17 
for a description of the columns in the table.

While a PLAN_TABLE table is automatically set up for each user, you can use the SQL 
script catplan.sql to manually create the global temporary table and the PLAN_TABLE 
synonym. The name and location of this script depends on your operating system. On 
UNIX and Linux, the script is located in the $ORACLE_HOME/rdbms/admin directory.

For example, start a SQL*Plus session, connect with SYSDBA privileges, and run the 
script as follows:

@$ORACLE_HOME/rdbms/admin/catplan.sql

Oracle recommends that you drop and rebuild your local PLAN_TABLE table after 
upgrading the version of the database because the columns might change. This can 
cause scripts to fail or cause TKPROF to fail, if you are specifying the table.

If you do not want to use the name PLAN_TABLE, create a new synonym after running 
the catplan.sql script. For example:

CREATE OR REPLACE PUBLIC SYNONYM my_plan_table for plan_table$

Running EXPLAIN PLAN
To explain a SQL statement, use the EXPLAIN PLAN FOR clause immediately before the 
statement. For example:

See Also: 

■ "Real-Time SQL Monitoring" on page 10-39 for information 
about the V$SQL_PLAN_MONITOR view

■ Oracle Database Reference for more information about 
V$SQL_PLAN views

■ Oracle Database Reference for information about the 
STATISTICS_LEVEL initialization parameter

See Also: Chapter 21, "Using Application Tracing Tools"



Displaying PLAN_TABLE Output

Using EXPLAIN PLAN 12-5

EXPLAIN PLAN FOR
  SELECT last_name FROM employees;

This explains the plan into the PLAN_TABLE table. You can then select the execution 
plan from PLAN_TABLE. See "Displaying PLAN_TABLE Output" on page 12-5.

Identifying Statements for EXPLAIN PLAN
With multiple statements, you can specify a statement identifier and use that to 
identify your specific execution plan. Before using SET STATEMENT ID, remove any 
existing rows for that statement ID. 

In Example 12–2, st1 is specified as the statement identifier:

Example 12–2 Using EXPLAIN PLAN with the STATEMENT ID Clause

EXPLAIN PLAN
  SET STATEMENT_ID = 'st1' FOR
SELECT last_name FROM employees;

Specifying Different Tables for EXPLAIN PLAN
You can specify the INTO clause to specify a different table. 

Example 12–3 Using EXPLAIN PLAN with the INTO Clause

EXPLAIN PLAN
  INTO my_plan_table
 FOR
SELECT last_name FROM employees;

You can specify a statement ID when using the INTO clause.

EXPLAIN PLAN
   SET STATEMENT_ID = 'st1'
   INTO my_plan_table
 FOR
SELECT last_name FROM employees;

Displaying PLAN_TABLE Output
After you have explained the plan, use the following SQL scripts or PL/SQL package 
provided by Oracle Database to display the most recent plan table output:

■ UTLXPLS.SQL 

This script displays the plan table output for serial processing. Example 11–14, 
"EXPLAIN PLAN Output" on page 11-33 is an example of the plan table output 
when using the UTLXPLS.SQL script.

■ UTLXPLP.SQL 

This script displays the plan table output including parallel execution columns.

■ DBMS_XPLAN.DISPLAY table function 

This function accepts options for displaying the plan table output. You can specify:

■ A plan table name if you are using a table different than PLAN_TABLE

See Also: Oracle Database SQL Language Reference for a complete 
description of EXPLAIN PLAN syntax.



Reading EXPLAIN PLAN Output

12-6 Oracle Database Performance Tuning Guide

■ A statement ID if you have set a statement ID with the EXPLAIN PLAN

■ A format option that determines the level of detail: BASIC, SERIAL, and 
TYPICAL, ALL,

Some examples of the use of DBMS_XPLAN to display PLAN_TABLE output are:

SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY());

SELECT PLAN_TABLE_OUTPUT 
  FROM TABLE(DBMS_XPLAN.DISPLAY('MY_PLAN_TABLE', 'st1','TYPICAL'));

Customizing PLAN_TABLE Output
If you have specified a statement identifier, then you can write your own script to 
query the PLAN_TABLE. For example:

■ Start with ID = 0 and given STATEMENT_ID.

■ Use the CONNECT BY clause to walk the tree from parent to child, the join keys being 
STATEMENT_ID = PRIOR STATEMENT_ID and PARENT_ID = PRIOR ID.

■ Use the pseudo-column LEVEL (associated with CONNECT BY) to indent the children.

SELECT cardinality "Rows",
   lpad(' ',level-1)||operation||' '||options||' '||object_name "Plan"
  FROM PLAN_TABLE
CONNECT BY prior id = parent_id
        AND prior statement_id = statement_id
  START WITH id = 0
        AND statement_id = 'st1'
  ORDER BY id;

   Rows Plan
------- ----------------------------------------
        SELECT STATEMENT
         TABLE ACCESS FULL EMPLOYEES

The NULL in the Rows column indicates that the optimizer does not have any 
statistics on the table. Analyzing the table shows the following:

   Rows Plan
------- ----------------------------------------
  16957 SELECT STATEMENT
  16957  TABLE ACCESS FULL EMPLOYEES

You can also select the COST. This is useful for comparing execution plans or for 
understanding why the optimizer chooses one execution plan over another.

Reading EXPLAIN PLAN Output
This section uses EXPLAIN PLAN examples to illustrate execution plans. The statement in 
Example 12–4 displays the execution plans.

See Also: Oracle Database PL/SQL Packages and Types Reference for 
more information on the DBMS_XPLAN package

Note: These simplified examples are not valid for recursive SQL. 



Viewing Parallel Execution with EXPLAIN PLAN

Using EXPLAIN PLAN 12-7

Example 12–4 Statement to display the EXPLAIN PLAN

SELECT PLAN_TABLE_OUTPUT 
  FROM TABLE(DBMS_XPLAN.DISPLAY(NULL, 'statement_id','BASIC'));

Examples of the output from this statement are shown in Example 12–5 and 
Example 12–6.

Example 12–5 EXPLAIN PLAN for Statement ID ex_plan1

EXPLAIN PLAN 
  SET statement_id = 'ex_plan1' FOR
SELECT phone_number FROM employees
 WHERE phone_number LIKE '650%';

---------------------------------------
| Id  | Operation         | Name      |
---------------------------------------
|   0 | SELECT STATEMENT  |           |
|   1 |  TABLE ACCESS FULL| EMPLOYEES |
---------------------------------------

This plan shows execution of a SELECT statement. The table employees is accessed 
using a full table scan.

■ Every row in the table employees is accessed, and the WHERE clause criteria is 
evaluated for every row.

■ The SELECT statement returns the rows meeting the WHERE clause criteria.

Example 12–6 EXPLAIN PLAN for Statement ID ex_plan2

EXPLAIN PLAN 
  SET statement_id = 'ex_plan2' FOR
SELECT last_name FROM employees
 WHERE last_name LIKE 'Pe%';

SELECT PLAN_TABLE_OUTPUT 
  FROM TABLE(DBMS_XPLAN.DISPLAY(NULL, 'ex_plan2','BASIC'));

----------------------------------------
| Id  | Operation        | Name        |
----------------------------------------
|   0 | SELECT STATEMENT |             |
|   1 |  INDEX RANGE SCAN| EMP_NAME_IX |
----------------------------------------

This plan shows execution of a SELECT statement.

■ The database range scans EMP_NAME_IX to evaluate the WHERE clause criteria.

■ The SELECT statement returns rows satisfying the WHERE clause conditions.

Viewing Parallel Execution with EXPLAIN PLAN
Tuning a parallel query begins much like a non-parallel query tuning exercise by 
choosing the driving table. However, the rules governing the choice are different. In 
the non-parallel case, the best driving table is typically the one that produces fewest 
number of rows after limiting conditions are applied. The small number of rows are 
joined to larger tables using non-unique indexes. For example, consider a table 
hierarchy consisting of CUSTOMER, ACCOUNT, and TRANSACTION. 



Viewing Parallel Execution with EXPLAIN PLAN

12-8 Oracle Database Performance Tuning Guide

Figure 12–1 A Table Hierarchy

CUSTOMER is the smallest table while TRANSACTION is the largest. A typical OLTP query 
might retrieve transaction information about a specific customer's account. The query 
would drive from the CUSTOMER table. The goal in this case is to minimize logical I/O, 
which typically minimizes other critical resources including physical I/O and CPU 
time.

For parallel queries, the choice of the driving table is usually the largest table because 
the database can use parallel query. It would not be efficient to use parallel query in 
this case because only a few rows from each table are ultimately accessed. However, 
what if it were necessary to identify all customers that had transactions of a certain 
type last month? It would be more efficient to drive from the TRANSACTION table 
because there are no limiting conditions on the customer table. The database would 
join rows from the TRANSACTION table to the ACCOUNT table, and finally to the CUSTOMER 
table. In this case, the indexes used on the ACCOUNT and CUSTOMER table are probably 
highly selective primary key or unique indexes, rather than non-unique indexes used 
in the first query. Because the TRANSACTION table is large and the column is 
un-selective, it would be beneficial to utilize parallel query driving from the 
TRANSACTION table.

Parallel operations include: 

■ PARALLEL_TO_PARALLEL 

■ PARALLEL_TO_SERIAL 

A PARALLEL_TO_SERIAL operation which is always the step that occurs when rows 
from a parallel operation are consumed by the query coordinator. Another type of 
operation that does not occur in this query is a SERIAL operation. If these types of 
operations occur, then consider making them parallel operations to improve 
performance because they too are potential bottlenecks.

■ PARALLEL_FROM_SERIAL 

■ PARALLEL_TO_PARALLEL 

PARALLEL_TO_PARALLEL operations generally produce the best performance as long 
as the workloads in each step are relatively equivalent. 

■ PARALLEL_COMBINED_WITH_CHILD 

■ PARALLEL_COMBINED_WITH_PARENT 

A PARALLEL_COMBINED_WITH_PARENT operation occurs when the database performs 
the step simultaneously with the parent step. 

If a parallel step produces many rows, then the QC may not be able to consume the 
rows as fast as they are produced. Little can be done to improve this situation.

See Also: See the OTHER_TAG column in Table 12–1, 
" PLAN_TABLE Columns" on page 12-17

CUSTOMER
ACCOUNT

TRANSACTION



Viewing Bitmap Indexes with EXPLAIN PLAN

Using EXPLAIN PLAN 12-9

Viewing Parallel Queries with EXPLAIN PLAN
When using EXPLAIN PLAN with parallel queries, the database compiles and executes 
one parallel plan. This plan is derived from the serial plan by allocating row sources 
specific to the parallel support in the QC plan. The table queue row sources (PX Send 
and PX Receive), the granule iterator, and buffer sorts, required by the two slave set 
PQ model, are directly inserted into the parallel plan. This plan is the exact same plan 
for all the slaves if executed in parallel or for the QC if executed in serial.

Example 12–7 is a simple query for illustrating an EXPLAIN PLAN for a parallel query. 

Example 12–7 Parallel Query Explain Plan

CREATE TABLE emp2 AS SELECT * FROM employees;
ALTER TABLE emp2 PARALLEL 2;

EXPLAIN PLAN FOR
  SELECT SUM(salary) FROM emp2 GROUP BY department_id;
SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY());

--------------------------------------------------------------------------------------------------------
| Id  | Operation                | Name     | Rows  | Bytes | Cost (%CPU) |    TQ  |IN-OUT| PQ Distrib |
--------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT         |          |   107 |  2782 |     3 (34)  |        |      |            |
|   1 |  PX COORDINATOR          |          |       |       |             |        |      |            |
|   2 |   PX SEND QC (RANDOM)    | :TQ10001 |   107 |  2782 |     3 (34)  |  Q1,01 | P->S | QC (RAND)  |
|   3 |    HASH GROUP BY         |          |   107 |  2782 |     3 (34)  |  Q1,01 | PCWP |            |
|   4 |     PX RECEIVE           |          |   107 |  2782 |     3 (34)  |  Q1,01 | PCWP |            |
|   5 |      PX SEND HASH        | :TQ10000 |   107 |  2782 |     3 (34)  |  Q1,00 | P->P | HASH       |
|   6 |       HASH GROUP BY      |          |   107 |  2782 |     3 (34)  |  Q1,00 | PCWP |            |
|   7 |        PX BLOCK ITERATOR |          |   107 |  2782 |     2 (0)   |  Q1,00 | PCWP |            |
|   8 |         TABLE ACCESS FULL| EMP2     |   107 |  2782 |     2 (0)   |  Q1,00 | PCWP |            |
--------------------------------------------------------------------------------------------------------

The table EMP2 is scanned in parallel by one set of slaves while the aggregation for the 
GROUP BY is done by the second set. The PX BLOCK ITERATOR row source represents the 
splitting up of the table EMP2 into pieces so as to divide the scan workload between the 
parallel scan slaves. The PX SEND and PX RECEIVE row sources represent the pipe that 
connects the two slave sets as rows flow up from the parallel scan, get repartitioned 
through the HASH table queue, and then read by and aggregated on the top slave set. 
The PX SEND QC row source represents the aggregated values being sent to the QC in 
random (RAND) order. The PX COORDINATOR row source represents the QC or Query 
Coordinator which controls and schedules the parallel plan appearing below it in the 
plan tree.

Viewing Bitmap Indexes with EXPLAIN PLAN
Index row sources using bitmap indexes appear in the EXPLAIN PLAN output with the 
word BITMAP indicating the type of the index. Consider the sample query and plan in 
Example 12–8.

Example 12–8 EXPLAIN PLAN with Bitmap Indexes

EXPLAIN PLAN FOR
SELECT * FROM t
WHERE c1 = 2 
AND c2 <> 6 
OR c3 BETWEEN 10 AND 20;

SELECT STATEMENT



Viewing Result Cache with EXPLAIN PLAN

12-10 Oracle Database Performance Tuning Guide

   TABLE ACCESS T BY INDEX ROWID
      BITMAP CONVERSION TO ROWID
         BITMAP OR
            BITMAP MINUS
               BITMAP MINUS
                  BITMAP INDEX C1_IND SINGLE VALUE
                  BITMAP INDEX C2_IND SINGLE VALUE
               BITMAP INDEX C2_IND SINGLE VALUE
            BITMAP MERGE
               BITMAP INDEX C3_IND RANGE SCAN

In this example, the predicate c1=2 yields a bitmap from which a subtraction can take 
place. From this bitmap, the bits in the bitmap for c2 = 6 are subtracted. Also, the bits 
in the bitmap for c2 IS NULL are subtracted, explaining why there are two MINUS row 
sources in the plan. The NULL subtraction is necessary for semantic correctness unless 
the column has a NOT NULL constraint. The TO ROWIDS option generates the rowids 
necessary for the table access.

Viewing Result Cache with EXPLAIN PLAN
When your query contains the result_cache hint, the ResultCache operator is 
inserted into the execution plan. 

For example, consider the query:

select /*+ result_cache */ deptno, avg(sal) 
from emp 
group by deptno;

To view the EXPLAIN PLAN for this query, use the command:

EXPLAIN PLAN FOR 
select /*+ result_cache */ deptno, avg(sal) 
from emp 
group by deptno;

select PLAN_TABLE_OUTPUT from TABLE (DBMS_XPLAN.DISPLAY());

The EXPLAIN PLAN output for this query should look similar to the following:

---------------------------------------------------------------------------------------------
| Id  | Operation           | Name                        |Rows |Bytes |Cost(%CPU)|Time     |
---------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT    |                             | 11  | 77   |  4 (25)  | 00:00:01|
|   1 |  RESULT CACHE       |b06ppfz9pxzstbttpbqyqnfbmy   |     |      |          |         |
|   2 |   HASH GROUP BY     |                             | 11  | 77   |  4 (25)  | 00:00:01|
|   3 |    TABLE ACCESS FULL| EMP                         |107  | 749  |  3 (0)   | 00:00:01|
---------------------------------------------------------------------------------------------

In this EXPLAIN PLAN, the ResultCache operator is identified by its CacheId, which is 
b06ppfz9pxzstbttpbqyqnfbmy. You can now run a query on the 
V$RESULT_CACHE_OBJECTS view by using this CacheId.

Note: Queries using bitmap join index indicate the bitmap join 
index access path. The operation for bitmap join index is the same 
as bitmap index. 



Viewing Partitioned Objects with EXPLAIN PLAN

Using EXPLAIN PLAN 12-11

Viewing Partitioned Objects with EXPLAIN PLAN
Use EXPLAIN PLAN to see how Oracle Database accesses partitioned objects for specific 
queries. 

Partitions accessed after pruning are shown in the PARTITION START and PARTITION 
STOP columns. The row source name for the range partition is PARTITION RANGE. For 
hash partitions, the row source name is PARTITION HASH. 

A join is implemented using partial partition-wise join if the DISTRIBUTION column of 
the plan table of one of the joined tables contains PARTITION(KEY). Partial 
partition-wise join is possible if one of the joined tables is partitioned on its join 
column and the table is parallelized. 

A join is implemented using full partition-wise join if the partition row source appears 
before the join row source in the EXPLAIN PLAN output. Full partition-wise joins are 
possible only if both joined tables are equi-partitioned on their respective join 
columns. Examples of execution plans for several types of partitioning follow. 

Examples of Displaying Range and Hash Partitioning with EXPLAIN PLAN
Consider the following table, emp_range, partitioned by range on hire_date to 
illustrate how pruning is displayed. Assume that the tables employees and 
departments from the Oracle Database sample schema exist.

CREATE TABLE emp_range 
PARTITION BY RANGE(hire_date) 
( 
PARTITION emp_p1 VALUES LESS THAN (TO_DATE('1-JAN-1992','DD-MON-YYYY')),
PARTITION emp_p2 VALUES LESS THAN (TO_DATE('1-JAN-1994','DD-MON-YYYY')),
PARTITION emp_p3 VALUES LESS THAN (TO_DATE('1-JAN-1996','DD-MON-YYYY')),
PARTITION emp_p4 VALUES LESS THAN (TO_DATE('1-JAN-1998','DD-MON-YYYY')),
PARTITION emp_p5 VALUES LESS THAN (TO_DATE('1-JAN-2001','DD-MON-YYYY')) 
) 
AS SELECT * FROM employees; 

For the first example, consider the following statement:

EXPLAIN PLAN FOR 
  SELECT * FROM emp_range; 

Oracle Database displays something similar to the following: 

---------------------------------------------------------------------------------
| Id  | Operation           | Name      | Rows  | Bytes | Cost  | Pstart| Pstop |
---------------------------------------------------------------------------------
|   0 | SELECT STATEMENT    |           |   105 | 13965 |     2 |       |       |
|   1 |  PARTITION RANGE ALL|           |   105 | 13965 |     2 |     1 |     5 |
|   2 |   TABLE ACCESS FULL | EMP_RANGE |   105 | 13965 |     2 |     1 |     5 |
---------------------------------------------------------------------------------

The database creates a partition row source on top of the table access row source. It 
iterates over the set of partitions to be accessed. In this example, the partition iterator 
covers all partitions (option ALL), because a predicate was not used for pruning. The 
PARTITION_START and PARTITION_STOP columns of the PLAN_TABLE show access to all 
partitions from 1 to 5.

For the next example, consider the following statement:

EXPLAIN PLAN FOR 
  SELECT * FROM emp_range 
  WHERE hire_date >= TO_DATE('1-JAN-1996','DD-MON-YYYY');



Viewing Partitioned Objects with EXPLAIN PLAN

12-12 Oracle Database Performance Tuning Guide

--------------------------------------------------------------------------------------
| Id  | Operation                | Name      | Rows  | Bytes | Cost  | Pstart| Pstop |
--------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT         |           |     3 |   399 |     2 |       |       |
|   1 |  PARTITION RANGE ITERATOR|           |     3 |   399 |     2 |     4 |     5 |
|*  2 |   TABLE ACCESS FULL      | EMP_RANGE |     3 |   399 |     2 |     4 |     5 |
--------------------------------------------------------------------------------------

In the previous example, the partition row source iterates from partition 4 to 5 because 
the database prunes the other partitions using a predicate on hire_date. 

Finally, consider the following statement:

EXPLAIN PLAN FOR 
  SELECT * FROM emp_range 
  WHERE hire_date < TO_DATE('1-JAN-1992','DD-MON-YYYY'); 

------------------------------------------------------------------------------------
| Id  | Operation              | Name      | Rows  | Bytes | Cost  | Pstart| Pstop |
------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT       |           |     1 |   133 |     2 |       |       |
|   1 |  PARTITION RANGE SINGLE|           |     1 |   133 |     2 |     1 |     1 |
|*  2 |   TABLE ACCESS FULL    | EMP_RANGE |     1 |   133 |     2 |     1 |     1 |
------------------------------------------------------------------------------------

In the previous example, only partition 1 is accessed and known at compile time; thus, 
there is no need for a partition row source. 

Plans for Hash Partitioning 
Oracle Database displays the same information for hash partitioned objects, except the 
partition row source name is PARTITION HASH instead of PARTITION RANGE. Also, with 
hash partitioning, pruning is only possible using equality or IN-list predicates. 

Examples of Pruning Information with Composite Partitioned Objects
To illustrate how Oracle Database displays pruning information for composite 
partitioned objects, consider the table emp_comp that is range partitioned on hiredate 
and subpartitioned by hash on deptno. 

CREATE TABLE emp_comp PARTITION BY RANGE(hire_date) 
      SUBPARTITION BY HASH(department_id) SUBPARTITIONS 3 
( 
PARTITION emp_p1 VALUES LESS THAN (TO_DATE('1-JAN-1992','DD-MON-YYYY')),
PARTITION emp_p2 VALUES LESS THAN (TO_DATE('1-JAN-1994','DD-MON-YYYY')),
PARTITION emp_p3 VALUES LESS THAN (TO_DATE('1-JAN-1996','DD-MON-YYYY')),
PARTITION emp_p4 VALUES LESS THAN (TO_DATE('1-JAN-1998','DD-MON-YYYY')),
PARTITION emp_p5 VALUES LESS THAN (TO_DATE('1-JAN-2001','DD-MON-YYYY')) 
) 
AS SELECT * FROM employees; 

For the first example, consider the following statement:

EXPLAIN PLAN FOR 
  SELECT * FROM emp_comp; 

--------------------------------------------------------------------------------
| Id  | Operation           | Name     | Rows  | Bytes | Cost  | Pstart| Pstop |
--------------------------------------------------------------------------------
|   0 | SELECT STATEMENT    |          | 10120 |  1314K|    78 |       |       |
|   1 |  PARTITION RANGE ALL|          | 10120 |  1314K|    78 |     1 |     5 |
|   2 |   PARTITION HASH ALL|          | 10120 |  1314K|    78 |     1 |     3 |



Viewing Partitioned Objects with EXPLAIN PLAN

Using EXPLAIN PLAN 12-13

|   3 |    TABLE ACCESS FULL| EMP_COMP | 10120 |  1314K|    78 |     1 |    15 |
--------------------------------------------------------------------------------

This example shows the plan when Oracle Database accesses all subpartitions of all 
partitions of a composite object. The database uses two partition row sources for this 
purpose: a range partition row source to iterate over the partitions and a hash partition 
row source to iterate over the subpartitions of each accessed partition. 

In the following example, the range partition row source iterates from partition 1 to 5, 
because the database performs no pruning. Within each partition, the hash partition 
row source iterates over subpartitions 1 to 3 of the current partition. As a result, the 
table access row source accesses subpartitions 1 to 15. In other words, it accesses all 
subpartitions of the composite object.

EXPLAIN PLAN FOR 
  SELECT * FROM emp_comp 
  WHERE hire_date = TO_DATE('15-FEB-1998', 'DD-MON-YYYY'); 

-----------------------------------------------------------------------------------
| Id  | Operation              | Name     | Rows  | Bytes | Cost  | Pstart| Pstop |
-----------------------------------------------------------------------------------
|   0 | SELECT STATEMENT       |          |    20 |  2660 |    17 |       |       |
|   1 |  PARTITION RANGE SINGLE|          |    20 |  2660 |    17 |     5 |     5 |
|   2 |   PARTITION HASH ALL   |          |    20 |  2660 |    17 |     1 |     3 |
|*  3 |    TABLE ACCESS FULL   | EMP_COMP |    20 |  2660 |    17 |    13 |    15 |
-----------------------------------------------------------------------------------

In the previous example, only the last partition, partition 5, is accessed. This partition 
is known at compile time, so the database does not need to show it in the plan. The 
hash partition row source shows accessing of all subpartitions within that partition; 
that is, subpartitions 1 to 3, which translates into subpartitions 13 to 15 of the emp_comp 
table. 

Now consider the following statement:

EXPLAIN PLAN FOR 
  SELECT * FROM emp_comp WHERE department_id = 20; 

-----------------------------------------------------------------------------------
| Id  | Operation              | Name     | Rows  | Bytes | Cost  | Pstart| Pstop |
-----------------------------------------------------------------------------------
|   0 | SELECT STATEMENT       |          |   101 | 13433 |    78 |       |       |
|   1 |  PARTITION RANGE ALL   |          |   101 | 13433 |    78 |     1 |     5 |
|   2 |   PARTITION HASH SINGLE|          |   101 | 13433 |    78 |     3 |     3 |
|*  3 |    TABLE ACCESS FULL   | EMP_COMP |   101 | 13433 |    78 |       |       |
-----------------------------------------------------------------------------------

In the previous example, the predicate deptno = 20 enables pruning on the hash 
dimension within each partition, so Oracle Database only needs to access a single 
subpartition. The number of that subpartition is known at compile time, so the hash 
partition row source is not needed. 

Finally, consider the following statement:

VARIABLE dno NUMBER; 
EXPLAIN PLAN FOR 
  SELECT * FROM emp_comp WHERE department_id = :dno; 

-----------------------------------------------------------------------------------
| Id  | Operation              | Name     | Rows  | Bytes | Cost  | Pstart| Pstop |
-----------------------------------------------------------------------------------
|   0 | SELECT STATEMENT       |          |   101 | 13433 |    78 |       |       |
|   1 |  PARTITION RANGE ALL   |          |   101 | 13433 |    78 |     1 |     5 |
|   2 |   PARTITION HASH SINGLE|          |   101 | 13433 |    78 |   KEY |   KEY |



Viewing Partitioned Objects with EXPLAIN PLAN

12-14 Oracle Database Performance Tuning Guide

|*  3 |    TABLE ACCESS FULL   | EMP_COMP |   101 | 13433 |    78 |       |       |
-----------------------------------------------------------------------------------

The last two examples are the same, except that deptno = 20 has been replaced by 
department_id = :dno. In this last case, the subpartition number is unknown at 
compile time, and a hash partition row source is allocated. The option is SINGLE for 
that row source, because Oracle Database accesses only one subpartition within each 
partition. The PARTITION_START and PARTITION_STOP is set to KEY, which means that 
Oracle Database determines the number of subpartitions at run time. 

Examples of Partial Partition-Wise Joins
In the following example, emp_range_did is joined on the partitioning column 
department_id and is parallelized. This enables use of partial partition-wise join, 
because the dept2 table is not partitioned. Oracle Database dynamically partitions the 
dept2 table before the join.

Example 12–9 Partial Partition-Wise Join with Range Partition

CREATE TABLE dept2 AS SELECT * FROM departments;
ALTER TABLE dept2 PARALLEL 2;

CREATE TABLE emp_range_did PARTITION BY RANGE(department_id)
   (PARTITION emp_p1 VALUES LESS THAN (150),
    PARTITION emp_p5 VALUES LESS THAN (MAXVALUE) )
  AS SELECT * FROM employees;

ALTER TABLE emp_range_did PARALLEL 2;

EXPLAIN PLAN FOR 
SELECT /*+ PQ_DISTRIBUTE(d NONE PARTITION) ORDERED */ e.last_name, 
                     d.department_name 
   FROM emp_range_did e , dept2 d 
   WHERE e.department_id = d.department_id ;

-------------------------------------------------------------------------------------------------------------
| Id| Operation                    |Name         |Rows | Bytes |Cost|Pstart|Pstop|   TQ  |IN-OUT|PQ Distrib |
-------------------------------------------------------------------------------------------------------------
|  0| SELECT STATEMENT             |             | 284 | 16188 |  6 |      |     |       |      | |
|  1|  PX COORDINATOR              |             |     |       |    |      |     |       |      |           |
|  2|   PX SEND QC (RANDOM)        |:TQ10001     | 284 | 16188 |  6 |      |     | Q1,01 | P->S | QC (RAND) |
|* 3|    HASH JOIN                 |             | 284 | 16188 |  6 |      |     | Q1,01 | PCWP |           |
|  4|     PX PARTITION RANGE ALL   |             | 284 |  7668 |  2 |    1 |   2 | Q1,01 | PCWC |           |
|  5|      TABLE ACCESS FULL       |EMP_RANGE_DID| 284 |  7668 |  2 |    1 |   2 | Q1,01 | PCWP |           |
|  6|     BUFFER SORT              |             |     |       |    |      |     | Q1,01 | PCWC |           |
|  7|      PX RECEIVE              |             |  21 |   630 |  2 |      |     | Q1,01 | PCWP |           |
|  8|       PX SEND PARTITION (KEY)|:TQ10000     |  21 |   630 |  2 |      |     |       | S->P |PART (KEY) |
|  9|        TABLE ACCESS FULL     |DEPT2        |  21 |   630 |  2 |      |     |       |      |           |
------------------------------------------------------------------------------------------------------------

The execution plan shows that the table dept2 is scanned serially and all rows with the 
same partitioning column value of emp_range_did (department_id) are sent through a 
PART (KEY), or partition key, table queue to the same slave doing the partial 
partition-wise join. 

In the following example, emp_comp is joined on the partitioning column and is 
parallelized. This enables use of partial partition-wise join, because the dept2 table is 
not partitioned. The database dynamically partitions the dept2 table before the join.



Viewing Partitioned Objects with EXPLAIN PLAN

Using EXPLAIN PLAN 12-15

Example 12–10 Partial Partition-Wise Join with Composite Partition

ALTER TABLE emp_comp PARALLEL 2; 

EXPLAIN PLAN FOR 
SELECT /*+ PQ_DISTRIBUTE(d NONE PARTITION) ORDERED */ e.last_name, 
         d.department_name 
  FROM emp_comp e, dept2 d 
 WHERE e.department_id = d.department_id;
SELECT PLAN_TABLE_OUTPUT FROM TABLE(DBMS_XPLAN.DISPLAY());

-------------------------------------------------------------------------------------------------------------
| Id | Operation                   | Name    | Rows | Bytes | Cost |Pstart|Pstop|    TQ  |IN-OUT| PQ Distrib |
-------------------------------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT            |         |  445 | 17800 |    5 |      |     |        |      |           |
|  1 |  PX COORDINATOR             |         |      |       |      |      |     |        |      |           |
|  2 |   PX SEND QC (RANDOM)       |:TQ10001 |  445 | 17800 |    5 |      |     |  Q1,01 | P->S | QC (RAND) |
|* 3 |    HASH JOIN                |         |  445 | 17800 |    5 |      |     |  Q1,01 | PCWP |           |
|  4 |     PX PARTITION RANGE ALL  |         |  107 |  1070 |    3 |    1 |   5 |  Q1,01 | PCWC |           |
|  5 |      PX PARTITION HASH ALL  |         |  107 |  1070 |    3 |    1 |   3 |  Q1,01 | PCWC |           |
|  6 |       TABLE ACCESS FULL     |EMP_COMP |  107 |  1070 |    3 |    1 |  15 |  Q1,01 | PCWP |           |
|  7 |     PX RECEIVE              |         |   21 |   630 |    1 |      |     |  Q1,01 | PCWP |           |
|  8 |      PX SEND PARTITION (KEY)|:TQ10000 |   21 |   630 |    1 |      |     |  Q1,00 | P->P |PART (KEY) |
|  9 |       PX BLOCK ITERATOR     |         |   21 |   630 |    1 |      |     |  Q1,00 | PCWC |           |
| 10 |        TABLE ACCESS FULL    |DEPT2    |   21 |   630 |    1 |      |     |  Q1,00 | PCWP |           |
-------------------------------------------------------------------------------------------------------------

The plan shows that the optimizer selects partial partition-wise join from one of two 
columns. The PX SEND node type is PARTITION(KEY) and the PQ Distrib column contains 
the text PART (KEY), or partition key. This implies that the table dept2 is re-partitioned 
based on the join column department_id to be sent to the parallel slaves executing the 
scan of EMP_COMP and the join. 

Note that in both Example 12–9 and Example 12–10 the PQ_DISTRIBUTE hint explicitly 
forces a partial partition-wise join because the query optimizer could have chosen a 
different plan based on cost in this query.

Examples of Full Partition-wise Joins
In the following example, emp_comp and dept_hash are joined on their hash 
partitioning columns. This enables use of full partition-wise join. The PARTITION HASH 
row source appears on top of the join row source in the plan table output. 

The PX PARTITION HASH row source appears on top of the join row source in the plan 
table output while the PX PARTITION RANGE row source appears over the scan of 
emp_comp. Each parallel slave performs the join of an entire hash partition of emp_comp 
with an entire partition of dept_hash. 

Example 12–11 Full Partition-Wise Join

CREATE TABLE dept_hash
   PARTITION BY HASH(department_id)
   PARTITIONS 3
   PARALLEL 2
   AS SELECT * FROM departments;

EXPLAIN PLAN FOR SELECT /*+ PQ_DISTRIBUTE(e NONE NONE) ORDERED */ e.last_name,
       d.department_name
  FROM emp_comp e, dept_hash d
 WHERE e.department_id = d.department_id;

-------------------------------------------------------------------------------------------------------------



Viewing Partitioned Objects with EXPLAIN PLAN

12-16 Oracle Database Performance Tuning Guide

| Id | Operation                  | Name      | Rows |Bytes |Cost |Pstart|Pstop |   TQ  |IN-OUT| PQ Distrib |
-------------------------------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT           |           |  106 | 2544 |   8 |      |      |       |      |            |
|  1 |  PX COORDINATOR            |           |      |      |     |      |      |       |      |            |
|  2 |   PX SEND QC (RANDOM)      | :TQ10000  |  106 | 2544 |   8 |      |      | Q1,00 | P->S | QC (RAND)  |
|  3 |    PX PARTITION HASH ALL   |           |  106 | 2544 |   8 |    1 |    3 | Q1,00 | PCWC |            |
|* 4 |     HASH JOIN              |           |  106 | 2544 |   8 |      |      | Q1,00 | PCWP |            |
|  5 |      PX PARTITION RANGE ALL|           |  107 | 1070 |   3 |    1 |    5 | Q1,00 | PCWC |            |
|  6 |       TABLE ACCESS FULL    | EMP_COMP  |  107 | 1070 |   3 |    1 |   15 | Q1,00 | PCWP |            |
|  7 |      TABLE ACCESS FULL     | DEPT_HASH |   27 |  378 |   4 |    1 |    3 | Q1,00 | PCWP |            |
-------------------------------------------------------------------------------------------------------------

Examples of INLIST ITERATOR and EXPLAIN PLAN
An INLIST ITERATOR operation appears in the EXPLAIN PLAN output if an index 
implements an IN-list predicate. For example:

SELECT * FROM emp WHERE empno IN (7876, 7900, 7902);

The EXPLAIN PLAN output appears as follows:

OPERATION          OPTIONS           OBJECT_NAME
----------------   ---------------   -------------- 
SELECT STATEMENT
INLIST ITERATOR
TABLE ACCESS       BY ROWID          EMP
INDEX              RANGE SCAN        EMP_EMPNO

The INLIST ITERATOR operation iterates over the next operation in the plan for each 
value in the IN-list predicate. For partitioned tables and indexes, the three possible 
types of IN-list columns are described in the following sections.

When the IN-List Column is an Index Column
If the IN-list column empno is an index column but not a partition column, then the 
plan is as follows (the IN-list operator appears before the table operation but after the 
partition operation):

OPERATION        OPTIONS              OBJECT_NAME PARTITION_START PARTITION_STOP
---------------- ------------         ----------- --------------- -------------- 
SELECT STATEMENT 
PARTITION RANGE  ALL                               KEY(INLIST)     KEY(INLIST)
INLIST ITERATOR
TABLE ACCESS     BY LOCAL INDEX ROWID EMP          KEY(INLIST)     KEY(INLIST)
INDEX            RANGE SCAN           EMP_EMPNO    KEY(INLIST)     KEY(INLIST)

The KEY(INLIST) designation for the partition start and stop keys specifies that an 
IN-list predicate appears on the index start and stop keys.

When the IN-List Column is an Index and a Partition Column
If empno is an indexed and a partition column, then the plan contains an INLIST 
ITERATOR operation before the partition operation:

OPERATION        OPTIONS              OBJECT_NAME PARTITION_START PARTITION_STOP
---------------- ------------         ----------- --------------- --------------
SELECT STATEMENT
INLIST ITERATOR
PARTITION RANGE  ITERATOR                         KEY(INLIST)     KEY(INLIST)
TABLE ACCESS     BY LOCAL INDEX ROWID EMP         KEY(INLIST)     KEY(INLIST)
INDEX            RANGE SCAN           EMP_EMPNO   KEY(INLIST)     KEY(INLIST)



PLAN_TABLE Columns

Using EXPLAIN PLAN 12-17

When the IN-List Column is a Partition Column
If empno is a partition column and no indexes exist, then no INLIST ITERATOR operation 
is allocated:

OPERATION         OPTIONS        OBJECT_NAME   PARTITION_START   PARTITION_STOP
----------------  ------------   -----------   ---------------   --------------
SELECT STATEMENT
PARTITION RANGE   INLIST                       KEY(INLIST)       KEY(INLIST)
TABLE ACCESS      FULL           EMP           KEY(INLIST)       KEY(INLIST)

If emp_empno is a bitmap index, then the plan is as follows:

OPERATION          OPTIONS           OBJECT_NAME
----------------   ---------------   -------------- 
SELECT STATEMENT
INLIST ITERATOR
TABLE ACCESS       BY INDEX ROWID    EMP
BITMAP CONVERSION  TO ROWIDS
BITMAP INDEX       SINGLE VALUE      EMP_EMPNO

Example of Domain Indexes and EXPLAIN PLAN
You can also use EXPLAIN PLAN to derive user-defined CPU and I/O costs for domain 
indexes. EXPLAIN PLAN displays these statistics in the OTHER column of PLAN_TABLE.

For example, assume table emp has user-defined operator CONTAINS with a domain 
index emp_resume on the resume column, and the index type of emp_resume supports 
the operator CONTAINS. You explain the plan for the following query:

SELECT * FROM emp WHERE CONTAINS(resume, 'Oracle') = 1 

The database could display the following plan:

OPERATION            OPTIONS      OBJECT_NAME     OTHER 
-----------------    -----------  ------------    ----------------
SELECT STATEMENT 
TABLE ACCESS         BY ROWID     EMP
DOMAIN INDEX                      EMP_RESUME      CPU: 300, I/O: 4

PLAN_TABLE Columns
The PLAN_TABLE used by the EXPLAIN PLAN statement contains the columns listed in 
Table 12–1.

Table 12–1  PLAN_TABLE Columns

Column Type Description

STATEMENT_ID VARCHAR2(30) Value of the optional STATEMENT_ID parameter specified in the 
EXPLAIN PLAN statement. 

PLAN_ID NUMBER Unique identifier of a plan in the database.

TIMESTAMP DATE Date and time when the EXPLAIN PLAN statement was generated. 

REMARKS VARCHAR2(80) Any comment (of up to 80 bytes) you want to associate with 
each step of the explained plan. This column indicates whether 
the database used an outline or SQL profile for the query.

If you need to add or change a remark on any row of the 
PLAN_TABLE, then use the UPDATE statement to modify the rows 
of the PLAN_TABLE. 



PLAN_TABLE Columns

12-18 Oracle Database Performance Tuning Guide

OPERATION VARCHAR2(30) Name of the internal operation performed in this step. In the 
first row generated for a statement, the column contains one of 
the following values: 

■ DELETE STATEMENT

■ INSERT STATEMENT

■ SELECT STATEMENT

■ UPDATE STATEMENT

See Table 12–3 for more information on values for this column. 

OPTIONS VARCHAR2(225) A variation on the operation described in the OPERATION column. 

See Table 12–3 for more information on values for this column. 

OBJECT_NODE VARCHAR2(128) Name of the database link used to reference the object (a table 
name or view name). For local queries using parallel execution, 
this column describes the order in which the database consumes 
output from operations.

OBJECT_OWNER VARCHAR2(30) Name of the user who owns the schema containing the table or 
index. 

OBJECT_NAME VARCHAR2(30) Name of the table or index. 

OBJECT_ALIAS VARCHAR2(65) Unique alias of a table or view in a SQL statement. For indexes, 
it is the object alias of the underlying table.

OBJECT_INSTANCE NUMERIC Number corresponding to the ordinal position of the object as it 
appears in the original statement. The numbering proceeds from 
left to right, outer to inner for the original statement text. View 
expansion results in unpredictable numbers. 

OBJECT_TYPE VARCHAR2(30) Modifier that provides descriptive information about the object; 
for example, NON-UNIQUE for indexes. 

OPTIMIZER VARCHAR2(255) Current mode of the optimizer.

SEARCH_COLUMNS NUMBERIC Not currently used. 

ID NUMERIC A number assigned to each step in the execution plan. 

PARENT_ID NUMERIC The ID of the next execution step that operates on the output of 
the ID step.

DEPTH NUMERIC Depth of the operation in the row source tree that the plan 
represents. The value can be used for indenting the rows in a 
plan table report.

POSITION NUMERIC For the first row of output, this indicates the optimizer's 
estimated cost of executing the statement. For the other rows, it 
indicates the position relative to the other children of the same 
parent.

COST NUMERIC Cost of the operation as estimated by the optimizer's query 
approach. Cost is not determined for table access operations. 
The value of this column does not have any particular unit of 
measurement; it is merely a weighted value used to compare 
costs of execution plans. The value of this column is a function 
of the CPU_COST and IO_COST columns. 

CARDINALITY NUMERIC Estimate by the query optimization approach of the number of 
rows accessed by the operation. 

BYTES NUMERIC Estimate by the query optimization approach of the number of 
bytes accessed by the operation. 

Table 12–1 (Cont.) PLAN_TABLE Columns

Column Type Description



PLAN_TABLE Columns

Using EXPLAIN PLAN 12-19

OTHER_TAG VARCHAR2(255) Describes the contents of the OTHER column. Values are:

■ SERIAL (blank): Serial execution. Currently, SQL is not 
loaded in the OTHER column for this case. 

■ SERIAL_FROM_REMOTE (S -> R): Serial execution at a remote 
site.

■ PARALLEL_FROM_SERIAL (S -> P): Serial execution. Output 
of step is partitioned or broadcast to parallel execution 
servers.

■ PARALLEL_TO_SERIAL (P -> S): Parallel execution. Output 
of step is returned to serial QC process.

■ PARALLEL_TO_PARALLEL (P -> P): Parallel execution. 
Output of step is repartitioned to second set of parallel 
execution servers.

■ PARALLEL_COMBINED_WITH_PARENT (PWP): Parallel execution; 
Output of step goes to next step in same parallel process. 
No interprocess communication to parent.

■ PARALLEL_COMBINED_WITH_CHILD (PWC): Parallel execution. 
Input of step comes from prior step in same parallel process. 
No interprocess communication from child.

PARTITION_START VARCHAR2(255) Start partition of a range of accessed partitions. It can take one of 
the following values:

n indicates that the start partition has been identified by the SQL 
compiler, and its partition number is given by n.

KEY indicates that the start partition is identified at run time 
from partitioning key values.

ROW REMOVE_LOCATION indicates that the database computes the 
start partition (same as the stop partition) at run time from the 
location of each retrieved record. The record location is obtained 
by a user or from a global index.

INVALID indicates that the range of accessed partitions is empty. 

PARTITION_STOP VARCHAR2(255) Stop partition of a range of accessed partitions. It can take one of 
the following values: 

n indicates that the stop partition has been identified by the SQL 
compiler, and its partition number is given by n.

KEY indicates that the stop partition is identified at run time from 
partitioning key values.

ROW REMOVE_LOCATION indicates that the database computes the 
stop partition (same as the start partition) at run time from the 
location of each retrieved record. The record location is obtained 
by a user or from a global index.

INVALID indicates that the range of accessed partitions is empty. 

PARTITION_ID NUMERIC Step that has computed the pair of values of the 
PARTITION_START and PARTITION_STOP columns. 

OTHER LONG Other information that is specific to the execution step that a 
user might find useful. See the OTHER_TAG column.

DISTRIBUTION VARCHAR2(30) Method used to distribute rows from producer query servers to 
consumer query servers.

See Table 12–2 for more information on the possible values for 
this column. For more information about consumer and 
producer query servers, see Oracle Database Data Warehousing 
Guide. 

Table 12–1 (Cont.) PLAN_TABLE Columns

Column Type Description



PLAN_TABLE Columns

12-20 Oracle Database Performance Tuning Guide

Table 12–2 describes the values that can appear in the DISTRIBUTION column:

Table 12–3 lists each combination of OPERATION and OPTIONS produced by the EXPLAIN 
PLAN statement and its meaning within an execution plan.

CPU_COST NUMERIC CPU cost of the operation as estimated by the query optimizer's 
approach. The value of this column is proportional to the 
number of machine cycles required for the operation. For 
statements that use the rule-based approach, this column is null.

IO_COST NUMERIC I/O cost of the operation as estimated by the query optimizer's 
approach. The value of this column is proportional to the 
number of data blocks read by the operation. For statements that 
use the rule-based approach, this column is null.

TEMP_SPACE NUMERIC Temporary space, in bytes, used by the operation as estimated 
by the query optimizer's approach. For statements that use the 
rule-based approach, or for operations that do not use any 
temporary space, this column is null.

ACCESS_PREDICATES VARCHAR2(4000) Predicates used to locate rows in an access structure. For 
example, start or stop predicates for an index range scan.

FILTER_PREDICATES VARCHAR2(4000) Predicates used to filter rows before producing them.

PROJECTION VARCHAR2(4000) Expressions produced by the operation.

TIME NUMBER(20,2) Elapsed time in seconds of the operation as estimated by query 
optimization. For statements that use the rule-based approach, 
this column is null.

QBLOCK_NAME VARCHAR2(30) Name of the query block, either system-generated or defined by 
the user with the QB_NAME hint.

Table 12–2  Values of DISTRIBUTION Column of the PLAN_TABLE

DISTRIBUTION Text Interpretation

PARTITION (ROWID) Maps rows to query servers based on the partitioning of a table or index using the 
rowid of the row to UPDATE/DELETE. 

PARTITION (KEY) Maps rows to query servers based on the partitioning of a table or index using a set of 
columns. Used for partial partition-wise join, PARALLEL INSERT, CREATE TABLE AS 
SELECT of a partitioned table, and CREATE PARTITIONED GLOBAL INDEX. 

HASH Maps rows to query servers using a hash function on the join key. Used for PARALLEL 
JOIN or PARALLEL GROUP BY. 

RANGE Maps rows to query servers using ranges of the sort key. Used when the statement 
contains an ORDER BY clause. 

ROUND-ROBIN Randomly maps rows to query servers. 

BROADCAST Broadcasts the rows of the entire table to each query server. Used for a parallel join 
when one table is very small compared to the other. 

QC (ORDER) The QC consumes the input in order, from the first to the last query server. Used 
when the statement contains an ORDER BY clause. 

QC (RANDOM) The QC consumes the input randomly. Used when the statement does not have an 
ORDER BY clause. 

Table 12–1 (Cont.) PLAN_TABLE Columns

Column Type Description



PLAN_TABLE Columns

Using EXPLAIN PLAN 12-21

Table 12–3  OPERATION and OPTIONS Values Produced by EXPLAIN PLAN

Operation Option Description

AND-EQUAL Operation accepting multiple sets of rowids, returning the intersection 
of the sets, eliminating duplicates. Used for the single-column indexes 
access path.

BITMAP CONVERSION TO ROWIDS converts bitmap representations to actual rowids that can be 
used to access the table.

FROM ROWIDS converts the rowids to a bitmap representation.

COUNT returns the number of rowids if the actual values are not needed.

BITMAP INDEX SINGLE VALUE looks up the bitmap for a single key value in the index.

RANGE SCAN retrieves bitmaps for a key value range.

FULL SCAN performs a full scan of a bitmap index if there is no start or 
stop key.

BITMAP MERGE Merges several bitmaps resulting from a range scan into one bitmap.

BITMAP MINUS Subtracts bits of one bitmap from another. Row source is used for 
negated predicates. Can be used only if there are nonnegated 
predicates yielding a bitmap from which the subtraction can take place. 
An example appears in "Viewing Bitmap Indexes with EXPLAIN 
PLAN" on page 12-9.

BITMAP OR Computes the bitwise OR of two bitmaps.

BITMAP AND Computes the bitwise AND of two bitmaps. 

BITMAP KEY ITERATION Takes each row from a table row source and finds the corresponding 
bitmap from a bitmap index. This set of bitmaps are then merged into 
one bitmap in a following BITMAP MERGE operation.

CONNECT BY  Retrieves rows in hierarchical order for a query containing a CONNECT 
BY clause. 

CONCATENATION  Operation accepting multiple sets of rows returning the union-all of the 
sets.

COUNT  Operation counting the number of rows selected from a table.

COUNT STOPKEY Count operation where the number of rows returned is limited by the 
ROWNUM expression in the WHERE clause.

CUBE SCAN  Uses inner joins for all cube access.

CUBE SCAN PARTIAL OUTER Uses an outer join for at least one dimension, and inner joins for the 
other dimensions.

CUBE SCAN OUTER Uses outer joins for all cube access.

DOMAIN INDEX  Retrieval of one or more rowids from a domain index. The options 
column contain information supplied by a user-defined domain index 
cost function, if any.

FILTER  Operation accepting a set of rows, eliminates some of them, and returns 
the rest.

FIRST ROW  Retrieval of only the first row selected by a query.

FOR UPDATE  Operation retrieving and locking the rows selected by a query 
containing a FOR UPDATE clause.

HASH GROUP BY Operation hashing a set of rows into groups for a query with a GROUP BY 
clause.

HASH GROUP BY PIVOT Operation hashing a set of rows into groups for a query with a GROUP BY 
clause. The PIVOT option indicates a pivot-specific optimization for the 
HASH GROUP BY operator.



PLAN_TABLE Columns

12-22 Oracle Database Performance Tuning Guide

HASH JOIN 

(These are join 
operations.) 

 Operation joining two sets of rows and returning the result. This join 
method is useful for joining large data sets of data (DSS, Batch). The 
join condition is an efficient way of accessing the second table.

Query optimizer uses the smaller of the two tables/data sources to 
build a hash table on the join key in memory. Then it scans the larger 
table, probing the hash table to find the joined rows.

HASH JOIN ANTI Hash (left) antijoin

HASH JOIN SEMI Hash (left) semijoin

HASH JOIN RIGHT ANTI Hash right antijoin

HASH JOIN RIGHT SEMI Hash right semijoin

HASH JOIN OUTER Hash (left) outer join

HASH JOIN RIGHT OUTER Hash right outer join

INDEX 

(These are access 
methods.) 

UNIQUE SCAN Retrieval of a single rowid from an index.

INDEX RANGE SCAN Retrieval of one or more rowids from an index. Indexed values are 
scanned in ascending order.

INDEX RANGE SCAN 
DESCENDING 

Retrieval of one or more rowids from an index. Indexed values are 
scanned in descending order.

INDEX FULL SCAN Retrieval of all rowids from an index when there is no start or stop key. 
Indexed values are scanned in ascending order.

INDEX FULL SCAN 
DESCENDING 

Retrieval of all rowids from an index when there is no start or stop key. 
Indexed values are scanned in descending order.

INDEX FAST FULL SCAN Retrieval of all rowids (and column values) using multiblock reads. No 
sorting order can be defined. Compares to a full table scan on only the 
indexed columns. Only available with the cost based optimizer.

INDEX SKIP SCAN Retrieval of rowids from a concatenated index without using the 
leading column(s) in the index. Only available with the cost based 
optimizer. 

INLIST ITERATOR  Iterates over the next operation in the plan for each value in the IN-list 
predicate.

INTERSECTION  Operation accepting two sets of rows and returning the intersection of 
the sets, eliminating duplicates.

MERGE JOIN 

(These are join 
operations.) 

 Operation accepting two sets of rows, each sorted by a specific value, 
combining each row from one set with the matching rows from the 
other, and returning the result.

MERGE JOIN OUTER Merge join operation to perform an outer join statement.

MERGE JOIN ANTI Merge antijoin.

MERGE JOIN SEMI Merge semijoin.

MERGE JOIN CARTESIAN Can result from 1 or more of the tables not having any join conditions 
to any other tables in the statement. Can occur even with a join and it 
may not be flagged as CARTESIAN in the plan.

CONNECT BY  Retrieval of rows in hierarchical order for a query containing a CONNECT 
BY clause.

Table 12–3 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN

Operation Option Description



PLAN_TABLE Columns

Using EXPLAIN PLAN 12-23

MAT_VIEW REWITE 
ACCESS 

(These are access 
methods.)

FULL Retrieval of all rows from a materialized view.

MAT_VIEW REWITE 
ACCESS 

SAMPLE Retrieval of sampled rows from a materialized view.

MAT_VIEW REWITE 
ACCESS 

CLUSTER Retrieval of rows from a materialized view based on a value of an 
indexed cluster key.

MAT_VIEW REWITE 
ACCESS 

HASH Retrieval of rows from materialized view based on hash cluster key 
value.

MAT_VIEW REWITE 
ACCESS 

BY ROWID RANGE Retrieval of rows from a materialized view based on a rowid range.

MAT_VIEW REWITE 
ACCESS 

SAMPLE BY ROWID 
RANGE 

Retrieval of sampled rows from a materialized view based on a rowid 
range.

MAT_VIEW 
REWITE ACCESS

BY USER ROWID If the materialized view rows are located using user-supplied rowids.

MAT_VIEW REWITE 
ACCESS 

BY INDEX ROWID If the materialized view is nonpartitioned and rows are located using 
index(es).

MAT_VIEW REWITE 
ACCESS 

BY GLOBAL INDEX 
ROWID 

If the materialized view is partitioned and rows are located using only 
global indexes.

MAT_VIEW REWITE 
ACCESS 

BY LOCAL INDEX 
ROWID 

If the materialized view is partitioned and rows are located using one 
or more local indexes and possibly some global indexes. 

Partition Boundaries: 

The partition boundaries might have been computed by:

A previous PARTITION step, in which case the PARTITION_START and 
PARTITION_STOP column values replicate the values present in the 
PARTITION step, and the PARTITION_ID contains the ID of the PARTITION 
step. Possible values for PARTITION_START and PARTITION_STOP are 
NUMBER(n), KEY, INVALID.

The MAT_VIEW REWRITE ACCESS or INDEX step itself, in which case the 
PARTITION_ID contains the ID of the step. Possible values for 
PARTITION_START and PARTITION_STOP are NUMBER(n), KEY, ROW 
REMOVE_LOCATION (MAT_VIEW REWRITE ACCESS only), and INVALID.

MINUS  Operation accepting two sets of rows and returning rows appearing in 
the first set but not in the second, eliminating duplicates.

NESTED LOOPS

(These are join 
operations.) 

 Operation accepting two sets of rows, an outer set and an inner set. 
Oracle Database compares each row of the outer set with each row of 
the inner set, returning rows that satisfy a condition. This join method 
is useful for joining small subsets of data (OLTP). The join condition is 
an efficient way of accessing the second table.

NESTED LOOPS OUTER Nested loops operation to perform an outer join statement.

PARTITION  Iterates over the next operation in the plan for each partition in the 
range given by the PARTITION_START and PARTITION_STOP columns. 
PARTITION describes partition boundaries applicable to a single 
partitioned object (table or index) or to a set of equi-partitioned objects 
(a partitioned table and its local indexes). The partition boundaries are 
provided by the values of PARTITION_START and PARTITION_STOP of the 
PARTITION. Refer to Table 12–1 for valid values of partition start and 
stop.

PARTITION SINGLE Access one partition.

Table 12–3 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN

Operation Option Description



PLAN_TABLE Columns

12-24 Oracle Database Performance Tuning Guide

PARTITION ITERATOR Access many partitions (a subset). 

PARTITION ALL Access all partitions.

PARTITION INLIST Similar to iterator, but based on an IN-list predicate. 

PARTITION INVALID Indicates that the partition set to be accessed is empty. 

PX ITERATOR BLOCK, CHUNK Implements the division of an object into block or chunk ranges among 
a set of parallel slaves.

PX COORDINATOR  Implements the Query Coordinator which controls, schedules, and 
executes the parallel plan below it using parallel query slaves. It also 
represents a serialization point, as the end of the part of the plan 
executed in parallel and always has a PX SEND QC operation below it.

PX PARTITION  Same semantics as the regular PARTITION operation except that it 
appears in a parallel plan.

PX RECEIVE  Shows the consumer/receiver slave node reading repartitioned data 
from a send/producer (QC or slave) executing on a PX SEND node. 
This information was formerly displayed into the DISTRIBUTION 
column. See Table 12–2 on page 12-20.

PX SEND QC (RANDOM), HASH, 
RANGE 

Implements the distribution method taking place between two parallel 
set of slaves. Shows the boundary between two slave sets and how data 
is repartitioned on the send/producer side (QC or side. This 
information was formerly displayed into the DISTRIBUTION column. See 
Table 12–2 on page 12-20.

REMOTE  Retrieval of data from a remote database.

SEQUENCE  Operation involving accessing values of a sequence.

SORT AGGREGATE Retrieval of a single row that is the result of applying a group function 
to a group of selected rows.

SORT UNIQUE Operation sorting a set of rows to eliminate duplicates.

SORT GROUP BY Operation sorting a set of rows into groups for a query with a GROUP BY 
clause.

SORT GROUP BY PIVOT Operation sorting a set of rows into groups for a query with a GROUP BY 
clause. The PIVOT option indicates a pivot-specific optimization for the 
SORT GROUP BY operator.

SORT JOIN Operation sorting a set of rows before a merge-join.

SORT ORDER BY Operation sorting a set of rows for a query with an ORDER BY clause.

TABLE ACCESS 

(These are access 
methods.) 

FULL Retrieval of all rows from a table.

TABLE ACCESS SAMPLE Retrieval of sampled rows from a table.

TABLE ACCESS CLUSTER Retrieval of rows from a table based on a value of an indexed cluster 
key.

TABLE ACCESS HASH Retrieval of rows from table based on hash cluster key value.

TABLE ACCESS BY ROWID RANGE Retrieval of rows from a table based on a rowid range.

TABLE ACCESS SAMPLE BY ROWID 
RANGE 

Retrieval of sampled rows from a table based on a rowid range.

TABLE ACCESS BY USER ROWID If the table rows are located using user-supplied rowids.

TABLE ACCESS BY INDEX ROWID If the table is nonpartitioned and rows are located using index(es).

Table 12–3 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN

Operation Option Description



PLAN_TABLE Columns

Using EXPLAIN PLAN 12-25

TABLE ACCESS BY GLOBAL INDEX 
ROWID 

If the table is partitioned and rows are located using only global 
indexes.

TABLE ACCESS BY LOCAL INDEX 
ROWID 

If the table is partitioned and rows are located using one or more local 
indexes and possibly some global indexes. 

Partition Boundaries: 

The partition boundaries might have been computed by:

A previous PARTITION step, in which case the PARTITION_START and 
PARTITION_STOP column values replicate the values present in the 
PARTITION step, and the PARTITION_ID contains the ID of the PARTITION 
step. Possible values for PARTITION_START and PARTITION_STOP are 
NUMBER(n), KEY, INVALID.

The TABLE ACCESS or INDEX step itself, in which case the PARTITION_ID 
contains the ID of the step. Possible values for PARTITION_START and 
PARTITION_STOP are NUMBER(n), KEY, ROW REMOVE_LOCATION (TABLE 
ACCESS only), and INVALID.

TRANSPOSE  Operation evaluating a PIVOT operation by transposing the results of 
GROUP BY to produce the final pivoted data.

UNION  Operation accepting two sets of rows and returns the union of the sets, 
eliminating duplicates.

UNPIVOT  Operation that rotates data from columns into rows. 

VIEW  Operation performing a view's query and then returning the resulting 
rows to another operation.

See Also: Oracle Database Reference for more information on 
PLAN_TABLE 

Table 12–3 (Cont.) OPERATION and OPTIONS Values Produced by EXPLAIN PLAN

Operation Option Description



PLAN_TABLE Columns

12-26 Oracle Database Performance Tuning Guide



13

Managing Optimizer Statistics 13-1

13Managing Optimizer Statistics

This chapter explains why statistics are important for the query optimizer and how to 
gather and use optimizer statistics with the DBMS_STATS package.

The chapter contains the following sections: 

■ Overview of Optimizer Statistics

■ Managing Automatic Optimizer Statistics Collection

■ Gathering Statistics Manually

■ System Statistics

■ Managing Statistics

■ Controlling Dynamic Statistics

■ Viewing Statistics

Overview of Optimizer Statistics
Optimizer statistics describe details about the database and the objects in the 
database. The query optimizer uses these statistics to choose the best execution plan 
for each SQL statement.

Optimizer statistics include the following:

■ Table statistics

– Number of rows

– Number of blocks

– Average row length

■ Column statistics

– Number of distinct values (NDV) in column

– Number of nulls in column

– Data distribution (histogram)

– Extended statistics

■ Index statistics

– Number of leaf blocks

– Levels

– Clustering factor



Managing Automatic Optimizer Statistics Collection

13-2 Oracle Database Performance Tuning Guide

■ System statistics

– I/O performance and utilization

– CPU performance and utilization

The database stores optimizer statistics in the data dictionary. You can access these 
statistics using data dictionary views.

Because objects in a database can change constantly, you must update statistics 
regularly so that they accurately describe these objects. Oracle Database automatically 
maintains optimizer statistics. 

You can maintain optimizer statistics manually using the DBMS_STATS package. For 
example, you can save and restore copies of statistics. You can export statistics from 
one database and import those statistics into another database. For example, you can 
export statistics from a production system to a test system. You can also lock statistics 
to prevent them from changing.

Managing Automatic Optimizer Statistics Collection
Oracle recommends that you enable automatic optimizer statistics collection. In this 
case, the database automatically collects optimizer statistics for tables with absent or 
stale statistics. If fresh statistics are required for a table, then the database collects them 
both for the table and associated indexes.

Automatic collection eliminates many manual tasks associated with managing the 
optimizer. It also significantly reduces the risks of generating poor execution plans 
because of missing or stale statistics.

Automatic optimizer statistics collection calls the 
DBMS_STATS.GATHER_DATABASE_STATS_JOB_PROC procedure. This internal procedure 
operates similarly to the DBMS_STATS.GATHER_DATABASE_STATS procedure using the 
GATHER AUTO option. The main difference is that GATHER_DATABASE_STATS_JOB_PROC 
prioritizes database objects that require statistics, so that objects that most need 
updated statistics are processed first, before the maintenance window closes.

This section contains the following topics:

■ Enabling and Disabling Automatic Optimizer Statistics Collection

■ Considerations When Gathering Statistics

Enabling and Disabling Automatic Optimizer Statistics Collection
The automated maintenance tasks infrastructure (known as AutoTask) schedules tasks 
to run automatically in Oracle Scheduler windows known as maintenance windows. 
By default, one window is scheduled for each day of the week. Automatic optimizer 

Note: Do not confuse optimizer statistics with performance 
statistics visible through V$ views.

See Also: 

■ "Viewing Statistics" on page 13-27

■ "Managing Automatic Optimizer Statistics Collection" on 
page 13-2 or "Gathering Statistics Manually" on page 13-5

■ "Locking Statistics for a Table or Schema" on page 13-21



Managing Automatic Optimizer Statistics Collection

Managing Optimizer Statistics 13-3

statistics collection runs as part of AutoTask and is enabled by default to run in all 
predefined maintenance windows.

If for some reason automatic optimizer statistics collection is disabled, then you can 
enable it using the ENABLE procedure in the DBMS_AUTO_TASK_ADMIN package:

BEGIN
  DBMS_AUTO_TASK_ADMIN.ENABLE(
     client_name => 'auto optimizer stats collection' 
  ,  operation   => NULL, 
  ,  window_name => NULL
  );
END;
/

When you want to disable automatic optimizer statistics collection, you can disable it 
using the DISABLE procedure in the DBMS_AUTO_TASK_ADMIN package: 

BEGIN
  DBMS_AUTO_TASK_ADMIN.DISABLE(
     client_name => 'auto optimizer stats collection'
  ,  operation   => NULL 
  ,  window_name => NULL
  );
END;
/

Automatic optimizer statistics collection relies on the modification monitoring feature, 
described in "Determining Stale Statistics" on page 13-8. If this feature is disabled, then 
the automatic optimizer statistics collection job cannot detect stale statistics. This 
feature is enabled when the STATISTICS_LEVEL parameter is set to TYPICAL or ALL. 
TYPICAL is the default value.

Considerations When Gathering Statistics
This section discusses:

■ When to Use Manual Statistics

■ Restoring Previous Versions of Statistics

■ Locking Statistics

When to Use Manual Statistics
Automatic optimizer statistics collection should be sufficient for most database objects 
being modified at a moderate speed. However, in some cases the collection may not be 
adequate. Because the collection runs during maintenance windows, the statistics on 
tables that are significantly modified throughout the day may become stale. There are 
typically two types of such objects: 

■ Volatile tables that are deleted or truncated and rebuilt during the course of the 
day.

See Also: 

■ Oracle Database Administrator's Guide for information about the 
AutoTask infrastructure

■ Oracle Database PL/SQL Packages and Types Reference for 
information about the DBMS_AUTO_TASK_ADMIN package



Managing Automatic Optimizer Statistics Collection

13-4 Oracle Database Performance Tuning Guide

■ Objects that are the target of large bulk loads which add 10% or more to the 
object's total size.

For highly volatile tables, there are two approaches:

■ The statistics on these tables can be null. When Oracle Database encounters a table 
with no statistics, the database dynamically gathers the necessary statistics as part 
of query optimization. The OPTIMIZER_DYNAMIC_SAMPLING parameter controls this 
dynamic statistics feature. Set this parameter to a value of 2 (default) or higher. 
You can set the statistics to null by deleting and then locking the statistics:

BEGIN
  DBMS_STATS.DELETE_TABLE_STATS('OE','ORDERS');
  DBMS_STATS.LOCK_TABLE_STATS('OE','ORDERS');
END;
/

See "Dynamic Statistics Levels" on page 13-23 to learn how to set the levels for 
dynamic statistics.

■ The statistics on these tables can be set to values that represent the typical state of 
the table. You should gather statistics on the table when the table has a 
representative number of rows, and then lock the statistics.

This may be more effective than automatic optimizer statistic collection, because 
any statistics generated on the table during the overnight batch window may not 
be the most appropriate statistics for the daytime workload. 

For tables that are bulk-loaded, run the statistics-gathering procedures on the tables 
immediately following the load process. Preferably, run the procedures as part of the 
same script or job that is running the bulk load.

The database can collect statistics for external tables in the following ways:

■ GATHER_TABLE_STATS procedure

■ GATHER_SCHEMA_STATS procedure

■ GATHER_DATABASE_STATS procedure

■ Automatic optimizer statistics collection processing

If you are using GATHER_TABLE_STATS, then explicitly set the ESTIMATE_PERCENT option 
to NULL, 100, or AUTO_SAMPLE because sampling on external tables is not supported. 
Because the database does not permit data manipulation against external tables, the 
database never marks statistics on external tables as stale. If new statistics are required 
for an external table, for example, because the underlying data files change, then drop 
the existing statistics and regather them.

If the monitoring feature is disabled by setting STATISTICS_LEVEL to BASIC, then 
automatic optimizer statistics collection cannot detect stale statistics. In this case, you 
must manually gather statistics. See "Determining Stale Statistics" on page 13-8 to learn 
about the automatic monitoring facility.

System statistics are another type of statistic that you must gather manually. The 
database does not gather these statistics automatically. See "System Statistics" on 
page 13-11 for more information. 

You must manually collect statistics on fixed objects, such as the dynamic performance 
tables, using GATHER_FIXED_OBJECTS_STATS procedure. Fixed objects record current 
database activity. You should gather statistics when the database has representative 
activity.



Gathering Statistics Manually

Managing Optimizer Statistics 13-5

Restoring Previous Versions of Statistics
Whenever statistics in dictionary are modified, old versions of statistics are saved 
automatically for future restoring. You can restore statistics using RESTORE procedures 
of DBMS_STATS package. See "Restoring Previous Versions of Statistics" on page 13-20 
for more information.

Locking Statistics
In some cases, you may want to prevent any new statistics from being gathered on a 
table or schema by the DBMS_STATS_JOB process, such as highly volatile tables 
discussed in "When to Use Manual Statistics" on page 13-3. In those cases, the 
DBMS_STATS package provides procedures for locking the statistics for a table or 
schema. See "Locking Statistics for a Table or Schema" on page 13-21 for more 
information.

Gathering Statistics Manually
If you do not use automatic optimizer statistics collection, then you must run 
DBMS_STATS to manually collect statistics in all schemas, including system schemas. If 
the database content changes regularly, then you must also gather statistics regularly 
to ensure that the statistics accurately represent characteristics of database objects.

This section contains the following topics:

■ Gathering Statistics with DBMS_STATS Procedures

■ Setting Preferences for Manual Statistics Gathering

■ When to Gather Statistics

■ Comparing Statistics with DBMS_STATS Functions

Gathering Statistics with DBMS_STATS Procedures
You can gather statistics with the DBMS_STATS package. This PL/SQL package is also 
used to modify, view, export, import, and delete statistics.

The DBMS_STATS package can gather statistics on table and indexes and individual 
columns and partitions of tables. It does not gather cluster statistics. However, you can 
use DBMS_STATS to gather statistics on individual tables instead of the whole cluster.

If you generate statistics for a table, column, or index, and if the data dictionary 
contains statistics for the object, then Oracle Database updates the existing statistics. 
The older statistics are saved. You can restore them later if necessary. See "Restoring 
Previous Versions of Statistics" on page 13-20.

Note: Do not use the COMPUTE and ESTIMATE clauses of ANALYZE 
statement to collect optimizer statistics. These clauses are 
supported solely for backward compatibility and may be removed 
in a future release. The DBMS_STATS package collects a broader, more 
accurate set of statistics, and gathers statistics more efficiently. 

You may continue to use ANALYZE statement for other purposes not 
related to optimizer statistics collection:

■ To use the VALIDATE or LIST CHAINED ROWS clauses

■ To collect information on free list blocks



Gathering Statistics Manually

13-6 Oracle Database Performance Tuning Guide

When gathering statistics on system schemas, you can use the procedure 
DBMS_STATS.GATHER_DICTIONARY_STATS. This procedure gathers statistics for all 
system schemas, including SYS and SYSTEM, and other optional schemas, such as 
CTXSYS and DRSYS.

When statistics are updated for a database object, Oracle Database invalidates any 
currently parsed SQL statements that access the object. The next time such a statement 
executes, the statement is re-parsed and the optimizer automatically chooses a new 
execution plan based on the new statistics. Distributed statements accessing objects 
with new statistics on remote databases are not invalidated. The new statistics take 
effect the next time the SQL statement is parsed.

Table 13–1 lists the procedures in the DBMS_STATS package for gathering statistics on 
database objects.

When using any of these procedures, there are several important considerations for 
statistics gathering: 

■ Statistics Gathering Using Sampling

■ Parallel Statistics Gathering

■ Statistics on Partitioned Objects

■ Column Statistics and Histograms

■ Determining Stale Statistics

■ User-Defined Statistics

Statistics Gathering Using Sampling
The statistics-gathering operations can utilize sampling to estimate statistics. Sampling 
is an important technique for gathering statistics. Gathering statistics without 
sampling requires full table scans and sorts of entire tables. Sampling minimizes the 
resources necessary to gather statistics. 

Sampling is specified using the ESTIMATE_PERCENT argument to the DBMS_STATS 
procedures. While you can set the sampling percentage to any value, Oracle 
recommends setting the ESTIMATE_PERCENT parameter of the DBMS_STATS gathering 
procedures to DBMS_STATS.AUTO_SAMPLE_SIZE to maximize performance gains while 
achieving necessary statistical accuracy. AUTO_SAMPLE_SIZE lets Oracle Database 
determine the best sample size necessary for good statistics, based on the statistical 
property of the object. Because each type of statistics has different requirements, the 
size of the actual sample taken may not be the same across the table, columns, or 

Table 13–1  Statistics Gathering Procedures in the DBMS_STATS Package

Procedure Collects

GATHER_INDEX_STATS Index statistics

GATHER_TABLE_STATS Table, column, and index statistics

GATHER_SCHEMA_STATS Statistics for all objects in a schema

GATHER_DICTIONARY_STATS Statistics for all dictionary objects

GATHER_DATABASE_STATS Statistics for all objects in a database

See Also: Oracle Database PL/SQL Packages and Types Reference for 
syntax and examples of all DBMS_STATS procedures



Gathering Statistics Manually

Managing Optimizer Statistics 13-7

indexes. For example, to collect table and column statistics for all tables in the OE 
schema with auto-sampling, you could use:

EXECUTE DBMS_STATS.GATHER_SCHEMA_STATS('OE',DBMS_STATS.AUTO_SAMPLE_SIZE);

When the ESTIMATE_PERCENT parameter is manually specified, the DBMS_STATS 
gathering procedures may automatically increase the sampling percentage if the 
specified percentage did not produce a large enough sample. This ensures the stability 
of the estimated values by reducing fluctuations.

Parallel Statistics Gathering 
The statistics-gathering operations can run either serially or in parallel. You can specify 
the degree of parallelism with the DEGREE argument to the DBMS_STATS gathering 
procedures. The database can use parallel statistics gathering in conjunction with 
sampling. Oracle recommends setting the DEGREE parameter to 
DBMS_STATS.AUTO_DEGREE. This setting allows Oracle Database to choose an 
appropriate degree of parallelism based on the size of the object and the settings for 
the parallel-related init.ora parameters. 

Note that certain types of index statistics are not gathered in parallel, including cluster 
indexes, domain indexes, and bitmap join indexes.

Statistics on Partitioned Objects
For partitioned tables and indexes, DBMS_STATS can gather separate statistics for each 
partition and global statistics for the entire table or index. Similarly, for composite 
partitioning, DBMS_STATS can gather separate statistics for subpartitions, partitions, and 
the entire table or index. 

Granularity of Statistics Gathering  Depending on the SQL statement undergoing 
optimization, the optimizer can choose to use partition, subpartition, or global 
statistics. Both global and partition statistics are important for most applications. 

You determine the type of partitioning statistics to be gathered using the GRANULARITY 
argument to the DBMS_STATS procedures. Oracle recommends setting GRANULARITY to 
AUTO to gather subpartition, partition, or global statistics depending on the partition 
type. The ALL setting always gathers all types of statistics.

Incremental Statistics Gathering  With partitioned tables, you typically add new data into 
a new partition. As you add new partitions and load data, you must gather statistics 
on the new partition and keep global statistics up to date. 

You can use INCREMENTAL to decide whether the database performs a full table scan to 
maintain the global statistics of a partitioned table. You can use the 
DBMS_STATS.SET_TABLE_PREF procedure to change the INCREMENTAL value.

When INCREMENTAL=false (default), the database always uses a full table scan to 
maintain global statistics. This is a highly resource-intensive and time-consuming 
operation for large tables. An alternative to mandatory full table scans is gathering 
incremental statistics. When the following criteria are met, the database updates 
global statistics incrementally by scanning only the partitions that have changed:

■ The INCREMENTAL value for the partitioned table is true.

■ The PUBLISH value for the partitioned table is true.

See Also: Oracle Database PL/SQL Packages and Types Reference to 
learn more about DBMS_STATS



Gathering Statistics Manually

13-8 Oracle Database Performance Tuning Guide

■ The user specifies AUTO_SAMPLE_SIZE for ESTIMATE_PERCENT and AUTO for 
GRANULARITY when gathering statistics on the table.

Gathering table statistics incrementally has the following consequences:

■ The SYSAUX tablespace consumes additional space to maintain global statistics for 
partitioned tables.

■ If a table uses composite partitioning, then the database only gathers statistics for 
modified subpartitions. The database does not gather statistics at the subpartition 
level for unmodified subpartitions. In this way, the database reduces work by 
skipping unmodified partitions.

■ If a table uses incremental statistics, and if this table has a locally partitioned 
index, then the database gathers index statistics at the global level and for 
modified (not unmodified) index partitions. The database does not generate global 
index statistics from the partition-level index statistics. Rather, the database 
gathers global index statistics by performing a full index scan.

Column Statistics and Histograms
When gathering statistics on a table, DBMS_STATS gathers information about the data 
distribution of the columns within the table. The most basic information about the data 
distribution is the maximum value and minimum value of the column. However, this 
level of statistics may be insufficient for the optimizer's needs if the data within the 
column is skewed. For skewed data distributions, histograms can also be created as 
part of the column statistics to describe the data distribution of a given column. 
Histograms are described in more details in "Viewing Histograms" on page 13-28.

Histograms are specified using the METHOD_OPT argument of the DBMS_STATS gathering 
procedures. Oracle recommends setting the METHOD_OPT to FOR ALL COLUMNS SIZE AUTO. 
With this setting, Oracle Database automatically determines which columns require 
histograms and the number of buckets (size) of each histogram. You can also manually 
specify which columns should have histograms and the size of each histogram.

Determining Stale Statistics
You must regularly gather statistics on database objects as these database objects are 
modified over time. To determine whether a given database object needs new database 
statistics, Oracle Database provides a table monitoring facility. This monitoring is 
enabled by default when STATISTICS_LEVEL is set to TYPICAL or ALL. 

Monitoring tracks the approximate number of INSERTs, UPDATEs, and DELETEs for that 
table and whether the table has been truncated since the last time statistics were 
gathered. You can access information about changes of tables in the 
USER_TAB_MODIFICATIONS view. Following a data-modification, there may be a few 
minutes delay while Oracle Database propagates the information to this view. Use the 

See Also: Oracle Database PL/SQL Packages and Types Reference to 
learn more about DBMS_STATS

Note: If you need to remove all rows from a table when using 
DBMS_STATS, use TRUNCATE instead of dropping and re-creating the 
same table. When you drop a table, workload information used by the 
auto-histogram gathering feature and saved statistics history used by 
the RESTORE_*_STATS procedures is lost. Without this data, these 
features do not function properly.



Gathering Statistics Manually

Managing Optimizer Statistics 13-9

DBMS_STATS.FLUSH_DATABASE_MONITORING_INFO procedure to immediately reflect the 
outstanding monitored information kept in the memory.

The GATHER_DATABASE_STATS or GATHER_SCHEMA_STATS procedures gather new 
statistics for tables with stale statistics when the OPTIONS parameter is set to GATHER 
STALE or GATHER AUTO. If a monitored table has been modified more than 10%, then 
these statistics are considered stale and gathered again. 

User-Defined Statistics
You can create user-defined optimizer statistics to support user-defined indexes and 
functions. When you associate a statistics type with a column or domain index, Oracle 
Database calls the statistics collection method in the statistics type whenever statistics 
are gathered for database objects.

You should gather new column statistics on a table after creating a function-based 
index to allow Oracle Database to collect column statistics equivalent information for 
the expression. You can perform this task by calling the statistics-gathering procedure 
with the METHOD_OPT argument set to FOR ALL HIDDEN COLUMNS. 

Setting Preferences for Manual Statistics Gathering
You can use the DBMS_STATS.SET_*_PREFS procedures to set the default values for 
parameters used by the DBMS_STATS procedures that gather statistics. You can set a 
preference for each parameter at a table, schema, database, and global level, thus 
providing a fine granularity of control.

You can use the DBMS_STATS.SET_*_PREFS procedures to change the following 
parameters:

■ AUTOSTATS_TARGET (SET_GLOBAL_PREFS only)

■ CASCADE

■ DEGREE

■ ESTIMATE_PERCENT

■ GRANULARITY

■ INCREMENTAL

■ METHOD_OPT

■ NO_INVALIDATE

■ PUBLISH

■ STALE_PERCENT

Table 13–2 lists the DBMS_STATS procedures for setting preferences. Parameter values 
set in the DBMS_STAT.GATHER_*_STATS procedures overrule other settings. If a 
parameter has not been set, then the database checks for a table-level preference. If no 
table preference exists, then the database uses the GLOBAL preference.

Note: In previous releases, you used the DBMS_STATS.SET_PARM 
procedure to set the default parameter values. The scope of these 
changes was all operations that occurred after running SET_PARM. In 
Oracle Database 11g, SET_PARM is deprecated. 



Gathering Statistics Manually

13-10 Oracle Database Performance Tuning Guide

When to Gather Statistics
When gathering statistics manually, you not only need to determine how to gather 
statistics, but also when and how often to gather new statistics. 

For an application in which tables are incrementally modified, you may only need to 
gather new statistics every week or every month. The simplest way to gather statistics 
in these environments is to use a script or job scheduling tool to regularly run the 
GATHER_SCHEMA_STATS and GATHER_DATABASE_STATS procedures. The frequency of 
collection intervals should balance the task of providing accurate statistics for the 
optimizer against the processing overhead incurred by the statistics collection process. 

For tables that are substantially modified in batch operations, such as with bulk loads, 
gather statistics on these tables as part of the batch operation. Call the DBMS_STATS 
procedure as soon as the load operation completes.

Sometimes only a single partition is modified. In such cases, you can gather statistics 
only on the modified partitions rather than on the entire table. However, gathering 
global statistics for the partitioned table may still be necessary.

Table 13–2  Setting Preferences for Gathering Statistics

Procedure Purpose

SET_TABLE_PREFS Enables you to change the default values of the parameters used by 
the DBMS_STATS.GATHER_*_STATS procedures for the specified table 
only.

SET_SCHEMA_PREFS Enables you to change the default values of the parameters used by 
the DBMS_STATS.GATHER_*_STATS procedures for all existing objects 
in the specified schema.

This procedure calls SET_TABLE_PREFS for each of the tables in the 
specified schema. Because it uses SET_TABLE_PREFS, calling 
SET_SCHEMA_PREFS does not affect any new objects created after it 
has been run. New objects use the GLOBAL_PREF values for all 
parameters.

SET_DATABASE_PREFS Enables you to change the default values of the parameters used by 
the DBMS_STATS.GATHER_*_STATS procedures for all user-defined 
schemas in the database. You can include system-owned schemas 
such as SYS and SYSTEM by setting the ADD_SYS parameter to TRUE.

This procedure calls SET_TABLE_PREFS for each table in the specified 
schema. Because it uses SET_TABLE_PREFS, calling SET_SCHEMA_PREFS 
does not affect any new objects created after it has been run. New 
objects use the GLOBAL_PREF values for all parameters.

SET_GLOBAL_PREFS Enables you to change the default values of the parameters used by 
the DBMS_STATS.GATHER_*_STATS procedures for any object in the 
database that does not have an existing table preference. 

All parameters default to the global setting unless a table preference 
is set or the parameter is explicitly set in the 
DBMS_STATS.GATHER_*_STATS command. Changes made by this 
procedure will affect any new objects created after it has been run. 
New objects use the GLOBAL_PREF values for all parameters. 

With GLOBAL_PREFS, you can set a default value for the parameter 
AUTOSTAT_TARGET. This additional parameter controls which objects 
the automatic statistic gathering job running in the nightly 
maintenance window looks after. Possible values for this parameter 
are ALL, ORACLE, and AUTO (default).

See Also: Oracle Database PL/SQL Packages and Types Reference for 
syntax and examples of all DBMS_STATS procedures



System Statistics

Managing Optimizer Statistics 13-11

Comparing Statistics with DBMS_STATS Functions
DBMS_STATS enables you to compare statistics for a table from two different sources. 
Table 13–3 lists the functions in the DBMS_STATS package for comparing statistics.

The functions in Table 13–3 also compare the statistics of dependent objects such as 
indexes, columns, and partitions. They display statistics of the objects from both 
sources if the difference between those statistics exceeds a certain threshold. You can 
specify the threshold as an argument to the function, with a default of 10%. Oracle 
Database uses the statistics corresponding to the first source as basis for computing the 
differential percentage.

System Statistics
System statistics describe the system's hardware characteristics, such as I/O and CPU 
performance and utilization, to the query optimizer. When choosing an execution plan, 
the optimizer estimates the I/O and CPU resources required for each query. System 
statistics enable the query optimizer to more accurately estimate I/O and CPU costs, 
enabling the query optimizer to choose a better execution plan.

When Oracle Database gathers system statistics, it analyzes system activity in a 
specified time period (workload statistics) or simulates a workload (noworkload 
statistics). The statistics are collected using the DBMS_STATS.GATHER_SYSTEM_STATS 
procedure. Oracle highly recommends that you gather system statistics.

Table 13–4 lists the optimizer system statistics gathered by the DBMS_STATS package 
and the options for gathering or manually setting specific system statistics. 

See Also: Oracle Database PL/SQL Packages and Types Reference for 
more information about the GATHER_SCHEMA_STATS and 
GATHER_DATABASE_STATS procedures in the DBMS_STATS package

Table 13–3  Functions That Compare Statistics in the DBMS_STATS Package

Procedure Compares

DIFF_TABLE_STATS_IN_PENDING Pending statistics and statistics as of a 
timestamp or statistics from dictionary

DIFF_TABLE_STATS_IN_STATTAB Statistics for a table from two different 
sources

DIFF_TABLE_STATS_IN_HISTORY Statistics for a table from two 
timestamps in past and statistics as of 
that timestamp

See Also: Oracle Database PL/SQL Packages and Types Reference for 
more information about the DIFF_TABLE_STATS_* functions in the 
DBMS_STATS package

Note: You must have DBA privileges or 
GATHER_SYSTEM_STATISTICS role to update dictionary system 
statistics.



System Statistics

13-12 Oracle Database Performance Tuning Guide

Unlike table, index, or column statistics, Oracle Database does not invalidate parsed 
SQL statements when system statistics are updated. All new SQL statements are 
parsed using new statistics.

Oracle Database offers two options for gathering system statistics:

■ Workload Statistics

■ Noworkload Statistics

These options better facilitate the gathering process to the physical database and 
workload: when workload system statistics are gathered, noworkload system statistics 
are ignored. Noworkload system statistics are initialized to default values at the first 
database startup.

Workload Statistics
Workload statistics include the following:

■ Single and multiblock read times

■ mbrc

■ CPU speed (cpuspeed)

■ Maximum system throughput

■ Average slave throughput

Table 13–4  Optimizer System Statistics in the DBMS_STAT Package

Parameter Name Description Initialization
Options for Gathering or Setting 
Statistics Unit

cpuspeedNW Represents noworkload CPU speed. 
CPU speed is the average number of 
CPU cycles in each second.

At system 
startup

Set gathering_mode = NOWORKLOAD or 
set statistics manually.

Millions/sec.

ioseektim I/O seek time equals seek time + 
latency time + operating system 
overhead time.

At system 
startup

10 (default)

Set gathering_mode = NOWORKLOAD or 
set statistics manually.

ms

iotfrspeed I/O transfer speed is the rate at 
which an Oracle database can read 
data in the single read request.

At system 
startup

4096 (default)

Set gathering_mode = NOWORKLOAD or 
set statistics manually.

Bytes/ms

cpuspeed Represents workload CPU speed. 
CPU speed is the average number of 
CPU cycles in each second.

None Set gathering_mode = NOWORKLOAD, 
INTERVAL, or START|STOP, or set 
statistics manually.

Millions/sec.

maxthr Maximum I/O throughput is the 
maximum throughput that the I/O 
subsystem can deliver.

None Set gathering_mode = NOWORKLOAD, 
INTERVAL, or START|STOP, or set 
statistics manually.

Bytes/sec.

slavethr Slave I/O throughput is the average 
parallel slave I/O throughput. 

None Set gathering_mode = INTERVAL or 
START|STOP, or set statistics manually.

Bytes/sec.

sreadtim Single block read time is the average 
time to read a single block 
randomly.

None Set gathering_mode = INTERVAL or 
START|STOP, or set statistics manually.

ms

mreadtim Multiblock read is the average time 
to read a multiblock sequentially.

None Set gathering_mode = INTERVAL or 
START|STOP, or set statistics manually.

ms

mbrc Multiblock count is the average 
multiblock read count sequentially.

None Set gathering_mode = INTERVAL or 
START|STOP, or set statistics manually.

blocks

See Also: Oracle Database PL/SQL Packages and Types Reference for 
detailed information on the procedures in the DBMS_STATS package 
for implementing system statistics



System Statistics

Managing Optimizer Statistics 13-13

single and multiblock read times, mbrc, CPU speed (cpuspeed), maximum system 
throughput, and average slave throughput. The database computes sreadtim, 
mreadtim, and mbrc by comparing the number of physical sequential and random 
reads between two points in time from the beginning to the end of a workload. The 
database implements these values through counters that change when the buffer cache 
completes synchronous read requests.

Because the counters are in the buffer cache, they include not only I/O delays, but also 
waits related to latch contention and task switching. Workload statistics thus depend 
on the activity the system had during the workload window. If system is I/O bound 
(both latch contention and I/O throughput), then the statistics reflect this situation and 
therefore promotes a less I/O-intensive plan after the database uses the statistics. 
Furthermore, workload statistics gathering does not generate additional overhead.

Gathering Workload Statistics
To gather workload statistics, perform either of the following tasks:

■ Run the DBMS_STATS.GATHER_SYSTEM_STATS('start') procedure at the beginning 
of the workload window, then the DBMS_STATS.GATHER_SYSTEM_STATS('stop') 
procedure at the end of the workload window.

■ Run DBMS_STATS.GATHER_SYSTEM_STATS('interval', interval=>N) where N is 
the number of minutes when statistics gathering is stopped automatically.

To delete system statistics, run dbms_stats.delete_system_stats(). Workload 
statistics are deleted and reset to the default noworkload statistics.

Multiblock Read Count
If you gather workload statistics, then the mbrc value gathered as part of the workload 
statistics is used to estimate the cost of a full table scan. However, during the gathering 
process of workload statistics, Oracle Database may not gather the mbrc and mreadtim 
values if no table scans are performed during serial workloads, as is often the case 
with OLTP systems. However, full table scans occur frequently on DSS systems but 
may run parallel and bypass the buffer cache. In such cases, Oracle Database still 
gathers the sreadtim value because the database performs index lookup using the 
buffer cache.

If Oracle Database cannot gather or validate gathered mbrc or mreadtim values, but has 
gathered sreadtim and cpuspeed values, then the database uses only the sreadtim and 
cpuspeed values for costing. In this case, the optimizer uses the value of the 
initialization parameter DB_FILE_MULTIBLOCK_READ_COUNT to cost a full table scan. 
However, if DB_FILE_MULTIBLOCK_READ_COUNT is not set or is set to 0 (zero), then the 
optimizer uses a value of 8 for costing.

Noworkload Statistics
Noworkload statistics consist of I/O transfer speed, I/O seek time, and CPU speed 
(cpuspeednw). The major difference between workload statistics and noworkload 
statistics lies in the gathering method.

Noworkload statistics gather data by submitting random reads against all data files, 
while workload statistics uses counters updated when database activity occurs. 
ioseektim represents the time it takes to position the disk head to read data. Its value 
usually varies from 5 ms to 15 ms, depending on disk rotation speed and the disk or 
RAID specification. The I/O transfer speed represents the speed at which one 
operating system process can read data from the I/O subsystem. Its value varies 



Managing Statistics

13-14 Oracle Database Performance Tuning Guide

greatly, from a few MBs per second to hundreds of MBs per second. Oracle Database 
uses relatively conservative default settings for I/O transfer speed.

Oracle Database uses noworkload statistics and the CPU cost model by default. The 
values of noworkload statistics are initialized to defaults at the first instance startup:

ioseektim = 10ms
iotrfspeed = 4096 bytes/ms
cpuspeednw = gathered value, varies based on system

If workload statistics are gathered, then Oracle Database ignores noworkload statistics 
and uses workload statistics instead.

Gathering Noworkload Statistics
To gather noworkload statistics, run DBMS_STATS.GATHER_SYSTEM_STATS() with no 
arguments. There is an overhead on the I/O system during the gathering process of 
noworkload statistics. The gathering process may take from a few seconds to several 
minutes, depending on I/O performance and database size.

The information is analyzed and verified for consistency. In some cases, the value of 
noworkload statistics may remain its default value. In such cases, repeat the statistics 
gathering process or set the value manually to values that the I/O system has 
according to its specifications by using the DBMS_STATS.SET_SYSTEM_STATS procedure.

Managing Statistics
This section includes the following topics:

■ Pending Statistics

■ Managing Extended Statistics

■ Restoring Previous Versions of Statistics

■ Exporting and Importing Statistics

■ Restoring Statistics Versus Importing or Exporting Statistics

■ Locking Statistics for a Table or Schema

■ Setting Statistics

■ Handling Missing Statistics

Pending Statistics
Starting with Oracle Database 11g Release 2 (11.2), you have the following options 
when gathering statistics:

■ Publish the statistics automatically at the end of the gather operation (default 
behavior)

■ Save the new statistics saved as pending

Saving the new statistics as pending allows you to validate the new statistics and 
publish them only if they are satisfactory.

To check whether the statistics will be automatically published as soon as they are 
gathered, use the DBMS_STATS package as follows:

SELECT DBMS_STATS.GET_PREFS('PUBLISH') PUBLISH FROM DUAL;



Managing Statistics

Managing Optimizer Statistics 13-15

The preceding query returns either TRUE or FALSE. TRUE indicates that the statistics will 
be published as and when they are gathered, while FALSE indicates that the statistics 
will be kept pending.

You can change the PUBLISH setting at either the schema or the table level. For 
example, to change the PUBLISH setting for the customers table in the SH schema, 
execute the statement:

EXEC DBMS_STATS.SET_TABLE_PREFS('SH', 'CUSTOMERS', 'PUBLISH', 'false');

Subsequently, when you gather statistics on the customers table, the statistics will not 
be automatically published when the gather job completes. Instead, the database stores 
the newly gathered statistics in the USER_TAB_PENDING_STATS table.

By default, the optimizer uses the published statistics stored in the data dictionary 
views. If you want the optimizer to use the newly collected pending statistics, then set 
the initialization parameter OPTIMIZER_USE_PENDING_STATISTICS to TRUE (the default 
value is FALSE), and run a workload against the table or schema:

ALTER SESSION SET OPTIMIZER_USE_PENDING_STATISTICS = TRUE;

The optimizer will use the pending statistics instead of the published statistics when 
compiling SQL statements. If the pending statistics are valid, then you can make them 
public by executing the following statement:

EXEC DBMS_STATS.PUBLISH_PENDING_STATS(null, null);

You can also publish the pending statistics for a specific database object. For example, 
by using the following statement:

EXEC DBMS_STATS.PUBLISH_PENDING_STATS('SH','CUSTOMERS');

If you do not want to publish the pending statistics, delete them by executing the 
following statement:

EXEC DBMS_STATS.DELETE_PENDING_STATS('SH','CUSTOMERS');

You can export pending statistics using DBMS_STATS.EXPORT_PENDING_STATS function. 
Exporting pending statistics to a test system enables you to run a full workload against 
the new statistics.

Managing Extended Statistics
DBMS_STATS enables you to collect extended statistics, which are statistics that can 
improve cardinality estimates when multiple predicates exist on different columns of a 
table, or when predicates use expressions. An extension is either a column group or an 
expression.

Oracle Database supports the following types of extended statistics:

■ Column group statistics

Note: The database stores published statistics in data dictionary 
views such as USER_TAB_STATISTICS and USER_IND_STATISTICS. The 
database stores pending statistics in views such as 
USER_TAB_PENDING_STATS and USER_IND_PENDING_STATS. 



Managing Statistics

13-16 Oracle Database Performance Tuning Guide

This type of extended statistics can improve cardinality estimates when multiple 
columns from the same table occur together in a SQL statement. See "Managing 
Column Group Statistics".

■ Expression statistics

This type of extended statistics improves optimizer estimates when predicates use 
expressions, for example, built-in or user-defined functions. See "Managing 
Expression Statistics".

Managing Column Group Statistics
When the WHERE clause of a query specifies multiple columns from a single table 
(multiple single column predicates), the relationship between the columns can 
strongly affect the combined selectivity for the column group. 

For example, consider the customers table in the sh schema. The columns 
cust_state_province and country_id are related, with cust_state_province 
determining the country_id for each customer. Suppose you query the customers 
table where the cust_state_province is California:

SELECT COUNT(*)
FROM   sh.customers 
WHERE  cust_state_province = 'CA';

The preceding query returns the following value:

 COUNT(*)
----------
    3341

Adding an extra predicate on the country_id column does not change the result when 
the country_id is 52790 (United States of America). Assume that you run the 
following query:

SELECT COUNT(*) 
FROM   customers 
WHERE  cust_state_province = 'CA' 
AND    country_id=52790;

The preceding query returns the same value as the previous query:

 COUNT(*)
----------
    3341

Assume that the country_id has a different value, such as 52775 (Brazil), as in the 
following query:

SELECT COUNT(*) 
FROM   customers 
WHERE  cust_state_province = 'CA' 
AND    country_id=52775;

In this case the returned value is as follows:

 COUNT(*)

Note: You cannot create extended statistics on virtual columns. See 
Oracle Database SQL Language Reference for a list of restrictions on 
virtual columns.



Managing Statistics

Managing Optimizer Statistics 13-17

----------
       0

With individual column statistics, the optimizer has no way of knowing that the 
cust_state_province and the country_id columns are related. By gathering statistics 
on these columns as a group (column group), the optimizer has a more accurate 
selectivity value for the group, instead of having to generate the value based on the 
individual column statistics.

You can create column groups manually by using the DBMS_STATS package. You can 
use this package to create a column group, get the name of a column group, or delete a 
column group from a table.

Creating a Column Group  Use the CREATE_EXTENDED_STATISTICS function to create a 
column group. The CREATE_EXTENDED_STATISTICS function returns the 
system-generated name of the newly created column group. Table 13–5 lists the input 
parameters for this function.

For example, to add a column group consisting of the cust_state_province and 
country_id columns to the customers table in SH schema, run the following PL/SQL 
block:

DECLARE
  cg_name VARCHAR2(30);
BEGIN
  cg_name := DBMS_STATS.CREATE_EXTENDED_STATS(null,'customers',  
             '(cust_state_province,country_id)');
END;
/

Getting a Column Group  Use the show_extended_stats_name function to obtain the name 
of the column group for a given set of columns. Table 13–6 lists the input parameters 
for this function.

For example, use the following query to obtain the column group name for a set of 
columns on the customers table:

SELECT SYS.DBMS_STATS.SHOW_EXTENDED_STATS_NAME('sh','customers',
       '(cust_state_province,country_id)') col_group_name 
FROM   DUAL;

The output is similar to the following:

Table 13–5  Parameters for the create_extended_statistics Function

Parameter Description

ownname Schema owner. NULL indicates current schema.

tabname Name of the table to which the column group is added.

extension Columns in the column group.

Table 13–6  Parameters for the show_extended_stats_name Function

Parameter Description

ownname Schema owner. NULL indicates current schema.

tabname Name of the table to which the column group belongs.

extension Name of the column group.



Managing Statistics

13-18 Oracle Database Performance Tuning Guide

COL_GROUP_NAME
----------------
SYS_STU#S#WF25Z#QAHIHE#MOFFMM

Dropping a Column Group  Use the DROP_EXTENDED_STATS function to delete a column 
group from a table. Table 13–7 lists the input parameters for this function:

For example, the following statement deletes a column group from the customers 
table:

EXEC DBMS_STATS.DROP_EXTENDED_STATS('sh','customers',
                                    '(cust_state_province,country_id)');

Monitoring Column Groups  Use the dictionary table USER_STAT_EXTENSIONS to obtain 
information about multicolumn statistics:

SELECT EXTENSION_NAME, EXTENSION 
FROM   USER_STAT_EXTENSIONS 
WHERE  TABLE_NAME='CUSTOMERS';

EXTENSION_NAME                     EXTENSION
-------------------------------------------------------------------------
SYS_STU#S#WF25Z#QAHIHE#MOFFMM_     ("CUST_STATE_PROVINCE","COUNTRY_ID")

Use the following query to find the number of distinct values and find whether a 
histogram has been created for a column group:

SELECT e.EXTENSION col_group, t.NUM_DISTINCT, t.HISTOGRAM
FROM   USER_STAT_EXTENSIONS e, USER_TAB_COL_STATISTICS t
WHERE  e.EXTENSION_NAME=t.COLUMN_NAME
AND    e.TABLE_NAME=t.TABLE_NAME
AND    t.TABLE_NAME='CUSTOMERS';

COL_GROUP                             NUM_DISTINCT        HISTOGRAM
-------------------------------------------------------------------------------
("COUNTRY_ID","CUST_STATE_PROVINCE")  145                 FREQUENCY

Gathering Statistics on Column Groups  The METHOD_OPT argument of the DBMS_STATS 
package enables you to gather statistics on column groups. If you set the value of this 
argument to FOR ALL COLUMNS SIZE AUTO, then the optimizer gathers statistics on all 
existing column groups. To collect statistics on a new column group, specify the group 
using FOR COLUMNS. The column group is automatically created as part of statistic 
gathering.

For example, the following statement creates a new column group for the customers 
table on the columns cust_state_province, country_id and gathers statistics 
(including histograms) on the entire table and the new column group:

EXEC DBMS_STATS.GATHER_TABLE_STATS('SH','CUSTOMERS',METHOD_OPT =>
'FOR ALL COLUMNS SIZE SKEWONLY 
FOR COLUMNS (CUST_STATE_PROVINCE,COUNTRY_ID) SIZE SKEWONLY');

Table 13–7  Parameters for the drop_extended_stats Function

Parameter Description

ownname Schema owner. NULL indicates current schema.

tabname Name of the table to which the column group belongs.

extension Name of the column group to be deleted.



Managing Statistics

Managing Optimizer Statistics 13-19

Managing Expression Statistics
When a function is applied to a column in the WHERE clause of a query 
(function(col1)=constant), the optimizer has no way of knowing how that function 
affects the selectivity of the column. By gathering expression statistics on the 
expression function(col1), the optimizer obtains a more accurate selectivity value.

An example of such a function is:

SELECT COUNT(*)
FROM   CUSTOMERS
WHERE  LOWER(CUST_STATE_PROVINCE)='ca';

Creating Expression Statistics  You can create statistics on an expression as part of the 
GATHER_TABLE_STATS procedure:

EXEC DBMS_STATS.GATHER_TABLE_STATS('sh','customers', method_opt =>
'FOR ALL COLUMNS SIZE SKEWONLY 
 FOR COLUMNS (LOWER(cust_state_province)) SIZE SKEWONLY');

You can also use the CREATE_EXTENDED_STATISTICS function to accomplish this:

SELECT 
DBMS_STATS.CREATE_EXTENDED_STATS(null,'customers','(LOWER(cust_state_province))') 
FROM DUAL;

Monitoring Expression Statistics  Use the dictionary table user_stat_extensions to 
obtain information about expression statistics:

SELECT EXTENSION_NAME, EXTENSION 
FROM   USER_STAT_EXTENSIONS 
WHERE  TABLE_NAME='CUSTOMERS';

EXTENSION_NAME                    EXTENSION
------------------------------------------------------------------------
SYS_STUBPHJSBRKOIK9O2YV3W8HOUE    (LOWER("CUST_STATE_PROVINCE"))

Use the following query to find the number of distinct values and find whether a 
histogram has been created:

SELECT e.EXTENSION col_group, t.NUM_DISTINCT, t.HISTOGRAM
FROM   USER_STAT_EXTENSIONS e, USER_TAB_COL_STATISTICS t
WHERE  e.EXTENSION_NAME=t.COLUMN_NAME
AND    t.TABLE_NAME='CUSTOMERS';

COL_GROUP                        NUM_DISTINCT          HISTOGRAM
------------------------------------------------------------------------
(LOWER("CUST_STATE_PROVINCE"))   145                   FREQUENCY

Dropping Expression Statistics  Use the DROP_EXTENDED_STATS function to delete 
expression statistics from a table:

EXEC DBMS_STATS.DROP_EXTENDED_STATS(null,'customers','(lower(country_id))');

Note: The optimizer only uses multicolumn statistics with equality 
predicates.



Managing Statistics

13-20 Oracle Database Performance Tuning Guide

Restoring Previous Versions of Statistics
Whenever statistics in dictionary are modified, old versions of statistics are saved 
automatically for future restoration. You can restore statistics using RESTORE 
procedures of DBMS_STATS package. These procedures use a time stamp as an argument 
and restore statistics as of that time stamp. This is useful in case newly collected 
statistics leads to some sub-optimal execution plans and the administrator wants to 
revert to the previous set of statistics. 

There are dictionary views that display the time of statistics modifications. These 
views are useful in determining the time stamp to be used for statistics restoration.

■ Catalog view DBA_OPTSTAT_OPERATIONS contain history of statistics operations 
performed at schema and database level using DBMS_STATS.

■ The views *_TAB_STATS_HISTORY views (ALL, DBA, or USER) contain a history of 
table statistics modifications.

The database purges old statistics automatically at regular intervals based on the 
statistics history retention setting and the time of the recent analysis of the system. You 
can configure retention using the ALTER_STATS_HISTORY_RETENTION procedure of 
DBMS_STATS. The default value is 31 days, which means that you would be able to 
restore the optimizer statistics to any time in last 31 days.

Automatic purging is enabled when STATISTICS_LEVEL parameter is set to TYPICAL or 
ALL. If automatic purging is disabled, then you must purge the old versions of statistics 
manually using the PURGE_STATS procedure.

The other DBMS_STATS procedures related to restoring and purging statistics include:

■ PURGE_STATS: This procedure can manually purge old versions beyond a time 
stamp.

■ GET_STATS_HISTORY_RETENTION: This function can get the current statistics history 
retention value.

■ GET_STATS_HISTORY_AVAILABILITY:   This function gets the oldest time stamp 
where statistics history is available. Users cannot restore statistics to a time stamp 
older than the oldest time stamp.

When restoring previous versions of statistics, the following limitations apply:

■ RESTORE procedures cannot restore user-defined statistics.

■ Old versions of statistics are not stored when the ANALYZE command has been used 
for collecting statistics.

Exporting and Importing Statistics
You can export and import statistics from the data dictionary to user-owned tables, 
enabling you to create multiple versions of statistics for the same schema. You can also 
copy statistics from one database to another database. You may want to do this to copy 
the statistics from a production database to a scaled-down test database.

Note: To remove all rows from a table when using DBMS_STATS, use 
TRUNCATE instead of dropping and re-creating the same table. When 
you drop a table, workload information used by the auto-histogram 
gathering feature and saved statistics history used by the 
RESTORE_*_STATS procedures is lost. Without this data, these features 
do not function properly.



Managing Statistics

Managing Optimizer Statistics 13-21

Before exporting statistics, you first need to create a table for holding the statistics. The 
procedure DBMS_STATS.CREATE_STAT_TABLE creates the statistics table. After table 
creation, you can export statistics from the data dictionary into the statistics table 
using the DBMS_STATS.EXPORT_*_STATS procedures. You can then import statistics 
using the DBMS_STATS.IMPORT_*_STATS procedures.

Note that the optimizer does not use statistics stored in a user-owned table. The only 
statistics used by the optimizer are the statistics stored in the data dictionary. To have 
the optimizer use the statistics in a user-owned tables, you must import those statistics 
into the data dictionary using the statistics import procedures.

To move statistics from one database to another, you must first export the statistics on 
the first database, then copy the statistics table to the second database, using the Data 
Pump Export and Import utilities or other mechanisms, and finally import the 
statistics into the second database.

Restoring Statistics Versus Importing or Exporting Statistics
The functionality for restoring statistics is similar in some respects to the functionality 
of importing and exporting statistics. In general, use the restore capability when:

■ You want to recover older versions of the statistics. For example, to restore the 
optimizer behavior to an earlier date. 

■ You want the database to manage the retention and purging of statistics histories. 

You should use EXPORT/IMPORT_*_STATS procedures when:

■ You want to experiment with multiple sets of statistics and change the values back 
and forth.

■ You want to move the statistics from one database to another database. For 
example, moving statistics from a production system to a test system.

■ You want to preserve a known set of statistics for a longer period than the desired 
retention date for restoring statistics.

Locking Statistics for a Table or Schema
Statistics for a table or schema can be locked. After statistics are locked, you can make 
no modifications to the statistics until the statistics have been unlocked. Locking 
procedures are useful in a static environment in which you want to guarantee that the 
statistics never change.

The DBMS_STATS package provides two procedures for locking (LOCK_SCHEMA_STATS 
and LOCK_TABLE_STATS) and two procedures for unlocking statistics 
(UNLOCK_SCHEMA_STATS and UNLOCK_TABLE_STATS).

Note: Exporting and importing statistics is a distinct concept from 
the Data Pump Export and Import utilities. 

Note: The Data Pump Export and Import utilities export and 
import optimizer statistics from the database along with the table. 
When a column has system-generated names, Original Export does 
not export statistics with the data, but this restriction does not 
apply to Data Pump Export.



Controlling Dynamic Statistics

13-22 Oracle Database Performance Tuning Guide

Setting Statistics
You can set table, column, index, and system statistics using the SET_*_STATISTICS 
procedures. Setting statistics in the manner is not recommended, because inaccurate or 
inconsistent statistics can lead to poor performance.

Handling Missing Statistics
When Oracle Database encounters a table with missing statistics, by default the 
database dynamically gathers the statistics needed by the optimizer. However, for 
certain types of tables, including remote tables and external tables, Oracle Database 
does not gather dynamic statistics. In these cases and also when dynamic statistics 
have been disabled, the optimizer uses default values for its statistics, shown in 
Table 13–8 and Table 13–9.

Controlling Dynamic Statistics
By default, Oracle Database automatically gathers dynamic statistics when optimizer 
statistics are missing or need augmentation. To obtain the statistics, the database uses 
recursive SQL during parsing to scan a small random sample of table blocks.

This section contains the following topics:

■ Purpose of Dynamic Statistics

■ Dynamic Statistics Concepts

■ Setting Dynamic Statistics Levels Manually

■ Disabling Dynamic Statistics

Table 13–8  Default Table Values When Statistics Are Missing

Table Statistic Default Value Used by Optimizer

Cardinality num_of_blocks * (block_size - cache_layer) / avg_row_len

Average row length 100 bytes

Number of blocks 100 or actual value based on the extent map

Remote cardinality 2000 rows

Remote average row length 100 bytes

Table 13–9  Default Index Values When Statistics Are Missing

Index Statistic Default Value Used by Optimizer

Levels 1

Leaf blocks 25

Leaf blocks/key 1

Data blocks/key 1

Distinct keys 100

Clustering factor 800

Note: Dynamic statistics were called dynamic sampling in previous 
releases.



Controlling Dynamic Statistics

Managing Optimizer Statistics 13-23

Purpose of Dynamic Statistics
By augmenting missing or insufficient optimizer statistics, the optimizer can improve 
plans by making better estimates for predicate selectivity. Dynamic statistics can 
supplement statistics such as table block counts, applicable index block counts, table 
cardinalities (estimated number of rows), and relevant join column statistics.

Dynamic Statistics Concepts
Dynamic statistics are enabled in the database by default. You can disable the feature 
by setting the initialization parameter OPTIMIZER_DYNAMIC_SAMPLING=0.

Dynamic Statistics Levels
The dynamic statistics level controls both when the database gathers dynamic 
statistics, and the size of the sample that the optimizer uses to gather the statistics. Set 
the dynamic statistics level using either the OPTIMIZER_DYNAMIC_SAMPLING 
initialization parameter or a statement hint.

Table 13–10 describes the dynamic statistics levels. The default level is 2. Starting in 
Oracle Database 11g Release 2 (11.2.0.4), level 11 enables the database to gather 
statistics whenever and at whichever level the optimizer deems best.

Table 13–10  Dynamic Statistics Levels

Level When the Optimizer Uses Dynamic Statistics
Sample Size 
(Blocks)

0 Do not use dynamic statistics n/a

1 Use dynamic statistics for all tables that do not have statistics, but 
only if the following criteria are met:

■ There is at least 1 nonpartitioned table in the query that does not 
have statistics.

■ This table has no indexes.

■ This table has more blocks than the number of blocks that would 
be used for dynamic statistics of this table.

32

2 Use dynamic statistics if at least one table in the statement has no 
statistics. This is the default setting.

64

3 Use dynamic statistics if any of the following conditions is true:

■ The statement meets level 2 criteria.

■ The statement has one or more expressions used in the WHERE 
clause predicates, for example, WHERE 
SUBSTR(cust_last_name,1,3).

64

4 Use dynamic statistics if any of the following conditions is true:

■ The statement meets level 3 criteria.

■ The statement uses complex predicates (an OR or AND operator 
between multiple predicates on the same table).

64

5 Use dynamic statistics if the statement meets level 4 criteria. 128

6 Use dynamic statistics if the statement meets level 4 criteria. 256

7 Use dynamic statistics if the statement meets level 4 criteria. 512

8 Use dynamic statistics if the statement meets level 4 criteria. 1024

9 Use dynamic statistics if the statement meets level 4 criteria. 4086

10 Use dynamic statistics if the statement meets level 4 criteria. All blocks



Controlling Dynamic Statistics

13-24 Oracle Database Performance Tuning Guide

When the Optimizer Uses Dynamic Statistics
The primary factor in the decision to use dynamic statistics is whether available 
statistics are sufficient to generate an optimal plan. If statistics are insufficient, then the 
optimizer uses dynamic statistics.

In general, the optimizer uses default statistics rather than dynamic statistics to 
compute statistics needed during optimizations on tables, indexes, and columns. The 
optimizer decides whether to use dynamic statistics based on several factors. For 
example, the database uses automatic dynamic statistics when the SQL statement uses 
parallel execution.

The optimizer automatically gathers dynamic statistics in the following cases:

■ Missing statistics

When tables in a query have no statistics, the optimizer gathers basic statistics on 
these tables before optimization. Statistics can be missing because the application 
creates new objects without a follow-up call to DBMS_STATS to gather statistics, or 
because statistics were locked on an object before statistics were gathered.

In this case, the statistics are not as high-quality or as complete as the statistics 
gathered using the DBMS_STATS package. This trade-off is made to limit the impact 
on the compile time of the statement.

■ Stale statistics

Statistics gathered by DBMS_STATS can become out-of-date. Typically, statistics are 
stale when 10% or more of the rows in the table have changed since the last time 
statistics were gathered.

■ Insufficient statistics

Statistics can be insufficient whenever the optimizer estimates the selectivity of 
predicates (filter or join) or the GROUP BY clause without taking into account 
correlation between columns, skew in the column data distribution, statistics on 
expressions, and so on. 

Extended statistics help the optimizer obtain accurate quality cardinality estimates 
for complex predicate expressions. The optimizer can use dynamic statistics to 
compensate for the lack of extended statistics or when it cannot use extended 
statistics, for example, for non-equality predicates.

Starting in Oracle Database 11g Release 2 (11.2.0.4), the optimizer can automatically 
decide whether dynamic statistics are useful and which statistics level to use for all 
SQL statements. The optimizer operates in this way only when the sampling level is 

11 Use dynamic statistics automatically whenever the optimizer deems 
it necessary.

Automatically 
determined

See Also:  Oracle Database SQL Language Reference to learn about 
setting the statistics levels with the DYNAMIC_SAMPLING hint

Note: The database does not use dynamic statistics for queries that 
contain the AS OF clause.

Table 13–10 (Cont.) Dynamic Statistics Levels

Level When the Optimizer Uses Dynamic Statistics
Sample Size 
(Blocks)



Controlling Dynamic Statistics

Managing Optimizer Statistics 13-25

explicitly set to 11 (see Table 13–10) either through the OPTIMIZER_DYNAMIC_SAMPLING 
initialization parameter or a SQL hint.

Setting Dynamic Statistics Levels Manually
When setting the dynamic statistics level, the best practice is to use ALTER SESSION to 
set the value for the OPTIMIZER_DYNAMIC_SAMPLING initialization parameter. 
Determining a systemwide setting that would be beneficial to all SQL statements can 
be difficult.

Assumptions
This tutorial assumes the following:

■ You want correct selectivity estimates for the following query, which has WHERE 
clause predicates on two correlated columns:

  SELECT *
  FROM   sh.customers
  WHERE  cust_city='Los Angeles'
  AND    cust_state_province='CA';

■ The preceding query uses serial processing.

■ The sh.customers table contains 932 rows that meet the conditions in the query.

■ You have gathered statistics on the sh.customers table.

■ You created an index on the cust_city and cust_state_province columns.

■ The OPTIMIZER_DYNAMIC_SAMPLING initialization parameter is set to the default 
level of 2.

To set the dynamic statistics level manually:

1. Connect SQL*Plus to the database with the appropriate privileges, and then 
explain the execution plan as follows:

EXPLAIN PLAN FOR
  SELECT *
  FROM   sh.customers
  WHERE  cust_city='Los Angeles'
  AND    cust_state_province='CA';

2. Query the plan as follows:

SET LINESIZE 130
SET PAGESIZE 0
SELECT * 
FROM   TABLE(DBMS_XPLAN.DISPLAY);

The output appears below (the example has been reformatted to fit on the page):

-------------------------------------------------------------------------------
|Id| Operation                   | Name             |Rows|Bytes|Cost | Time   |
-------------------------------------------------------------------------------
| 0| SELECT STATEMENT            |                   | 53| 9593|53(0)|00:00:01|
| 1|  TABLE ACCESS BY INDEX ROWID|CUSTOMERS          | 53| 9593|53(0)|00:00:01|
|*2|   INDEX RANGE SCAN          |CUST_CITY_STATE_IND| 53| 9593| 3(0)|00:00:01|
-------------------------------------------------------------------------------
 

See Also: Oracle Database Reference to learn about the 
OPTIMIZER_DYNAMIC_SAMPLING initialization parameter



Controlling Dynamic Statistics

13-26 Oracle Database Performance Tuning Guide

Predicate Information (identified by operation id):
---------------------------------------------------
 
   2 - access("CUST_CITY"='Los Angeles' AND "CUST_STATE_PROVINCE"='CA')

The columns in the WHERE clause have a real-world correlation, but the optimizer is 
not aware that Los Angeles is in California and assumes both predicates reduce 
the number of rows returned. Thus, the table contains 932 rows that meet the 
conditions, but the optimizer estimates 53, as shown in bold.

If the database had used dynamic statistics for this plan, then the Note section of 
the plan output would have indicated this fact. The optimizer did not use dynamic 
statistics because the statement executed serially, standard statistics exist, and the 
parameter OPTIMIZER_DYNAMIC_SAMPLING is set to the default of 2.

3. Set the dynamic statistics level to 4 in the session using the following statement:

ALTER SESSION SET OPTIMIZER_DYNAMIC_SAMPLING=4;

4. Explain the plan again:

EXPLAIN PLAN FOR
  SELECT *
  FROM   sh.customers
  WHERE  cust_city='Los Angeles'
  AND    cust_state_province='CA';

The new plan shows a more accurate estimate of the number of rows, as shown by 
the value 932 in bold: 

PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------
Plan hash value: 2008213504
 
-------------------------------------------------------------------------------
| Id  | Operation         | Name      | Rows  | Bytes | Cost (%CPU)| Time     |
-------------------------------------------------------------------------------
|   0 | SELECT STATEMENT  |           |   932 |   271K|   406   (1)| 00:00:05 |
|*  1 |  TABLE ACCESS FULL| CUSTOMERS |   932 |   271K|   406   (1)| 00:00:05 |
-------------------------------------------------------------------------------
 
Predicate Information (identified by operation id):
---------------------------------------------------
 
   1 - filter("CUST_CITY"='Los Angeles' AND "CUST_STATE_PROVINCE"='CA')
 
Note
-----
   - dynamic statistics used for this statement (level=4)

The note at the bottom of the plan indicates that the sampling level is 4. The 
additional dynamic statistics made the optimizer aware of the real-world 
relationship between the cust_city and cust_state_province columns, thereby 
enabling it to produce a more accurate estimate for the number of rows: 932 rather 
than 53.



Viewing Statistics

Managing Optimizer Statistics 13-27

Disabling Dynamic Statistics
In general, the best practice is not to incur the cost of dynamic statistics for queries 
whose compile times must be as fast as possible, for example, unrepeated OLTP 
queries. You can disable the feature by setting the OPTIMIZER_DYNAMIC_SAMPLING 
initialization parameter.

To disable dynamic statistics at the session level:

1. Connect SQL*Plus to the database with the appropriate privileges.

2. Set the dynamic statistics level to 0.

For example, run the following statement:

ALTER SESSION SET OPTIMIZER_DYNAMIC_SAMPLING=0;

Viewing Statistics 
This section discusses:

■ Statistics on Tables, Indexes and Columns

■ Viewing Histograms

Statistics on Tables, Indexes and Columns
The database stores statistics on tables, indexes, and columns in the data dictionary. To 
view statistics in the data dictionary, query the appropriate data dictionary view (USER, 
ALL, or DBA). These views include the following:

■ DBA_TABLES and DBA_OBJECT_TABLES

■ DBA_TAB_STATISTICS and DBA_TAB_COL_STATISTICS

■ DBA_TAB_HISTOGRAMS

■ DBA_TAB_COLS

■ DBA_COL_GROUP_COLUMNS

■ DBA_INDEXES and DBA_IND_STATISTICS 

■ DBA_CLUSTERS 

■ DBA_TAB_PARTITIONS and DBA_TAB_SUBPARTITIONS 

■ DBA_IND_PARTITIONS and DBA_IND_SUBPARTITIONS 

■ DBA_PART_COL_STATISTICS

■ DBA_PART_HISTOGRAMS 

■ DBA_SUBPART_COL_STATISTICS 

See Also: 

■ Oracle Database SQL Language Reference to learn about setting 
sampling levels with the DYNAMIC_SAMPLING hint

■ Oracle Database PL/SQL Packages and Types Reference to learn 
about the OPTIMIZER_DYNAMIC_SAMPLING initialization 
parameter

See Also: Oracle Database PL/SQL Packages and Types Reference to 
learn about the OPTIMIZER_DYNAMIC_SAMPLING initialization parameter



Viewing Statistics

13-28 Oracle Database Performance Tuning Guide

■ DBA_SUBPART_HISTOGRAMS

Viewing Histograms
You can store column statistics as histograms. These histograms provide accurate 
estimates of the distribution of column data. Histograms provide improved selectivity 
estimates in the presence of data skew, resulting in optimal execution plans with 
nonuniform data distributions. 

Oracle Database uses the following types of histograms for column statistics: 

■ Height-Balanced Histograms

■ Frequency Histograms

The database stores this type of histogram in the HISTOGRAM column of the 
*TAB_COL_STATISTICS views (USER and DBA). This column can have values of HEIGHT 
BALANCED, FREQUENCY, or NONE.

Height-Balanced Histograms
In a height-balanced histogram, the column values are divided into buckets so that 
each bucket contains approximately the same number of rows. The histogram shows 
where the endpoints fall in the range of values.

Consider a column my_col with values between 1 and 100 and a histogram with 10 
buckets. If the data in my_col is uniformly distributed, then the histogram looks 
similar to Figure 13–1, where the numbers are the endpoint values. For example, the 
7th bucket has rows with values between 60 and 70.

Figure 13–1 Height-Balanced Histogram with Uniform Distribution

The number of rows in each bucket is 10% the total number of rows. In this example of 
uniform distribution, 40% of the rows have values between 60 and 100.

If the data is not uniformly distributed, then the histogram may look like Figure 13–2. 
In this case, most of the rows have the value 5 for the column. Only 10% of the rows 
have values between 60 and 100.

Figure 13–2 Height-Balanced Histogram with Non-Uniform Distribution

You can view height-balanced histograms using the USER_TAB_HISTOGRAMS table, as 
shown in Example 13–1.

Example 13–1 Viewing Height-Balanced Histogram Statistics

BEGIN
  DBMS_STATS.GATHER_table_STATS ( 
    OWNNAME    => 'OE', 
    TABNAME    => 'INVENTORIES', 

See Also: Oracle Database Reference to learn about the statistics in 
these views

1 10 20 30 40 50 60 70 80 90 100

1 5 5 5 5 10 10 20 35 60 100



Viewing Statistics

Managing Optimizer Statistics 13-29

    METHOD_OPT => 'FOR COLUMNS SIZE 10 quantity_on_hand' );
END;
/

SELECT COLUMN_NAME, NUM_DISTINCT, NUM_BUCKETS, HISTOGRAM 
FROM   USER_TAB_COL_STATISTICS
WHERE  TABLE_NAME = 'INVENTORIES' AND COLUMN_NAME = 'QUANTITY_ON_HAND';

COLUMN_NAME                    NUM_DISTINCT NUM_BUCKETS HISTOGRAM
------------------------------ ------------ ----------- ---------------
QUANTITY_ON_HAND                        237          10 HEIGHT BALANCED

SELECT ENDPOINT_NUMBER, ENDPOINT_VALUE 
FROM   USER_TAB_HISTOGRAMS
WHERE  TABLE_NAME = 'INVENTORIES' AND COLUMN_NAME = 'QUANTITY_ON_HAND'
ORDER BY ENDPOINT_NUMBER;

ENDPOINT_NUMBER ENDPOINT_VALUE
--------------- --------------
              0              0
              1             27
              2             42
              3             57
              4             74
              5             98
              6            123
              7            149
              8            175
              9            202
             10            353

In the Example 13–1 query output, one row (1-10) corresponds to each bucket in the 
histogram. Oracle Database added a special 0th bucket to this histogram because the 
value in the 1st bucket (27) is not the minimum value for the quantity_on_hand 
column. The 0th bucket holds the minimum value of 0 for quantity_on_hand.

Frequency Histograms 
In a frequency histogram, each value of the column corresponds to a single bucket of 
the histogram. Each bucket contains the number of occurrences of this single value. 
For example, suppose that 36 rows contain the value 1 for column warehouse_id. The 
endpoint value 1 has an endpoint number 36.

The database automatically creates frequency histograms instead of height-balanced 
histograms under the following conditions:

■ The number of distinct values is less than or equal to the number of histogram 
buckets specified (up to 254).

■ It is not true that each column value repeats only once.

You can view frequency histograms using the USER_TAB_HISTOGRAMS view, as shown in 
Example 13–2.

Example 13–2 Viewing Frequency Histogram Statistics

BEGIN
  DBMS_STATS.GATHER_TABLE_STATS ( 
    OWNNAME    => 'OE', 
    TABNAME    => 'INVENTORIES', 
    METHOD_OPT => 'FOR COLUMNS SIZE 20 warehouse_id' );



Viewing Statistics

13-30 Oracle Database Performance Tuning Guide

END;
/

SELECT COLUMN_NAME, NUM_DISTINCT, NUM_BUCKETS, HISTOGRAM 
FROM   USER_TAB_COL_STATISTICS
WHERE  TABLE_NAME = 'INVENTORIES' AND COLUMN_NAME = 'WAREHOUSE_ID';

COLUMN_NAME                    NUM_DISTINCT NUM_BUCKETS HISTOGRAM
------------------------------ ------------ ----------- ---------------
WAREHOUSE_ID                              9           9 FREQUENCY

SELECT   ENDPOINT_NUMBER, ENDPOINT_VALUE 
FROM     USER_TAB_HISTOGRAMS
WHERE    TABLE_NAME = 'INVENTORIES' AND COLUMN_NAME = 'WAREHOUSE_ID'
ORDER BY ENDPOINT_NUMBER;

ENDPOINT_NUMBER ENDPOINT_VALUE
--------------- --------------
             36              1
            213              2
            261              3
            370              4
            484              5
            692              6
            798              7
            984              8
           1112              9

In Example 13–2, the first bucket is for the warehouse_id of 1. The value appears 36 
times in the table, as confirmed by the following query:

oe@PROD> SELECT COUNT(*) FROM inventories WHERE warehouse_id = 1;
 
  COUNT(*)
----------
        36



14

Using Indexes and Clusters 14-1

14 Using Indexes and Clusters

This chapter provides an overview of data access methods using indexes and clusters 
that can enhance or degrade performance. 

The chapter contains the following sections: 

■ Understanding Index Performance

■ Using Function-based Indexes for Performance

■ Using Partitioned Indexes for Performance

■ Using Index-Organized Tables for Performance

■ Using Bitmap Indexes for Performance

■ Using Bitmap Join Indexes for Performance

■ Using Domain Indexes for Performance

■ Using Table Clusters for Performance

■ Using Hash Clusters for Performance

Understanding Index Performance
This section describes the following:

■ Tuning the Logical Structure

■ Index Tuning using the SQLAccess Advisor

■ Choosing Columns and Expressions to Index

■ Choosing Composite Indexes

■ Writing Statements That Use Indexes

■ Writing Statements That Avoid Using Indexes

■ Re-creating Indexes

■ Using Nonunique Indexes to Enforce Uniqueness

■ Using Enabled Novalidated Constraints

Tuning the Logical Structure
Although query optimization helps avoid the use of nonselective indexes within query 
execution, the SQL engine must continue to maintain all indexes defined against a 
table, regardless of whether queries make use of them. Index maintenance can present 



Understanding Index Performance

14-2 Oracle Database Performance Tuning Guide

a significant CPU and I/O resource demand in any write-intensive application. In 
other words, do not build indexes unless necessary. 

To maintain optimal performance, drop indexes that an application is not using. You 
can find indexes that are not being used by using the ALTER INDEX MONITORING USAGE 
functionality over a period that is representative of your workload. This monitoring 
feature records whether an index has been used. If you find that an index has not been 
used, then drop it. Make sure you are monitoring a representative workload to avoid 
dropping an index which is used, but not by the workload you sampled. 

Also, indexes within an application sometimes have uses that are not immediately 
apparent from a survey of statement execution plans. An example of this is a foreign 
key index on a parent table, which prevents share locks from being taken out on a 
child table.

If you are deciding whether to create new indexes to tune statements, then you can 
also use the EXPLAIN PLAN statement to determine whether the optimizer chooses to 
use these indexes when the application is run. If you create new indexes to tune a 
statement that is currently parsed, then Oracle Database invalidates the statement.

When the statement is next parsed, the optimizer automatically chooses a new 
execution plan that could potentially use the new index. If you create new indexes on a 
remote database to tune a distributed statement, then the optimizer considers these 
indexes when the statement is next parsed.

Note that creating an index to tune one statement can affect the optimizer's choice of 
execution plans for other statements. For example, if you create an index to be used by 
one statement, then the optimizer can choose to use that index for other statements in 
the application as well. For this reason, reexamine the application's performance and 
execution plans, and rerun the SQL trace facility after you have tuned those statements 
that you initially identified for tuning.

Index Tuning using the SQLAccess Advisor
SQL Access Advisor is an alternative to manually determining which indexes are 
required. This advisor recommends a set of indexes when invoked from Oracle 
Enterprise Manager or run through the DBMS_ADVISOR package APIs. SQL Access 
Advisor either recommends using a workload or it generates a hypothetical workload 
for a specified schema. 

Various workload sources are available, such as the current contents of the SQL cache, 
a user-defined set of SQL statements, or a SQL tuning set. Given a workload, SQL 
Access Advisor generates a set of recommendations from which you can select the 
indexes to be implemented. An implementation script is provided that can be executed 
manually or automatically through Oracle Enterprise Manager. 

Choosing Columns and Expressions to Index
A key is a column or expression on which you can build an index. Follow these 
guidelines for choosing keys to index:

See Also: 

■ Oracle Database SQL Language Reference for syntax and 
semantics of the ALTER INDEX MONITORING USAGE statement

■ Oracle Database Advanced Application Developer's Guide to learn 
about foreign keys

See Also: "Overview of SQL Access Advisor" on page 18-1



Understanding Index Performance

Using Indexes and Clusters 14-3

■ Consider indexing keys that appear frequently in WHERE clauses.

■ Consider indexing keys that frequently join tables in SQL statements. For more 
information on optimizing joins, see the "Using Hash Clusters for Performance" on 
page 14-11. 

■ Choose index keys that have high selectivity. The selectivity of an index is the 
percentage of rows in a table having the same value for the indexed key. An 
index's selectivity is optimal if few rows have the same value. 

Indexing low selectivity columns can be helpful when the data distribution is 
skewed so that one or two values occur much less often than other values. 

■ Do not use standard B-tree indexes on keys or expressions with few distinct 
values. Such keys or expressions usually have poor selectivity and therefore do not 
optimize performance unless the frequently selected key values appear less 
frequently than the other key values. You can use bitmap indexes effectively in 
such cases, unless the index is modified frequently, as in a high concurrency OLTP 
application.

■ Do not index frequently modified columns. UPDATE statements that modify 
indexed columns and INSERT and DELETE statements that modify indexed tables 
take longer than if there were no index. Such SQL statements must modify data in 
indexes and data in tables. They also create additional undo and redo.

■ Do not index keys that appear only in WHERE clauses with functions or operators. A 
WHERE clause that uses a function, other than MIN or MAX, or an operator with an 
indexed key does not make available the access path that uses the index except 
with function-based indexes.

■ Consider indexing foreign keys of referential integrity constraints in cases in 
which a large number of concurrent INSERT, UPDATE, and DELETE statements access 
the parent and child tables. Such an index allows UPDATEs and DELETEs on the 
parent table without share locking the child table. 

■ When choosing to index a key, consider whether the performance gain for queries 
is worth the performance loss for INSERTs, UPDATEs, and DELETEs and the use of the 
space required to store the index. You might want to experiment by comparing the 
processing times of the SQL statements with and without indexes. You can 
measure processing time with the SQL trace facility. 

Choosing Composite Indexes
A composite index contains multiple key columns. Composite indexes can provide 
additional advantages over single-column indexes:

■ Improved selectivity

Sometimes you can combine two or more columns or expressions, each with poor 
selectivity, to form a composite index with higher selectivity.

■ Reduced I/O

Note: Oracle Database automatically creates indexes, or uses 
existing indexes, on the keys and expressions of unique and 
primary keys that you define with integrity constraints.

See Also: Oracle Database Advanced Application Developer's Guide 
for more information on the effects of foreign keys on locking



Understanding Index Performance

14-4 Oracle Database Performance Tuning Guide

If all columns selected by a query are in a composite index, then Oracle Database 
can return these values from the index without accessing the table.

A SQL statement can use an access path involving a composite index when the 
statement contains constructs that use a leading portion of the index. 

A leading portion of an index is a set of one or more columns that were specified first 
and consecutively in the list of columns in the CREATE INDEX statement that created the 
index. Consider this CREATE INDEX statement:

CREATE INDEX comp_ind 
ON table1(x, y, z);

■ x, xy, and xyz combinations of columns are leading portions of the index

■ yz, y, and z combinations of columns are not leading portions of the index

Choosing Keys for Composite Indexes
Follow these guidelines for choosing keys for composite indexes:

■ Consider creating a composite index on keys that appear together frequently in 
WHERE clause conditions combined with AND operators, especially if their combined 
selectivity is better than the selectivity of either key individually.

■ If several queries select the same set of keys based on one or more key values, then 
consider creating a composite index containing all of these keys.

Of course, consider the guidelines associated with the general performance 
advantages and trade-offs of indexes described in the previous sections. 

Ordering Keys for Composite Indexes
Follow these guidelines for ordering keys in composite indexes:

■ Create the index so the keys used in WHERE clauses make up a leading portion.

■ If some keys appear in WHERE clauses more frequently, then create the index so that 
the more frequently selected keys make up a leading portion to allow the 
statements that use only these keys to use the index.

■ If all keys appear in WHERE clauses equally often but the data is physically ordered 
on one of the keys, then place this key first in the composite index.

Writing Statements That Use Indexes
Even after you create an index, the optimizer cannot use an access path that uses the 
index simply because the index exists. The optimizer can choose such an access path 
for a SQL statement only if it contains a construct that makes the access path available. 
To allow the query optimizer the option of using an index access path, ensure that the 
statement contains a construct that makes such an access path available. 

Writing Statements That Avoid Using Indexes
In some cases, you might want to prevent a SQL statement from using an access path 
that uses an existing index. You may want to take this approach if you know that the 
index is not very selective and a full table scan would be more efficient. If the 

Note: This is no longer the case with index skip scans. See "Index 
Skip Scans" on page 11-18.



Understanding Index Performance

Using Indexes and Clusters 14-5

statement contains a construct that makes such an index access path available, then 
you can force the optimizer to use a full table scan through one of the following 
methods: 

■ Use the NO_INDEX hint to give the query optimizer maximum flexibility while 
disallowing the use of a certain index.

■ Use the FULL hint to instruct the optimizer to choose a full table scan instead of an 
index scan.

■ Use the INDEX or INDEX_COMBINE hints to instruct the optimizer to use one index or 
a set of listed indexes instead of another. 

Parallel execution uses indexes effectively. It does not perform parallel index range 
scans, but it does perform parallel index lookups for parallel nested loop join 
execution. If an index is very selective (there are few rows for each index entry), then it 
might be better to use sequential index lookup rather than parallel table scan.

Re-creating Indexes
You might want to re-create an index to compact it and minimize fragmented space, or 
to change the index's storage characteristics. When creating a new index that is a 
subset of an existing index or when rebuilding an existing index with new storage 
characteristics, Oracle Database might use the existing index instead of the base table 
to improve the performance of the index build. 

However, in some cases using the base table instead of the existing index is beneficial. 
Consider an index on a table on which a lot of DML has been performed. Because of 
the DML, the size of the index can increase to the point where each block is only 50% 
full, or even less. If the index refers to most of the columns in the table, then the index 
could actually be larger than the table. In this case, it is faster to use the base table 
rather than the index to re-create the index. 

Use the ALTER INDEX ... REBUILD statement to reorganize or compact an existing index 
or to change its storage characteristics. The REBUILD statement uses the existing index 
as the basis for the new one. All index storage statements are supported, such as 
STORAGE (for extent allocation), TABLESPACE (to move the index to a new tablespace), 
and INITRANS (to change the initial number of entries). 

Usually, ALTER INDEX ... REBUILD is faster than dropping and re-creating an index, 
because this statement uses the fast full scan feature. It reads all the index blocks using 
multiblock I/O, then discards the branch blocks. A further advantage of this approach 
is that the old index is still available for queries while the rebuild is in progress. 

Compacting Indexes
You can coalesce leaf blocks of an index by using the ALTER INDEX statement with the 
COALESCE option. This option lets you combine leaf levels of an index to free blocks for 
reuse. You can also rebuild the index online. 

See Also: Chapter 19, "Using Optimizer Hints" for more 
information on the NO_INDEX, FULL, INDEX, and INDEX_COMBINE and 
hints

See Also: Oracle Database SQL Language Reference for more 
information about the CREATE INDEX and ALTER INDEX statements 
and restrictions on rebuilding indexes



Understanding Index Performance

14-6 Oracle Database Performance Tuning Guide

Using Nonunique Indexes to Enforce Uniqueness
You can use an existing nonunique index on a table to enforce uniqueness, either for 
UNIQUE constraints or the unique aspect of a PRIMARY KEY constraint. The advantage of 
this approach is that the index remains available and valid when the constraint is 
disabled. Therefore, enabling a disabled UNIQUE or PRIMARY KEY constraint does not 
require rebuilding the unique index associated with the constraint. This can yield 
significant time savings on enable operations for large tables. 

Using a nonunique index to enforce uniqueness also lets you eliminate redundant 
indexes. You do not need a unique index on a primary key column if that column is 
included as the prefix of a composite index. You can use the existing index to enable 
and enforce the constraint. You also save significant space by not duplicating the 
index. However, if the existing index is partitioned, then the partitioning key of the 
index must also be a subset of the UNIQUE key; otherwise, Oracle Database creates an 
additional unique index to enforce the constraint.

Using Enabled Novalidated Constraints
An enabled novalidated constraint behaves similarly to an enabled validated 
constraint for new data. Placing a constraint in the enabled novalidated state signifies 
that any new data entered into the table must conform to the constraint. Existing data 
is not checked. By placing a constraint in the enabled novalidated state, you enable the 
constraint without locking the table. 

If you change a constraint from disabled to enabled, then the table must be locked. No 
new DML, queries, or DDL can occur, because no mechanism can ensure that 
operations on the table conform to the constraint during the enable operation. The 
enabled novalidated state prevents users from performing operations on the table that 
violate the constraint.

The database can validate an enabled novalidated constraint with a parallel, 
consistent-read query of the table to determine whether any data violates the 
constraint. The database performs no locking, so the enable operation does not block 
readers or writers. In addition, the database can validate enabled novalidated 
constraints in parallel. The database can validate multiple constraints at the same time 
and check the validity of each constraint using parallel query. 

Use the following approach to create tables with constraints and indexes:

1. Create the tables with the constraints. NOT NULL constraints can be unnamed and 
should be created enabled and validated. You should name all other constraints 
(CHECK, UNIQUE, PRIMARY KEY, and FOREIGN KEY) and create them disabled. 

2. Load old data into the tables. 

3. Create all indexes, including indexes needed for constraints. 

4. Enable novalidate all constraints. Do this to primary keys before foreign keys. 

5. Allow users to query and modify data. 

See Also: Oracle Database SQL Language Reference and Oracle 
Database Administrator's Guide for more information about the 
syntax for this statement

Note: By default, constraints are created in the ENABLED state.



Using Function-based Indexes for Performance

Using Indexes and Clusters 14-7

6. With a separate ALTER TABLE statement for each constraint, validate all constraints. 
Do this to primary keys before foreign keys. For example, 

CREATE TABLE t (a NUMBER CONSTRAINT apk PRIMARY KEY DISABLE,
b NUMBER NOT NULL);
CREATE TABLE x (c NUMBER CONSTRAINT afk REFERENCES t DISABLE);

Now load data into table t.

CREATE UNIQUE INDEX tai ON t (a); 
CREATE INDEX tci ON x (c); 
ALTER TABLE t MODIFY CONSTRAINT apk ENABLE NOVALIDATE;
ALTER TABLE x MODIFY CONSTRAINT afk ENABLE NOVALIDATE;

At this point, users can start performing INSERT, UPDATE, DELETE, and SELECT 
operations on table t. 

ALTER TABLE t ENABLE CONSTRAINT apk;
ALTER TABLE x ENABLE CONSTRAINT afk;

Now the constraints are enabled and validated. 

Using Function-based Indexes for Performance
A function-based index includes columns that are either transformed by a function, 
such as the UPPER function, or included in an expression, such as col1 + col2. With a 
function-based index, you can store computation-intensive expressions in the index.

Defining a function-based index on the transformed column or expression allows that 
data to be returned using the index when that function or expression is used in a WHERE 
clause or an ORDER BY clause. This allows Oracle Database to bypass computing the 
value of the expression when processing SELECT and DELETE statements. Therefore, a 
function-based index can be beneficial when frequently-executed SQL statements 
include transformed columns, or columns in expressions, in a WHERE or ORDER BY 
clause. 

Oracle Database treats descending indexes as function-based indexes. The columns 
marked DESC are sorted in descending order. 

For example, function-based indexes defined with the UPPER(column_name) or 
LOWER(column_name) keywords allow case-insensitive searches. The index created in 
the following statement:

CREATE INDEX uppercase_idx ON employees (UPPER(last_name));

facilitates processing queries such as:

SELECT * FROM employees
    WHERE UPPER(last_name) = 'MARKSON';

See Also: Oracle Database Concepts for a complete discussion of 
integrity constraints

See Also: 

■ Oracle Database Advanced Application Developer's Guide and 
Oracle Database Administrator's Guide for more information on 
using function-based indexes

■ Oracle Database SQL Language Reference for more information on 
the CREATE INDEX statement



Using Partitioned Indexes for Performance

14-8 Oracle Database Performance Tuning Guide

Using Partitioned Indexes for Performance
Similar to partitioned tables, partitioned indexes improve manageability, availability, 
performance, and scalability. They can either be partitioned independently (global 
indexes) or automatically linked to a table's partitioning method (local indexes). 

Oracle Database supports both range and hash partitioned global indexes. In a range 
partitioned global index, each index partition contains values defined by a partition 
bound. In a hash partitioned global index, each partition contains values determined 
by the Oracle Database hash function. 

The hash method can improve performance of indexes where a small number leaf 
blocks in the index have high contention in multiuser OLTP environment. In some 
OLTP applications, index insertions happen only at the right edge of the index. This 
situation could occur when the index is defined on monotonically increasing columns. 
In such situations, the right edge of the index becomes a hotspot because of contention 
for index pages, buffers, latches for update, and additional index maintenance activity, 
which results in performance degradation.

With hash partitioned global indexes index entries are hashed to different partitions 
based on partitioning key and the number of partitions. This spreads out contention 
over number of defined partitions, resulting in increased throughput. 
Hash-partitioned global indexes would benefit TPC-H refresh functions that are 
executed as massive PDMLs into huge fact tables because contention for buffer latches 
would be spread out over multiple partitions.

With hash partitioning, an index entry is mapped to a particular index partition based 
on the hash value generated by Oracle Database. The syntax to create hash-partitioned 
global index is very similar to hash-partitioned table. Queries involving equality and 
IN predicates on index partitioning key can efficiently use global hash partitioned 
index to answer queries quickly.

Using Index-Organized Tables for Performance
An index-organized table differs from an ordinary table in that the data for the table is 
held in its associated index. Changes to the table data, such as adding new rows, 
updating rows, or deleting rows, result only in updating the index. Because data rows 
are stored in the index, index-organized tables provide faster key-based access to table 
data for queries that involve exact match or range search or both.

A parent/child relationship is an example of a situation that may warrant an 
index-organized table. For example, a members table has a child table containing 
phone numbers. Phone numbers for a member are changed and added over time. In a 
heap-organized table, rows are inserted in data blocks where they fit. However, when 
you query the members table, you always retrieve the phone numbers from the child 
table. To make the retrieval more efficient, you can store the phone numbers in an 
index-organized table so that phone records for a given member are inserted near each 
other in the data blocks.

In some circumstances, an index-organized table may provide a performance 
advantage over a heap-organized table. For example, if a query requires fewer blocks 
in the cache, then the database uses the buffer cache more efficiently. If fewer d istinct 
blocks are needed for a query, then a single physical I/O may retrieve all necessary 
data, requiring a smaller amount of I/O for each query.

See Also: Oracle Database Concepts and Oracle Database 
Administrator's Guide for more information on global indexes tables



Using Domain Indexes for Performance

Using Indexes and Clusters 14-9

Global hash-partitioned indexes are supported for index-organized tables and can 
provide performance benefits in a multiuser OLTP environment. Index-organized 
tables are useful when you must store related pieces of data together or physically 
store data in a specific order. 

Using Bitmap Indexes for Performance
Bitmap indexes can substantially improve performance of queries that have all of the 
following characteristics:

■ The WHERE clause contains multiple predicates on low- or medium-cardinality 
columns.

■ The individual predicates on these low- or medium-cardinality columns select a 
large number of rows.

■ The bitmap indexes used in the queries have been created on some or all of these 
low- or medium-cardinality columns.

■ The tables in the queries contain many rows.

You can use multiple bitmap indexes to evaluate the conditions on a single table. 
Bitmap indexes are thus highly advantageous for complex ad hoc queries that contain 
lengthy WHERE clauses. Bitmap indexes can also provide optimal performance for 
aggregate queries and for optimizing joins in star schemas. 

Using Bitmap Join Indexes for Performance
In addition to a bitmap index on a single table, you can create a bitmap join index, 
which is a bitmap index for the join of two or more tables. A bitmap join index is a 
space-saving way to reduce the volume of data that must be joined by performing 
restrictions in advance. For each value in a column of a table, a bitmap join index 
stores the rowids of corresponding rows in another table. In a data warehousing 
environment, the join condition is an equi-inner join between the primary key 
column(s) of the dimension tables and the foreign key column(s) in the fact table.

Bitmap join indexes are much more efficient in storage than materialized join views, an 
alternative for materializing joins in advance. Materialized join views do not compress 
the rowids of the fact tables.

Using Domain Indexes for Performance
Domain indexes are built using the indexing logic supplied by a user-defined 
indextype. An indextype provides an efficient mechanism to access data that satisfy 
certain operator predicates. Typically, the user-defined indextype is part of an Oracle 
Database option, like the Spatial option. For example, the SpatialIndextype allows 
efficient search and retrieval of spatial data that overlap a given bounding box. 

See Also: Oracle Database Concepts and Oracle Database 
Administrator's Guide for more information on index-organized 
tables

See Also: Oracle Database Concepts and Oracle Database Data 
Warehousing Guide for more information on bitmap indexing

See Also: Oracle Database Data Warehousing Guide for examples 
and restrictions of bitmap join indexes



Using Table Clusters for Performance

14-10 Oracle Database Performance Tuning Guide

The cartridge determines the parameters you can specify in creating and maintaining 
the domain index. Similarly, the performance and storage characteristics of the domain 
index are presented in the specific cartridge documentation. 

Refer to the appropriate cartridge documentation for information such as the 
following:

■ What data types can be indexed? 

■ What indextypes are provided? 

■ What operators does the indextype support? 

■ How can the domain index be created and maintained? 

■ How do we efficiently use the operator in queries?

■ What are the performance characteristics? 

Using Table Clusters for Performance
A table cluster is a group of one or more tables that are physically stored together 
because they share common columns and usually appear together in SQL statements. 
Because the database physically stores related rows together, disk access time 
improves. To create a cluster, use the CREATE CLUSTER statement. 

Follow these guidelines when deciding whether to cluster tables:

■ Cluster tables that are accessed frequently by the application in join statements.

■ Do not cluster tables if the application joins them only occasionally or modifies 
their common column values frequently. Modifying a row's cluster key value takes 
longer than modifying the value in an unclustered table, because Oracle Database 
might need to migrate the modified row to another block to maintain the cluster.

■ Do not cluster tables if the application often performs full table scans of only one 
of the tables. A full table scan of a clustered table can take longer than a full table 
scan of an unclustered table. Oracle Database is likely to read more blocks because 
the tables are stored together.

■ Cluster master-detail tables if you often select a master record and then the 
corresponding detail records. Detail records are stored in the same data block(s) as 
the master record, so they are likely still to be in memory when you select them, 
requiring Oracle Database to perform less I/O.

■ Store a detail table alone in a cluster if you often select many detail records of the 
same master. This measure improves the performance of queries that select detail 
records of the same master, but does not decrease the performance of a full table 
scan on the master table. An alternative is to use an index organized table.

Note: You can also create index types with the CREATE INDEXTYPE 
statement. 

See Also: Oracle Spatial Developer's Guide for information about 
the SpatialIndextype

See Also: Oracle Database Concepts for more information on 
clusters



Using Hash Clusters for Performance

Using Indexes and Clusters 14-11

■ Do not cluster tables if the data from all tables with the same cluster key value 
exceeds more than one or two data blocks. To access a row in a clustered table, 
Oracle Database reads all blocks containing rows with that value. If these rows 
take up multiple blocks, then accessing a single row could require more reads than 
accessing the same row in an unclustered table.

■ Do not cluster tables when the number of rows for each cluster key value varies 
significantly. This causes waste of space for the low cardinality key value; it causes 
collisions for the high cardinality key values. Collisions degrade performance.

Consider the benefits and drawbacks of clusters for the application. For example, you 
might decide that the performance gain for join statements outweighs the performance 
loss for statements that modify cluster key values. You might want to experiment and 
compare processing times with the tables both clustered and stored separately. 

Using Hash Clusters for Performance
Hash clusters group table data by applying a hash function to each row's cluster key 
value. All rows with the same cluster key value are stored together on disk. Consider 
the benefits and drawbacks of hash clusters for the application. You might want to 
experiment and compare processing times with a particular table in a hash cluster and 
alone with an index. 

Follow these guidelines for choosing when to use hash clusters:

■ Use hash clusters to store tables accessed frequently by SQL statements with WHERE 
clauses, if the WHERE clauses contain equality conditions that use the same column 
or combination of columns. Designate this column or combination of columns as 
the cluster key.

■ Store a table in a hash cluster if you can determine how much space is required to 
hold all rows with a given cluster key value, including rows to be inserted 
immediately and rows to be inserted in the future.

■ Use sorted hash clusters, where rows corresponding to each value of the hash 
function are sorted on a specific columns in ascending order, when the database 
can improve response time on operations with this sorted clustered data. 

■ Do not store a table in a hash cluster if the application often performs full table 
scans and if you must allocate a great deal of space to the hash cluster in 
anticipation of the table growing. Such full table scans must read all blocks 
allocated to the hash cluster, even though some blocks might contain few rows. 
Storing the table alone reduces the number of blocks read by full table scans.

■ Do not store a table in a hash cluster if the application frequently modifies the 
cluster key values. Modifying a row's cluster key value can take longer than 
modifying the value in an unclustered table, because Oracle Database might need 
to migrate the modified row to another block to maintain the cluster.

Storing a single table in a hash cluster can be useful, regardless of whether the table is 
joined frequently with other tables, as long as hashing is appropriate for the table 
based on the considerations in this list.

See Also:  Oracle Database Administrator's Guide for more 
information on creating clusters



Using Hash Clusters for Performance

14-12 Oracle Database Performance Tuning Guide

See Also: 

■ Oracle Database Administrator's Guide to learn how to manage 
hash clusters

■ Oracle Database SQL Language Reference to learn about the 
CREATE CLUSTER statement



15

Using SQL Plan Management 15-1

15Using SQL Plan Management

This chapter describes how to manage SQL execution plans using SQL plan 
management. SQL plan management prevents performance regressions resulting from 
sudden changes to the execution plan of a SQL statement by providing components 
for capturing, selecting, and evolving SQL plan information.

This chapter contains the following topics:

■ Overview of SQL Plan Baselines

■ Managing SQL Plan Baselines

■ Using SQL Plan Baselines with SQL Tuning Advisor

■ Using Fixed SQL Plan Baselines

■ Displaying SQL Plan Baselines

■ SQL Management Base

■ Importing and Exporting SQL Plan Baselines

■ Migrating Stored Outlines to SQL Plan Baselines

Overview of SQL Plan Baselines
SQL plan management is a preventative mechanism that records and evaluates the 
execution plans of SQL statements over time. This mechanism can build a SQL plan 
baseline, which is a set of accepted plans for a SQL statement. The accepted plans 
have been proven to perform well.

Purpose of SQL Plan Baselines
The goal of SQL plan baselines is to preserve the performance of corresponding SQL 
statements, regardless of changes in the database. Examples of changes include:

■ New optimizer version

■ Changes to optimizer statistics and optimizer parameters

■ Changes to schema and metadata definitions

■ Changes to system settings

■ SQL profile creation

SQL plan baselines cannot help in cases where an event has caused irreversible 
execution plan changes, such as dropping an index.



Overview of SQL Plan Baselines

15-2 Oracle Database Performance Tuning Guide

The SQL tuning features of Oracle Database generate SQL profiles that help the 
optimizer to produce well-tuned plans. However, this mechanism is reactive and 
cannot guarantee stable performance when drastic database changes occur. SQL 
tuning can only resolve performance issues after they have occurred and are 
identified. For example, a SQL statement may become high-load because of a plan 
change, but SQL tuning cannot solve this problem until after the plan change occurs.

Common scenarios where SQL plan management can improve or preserve SQL 
performance include:

■ A database upgrade that installs a new optimizer version usually results in plan 
changes for a small percentage of SQL statements. Most of these plan changes 
result in either no performance change or improvement. However, some plan 
changes may cause performance regressions. SQL plan baselines significantly 
minimize potential regressions resulting from an upgrade.

■ Ongoing system and data changes can impact plans for some SQL statements, 
potentially causing performance regressions. SQL plan baselines help minimize 
performance regressions and stabilize SQL performance.

■ Deployment of new application modules means introducing new SQL statements 
into the database. The application software may use appropriate SQL execution 
plans developed in a standard test configuration for the new statements. If the 
system configuration is significantly different from the test configuration, then the 
database can evolve SQL plan baselines over time to produce better performance.

Architecture of SQL Plan Baselines
A SQL plan baseline contains one or more accepted plans, each of which contains the 
following information:

■ Set of hints

■ Plan hash value

■ Plan-related information

The plan history is the set of plans, both accepted and not accepted, that the optimizer 
generates for a SQL statement over time. Because only accepted plans are in the SQL 
plan baseline, the plans in the baseline form a susbset of the plan history. For example, 
after the optimizer generates the first acceptable plan for a SQL plan baseline, 
subsequent plans are part of the plan history but not part of the plan baseline.

The process of adding plans to a SQL plan baseline is plan evolution. To be eligible to 
be evolved, a plan must be enabled for use by the optimizer.

Figure 15–1 shows a single SELECT statement that has two accepted plans in its SQL 
plan baseline. The SQL plan history includes two other plans for the statement that 
have not been proven to perform well.



Managing SQL Plan Baselines

Using SQL Plan Management 15-3

Figure 15–1 SQL Plan Baseline and SQL Plan History

The SQL management base (SMB), which is part of the data dictionary, stores the SQL 
plan baselines and plan history in the SYSAUX tablespace. The SMB also contains SQL 
profiles. The SMB uses automatic space management.

Managing SQL Plan Baselines
Managing SQL plan baselines involves the following phases:

■ Capturing SQL Plan Baselines

■ Selecting SQL Plan Baselines

■ Evolving SQL Plan Baselines

Capturing SQL Plan Baselines
During the SQL plan baseline capture phase, the database detects plan changes and 
records the new plan so that it can be evolved (verified) by the database administrator. 
To this end, the database maintains a plan history for individual SQL statements. 
Because ad hoc SQL statements do not repeat and thus do not suffer performance 
degradation, the database maintains plan history only for repeatable SQL statements.

To recognize repeatable SQL statements, the database maintains a statement log that 
contains the SQL ID of various SQL statements that the optimizer has evaluated. The 
database recognizes a SQL statement as repeatable when it is parsed or executed again 
after it has been logged.

SQL Plan History

SQL Plan Baseline

GB

NL
NL

GB

NL
NL

GB

HJ
HJ

SQL Management Base

GB

HJ
HJ



Managing SQL Plan Baselines

15-4 Oracle Database Performance Tuning Guide

For each repeatable SQL statement, the database maintains a plan history that contains 
all plans generated by the optimizer. The set of all accepted plans in the plan history is 
the SQL plan baseline.

You can configure the SQL Plan Baseline Capture phase for automatic capture of plan 
history and SQL plan baselines for repeatable SQL statements. Alternatively, you can 
manually load plans as SQL plan baselines.

This section contains the following topics:

■ Capturing Plans Automatically

■ Creating Baselines from Existing Plans

Capturing Plans Automatically
When automatic plan capture is enabled, the database automatically creates and 
maintains the plan history for SQL statements using information provided by the 
optimizer. The plan history includes relevant information used by the optimizer to 
reproduce an execution plan, such as the SQL text, outline, bind variables, and 
compilation environment.

The optimizer marks the initial plan generated for a SQL statement as accepted for 
use, and represents both the plan history and SQL plan baseline. The plan history 
includes all subsequent plans. During the SQL plan baseline evolution phase, the 
database adds plans to the baseline that have been verified not to cause performance 
regressions.

To enable automatic plan capture, set the OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES 
initialization parameter to TRUE. By default, this parameter is FALSE.

Creating Baselines from Existing Plans
You can create SQL plan baselines by manually loading existing plans for a set of SQL 
statements as plan baselines. The database does not verify manually loaded plans for 
performance, but adds them as accepted plans to existing or new SQL plan baselines. 
You can use manual plan loading with or as an alternative to automatic plan capture.

You can perform manual plan loading by:

■ Loading Plans from SQL Tuning Sets and AWR Snapshots

■ Loading Plans from the Shared SQL Area

Loading Plans from SQL Tuning Sets and AWR Snapshots  To load plans from a SQL tuning 
set, use the LOAD_PLANS_FROM_SQLSET function of the DBMS_SPM package. The following 
example loads the plans stored in the SQL tuning set named tset1:

DECLARE
  my_plans PLS_INTEGER;
BEGIN
  my_plans := DBMS_SPM.LOAD_PLANS_FROM_SQLSET( sqlset_name => 'tset1');
END;
/

To load plans from Automatic Workload Repository (AWR), load the plans stored in 
AWR snapshots into a SQL tuning set before using the LOAD_PLANS_FROM_SQLSET 
function as described in this section.

See Also: "SQL Management Base" on page 15-10



Managing SQL Plan Baselines

Using SQL Plan Management 15-5

Loading Plans from the Shared SQL Area  To load plans from the shared SQL area, use the 
LOAD_PLANS_FROM_CURSOR_CACHE function of the DBMS_SPM package. In the following 
example, Oracle Database loads the plans located in the shared SQL area for the SQL 
statement identified by its sql_id: 

DECLARE
  my_plans PLS_INTEGER;
BEGIN
  my_plans := DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE( sql_id => '99twu5t2dn5xd');
END;
/

You can identify plans in the shared SQL area by:

■ SQL identifier (SQL_ID) 

■ SQL text (SQL_TEXT)

■ One of the following attributes:

– PARSING_SCHEMA_NAME

– MODULE

– ACTION

Selecting SQL Plan Baselines
During the SQL plan baseline selection phase, Oracle Database detects plan changes 
based on the stored plan history, and selects plans to avoid potential performance 
regressions for a set of SQL statements.

Each time the database compiles a SQL statement, the optimizer does the following:

1. Uses a cost-based search method to build a best-cost plan

2. Tries to find a matching plan in the SQL plan baseline

3. Does either of the following depending on whether a match is found:

■ If found, then the optimizer proceeds using the matched plan

■ If not found, then the optimizer evaluates the cost of each accepted plan in the 
SQL plan baseline and selects the plan with the lowest cost

The best-cost plan found by the optimizer that does not match any plans in the plan 
history for the SQL statement represents a new plan. The database adds this plan as a 
nonaccepted plan to the plan history. The database does not use the new plan until it is 
verified to not cause a performance regression. However, if a change in the system 
(such as a dropped index) causes all accepted plans to become non-reproducible, then 

See Also: 

■ "Overview of the Automatic Workload Repository" on page 5-8

■ "Managing SQL Tuning Sets" on page 17-15

■ Oracle Database PL/SQL Packages and Types Reference to learn about 
additional parameters used by the LOAD_PLANS_FROM_SQLSET 
function

See Also: Oracle Database PL/SQL Packages and Types Reference to 
learn how to use the LOAD_PLANS_FROM_CURSOR_CACHE function



Managing SQL Plan Baselines

15-6 Oracle Database Performance Tuning Guide

the optimizer selects the best-cost plan. Thus, the presence of a SQL plan baseline 
causes the optimizer to use conservative plan selection strategy for the SQL statement.

To enable the use of SQL plan baselines, set the OPTIMIZER_USE_SQL_PLAN_BASELINES 
initialization parameter to TRUE (default).

Evolving SQL Plan Baselines
During the SQL plan baseline evolution phase, the database evaluates the performance 
of new plans and integrates plans with better performance into SQL plan baselines.

When the optimizer finds a new plan for a SQL statement, the database adds the plan 
to the plan history as a nonaccepted plan. The database can verify the plan for 
performance relative to the SQL plan baseline performance. A successful verification 
of a nonaccepted plan consists of comparing its performance to that of a plan selected 
from the SQL plan baseline and ensuring that it delivers better performance. When the 
database verifies that a nonaccepted plan will not cause a performance regression, the 
database changes it to an accepted plan and integrates it into the baseline.

This section describes how to evolve SQL plan baselines and contains the following 
topics:

■ Evolving Plans with Manual Plan Loading

■ Evolving Plans with DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE

Evolving Plans with Manual Plan Loading
You can evolve an existing SQL plan baseline by manually loading plans from the 
shared SQL area or from a SQL tuning set. When you manually load plans into a SQL 
plan baseline, the database adds these loaded plans as accepted plans.

Evolving Plans with DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE
The PL/SQL function DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE tries to evolve new plans 
that have been added by the optimizer to the plan history of existing plan baselines. If 
the function can verify that the new plan performs better than a plan chosen from the 
corresponding SQL plan baseline, then the database adds the new plan as an accepted 
plan.

The following example of the DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE function evolves 
a new plan for a SQL statement identified by its SQL handle, which is its unique SQL 
identifier in string form. You can find the SQL handle by querying 
DBA_SQL_PLAN_BASELINES.SQL_HANDLE.

SET SERVEROUTPUT ON
SET LONG 10000
DECLARE
    report clob;
BEGIN
    report := DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE(
                  sql_handle => 'SYS_SQL_593bc74fca8e6738');
    DBMS_OUTPUT.PUT_LINE(report);
END;
/

The following output shows that Oracle Database successfully evolved a plan:

REPORT

See Also: "Creating Baselines from Existing Plans" on page 15-4



Using SQL Plan Baselines with SQL Tuning Advisor

Using SQL Plan Management 15-7

--------------------------------------------------------------------------------

--------------------------------------------------------------------------------
                       Evolve SQL Plan Baseline Report
--------------------------------------------------------------------------------
 
Inputs:
-------
 SQL_HANDLE = SYS_SQL_593bc74fca8e6738
 PLAN_NAME  =
 TIME_LIMIT = DBMS_SPM.AUTO_LIMIT
 VERIFY     = YES
 COMMIT     = YES
 
Plan: SYS_SQL_PLAN_ca8e6738a57b5fc2
-----------------------------------
 Plan was verified: Time used .07 seconds.
 Passed performance criterion: Compound improvement ratio >= 7.32.
 Plan was changed to an accepted plan.
 
                     Baseline Plan      Test Plan     Improv. Ratio
                     -------------      ---------     -------------
 Execution Status:        COMPLETE       COMPLETE
 Rows Processed:                40             40
 Elapsed Time(ms):              23              8              2.88
 CPU Time(ms):                  23              8              2.88
 Buffer Gets:                  450             61              7.38
 Disk Reads:                     0              0
 Direct Writes:                  0              0
 Fetches:                        0              0
 Executions:                     1              1
 
-------------------------------------------------------------------------------
                                Report Summary
-------------------------------------------------------------------------------
Number of SQL plan baselines verified: 1.
Number of SQL plan baselines evolved: 1.

Alternatively, you can use the DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE function to 
specify:

■ The name of a particular plan to evolve

■ A list of plans to evolve

■ No value

By specifying no value, you enable Oracle Database to evolve all nonaccepted 
plans currently in the SMB.

Using SQL Plan Baselines with SQL Tuning Advisor
When tuning SQL statements with SQL Tuning Advisor, if the advisor finds a tuned 
plan and verifies its performance to be better than a plan chosen from the 
corresponding SQL plan baseline, then it makes a recommendation to accept a SQL 
profile. When the SQL profile is accepted, the database adds the tuned plan to the 

See Also: Oracle Database PL/SQL Packages and Types Reference for 
information about using the DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE 
function



Using Fixed SQL Plan Baselines

15-8 Oracle Database Performance Tuning Guide

corresponding SQL plan baseline. However, SQL Tuning Advisor does not verify 
existing unaccepted plans in the plan history.

In Oracle Database 11g, an automatically configured task runs SQL Tuning Advisor 
during a maintenance window. This task targets high-load SQL statements as 
identified by the execution performance data collected in the Automatic Workload 
Repository (AWR) snapshots. The automatic SQL tuning task implements the SQL 
profile recommendations made by SQL Tuning Advisor. Thus, the database 
automatically adds tuned plans to the SQL plan baselines of the identified high-load 
SQL statements.

Using Fixed SQL Plan Baselines
A SQL plan baseline is fixed when it contains at least one enabled plan whose FIXED 
attribute is set to YES. You can use fixed SQL plan baselines to fix the set of possible 
plans (usually one plan) for a SQL statement, or migrate an existing stored outline by 
loading the "outlined" plan as a fixed plan.

If a fixed SQL plan baseline also contains non-fixed plans, then the optimizer gives 
preference to fixed plans over non-fixed ones. Thus, the optimizer picks the fixed plan 
with the least cost even though a non-fixed plan may have an even lower cost. If none 
of the fixed plans is reproducible, then the optimizer picks the best non-fixed plan.

The optimizer does not add new plans to a fixed SQL plan baseline. Because the 
optimizer does not automatically add new plans, the database does not evolve a fixed 
SQL plan baseline when you execute DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE. However, 
you can evolve a fixed SQL plan baseline by manually loading new plans into it from 
the shared SQL area or a SQL tuning set.

When you tune a SQL statement with a fixed SQL plan baseline using SQL Tuning 
Advisor, a SQL profile recommendation has special meaning. When the SQL profile is 
accepted, the database adds the tuned plan to the fixed SQL plan baseline as a 
non-fixed plan. However, as described above, the optimizer does not use the tuned 
plan when a reproducible fixed plan is present. Therefore, the benefit of SQL tuning 
may not be realized. To enable the use of the tuned plan, manually alter the tuned plan 
to a fixed plan by setting its FIXED attribute to YES.

Displaying SQL Plan Baselines
To view the plans stored in the SQL plan baseline for a given statement, use the 
DISPLAY_SQL_PLAN_BASELINE function of the DBMS_XPLAN package. The following 
example displays one or more execution plans for the specified SQL statement, 
specified by the handle (sql_handle):

SELECT * FROM TABLE( 
    DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE( 
        sql_handle=>'SYS_SQL_209d10fabbedc741', 
        format=>'basic'));

 Alternatively, you can display a single plan by supplying a plan name (plan_name). 

See Also: 

■ "Tuning Reactively with SQL Tuning Advisor" on page 17-9

■ "Managing SQL Profiles" on page 17-19

■ "Overview of the Automatic Workload Repository" on page 5-8



Displaying SQL Plan Baselines

Using SQL Plan Management 15-9

This function uses plan information stored in the SQL management base to explain 
and display the plans. In this example, the DISPLAY_SQL_PLAN_BASELINE function 
displays the execution plans for the SQL statement specified by the handle 
SYS_SQL_209d10fabbedc741:

SQL handle: SYS_SQL_209d10fabbedc741
SQL text: select cust_last_name, amount_sold from customers c,
          sales s where c.cust_id=s.cust_id and cust_year_of_birth=:yob
----------------------------------------------------------------------------------
----------------------------------------------------------------------------------
Plan name: SYS_SQL_PLAN_bbedc741a57b5fc2
Enabled: YES      Fixed: NO      Accepted: NO      Origin: AUTO-CAPTURE
----------------------------------------------------------------------------------
Plan hash value: 2776326082

----------------------------------------------------------------------------------
| Id  | Operation                                | Name                          |
----------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                         |                               |
|   1 | HASH JOIN                                |                               |
|   2 |   TABLE ACCESS BY INDEX ROWID            | CUSTOMERS                     |
|   3 |     BITMAP CONVERSION TO ROWIDS          |                               |
|   4 |     BITMAP INDEX SINGLE VALUE            | CUSTOMERS_YOB_BIX             |
|   5 |    PARTITION RANGE ALL                   |                               |
|   6 |    TABLE ACCESS FULL                     | SALES                         |
----------------------------------------------------------------------------------

----------------------------------------------------------------------------------
Plan name: SYS_SQL_PLAN_bbedc741f554c408
Enabled: YES     Fixed: NO      Accepted: YES       Origin: MANUAL-LOAD
----------------------------------------------------------------------------------
Plan hash value: 4115973128

----------------------------------------------------------------------------------
| Id  | Operation                                | Name                          |
----------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                         |                               |
|   1 |   NESTED LOOPS                           |                               |
|   2 |     NESTED LOOPS                         |                               |
|   3 |       TABLE ACCESS BY INDEX ROWID        | CUSTOMERS                     |
|   4 |         BITMAP CONVERSION TO ROWIDS      |                               |
|   5 |           BITMAP INDEX SINGLE VALUE      | CUSTOMERS_YOB_BIX             |
|   6 |       PARTITION RANGE                    |                               |
|   7 |        BITMAP CONVERSION TO ROWIDS       |                               |
|   8 |          BITMAP INDEX SINGLE VALUE       | SALES_CUST_BIX                |
|   9 |     TABLE ACCESS BY LOCAL INDEX ROWID    | SALES                         |
----------------------------------------------------------------------------------

You can also display SQL plan baseline information using a SELECT statement directly 
on the DBA_SQL_PLAN_BASELINES view, as shown in the following example:

SELECT SQL_HANDLE, PLAN_NAME, ENABLED, ACCEPTED, FIXED 
FROM   DBA_SQL_PLAN_BASELINES;
 
SQL_HANDLE                PLAN_NAME                      ENA  ACC    FIX
------------------------------------------------------------------------
SYS_SQL_209d10fabbedc741  SYS_SQL_PLAN_bbedc741a57b5fc2  YES  NO     NO
SYS_SQL_209d10fabbedc741  SYS_SQL_PLAN_bbedc741f554c408  YES  YES    NO



SQL Management Base

15-10 Oracle Database Performance Tuning Guide

SQL Management Base
The SQL management base (SMB) is a part of the data dictionary that resides in the 
SYSAUX tablespace. It stores statement logs, plan histories, SQL plan baselines, and SQL 
profiles. To allow weekly purging of unused plans and logs, the SMB uses automatic 
space management.

You can also add plans manually to the SMB for a set of SQL statements. This feature 
is especially useful when upgrading the database from a version before Oracle 
Database 11g because it helps to minimize plan regressions resulting from the use of a 
new optimizer version.

Because the SMB is located entirely within SYSAUX, the database does not use SQL plan 
management and SQL tuning features when this tablespace is unavailable.

Disk Space Usage
Disk space used by the SMB is regularly checked against a limit based on the size of 
the SYSAUX tablespace. By default, the limit for the SMB is no more than 10% of the size 
of SYSAUX. The allowable range for this limit is between 1% and 50%. 

A weekly background process measures the total space occupied by the SMB. When 
the defined limit is exceeded, the process writes a warning to the alert log. The 
database generates alerts weekly until one of the following conditions is met:

■ The SMB space limit is increased

■ The size of the SYSAUX tablespace is increased

■ The disk space used by the SMB is decreased by purging SQL management objects 
(SQL plan baselines or SQL profiles)

To change the percentage limit, use the CONFIGURE procedure of the DBMS_SPM package. 
The following example changes the space limit to 30%:

BEGIN
  DBMS_SPM.CONFIGURE('space_budget_percent',30);
END;
/

Purging Policy
A weekly scheduled purging task manages the disk space used by SQL plan 
management. The task runs as an automated task in the maintenance window. 

The database purges plans not used for more than 53 weeks, as identified by the 
LAST_EXECUTED timestamp stored in the SMB for that plan. The 53-week period ensures 
plan information is available during any yearly SQL processing. The unused plan 
retention period can range between 5 and 523 weeks (a little more than 10 years).

To configure the retention period, use the CONFIGURE procedure of the DBMS_SPM 
PL/SQL package. The following example changes the retention period to 105 weeks: 

BEGIN

See Also: Oracle Database PL/SQL Packages and Types Reference to 
learn about additional parameters used by the 
DISPLAY_SQL_PLAN_BASELINE function

See Also: Oracle Database PL/SQL Packages and Types Reference to 
learn about additional parameters used by the CONFIGURE procedure



Importing and Exporting SQL Plan Baselines

Using SQL Plan Management 15-11

  DBMS_SPM.CONFIGURE( 'plan_retention_weeks',105);
END;
/

SQL Management Base Configuration Parameters
You can access the current configuration settings for the SQL management base using 
the DBA_SQL_MANAGEMENT_CONFIG view. The following query shows this information:

SELECT PARAMETER_NAME, PARAMETER_VALUE 
FROM   DBA_SQL_MANAGEMENT_CONFIG;
 
PARAMETER_NAME                 PARAMETER_VALUE
------------------------------ ---------------
SPACE_BUDGET_PERCENT                        30
PLAN_RETENTION_WEEKS                       105

Importing and Exporting SQL Plan Baselines
Oracle Database supports the export and import of SQL plan baselines using the 
Oracle Data Pump Import and Export utilities. Use the DBMS_SPM package to define a 
staging table, which you can use to pack and unpack SQL plan baselines.

To import a set of SQL plan baselines from one system to another:

1. On the original database, create a staging table using the CREATE_STGTAB_BASELINE 
procedure.

The following example creates a staging table named stage1:

BEGIN
  DBMS_SPM.CREATE_STGTAB_BASELINE(
    table_name => 'stage1');
END;
/

2. Pack the SQL plan baselines you want to export from the SQL management base 
into the staging table using the PACK_STGTAB_BASELINE function.

The following example packs enabled plan baselines created by user dba1 into 
staging table stage1. You can select SQL plan baselines using the plan name 
(plan_name), SQL handle (sql_handle), or any other plan criteria. The table_name 
parameter is mandatory.

DECLARE
  my_plans number;
BEGIN
  my_plans := DBMS_SPM.PACK_STGTAB_BASELINE(
    table_name => 'stage1',
    enabled => 'yes',
    creator => 'dba1');
END;
/

3. Export the staging table stage1 into a flat file using the Oracle Data Pump Export 
utility.

4. Transfer the flat file to the target system.

See Also: Oracle Database PL/SQL Packages and Types Reference to 
learn about additional parameters used by the CONFIGURE procedure



Migrating Stored Outlines to SQL Plan Baselines

15-12 Oracle Database Performance Tuning Guide

5. Import the staging table stage1 from the flat file using the Oracle Data Pump 
Import utility.

6. Unpack the SQL plan baselines from the staging table into the SQL management 
base on the target system using the UNPACK_STGTAB_BASELINE function.

The following example unpacks all fixed plan baselines stored in the staging table 
stage1:

DECLARE
  my_plans number;
BEGIN
  my_plans := DBMS_SPM.UNPACK_STGTAB_BASELINE(
    table_name => 'stage1',
    fixed => 'yes');
END;
/

Migrating Stored Outlines to SQL Plan Baselines 
This section explains the concepts and tasks relating to stored outline migration. This 
section contains the following topics:

■ Overview of Stored Outline Migration

■ Preparing for Stored Outline Migration

■ Migrating Outlines to Utilize SQL Plan Management Features

■ Migrating Outlines to Preserve Stored Outline Behavior

■ Performing Follow-Up Tasks After Stored Outline Migration

Overview of Stored Outline Migration
A stored outline is a set of hints for a SQL statement. The hints direct the optimizer to 
choose a specific plan for the statement. A stored outline is a legacy technique for 
providing plan stability.

Stored outline migration is the user-initiated process of converting stored outlines to 
SQL plan baselines. A SQL plan baseline is a set of plans proven to provide good 
performance.

This section contains the following topics:

■ Purpose of Stored Outline Migration

■ How Stored Outline Migration Works

■ User Interface for Stored Outline Migration

■ Basic Steps in Stored Outline Migration

See Also: 

■ Oracle Database PL/SQL Packages and Types Reference for more 
information about using the DBMS_SPM package

■ Oracle Database Utilities for detailed information about using the 
Data Pump Export and Import utilities



Migrating Stored Outlines to SQL Plan Baselines

Using SQL Plan Management 15-13

Purpose of Stored Outline Migration
This section assumes that you rely on stored outlines to maintain plan stability and 
prevent performance regressions. The goal of this section is to provide a convenient 
method to safely migrate from stored outlines to SQL plan baselines. After the 
migration, you can maintain the same plan stability that you had using stored outlines 
while being able to utilize the more advanced features provided by the SQL Plan 
Management framework.

Specifically, the section explains how to address the following problems:

■ Stored outlines cannot automatically evolve over time. Consequently, a stored 
outline may be good when you create it, but become a bad plan after a database 
change, leading to performance degradation.

■ Hints in a stored outline can become invalid, for example, an index hint on a 
dropped index. In such cases, the database still uses the outlines but excludes the 
invalid hints, producing a plan that is often worse than the original plan or the 
current best-cost plan generated by the optimizer.

■ For a SQL statement, the optimizer can only choose the plan defined in the stored 
outline in the currently specified category. The optimizer cannot choose from other 
stored outlines in different categories or the current cost-based plan even if they 
improve performance.

■ Stored outlines are a reactive tuning technique, which means that you only use a 
stored outline to address a performance problem after it has occurred. For 
example, you may implement a stored outline to correct the plan of a SQL 
statement that became high-load. In this case, you used stored outlines instead of 
proactively tuning the statement before it became high-load.

The stored outline migration PL/SQL API helps solve the preceding problems in the 
following ways:

■ SQL plan baselines enable the optimizer to use the same good plan and allow this 
plan to evolve over time.

For a specified SQL statement, you can add new plans as SQL plan baselines after 
they are verified not to cause performance regressions.

■ SQL plan baselines prevent plans from going bad because of invalid hints. 

If hints stored in a plan baseline become invalid, then the plan may not be 
reproducible by the optimizer. In this case, the optimizer selects an alternative 
reproducible plan baseline or the current best-cost plan generated by optimizer.

■ For a specific SQL statement, the database can maintain multiple plan baselines. 

The optimizer can choose from a set of good plans for a specific SQL statement 
instead of being restricted to a single plan per category, as required by stored 
outlines.

How Stored Outline Migration Works
This section explains how the database migrates stored outlines to SQL plan baselines. 
This information is important for performing the task of migrating stored outlines.

Stages of Stored Outline Migration  The following graphic shows the main stages in stored 
outline migration:



Migrating Stored Outlines to SQL Plan Baselines

15-14 Oracle Database Performance Tuning Guide

The migration process has the following stages:

1. The user invokes a function that specifies which outlines should be migrated.

2. The database processes the outlines as follows:

a. The database copies information in the outline needed by the plan baseline.

The database copies it directly or calculates it based on information in the 
outline. For example, the text of the SQL statement exists in both schemas, so 
the database can copy the text from outline to baseline.

b. The database reparses the hints to obtain information not in the outline.

The plan hash value and plan cost cannot be derived from the existing 
information in the outline, which necessitates reparsing the hints.

c. The database creates the baselines.

3. The database obtains missing information when it chooses the SQL plan baseline 
for the first time to execute the same SQL statement.

The compilation environment and execution statistics are only available during 
execution when the plan baseline is parsed and compiled.

The migration is complete only after the preceding phases complete.

Outline Categories and Baseline Modules  An outline is a set of hints, whereas a SQL plan 
baseline is a set of plans. Because they are different technologies, some functionality of 
outlines does not map exactly to functionality of baselines. For example, a single SQL 
statement can have multiple outlines, each of which is in a different outline category, 
but the only category that currently exists for baselines is DEFAULT. 

The equivalent of a category for an outline is a module for a SQL plan baseline. 
Table 15–1 explains how outline categories map to modules.

outline1 ... outlinen

Obtain missing information such as bind data

Copy information from stored outlines

baseline1 ... baselinen

Reparse hints to generate plans

User specifies stored outlines

Database creates SQL plan baselines

Database updates SQL plan baselines 
at first statement execution



Migrating Stored Outlines to SQL Plan Baselines

Using SQL Plan Management 15-15

When migrating stored outlines to SQL plan baselines, Oracle Database maps every 
outline category to a SQL plan baseline module with the same name. As shown in the 
following diagram, the outline category OLTP is mapped to the baseline module OLTP. 
After migration, DEFAULT is a super-category that contains all SQL plan baselines.

User Interface for Stored Outline Migration
You can use the DBMS_SPM package to perform the stored outline migration. Table 15–2 
describes the relevant functions in this package.

Table 15–1  Outline Categories

Concept Description Default Value

Outline Category Specifies a user-defined grouping for a set of 
stored outlines. 

You can use categories to maintain different 
stored outlines for a SQL statement. For example, 
a single statement can have an outline in the OLTP 
category and the DW category.

Each SQL statement can have one or more stored 
outlines. Each stored outline is in one and only 
one outline category. A statement can have 
multiple stored outlines in different categories, 
but only one stored outline exists per category 
per statement.

During migration, the database maps each 
outline category to a SQL plan baseline module.

DEFAULT

Baseline Module Specifies a high-level function being performed.

A SQL plan baseline can belong to one and only 
one module.

After an outline is 
migrated to a SQL 
plan baseline, module 
name defaults to 
outline category name

Baseline Category Only one SQL plan baseline category exists. This 
category is named DEFAULT. During stored outline 
migration, the module name of the SQL plan 
baseline is set to the category name of the stored 
outline.

A statement can have multiple SQL plan 
baselines in the DEFAULT category.

DEFAULT

Module OLTP

Baseline emp1

Module DW

Baseline emp2

Category DEFAULT

Baseline dept

Category OLTP

Category DW

Outline emp1

Outline emp2

Outline dept

SELECT...

SELECT...



Migrating Stored Outlines to SQL Plan Baselines

15-16 Oracle Database Performance Tuning Guide

You can control stored outline and plan baseline behavior with initialization and 
session parameters. Table 15–3 describes the relevant parameters. See Table 15–5 and 
Table 15–6 for an explanation of how these parameter settings interact.

You can use database views to access information relating to stored outline migration. 
Table 15–4 describes the following main views.

Table 15–2  DBMS_SPM Functions Relating to Stored Outline Migration

DBMS_SPM Function Description

MIGRATE_STORED_OUTLINE Migrates existing stored outlines to plan baselines. 

Use either of the following formats:

■ Specify outline name, SQL text, outline category, or all stored 
outlines.

■ Specify a list of outline names.

ALTER_SQL_PLAN_BASELINE Changes an attribute of a single plan or all plans associated with a SQL 
statement.

DROP_MIGRATED_STORED_OUTLINE Drops stored outlines that have been migrated to SQL plan baselines. 

The function finds stored outlines marked as MIGRATED in the 
DBA_OUTLINES view, and then drops these outlines from the database.

Table 15–3  Parameters Relating to Stored Outline Migration

Initialization or Session Parameter Description

CREATE_STORED_OUTLINES Determines whether Oracle Database automatically creates 
and stores an outline for each query submitted during the 
session.

OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES Enables or disables the automatic recognition of repeatable 
SQL statement and the generation of SQL plan baselines for 
these statements.

USE_STORED_OUTLINES Determines whether the optimizer uses stored outlines to 
generate execution plans.

Note: This is a session parameter, not an initialization 
parameter.

OPTIMIZER_USE_SQL_PLAN_BASELINES Enables or disables the use of SQL plan baselines stored in 
SQL Management Base.

Table 15–4  Views Relating to Stored Outline Migration

View Description

DBA_OUTLINES Describes all stored outlines in the database.

The MIGRATED column is important for outline migration and shows one of the 
following values: NOT-MIGRATED and MIGRATED. When MIGRATED, the stored outline 
has been migrated to a plan baseline and is not usable.

DBA_SQL_PLAN_BASELINES Displays information about the SQL plan baselines currently created for specific 
SQL statements.

The ORIGIN column indicates how the plan baseline was created. The value 
STORED-OUTLINE indicates the baseline was created by migrating an outline.



Migrating Stored Outlines to SQL Plan Baselines

Using SQL Plan Management 15-17

Basic Steps in Stored Outline Migration
This section explains the basic steps in using the PL/SQL API to perform stored 
outline migration. The basic steps are as follows:

1. Prepare for stored outline migration.

Review the migration prerequisites and determine how you want the migrated 
plan baselines to behave.

See "Preparing for Stored Outline Migration" on page 15-17.

2. Do one of the following:

■ Migrate to baselines to utilize SQL Plan Management features.

See "Migrating Outlines to Utilize SQL Plan Management Features" on 
page 15-18.

■ Migrate to baselines while exactly preserving the behavior of the stored 
outlines.

See "Migrating Outlines to Preserve Stored Outline Behavior" on page 15-19.

3. Perform post-migration confirmation and cleanup.

See "Performing Follow-Up Tasks After Stored Outline Migration" on page 15-20.

Preparing for Stored Outline Migration
This section explains how to prepare for stored outline migration.

To prepare for stored outline migration:

1. Start SQL*Plus and log on as a user with SYSDBA privileges or the EXECUTE 
privilege on the DBMS_SPM package.

For example, do the following to use operating system authentication to log on to 
a database as SYS:

% sqlplus /nolog
SQL> CONNECT / AS SYSDBA

2. Query the stored outlines in the database.

The following example queries all stored outlines that have not been migrated to 
SQL plan baselines:

SELECT NAME, CATEGORY, SQL_TEXT
FROM   DBA_OUTLINES
WHERE  MIGRATED = 'NOT-MIGRATED';

3. Determine which stored outlines meet the following prerequisites for migration 
eligibility:

■ The statement must not be a run-time INSERT AS SELECT statement.

■ The statement must not reference a remote object.

See Also: 

■ Oracle Database PL/SQL Packages and Types Reference to learn about 
the DBMS_SPM package

■ Oracle Database Reference to learn about database initialization 
parameters and database fixed views



Migrating Stored Outlines to SQL Plan Baselines

15-18 Oracle Database Performance Tuning Guide

■ This statement must not be a private stored outline.

4. Decide whether to migrate all outlines, specified stored outlines, or outlines 
belonging to a specified outline category.

If you do not decide to migrate all outlines, then list the outlines or categories that 
you intend to migrate.

5. Decide whether the stored outlines migrated to SQL plan baselines should use 
fixed plans or nonfixed plans:

■ Fixed plans

A fixed plan is frozen. If a fixed plan is reproducible using the hints stored in 
plan baseline, then the optimizer always chooses the lowest-cost fixed plan 
baseline over plan baselines that are not fixed. Essentially, a fixed plan 
baseline acts as a stored outline with valid hints.

A fixed plan is reproducible when the database can parse the statement based 
on the hints stored in the plan baseline and create a plan with the same plan 
hash value as the one in the plan baseline. If one of more of the hints become 
invalid, then the database may not be able to create a plan with the same plan 
hash value. In this case, the plan is nonreproducible. 

If a fixed plan cannot be reproduced when parsed using its hints, then the 
optimizer chooses a different plan, which can be either of the following:

– Another plan for the SQL plan baseline

– The current cost-based plan created by the optimizer

In some cases, a performance regression occurs because of the different plan, 
requiring SQL tuning.

■ Nonfixed plans

If a plan baseline does not contain fixed plans, then SQL Plan Management 
considers the plans equally when picking a plan for a SQL statement.

6. Before beginning the actual migration, ensure that the Oracle database meets the 
following prerequisites:

■ The database must be Enterprise Edition.

■ The database must be open and must not be in a suspended state.

■ The database must not be in restricted access (DBA), read-only, or migrate 
mode.

■ OCI must be available.

Migrating Outlines to Utilize SQL Plan Management Features
The goals of this task are as follows:

■ To allow SQL Plan Management to select from all plans in a plan baseline for a 
SQL statement instead of applying the same fixed plan after migration

See Also: 

■ Oracle Database Administrator's Guide to learn about administrator 
privileges

■ Oracle Database Reference to learn about the DBA_OUTLINES views



Migrating Stored Outlines to SQL Plan Baselines

Using SQL Plan Management 15-19

■ To allow the SQL plan baseline to evolve in the face of database changes by adding 
new plans to the baseline

The scenario in this section assumes the following:

■ You migrate all outlines. 

To migrate specific outlines, see Oracle Database PL/SQL Packages and Types 
Reference for details about the DBMS_SPM.MIGRATE_STORED_OUTLINE function.

■ You want the module names of the baselines to be identical to the category names 
of the migrated outlines.

■ You do not want the SQL plans to be fixed.

By default, generated plans are not fixed and SQL Plan Management considers all 
plans equally when picking a plan for a SQL statement. This situation permits the 
advanced feature of plan evolution to capture new plans for a SQL statement, 
verify their performance, and accept these new plans into the plan baseline.

To migrate stored outlines to SQL plan baselines:

1. In SQL*Plus, call PL/SQL function MIGRATE_STORED_OUTLINE.

The following sample PL/SQL block migrates all stored outlines to fixed 
baselines:

DECLARE
  my_report CLOB;
BEGIN
  my_report := DBMS_SPM.MIGRATE_STORED_OUTLINE( attribute_name => 'all' );
END;
/

Migrating Outlines to Preserve Stored Outline Behavior
The goal of this task is to migrate stored outlines to SQL plan baselines and preserve 
the original behavior of the stored outlines by creating fixed plan baselines. A fixed 
plan has higher priority over other plans for the same SQL statement. If a plan is fixed, 
then the plan baseline cannot be evolved. The database does not add new plans to a 
plan baseline that contains a fixed plan.

This section assumes the following:

■ You want to migrate only the stored outlines in the category named firstrow. 

See Oracle Database PL/SQL Packages and Types Reference for syntax and semantics of 
the DBMS_SPM.MIGRATE_STORED_OUTLINE function.

■ You want the module names of the baselines to be identical to the category names 
of the migrated outlines.

To migrate stored outlines to plan baselines:

1. In SQL*Plus, call PL/SQL function MIGRATE_STORED_OUTLINE.

The following sample PL/SQL block migrates stored outlines in the category 
firstrow to fixed baselines:

See Also: 

■ Oracle Database PL/SQL Packages and Types Reference to learn about 
the DBMS_SPM package

■ Oracle Database SQL Language Reference to learn about the ALTER 
SYSTEM statement



Migrating Stored Outlines to SQL Plan Baselines

15-20 Oracle Database Performance Tuning Guide

DECLARE
  my_report CLOB;
BEGIN
  my_outlines := DBMS_SPM.MIGRATE_STORED_OUTLINE( 
    attribute_name => 'category', 
    attribute_value => 'firstrow',
    fixed => 'YES' );
END;
/

After migration, the SQL plan baselines is in module firstrow and category 
DEFAULT.

Performing Follow-Up Tasks After Stored Outline Migration
The goals of this task are as follows:

■ To configure the database to use plan baselines instead of stored outlines for stored 
outlines that have been migrated to SQL plan baselines

■ To create SQL plan baselines instead of stored outlines for future SQL statements

■ To drop the stored outlines that have been migrated to SQL plan baselines

This section assumes the following:

■ You have completed the basic steps in the stored outline migration.

■ Some stored outlines may have been created before Oracle Database 10g.

Hints in releases before Oracle Database 10g use a local hint format. After 
migration, hints stored in a plan baseline use the global hints format introduced in 
Oracle Database 10g.

This section explains how to set initialization parameters relating to stored outlines 
and plan baselines. The OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES and 
CREATE_STORED_OUTLINES initialization parameters determine how and when the 
database creates stored outlines and SQL plan baselines. Table 15–5 explains the 
interaction between these parameters.

See Also: 

■ Oracle Database PL/SQL Packages and Types Reference to learn about 
the DBMS_SPM package

■ Oracle Database SQL Language Reference to learn about the ALTER 
SYSTEM statement



Migrating Stored Outlines to SQL Plan Baselines

Using SQL Plan Management 15-21

The USE_STORED_OUTLINES session parameter (it is not an initialization parameter) and 
OPTIMIZER_USE_SQL_PLAN_BASELINES initialization parameter determine how the 
database uses stored outlines and plan baselines. Table 15–6 explains how these 
parameters interact.

Table 15–5  Creation of Outlines and Baselines

CREATE_STORED_OUTLINES 
Initialization Parameter

OPTIMIZER_CAPTURE_
SQL_PLAN_BASELINES 
Initialization Parameter Database Behavior

FALSE FALSE When executing a SQL statement, the database 
does not create stored outlines or SQL plan 
baselines.

FALSE TRUE The automatic recognition of repeatable SQL 
statements and the generation of SQL plan 
baselines for these statements is enabled. When 
executing a SQL statement, the database creates 
only new SQL plan baselines (if they do not exist) 
with the category name DEFAULT for the 
statement.

TRUE FALSE Oracle Database automatically creates and stores 
an outline for each query submitted during the 
session. When executing a SQL statement, the 
database creates only new stored outlines (if they 
do not exist) with the category name DEFAULT for 
the statement.

category FALSE When executing a SQL statement, the database 
creates only new stored outlines (if they do not 
exist) with the specified category name for the 
statement.

TRUE TRUE Oracle Database automatically creates and stores 
an outline for each query submitted during the 
session. The automatic recognition of repeatable 
SQL statements and the generation of SQL plan 
baselines for these statements is also enabled.

When executing a SQL statement, the database 
creates both stored outlines and SQL plan 
baselines with the category name DEFAULT.

category TRUE Oracle Database automatically creates and stores 
an outline for each query submitted during the 
session. The automatic recognition of repeatable 
SQL statements and the generation of SQL plan 
baselines for these statements is also enabled.

When executing a SQL statement, the database 
creates stored outlines with the specified category 
name and SQL plan baselines with the category 
name DEFAULT.



Migrating Stored Outlines to SQL Plan Baselines

15-22 Oracle Database Performance Tuning Guide

To place the database in the proper state after the migration:

1. Check that SQL plan baselines have been created as the result of migration.

Ensure that the plans are enabled and accepted. For example, enter the following 
query (partial sample output included):

SELECT SQL_HANDLE, PLAN_NAME, ORIGIN, ENABLED, ACCEPTED, FIXED, MODULE
FROM   DBA_SQL_PLAN_BASELINES;

SQL_HANDLE                     PLAN_NAME  ORIGIN         ENA ACC FIX MODULE
------------------------------ ---------- -------------- --- --- --- ------
SYS_SQL_f44779f7089c8fab       STMT01     STORED-OUTLINE YES YES NO  DEFAULT
.
.
.

2. Optionally, change the attributes of the SQL plan baselines.

For example, the following statement changes the status of the baseline for the 
specified SQL statement to fixed:

DECLARE
  v_cnt PLS_INTEGER;

Table 15–6  Use of Stored Outlines and SQL Plan Baselines

USE_STORED_OUTLINES 
Session Parameter

OPTIMIZER_USE_SQL_
PLAN_BASELINES 
Initialization Parameter Database Behavior

FALSE FALSE When choosing a plan for a SQL statement, the 
database does not use stored outlines or plan baselines.

FALSE TRUE When choosing a plan for a SQL statement, the 
database uses only SQL plan baselines.

TRUE FALSE When choosing a plan for a SQL statement, the 
database uses stored outlines with the category name 
DEFAULT.

category FALSE When choosing a plan for a SQL statement, the 
database uses stored outlines with the specified 
category name.

If a stored outline with the specified category name 
does not exist, then the database uses a stored outline 
in the DEFAULT category if it exists.

TRUE TRUE When choosing a plan for a SQL statement, stored 
outlines take priority over plan baselines. 

If a stored outline with the category name DEFAULT 
exists for the statement and is applicable, then the 
database applies the stored outline. Otherwise, the 
database uses SQL plan baselines.

category TRUE When choosing a plan for a SQL statement, stored 
outlines take priority over plan baselines. 

If a stored outline with the specified category name or 
the DEFAULT category exists for the statement and is 
applicable, then the database applies the stored outline. 
Otherwise, the database uses SQL plan baselines. 
However, if the stored outline has the property 
MIGRATED, then the database does not use the outline 
and uses the corresponding SQL plan baseline instead 
(if it exists).



Migrating Stored Outlines to SQL Plan Baselines

Using SQL Plan Management 15-23

BEGIN 
  v_cnt := DBMS_SPM.ALTER_SQL_PLAN_BASELINE(               
                           sql_handle=>'SYS_SQL_f44779f7089c8fab', 
                           attribute_name=>'FIXED', 
                           attribute_value=>'NO');
  DBMS_OUTPUT.PUT_LINE('Plans altered: ' || v_cnt);
END;
/

3. Check the status of the original stored outlines.

For example, enter the following query (partial sample output included):

SELECT NAME, OWNER, CATEGORY, USED, MIGRATED 
FROM   DBA_OUTLINES
ORDER BY NAME;

NAME       OWNER      CATEGORY   USED   MIGRATED
---------- ---------- ---------- ------ ------------
STMT01     SYS        DEFAULT    USED   MIGRATED
STMT02     SYS        DEFAULT    USED   MIGRATED
.
.
.

4. Drop all stored outlines that have been migrated to SQL plan baselines.

For example, the following statements drops all stored outlines with status 
MIGRATED in DBA_OUTLINES:

DECLARE
  v_cnt PLS_INTEGER;
BEGIN 
  v_cnt := DBMS_SPM.DROP_MIGRATED_STORED_OUTLINE();
  DBMS_OUTPUT.PUT_LINE('Migrated stored outlines dropped: ' || v_cnt);
END;
/

5. Set initialization parameters so that:

■ When executing a SQL statement, the database creates plan baselines but does 
not create stored outlines.

■ The database only uses stored outlines when the equivalent SQL plan 
baselines do not exist.

For example, the following SQL statements instruct the database to create SQL 
plan baselines instead of stored outlines when a SQL statement is executed. The 
example also instructs the database to apply a stored outline in category allrows 
or DEFAULT only if it exists and has not been migrated to a SQL plan baseline. In 
other cases, the database applies SQL plan baselines instead.

ALTER SYSTEM 
  SET CREATE_STORED_OUTLINE = false;

ALTER SYSTEM 
  SET OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES = true;

ALTER SYSTEM 
   SET OPTIMIZER_USE_SQL_PLAN_BASELINES = true;

ALTER SESSION
   SET USE_STORED_OUTLINES = allrows;



Migrating Stored Outlines to SQL Plan Baselines

15-24 Oracle Database Performance Tuning Guide

See Also: 

■ Oracle Database PL/SQL Packages and Types Reference to learn about 
the DBMS_SPM package

■ Oracle Database Reference to learn about database fixed views



16

SQL Tuning Overview 16-1

16 SQL Tuning Overview 

This chapter discusses goals for tuning, how to identify high-resource SQL statements, 
explains what should be collected, provides tuning suggestions, and discusses how to 
create SQL test cases to troubleshoot problems in SQL.

This chapter contains the following sections: 

■ Introduction to SQL Tuning

■ Goals for Tuning

■ Identifying High-Load SQL

■ Automatic SQL Tuning Features

■ Developing Efficient SQL Statements

■ Building SQL Test Cases

Introduction to SQL Tuning
SQL tuning involves the following basic steps:

■ Identifying high load or top SQL statements that are responsible for a large share 
of the application workload and system resources, by reviewing past SQL 
execution history available in the system

■ Verifying that the execution plans produced by the query optimizer for these 
statements perform reasonably

■ Implementing corrective actions to generate better execution plans for poorly 
performing SQL statements

The previous steps are repeated until the system performance reaches a satisfactory 
level or no more statements can be tuned.

Goals for Tuning
The objective of tuning a system is either to reduce the response time for end users of 
the system, or to reduce the resources used to process the same work. You can 
accomplish both of these objectives in several ways:

See Also: 

■ Oracle Database Concepts for an overview of SQL

■ Oracle Database 2 Day DBA to learn how to monitor the 
database



Identifying High-Load SQL

16-2 Oracle Database Performance Tuning Guide

■ Reduce the Workload

■ Balance the Workload

■ Parallelize the Workload

Reduce the Workload
SQL tuning commonly involves finding more efficient ways to process the same 
workload. It is possible to change the execution plan of the statement without altering 
the functionality to reduce the resource consumption.

Two examples of how you can resource usage are as follows:

1. If a commonly executed query must access a small percentage of data in the table, 
then the database can execute it more efficiently by using an index. By creating 
such an index, you reduce the amount of resources used.

2. If a user is looking at the first twenty rows of the 10,000 rows returned in a specific 
sort order, and if the query (and sort order) can be satisfied by an index, then the 
user does not need to access and sort the 10,000 rows to see the first 20 rows.

Balance the Workload
Systems often tend to have peak usage in the daytime when real users are connected to 
the system, and low usage in the nighttime. If you can schedule noncritical reports and 
batch jobs to run in the nighttime and reduce their concurrency during day time, then 
the database frees up resources for the more critical programs in the day.

Parallelize the Workload
Queries that access large amounts of data (typical data warehouse queries) can often 
run in parallel. Parallelism is extremely useful for reducing response time in a low 
concurrency data warehouse. However, for OLTP environments, which tend to be high 
concurrency, parallelism can adversely impact other users by increasing the overall 
resource usage of the program.

Identifying High-Load SQL
This section describes the steps involved in identifying and gathering data on 
high-load SQL statements. High-load SQL are poorly-performing, resource-intensive 
SQL statements that impact the performance of an Oracle database. The following 
tools can identify high-load SQL statements:

■ Automatic Database Diagnostic Monitor

■ Automatic SQL tuning

■ Automatic Workload Repository

■ V$SQL view

■ Custom Workload

■ SQL Trace

Identifying Resource-Intensive SQL
The first step in identifying resource-intensive SQL is to categorize the problem you 
are attempting to fix:



Identifying High-Load SQL

SQL Tuning Overview 16-3

■ Is the problem specific to a single program (or small number of programs)?

■ Is the problem generic over the application?

Tuning a Specific Program
If you are tuning a specific program (GUI or 3GL), then identifying the SQL to 
examine is a simple matter of looking at the SQL executed within the program. Oracle 
Enterprise Manager (Enterprise Manager) provides tools for identifying resource 
intensive SQL statements, generating explain plans, and evaluating SQL performance.

If it is not possible to identify the SQL (for example, the SQL is generated 
dynamically), then use SQL_TRACE to generate a trace file that contains the SQL 
executed, then use TKPROF to generate an output file.

The SQL statements in the TKPROF output file can be ordered by various parameters, 
such as the execution elapsed time (exeela), which usually assists in the identification 
by ordering the SQL statements by elapsed time (with highest elapsed time SQL 
statements at the top of the file). This makes the job of identifying the poorly 
performing SQL easier if there are many SQL statements in the file.

Tuning an Application / Reducing Load
If the whole application is performing poorly, or if you are attempting to reduce the 
overall CPU or I/O load on the database server, then identifying resource-intensive 
SQL involves the following steps:

1. Determine which period in the day you would like to examine; typically this is the 
application's peak processing time.

2. Gather operating system and Oracle Database statistics at the beginning and end 
of that period. The minimum of Oracle Database statistics gathered should be file 
I/O (V$FILESTAT), system statistics (V$SYSSTAT), and SQL statistics (V$SQLAREA, 
V$SQL, or V$SQLSTATS, V$SQLTEXT, V$SQL_PLAN, and V$SQL_PLAN_STATISTICS).

3. Using the data collected in step two, identify the SQL statements using the most 
resources. A good way to identify candidate SQL statements is to query 
V$SQLSTATS. V$SQLSTATS contains resource usage information for all SQL 
statements in the shared pool. The data in V$SQLSTATS should be ordered by 
resource usage. The most common resources are: 

■ Buffer gets (V$SQLSTATS.BUFFER_GETS, for high CPU using statements) 

■ Disk reads (V$SQLSTATS.DISK_READS, for high I/O statements) 

■ Sorts (V$SQLSTATS.SORTS, for many sorts)

One method to identify which SQL statements are creating the highest load is to 
compare the resources used by a SQL statement to the total amount of that resource 

See Also: 

■ Chapter 21, "Using Application Tracing Tools"

■ Chapter 17, "Automatic SQL Tuning"

See Also: 

■ Chapter 6, "Automatic Performance Diagnostics" to learn how to 
gather Oracle database instance performance data

■ "Real-Time SQL Monitoring" on page 10-39 for information about 
the V$SQL_PLAN_MONITOR view



Identifying High-Load SQL

16-4 Oracle Database Performance Tuning Guide

used in the period. For BUFFER_GETS, divide each SQL statement's BUFFER_GETS by the 
total number of buffer gets during the period. The total number of buffer gets in the 
system is available in the V$SYSSTAT table, for the statistic session logical reads. 

Similarly, it is possible to apportion the percentage of disk reads a statement performs 
out of the total disk reads performed by the system by dividing 
V$SQL_STATS.DISK_READS by the value for the V$SYSSTAT statistic physical reads. The 
SQL sections of the Automatic Workload Repository report include this data, so you 
do not need to perform the percentage calculations manually.

After you have identified the candidate SQL statements, the next stage is to gather 
information that is necessary to examine the statements and tune them.

Gathering Data on the SQL Identified
If you are most concerned with CPU, then examine the top SQL statements that 
performed the most BUFFER_GETS during that interval. Otherwise, start with the SQL 
statement that performed the most DISK_READS.

Information to Gather During Tuning
The tuning process begins by determining the structure of the underlying tables and 
indexes. The information gathered includes the following:

1. Complete SQL text from V$SQLTEXT

2. Structure of the tables referenced in the SQL statement, usually by describing the 
table in SQL*Plus

3. Definitions of any indexes (columns, column orders), and whether the indexes are 
unique or non-unique

4. Optimizer statistics for the segments (including the number of rows each table, 
selectivity of the index columns), including the date when the segments were last 
analyzed

5. Definitions of any views referred to in the SQL statement

6. Repeat steps two, three, and four for any tables referenced in the view definitions 
found in step five

7. Optimizer plan for the SQL statement (either from EXPLAIN PLAN, V$SQL_PLAN, or 
the TKPROF output)

8. Any previous optimizer plans for that SQL statement

See Also:  Oracle Database Reference for information about 
dynamic performance views

Note: It is important to generate and review execution plans for 
all of the key SQL statements in your application. Doing so lets you 
compare the optimizer execution plans of a SQL statement when 
the statement performed well to the plan when that the statement is 
not performing well. Having the comparison, along with 
information such as changes in data volumes, can assist in 
identifying the cause of performance degradation.



Developing Efficient SQL Statements

SQL Tuning Overview 16-5

Automatic SQL Tuning Features
Because the manual SQL tuning process poses many challenges to the application 
developer, the SQL tuning process has been automated by the automatic SQL tuning 
features of Oracle Database. These features are designed to work equally well for 
OLTP and Data Warehouse type applications:

■ ADDM

■ SQL Tuning Advisor

■ SQL Tuning Sets

■ SQL Access Advisor

ADDM
The Automatic Database Diagnostic Monitor (ADDM) analyzes the information 
collected by the AWR for possible performance problems with Oracle Database, 
including high-load SQL statements. See "Overview of the Automatic Database 
Diagnostic Monitor" on page 6-1.

SQL Tuning Advisor
SQL Tuning Advisor optimizes SQL statements that have been identified as high-load 
SQL statements. By default, Oracle Database automatically identifies problematic SQL 
statements and implements tuning recommendations using SQL Tuning Advisor 
during system maintenance windows as an automated maintenance task, searching for 
ways to improve the execution plans of the high-load SQL statements. You can also 
choose to run SQL Tuning Advisor at any time on any given SQL workload to improve 
performance. See "Tuning Reactively with SQL Tuning Advisor" on page 17-9.

SQL Tuning Sets
When multiple SQL statements serve as input to ADDM, SQL Tuning Advisor, or SQL 
Access Advisor, the database constructs and stores a SQL tuning set (STS). The STS 
includes the set of SQL statements along with their associated execution context and 
basic execution statistics. See "Managing SQL Tuning Sets" on page 17-15.

SQL Access Advisor
In addition to SQL Tuning Advisor, SQL Access Advisor provides advice on 
materialized views, indexes, and materialized view logs. SQL Access Advisor helps 
you achieve performance goals by recommending the proper set of materialized 
views, materialized view logs, and indexes for a given workload. In general, as the 
number of materialized views and indexes and the space allocated to them is 
increased, query performance improves. SQL Access Advisor considers the trade-offs 
between space usage and query performance, and recommends the most cost-effective 
configuration of new and existing materialized views and indexes. See "Using SQL 
Access Advisor" on page 18-5.

Developing Efficient SQL Statements
This section describes ways you can improve SQL statement efficiency:

■ Verifying Optimizer Statistics

See Also: Chapter 17, "Automatic SQL Tuning".



Developing Efficient SQL Statements

16-6 Oracle Database Performance Tuning Guide

■ Reviewing the Execution Plan

■ Restructuring the SQL Statements

■ Restructuring the Indexes

■ Modifying or Disabling Triggers and Constraints 

■ Restructuring the Data 

■ Maintaining Execution Plans Over Time

■ Visiting Data as Few Times as Possible

Verifying Optimizer Statistics
The query optimizer uses statistics gathered on tables and indexes when determining 
the optimal execution plan. If these statistics have not been gathered, or if the statistics 
are no longer representative of the data stored within the database, then the optimizer 
does not have sufficient information to generate the best plan.

Things to check:

■ If you gather statistics for some tables in your database, then it is probably best to 
gather statistics for all tables. This is especially true if your application includes 
SQL statements that perform joins.

■ If the optimizer statistics in the data dictionary are no longer representative of the 
data in the tables and indexes, then gather new statistics. One way to check 
whether the dictionary statistics are stale is to compare the real cardinality (row 
count) of a table to the value of DBA_TABLES.NUM_ROWS. Additionally, if there is 
significant data skew on predicate columns, then consider using histograms.

Reviewing the Execution Plan
When tuning (or writing) a SQL statement in an OLTP environment, the goal is to 
drive from the table that has the most selective filter. This means that there are fewer 
rows passed to the next step. If the next step is a join, then this means that fewer rows 
are joined. Check to see whether the access paths are optimal.

When examining the optimizer execution plan, look for the following:

■ The driving table has the best filter.

■ The join order in each step returns the fewest number of rows to the next step (that 
is, the join order should reflect, where possible, going to the best not-yet-used 
filters).

■ The join method is appropriate for the number of rows being returned. For 
example, nested loop joins through indexes may not be optimal when the 
statement returns many rows.

■ The database uses views efficiently. Look at the SELECT list to see whether access to 
the view is necessary.

■ There are any unintentional Cartesian products (even with small tables).

Note: The guidelines described in this section are oriented to 
production of frequently executed SQL. Most techniques that are 
discouraged here can legitimately be employed in ad hoc 
statements or in applications run infrequently where performance 
is not critical. 



Developing Efficient SQL Statements

SQL Tuning Overview 16-7

■ Each table is being accessed efficiently:

Consider the predicates in the SQL statement and the number of rows in the table. 
Look for suspicious activity, such as a full table scans on tables with large number 
of rows, which have predicates in the where clause. Determine why an index is not 
used for such a selective predicate.

A full table scan does not mean inefficiency. It might be more efficient to perform a 
full table scan on a small table, or to perform a full table scan to leverage a better 
join method (for example, hash_join) for the number of rows returned.

If any of these conditions are not optimal, then consider restructuring the SQL 
statement or the indexes available on the tables.

Restructuring the SQL Statements
Often, rewriting an inefficient SQL statement is easier than modifying it. If you 
understand the purpose of a given statement, then you might be able to quickly and 
easily write a new statement that meets the requirement.

Compose Predicates Using AND and =
To improve SQL efficiency, use equijoins whenever possible. Statements that perform 
equijoins on untransformed column values are the easiest to tune. 

Avoid Transformed Columns in the WHERE Clause
Use untransformed column values. For example, use:

WHERE a.order_no = b.order_no

rather than:

WHERE TO_NUMBER (SUBSTR(a.order_no, INSTR(b.order_no, '.') - 1))
= TO_NUMBER (SUBSTR(a.order_no, INSTR(b.order_no, '.') - 1))

Do not use SQL functions in predicate clauses or WHERE clauses. Any expression using 
a column, such as a function having the column as its argument, causes the optimizer 
to ignore the possibility of using an index on that column, even a unique index, unless 
there is a function-based index defined that the database can use.

Avoid mixed-mode expressions, and beware of implicit type conversions. When you 
want to use an index on the VARCHAR2 column charcol, but the WHERE clause looks like 
this:

AND charcol = numexpr

where numexpr is an expression of number type (for example, 1, USERENV('SESSIONID'), 
numcol, numcol+0,...), Oracle Database translates that expression into:

AND TO_NUMBER(charcol) = numexpr

Avoid the following kinds of complex expressions:

■ col1 = NVL (:b1,col1)

■ NVL (col1,-999) = ….

■ TO_DATE(), TO_NUMBER(), and so on

These expressions prevent the optimizer from assigning valid cardinality or selectivity 
estimates and can in turn affect the overall plan and the join method.



Developing Efficient SQL Statements

16-8 Oracle Database Performance Tuning Guide

Add the predicate versus using NVL() technique.

For example:

SELECT employee_num, full_name Name, employee_id 
  FROM mtl_employees_current_view 
  WHERE (employee_num = NVL (:b1,employee_num)) AND (organization_id=:1) 
  ORDER BY employee_num;

Also:

SELECT employee_num, full_name Name, employee_id 
  FROM mtl_employees_current_view 
  WHERE (employee_num = :b1) AND (organization_id=:1) 
  ORDER BY employee_num;

If a column of type NUMBER is used in a WHERE clause to filter predicates with a literal 
value, then use a TO_NUMBER function in the WHERE clause predicate to ensure you can 
use the index on the NUMBER column. For example, if numcol is a column of type 
NUMBER, then a WHERE clause containing numcol=TO_NUMBER('5') enables the database 
to use the index on numcol.

If a query joins two tables, and if the join columns have different data types (for 
example, NUMBER and VARCHAR2), then Oracle Database implicitly performs data type 
conversion. For example, if the join condition is varcol=numcol, then the database 
implicitly converts the condition to TO_NUMBER(varcol)=numcol. If an index exists on 
the varcol column, then explicitly set the type conversion to 
varcol=TO_CHAR(numcol), thus enabling the database to use the index.

Write Separate SQL Statements for Specific Tasks
SQL is not a procedural language. Using one piece of SQL to do many different things 
usually results in a less-than-optimal result for each task. If you want SQL to 
accomplish different things, then write various statements, rather than writing one 
statement to do different things depending on the parameters you give it. 

It is always better to write separate SQL statements for different tasks, but if you must 
use one SQL statement, then you can make a very complex statement slightly less 
complex by using the UNION ALL operator. 

Optimization (determining the execution plan) takes place before the database knows 
the values substituted in the query. An execution plan cannot, therefore, depend on 
what those values are. For example:

SELECT info 
FROM tables

See Also: Chapter 14, "Using Indexes and Clusters" for more 
information on function-based indexes

Note: Oracle Forms and Reports are powerful development tools 
that allow application logic to be coded using PL/SQL (triggers or 
program units). This helps reduce the complexity of SQL by 
allowing complex logic to be handled in the Forms or Reports. You 
can also invoke a server side PL/SQL package that performs the 
few SQL statements in place of a single large complex SQL 
statement. Because the package is a server-side unit, there are no 
issues surrounding client to database round-trips and network 
traffic. 



Developing Efficient SQL Statements

SQL Tuning Overview 16-9

WHERE ... 
AND somecolumn BETWEEN DECODE(:loval, 'ALL', somecolumn, :loval)
AND DECODE(:hival, 'ALL', somecolumn, :hival);

Written as shown, the database cannot use an index on the somecolumn column, 
because the expression involving that column uses the same column on both sides of 
the BETWEEN.

This is not a problem if there is some other highly selective, indexable condition you 
can use to access the driving table. Often, however, this is not the case. Frequently, you 
might want to use an index on a condition like that shown but need to know the 
values of :loval, and so on, in advance. With this information, you can rule out the ALL 
case, which should not use the index. 

To use the index whenever real values are given for :loval and :hival (if you expect 
narrow ranges, even ranges where :loval often equals :hival), you can rewrite the 
example in the following logically equivalent form:

SELECT /* change this half of UNION ALL if other half changes */ info
FROM   tables 
WHERE  ... 
AND    somecolumn BETWEEN :loval AND :hival
AND   (:hival != 'ALL' AND :loval != 'ALL') 
UNION ALL 
SELECT /* Change this half of UNION ALL if other half changes. */ info
FROM   tables
WHERE  ... 
AND (:hival = 'ALL' OR :loval = 'ALL');

If you run EXPLAIN PLAN on the new query, then you seem to get both a desirable and 
an undesirable execution plan. However, the first condition the database evaluates for 
either half of the UNION ALL is the combined condition on whether :hival and :loval 
are ALL. The database evaluates this condition before actually getting any rows from 
the execution plan for that part of the query. 

When the condition comes back false for one part of the UNION ALL query, that part is 
not evaluated further. Only the part of the execution plan that is optimum for the 
values provided is actually carried out. Because the final conditions on :hival and 
:loval are guaranteed to be mutually exclusive, only one half of the UNION ALL 
actually returns rows. (The ALL in UNION ALL is logically valid because of this 
exclusivity. It allows the plan to be carried out without an expensive sort to rule out 
duplicate rows for the two halves of the query.)

Controlling the Access Path and Join Order with Hints
You can influence the optimizer's choices by setting the optimizer approach and goal, 
and by gathering representative statistics for the query optimizer. Sometimes, the 
application designer, who has more information about a particular application's data 
than is available to the optimizer, can choose a more effective way to execute a SQL 
statement. You can use hints in SQL statements to instruct the optimizer about how the 
statement should be executed. 

Hints, such as /*+FULL */ control access paths. For example:

SELECT /*+ FULL(e) */ e.last_name
  FROM employees e
 WHERE e.job_id = 'CLERK';



Developing Efficient SQL Statements

16-10 Oracle Database Performance Tuning Guide

Join order can have a significant effect on performance. The main objective of SQL 
tuning is to avoid performing unnecessary work to access rows that do not affect the 
result. This leads to three general rules:

■ Avoid a full-table scan if it is more efficient to get the required rows through an 
index.

■ Avoid using an index that fetches 10,000 rows from the driving table if you could 
instead use another index that fetches 100 rows.

■ Choose the join order so as to join fewer rows to tables later in the join order.

The following example shows how to tune join order effectively:

SELECT info
FROM taba a, tabb b, tabc c
WHERE a.acol BETWEEN 100 AND 200
AND b.bcol BETWEEN 10000 AND 20000
AND c.ccol BETWEEN 10000 AND 20000
AND a.key1 = b.key1
AND a.key2 = c.key2;

1. Choose the driving table and the driving index (if any).

The first three conditions in the previous example are filter conditions applying to 
only a single table each. The last two conditions are join conditions. 

Filter conditions dominate the choice of driving table and index. In general, the 
driving table is the one containing the filter condition that eliminates the highest 
percentage of the table. Thus, because the range of 100 to 200 is narrow compared 
with the range of acol, but the ranges of 10000 and 20000 are relatively large, taba 
is the driving table, all else being equal.

With nested loop joins, the joins all happen through the join indexes, the indexes 
on the primary or foreign keys used to connect that table to an earlier table in the 
join tree. Rarely do you use the indexes on the non-join conditions, except for the 
driving table. Thus, after taba is chosen as the driving table, use the indexes on 
b.key1 and c.key2 to drive into tabb and tabc, respectively.

2. Choose the best join order, driving to the best unused filters earliest. 

You can reduce the work of the following join by first joining to the table with the 
best still-unused filter. Thus, if "bcol BETWEEN ..." is more restrictive (rejects a 
higher percentage of the rows seen) than "ccol BETWEEN ...", then the last join 
becomes easier (with fewer rows) if tabb is joined before tabc. 

3. You can use the ORDERED or STAR hint to force the join order.

Use Caution When Managing Views
Be careful when joining views, when performing outer joins to views, and when 
reusing an existing view for a new purpose.

Use Caution When Joining Complex Views  Joins to complex views are not recommended, 
particularly joins from one complex view to another. Often this results in the entire 
view being instantiated, and then the query is run against the view data. 

See Also: Chapter 11, "The Query Optimizer" and Chapter 19, 
"Using Optimizer Hints"

See Also: "Hints for Join Orders" on page 19-4



Developing Efficient SQL Statements

SQL Tuning Overview 16-11

For example, the following statement creates a view that lists employees and 
departments:

CREATE OR REPLACE VIEW emp_dept
AS
SELECT d.department_id, d.department_name, d.location_id,
     e.employee_id, e.last_name, e.first_name, e.salary, e.job_id
FROM  departments d
     ,employees e
WHERE e.department_id (+) = d.department_id;

The following query finds employees in a specified state:

SELECT v.last_name, v.first_name, l.state_province
  FROM locations l, emp_dept v
 WHERE l.state_province = 'California'
  AND   v.location_id = l.location_id (+);

In the following plan table output, note that the emp_dept view is instantiated:

--------------------------------------------------------------------------------
| Operation                 |  Name    |  Rows | Bytes|  Cost  | Pstart| Pstop |
--------------------------------------------------------------------------------
| SELECT STATEMENT          |          |       |      |        |       |       |
|  FILTER                   |          |       |      |        |       |       |
|   NESTED LOOPS OUTER      |          |       |      |        |       |       |
|    VIEW                   |EMP_DEPT  |       |      |        |       |       |
|     NESTED LOOPS OUTER    |          |       |      |        |       |       |
|      TABLE ACCESS FULL    |DEPARTMEN |       |      |        |       |       |
|      TABLE ACCESS BY INDEX|EMPLOYEES |       |      |        |       |       |
|       INDEX RANGE SCAN    |EMP_DEPAR |       |      |        |       |       |
|    TABLE ACCESS BY INDEX R|LOCATIONS |       |      |        |       |       |
|     INDEX UNIQUE SCAN     |LOC_ID_PK |       |      |        |       |       |
--------------------------------------------------------------------------------

Do Not Recycle Views  Beware of writing a view for one purpose and then using it for 
other purposes to which it might be ill-suited. Querying from a view requires all tables 
from the view to be accessed for the data to be returned. Before reusing a view, 
determine whether all tables in the view need to be accessed to return the data. If not, 
then do not use the view. Instead, use the base table(s), or if necessary, define a new 
view. The goal is to refer to the minimum number of tables and views necessary to 
return the required data.

Consider the following example:

SELECT department_name 
FROM emp_dept
WHERE department_id = 10;

The entire view is first instantiated by performing a join of the employees and 
departments tables and then aggregating the data. However, you can obtain 
department_name and department_id directly from the departments table. It is 
inefficient to obtain this information by querying the emp_dept view. 

Use Caution When Unnesting Subqueries  Subquery unnesting merges the body of the 
subquery into the body of the statement that contains it, allowing the optimizer to 
consider them together when evaluating access paths and joins. 

See Also: Oracle Database Data Warehousing Guide for an 
explanation of the dangers with subquery unnesting



Developing Efficient SQL Statements

16-12 Oracle Database Performance Tuning Guide

Use Caution When Performing Outer Joins to Views  In the case of an outer join to a 
multi-table view, the query optimizer (in Release 8.1.6 and later) can drive from an 
outer join column, if an equality predicate is defined on it.

An outer join within a view is problematic because the performance implications of the 
outer join are not visible. 

Store Intermediate Results
Intermediate, or staging, tables are quite common in relational database systems, 
because they temporarily store some intermediate results. In many applications they 
are useful, but Oracle Database requires additional resources to create them. Always 
consider whether the benefit they could bring is more than the cost to create them. 
Avoid staging tables when the information is not reused multiple times. 

Some additional considerations:

■ Storing intermediate results in staging tables could improve application 
performance. In general, whenever an intermediate result is usable by multiple 
following queries, it is worthwhile to store it in a staging table. The benefit of not 
retrieving data multiple times with a complex statement at the second usage of the 
intermediate result is better than the cost to materialize it.

■ Long and complex queries are hard to understand and optimize. Staging tables 
can break a complicated SQL statement into several smaller statements, and then 
store the result of each step. 

■ Consider using materialized views. These are precomputed tables comprising 
aggregated or joined data from fact and possibly dimension tables. 

Restructuring the Indexes 
Often, there is a beneficial impact on performance by restructuring indexes. This can 
involve the following:

■ Remove nonselective indexes to speed the DML.

■ Index performance-critical access paths.

■ Consider reordering columns in existing concatenated indexes.

■ Add columns to the index to improve selectivity.

Do not use indexes as a panacea. Application developers sometimes think that 
performance improves when they create more indexes. If a single programmer creates 
an appropriate index, then this index may improve the application's performance. 
However, if 50 developers each create an index, then application performance will 
probably be hampered.

Modifying or Disabling Triggers and Constraints
Using triggers consumes system resources. If you use too many triggers, then 
performance may be adversely affected. In this case, you might need to modify or 
disable the triggers. 

Restructuring the Data
After restructuring the indexes and the statement, consider restructuring the data:

See Also: Oracle Database Data Warehousing Guide for detailed 
information on using materialized views



Developing Efficient SQL Statements

SQL Tuning Overview 16-13

■ Introduce derived values. Avoid GROUP BY in response-critical code.

■ Review your data design. Change the design of your system if it can improve 
performance.

■ Consider partitioning, if appropriate.

Maintaining Execution Plans Over Time
You can maintain the existing execution plan of SQL statements over time either using 
stored statistics or SQL plan baselines. Storing optimizer statistics for tables will apply 
to all SQL statements that refer to those tables. Storing an execution plan as a SQL plan 
baseline maintains the plan for set of SQL statements. If both statistics and a SQL plan 
baseline are available for a SQL statement, then the optimizer first uses a cost-based 
search method to build a best-cost plan, and then tries to find a matching plan in the 
SQL plan baseline. If a match is found, then the optimizer proceeds using this plan. 
Otherwise, it evaluates the cost of each of the accepted plans in the SQL plan baseline 
and selects the plan with the lowest cost.

Visiting Data as Few Times as Possible 
Applications should try to access each row only once. This reduces network traffic and 
reduces database load. Consider doing the following:

■ Combine Multiples Scans Using CASE Expressions

■ Use DML with RETURNING Clause

■ Modify All the Data Needed in One Statement

Combine Multiples Scans Using CASE Expressions
Often, it is necessary to calculate different aggregates on various sets of tables. Usually, 
you achieve this goal with multiple scans on the table, but it is easy to calculate all the 
aggregates with a single scan. Eliminating n-1 scans can greatly improve performance.

You can combine multiple scans into one scan by moving the WHERE condition of each 
scan into a CASE expression, which filters the data for the aggregation. For each 
aggregation, there could be another column that retrieves the data.

The following example asks for the count of all employees who earn less then 2000, 
between 2000 and 4000, and more than 4000 each month. You can obtain this result by 
executing three separate queries:

SELECT COUNT (*)
  FROM employees
  WHERE salary < 2000;

SELECT COUNT (*)
  FROM employees
  WHERE salary BETWEEN 2000 AND 4000;

SELECT COUNT (*)
  FROM employees
  WHERE salary>4000;

See Also: 

■ Chapter 15, "Using SQL Plan Management" 

■ Chapter 13, "Managing Optimizer Statistics" 



Building SQL Test Cases

16-14 Oracle Database Performance Tuning Guide

However, it is more efficient to run the entire query in a single statement. Each number 
is calculated as one column. The count uses a filter with the CASE expression to count 
only the rows where the condition is valid. For example:

SELECT COUNT (CASE WHEN salary < 2000 
                   THEN 1 ELSE null END) count1, 
       COUNT (CASE WHEN salary BETWEEN 2001 AND 4000 
                   THEN 1 ELSE null END) count2, 
       COUNT (CASE WHEN salary > 4000 
                   THEN 1 ELSE null END) count3 
  FROM employees; 

This is a very simple example. The ranges could be overlapping, the functions for the 
aggregates could be different, and so on. 

Use DML with RETURNING Clause 
When appropriate, use INSERT, UPDATE, or DELETE... RETURNING to select and modify 
data with a single call. This technique improves performance by reducing the number 
of calls to the database.

Modify All the Data Needed in One Statement
When possible, use array processing. This means that an array of bind variable values 
is passed to Oracle Database for repeated execution. This is appropriate for iterative 
processes in which multiple rows of a set are subject to the same operation. 

For example:

BEGIN
 FOR pos_rec IN (SELECT * 
   FROM order_positions 
   WHERE order_id = :id) LOOP
      DELETE FROM order_positions
      WHERE order_id = pos_rec.order_id AND
        order_position = pos_rec.order_position;
 END LOOP;
 DELETE FROM orders 
 WHERE order_id = :id;
END;

Alternatively, you could define a cascading constraint on orders. In the previous 
example, one SELECT and n DELETEs are executed. When a user issues the DELETE on 
orders DELETE FROM orders WHERE order_id = :id, the database automatically deletes 
the positions with a single DELETE statement.

Building SQL Test Cases
For many SQL-related problems, obtaining a reproducible test case makes it easier to 
resolve the problem. Starting with the 11g Release 2 (11.2), Oracle Database contains 
the SQL Test Case Builder, which automates the somewhat difficult and 
time-consuming process of gathering and reproducing as much information as 
possible about a problem and the environment in which it occurred.

See Also: Oracle Database SQL Language Reference for syntax on the 
INSERT, UPDATE, and DELETE statements

See Also: Oracle Database Administrator's Guide or Oracle Database 
Heterogeneous Connectivity User's Guide to learn how to tune 
distributed queries



Building SQL Test Cases

SQL Tuning Overview 16-15

SQL Test Case Builder captures information pertaining to a SQL-related problem, 
along with the exact environment under which the problem occurred, so that you can 
reproduce and test the problem on a separate database. After the test case is ready, you 
can upload the problem to Oracle Support to enable support personnel to reproduce 
and troubleshoot the problem.

The information gathered by SQL Test Case Builder includes the query being executed, 
table and index definitions (but not the actual data), PL/SQL functions, procedures, 
and packages, optimizer statistics, and initialization parameter settings.

Creating a Test Case
You can access the SQL Test Case Builder from Enterprise Manager or manually using 
the DBMS_SQLDIAG package.

Accessing SQL Test Case Builder from Enterprise Manager
From Enterprise Manager, the SQL Test Case Builder is accessible only when a SQL 
incident occurs. A SQL-related problem is referred to as a SQL incident, and each SQL 
incident is identified by an incident number. You can access the SQL Test Case Builder 
from the Support Workbench page in Enterprise Manager. 

You can access the Support Workbench page in either of the following ways:

■ In the Database Home page of Enterprise Manager, under Diagnostic Summary, 
click the link to Active Incidents (indicating the number of active incidents). 
This opens the Support Workbench page, with the incidents listed in a table. 

■ Click Advisor Central under Related Links to open the Advisor Central page. 
Next, click SQL Advisors and then Click here to go to Support Workbench to 
open the Support Workbench page.

From the Support Workbench page, to access the SQL Test Case Builder: 

1. Click an incident ID to open the problem details for the particular incident.

2. Next, click Oracle Support in the Investigate and Resolve section.

3. Click Generate Additional Dumps and Test Cases.

4. For a particular incident, click the icon in the Go To Task column to run the SQL 
Test Case Builder. 

The output of the SQL Test Case Builder is a SQL script that contains the 
commands required to re-create all the necessary objects and the environment. 
SQL Test Case Builder stores the file in the following location, where inc_num 
refers to the incident number and run_num refers to the run number:

$ADR_HOME/incident/incdir_inc_num/SQLTCB_run num

For example, a valid output file name could be as follows:

$ORACLE_HOME/log/diag/rdbms/dbsa/dbsa/incident/incdir_2657/SQLTCB_1

Accessing SQL Test Case Builder Using DBMS_SQLDIAG
You can also invoke the SQL Test Case Builder manually, using the DBMS_SQLDIAG 
package. This package consists of various subprograms for the SQL Test Case Builder, 
some of which are listed in Table 16–1.



Building SQL Test Cases

16-16 Oracle Database Performance Tuning Guide

For more information on this package and all of its procedures and parameters, see 
Oracle Database PL/SQL Packages and Types Reference.

Table 16–1  SQL Test Case Builder Procedures in DBMS_SQLDIAG 

Procedure Name Function

EXPORT_SQL_TESTCASE Generates a SQL test case

EXPORT_SQL_TESTCASE_DIR_BY_INC Generates a SQL test case corresponding to the 
incident ID passed as an argument

EXPORT_SQL_TESTCASE_DIR_BY_TXT Generates a SQL test case corresponding to the 
SQL text passed as an argument



17

Automatic SQL Tuning 17-1

17Automatic SQL Tuning 

This chapter discusses the automatic SQL tuning features of Oracle Database. 
Automatic SQL tuning automates the manual process, which is complex, repetitive, 
and time-consuming.

This chapter contains the following sections:

■ Overview of the Automatic Tuning Optimizer

■ Managing the Automatic SQL Tuning Advisor

■ Tuning Reactively with SQL Tuning Advisor

■ Managing SQL Tuning Sets

■ Managing SQL Profiles

■ SQL Tuning Views

Overview of the Automatic Tuning Optimizer
Oracle Database uses the optimizer to generate the execution plans for submitted SQL 
statements. The optimizer operates in the following modes:

■ Normal mode

The optimizer compiles the SQL and generates an execution plan. The normal 
mode generates a reasonable plan for the vast majority of SQL statements. Under 
normal mode, the optimizer operates with very strict time constraints, usually a 
fraction of a second.

■ Tuning mode

The optimizer performs additional analysis to check whether it can further 
improve the plan produced in normal mode. The optimizer output is not an 
execution plan, but a series of actions, along with their rationale and expected 
benefit for producing a significantly better plan. When running in tuning mode, 
the optimizer is known as the Automatic Tuning Optimizer.

Under tuning mode, the optimizer can take several minutes to tune a single statement. 
It is both time and resource intensive to invoke Automatic Tuning Optimizer every 
time a query must be hard-parsed. Automatic Tuning Optimizer is meant for complex 
and high-load SQL statements that have nontrivial impact on the database.

See Also: Oracle Database 2 Day + Performance Tuning Guide for 
information about using the automatic SQL tuning features with 
Oracle Enterprise Manager (Enterprise Manager)



Overview of the Automatic Tuning Optimizer

17-2 Oracle Database Performance Tuning Guide

Automatic Database Diagnostic Monitor (ADDM) proactively identifies high-load SQL 
statements that are good candidates for SQL tuning (see Chapter 6, "Automatic 
Performance Diagnostics"). The automatic SQL tuning feature also automatically 
identifies problematic SQL statements and implements tuning recommendations 
during system maintenance windows as an automated maintenance task.

The Automatic Tuning Optimizer performs the following types of tuning analysis:

■ Statistics Analysis

■ SQL Profiling

■ Access Path Analysis

■ SQL Structure Analysis

■ Alternative Plan Analysis

Statistics Analysis
The optimizer relies on object statistics to generate execution plans. If these statistics 
are stale or missing, then the optimizer does not have the necessary information it 
needs and can generate poor execution plans. The Automatic Tuning Optimizer checks 
each query object for missing or stale statistics, and produces two types of output:

■ Recommendations to gather relevant statistics for objects with stale or no statistics

Because optimizer statistics are automatically collected and refreshed, this 
problem occurs only when automatic optimizer statistics collection is disabled. See 
"Managing Automatic Optimizer Statistics Collection" on page 13-2.

■ Auxiliary statistics for objects with no statistics, and statistic adjustment factor for 
objects with stale statistics

The database stores this auxiliary information in an object called a SQL profile.

SQL Profiling
A SQL profile is a set of auxiliary information specific to a SQL statement. 
Conceptually, a SQL profile is to a SQL statement what statistics are to a table or index. 
The database can use the auxiliary information to improve execution plans.

Access Path Analysis
An access path is the means by which data is retrieved from a database. For example, 
a query using an index and a query using a full table scan use different access paths.

Indexes can tremendously enhance performance of a SQL statement by reducing the 
need for full scans of large tables. Effective indexing is a common tuning technique. 
Automatic Tuning Optimizer explores whether a new index can significantly enhance 
query performance. If so, then the advisor recommends index creation.

Because the Automatic Tuning Optimizer does not analyze how its index 
recommendation can affect the entire SQL workload, it also recommends running SQL 
Access Advisor on the SQL statement along with a representative SQL workload. SQL 
Access Advisor looks at the impact of creating an index on the entire SQL workload 
before making recommendations. See "Automatic SQL Tuning Features" on page 16-5.

See Also: "Managing SQL Profiles" on page 17-19



Overview of the Automatic Tuning Optimizer

Automatic SQL Tuning 17-3

SQL Structure Analysis
Automatic Tuning Optimizer identifies common problems with the structure of SQL 
statements that can lead to poor performance. These could be syntactic, semantic, or 
design problems. In each case, Automatic Tuning Optimizer makes relevant 
suggestions to restructure the statements. The suggested alternative is similar, but not 
equivalent, to the original statement.

For example, the optimizer may suggest replacing the UNION operator with UNION ALL 
or NOT IN with NOT EXISTS. You can then determine if the advice is applicable to your 
situation. For example, if the schema design is such that duplicates are not possible, 
then the UNION ALL operator is much more efficient than the UNION operator. These 
changes require a good understanding of the data properties and should be 
implemented only after careful consideration.

Alternative Plan Analysis
While tuning a SQL statement, SQL Tuning Advisor searches real-time and historical 
performance data for alternative execution plans for the statement. If plans other than 
the original plan exist, then SQL Tuning Advisor reports an alternative plan finding.

SQL Tuning Advisor validates the alternative execution plans and notes any plans that 
are not reproducible. When reproducible alternative plans are found, you can create a 
SQL plan baseline to instruct the optimizer to choose these plans in the future.

Example 17–1 shows an alternative plan finding for a SELECT statement.

Example 17–1 Alternative Plan Finding

2- Alternative Plan Finding
---------------------------
  Some alternative execution plans for this statement were found by searching
  the system's real-time and historical performance data.
 
  The following table lists these plans ranked by their average elapsed time.
  See section "ALTERNATIVE PLANS SECTION" for detailed information on each
  plan.
 
  id plan hash  last seen            elapsed (s)  origin          note
  -- ---------- -------------------- ------------ --------------- ----------------
   1 1378942017  2009-02-05/23:12:08        0.000 Cursor Cache    original plan
   2 2842999589  2009-02-05/23:12:08        0.002 STS
 
  Information
  -----------
  - The Original Plan appears to have the best performance, based on the
    elapsed time per execution.  However, if you know that one alternative
    plan is better than the Original Plan, you can create a SQL plan baseline
    for it. This will instruct the Oracle optimizer to pick it over any other
    choices in the future.
    execute dbms_sqltune.create_sql_plan_baseline(task_name => 'TASK_XXXXX',
            object_id => 2, task_owner => 'SYS', plan_hash => xxxxxxxx);

Example 17–1 shows that SQL Tuning Advisor found two plans, one in the shared SQL 
area and one in a SQL tuning set. The plan in the shared SQL area is the same as the 
original plan.

SQL Tuning Advisor only recommends an alternative plan if the elapsed time of the 
original plan is worse than alternative plans. In this case, SQL Tuning Advisor 
recommends that users create a SQL plan baseline on the plan with the best 



Overview of the Automatic Tuning Optimizer

17-4 Oracle Database Performance Tuning Guide

performance. In Example 17–1, the alternative plan did not perform as well as the 
original plan, so SQL Tuning Advisor did not recommend using the alternative plan.

In Example 17–2, the alternative plans section of the SQL Tuning Advisor output 
includes both the original and alternative plans and summarizes their performance. 
The most important statistic is elapsed time. The original plan used an index, whereas 
the alternative plan used a full table scan, increasing elapsed time by .002 seconds.

Example 17–2 Alternative Plans Section

Plan 1
------
 
  Plan Origin                 :Cursor Cache
  Plan Hash Value             :1378942017
  Executions                  :50
  Elapsed Time                :0.000 sec
  CPU Time                    :0.000 sec
  Buffer Gets                 :0
  Disk Reads                  :0
  Disk Writes                 :0
 
Notes:
  1. Statistics shown are averaged over multiple executions.
  2. The plan matches the original plan.
 
--------------------------------------------
| Id  | Operation            | Name        |
--------------------------------------------
|   0 | SELECT STATEMENT     |             |
|   1 |  SORT AGGREGATE      |             |
|   2 |   MERGE JOIN         |             |
|   3 |    INDEX FULL SCAN   | TEST1_INDEX |
|   4 |    SORT JOIN         |             |
|   5 |     TABLE ACCESS FULL| TEST        |
--------------------------------------------
 
Plan 2
------
 
  Plan Origin                 :STS
  Plan Hash Value             :2842999589
  Executions                  :10
  Elapsed Time                :0.002 sec
  CPU Time                    :0.002 sec
  Buffer Gets                 :3
  Disk Reads                  :0
  Disk Writes                 :0
 
Notes:
  1. Statistics shown are averaged over multiple executions.
 
-------------------------------------
| Id  | Operation           | Name  | 
-------------------------------------
|   0 | SELECT STATEMENT    |       |
|   1 |  SORT AGGREGATE     |       |
|   2 |   HASH JOIN         |       |
|   3 |    TABLE ACCESS FULL| TEST  |
|   4 |    TABLE ACCESS FULL| TEST1 |



Managing the Automatic SQL Tuning Advisor

Automatic SQL Tuning 17-5

-------------------------------------

To adopt an alternative plan regardless of whether SQL Tuning Advisor recommends 
it, call DBMS_SQLTUNE.CREATE_SQL_PLAN_BASELINE. You can use this procedure to create 
a SQL plan baseline on any existing reproducible plan.

Managing the Automatic SQL Tuning Advisor
SQL Tuning Advisor takes one or more SQL statements as an input and invokes the 
Automatic Tuning Optimizer to perform SQL tuning on the statements. The output 
takes the form of advice or recommendations, along with a rationale for each 
recommendation and its expected benefit. The recommendation relates to a collection 
of statistics on objects, creation of new indexes, restructuring of the SQL statement, or 
creation of a SQL profile. You can choose to accept the recommendation to complete 
the tuning of the SQL statements.

The database can automatically tune SQL statements by identifying problematic 
statements and implementing recommendations using SQL Tuning Advisor during 
system maintenance windows. When run automatically, SQL Tuning Advisor is 
known as the Automatic SQL Tuning Advisor.

This section explains how to manage the Automatic SQL Tuning Advisor:

■ How Automatic SQL Tuning Works

■ Enabling and Disabling Automatic SQL Tuning

■ Configuring Automatic SQL Tuning

■ Viewing Automatic SQL Tuning Reports

How Automatic SQL Tuning Works
Oracle Database automatically runs SQL Tuning Advisor on selected high-load SQL 
statements from the Automatic Workload Repository (AWR) that qualify as tuning 
candidates. This task, called Automatic SQL Tuning, runs in the default maintenance 
windows on a nightly basis. By default, automatic SQL tuning runs for at most one 
hour. You can customize attributes of the maintenance windows, including start and 
end time, frequency, and days of the week.

After automatic SQL tuning begins, the database performs the following steps:

1. Identifies SQL candidates in the AWR for tuning

Oracle Database analyzes statistics in AWR and generates a list of potential SQL 
statements that are eligible for tuning. These statements include repeating 
high-load statements that have a significant impact on the database. 

The database tunes only SQL statements that have an execution plan with a high 
potential for improvement. The database ignores recursive SQL and statements 
that have been tuned recently (in the last month), parallel queries, DML, DDL, and 
SQL statements with performance problems caused by concurrency issues. 

The database orders the SQL statements that are selected as candidates based on 
their performance impact. The database calculates the impact by summing the 
CPU time and the I/O times in AWR for the selected statement in the past week.

2. Tunes each SQL statement individually by calling SQL Tuning Advisor

See Also: Oracle Database Administrator's Guide for information 
about automated maintenance tasks



Managing the Automatic SQL Tuning Advisor

17-6 Oracle Database Performance Tuning Guide

During the tuning process, the database considers and reports all recommendation 
types, but it can implement only SQL profiles automatically.

3. Tests SQL profiles by executing the SQL statement

If a SQL profile is recommended, the database tests the new profile by executing 
the SQL statement both with and without the profile. If the performance 
improvement improves at least threefold, then the database accepts the SQL 
profile, but only if the ACCEPT_SQL_PROFILES task parameter is set to TRUE. 
Otherwise, the automatic SQL tuning reports merely report the recommendation 
to create a SQL profile.

4. Optionally, implements the SQL profiles provided they meet the criteria of 
threefold performance improvement

The database considers other factors when deciding whether to implement the 
SQL profile. For example, the database does not implement a profile when the 
objects referenced in the statement have stale optimizer statistics. SQL profiles that 
have been implemented automatically show type is AUTO in the DBA_SQL_PROFILES 
view.

If the database uses SQL plan management, and if a SQL plan baseline exists for 
the SQL statement, then the database adds a new plan baseline when creating the 
SQL profile. As a result, the optimizer uses the new plan immediately after profile 
creation. See Chapter 15, "Using SQL Plan Management".

At any time during or after the automatic SQL tuning process, you can view the results 
using the automatic SQL tuning report. This report describes in detail all the SQL 
statements that were analyzed, the recommendations generated, and the SQL profiles 
that were automatically implemented.

Figure 17–1 shows the steps performed by the database during automatic SQL tuning.

Figure 17–1 Automatic SQL Tuning

Enabling and Disabling Automatic SQL Tuning
Automatic SQL tuning runs as part of the automated maintenance tasks infrastructure.



Managing the Automatic SQL Tuning Advisor

Automatic SQL Tuning 17-7

To enable automatic SQL tuning, use the ENABLE procedure in the 
DBMS_AUTO_TASK_ADMIN package:

BEGIN
  DBMS_AUTO_TASK_ADMIN.ENABLE(
    client_name => 'sql tuning advisor', 
    operation => NULL, 
    window_name => NULL);
END;
/

To disable automatic SQL tuning, use the DISABLE procedure in the 
DBMS_AUTO_TASK_ADMIN package:

BEGIN
  DBMS_AUTO_TASK_ADMIN.DISABLE(
    client_name => 'sql tuning advisor', 
    operation => NULL, 
    window_name => NULL);
END;
/

You can pass a specific window name using the window_name parameter to enable or 
disable the task in certain maintenance windows only.

Setting the STATISTICS_LEVEL parameter to BASIC disables automatic statistics 
gathering by the AWR and, as a result, also disables automatic SQL tuning.

Configuring Automatic SQL Tuning
Starting with Oracle Database 11g Release 2 (11.2.0.2), you can use the 
DBMS_AUTO_SQLTUNE package to configure the behavior of the automatic SQL tuning 
task. For previous releases, use DBMS_SQLTUNE instead.

Table 17–2 lists the configurable parameters specific to automatic SQL tuning.

See Also: 

■ Oracle Database Administrator's Guide for information about the 
AutoTask infrastructure

■ Oracle Database PL/SQL Packages and Types Reference for 
information about the DBMS_AUTO_TASK_ADMIN package

Table 17–1  SET_AUTO_TUNING_TASK_PARAMETER Automatic SQL Tuning Parameters

Parameter Description

ACCEPT_SQL_PROFILE Specifies whether to accept SQL profiles automatically.

EXECUTION_DAYS_TO_EXPIRE Specifies the number of days for which to save the task 
history in the advisor framework schema. By default, the 
task history is saved for 30 days before it expires.

MAX_SQL_PROFILES_PER_EXEC Specifies the limit of SQL profiles that are accepted for each 
automatic SQL tuning task. Consider setting the limit of 
SQL profiles that are accepted for each automatic SQL 
tuning task based on the acceptable level of changes that 
can be made to the system on a daily basis.

MAX_AUTO_SQL_PROFILES Specifies the limit of SQL profiles that are accepted in total.



Managing the Automatic SQL Tuning Advisor

17-8 Oracle Database Performance Tuning Guide

To use the DBMS_AUTO_SQLTUNE package, you must have the DBA role, or have EXECUTE 
privileges granted by an administrator. The only exception is the 
EXECUTE_AUTO_TUNING_TASK procedure, which can only be run by SYS. 

To configure automatic SQL tuning:

1. Start SQL*Plus, and connect to the database with DBA privileges (or connect as SYS 
if you plan to run EXECUTE_AUTO_TUNING_TASK). 

2. Run the DBMS_AUTO_SQLTUNE.SET_AUTO_TUNING_TASK_PARAMETER procedure.

The following example configures the automatic SQL tuning task to automatically 
accept SQL profiles recommended by SQL Tuning Advisor:

BEGIN
  DBMS_AUTO_SQLTUNE.SET_AUTO_TUNING_TASK_PARAMETER(
    parameter => 'ACCEPT_SQL_PROFILES', value => 'TRUE');
END;
/

Viewing Automatic SQL Tuning Reports
Starting with Oracle Database 11g Release 2 (11.2.0.2), you can use the 
DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK function to generate the automatic 
SQL tuning report. For previous releases, use the DBMS_SQLTUNE package instead.

The report contains information about multiple executions of the Automatic SQL 
Tuning task. Depending on the sections that were included in the report, you can view 
information about the automatic SQL tuning task in the following sections:

■ General information

The general information section has a high-level description of the automatic SQL 
tuning task, including information about the inputs given for the report, the 
number of SQL statements tuned during the maintenance, and the number of SQL 
profiles created.

■ Summary

The summary section lists the SQL statements (by their SQL identifiers) that were 
tuned during the maintenance window and the estimated benefit of each SQL 
profile, or their actual execution statistics after test executing the SQL statement 
with the SQL profile.

■ Tuning findings

This section contains the following information about each SQL statement 
analyzed by SQL Tuning Advisor:

– All findings associated with each SQL statement

– Whether the profile was accepted on the database, and why

– Whether the SQL profile is currently enabled on the database

– Detailed execution statistics captured when testing the SQL profile

See Also: 

■ "Configuring a SQL Tuning Task" on page 17-13 to learn about 
other parameters that you can configure for a SQL tuning task

■ Oracle Database PL/SQL Packages and Types Reference for 
information about the DBMS_AUTO_SQLTUNE package



Tuning Reactively with SQL Tuning Advisor

Automatic SQL Tuning 17-9

■ Explain plans

This section shows the old and new explain plans used by each SQL statement 
analyzed by SQL Tuning Advisor.

■ Errors

This section lists all errors encountered by the automatic SQL tuning task.

To view the automatic SQL tuning report using DBMS_AUTO_SQLTUNE:

1. Start SQL*Plus, and connect to the database with the appropriate privileges. 

2. Run the DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK function.

In the following example, the advisor generates a text report to show all SQL 
statements that were analyzed in the most recent execution, including 
recommendations that were not implemented.

VARIABLE my_rept CLOB;
BEGIN
  :my_rept :=DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK(
    begin_exec   => NULL,
    end_exec     => NULL,
    type         => 'TEXT',
    level        => 'TYPICAL',
    section      => 'ALL',
    object_id    => NULL,
    result_limit => NULL);
END;
/

PRINT :my_rept

Tuning Reactively with SQL Tuning Advisor
You can invoke SQL Tuning Advisor manually for on-demand tuning of one or more 
SQL statements. To tune multiple statements, you must create a SQL tuning set (STS). 
A SQL tuning set is a database object that stores SQL statements along with their 
execution context. You can create a SQL tuning set using command line APIs or 
Enterprise Manager. See "Managing SQL Tuning Sets" on page 17-15.

Input Sources
Input for SQL Tuning Advisor can come from several sources, including the following:

■ ADDM (Automatic Database Diagnostic Monitor)

The primary input source is ADDM. By default, ADDM runs proactively once 
every hour and analyzes key statistics gathered by the Automatic Workload 
Repository (AWR) over the last hour to identify any performance problems 
including high-load SQL statements. If a high-load SQL is identified, ADDM 
recommends running SQL Tuning Advisor on the SQL. See "Overview of the 
Automatic Database Diagnostic Monitor" on page 6-1.

See Also: 

■ Oracle Database 2 Day + Performance Tuning Guide to learn how to 
view automatic SQL tuning reports using Enterprise Manager

■ Oracle Database PL/SQL Packages and Types Reference for 
information about the DBMS_AUTO_SQLTUNE package



Tuning Reactively with SQL Tuning Advisor

17-10 Oracle Database Performance Tuning Guide

■ AWR

The second most important input source is the Automatic Workload Repository 
(AWR). AWR takes regular snapshots of system activity, including high-load SQL 
statements ranked by relevant statistics, such as CPU consumption and wait time.

You can view the AWR and manually identify high-load SQL statements. You can 
run SQL Tuning Advisor on these statements, although Oracle Database 
automatically performs this work as part of automatic SQL tuning. By default, 
AWR retains data for the last eight days. You can locate and tune any high-load 
SQL that ran within the retention period of AWR using this method. See 
"Overview of the Automatic Workload Repository" on page 5-8.

■ Shared SQL area

The third likely source of input is the shared SQL area. The database uses this 
source to tune recent SQL statements that have yet to be captured in the AWR. The 
shared SQL area and AWR provide the capability to identify and tune high-load 
SQL statements from the current time going as far back as the AWR retention 
allows, which by default is at least 8 days. 

■ SQL tuning set

Another possible input source for SQL Tuning Advisor is the SQL tuning set. A 
SQL tuning set (STS) is a database object that stores SQL statements along with 
their execution context. An STS can include SQL statements that are yet to be 
deployed, with the goal of measuring their individual performance, or identifying 
the ones whose performance falls short of expectation. When a set of SQL 
statements serve as input, the database must first construct and use an STS. See 
"Managing SQL Tuning Sets" on page 17-15.

Tuning Options
SQL Tuning Advisor provides options to manage the scope and duration of a tuning 
task. You can set the scope of a tuning task either of the following: 

■ Limited

In this case, SQL Tuning Advisor produces recommendations based on statistical 
checks, access path analysis, and SQL structure analysis. SQL profile 
recommendations are not generated.

■ Comprehensive

In this case, SQL Tuning Advisor carries out all the analysis it performs under 
limited scope plus SQL Profiling. With the comprehensive option you can also 
specify a time limit for the tuning task, which by default is 30 minutes.

 Advisor Output
After analyzing the SQL statements, SQL Tuning Advisor provides advice on 
optimizing the execution plan, the rationale for the proposed optimization, the 
estimated performance benefit, and the command to implement the advice. You 
choose whether to accept the recommendations to optimize the SQL statements.

Running SQL Tuning Advisor
The recommended interface for running SQL Tuning Advisor is Enterprise Manager. 
Whenever possible, run SQL Tuning Advisor using Enterprise Manager, as described 
in the Oracle Database 2 Day + Performance Tuning Guide. If Enterprise Manager is 



Tuning Reactively with SQL Tuning Advisor

Automatic SQL Tuning 17-11

unavailable, then you can run SQL Tuning Advisor using procedures in the 
DBMS_SQLTUNE package. To use the APIs, the user must be granted specific privileges.

Running SQL Tuning Advisor using DBMS_SQLTUNE package is a multi-step process:

1. Create a SQL tuning set (if tuning multiple SQL statements)

2. Create a SQL tuning task

3. Execute a SQL tuning task

4. Display the results of a SQL tuning task

5. Implement recommendations as appropriate

You can create a SQL tuning task for a single SQL statement. For tuning multiple 
statements, a SQL tuning set (STS) has to be first created. An STS is a database object 
that stores SQL statements along with their execution context. You can create an STS 
manually using command line APIs or automatically using Enterprise Manager. See 
"Managing SQL Tuning Sets" on page 17-15.

Figure 17–2 shows the steps involved when running SQL Tuning Advisor using the 
DBMS_SQLTUNE package.

Figure 17–2 SQL Tuning Advisor APIs

This section covers the following topics:

■ Creating a SQL Tuning Task

■ Configuring a SQL Tuning Task

■ Executing a SQL Tuning Task

■ Checking the Status of a SQL Tuning Task

■ Checking the Progress of SQL Tuning Advisor

■ Displaying the Results of a SQL Tuning Task



Tuning Reactively with SQL Tuning Advisor

17-12 Oracle Database Performance Tuning Guide

■ Additional Operations on a SQL Tuning Task

Creating a SQL Tuning Task
You can create tuning tasks from the text of a single SQL statement, a SQL tuning set 
containing multiple statements, a SQL statement selected by SQL identifier from the 
shared SQL area, or a SQL statement selected by SQL identifier from AWR.

For example, to use SQL Tuning Advisor to optimize a specified SQL statement text, 
create a tuning task with the SQL statement passed as a CLOB argument. For the 
following PL/SQL code, the user hr has been granted the ADVISOR privilege, and the 
function is run as user hr on the hr.employees table.

DECLARE
 my_task_name VARCHAR2(30);
 my_sqltext   CLOB;
BEGIN
 my_sqltext := 'SELECT /*+ ORDERED */ * '                      ||
               'FROM employees e, locations l, departments d ' ||
               'WHERE e.department_id = d.department_id AND '  ||
                     'l.location_id = d.location_id AND '      ||
                     'e.employee_id < :bnd';

 my_task_name := DBMS_SQLTUNE.CREATE_TUNING_TASK(
         sql_text    => my_sqltext,
         bind_list   => sql_binds(anydata.ConvertNumber(100)),
         user_name   => 'HR',
         scope       => 'COMPREHENSIVE',
         time_limit  => 60,
         task_name   => 'my_sql_tuning_task',
         description => 'Task to tune a query on a specified employee');
END;
/

In the preceding example, 100 is the value for bind variable :bnd passed as function 
argument of type SQL_BINDS, HR is the user under which the CREATE_TUNING_TASK 
function analyzes the SQL statement, the scope is set to COMPREHENSIVE which means 
that the advisor also performs SQL Profiling analysis, and 60 is the maximum time in 
seconds that the function can run. In addition, values for task name and description 
are provided. 

The CREATE_TUNING_TASK function returns the task name that you provided or 
generates a unique name. You can use the task name to specify this task when using 
other APIs. To view task names associated with an owner, run the following query:

SELECT TASK_NAME 
FROM   DBA_ADVISOR_LOG 
WHERE  OWNER = 'HR';

See Also: 

■ Oracle Database 2 Day + Performance Tuning Guide to learn how 
to run SQL Tuning Advisor manually using Enterprise 
Manager

■ Oracle Database PL/SQL Packages and Types Reference for 
information about the DBMS_SQLTUNE package



Tuning Reactively with SQL Tuning Advisor

Automatic SQL Tuning 17-13

Configuring a SQL Tuning Task
You can fine tune a SQL tuning task after it has been created by configuring its 
parameters using the SET_TUNING_TASK_PARAMETER procedure in the DBMS_SQLTUNE 
package:

BEGIN
  DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER(
    task_name => 'my_sql_tuning_task',
    parameter => 'TIME_LIMIT', value => 300);
END;
/

In the preceding example, the maximum time that the SQL tuning task can run is 
changed to 300 seconds.

Table 17–2 lists parameters that you can configure using the 
SET_TUNING_TASK_PARAMETER procedure.

Table 17–2  SET_TUNING_TASK_PARAMETER Procedure Parameters

Parameter Description

MODE Specifies the scope of the tuning task:

■ LIMITED takes approximately 1 second to tune each SQL 
statement but does not recommend a SQL profile

■ COMPREHENSIVE performs a complete analysis and recommends a 
SQL profile, when appropriate, but may take much longer.

USERNAME Username under which the SQL statement is parsed

DAYS_TO_EXPIRE Number of days before the task is deleted

DEFAULT_EXECUTION_TY
PE

Default execution type if not specified by the EXECUTE_TUNING_TASK 
function when the task is executed

TIME_LIMIT Time limit (in number of seconds) before the task times out

LOCAL_TIME_LIMIT Time limit (in number of seconds) for each SQL statement

TEST_EXECUTE Determines if the SQL Tuning Advisor test executes the SQL 
statements to verify the recommendation benefit:

■ FULL - Test executes SQL statements for as much of the local 
time limit as necessary

■ AUTO - Test executes SQL statements using an automatic time 
limit

■ OFF - Does not test execute SQL statements

BASIC_FILTER Basic filter used for SQL tuning set

OBJECT_FILTER Object filter used for SQL tuning set

PLAN_FILTER Plan filter used for SQL tuning set

RANK_MEASURE1 First ranking measure used for SQL tuning set

RANK_MEASURE2 Second ranking measure used for SQL tuning set

RANK_MEASURE3 Third ranking measure used for SQL tuning set

RESUME_FILTER Extra filter used for SQL tuning set (besides BASIC_FILTER)

SQL_LIMIT Maximum number of SQL statements to tune

SQL_PERCENTAGE Percentage filter of statements from SQL tuning set



Tuning Reactively with SQL Tuning Advisor

17-14 Oracle Database Performance Tuning Guide

Executing a SQL Tuning Task
After you have created a tuning task, execute the task and start the tuning process. For 
example, run the following PL/SQL code:

BEGIN
  DBMS_SQLTUNE.EXECUTE_TUNING_TASK( task_name => 'my_sql_tuning_task' );
END;
/

Like any other SQL Tuning Advisor task, you can also execute the automatic tuning 
task SYS_AUTO_SQL_TUNING_TASK using the EXECUTE_TUNING_TASK API. SQL Tuning 
Advisor performs the same analysis and actions as it would when run automatically. 
You can also pass an execution name to the API to name the new execution.

Checking the Status of a SQL Tuning Task
You can check the status of the task by reviewing the information in the 
USER_ADVISOR_TASKS view or check execution progress of the task in the 
V$SESSION_LONGOPS view. For example, run the following query:

SELECT status 
FROM   USER_ADVISOR_TASKS 
WHERE  task_name = 'my_sql_tuning_task';

Checking the Progress of SQL Tuning Advisor
You can check the execution progress of SQL Tuning Advisor in the 
V$ADVISOR_PROGRESS view. For example, run the following query:

SELECT SOFAR, TOTALWORK 
FROM   V$ADVISOR_PROGRESS 
WHERE  USER_NAME = 'HR' AND TASK_NAME = 'my_sql_tuning_task';

Displaying the Results of a SQL Tuning Task
After a task has been executed, you display a report of the results with the 
REPORT_TUNING_TASK function. For example:

SET LONG 1000
SET LONGCHUNKSIZE 1000
SET LINESIZE 100
SELECT DBMS_SQLTUNE.REPORT_TUNING_TASK( 'my_sql_tuning_task')
FROM   DUAL;

The report contains all the findings and recommendations of SQL Tuning Advisor. For 
each proposed recommendation, the rationale and benefit is provided along with the 
SQL statements needed to implement the recommendation. 

You can find additional information about tuning tasks and results in DBA views. See 
"SQL Tuning Views" on page 17-26.

Additional Operations on a SQL Tuning Task
You can use the following APIs for managing SQL tuning tasks:

■ INTERRUPT_TUNING_TASK to interrupt a task while executing, causing a normal exit 
with intermediate results

■ RESUME_TUNING_TASK to resume a previously interrupted task

See Also: Oracle Database Reference to learn about the 
V$ADVISOR_PROGRESS view



Managing SQL Tuning Sets

Automatic SQL Tuning 17-15

■ CANCEL_TUNING_TASK to cancel a task while executing, removing all results from 
the task

■ RESET_TUNING_TASK to reset a task while executing, removing all results from the 
task and returning the task to its initial state

■ DROP_TUNING_TASK to drop a task, removing all results associated with the task

Managing SQL Tuning Sets
A SQL tuning set (STS) is a database object that includes one or more SQL statements 
along with their execution statistics and execution context, and could include a user 
priority ranking. You can load SQL statements into a SQL tuning set from different 
SQL sources, such as AWR, the shared SQL area, or customized SQL provided by the 
user. An STS includes:

■ A set of SQL statements

■ Associated execution context, such as user schema, application module name and 
action, list of bind values, and the cursor compilation environment

■ Associated basic execution statistics, such as elapsed time, CPU time, buffer gets, 
disk reads, rows processed, cursor fetches, the number of executions, the number 
of complete executions, optimizer cost, and the command type

■ Associated execution plans and row source statistics for each SQL statement 
(optional)

You can filter SQL statements using the application module name and action, or any of 
the execution statistics. In addition, you can rank statements based on any 
combination of execution statistics.

You can use an STS as input to SQL Tuning Advisor, which performs automatic tuning 
of the SQL statements based on other user-specified input parameters. You can export 
SQL tuning sets from one database to another, enabling transfer of SQL workloads 
between databases for remote performance diagnostics and tuning. When poorly 
performing SQL statements occur on a production database, developers may not want 
investigate and tune directly on the production database. The DBA can transport the 
problematic SQL statements to a test database where the developers can safely analyze 
and tune them. To transport SQL tuning sets, use the DBMS_SQLTUNE package.

Whenever possible, you should manage SQL tuning sets using Enterprise Manager, as 
described in the Oracle Database 2 Day + Performance Tuning Guide. If Enterprise 
Manager is unavailable, then you can manage SQL tuning sets using the DBMS_SQLTUNE 
package procedures.

Typically, you use STS operations in the following sequence:

1. Create a new STS

"Creating a SQL Tuning Set" on page 17-16 describes this task.

2. Load the STS

"Loading a SQL Tuning Set" on page 17-17 describes this task.

3. Select the STS to review the contents

"Displaying the Contents of a SQL Tuning Set" on page 17-17 describes this task.

4. Update the STS if necessary

"Modifying a SQL Tuning Set" on page 17-18 describes this task.



Managing SQL Tuning Sets

17-16 Oracle Database Performance Tuning Guide

5. Create a tuning task with the STS as input

6. Transport the STS to another system, if necessary

"Transporting a SQL Tuning Set" on page 17-18 describes this task.

7. Drop the STS when finished

"Dropping a SQL Tuning Set" on page 17-19 describes this task.

To use the APIs, you need the ADMINISTER SQL TUNING SET system privilege to 
manage SQL tuning sets that you own, or the ADMINISTER ANY SQL TUNING SET system 
privilege to manage any SQL tuning sets.

Figure 17–3 shows the steps involved when using SQL tuning sets APIs.

Figure 17–3 SQL Tuning Sets APIs

This section covers the following topics:

■ Creating a SQL Tuning Set

■ Loading a SQL Tuning Set

■ Displaying the Contents of a SQL Tuning Set

■ Modifying a SQL Tuning Set

■ Transporting a SQL Tuning Set

■ Dropping a SQL Tuning Set

■ Additional Operations on SQL Tuning Sets

Creating a SQL Tuning Set
The CREATE_SQLSET procedure creates an empty STS object in the database. For 
example, the following procedure creates an STS object that you could use to tune 
I/O-intensive SQL statements during a specific period:

BEGIN
  DBMS_SQLTUNE.CREATE_SQLSET(
    sqlset_name => 'my_sql_tuning_set', 

See Also: 

■ Oracle Database 2 Day + Performance Tuning Guide to learn how 
to manage SQL tuning sets using Enterprise Manager

■ Oracle Database PL/SQL Packages and Types Reference for 
information about the DBMS_SQLTUNE package



Managing SQL Tuning Sets

Automatic SQL Tuning 17-17

    description  => 'I/O intensive workload');
END;
/

In the preceding example, my_sql_tuning_set is the name of the STS in the database. 
'I/O intensive workload' is the description assigned to the STS.

Loading a SQL Tuning Set
The LOAD_SQLSET procedure populates the STS with selected SQL statements. The 
standard sources for populating an STS are the workload repository, another STS, or 
the shared SQL area. For both the workload repository and STS, predefined table 
functions can select columns from the source to populate a new STS. 

In the following example, procedure calls load my_sql_tuning_set from an AWR 
baseline called peak baseline. The data has been filtered to select only the top 30 SQL 
statements ordered by elapsed time. First a ref cursor is opened to select from the 
specified baseline. Next the statements and their statistics are loaded from the baseline 
into the STS.

DECLARE
 baseline_cursor DBMS_SQLTUNE.SQLSET_CURSOR;
BEGIN
 OPEN baseline_cursor FOR
    SELECT VALUE(p)
    FROM TABLE (DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY(
                  'peak baseline',
                   NULL, NULL,
                   'elapsed_time',
                   NULL, NULL, NULL,
                   30)) p;

    DBMS_SQLTUNE.LOAD_SQLSET(
             sqlset_name     => 'my_sql_tuning_set',
             populate_cursor => baseline_cursor);
END;
/

Displaying the Contents of a SQL Tuning Set
The SELECT_SQLSET table function reads the contents of the STS. After an STS has been 
created and populated, you can browse the SQL in the STS using different filtering 
criteria. The SELECT_SQLSET procedure is provided for this purpose.

In the following example, the SQL statements in the STS are displayed for statements 
with a disk-reads to buffer-gets ratio greater than or equal to 75%.

SELECT * FROM TABLE(DBMS_SQLTUNE.SELECT_SQLSET( 
   'my_sql_tuning_set',
   '(disk_reads/buffer_gets) >= 0.75'));

Additional details of the SQL tuning sets that have been created and loaded can also 
be displayed with DBA views, such as DBA_SQLSET, DBA_SQLSET_STATEMENTS, and 
DBA_SQLSET_BINDS.



Managing SQL Tuning Sets

17-18 Oracle Database Performance Tuning Guide

Modifying a SQL Tuning Set
You can update and delete SQL statements from an STS based on a search condition. 
In the following example, the DELETE_SQLSET procedure deletes SQL statements from 
my_sql_tuning_set that have been executed less than fifty times.

BEGIN
  DBMS_SQLTUNE.DELETE_SQLSET(
      sqlset_name  => 'my_sql_tuning_set',
      basic_filter => 'executions < 50');
END;
/

Transporting a SQL Tuning Set
You can transport SQL tuning sets. This operation involves exporting the STS from 
one database to a staging table, and then importing the STS from the staging table into 
another database.

You can transport a SQL tuning set to any database created in Oracle Database 10g 
(Release 2) or later. This technique is useful when using SQL Performance Analyzer to 
tune regressions on a test database. For example, you can transport an STS in the 
following scenario:

■ An STS with regressed SQL resides in a production database created in Oracle 
Database 11g Release 2 (11.2).

■ You are running SQL Performance Analyzer trials on a remote test database 
created in Oracle Database 11g Release 1 (11.1) or Oracle Database 10g.

■ You want to copy the STS from the production database to the test database and 
tune the regressions from the SQL Performance Analyzer trials.

To transport a SQL tuning set:

1. Use the CREATE_STGTAB_SQLSET procedure to create a staging table where the SQL 
tuning sets will be exported.

The following example creates my_10g_staging_table in the dba1 schema and 
specifies the format of the staging table as 10.2:

BEGIN
  DBMS_SQLTUNE.create_stgtab_sqlset( 
    table_name  => 'my_10g_staging_table',
    schema_name => 'dba1',
    db_version  => DBMS_SQLTUNE.STS_STGTAB_10_2_VERSION );
END;
/

2. Use the PACK_STGTAB_SQLSET procedure to export SQL tuning sets into the staging 
table.

The following example populates dba1.my_10g_staging_table with the STS 
my_sts owned by hr:

BEGIN
  DBMS_SQLTUNE.pack_stgtab_sqlset(      
    sqlset_name          => 'my_sts',     
    sqlset_owner         => 'hr',     
    staging_table_name   => 'my_10g_staging_table',
    staging_schema_owner => 'dba1',
    db_version           => DBMS_SQLTUNE.STS_STGTAB_10_2_VERSION );
END;



Managing SQL Profiles

Automatic SQL Tuning 17-19

/ 

3. Move the staging table to the database where the SQL tuning sets will be imported 
using the mechanism of choice (such as Oracle Data Pump or database link).

4. On the database where the SQL tuning sets will be imported, use the 
UNPACK_STGTAB_SQLSET procedure to import SQL tuning sets from the staging 
table.

The following example shows how to import SQL tuning sets contained in the 
staging table:

BEGIN
  DBMS_SQLTUNE.UNPACK_STGTAB_SQLSET(
      sqlset_name  => '%',
      replace  => TRUE,
      staging_table_name => 'my_10g_staging_table');
END;
/

Dropping a SQL Tuning Set
The DROP_SQLSET procedure drops an STS that is no longer needed. For example:

BEGIN
  DBMS_SQLTUNE.DROP_SQLSET( sqlset_name => 'my_sql_tuning_set' );
END;
/

Additional Operations on SQL Tuning Sets
You can use the following APIs to manage an STS:

■ Updating the attributes of SQL statements in an STS

The UPDATE_SQLSET procedure updates the attributes of SQL statements (such as 
PRIORITY or OTHER) in an existing STS identified by STS name and SQL ID. 

■ Capturing the full system workload

The CAPTURE_CURSOR_CACHE_SQLSET function enables the capture of the full system 
workload by repeatedly polling the shared SQL area over a specified interval. This 
function more efficient than repeatedly using the SELECT_CURSOR_CACHE and 
LOAD_SQLSET procedures to capture the shared SQL area over an extended period. 
This function effectively captures the entire workload, as opposed to the 
AWR—which only captures the workload of high-load SQL statements—or the 
LOAD_SQLSET procedure, which accesses the data source only once.

■ Adding and removing a reference to an STS

The ADD_SQLSET_REFERENCE function adds a new reference to an existing STS to 
indicate its use by a client. The function returns the identifier of the added 
reference. The REMOVE_SQLSET_REFERENCE procedure deactivates an STS to indicate 
it is no longer used by the client.

Managing SQL Profiles
A SQL profile is a set of auxiliary information specific to a SQL statement. 

This section contains the following topics:

■ Overview of SQL Profiles



Managing SQL Profiles

17-20 Oracle Database Performance Tuning Guide

■ Accepting a SQL Profile

■ Altering a SQL Profile

■ Dropping a SQL Profile

■ Transporting a SQL Profile

Overview of SQL Profiles
A SQL profile contains corrections for poor optimizer estimates discovered during 
Automatic SQL Tuning. This information can improve optimizer cardinality and 
selectivity estimates, which in turn leads the optimizer to select better plans.

The SQL profile does not contain information about individual execution plans. 
Rather, the optimizer has the following sources of information when choosing plans:

■ The environment, which contains the database configuration, bind variable values, 
optimizer statistics, data set, and so on

■ The supplemental statistics in the SQL profile

If the environment or SQL profile change, then the optimizer can create a new plan.

You can use SQL profiles with or without SQL plan management. If you use SQL plan 
management, then the plan chosen by the optimizer must be an enabled plan baseline. 
If the statement has multiple plans in the baseline, then the profile remains useful 
because it enables the optimizer to chose the lowest-cost plan in the baseline.

Figure 17–4 illustrates the relationship between a SQL statement and the SQL profile 
for this statement. The optimizer uses the profile and the environment to generate a 
query plan. In this example, the plan is in the SQL plan baseline for the statement.

Figure 17–4 SQL Profile

SQL profiles provide the following benefits:

■ Unlike hints and stored outlines, profiles do not tie the optimizer to a specific plan 
or subplan. Profiles fix incorrect estimates while giving the optimizer the flexibility 
to pick the best plan in different situations.

■ Unlike hints, no changes to application source code are necessary when using 
profiles.

See Also: Oracle Database 2 Day + Performance Tuning Guide to learn 
how to manage SQL profiles using Enterprise Manager

SQL Plan Baseline

GB

NL
NL

GB

HJ
HJ

SQL Profile

Environment

OptimizerSQL Statement

SELECT . . .

Optimizer
Statistics

ConfigurationBind
Variables

Data
Set



Managing SQL Profiles

Automatic SQL Tuning 17-21

The use of SQL profiles by the database is transparent to the user.

SQL Profile Recommendations
During SQL tuning, you select a statement for automatic tuning and run SQL Tuning 
Advisor. The database can profile the following types of statement:

■ DML statements (SELECT, INSERT with a SELECT clause, UPDATE, and DELETE)

■ CREATE TABLE statements (only with the AS SELECT clause)

■ MERGE statements (the update or insert operations)

SQL Tuning Advisor invokes Automatic Tuning Optimizer to generate 
recommendations. Recommendations to accept SQL profiles occur in a finding.

Example 17–3 shows that the database found a better plan for a SELECT statement that 
uses several expensive joins. The recommendation is to run 
DBMS_SQLTUNE.ACCEPT_SQL_PROFILE to accept the profile, which should enable the 
statement to run 98.53% faster.

Example 17–3 Sample SQL Profile Finding

-------------------------------------------------------------------------------
FINDINGS SECTION (2 findings)
-------------------------------------------------------------------------------
 
1- SQL Profile Finding (see explain plans section below)
--------------------------------------------------------
  A potentially better execution plan was found for this statement. Choose
  one of the following SQL profiles to implement.
 
  Recommendation (estimated benefit: 99.45%)
  ------------------------------------------
  - Consider accepting the recommended SQL profile.
    execute dbms_sqltune.accept_sql_profile(task_name => 'my_task',
            object_id => 3, task_owner => 'SH', replace => TRUE);
 
  Validation results
  ------------------
  The SQL profile was tested by executing both its plan and the original plan
  and measuring their respective execution statistics. A plan may have been
  only partially executed if the other could be run to completion in less time.
 
                           Original Plan  With SQL Profile  % Improved
                           -------------  ----------------  ----------
  Completion Status:             PARTIAL          COMPLETE
  Elapsed Time(us):            15467783            226902      98.53 %
  CPU Time(us):                15336668            226965      98.52 %
  User I/O Time(us):                  0                 0
  Buffer Gets:                  3375243             18227      99.45 %
  Disk Reads:                         0                 0
  Direct Writes:                      0                 0
  Rows Processed:                     0               109
  Fetches:                            0               109
  Executions:                         0                 1
 
  Notes
  -----
  1. The SQL profile plan was first executed to warm the buffer cache.
  2. Statistics for the SQL profile plan were averaged over next 3 executions.



Managing SQL Profiles

17-22 Oracle Database Performance Tuning Guide

Sometimes SQL Tuning Advisor may recommend accepting a profile that uses the 
Automatic Degree of Parallelism (Auto DOP) feature. A parallel query profile is only 
recommended when the original plan is serial and when parallel execution can 
significantly reduce the response time for a long-running query. When it recommends 
a profile that uses Auto DOP, SQL Tuning Advisor gives details about the performance 
overhead of using parallel execution for the SQL statement in the report.

For parallel execution recommendations, SQL Tuning Advisor may provide two SQL 
profile recommendations, one using serial execution and one using parallel. In this 
case, the parallel profile is identical to the standard profile except for the directive to 
run in parallel.

Example 17–4 shows a parallel query recommendation. In this example, a degree of 
parallelism of 7 improves response time significantly at the cost of increasing resource 
consumption by almost 25%. You must decide whether the reduction in database 
throughput is worth the increase in response time.

Example 17–4 Parallel Query Recommendation

  Recommendation (estimated benefit: 99.99%)
  ------------------------------------------
  - Consider accepting the recommended SQL profile to use parallel execution
    for this statement.
    execute dbms_sqltune.accept_sql_profile(task_name => 'gfk_task',
            object_id => 3, task_owner => 'SH', replace => TRUE,
            profile_type => DBMS_SQLTUNE.PX_PROFILE);
 
  Executing this query parallel with DOP 7 will improve its response time
  82.22% over the SQL profile plan. However, there is some cost in enabling
  parallel execution. It will increase the statement's resource consumption by
  an estimated 24.43% which may result in a reduction of system throughput.
  Also, because these resources are consumed over a much smaller duration, the
  response time of concurrent statements might be negatively impacted if
  sufficient hardware capacity is not available.
 
  The following data shows some sampled statistics for this SQL from the past
  week and projected weekly values when parallel execution is enabled.
 
                                 Past week sampled statistics for this SQL
                                 -----------------------------------------
  Number of executions                                                   0
  Percent of total activity                                            .29
  Percent of samples with #Active Sessions > 2*CPU                       0
  Weekly DB time (in sec)                                            76.51
 
                              Projected statistics with Parallel Execution
                              --------------------------------------------
  Weekly DB time (in sec)                                            95.21

SQL Profile Creation
When you accept a profile, the database creates the profile and stores it persistently in 
the data dictionary. If a user issues a statement for which a profile has been built, then 
the query optimizer (in normal mode) uses both the environment and the SQL profile 
to build a well-tuned plan.

If the database uses SQL plan management, and if a SQL plan baseline exists for the 
SQL statement, then the database adds a new plan to the baseline when a SQL profile 
is created. Otherwise, the database does not add a new plan baseline. 



Managing SQL Profiles

Automatic SQL Tuning 17-23

No strict relationship exists between the SQL profile and the plan baseline. When hard 
parsing, the optimizer uses the SQL profile to select the best plan baseline from the 
available plans. In some conditions, the SQL profile may cause the optimizer to select 
different plan baselines.

SQL Profile APIs
While SQL profiles are usually handled by Enterprise Manager as part of Automatic 
SQL tuning, you can manage SQL profiles with the DBMS_SQLTUNE package. To use the 
APIs, you must have the ADMINISTER SQL MANAGEMENT OBJECT privilege.

Table 17–3 shows the main procedures and functions for managing SQL profiles.

Figure 17–5 shows the possible actions when using SQL profile APIs.

Figure 17–5 SQL Profile APIs

See Also: Chapter 15, "Using SQL Plan Management"

Table 17–3  DBMS_SQLTUNE APIs for SQL Profiles

Procedure or Function Description Section

ACCEPT_SQL_PROFILE Creates a SQL Profile for the specified 
tuning task

"Accepting a SQL Profile" on page 17-24

ALTER_SQL_PROFILE Alters specific attributes of an existing 
SQL Profile object

"Altering a SQL Profile" on page 17-25

DROP_SQL_PROFILE Drops the named SQL Profile from the 
database

"Dropping a SQL Profile" on page 17-25

CREATE_STGTAB_SQLPROF Creates the staging table used for copying 
SQL profiles from one system to another

"Transporting a SQL Profile" on 
page 17-25

PACK_STGTAB_SQLPROF Moves profile data out of the SYS schema 
into the staging table

"Transporting a SQL Profile" on 
page 17-25

UNPACK_STGTAB_SQLPROF Uses the profile data stored in the staging 
table to create profiles on this system

"Transporting a SQL Profile" on 
page 17-25

unpack_stgtab_sqlprof

pack_stgtab_sqlprof

create_stgtab_sqlprof

(transport stgtab)

STAGING TABLE

alter_sql_profiledrop_sql_profile

accept_sql_profile

imp / exp

SQL Profile



Managing SQL Profiles

17-24 Oracle Database Performance Tuning Guide

As tables grow or indexes are created or dropped, the plan for a profile can change. 
The profile continues to be relevant even if the data distribution or access path of the 
corresponding statement changes. In general, you do not need to refresh SQL profiles.

Over a long period, profile content can become outdated. In this case, the performance 
of the corresponding SQL statement may degrade. The poorly performing statement 
may appear as high-load or top SQL. In this situation, the Automatic SQL Tuning task 
again captures the statement as high-load SQL. You can create a new profile for the 
statement.

Accepting a SQL Profile
You can use the DBMS_SQLTUNE.ACCEPT_SQL_PROFILE procedure or function to accept a 
SQL profile recommended by SQL Tuning Advisor. This procedure creates and stores a 
SQL profile in the database. 

As a rule of thumb, accept a SQL profile recommended by SQL Tuning Advisor. If 
both an index and a SQL profile are recommended, then either use both or use the SQL 
profile only. If you create an index, then the optimizer may need the profile to pick the 
new index.

In some situations, SQL Tuning Advisor may find an improved serial plan in addition 
to an even better parallel plan. In this case, the advisor recommends both a standard 
and a parallel SQL profile, enabling you to choose between the best serial and best 
parallel plan for the statement. Accept a parallel plan only if the increase in response 
time is worth the decrease in throughput (see Example 17–4).

To accept a SQL profile:

■ Call the DBMS_SQLTUNE.ALTER_SQL_PROFILE procedure.

In following example, my_sql_tuning_task is the name of the SQL tuning task 
and my_sql_profile is the name of the SQL profile. The PL/SQL block accepts a 
profile that uses parallel execution (profile_type):

DECLARE
  my_sqlprofile_name VARCHAR2(30);
BEGIN
  my_sqlprofile_name := DBMS_SQLTUNE.ACCEPT_SQL_PROFILE ( 
    task_name    => 'my_sql_tuning_task',
    name         => 'my_sql_profile',
    profile_type => DBMS_SQLTUNE.PX_PROFILE,
    force_match  => TRUE );
END;
/

The force_match setting controls statement matching. Typically, an accepted SQL 
profile is associated with the SQL statement through a SQL signature that is 
generated using a hash function. This hash function changes the SQL statement to 
upper case and removes all extra whites spaces before generating the signature. 
Thus, the same SQL profile works for all SQL statements in which the only 
difference is case and white spaces.

By setting force_match to TRUE, the SQL profile additionally targets all SQL 
statements that have the same text after normalizing literal values to bind 
variables. This setting may be useful for applications that use only literal values 
because it allows SQL with text differing only in its literal values to share a SQL 

See Also: Oracle Database PL/SQL Packages and Types Reference for 
information about the DBMS_SQLTUNE package



Managing SQL Profiles

Automatic SQL Tuning 17-25

profile. If both literal values and bind variables are in the SQL text, or if 
force_match is set to FALSE (default), then literal values are not normalized.

You can view information about a SQL profile in the DBA_SQL_PROFILES view.

Altering a SQL Profile
You can alter attributes of an existing SQL profile with the ALTER_SQL_PROFILE 
procedure. Modifiable attributes are STATUS, NAME, DESCRIPTION, and CATEGORY.

The CATEGORY attribute determines which sessions can apply a profile. You can view 
the CATEGORY attribute by querying DBA_SQL_PROFILES.CATEGORY. By default, all 
profiles are in the DEFAULT category, which means that all sessions in which the 
SQLTUNE_CATEGORY initialization parameter is set to DEFAULT can use the profile.

By altering the category of a SQL profile, you can determine which sessions are 
affected by profile creation. For example, by setting the category to DEV, only sessions 
in which the SQLTUNE_CATEGORY initialization parameter is set to DEV can use the 
profile. Other sessions do not have access to the SQL profile and execution plans for 
SQL statements are not impacted by the SQL profile. This technique enables you to test 
a profile in a restricted environment before making it available to other sessions.

To alter a SQL profile:

■ Call the DBMS_SQLTUNE.ALTER_SQL_PROFILE procedure.

In the following example, the STATUS attribute of my_sql_profile is changed to 
DISABLED, which means the SQL profile is not used during SQL compilation:

BEGIN
  DBMS_SQLTUNE.ALTER_SQL_PROFILE(
    name            => 'my_sql_profile', 
    attribute_name  => 'STATUS', 
    value           => 'DISABLED');
END;
/

Dropping a SQL Profile
You can drop a SQL profile with the DROP_SQL_PROFILE procedure. You can specify 
whether to ignore errors raised if the name does not exist. For this example, the default 
value of FALSE is accepted

To drop a SQL profile:

■ Call the DBMS_SQLTUNE.DROP_SQL_PROFILE procedure.

The following example drops the profile named my_sql_profile:

BEGIN
  DBMS_SQLTUNE.DROP_SQL_PROFILE( name => 'my_sql_profile' );
END;
/

Transporting a SQL Profile
You can transport SQL profiles. This operation involves exporting the SQL profile 
from the SYS schema in one database to a staging table, and then importing the SQL 

See Also: Oracle Database Reference to learn about the 
SQLTUNE_CATEGORY initialization parameter



SQL Tuning Views

17-26 Oracle Database Performance Tuning Guide

profile from the staging table into another database. You can transport a SQL profile to 
any Oracle database created in the same release or later. 

To transport a SQL profile:

1. Use the CREATE_STGTAB_SQLPROF procedure to create a staging table where the SQL 
profiles will be exported.

The following example creates my_staging_table in the DBA1 schema:

BEGIN
  DBMS_SQLTUNE.create_stgtab_sqlprof( 
    table_name  => 'my_staging_table',
    schema_name => 'DBA1' );
END;
/

2. Use the PACK_STGTAB_SQLPROF procedure to export SQL profiles into the staging 
table.

The following example populates dba1.my_staging_table with the SQL profile 
my_profile:

BEGIN
  DBMS_SQLTUNE.pack_stgtab_sqlprof(      
    profile_name         => 'my_profile',   
    staging_table_name   => 'my_staging_table',
    staging_schema_owner => 'dba1' );
END;
/ 

3. Move the staging table to the database where the SQL profiles will be imported 
using the mechanism of choice (such as Oracle Data Pump or database link).

4. On the database where the SQL profiles will be imported, use the 
UNPACK_STGTAB_SQLPROF procedure to import SQL profiles from the staging table.

The following example shows how to import SQL profiles contained in the staging 
table:

BEGIN
  DBMS_SQLTUNE.UNPACK_STGTAB_SQLPROF(
      replace  => TRUE,
      staging_table_name => 'my_staging_table');
END;
/

SQL Tuning Views
This section summarizes views that shows information gathered for tuning the SQL 
statements. You need DBA privileges to access these views.

■ Advisor information views, such as DBA_ADVISOR_TASKS, 
DBA_ADVISOR_EXECUTIONS, DBA_ADVISOR_FINDINGS, 
DBA_ADVISOR_RECOMMENDATIONS, and DBA_ADVISOR_RATIONALE views.

■ SQL tuning information views, such as DBA_SQLTUNE_STATISTICS, 
DBA_SQLTUNE_BINDS, and DBA_SQLTUNE_PLANS views.

■ SQL tuning set views, such as DBA_SQLSET, DBA_SQLSET_BINDS, 
DBA_SQLSET_STATEMENTS, and DBA_SQLSET_REFERENCES views.



SQL Tuning Views

Automatic SQL Tuning 17-27

■ Information on captured execution plans for statements in SQL tuning sets are 
displayed in the DBA_SQLSET_PLANS and USER_SQLSET_PLANS views.

■ SQL profile information is displayed in the DBA_SQL_PROFILES view.

If TYPE = MANUAL, then the SQL profile was created manually by SQL Tuning 
Advisor. If TYPE = AUTOMATIC, then the profile was created by automatic SQL 
tuning.

■ Advisor execution progress information is displayed in the V$ADVISOR_PROGRESS 
view.

■ Dynamic views containing information relevant to the SQL tuning, such as V$SQL, 
V$SQLAREA, V$SQLSTATS, and V$SQL_BIND_DATA views.

See Also: Oracle Database Reference for descriptions of the static 
data dictionary and dynamic views



SQL Tuning Views

17-28 Oracle Database Performance Tuning Guide



18

SQL Access Advisor 18-1

18SQL Access Advisor

This chapter illustrates how to use SQL Access Advisor, which is a tuning tool that 
provides advice on improving the performance of a database through partitioning, 
materialized views, indexes, and materialized view logs. The chapter contains the 
following sections:

■ Overview of SQL Access Advisor

■ Using SQL Access Advisor

■ Tuning Materialized Views for Fast Refresh and Query Rewrite

Overview of SQL Access Advisor
Materialized views, partitions, and indexes are essential when tuning a database to 
achieve optimum performance for complex, data-intensive queries. SQL Access 
Advisor helps you achieve your performance goals by recommending the proper set of 
materialized views, materialized view logs, partitions, and indexes for a given 
workload. Understanding and using these structures is essential when optimizing SQL 
as they can result in significant performance improvements in data retrieval. The 
advantages, however, do not come without a cost. Creation and maintenance of these 
objects can be time consuming, and space requirements can be significant. In 
particular, partitioning of an unpartitioned base table is a complex operation that must 
be planned carefully.

SQL Access Advisor index recommendations include bitmap, function-based, and 
B-tree indexes. A bitmap index offers a reduced response time for many types of ad 
hoc queries and reduced storage requirements compared to other indexing techniques. 
Bitmap indexes are most commonly used in a data warehouse to index unique or 
near-unique keys. SQL Access Advisor materialized view recommendations include 
fast refreshable and full refreshable MVs, for either general rewrite or exact text match 
rewrite.

SQL Access Advisor, using the TUNE_MVIEW procedure, also recommends how to 
optimize materialized views so that they can be fast refreshable and take advantage of 
general query rewrite.

In addition, SQL Access Advisor can recommend partitioning on an existing 
unpartitioned base table to improve performance. Furthermore, it may recommend 
new indexes and materialized views that are themselves partitioned. While creating 
new partitioned indexes and materialized view is no different from the unpartitioned 
case, partitioning existing base tables should be executed with care. This is especially 
true when indexes, views, constraints, or triggers are defined on the table. See "Special 
Considerations when Script Includes Partitioning Recommendations" on page 18-20 
for a list of issues involving base table partitioning for performing this task online.



Overview of SQL Access Advisor

18-2 Oracle Database Performance Tuning Guide

You can run SQL Access Advisor from Oracle Enterprise Manager (accessible from the 
Advisor Central page) using SQL Access Advisor Wizard or by invoking the 
DBMS_ADVISOR package. The DBMS_ADVISOR package consists of a collection of analysis 
and advisory functions and procedures callable from any PL/SQL program. 

Figure 18–1 illustrates how SQL Access Advisor recommends access structures for a 
given workload obtained from a user-defined table or the SQL cache. If a workload is 
not provided, then it can generate and use a hypothetical workload also, provided the 
user schema contains dimensions defined by the CREATE DIMENSION keyword.

Figure 18–1 Materialized Views and SQL Access Advisor

Using SQL Access Advisor in Enterprise Manager or API, you can do the following:

■ Recommend materialized views and indexes based on collected, user-supplied, or 
hypothetical workload information.

■ Recommend partitioning of tables, indexes, and materialized views.

■ Mark, update, and remove recommendations.

In addition, you can use SQL Access Advisor API to do the following:

■ Perform a quick tune using a single SQL statement.

■ Show how to make a materialized view fast refreshable.

■ Show how to change a materialized view so that general query rewrite is possible.

To make recommendations, SQL Access Advisor relies on structural statistics about 
table and index cardinalities of dimension level columns, JOIN KEY columns, and fact 
table key columns. You can gather either exact or estimated statistics with 
the DBMS_STATS package. Because gathering statistics is time-consuming and full 
statistical accuracy is not required, it is generally preferable to estimate statistics. 
Without gathering statistics on a given table, queries referencing this table are marked 
as invalid in the workload, resulting in no recommendations being made for those 
queries. It is also recommended that all existing indexes and materialized views have 

Warehouse

Oracle

Materialized
Views, 

Indexes, 
Partitions,

and
Dimensions

Workload

User-Defined
Workload

SQLAccess
Advisor

DBMS_ADVISOR
Package

Third Party
Tool

SQL
Cache

Workload Collection
(optional)



Overview of SQL Access Advisor

SQL Access Advisor 18-3

been analyzed. See Oracle Database PL/SQL Packages and Types Reference for more 
information about the DBMS_STATS package.

Overview of Using SQL Access Advisor
An easy way to use SQL Access Advisor is to invoke its wizard, which is available in 
Enterprise Manager from the Advisor Central page. If you prefer to use SQL Access 
Advisor through the DBMS_ADVISOR package, then this section describes the basic 
components and the sequence in which you must call the procedures.

This section describes the four steps in generating a set of recommendations:

■ Create a task

■ Define the workload

■ Generate the recommendations

■ View and implement the recommendations

Step 1  Create a task
An advisor task is a container in the data dictionary that stores the inputs to and the 
results of an intelligent advisor analysis run. All information relating to the 
recommendation operation, including the results, resides in the task.

Before SQL Access Advisor can make recommendations, you must create a task using 
either of the following:

■ The wizard in Oracle Enterprise Manager or the DBMS_ADVISOR.QUICK_TUNE 
procedure, which creates the task automatically

■ The DBMS_ADVISOR.CREATE_TASK procedure

You can control what a task does by defining parameters for the task using the 
DBMS_ADVISOR.SET_TASK_PARAMETER procedure.

Step 2  Define the workload
A workload consists of one or more SQL statements, plus statistics and attributes that 
fully describe each statement. A full workload contains all SQL statements from a 
target business application. A partial workload contains a subset of SQL statements. 
The difference is that for full workloads SQL Access Advisor may recommend 
dropping unused materialized views and indexes.

You cannot use SQL Access Advisor without a workload. A workload may contain a 
variety of statements. SQL Access Advisor ranks the entries according to a specific 
statistic, business importance, or combination of the two, which enables the advisor to 
process the most important SQL statements first.

SQL Access Advisor may require particular attributes to be present in a valid 
workload. Although the advisor can perform analysis when items are missing, the 
quality of the recommendations may be lower. For example, SQL Access Advisor 
requires a workload to contain a SQL query and the user who ran the query, with 
other attributes as optional. However, if the workload also contains I/O and CPU data, 
then SQL Access Advisor can better evaluate statement efficiency.

The database stores a workload as a SQL tuning set. You can access the workload with 
the DBMS_SQLTUNE package and share it among many Advisor tasks. Because the 
workload is independent, you must link it to a task using the 
DBMS_ADVISOR.ADD_STS_REF procedure. After this link has been established, you 

See Also: "Creating Tasks" on page 18-7



Overview of SQL Access Advisor

18-4 Oracle Database Performance Tuning Guide

cannot delete or modify the workload until all advisor tasks have removed their 
dependency on the workload. A workload reference is removed when a user deletes a 
parent advisor task or manually removes the workload reference from the task by 
using the DBMS_ADVISOR.DELETE_STS_REF procedure.

You can create a hypothetical workload from a schema by analyzing dimensions and 
constraints. For best results, provide a workload as a SQL tuning set. The 
DBMS_SQLTUNE package provides several helper functions that can create SQL tuning 
sets from common workload sources, such as the SQL cache, a user-defined workload 
stored in a table, and a hypothetical workload.

At the time the recommendations are generated, you can apply a filter to the workload 
to restrict what is analyzed. This restriction provides the ability to generate different 
sets of recommendations based on different workload scenarios. SQL Access Advisor 
parameters control the recommendation process and customization of the workload. 
These parameters control various aspects of the process, such as the type of 
recommendation required and the naming conventions for what it recommends.

To set these parameters, use the SET_TASK_PARAMETER procedure. Parameters are 
persistent in that they remain set for the life span of the task. When a parameter value 
is set using SET_TASK_PARAMETER, it does not change until you make another call to this 
procedure.

Step 3  Generate the recommendations
After a task exists and a workload is linked to the task and the appropriate parameters 
are set, you can generate recommendations using the DBMS_ADVISOR.EXECUTE_TASK 
procedure. These recommendations are stored in SQL Access Advisor Repository.

The recommendation process generates several recommendations. Each 
recommendation specifies one or more actions. For example, a recommendation could 
be to create several materialized view logs, create a materialized view, and then 
analyze it to gather statistics.

A task recommendation can range from a simple suggestion to a complex solution that 
requires partitioning a set of existing base tables and implementing a set of database 
objects such as indexes, materialized views, and materialized view logs. When an 
advisor task is executed, SQL Access Advisor carefully analyzes collected data and 
user-adjusted task parameters. It then forms a structured recommendation that the 
user can view and implement.

See "Generating Recommendations" on page 18-12 for more information about 
generating recommendations.

Step 4  View and implement the recommendations
You can view the recommendations from SQL Access Advisor in either of the 
following ways: 

■ Using the catalog views

■ Generating a script using the DBMS_ADVISOR.GET_TASK_SCRIPT procedure

In Enterprise Manager, you may display the recommendations after SQL Access 
Advisor process has completed. See "Viewing Recommendations" on page 18-12 for a 
description of using the catalog views to view the recommendations. See "Generating 
SQL Scripts" on page 18-19 to see how to create a script.

You need not accept all recommendations. You can mark the ones to be included in the 
recommendation script. However, when base table partitioning is recommended, some 
recommendations depend on others. For example, you cannot implement a local index 
if you do not also implement the partitioning recommendation on the index base table.



Using SQL Access Advisor

SQL Access Advisor 18-5

The final step is then implementing the recommendations and verifying that query 
performance has improved.

SQL Access Advisor Repository
All the information needed and generated by SQL Access Advisor resides in the 
Advisor repository, which is a part of the database dictionary. The benefits of using the 
repository are that it:

■ Collects a complete workload for SQL Access Advisor.

■ Supports historical data.

■ Is managed by the server.

Using SQL Access Advisor
This section discusses general information about, and the steps needed to use, SQL 
Access Advisor, and includes:

■ Steps for Using SQL Access Advisor

■ Privileges Needed to Use SQL Access Advisor

■ Setting Up Tasks and Templates

■ SQL Access Advisor Workloads

■ Working with Recommendations

■ Performing a Quick Tune

■ Managing Tasks

■ Using SQL Access Advisor Constants

Steps for Using SQL Access Advisor
Figure 18–2 illustrates the steps in using SQL Access Advisor and an overview of all 
parameters in SQL Access Advisor and when it is appropriate to use them.

See Also: Oracle Database 2 Day + Performance Tuning Guide for 
information about using SQL Access Advisor with Oracle Enterprise 
Manager



Using SQL Access Advisor

18-6 Oracle Database Performance Tuning Guide

Figure 18–2 SQL Access Advisor Flowchart

Privileges Needed to Use SQL Access Advisor
You must have the ADVISOR privilege to manage or use SQL Access Advisor. When 
processing a workload, SQL Access Advisor attempts to validate each statement to 
identify table and column references. The database achieves validation by processing 
each statement as if it were being executed by the statement's original user. 

If the user does not have SELECT privileges to a particular table, then SQL Access 
Advisor bypasses the statement referencing the table. This behavior can cause many 
statements to be excluded from analysis. If SQL Access Advisor excludes all 
statements in a workload, then the workload is invalid. SQL Access Advisor returns 
the following message:

QSM-00774, there are no SQL statements to process for task TASK_NAME

To avoid missing critical workload queries, the current database user must have 
SELECT privileges on the tables targeted for materialized view analysis. For these 
tables, these SELECT privileges cannot be obtained through a role.

Additionally, you must have the ADMINISTER SQL TUNING SET privilege to create and 
manage workloads in SQL tuning set objects. To run the Advisor on SQL tuning sets 
owned by other users, you must have the ADMINISTER ANY SQL TUNING SET privilege.

Setting Up Tasks and Templates
This section discusses the following aspects of setting up tasks and templates:

■ Creating Tasks

■ Using Templates

CREATE_TASK
DELETE_TASK

UPDATE_TASK_ATT..
CREATE_SQLSET

Create and Manage
Tasks and Data

Step 1

SET_TASK_PARAMETER

RESET_TASK

Prepare Tasks for
Various Operations

Step 2

LOAD_SQLSET...

Gather and Manage
Workload

Step 3

SQL Tuning
Set

SQLAccess
Task

Identify Workload Source

Prepare and
Analyze Data

Step 4

ADD_STS_REF
DELETE_STS_REF

MARK_RECOMMENDATION
UPDATE_REC_ATTRIBUTES

EXECUTE_TASK

GET_TASK_SCRIPT

Recommendations

Review Results

Create a SQL Tuning Set

Create a SQLAccess Task

Workload
Reference

Set SQLAccess Parameters



Using SQL Access Advisor

SQL Access Advisor 18-7

■ Creating Templates

Creating Tasks
In the task, you define what the advisor must analyze and the location of the analysis 
results. A user can create any number of tasks, each with its own specialization. All are 
based on the same Advisor task model and share the same repository.

You create a task using the CREATE_TASK procedure. The syntax is as follows:

DBMS_ADVISOR.CREATE_TASK (
   advisor_name          IN VARCHAR2,
   task_id               OUT NUMBER,
   task_name             IN OUT VARCHAR2,
   task_desc             IN VARCHAR2 := NULL,
   template              IN VARCHAR2 := NULL,
   is_template           IN VARCHAR2 := 'FALSE',
   how_created           IN VARCHAR2 := NULL); 

The following illustrates an example of using this procedure:

VARIABLE task_id NUMBER;
VARIABLE task_name VARCHAR2(255);
EXECUTE :task_name := 'MYTASK';
EXECUTE DBMS_ADVISOR.CREATE_TASK ('SQL Access Advisor', :task_id, :task_name);

See Oracle Database PL/SQL Packages and Types Reference for more information regarding 
the CREATE_TASK procedure and its parameters.

Using Templates
When an ideal configuration for a task or workload has been identified, you can save 
this configuration as a template on which to base future tasks and workloads.

A template enables you to set up any number of tasks or workloads that can serve as 
intelligent starting points or templates for future task creation. By setting up a 
template, you can save time when performing tuning analysis. This approach also 
enables you to custom fit a tuning analysis to the business operation.

To create a task from a template, you specify the template to be used when a new task 
is created. At that time, SQL Access Advisor copies the data and parameter settings 
from the template into the newly created task. You can also set an existing task to be a 
template by setting the template attribute when creating the task or later using the 
UPDATE_TASK_ATTRIBUTE procedure.

To use a task as a template, you tell SQL Access Advisor to use a task when a new task 
is created. At that time, SQL Access Advisor copies the task template's data and 
parameter settings into the newly created task. You can also set an existing task to be a 
template by setting the template attribute at the command line or in Enterprise 
Manager.

Creating Templates
You can create a template as in the following example.

1. Create a template called MY_TEMPLATE.

VARIABLE template_id NUMBER;
VARIABLE template_name VARCHAR2(255);
EXECUTE :template_name := 'MY_TEMPLATE';
EXECUTE DBMS_ADVISOR.CREATE_TASK('SQL Access Advisor',:template_id, -
                                 :template_name, is_template => 'TRUE');



Using SQL Access Advisor

18-8 Oracle Database Performance Tuning Guide

2. Set template parameters. For example, the following sets the naming conventions 
for recommended indexes and materialized views and the default tablespaces:

-- set naming conventions for recommended indexes/mvs
EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER ( -
   :template_name, 'INDEX_NAME_TEMPLATE', 'SH_IDX$$_<SEQ>');

EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER ( -
   :template_name, 'MVIEW_NAME_TEMPLATE', 'SH_MV$$_<SEQ>');

-- set default tablespace for recommended indexes/mvs
EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER ( -
   :template_name, 'DEF_INDEX_TABLESPACE', 'SH_INDEXES');

EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER ( -
   :template_name, 'DEF_MVIEW_TABLESPACE', 'SH_MVIEWS');

3. This template can now be used as a starting point to create a task as follows:

VARIABLE task_id NUMBER;
VARIABLE task_name VARCHAR2(255);
EXECUTE :task_name := 'MYTASK';
EXECUTE DBMS_ADVISOR.CREATE_TASK('SQL Access Advisor', :task_id, -
                                 :task_name, template=>'MY_TEMPLATE');

The following example uses a pre-defined template SQLACCESS_WAREHOUSE. See 
Table 18–3 for more information.

EXECUTE DBMS_ADVISOR.CREATE_TASK('SQL Access Advisor', -
   :task_id, :task_name,  template=>'SQLACCESS_WAREHOUSE');

SQL Access Advisor Workloads
SQL Access Advisor supports different types of workloads, and this section discusses 
the following aspects of managing workloads:

■ SQL Tuning Set Workloads

■ Using SQL Tuning Sets

■ Linking Tasks and Workloads

SQL Tuning Set Workloads
The input workload source for SQL Access Advisor is the SQL tuning set. An 
important benefit of using a SQL tuning set is that because it is stored as a separate 
entity, it can easily be shared among many Advisor tasks. After a SQL tuning set object 
has been referenced by an Advisor task, it cannot be deleted or modified until all 
Advisor tasks have removed their dependency on the data. A workload reference is 
removed when a parent Advisor task is deleted or when the workload reference is 
manually removed from the Advisor task by the user.

SQL Access Advisor performs best when a workload based on actual usage is 
available. You can store multiple workloads in the form of SQL tuning sets, so that you 
can view the different uses of a real-world data warehousing or transaction-processing 
environment over a long period and across the life cycle of database instance startup 
and shutdown.



Using SQL Access Advisor

SQL Access Advisor 18-9

Using SQL Tuning Sets
The SQL tuning set workload is implemented using the DBMS_SQLTUNE package. See 
Oracle Database PL/SQL Packages and Types Reference for a description on creating and 
managing SQL tuning sets. 

To transition existing SQL Workload objects to a SQL tuning set, the DBMS_ADVISOR 
package provides a procedure to copy SQL Workload data to a user-designated SQL 
tuning set. Note that, to use this procedure, the user must have the required SQL 
tuning set privileges and the required ADVISOR privilege.

The syntax is as follows:

DBMS_ADVISOR.COPY_SQLWKLD_TO_STS (
   workload_name        IN VARCHAR2,
   sts_name             IN VARCHAR2,
   import_mode          IN VARCHAR2 := 'NEW');

The following example illustrates its usage:

EXECUTE DBMS_ADVISOR.COPY_SQLWKLD_TO_STS('MYWORKLOAD','MYSTS','NEW');

See Oracle Database PL/SQL Packages and Types Reference for more information regarding 
the COPY_SQLWKLD_TO_STS procedure and its parameters.

Linking Tasks and Workloads
Before the recommendation process can begin, you must link the task to a SQL tuning 
set. You achieve this goal by using the ADD_STS_REF procedure and using their 
respective names to link the task and a Tuning Set. This procedure establishes a link 
between the Advisor task and a Tuning Set. And, after a connection has been defined, 
the SQL tuning set is protected from removal or update. The syntax is as follows:

DBMS_ADVISOR.ADD_STS_REF (task_name IN VARCHAR2,
 
sts_owner IN VARCHAR2,
sts_name  IN VARCHAR2);

The sts_owner parameter may be null, in which case the STS is assumed to be owned 
by the current user.

The following example links the MYTASK task created to the current user's MYWORKLOAD 
SQL tuning set:

EXECUTE DBMS_ADVISOR.ADD_STS_REF('MYTASK', null, 'MYWORKLOAD');

See Oracle Database PL/SQL Packages and Types Reference for more information regarding 
the ADD_STS_REF procedure and its parameters.

Removing a Link Between a SQL Tuning Set Workload and a Task  Before you can delete a task 
or a SQL tuning set workload, if it is linked to a workload or task respectively, then the 
link between the task and the workload must be removed using the DELETE_STS_REF 
procedure. The following example deletes the link between task MYTASK and the 
current user's SQL tuning set MYWORKLOAD:

EXECUTE DBMS_ADVISOR.DELETE_STS_REF('MYTASK', null, 'MYWORKLOAD');

Working with Recommendations
This section discusses the following aspects of working with recommendations:

■ Recommendations and Actions



Using SQL Access Advisor

18-10 Oracle Database Performance Tuning Guide

■ Recommendation Options

■ Evaluation Mode

■ View Intermediate Results During Recommendation Analysis

■ Generating Recommendations

■ Viewing Recommendations

■ Stopping the Recommendation Process

■ Marking Recommendations

■ Modifying Recommendations

■ Generating SQL Scripts

■ Special Considerations when Script Includes Partitioning Recommendations

■ When Recommendations are no Longer Required

Recommendations and Actions
SQL Access Advisor makes several recommendations, each of which contains one or 
more individual actions. In general, each recommendation provides a benefit for one 
query or a set of queries. All individual actions in a recommendation must be 
implemented together to achieve the full benefit. Recommendations can share actions. 

For example, a CREATE INDEX statement could provide a benefit for several queries, but 
some of those queries might benefit from an additional CREATE MATERIALIZED VIEW 
statement. In that case, the advisor would generate two recommendations: one for the 
set of queries that require only the index, and another one for the set of queries that 
require both the index and the materialized view to run optimally.

The partition recommendation is a special type of recommendation. When SQL Access 
Advisor determines that partitioning a specified base table would improve workload 
performance, the advisor adds a partition action to every recommendation containing 
a query referencing the base table. This technique ensures that index and materialized 
view recommendations are implemented on the correctly partitioned tables.

Recommendation Options
Before the advisor can generate recommendations, you must first define the 
parameters for the task using the SET_TASK_PARAMETER procedure. If parameters are 
not defined, then the database uses the defaults.

You can set task parameters by using the SET_TASK_PARAMETER procedure. The syntax 
is as follows.

DBMS_ADVISOR.SET_TASK_PARAMETER (
   task_name           IN VARCHAR2,
   parameter           IN VARCHAR2,
   value               IN [VARCHAR2 | NUMBER]);

There are many task parameters and, to help identify the relevant ones, they have been 
grouped into categories in Table 18–1. Note that all task parameters for workload 
filtering have been deprecated.



Using SQL Access Advisor

SQL Access Advisor 18-11

In the following example, set the storage change of task MYTASK to 100 MB. This 
indicates 100 MB of additional space for recommendations. A zero value indicates that 
no additional space can be allocated. A negative value indicates that the advisor must 
attempt to trim the current space utilization by the specified amount.

EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER('MYTASK','STORAGE_CHANGE', 100000000);

In the following example, set the VALID_TABLE_LIST parameter to filter out all queries 
that do no consist of tables SH.SALES and SH.CUSTOMERS.

EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER ( -
   'MYTASK', 'VALID_TABLE_LIST', 'SH.SALES, SH.CUSTOMERS');

See Oracle Database PL/SQL Packages and Types Reference for more information regarding 
the SET_TASK_PARAMETER procedure and its parameters.

Evaluation Mode
SQL Access Advisor operates in two modes: problem-solving and evaluation. By 
default, SQL Access Advisor attempts to solve access method problems by looking for 
enhancements to index structures, partitions, materialized views, and materialized 
view logs. For example, a problem-solving run may recommend creating a new index, 
adding a new column to a materialized view log, and so on.

When performing evaluation only, SQL Access Advisor comments only on which 
access structures the supplied workload will use. An evaluation-only run may only 
produce recommendations such as retaining an index, retaining a materialized view, 
and so on. The evaluation mode can be useful to see exactly which indexes and 
materialized views a workload is using. SQL Access Advisor does not evaluate the 
performance impact of existing base table partitioning.

View Intermediate Results During Recommendation Analysis
SQL Access Advisor now can see intermediate results during the analysis operation. 
Previously, results of an analysis operation were unavailable until the processing had 

Table 18–1  Types of Advisor Task Parameters And Their Uses

Workload Filtering Task Configuration Schema Attributes Recommendation Options

END_TIME DAYS_TO_EXPIRE DEF_INDEX_OWNER ANALYSIS_SCOPE

INVALID_ACTION_LIST JOURNALING DEF_INDEX_TABLESPACE COMPATIBILITY

INVALID_MODULE_LIST REPORT_DATE_FORMAT DEF_MVIEW_OWNER CREATION_COST

INVALID_SQLSTRING_LIMIT DEF_MVIEW_TABLESPACE DML_VOLATILITY

INVALID_TABLE_LIST DEF_MVLOG_TABLESPACE LIMIT_PARTITION_SCHEMES

INVALID_USERNAME_LIST DEF_PARTITION_TABLESPAC
E

MODE

RANKING_MEASURE INDEX_NAME_TEMPLATE PARTITIONING_TYPES

SQL_LIMIT MVIEW_NAME_TEMPLATE REFRESH_MODE

START_TIME STORAGE_CHANGE

TIME_LIMIT USE_SEPARATE_TABLESPACES

VALID_ACTION_LIST WORKLOAD_SCOPE

VALID_MODULE_LIST

VALID_SQLSTRING_LIST

VALID_TABLE_LIST

VALID_USERNAME_LIST



Using SQL Access Advisor

18-12 Oracle Database Performance Tuning Guide

completed or was interrupted by the user. Now, the user may access results in the 
corresponding recommendation and action tables even while SQL Access Advisor task 
is still executing. The benefit is that long running tasks can provide evidence that may 
allow the user to accept the current results by interrupting the task rather than waiting 
for a lengthy execution to complete.

To accept the current set of recommendations, the user must interrupt the task. This 
interruption signals SQL Access Advisor to stop processing and marks the task as 
INTERRUPTED. At that point, the user may update recommendation attributes and 
generate scripts. Alternatively, the user can allow SQL Access Advisor to complete the 
recommendation process.

Note that intermediate results represent recommendations for the workload contents 
up to that point in time. If it is critical that the recommendations be sensitive to the 
entire workload, then Oracle recommends that you allow the task execution to 
complete normally. Additionally, recommendations made by the advisor early in the 
recommendation process do not contain any base table partitioning recommendations. 
The partitioning analysis requires a substantial part of the workload to be processed 
before it can determine whether partitioning would be beneficial. Therefore, if SQL 
Access Advisor detects a benefit, then only later intermediate results contain base table 
partitioning recommendations.

Generating Recommendations
You can generate recommendations by using the EXECUTE_TASK procedure with your 
task name. After the procedure finishes, you can check the DBA_ADVISOR_LOG table for 
the actual execution status and the number of recommendations and actions that have 
been produced. You can query recommendations by task name in {DBA, 
USER}_ADVISOR_RECOMMENDATIONS. You can view the actions for these 
recommendations by task in {DBA, USER}_ADVISOR_ACTIONS.

EXECUTE_TASK Procedure  This procedure performs SQL Access Advisor analysis or 
evaluation for the specified task. Task execution is a synchronous operation, so control 
is not returned to the user until the operation has completed, or a user-interrupt was 
detected. Upon return or execution of the task, you can check the DBA_ADVISOR_LOG 
table for the actual execution status.

Running EXECUTE_TASK generates recommendations, where a recommendation 
comprises one or more actions, such as creating a materialized view log and a 
materialized view. The syntax is as follows:

DBMS_ADVISOR.EXECUTE_TASK (task_name   IN VARCHAR2);

The following illustrates an example of using this procedure:

EXECUTE DBMS_ADVISOR.EXECUTE_TASK('MYTASK');

See Oracle Database PL/SQL Packages and Types Reference for more information regarding 
the EXECUTE_TASK procedure and its parameters.

Viewing Recommendations
You can view each recommendation generated by SQL Access Advisor using several 
catalog views, such as (DBA, USER)_ADVISOR_RECOMMENDATIONS. However, it is easier to 
use the GET_TASK_SCRIPT procedure or use SQL Access Advisor in Enterprise 
Manager, which graphically displays the recommendations and provides hyperlinks to 
quickly see which SQL statements benefit from a recommendation. Each 
recommendation produced by SQL Access Advisor is linked to the SQL statement it 
benefits.



Using SQL Access Advisor

SQL Access Advisor 18-13

The following shows the recommendation (rec_id) produced by an Advisor run, with 
their rank and total benefit. The rank is a measure of the importance of the queries that 
the recommendation helps. The benefit is the total improvement in execution cost (in 
terms of optimizer cost) of all the queries using the recommendation.

VARIABLE workload_name VARCHAR2(255); 
VARIABLE task_name VARCHAR2(255);
EXECUTE :task_name := 'MYTASK';
EXECUTE :workload_name := 'MYWORKLOAD'; 

SELECT REC_ID, RANK, BENEFIT
FROM USER_ADVISOR_RECOMMENDATIONS WHERE TASK_NAME = :task_name;

    REC_ID       RANK    BENEFIT
---------- ---------- ----------
         1          2       2754
         2          3       1222
         3          1       5499
         4          4        594

To identify which query benefits from which recommendation, you can use the views 
DBA_* and USER_ADVISOR_SQLA_WK_STMTS. The precost and postcost numbers are in 
terms of the estimated optimizer cost (shown in EXPLAIN PLAN) without and with the 
recommended access structure changes, respectively. To see recommendations for each 
query, issue the following statement:

SELECT sql_id, rec_id, precost, postcost,
       (precost-postcost)*100/precost AS percent_benefit
FROM USER_ADVISOR_SQLA_WK_STMTS
WHERE TASK_NAME = :task_name AND workload_name = :workload_name;

    SQL_ID     REC_ID    PRECOST   POSTCOST PERCENT_BENEFIT
---------- ---------- ---------- ---------- ---------------
       121          1       3003        249      91.7082917
       122          2       1404        182       87.037037
       123          3       5503          4      99.9273124
       124          4        730        136       81.369863

Each recommendation consists of one or more actions, which must be implemented 
together to realize the benefit provided by the recommendation. SQL Access Advisor 
produces the following types of actions:

■ PARTITION BASE TABLE

■ CREATE|DROP|RETAIN MATERIALIZED VIEW

■ CREATE|ALTER|RETAIN MATERIALIZED VIEW LOG

■ CREATE|DROP|RETAIN INDEX

■ GATHER STATS

The PARTITION BASE TABLE action partitions an existing unpartitioned base table. The 
CREATE actions corresponds to new access structures. RETAIN recommendations 
indicate that existing access structures must be kept. DROP recommendations are only 
produced if the WORKLOAD_SCOPE parameter is set to FULL. The GATHER STATS action 
generates a call to DBMS_STATS procedure to gather statistics on a newly generated 
access structure. Note that multiple recommendations may refer to the same action. 
However, when generating a script for the recommendation, you only see each action 
once.



Using SQL Access Advisor

18-14 Oracle Database Performance Tuning Guide

In the following example, you can see how many distinct actions there are for this set 
of recommendations.

SELECT 'Action Count', COUNT(DISTINCT action_id) cnt
FROM USER_ADVISOR_ACTIONS WHERE task_name = :task_name;

'ACTIONCOUNT        CNT
------------   --------
Action Count         20

-- see the actions for each recommendations
SELECT rec_id, action_id, SUBSTR(command,1,30) AS command
FROM user_advisor_actions WHERE task_name = :task_name
ORDER BY rec_id, action_id;

    REC_ID  ACTION_ID COMMAND
---------- ---------- ------------------------------
         1          5 CREATE MATERIALIZED VIEW LOG
         1          6 ALTER MATERIALIZED VIEW LOG
         1          7 CREATE MATERIALIZED VIEW LOG
         1          8 ALTER MATERIALIZED VIEW LOG
         1          9 CREATE MATERIALIZED VIEW LOG
         1         10 ALTER MATERIALIZED VIEW LOG
         1         11 CREATE MATERIALIZED VIEW
         1         12 GATHER TABLE STATISTICS
         1         19 CREATE INDEX
         1         20 GATHER INDEX STATISTICS
         2          5 CREATE MATERIALIZED VIEW LOG
         2          6 ALTER MATERIALIZED VIEW LOG
         2          9 CREATE MATERIALIZED VIEW LOG
         ...
    
Each action has several attributes that pertain to the properties of the access structure. 
The name and tablespace for each access structure when applicable are placed in attr1 
and attr2 respectively. The space occupied by each new access structure is in 
num_attr1. All other attributes are different for each action. 

Table 18–2 maps SQL Access Advisor action information to the corresponding column 
in DBA_ADVISOR_ACTIONS. In the table, "MV" refers to a materialized view.



Using SQL Access Advisor

SQL Access Advisor 18-15

Table 18–2  SQL Access Advisor Action Attributes

ATTR1 ATTR2 ATTR3 ATTR4 ATTR5 ATTR6
NUM_ATT
R1

CREATE INDEX Index name Index 
tablespace

Target 
table

BITMAP or           
BTREE

Index                
column           
list / 
expression

Unused Storage 
size in 
bytes for 
the index

CREATE 
MATERIALIZED 
VIEW

MV name MV 
tablespace

REFRESH 
COMPLETE 
REFRESH                
FAST,             
REFRESH           
FORCE, 
NEVER 
REFRESH

ENABLE        
QUERY 
REWRITE,        
DISABLE 
QUERY 
REWRITE

SQL       
SELECT 
statement

Unused Storage 
size in 
bytes for 
the MV

CREATE 
MATERIALIZED 
VIEW LOG

Target table 
name

MV log           
tablespace

ROWID 
PRIMARY                    
KEY,     
SEQUENCE 
OBJECT ID

INCLUDING 
NEW    
VALUES, 
EXCLUDING 
NEW VALUES

Table                
column       
list

Partitioning           
subclauses

Unused

CREATE REWRITE 
EQUIVALENCE

Name of 
equivalence

Checksum 
value

Unused Unused Source             
SQL 
statement

Equivalent          
SQL     
statement

Unused

DROP INDEX Index name Unused Unused Unused Index               
columns

Unused Storage 
size in 
bytes for 
the index

DROP 
MATERIALIZED 
VIEW

MV name Unused Unused Unused Unused Unused Storage 
size in 
bytes for 
the MV

DROP 
MATERIALIZED 
VIEW LOG

Target table 
name

Unused Unused Unused Unused Unused Unused

PARTITION 
TABLE

Table name RANGE, 
INTERVAL, 
LIST, HASH, 
RANGE-HASH
, 
RANGE-LIST

Partition 
key for 
partitionin
g (column 
name or 
list of 
column 
names)

Partition 
key for 
subpartitio
ning 
(column 
name or list 
of column 
names)

SQL 
PARTITION 
clause

SQL 
SUBPARTITION 
clause

Unused

PARTITION 
INDEX

Index name LOCAL, 
RANGE, HASH

Partition 
key for 
partitionin
g (list of 
column 
names)

Unused SQL 
PARTITION 
clause

Unused Unused

PARTITION ON 
MATERIALIZED 
VIEW

MV name RANGE, 
INTERVAL, 
LIST, HASH, 
RANGE-HASH
, 
RANGE-LIST

Partition 
key for 
partitionin
g (column 
name or 
list of 
column 
names)

Partition 
key for 
subpartitio
ning 
(column 
name or list 
of column 
names)

SQL 
SUBPARTITI
ON clause

SQL 
SUBPARTITION 
clause

Unused



Using SQL Access Advisor

18-16 Oracle Database Performance Tuning Guide

The following PL/SQL procedure can print some of the attributes of the 
recommendations.

CONNECT SH/SH;
CREATE OR REPLACE PROCEDURE show_recm (in_task_name IN VARCHAR2) IS 
CURSOR curs IS
  SELECT DISTINCT action_id, command, attr1, attr2, attr3, attr4
  FROM user_advisor_actions
  WHERE task_name = in_task_name
  ORDER BY action_id;
  v_action        number;
  v_command     VARCHAR2(32);
  v_attr1       VARCHAR2(4000);
  v_attr2       VARCHAR2(4000);
  v_attr3       VARCHAR2(4000);
  v_attr4       VARCHAR2(4000);
  v_attr5       VARCHAR2(4000);
BEGIN
  OPEN curs;
  DBMS_OUTPUT.PUT_LINE('=========================================');
  DBMS_OUTPUT.PUT_LINE('Task_name = ' || in_task_name);
  LOOP
     FETCH curs INTO  
       v_action, v_command, v_attr1, v_attr2, v_attr3, v_attr4 ;
   EXIT when curs%NOTFOUND;
   DBMS_OUTPUT.PUT_LINE('Action ID: ' || v_action);
   DBMS_OUTPUT.PUT_LINE('Command : ' || v_command);
   DBMS_OUTPUT.PUT_LINE('Attr1 (name)      : ' || SUBSTR(v_attr1,1,30));
   DBMS_OUTPUT.PUT_LINE('Attr2 (tablespace): ' || SUBSTR(v_attr2,1,30));
   DBMS_OUTPUT.PUT_LINE('Attr3             : ' || SUBSTR(v_attr3,1,30));
   DBMS_OUTPUT.PUT_LINE('Attr4             : ' || v_attr4);
   DBMS_OUTPUT.PUT_LINE('Attr5             : ' || v_attr5);
   DBMS_OUTPUT.PUT_LINE('----------------------------------------');  
   END LOOP;   
   CLOSE curs;      
   DBMS_OUTPUT.PUT_LINE('=========END RECOMMENDATIONS============');
END show_recm;
/
-- see what the actions are using sample procedure
set serveroutput on size 99999
EXECUTE show_recm(:task_name);
A fragment of a sample output from this procedure is as follows:
Task_name = MYTASK

RETAIN INDEX Index name Unused Target 
table

BITMAP or 
BTREE

Index 
columns

Unused Storage 
size in 
bytes for 
the index

RETAIN 
MATERIALIZED 
VIEW

MV name Unused REFRESH   
COMPLETE 
or REFRESH 
FAST

Unused SQL SELECT 
statement

Unused Storage 
size in 
bytes for 
the MV

RETAIN 
MATERIALIZED 
VIEW LOG

Target table 
name

Unused Unused Unused Unused Unused Unused

Table 18–2 (Cont.) SQL Access Advisor Action Attributes

ATTR1 ATTR2 ATTR3 ATTR4 ATTR5 ATTR6
NUM_ATT
R1



Using SQL Access Advisor

SQL Access Advisor 18-17

Action ID: 1
Command : CREATE MATERIALIZED VIEW LOG 
Attr1 (name)      : "SH"."CUSTOMERS"
Attr2 (tablespace):
Attr3             : ROWID, SEQUENCE
Attr4             :  INCLUDING NEW VALUES
Attr5             :
----------------------------------------
..
----------------------------------------
Action ID: 15
Command : CREATE MATERIALIZED VIEW
Attr1 (name)      : "SH"."SH_MV$$_0004"
Attr2 (tablespace): "SH_MVIEWS"
Attr3             : REFRESH FAST WITH ROWID
Attr4             : ENABLE QUERY REWRITE
Attr5             :
----------------------------------------
..
----------------------------------------
Action ID: 19
Command : CREATE INDEX
Attr1 (name)      : "SH"."SH_IDX$$_0013"
Attr2 (tablespace): "SH_INDEXES"
Attr3             : "SH"."SH_MV$$_0002"
Attr4             : BITMAP
Attr5             :

See Oracle Database PL/SQL Packages and Types Reference for details regarding Attr5 and 
Attr6.

Stopping the Recommendation Process
If SQL Access Advisor takes too long to make its recommendations using the 
procedure EXECUTE_TASK, then you can stop it by calling the CANCEL_TASK procedure 
and passing in the task_name for this recommendation process. If you use 
CANCEL_TASK, then SQL Access Advisor makes no recommendations. Therefore, if 
recommendations are required, consider using the INTERRUPT_TASK procedure.

Interrupting Tasks  The INTERRUPT_TASK procedure causes an Advisor operation to 
terminate as if it has reached its normal end. As a result, the user can see any 
recommendations that have been formed up to the point of the interrupt.

An interrupted task cannot be restarted. The syntax is as follows:

DBMS_ADVISOR.INTERRUPT_TASK (task_name IN VARCHAR2);

The following illustrates an example of using this procedure:

EXECUTE DBMS_ADVISOR.INTERRUPT_TASK ('MY_TASK');

Canceling Tasks  The CANCEL_TASK procedure causes a currently executing operation to 
terminate. An Advisor operation may take a few seconds to respond to this request. 
Because all Advisor task procedures are synchronous, to cancel an operation, you must 
use a separate database session.

A cancel command effective restores the task to its condition before the start of the 
canceled operation. Therefore, a canceled task or data object cannot be restarted (but 
you can reset the task using DBMS_ADVISOR.RESET_TASK and then executing it again). 
Its syntax is as follows:



Using SQL Access Advisor

18-18 Oracle Database Performance Tuning Guide

DBMS_ADVISOR.CANCEL_TASK (task_name   IN  VARCHAR2);

The following illustrates an example of using this procedure:

EXECUTE DBMS_ADVISOR.CANCEL_TASK('MYTASK');

See Oracle Database PL/SQL Packages and Types Reference for more information regarding 
the CANCEL_TASK procedure and its parameters.

Marking Recommendations
By default, all SQL Access Advisor recommendations are ready to be implemented, 
however, the user can choose to skip or exclude selected recommendations by using 
the MARK_RECOMMENDATION procedure. MARK_RECOMMENDATION allows the user to 
annotate a recommendation with a REJECT or IGNORE setting, which causes the 
GET_TASK_SCRIPT to skip it when producing the implementation procedure. The 
syntax is as follows:

DBMS_ADVISOR.MARK_RECOMMENDATION (
   task_name          IN VARCHAR2
   id                 IN NUMBER,
   action             IN VARCHAR2);

The following example marks a recommendation with ID 2 as REJECT. This 
recommendation and any dependent recommendations do not appear in the script.

EXECUTE DBMS_ADVISOR.MARK_RECOMMENDATION('MYTASK', 2, 'REJECT');

If the Advisor makes a recommendation to partition one or multiple previously 
unpartitioned base tables, then consider carefully before skipping this 
recommendation. Changing a table's partitioning scheme affects the cost of all queries, 
indexes, and materialized views defined on that table. Therefore, if you skip the 
partitioning recommendation, then the Advisor's remaining recommendations on this 
table are no longer optimal. To see recommendations on your workload that do not 
contain partitioning, reset the advisor task and rerun it with the ANALYSIS_SCOPE 
parameter changed to exclude partitioning recommendations.

See Oracle Database PL/SQL Packages and Types Reference for more information regarding 
the MARK_RECOMMENDATIONS procedure and its parameters.

Modifying Recommendations
Using the UPDATE_REC_ATTRIBUTES procedure, SQL Access Advisor names and assigns 
ownership to new objects such as indexes and materialized views during the analysis 
operation. However, it does not necessarily choose appropriate names, so you may 
manually set the owner, name, and tablespace values for new objects. For 
recommendations referencing existing database objects, owner and name values 
cannot be changed. The syntax is as follows:

DBMS_ADVISOR.UPDATE_REC_ATTRIBUTES (
   task_name            IN VARCHAR2
   rec_id               IN NUMBER,
   action_id            IN NUMBER,
   attribute_name       IN VARCHAR2,
   value                IN VARCHAR2);

The attribute_name parameter can take the following values:

■ OWNER

Specifies the owner name of the recommended object.



Using SQL Access Advisor

SQL Access Advisor 18-19

■ NAME

Specifies the name of the recommended object.

■ TABLESPACE

Specifies the tablespace of the recommended object.

The following example modifies the attribute TABLESPACE for recommendation ID 1, 
action ID 1 to SH_MVIEWS.

EXECUTE DBMS_ADVISOR.UPDATE_REC_ATTRIBUTES('MYTASK', 1, 1, - 
                                           'TABLESPACE', 'SH_MVIEWS');

See Oracle Database PL/SQL Packages and Types Reference for more information regarding 
the UPDATE_REC_ATTRIBUTES procedure and its parameters.

Generating SQL Scripts
An alternative to querying the metadata to see the recommendations is to create a 
script of the SQL statements for the recommendations, using the procedure 
GET_TASK_SCRIPT. The resulting script is an executable SQL file that can contain DROP, 
CREATE, and ALTER statements. For new objects, the names of the materialized views, 
materialized view logs, and indexes are auto-generated by using the user-specified 
name template. You should review the generated SQL script before attempting to 
execute it.

There are several task parameters that control the naming conventions 
(MVIEW_NAME_TEMPLATE and INDEX_NAME_TEMPLATE), the owner for these new objects 
(DEF_INDEX_OWNER and DEF_MVIEW_OWNER), and the tablespaces (DEF_MVIEW_TABLESPACE 
and DEF_INDEX_TABLESPACE).

The following example shows how to generate a CLOB containing the script for the 
recommendations:

EXECUTE DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT('MYTASK'),
               'ADVISOR_RESULTS', 'advscript.sql'); 

To save the script to a file, a directory path must be supplied so that the procedure 
CREATE_FILE knows where to store the script. In addition, read and write privileges 
must be granted on this directory. The following example shows how to save an 
advisor script CLOB to a file:

-- create a directory and grant permissions to read/write to it
CONNECT SH/SH;
CREATE DIRECTORY ADVISOR_RESULTS AS '/mydir';
GRANT READ ON DIRECTORY ADVISOR_RESULTS TO PUBLIC;
GRANT WRITE ON DIRECTORY ADVISOR_RESULTS TO PUBLIC;

The following is a fragment of a script generated by this procedure. The script also 
includes PL/SQL calls to gather statistics on the recommended access structures and 
marks the recommendations as IMPLEMENTED at the end:

Rem  Access Advisor V11.1.0.0.0 - Production
Rem  
Rem  Username:        SH
Rem  Task:            MYTASK
Rem  Execution date:  15/08/2006 11:35
Rem  
set feedback 1
set linesize 80
set trimspool on



Using SQL Access Advisor

18-20 Oracle Database Performance Tuning Guide

set tab off
set pagesize 60
whenever sqlerror CONTINUE

CREATE MATERIALIZED VIEW LOG ON "SH"."PRODUCTS"
    WITH ROWID, SEQUENCE("PROD_ID","PROD_SUBCATEGORY")
    INCLUDING NEW VALUES;
ALTER MATERIALIZED VIEW LOG FORCE ON "SH"."PRODUCTS"
    ADD ROWID, SEQUENCE("PROD_ID","PROD_SUBCATEGORY")
    INCLUDING NEW VALUES;
..
CREATE MATERIALIZED VIEW "SH"."MV$$_00510002"
    REFRESH FAST WITH ROWID
    ENABLE QUERY REWRITE
    AS SELECT SH.CUSTOMERS.CUST_STATE_PROVINCE C1, COUNT(*) M1 FROM
SH.CUSTOMERS WHERE (SH.CUSTOMERS.CUST_STATE_PROVINCE = 'CA') GROUP
BY SH.CUSTOMERS.CUST_STATE_PROVINCE;
BEGIN
  DBMS_STATS.GATHER_TABLE_STATS('"SH"', '"MV$$_00510002"', NULL, 
     DBMS_STATS.AUTO_SAMPLE_SIZE);
END;
/
..
CREATE BITMAP INDEX "SH"."MV$$_00510004_IDX$$_00510013"
    ON "SH"."MV$$_00510004" ("C4");
whenever sqlerror EXIT SQL.SQLCODE
BEGIN
  DBMS_ADVISOR.MARK_RECOMMENDATION('"MYTASK"',1,'IMPLEMENTED');
  DBMS_ADVISOR.MARK_RECOMMENDATION('"MYTASK"',2,'IMPLEMENTED');
  DBMS_ADVISOR.MARK_RECOMMENDATION('"MYTASK"',3,'IMPLEMENTED');
  DBMS_ADVISOR.MARK_RECOMMENDATION('"MYTASK"',4,'IMPLEMENTED');
END;
/

Special Considerations when Script Includes Partitioning Recommendations
The Advisor may recommend partitioning an existing unpartitioned base table to 
improve query performance. When the Advisor implementation script contains 
partition recommendations, you must take note of the following issues:

■ Partitioning an existing table is a complex and extensive operation, which may 
take considerably longer than implementing a new index or materialized view. 
Sufficient time should be reserved for implementing this recommendation.

■ While index and materialized view recommendations are easy to reverse by 
deleting the index or view, a table, after being partitioned, cannot easily be 
restored to its original state. Therefore, ensure that you back up the database 
before executing a script containing partition recommendations.

■ While repartitioning a base table, SQL Access Advisor scripts make a temporary 
copy of the original table, which occupies the same amount of space as the original 
table. Therefore, the repartitioning process requires sufficient free disk space for 
another copy of the largest table to be repartitioned. You must ensure that such 
space is available before running the implementation script.

See Also: Oracle Database SQL Language Reference for CREATE 
DIRECTORY syntax and Oracle Database PL/SQL Packages and Types 
Reference for detailed information about the GET_TASK_SCRIPT 
procedure



Using SQL Access Advisor

SQL Access Advisor 18-21

The partition implementation script attempts to migrate dependent objects such as 
indexes, materialized views, and constraints. However, some object cannot be 
automatically migrated. For example, PL/SQL stored procedures defined against a 
repartitioned base table typically become invalid and must be recompiled.

■ If you decide not to implement a partition recommendation that the advisor has 
made, then note that all other recommendations on the same table in the same 
script (such as CREATE INDEX and CREATE MATERIALIZED VIEW recommendations) 
are dependent on the partitioning recommendation. To obtain accurate 
recommendations, you should not simply remove the partition recommendation 
from the script. Rather, rerun the advisor with partitioning disabled (for example, 
by setting parameter ANALYSIS_SCOPE to a value that does not include the keyword 
TABLE).

When Recommendations are no Longer Required
The RESET_TASK procedure resets a task to its initial starting point. This has the effect 
of removing all recommendations, and intermediate data from the task. The actual 
task status is set to INITIAL. The syntax is as follows:

DBMS_ADVISOR.RESET_TASK (task_name     IN VARCHAR2);

The following illustrates an example of using this procedure:

EXECUTE DBMS_ADVISOR.RESET_TASK('MYTASK');

See Oracle Database PL/SQL Packages and Types Reference for more information regarding 
the RESET_TASK procedure and its parameters.

Performing a Quick Tune
To tune a single SQL statement, the QUICK_TUNE procedure accepts as its input a 
task_name and a SQL statement. The procedure creates a task and workload and 
executes this task. There is no difference in the results from using QUICK_TUNE. They 
are exactly the same as those from using EXECUTE_TASK, but this approach is easier to 
use when there is only a single SQL statement to be tuned. The syntax is as follows:

DBMS_ADVISOR.QUICK_TUNE (
   advisor_name           IN VARCHAR2,
   task_name              IN VARCHAR2,
   attr1                  IN CLOB,
   attr2                  IN VARCHAR2 := NULL,
   attr3                  IN NUMBER := NULL,
   task_or_template       IN VARCHAR2 := NULL);

The following example shows how to quick tune a single SQL statement:

VARIABLE task_name VARCHAR2(255);
VARIABLE sql_stmt VARCHAR2(4000);
EXECUTE :sql_stmt := 'SELECT COUNT(*) FROM customers 
                      WHERE cust_state_province =''CA''';
EXECUTE :task_name  := 'MY_QUICKTUNE_TASK';
EXECUTE DBMS_ADVISOR.QUICK_TUNE(DBMS_ADVISOR.SQLACCESS_ADVISOR,
              :task_name, :sql_stmt);

See Also: Oracle Database SQL Language Reference for CREATE 
DIRECTORY syntax and Oracle Database PL/SQL Packages and Types 
Reference for detailed information about the GET_TASK_SCRIPT 
procedure.



Using SQL Access Advisor

18-22 Oracle Database Performance Tuning Guide

See Oracle Database PL/SQL Packages and Types Reference for more information regarding 
the QUICK_TUNE procedure and its parameters.

Managing Tasks
Every time recommendations are generated, tasks are created. Unless you perform 
maintenance on these tasks, they grow over time and occupy storage space. You may 
want to keep some tasks and prevent their accidental deletion. Therefore, you can 
perform several management operations on tasks:

■ Updating Task Attributes

■ Deleting Tasks

■ Setting the DAYS_TO_EXPIRE Parameter

Updating Task Attributes
Using the UPDATE_TASK_ATTRIBUTES procedure, you can:

■ Change the name of a task.

■ Give a task a description.

■ Set the task to be read-only so it cannot be changed.

■ Make the task a template upon which you can define other tasks.

■ Changes various attributes of a task or a task template.

The syntax is as follows:

DBMS_ADVISOR.UPDATE_TASK_ATTRIBUTES (
   task_name          IN VARCHAR2
   new_name           IN VARCHAR2 := NULL,
   description        IN VARCHAR2 := NULL,
   read_only          IN VARCHAR2 := NULL,
   is_template        IN VARCHAR2 := NULL,
   how_created        IN VARCHAR2 := NULL);

The following example updates the name of an task MYTASK to TUNING1:

EXECUTE DBMS_ADVISOR.UPDATE_TASK_ATTRIBUTES('MYTASK', 'TUNING1');

The following example marks the task TUNING1 to read-only

EXECUTE DBMS_ADVISOR.UPDATE_TASK_ATTRIBUTES('TUNING1', read_only => 'TRUE');

The following example marks the task MYTASK as a template.

EXECUTE DBMS_ADVISOR.UPDATE_TASK_ATTRIBUTES('TUNING1', is_template=>'TRUE');

See Oracle Database PL/SQL Packages and Types Reference for more information regarding 
the UPDATE_TASK_ATTRIBUTES procedure and its parameters.

Deleting Tasks
The DELETE_TASK procedure deletes existing Advisor tasks from the repository. The 
syntax is as follows:

DBMS_ADVISOR.DELETE_TASK (task_name  IN VARCHAR2);

The following illustrates an example of using this procedure:

EXECUTE DBMS_ADVISOR.DELETE_TASK('MYTASK');



Using SQL Access Advisor

SQL Access Advisor 18-23

See Oracle Database PL/SQL Packages and Types Reference for more information regarding 
the DELETE_TASK procedure and its parameters.

Setting the DAYS_TO_EXPIRE Parameter
When a task or workload object is created, the parameter DAYS_TO_EXPIRE is set to 30. 
The value indicates the number of days until the task or object is automatically deleted 
by the system. To save a task or workload indefinitely, set the DAYS_TO_EXPIRE 
parameter to ADVISOR_UNLIMITED.

Using SQL Access Advisor Constants
You can use the constants shown in Table 18–3 with SQL Access Advisor.

Examples of Using SQL Access Advisor
This section illustrates some typical scenarios for using SQL Access Advisor. Oracle 
Database provides a script that contains this chapter's examples, aadvdemo.sql.

Recommendations From a User-Defined Workload
The following example imports workload from a user-defined table, 
SH.USER_WORKLOAD. It then creates a task called MYTASK, sets the storage budget to 100 
MB, and runs the task. A PL/SQL procedure prints the recommendations. Finally, the 
example generates a script that you can use to implement the recommendations.

Step 1  Prepare the USER_WORKLOAD table
Load the USER_WORKLOAD table with SQL statements as follows:

CONNECT SH/SH;
-- aggregation with selection
INSERT INTO user_workload (username, module, action, priority, sql_text)
VALUES ('SH', 'Example1', 'Action', 2, 
'SELECT   t.week_ending_day, p.prod_subcategory, 
          SUM(s.amount_sold) AS dollars, s.channel_id, s.promo_id
 FROM sales s, times t, products p WHERE s.time_id = t.time_id

Table 18–3  SQL Access Advisor Constants

Constant Description

ADVISOR_ALL A value that indicates all possible values. For string parameters, this value is equivalent to the 
wildcard % character.

ADVISOR_CURRENT Indicates the current time or active set of elements. Typically, this is used in time parameters.

ADVISOR_DEFAULT Indicates the default value. Typically used when setting task or workload parameters.

ADVISOR_UNLIMITED A value that represents an unlimited numeric value.

ADVISOR_UNUSED A value that represents an unused entity. When a parameter is set to ADVISOR_UNUSED, it has no effect 
on the current operation. A typical use for this constant is to set a parameter as unused for its 
dependent operations.

SQLACCESS_GENERAL Specifies the name of a default SQL Access general-purpose task template. This template sets the 
DML_VOLATILITY task parameter to TRUE and ANALYSIS_SCOPE to INDEX, MVIEW.

SQLACCESS_OLTP Specifies the name of a default SQL Access OLTP task template. This template sets the 
DML_VOLATILITY task parameter to TRUE and ANALYSIS_SCOPE to INDEX.

SQLACCESS_WAREHOUSE Specifies the name of a default SQL Access warehouse task template. This template sets the 
DML_VOLATILITY task parameter to FALSE and EXECUTION_TYPE to INDEX, MVIEW.

SQLACCESS_ADVISOR Contains the formal name of SQL Access Advisor. You can specify this name when procedures 
require the Advisor name as an argument.



Using SQL Access Advisor

18-24 Oracle Database Performance Tuning Guide

 AND s.prod_id = p.prod_id AND s.prod_id > 10 AND s.prod_id < 50
 GROUP BY t.week_ending_day, p.prod_subcategory, 
          s.channel_id, s.promo_id')
/

-- aggregation with selection
INSERT INTO user_workload (username, module, action, priority, sql_text)
VALUES ('SH', 'Example1', 'Action', 2, 
 'SELECT   t.calendar_month_desc, SUM(s.amount_sold) AS dollars
  FROM     sales s , times t
  WHERE    s.time_id = t.time_id
  AND    s.time_id between TO_DATE(''01-JAN-2000'', ''DD-MON-YYYY'')
                       AND TO_DATE(''01-JUL-2000'', ''DD-MON-YYYY'')
GROUP BY t.calendar_month_desc')
/

--Load all SQL queries.
INSERT INTO user_workload (username, module, action, priority, sql_text)
VALUES ('SH', 'Example1', 'Action', 2, 
'SELECT ch.channel_class, c.cust_city, t.calendar_quarter_desc,
   SUM(s.amount_sold) sales_amount
FROM sales s, times t, customers c, channels ch
WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id
AND s.channel_id = ch.channel_id AND c.cust_state_province = ''CA''
AND   ch.channel_desc IN (''Internet'',''Catalog'')
AND   t.calendar_quarter_desc IN (''1999-Q1'',''1999-Q2'')
GROUP BY ch.channel_class, c.cust_city, t.calendar_quarter_desc')
/

-- order by
INSERT INTO user_workload (username, module, action, priority, sql_text)
VALUES ('SH', 'Example1', 'Action', 2, 
  'SELECT c.country_id, c.cust_city, c.cust_last_name
FROM customers c WHERE c.country_id IN (52790, 52789)
ORDER BY c.country_id, c.cust_city, c.cust_last_name')
/
COMMIT;

CONNECT SH/SH;
set serveroutput on;

VARIABLE task_id NUMBER;
VARIABLE task_name VARCHAR2(255);
VARIABLE workload_name VARCHAR2(255);

Step 2  Create a SQL tuning set named MYWORKLOAD
EXECUTE :workload_name := 'MYWORKLOAD';
EXECUTE DBMS_SQLTUNE.CREATE_SQLSET(:workload_name, 'test purposeV);

Step 3  Load the SQL tuning set from the user-defined table 
SH.USER_WORKLOAD
DECLARE
  sqlset_cur DBMS_SQLTUNE.SQLSET_CURSOR;    /*a sqlset cursor variable*/
BEGIN
OPEN  sqlset_cur FOR
  SELECT
    SQLSET_ROW(null, sql_text, null, null, username, null,
     null, 0,0,0,0,0,0,0,0,0,null, 0,0,0,0)
   AS ROW



Using SQL Access Advisor

SQL Access Advisor 18-25

  FROM USER_WORKLOAD;
DBMS_SQLTUNE.LOAD_SQLSET(:workload_name, sqlset_cur);
END;

Step 4  Create a task named MYTASK
EXECUTE :task_name := 'MYTASK';
EXECUTE DBMS_ADVISOR.CREATE_TASK('SQL Access Advisor', :task_id, :task_name);

Step 5  Set task parameters
EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER(:task_name, 'STORAGE_CHANGE', 100);
EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER(:task_name, 'ANALYSIS_SCOPE, INDEX');

Step 6  Create a link between the SQL tuning set and the task
EXECUTE DBMS_ADVISOR.ADD_STS_REF(:task_name, :workload_name);

Step 7  Execute the task
EXECUTE DBMS_ADVISOR.EXECUTE_TASK(:task_name);

Step 8  View the recommendations
-- See the number of recommendations and the status of the task.
SELECT rec_id, rank, benefit
FROM user_advisor_recommendations WHERE task_name = :task_name;

See "Viewing Recommendations" on page 18-12 or "Generating SQL Scripts" on 
page 18-19 for further details.

-- See recommendation for each query.
SELECT sql_id, rec_id, precost, postcost,
      (precost-postcost)*100/precost AS percent_benefit
FROM user_advisor_sqla_wk_stmts
WHERE task_name = :task_name AND workload_name = :workload_name;

-- See the actions for each recommendations.
SELECT rec_id, action_id, SUBSTR(command,1,30) AS command
FROM user_advisor_actions
WHERE task_name = :task_name
ORDER BY rec_id, action_id;

-- See what the actions are using sample procedure.
SET SERVEROUTPUT ON SIZE 99999
EXECUTE show_recm(:task_name);

Step 9  Generate a script to Implement the recommendations
EXECUTE DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT(:task_name),
                                 'ADVISOR_RESULTS', 'Example1_script.sql');

Generate Recommendations Using a Task Template
The following example creates a template and then uses it to create a task. It then uses 
this task to generate recommendations from a user-defined table, similar to 
"Recommendations From a User-Defined Workload" on page 18-23.

CONNECT SH/SH;
VARIABLE template_id NUMBER;
VARIABLE template_name VARCHAR2(255);



Using SQL Access Advisor

18-26 Oracle Database Performance Tuning Guide

Step 1  Create a template called MY_TEMPLATE
EXECUTE :template_name := 'MY_TEMPLATE';
EXECUTE DBMS_ADVISOR.CREATE_TASK ( -
   'SQL Access Advisor',:template_id, :template_name, is_template=>'TRUE');

Step 2  Set template parameters
Set naming conventions for recommended indexes and materialized views.

EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER ( -
   :template_name,  'INDEX_NAME_TEMPLATE', 'SH_IDX$$_<SEQ>');
EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER ( -
   :template_name, 'MVIEW_NAME_TEMPLATE', 'SH_MV$$_<SEQ>');

--Set default owners for recommended indexes/materialized views.
EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER ( -
   :template_name, 'DEF_INDEX_OWNER', 'SH');
EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER ( -
   :template_name, 'DEF_MVIEW_OWNER', 'SH');

--Set default tablespace for recommended indexes/materialized views.
EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER ( -
   :template_name, 'DEF_INDEX_TABLESPACE', 'SH_INDEXES');
EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER ( -
   :template_name, 'DEF_MVIEW_TABLESPACE', 'SH_MVIEWS');

Step 3  Create a task using the template
VARIABLE task_id NUMBER;
VARIABLE task_name VARCHAR2(255);
EXECUTE :task_name := 'MYTASK';
EXECUTE DBMS_ADVISOR.CREATE_TASK ( -
   'SQL Access Advisor', :task_id, :task_name, template => 'MY_TEMPLATE');

--See the parameter settings for task
SELECT parameter_name, parameter_value
FROM user_advisor_parameters
WHERE task_name = :task_name AND (parameter_name LIKE '%MVIEW%' 
   OR parameter_name LIKE '%INDEX%');

Step 4  Create a SQL tuning set named MYWORKLOAD
EXECUTE :workload_name := 'MYWORKLOAD';
EXECUTE DBMS_SQLTUNE.CREATE_SQLSET(:workload_name, 'test_purpose');

Step 5  Load the SQL tuning set from the user-defined table 
SH.USER_WORKLOAD
DECLARE
   sqlset_cur DBMS_SQLTUNE.SQLSET_CURSOR;  /*a sqlset cursor variable*/
BEGIN
OPEN sqlset_cur FOR
   SELECT
   SQLSET_ROW(null,sql_text,null,null,username, null, null, 0,0,0,0,0,0,0,0,0,
      null,0,0,00) AS row
   FROM user_workload;
DBMS_SQLTUNE.LOAD_SQLSET(:workload_name, sqlsetcur);
END;

Step 6  Create a link between the workload and the task
EXECUTE DBMS_ADVISOR.ADD_STS_REF(:task_name, :workload_name);



Using SQL Access Advisor

SQL Access Advisor 18-27

Step 7  Execute the task
EXECUTE DBMS_ADVISOR.EXECUTE_TASK(:task_name);

Step 8  Generate a script
EXECUTE DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT(:task_name),-
                                 'ADVISOR_RESULTS', 'Example2_script.sql');

Evaluate Current Usage of Indexes and Materialized Views
This example illustrates how you can use SQL Access Advisor to evaluate the 
utilization of existing indexes and materialized views. We assume the workload is 
loaded into USER_WORKLOAD table as in "Recommendations From a User-Defined 
Workload" on page 18-23. The indexes and materialized views that the given workload 
are using appear as RETAIN actions in SQL Access Advisor recommendations.

VARIABLE task_id NUMBER;
VARIABLE task_name VARCHAR2(255);
VARIABLE workload_name VARCHAR2(255);

Step 1  Create a SQL tuning set named WORKLOAD
EXECUTE :workload_name := 'MYWORKLOAD';
EXECUTE DBMS_SQLTUNE.CREATE_SQLSET(:workload_name, 'test_purpose');

Step 2  Load the SQL tuning set from the user-defined table 
SH.USER_WORKLOAD
DECLARE
  sqlset_cur DBMS_SQLTUNE.SQLSET_CURSOR;  /*a sqlset cursor variable*/
BEGIN
OPEN sqlset_cur FOR
SELECT
  SQLSET_ROW(null,sql_text,null,null,username, null, null, 0,0,0,0,0,0,0,0,0,
   null, 0,0,0,0)
    AS ROW
  FROM user_workload;
DBMS_SQLTUNE.LOAD_SQLSET(:workload_name, :sqlsetcur);
END;

Step 3  Create a task named MY_EVAL_TASK
EXECUTE :task_name := 'MY_EVAL_TASK';
EXECUTE DBMS_ADVISOR.CREATE_TASK ('SQL Access Advisor', :task_id, :task_name);

Step 4  Create a link between workload and task
EXECUTE DBMS_ADVISOR.ADD_STS_REF(:task_name, :workload_name);

Step 5  Set task parameters to indicate EVALUATION ONLY task
EXECUTE DBMS_ADVISOR.SET_TASK_PARAMETER (:task_name, 'EVALUATION_ONLY', 'TRUE');

Step 6  Execute the task
EXECUTE DBMS_ADVISOR.EXECUTE_TASK(:task_name);

Step 7  View evaluation results
--See the number of recommendations and the status of the task.
SELECT rec_id, rank, benefit
FROM user_advisor_recommendations WHERE task_name = :task_name;

--See the actions for each recommendation.



Tuning Materialized Views for Fast Refresh and Query Rewrite

18-28 Oracle Database Performance Tuning Guide

SELECT rec_id, action_id, SUBSTR(command,1,30) AS command, attr1 AS name
FROM user_advisor_actions WHERE task_name = :task_name
ORDER BY rec_id, action_id;

Tuning Materialized Views for Fast Refresh and Query Rewrite
Several DBMS_MVIEW procedures can help you create materialized views that are 
optimized for fast refresh and query rewrite. The EXPLAIN_MVIEW procedure can tell 
you whether a materialized view is fast refreshable or eligible for general query 
rewrite. EXPLAIN_REWRITE tells you whether query rewrite will occur. However, neither 
procedure tells you how to achieve fast refresh or query rewrite.

To further facilitate the use of materialized views, the TUNE_MVIEW procedure shows 
you how to optimize your CREATE MATERIALIZED VIEW statement and to meet other 
requirements such as materialized view log and rewrite equivalence relationship for 
fast refresh and general query rewrite. TUNE_MVIEW analyzes and processes the CREATE 
MATERIALIZED VIEW statement and generates two sets of output results: one for the 
materialized view implementation and the other for undoing the CREATE MATERIALIZED 
VIEW operations. You can access the two sets of output results through views or the 
external script files created by SQL Access Advisor. These external script files are 
ready to execute to implement the materialized view.

With the TUNE_MVIEW procedure, you no longer require a detailed understanding of 
materialized views to create a materialized view in an application because the 
materialized view and its required components (such as a materialized view log) are 
created correctly through the procedure.

DBMS_ADVISOR.TUNE_MVIEW Procedure
This section discusses the following information:

■ TUNE_MVIEW Syntax and Operations

■ Accessing TUNE_MVIEW Output Results

TUNE_MVIEW Syntax and Operations
The syntax for TUNE_MVIEW is as follows:

DBMS_ADVISOR.TUNE_MVIEW (
  task_name IN OUT VARCHAR2, mv_create_stmt IN [CLOB | VARCHAR2])

The TUNE_MVIEW procedure takes two input parameters: task_name and 
mv_create_stmt. task_name is a user-provided task identifier used to access the output 
results. mv_create_stmt is a complete CREATE MATERIALIZED VIEW statement that is to 
be tuned. If the input CREATE MATERIALIZED VIEW statement does not have the clauses 
of REFRESH FAST or ENABLE QUERY REWRITE, or both, then TUNE_MVIEW uses the default 
clauses REFRESH FORCE and DISABLE QUERY REWRITE to tune the statement to be fast 
refreshable if possible or only complete refreshable otherwise.

The TUNE_MVIEW procedure handles a broad range of CREATE MATERIALIZED VIEW 
statements that can have arbitrary defining queries in them. The defining query could 
be a simple SELECT statement or a complex query with set operators or inline views. 
When the defining query of the materialized view contains the clause REFRESH FAST, 
TUNE_MVIEW analyzes the query and checks to see if it is fast refreshable. If it is fast 
refreshable, the procedure returns a message saying "the materialized view is optimal 

See Also: Oracle Database PL/SQL Packages and Types Reference for 
detailed information about the TUNE_MVIEW procedure



Tuning Materialized Views for Fast Refresh and Query Rewrite

SQL Access Advisor 18-29

and cannot be further tuned." Otherwise, the TUNE_MVIEW procedure starts the tuning 
work on the given statement.

The TUNE_MVIEW procedure can generate the output statements that correct the defining 
query by adding extra columns such as required aggregate columns or fix the 
materialized view logs so that FAST REFRESH is possible. In the case of a complex 
defining query, the TUNE_MVIEW procedure may decompose the query and generates 
two or more fast refreshable materialized views or restate the materialized view in a 
way to fulfill fast refresh requirements as much as possible. The TUNE_MVIEW procedure 
supports defining queries with the following complex query constructs:

■ Set operators (UNION, UNION ALL, MINUS, and INTERSECT)

■ COUNT DISTINCT

■ SELECT DISTINCT

■ Inline views

When the ENABLE QUERY REWRITE clause is specified, TUNE_MVIEW also fixes the 
statement using a process similar to REFRESH FAST. The procedure redefines the 
materialized view so that as many of the advanced forms of query rewrite are possible.

The TUNE_MVIEW procedure generates two sets of output results as executable 
statements. One set of the output (IMPLEMENTATION) is for implementing materialized 
views and required components such as materialized view logs or rewrite 
equivalences to achieve fast refreshability and query rewritablity as much as possible. 
The other set of the output (UNDO) is for dropping the materialized views and the 
rewrite equivalences in case you decide they are not required.

The output statements for the IMPLEMENTATION process include:

■ CREATE MATERIALIZED VIEW LOG statements: creates any missing materialized view 
logs required for fast refresh.

■ ALTER MATERIALIZED VIEW LOG FORCE statements: fixes any materialized view log 
related requirements such as missing filter columns, sequence, and so on, required 
for fast refresh.

■ One or more CREATE MATERIALIZED VIEW statements: In the case of one output 
statement, the original defining query is directly restated and transformed. Simple 
query transformation could be just adding required columns. For example, add 
rowid column for materialized join view and add aggregate column for 
materialized aggregate view. In the case of decomposition, multiple CREATE 
MATERIALIZED VIEW statements are generated and form a nested materialized view 
hierarchy in which one or more submaterialized views are referenced by a new 
top-level materialized view modified from the original statement. This is to 
achieve fast refresh and query rewrite as much as possible. Submaterialized views 
are often fast refreshable.

■ BUILD_SAFE_REWRITE_EQUIVALENCE statement: enables the rewrite of top-level 
materialized views using submaterialized views. It is required to enable query 
rewrite when a composition occurs.

Note that the decomposition result implies no sharing of submaterialized views. That 
is, in the case of decomposition, the TUNE_MVIEW output always contains new 
submaterialized view. It does not reference existing materialized views.

The output statements for the UNDO process include:

■ DROP MATERIALIZED VIEW statements to reverse the materialized view creations 
(including submaterialized views) in the IMPLEMENTATION process.



Tuning Materialized Views for Fast Refresh and Query Rewrite

18-30 Oracle Database Performance Tuning Guide

■ DROP_REWRITE_EQUIVALENCE statement to remove the rewrite equivalence 
relationship built in the IMPLEMENTATION process if needed.

Note that the UNDO process does not include the statement to drop materialized view 
logs. Many different materialized views can share materialized view logs. Some of 
these logs may reside on remote Oracle database instances.

Accessing TUNE_MVIEW Output Results
There are two ways to access TUNE_MVIEW output results:

■ Script generation using DBMS_ADVISOR.GET_TASK_SCRIPT function and 
DBMS_ADVISOR.CREATE_FILE procedure.

■ Use USER_TUNE_MVIEW or DBA_TUNE_MVIEW views.

USER_TUNE_MVIEW and DBA_TUNE_MVIEW Views  After executing TUNE_MVIEW, the results 
are output into SQL Access Advisor repository tables and are accessible through the 
data dictionary views USER_TUNE_MVIEW and DBA_TUNE_MVIEW. See Oracle Database 
Reference for further details.

Script Generation DBMS_ADVISOR Function and Procedure  The most straightforward 
method for generating the execution scripts for a recommendation is to use the 
procedure DBMS_ADVISOR.GET_TASK_SCRIPT. The following is a simple example. First, 
you must define a directory in which to store the results:

CREATE DIRECTORY TUNE_RESULTS AS  '/tmp/script_dir';
GRANT READ, WRITE ON DIRECTORY TUNE_RESULTS TO PUBLIC;

Now generate both the implementation and undo scripts and place them in 
/tmp/script_dir/mv_create.sql and /tmp/script_dir/mv_undo.sql, respectively.

EXECUTE DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT(:task_name),- 
      'TUNE_RESULTS', 'mv_create.sql'); 
EXECUTE DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT(:task_name, - 
      'UNDO'), 'TUNE_RESULTS', 'mv_undo.sql');

Now let us review some examples using the TUNE_MVIEW procedure.

Example 18–1 Optimizing the Defining Query for Fast Refresh

This example shows how TUNE_MVIEW changes the defining query to be fast 
refreshable. A CREATE MATERIALIZED VIEW statement is defined in variable 
create_mv_ddl, which includes a FAST REFRESH clause. Its defining query contains a 
single query block in which an aggregate column, SUM(s.amount_sold), does not have 
the required aggregate columns to support fast refresh. If you execute the TUNE_MVIEW 
statement with this MATERIALIZED VIEW CREATE statement, then the resulting 
materialized view recommendation is fast refreshable:

VARIABLE task_cust_mv VARCHAR2(30);
VARIABLE create_mv_ddl VARCHAR2(4000);
EXECUTE :task_cust_mv := 'cust_mv';

EXECUTE :create_mv_ddl := '
CREATE MATERIALIZED VIEW cust_mv
REFRESH FAST
DISABLE QUERY REWRITE AS
SELECT s.prod_id, s.cust_id, SUM(s.amount_sold) sum_amount
FROM sales s, customers cs
WHERE s.cust_id = cs.cust_id
GROUP BY s.prod_id, s.cust_id';



Tuning Materialized Views for Fast Refresh and Query Rewrite

SQL Access Advisor 18-31

EXECUTE DBMS_ADVISOR.TUNE_MVIEW(:task_cust_mv, :create_mv_ddl);

The original defining query of cust_mv has been modified by adding aggregate 
columns to be fast refreshable.

The output from TUNE_MVIEW includes an optimized materialized view defining query 
as follows:

CREATE MATERIALIZED VIEW SH.CUST_MV
REFRESH FAST WITH ROWID
DISABLE QUERY REWRITE AS
SELECT SH.SALES.PROD_ID C1, SH.CUSTOMERS.CUST_ID C2,
          SUM("SH"."SALES"."AMOUNT_SOLD") M1,
          COUNT("SH"."SALES"."AMOUNT_SOLD") M2,
          COUNT(*) M3
     FROM SH.SALES, SH.CUSTOMERS
     WHERE SH.CUSTOMERS.CUST_ID = SH.SALES.CUST_ID
     GROUP BY SH.SALES.PROD_ID, SH.CUSTOMERS.CUST_ID;

The UNDO output is as follows:

DROP MATERIALIZED VIEW SH.CUST_MV;

Example 18–2 Access IMPLEMENTATION Output Through USER_TUNE_MVIEW View

SELECT STATEMENT FROM USER_TUNE_MVIEW
WHERE TASK_NAME= :task_cust_mv AND SCRIPT_TYPE='IMPLEMENTATION';

Example 18–3 Save IMPLEMENTATION Output in a Script File

CREATE DIRECTORY TUNE_RESULTS AS '/myscript'
GRANT READ, WRITE ON DIRECTORY TUNE_RESULTS TO PUBLIC;

EXECUTE DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT(:task_cust_mv), -
   'TUNE_RESULTS', 'mv_create.sql');

Example 18–4 Enable Query Rewrite by Creating Multiple Materialized Views

This example decomposes a materialized view's defining query with set operators 
UNION, which is not supported by query rewrite, into several submaterialized views, 
making query rewrite possible. The input detail tables are sales, customers, and 
countries. These tables do not have materialized view logs.

First, you must execute the TUNE_MVIEW statement with the CREATE MATERIALIZED VIEW 
statement defined in the variable create_mv_ddl.

EXECUTE :task_cust_mv := 'cust_mv2';

EXECUTE :create_mv_ddl := '
CREATE MATERIALIZED VIEW cust_mv
ENABLE QUERY REWRITE AS
SELECT s.prod_id, s.cust_id, COUNT(*) cnt, SUM(s.amount_sold) sum_amount
FROM sales s, customers cs, countries cn
WHERE s.cust_id = cs.cust_id AND cs.country_id = cn.country_id
AND cn.country_name IN (''USA'',''Canada'')
GROUP BY s.prod_id, s.cust_id
UNION
SELECT s.prod_id, s.cust_id, COUNT(*) cnt, SUM(s.amount_sold) sum_amount
FROM sales s, customers cs
WHERE s.cust_id = cs.cust_id AND s.cust_id IN (1005,1010,1012)
GROUP BY s.prod_id, s.cust_id';



Tuning Materialized Views for Fast Refresh and Query Rewrite

18-32 Oracle Database Performance Tuning Guide

The materialized view defining query contains a UNION set operator that does not 
support general query rewrite. If it is decomposed into multiple materialized views, 
however, then query rewrite is possible. To support general query rewrite, the 
database decomposes the MATERIALIZED VIEW defining query.

EXECUTE DBMS_ADVISOR.TUNE_MVIEW(:task_cust_mv, :create_mv_ddl);

The following recommendation from TUNE_MVIEW contains the materialized view logs 
and multiple materialized view:

CREATE MATERIALIZED VIEW LOG ON "SH"."CUSTOMERS" 
WITH ROWID, SEQUENCE("CUST_ID")
    INCLUDING NEW VALUES;

ALTER MATERIALIZED VIEW LOG FORCE ON
    "SH"."CUSTOMERS"
    ADD ROWID, SEQUENCE("CUST_ID")
    INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON
    "SH"."SALES"
    WITH ROWID, SEQUENCE("PROD_ID","CUST_ID","AMOUNT_SOLD")
    INCLUDING NEW VALUES;

ALTER MATERIALIZED VIEW LOG FORCE ON
    "SH"."SALES"
    ADD ROWID, SEQUENCE("PROD_ID","CUST_ID","AMOUNT_SOLD")
    INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON
    "SH"."COUNTRIES"
    WITH ROWID, SEQUENCE("COUNTRY_ID","COUNTRY_NAME")
    INCLUDING NEW VALUES;

ALTER MATERIALIZED VIEW LOG FORCE ON
    "SH"."COUNTRIES"
    ADD ROWID, SEQUENCE("COUNTRY_ID","COUNTRY_NAME")
    INCLUDING NEW VALUES;

ALTER MATERIALIZED VIEW LOG FORCE ON
    "SH"."CUSTOMERS"
    ADD ROWID, SEQUENCE("CUST_ID","COUNTRY_ID")
    INCLUDING NEW VALUES;

ALTER MATERIALIZED VIEW LOG FORCE ON
    "SH"."SALES"
    ADD ROWID, SEQUENCE("PROD_ID","CUST_ID","AMOUNT_SOLD")
    INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW SH.CUST_MV$SUB1
    REFRESH FAST WITH ROWID ON COMMIT
    ENABLE QUERY REWRITE
    AS SELECT SH.SALES.PROD_ID C1, SH.CUSTOMERS.CUST_ID C2,
 SUM("SH"."SALES"."AMOUNT_SOLD")
        M1, COUNT("SH"."SALES"."AMOUNT_SOLD") M2, COUNT(*) M3 FROM SH.SALES,
        SH.CUSTOMERS WHERE SH.CUSTOMERS.CUST_ID = SH.SALES.CUST_ID AND
 (SH.SALES.CUST_ID IN (1012, 1010, 1005)) 
GROUP BY SH.SALES.PROD_ID, SH.CUSTOMERS.CUST_ID;

CREATE MATERIALIZED VIEW SH.CUST_MV$SUB2



Tuning Materialized Views for Fast Refresh and Query Rewrite

SQL Access Advisor 18-33

    REFRESH FAST WITH ROWID ON COMMIT
    ENABLE QUERY REWRITE
    AS SELECT SH.SALES.PROD_ID C1, SH.CUSTOMERS.CUST_ID C2,
      SH.COUNTRIES.COUNTRY_NAME  C3, SUM("SH"."SALES"."AMOUNT_SOLD") M1, 
COUNT("SH"."SALES".
"AMOUNT_SOLD")
        M2, COUNT(*) M3 FROM SH.SALES, SH.CUSTOMERS, SH.COUNTRIES WHERE
 SH.CUSTOMERS.CUST_ID
        = SH.SALES.CUST_ID AND SH.COUNTRIES.COUNTRY_ID = SH.CUSTOMERS.COUNTRY_ID
        AND (SH.COUNTRIES.COUNTRY_NAME IN ('USA', 'Canada')) GROUP BY
 SH.SALES.PROD_ID,
        SH.CUSTOMERS.CUST_ID, SH.COUNTRIES.COUNTRY_NAME;

CREATE MATERIALIZED VIEW SH.CUST_MV
    REFRESH FORCE WITH ROWID
    ENABLE QUERY REWRITE
    AS  (SELECT "CUST_MV$SUB2"."C1" "PROD_ID","CUST_MV$SUB2"."C2" 
"CUST_ID",SUM("CUST_MV$SUB2"."M3")
        "CNT",SUM("CUST_MV$SUB2"."M1") "SUM_AMOUNT" FROM "SH"."CUST_MV$SUB2"
        "CUST_MV$SUB2" GROUP BY "CUST_MV$SUB2"."C1","CUST_MV$SUB2"."C2")UNION
        (SELECT "CUST_MV$SUB1"."C1" "PROD_ID","CUST_MV$SUB1"."C2" 
"CUST_ID",SUM("CUST_MV$SUB1"."M3")
        "CNT",SUM("CUST_MV$SUB1"."M1") "SUM_AMOUNT" FROM "SH"."CUST_MV$SUB1"
        "CUST_MV$SUB1" GROUP BY "CUST_MV$SUB1"."C1","CUST_MV$SUB1"."C2");

BEGIN
DBMS_ADVANCED_REWRITE.BUILD_SAFE_REWRITE_EQUIVALENCE ('SH.CUST_MV$RWEQ',
  'SELECT s.prod_id, s.cust_id, COUNT(*) cnt,
          SUM(s.amount_sold) sum_amount
   FROM sales s, customers cs, countries cn
   WHERE s.cust_id = cs.cust_id AND cs.country_id = cn.country_id
         AND cn.country_name IN (''USA'',''Canada'')
   GROUP BY s.prod_id, s.cust_id
   UNION
   SELECT s.prod_id, s.cust_id, COUNT(*) cnt,
          SUM(s.amount_sold) sum_amount
   FROM sales s, customers cs
   WHERE s.cust_id = cs.cust_id AND s.cust_id IN (1005,1010,1012)
   GROUP BY s.prod_id, s.cust_id',
  '(SELECT "CUST_MV$SUB2"."C3" "PROD_ID","CUST_MV$SUB2"."C2" "CUST_ID",
           SUM("CUST_MV$SUB2"."M3") "CNT",
           SUM("CUST_MV$SUB2"."M1") "SUM_AMOUNT" 
    FROM "SH"."CUST_MV$SUB2" "CUST_MV$SUB2"
    GROUP BY "CUST_MV$SUB2"."C3","CUST_MV$SUB2"."C2")
   UNION
   (SELECT "CUST_MV$SUB1"."C2" "PROD_ID","CUST_MV$SUB1"."C1" "CUST_ID",
           "CUST_MV$SUB1"."M3" "CNT","CUST_MV$SUB1"."M1" "SUM_AMOUNT"
    FROM "SH"."CUST_MV$SUB1" "CUST_MV$SUB1")',-1553577441)
END;
/;

The DROP output is as follows:

DROP MATERIALIZED VIEW SH.CUST_MV$SUB1
DROP MATERIALIZED VIEW SH.CUST_MV$SUB2
DROP MATERIALIZED VIEW SH.CUST_MV
DBMS_ADVANCED_REWRITE.DROP_REWRITE_EQUIVALENCE('SH.CUST_MV$RWEQ')

The original defining query of cust_mv has been decomposed into two 
submaterialized views seen as cust_mv$SUB1 and cust_mv$SUB2. One additional 



Tuning Materialized Views for Fast Refresh and Query Rewrite

18-34 Oracle Database Performance Tuning Guide

column COUNT(amount_sold) has been added in cust_mv$SUB1 to make that 
materialized view fast refreshable.

The original defining query of cust_mv has been modified to query the two 
submaterialized views instead where both submaterialized views are fast refreshable 
and support general query rewrite.

The required materialized view logs are added to enable fast refresh of the 
submaterialized views. Note that, for each detail table, two materialized view log 
statements are generated: one is the CREATE MATERIALIZED VIEW statement and the 
other is an ALTER MATERIALIZED VIEW FORCE statement. The statements ensure that you 
can run the CREATE script multiple times.

The BUILD_SAFE_REWRITE_EQUIVALENCE statement is to connect the old defining query 
to the defining query of the new top-level materialized view. It ensures that query 
rewrite uses the new top-level materialized view to answer the query.

Example 18–5 Access IMPLEMENTATION Output Through USER_TUNE_MVIEW View

SELECT * FROM USER_TUNE_MVIEW
WHERE TASK_NAME='cust_mv2'
AND SCRIPT_TYPE='IMPLEMENTATION';

Example 18–6 Save IMPLEMENTATION Output in a Script File

The following statements save the IMPLEMENTATION output in a script file located at 
/myscript/mv_create2.sql:

CREATE DIRECTORY TUNE_RESULTS AS '/myscript'
GRANT READ, WRITE ON DIRECTRY TUNE_RESULTS TO PUBLIC;
EXECUTE DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT('cust_mv2'),
   'TUNE_RESULTS', 'mv_create2.sql');

Fast Refreshable with Optimized Sub-Materialized View
The example illustrates how TUNE_MVIEW can optimize the materialized view so that 
fast refresh is possible. In the example, the materialized view's defining query with set 
operators is transformed into one sub-materialized view and one top-level 
materialized view. The subselect queries in the original defining query are of similar 
shape and their predicate expressions are combined.

The materialized view defining query contains a UNION set-operator so that the 
materialized view itself is not fast-refreshable. However, you can combine two 
subselect queries in the materialized view defining query into one single query.

Example 18–7 Optimized Sub-Materialized View for Fast Refresh

EXECUTE :task_cust_mv := 'cust_mv3';
EXECUTE :create_mv_ddl := '

CREATE MATERIALIZED VIEW cust_mv
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT s.prod_id, s.cust_id, COUNT(*) cnt, SUM(s.amount_sold) sum_amount
FROM sales s, customers cs
WHERE s.cust_id = cs.cust_id AND s.cust_id IN (2005,1020)
GROUP BY s.prod_id, s.cust_id UNION
SELECT s.prod_id, s.cust_id, COUNT(*) cnt, SUM(s.amount_sold) sum_amount
FROM sales s, customers cs -
WHERE s.cust_id = cs.cust_id AND s.cust_id IN (1005,1010,1012)
GROUP BY s.prod_id, s.cust_id';



Tuning Materialized Views for Fast Refresh and Query Rewrite

SQL Access Advisor 18-35

EXECUTE DBMS_ADVISOR.TUNE_MVIEW(:task_cust_mv, :create_mv_ddl);

The following recommendation will be made by TUNE_MVIEW with an optimized 
submaterialized view combining the two subselect queries. The submaterialized view 
is referenced by a new top-level materialized view as follows:

CREATE MATERIALIZED VIEW LOG ON "SH"."SALES" 
  WITH ROWID, SEQUENCE ("PROD_ID","CUST_ID","AMOUNT_SOLD")
  INCLUDING NEW VALUES

ALTER MATERIALIZED VIEW LOG FORCE ON "SH"."SALES"
  ADD ROWID, SEQUENCE ("PROD_ID","CUST_ID","AMOUNT_SOLD")
  INCLUDING NEW VALUES

CREATE MATERIALIZED VIEW LOG ON "SH"."CUSTOMERS" 
  WITH ROWID, SEQUENCE ("CUST_ID")  INCLUDING NEW VALUES

ALTER MATERIALIZED VIEW LOG FORCE ON "SH"."CUSTOMERS"
  ADD ROWID, SEQUENCE ("CUST_ID")  INCLUDING NEW VALUES

CREATE MATERIALIZED VIEW SH.CUST_MV$SUB1
  REFRESH FAST WITH ROWID
  ENABLE QUERY REWRITE AS
  SELECT SH.SALES.CUST_ID C1, SH.SALES.PROD_ID C2, 
    SUM("SH"."SALES"."AMOUNT_SOLD") M1, 
    COUNT("SH"."SALES"."AMOUNT_SOLD")M2, COUNT(*) M3 
    FROM SH.CUSTOMERS, SH.SALES
    WHERE SH.SALES.CUST_ID = SH.CUSTOMERS.CUST_ID AND
    (SH.SALES.CUST_ID IN (2005, 1020, 1012, 1010, 1005))
    GROUP BY SH.SALES.CUST_ID, SH.SALES.PROD_ID

CREATE MATERIALIZED VIEW SH.CUST_MV 
  REFRESH FORCE WITH ROWID ENABLE QUERY REWRITE AS
  (SELECT "CUST_MV$SUB1"."C2" "PROD_ID","CUST_MV$SUB1"."C1" "CUST_ID",
    "CUST_MV$SUB1"."M3" "CNT","CUST_MV$SUB1"."M1" "SUM_AMOUNT" 
    FROM "SH"."CUST_MV$SUB1" "CUST_MV$SUB1" 
    WHERE "CUST_MV$SUB1"."C1"=2005 OR "CUST_MV$SUB1"."C1"=1020)
    UNION 
    (SELECT "CUST_MV$SUB1"."C2" "PROD_ID","CUST_MV$SUB1"."C1" "CUST_ID",
      "CUST_MV$SUB1"."M3" "CNT","CUST_MV$SUB1"."M1" "SUM_AMOUNT" 
      FROM "SH"."CUST_MV$SUB1" "CUST_MV$SUB1" 
      WHERE "CUST_MV$SUB1"."C1"=1012 OR "CUST_MV$SUB1"."C1"=1010 OR 
            "CUST_MV$SUB1"."C1"=1005)
      
DBMS_ADVANCED_REWRITE.BUILD_SAFE_REWRITE_EQUIVALENCE ('SH.CUST_MV$RWEQ',
      'SELECT s.prod_id, s.cust_id, COUNT(*) cnt, 
       SUM(s.amount_sold) sum_amount
       FROM sales s, customers cs
       WHERE s.cust_id = cs.cust_id AND s.cust_id IN (2005,1020)
       GROUP BY s.prod_id, s.cust_id UNION
       SELECT s.prod_id, s.cust_id, COUNT(*) cnt,
       SUM(s.amount_sold) sum_amount
       FROM sales s, customers cs
       WHERE s.cust_id = cs.cust_id AND s.cust_id IN (1005,1010,1012)
       GROUP BY s.prod_id, s.cust_id',
      '(SELECT "CUST_MV$SUB1"."C2" "PROD_ID",
        "CUST_MV$SUB1"."C1" "CUST_ID",
        "CUST_MV$SUB1"."M3" "CNT","CUST_MV$SUB1"."M1" "SUM_AMOUNT" 
        FROM "SH"."CUST_MV$SUB1" "CUST_MV$SUB1" 



Tuning Materialized Views for Fast Refresh and Query Rewrite

18-36 Oracle Database Performance Tuning Guide

        WHERE "CUST_MV$SUB1"."C1"=2005OR "CUST_MV$SUB1"."C1"=1020)
       UNION
       (SELECT "CUST_MV$SUB1"."C2" "PROD_ID",
        "CUST_MV$SUB1"."C1" "CUST_ID",
        "CUST_MV$SUB1"."M3" "CNT","CUST_MV$SUB1"."M1" "SUM_AMOUNT"
        FROM "SH"."CUST_MV$SUB1" "CUST_MV$SUB1" 
        WHERE "CUST_MV$SUB1"."C1"=1012 OR "CUST_MV$SUB1"."C1"=1010 OR
              "CUST_MV$SUB1"."C1"=1005)',
      1811223110);

The original defining query of cust_mv has been optimized by combining the predicate 
of the two subselect queries in the sub-materialized view CUST_MV$SUB1. The required 
materialized view logs are also added to enable fast refresh of the submaterialized 
views.

The DROP output is as follows:

DROP MATERIALIZED VIEW SH.CUST_MV$SUB1
DROP MATERIALIZED VIEW SH.CUST_MV
DBMS_ADVANCED_REWRITE.DROP_REWRITE_EQUIVALENCE('SH.CUST_MV$RWEQ');
The following statements save the IMPLEMENTATION output in a script file located at 
/myscript/mv_create3.sql:

CREATE DIRECTORY TUNE_RESULTS AS '/myscript'
GRANT READ, WRITE ON DIRECTORY TUNE_RESULTS TO PUBLIC;
EXECUTE DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT('cust_mv3'),
   'TUNE_RESULTS', 'mv_create3.sql');



19

Using Optimizer Hints 19-1

19Using Optimizer Hints 

You can use optimizer hints with SQL statements to alter execution plans. This chapter 
explains how to use hints to instruct the optimizer to use specific approaches. 

The chapter contains the following sections: 

■ Overview of Optimizer Hints

■ Specifying Hints

■ Using Hints with Views

Overview of Optimizer Hints
A hint is an instruction to the optimizer. When writing SQL, you may know 
information about the data unknown to the optimizer. Hints enable you to make 
decisions normally made by the optimizer, sometimes causing the optimizer to select a 
plan that it sees as higher cost.

In a test or development environments, hints are useful for testing the performance of 
a specific access path. For example, you may know that a certain index is more 
selective for certain queries. In this case, you may use hints to instruct the optimizer to 
use a better execution plan.

The disadvantage of hints is the extra code that must be managed, checked, and 
controlled. Changes in the database and host environment can make hints obsolete or 
even have negative consequences. For this reason, test by means of hints, but use other 
techniques to manage the SQL execution plans, such as SQL Tuning advisor and SQL 
Plan Baselines.

Oracle Database supports more than 60 hints, each of which may have zero or more 
parameters. A statement block can have only one comment containing hints, and that 
comment must follow the SELECT, UPDATE, INSERT, MERGE, or DELETE keyword. For 
example, the following hint directs the optimizer to pick the query plan that produces 
the first 10 rows from the employees table at the lowest cost:

SELECT /*+ FIRST_ROWS(10) */ * FROM employees;

Types of Hints
Hints can be of the following general types:

■ Single-table

See Also: Oracle Database SQL Language Reference to a complete list of 
hints supported by Oracle Database



Overview of Optimizer Hints

19-2 Oracle Database Performance Tuning Guide

Single-table hints are specified on one table or view. INDEX and USE_NL are 
examples of single-table hints.

■ Multi-table

Multi-table hints are like single-table hints, except that the hint can specify one or 
more tables or views. LEADING is an example of a multi-table hint. Note that 
USE_NL(table1 table2) is not considered a multi-table hint because it is a 
shortcut for USE_NL(table1) and USE_NL(table2).

■ Query block

Query block hints operate on single query blocks. STAR_TRANSFORMATION and 
UNNEST are examples of query block hints. 

■ Statement

Statement hints apply to the entire SQL statement. ALL_ROWS is an example of a 
statement hint.

Hints by Category
Optimizer hints are grouped into the following categories:

■ Hints for Optimization Approaches and Goals

■ Hints for Enabling Optimizer Features

■ Hints for Access Paths

■ Hints for Join Orders

■ Hints for Join Operations

■ Hints for Online Application Upgrade

■ Hints for Parallel Execution

■ Hints for Query Transformations

■ Additional Hints

These categories, and the hints contained within each category, are listed in the 
sections that follow.

Hints for Optimization Approaches and Goals
The ALL_ROWS and FIRST_ROWS(n) hints let you choose between optimization 
approaches and goals. If a SQL statement has a hint specifying an optimization 
approach and goal, then the optimizer uses the specified approach regardless of the 
presence or absence of statistics, the value of the OPTIMIZER_MODE initialization 
parameter, and the OPTIMIZER_MODE parameter of the ALTER SESSION statement.

If you specify either the ALL_ROWS or the FIRST_ROWS(n) hint in a SQL statement, and if 
the data dictionary does not have statistics about tables accessed by the statement, 

See Also: Oracle Database SQL Language Reference for syntax and a 
more detailed description of each hint

Note: The optimizer goal applies only to queries submitted 
directly. Use hints to specify the access path for any SQL statements 
submitted from within PL/SQL. The ALTER SESSION ... SET 
OPTIMIZER_MODE statement does not affect SQL run within PL/SQL.



Overview of Optimizer Hints

Using Optimizer Hints 19-3

then the optimizer uses default statistical values, such as allocated storage for such 
tables, to estimate the missing statistics and choose an execution plan. These estimates 
might not be as accurate as those gathered by the DBMS_STATS package, so use 
DBMS_STATS to gather statistics. 

If you specify hints for access paths or join operations along with either the ALL_ROWS 
or FIRST_ROWS(n) hint, then the optimizer gives precedence to the access paths and join 
operations specified by the hints.

Hints for Enabling Optimizer Features
The OPTIMIZER_FEATURES_ENABLE hint acts as an umbrella parameter for enabling a 
series of optimizer features based on an Oracle Database release number. This hint is a 
useful way to check for plan regressions after database upgrades.

Specify the release number as an argument to the hint. The following example runs a 
query with the optimizer features from Oracle Database 11g Release 1 (11.1.0.6):

SELECT /*+ optimizer_features_enable('11.1.0.6') */ employee_id, last_name
FROM    employees
ORDER BY employee_id;

Hints for Access Paths
The following hints instructs the optimizer to use a specific access path for a table:

■ FULL

■ CLUSTER

■ HASH

■ INDEX and NO_INDEX

■ INDEX_ASC and INDEX_DESC

■ INDEX_COMBINE and INDEX_JOIN

■ INDEX_JOIN

■ INDEX_FFS and NO_INDEX_FFS

■ INDEX_SS and NO_INDEX_SS

■ INDEX_SS_ASC and INDEX_SS_DESC

Specifying one of the preceding hints causes the optimizer to choose the specified 
access path only if the access path is available based on the existence of an index or 
cluster and on the syntactic constructs of the SQL statement. If a hint specifies an 
unavailable access path, then the optimizer ignores it. 

You must specify the table to be accessed exactly as it appears in the statement. If the 
statement uses an alias for the table, then use the alias rather than the table name in 
the hint. The table name within the hint should not include the schema name if the 
schema name is present in the statement.

See Also: "Optimization Approaches and Goal Hints in Views" on 
page 19-13 for hint behavior with mergeable views

See Also: Oracle Database Reference to learn about the 
OPTIMIZER_FEATURES_ENABLE initialization parameter 



Overview of Optimizer Hints

19-4 Oracle Database Performance Tuning Guide

Hints for Join Orders
The following hints suggest join orders: 

■ LEADING

■ ORDERED

Hints for Join Operations
The following hints instructs the optimizer to use a specific join operation for a table:

■ USE_NL and NO_USE_NL

■ USE_NL_WITH_INDEX

■ USE_MERGE and NO_USE_MERGE

■ USE_HASH and NO_USE_HASH

■ NO_USE_HASH

Use of the USE_NL and USE_MERGE hints is recommended with any join order hint. See 
"Hints for Join Orders" on page 19-4. Oracle Database uses these hints when the 
referenced table is forced to be the inner table of a join; the hints are ignored if the 
referenced table is the outer table.

See "Access Path and Join Hints on Views" on page 19-13 and "Access Path and Join 
Hints Inside Views" on page 19-13 for hint behavior with mergeable views.

Hints for Online Application Upgrade
The online application upgrade hints suggest how to handle conflicting INSERT and 
UPDATE operations when performing an online application upgrade using 
edition-based redefinition:

■ CHANGE_DUPKEY_ERROR_INDEX

■ IGNORE_ROW_ON_DUPKEY_INDEX

■ RETRY_ON_ROW_CHANGE

You can use the CHANGE_DUPKEY_ERROR_INDEX and IGNORE_ROW_ON_DUPKEY_INDEX hints 
to handle conflicting INSERT operations during an online application upgrade. You can 
use the CHANGE_DUPKEY_ERROR_INDEX hint to identify unique key violations for a 
specified set of columns or index. When a unique key violation is encountered during 
an INSERT or UPDATE operation, an ORA-38911 error is reported instead of an ORA-001. 
You can use the IGNORE_ROW_ON_DUPKEY_INDEX hint to ignore unique key violations for 
a specified set of columns or index. When a unique key violation is encountered 

Note: For access path hints, Oracle Database ignores the hint if 
you specify the SAMPLE option in the FROM clause of a SELECT 
statement.

See Also: 

■ "Access Path and Join Hints on Views" on page 19-13 and 
"Access Path and Join Hints Inside Views" on page 19-13 for 
hint behavior with mergeable views

■ Oracle Database SQL Language Reference for more information on 
the SAMPLE option



Overview of Optimizer Hints

Using Optimizer Hints 19-5

during a single-table INSERT operation, a row-level rollback occurs and execution 
resumes with the next input row. Therefore, a unique key violation does not cause the 
INSERT to terminate or an error to be reported.

You can use the RETRY_ON_ROW_CHANGE hint to handle conflicting UPDATE operations 
during an online application upgrade. You can use this hint to retry an UPDATE or 
DELETE operation if one or more rows changed from the time when the set of rows to 
be modified was determined to the time when the set of rows was actually modified.

Hints for Parallel Execution
The parallel execution hints instruct the optimizer about whether and how to 
parallelize operations. You can use the following parallel hints:

■ PARALLEL and NO_PARALLEL

■ PARALLEL_INDEX and NO_PARALLEL_INDEX

■ PQ_DISTRIBUTE

The following sections group the hints into functional categories.

Hints Controlling the Degree of Parallelism  Hints beginning with the keyword PARALLEL 
indicate the degree of parallelism for the query. Hints beginning with NO_PARALLEL 
disable parallelism. 

You can specify parallelism at the statement or object level. If you do not explicitly 
specify an object in the hint, then parallelism occurs at the statement level. In contrast 
to most hints, parallel statement-level hints take precedence over object-level hints.

To illustrate the difference between object-level and statement-level parallelism 
settings, suppose that you perform the following steps:

1. You set the parallelism setting on the employees table to 2 and disable parallelism 
on the departments table as follows:

ALTER TABLE employees PARALLEL 2;
ALTER TABLE departments NOPARALLEL;

2. You execute the following SELECT statement:

SELECT /*+ PARALLEL(employees 3) */ e.last_name, d.department_name
FROM   employees e, departments d
WHERE  e.department_id=d.department_id;

See Also: Oracle Database Advanced Application Developer's Guide for 
more information about performing an online application upgrade 
using edition-based redefinition

See Also: 

■ Oracle Database VLDB and Partitioning Guide to learn how to use 
parallel execution

■ Oracle Database 2 Day + Data Warehousing Guide for more 
information on parallel execution

Note: You can perform conventional inserts in parallel mode using 
the /*+ NOAPPEND PARALLEL */ hint.



Overview of Optimizer Hints

19-6 Oracle Database Performance Tuning Guide

The PARALLEL hint for employees overrides the degree of parallelism of 2 for this 
table specified in Step 1.

In the explain plan in Example 19–1, the IN-OUT column shows PCWP for parallel 
access of employees and S for serial access of departments. Access to departments 
is serialized because a NOPARALLEL setting was applied to this table in Step 1.

Example 19–1 Explain Plan for Query with /*+ PARALLEL(employees 3) */ Hint

----------------------------------------------------------------------------------------------------------------
| Id | Operation               | Name        | Rows | Bytes | Cost (%CPU)| Time     |    TQ  |IN-OUT| PQ Distrib 
----------------------------------------------------------------------------------------------------------------
|  0 | SELECT STATEMENT        |             |   14 |   588 |     5  (20)| 00:00:01 |        |      |          |
|  1 |  PX COORDINATOR         |             |      |       |            |          |        |      |          |
|  2 |   PX SEND QC (RANDOM)   | :TQ10001    |   14 |   588 |     5  (20)| 00:00:01 |  Q1,01 | P->S | QC (RAND)|
|* 3 |    HASH JOIN            |             |   14 |   588 |     5  (20)| 00:00:01 |  Q1,01 | PCWP |          |
|  4 |     BUFFER SORT         |             |      |       |            |          |  Q1,01 | PCWC |          |
|  5 |      PX RECEIVE         |             |    4 |    88 |     2   (0)| 00:00:01 |  Q1,01 | PCWP |          |
|  6 |       PX SEND BROADCAST | :TQ10000    |    4 |    88 |     2   (0)| 00:00:01 |        | S->P | BROADCAST|
|  7 |        TABLE ACCESS FULL| DEPARTMENTS |    4 |    88 |     2   (0)| 00:00:01 |        |      |          |
|  8 |     PX BLOCK ITERATOR   |             |   14 |   280 |     2   (0)| 00:00:01 |  Q1,01 | PCWC |          |
|  9 |      TABLE ACCESS FULL  | EMPLOYEES   |   14 |   280 |     2   (0)| 00:00:01 |  Q1,01 | PCWP |          |
----------------------------------------------------------------------------------------------------------------

3. You execute the following SELECT statement:

SELECT /*+ PARALLEL(4) */ hr_emp.last_name, d.department_name
FROM   employees hr_emp, departments d
WHERE  hr_emp.department_id=d.department_id;

Because no schema object is specified in the PARALLEL hint, the scope of the hint is 
the statement, not an object. This statement forces the query of the employees and 
departments tables to execute with a degree of parallelism of 4, overriding the 
parallelism setting defined on the tables. 

Hints Controlling the Distribution Method for Joins   The PQ_DISTRIBUTE hint controls the 
distribution method for a specified join operation. The basic syntax is as follows, 
where distribution is the distribution method to use between the producer and the 
consumer slaves for the left and the right side of the join: 

/*+ PQ_DISTRIBUTE(tablespec, distribution) */

For example, in a HASH,HASH distribution the rows of each table are mapped to 
consumer query servers, using a hash function on the join keys. When mapping is 
complete, each query server performs the join between a pair of resulting partitions. 
This distribution is recommended when the tables are comparable in size and the join 
operation is implemented by hash join or sort merge join. The following query 
contains a hint to use hash distribution:

SELECT /*+ORDERED PQ_DISTRIBUTE(departments HASH, HASH) USE_HASH (departments)*/
       e.employee_id, d.department_name
FROM   employees e, departments d
WHERE  e.department_id=d.department_id;

Hints Controlling the Distribution Method for Loads  The PQ_DISTRIBUTE hint applies to 
parallel INSERT ... SELECT and parallel CREATE TABLE AS SELECT statements to 
specify how rows should be distributed between the producer (query) and the 
consumer (load) slaves.

See Also: Oracle Database SQL Language Reference for valid syntax 
and semantics for the PQ_DISTRIBUTE hint 



Overview of Optimizer Hints

Using Optimizer Hints 19-7

For example, a PARTITION distribution use the partitioning information of the table 
being loaded to distribute rows from the query slaves to the load slaves. Use this 
method when the following conditions are met: 

■ It is not possible or desirable to combine the query and load operations into each 
slave.

■ The number of partitions being loaded is greater than or equal to the number of 
load slaves.

■ The input data is evenly distributed across the partitions being loaded.

The following sample statement creates a table and specifies the PARTITION 
distribution method:

CREATE /*+ PQ_DISTRIBUTE(lineitem, PARTITION) */ TABLE lineitem
  NOLOGGING PARALLEL 16
  PARTITION BY HASH (l_orderkey) PARTITIONS 512
  AS SELECT * FROM lineitemxt; 

In contrast, a NONE distribution combines the query and load operation into each slave. 
Thus, all slaves load all partitions. Use this distribution to avoid the overhead of 
distribution of rows when there is no skew. The following sample SQL statement 
specifies a distribution of NONE for an insert into the lineitem table:

INSERT /*+ APPEND PARALLEL(LINEITEM, 16) PQ_DISTRIBUTE(LINEITEM, NONE) */
  INTO lineitem
  (SELECT * FROM lineitemxt);

Hints for Query Transformations
Each of the following hints instructs the optimizer to use a specific SQL query 
transformation: 

■ NO_QUERY_TRANSFORMATION

■ USE_CONCAT

■ NO_EXPAND

■ REWRITE and NO_REWRITE

■ MERGE and NO_MERGE

■ STAR_TRANSFORMATION and NO_STAR_TRANSFORMATION

■ FACT and NO_FACT

■ UNNEST and NO_UNNEST

Additional Hints
The following are several additional hints:

■ APPEND, APPEND_VALUES, and NOAPPEND

■ CACHE and NOCACHE

■ PUSH_PRED and NO_PUSH_PRED

■ PUSH_SUBQ and NO_PUSH_SUBQ

■ QB_NAME

■ CURSOR_SHARING_EXACT

■ DRIVING_SITE



Specifying Hints

19-8 Oracle Database Performance Tuning Guide

■ DYNAMIC_SAMPLING

■ MODEL_MIN_ANALYSIS

Specifying Hints
Hints apply only to the optimization of the block of a statement in which they appear. 
A statement block is any one of the following statements or parts of statements:

■ A simple SELECT, UPDATE, or DELETE statement

■ A parent statement or subquery of a complex statement

■ A part of a compound query

For example, a compound query consisting of two component queries combined by 
the UNION operator has two blocks, one for each component query. For this reason, 
hints in the first component query apply only to its optimization, not to the 
optimization of the second component query.

The following sections discuss the use of hints in more detail.

Specifying a Full Set of Hints
When using hints, in some cases, you might need to specify a full set of hints to ensure 
the optimal execution plan. For example, if you have a very complex query, which 
consists of many table joins, and if you specify only the INDEX hint for a given table, 
then the optimizer must determine the remaining access paths to be used, and the 
corresponding join methods. Therefore, even though you gave the INDEX hint, the 
optimizer might not necessarily use that hint, because the optimizer might have 
determined that the requested index cannot be used due to the join methods and 
access paths selected by the optimizer. 

In Example 19–2, the LEADING hint specifies the exact join order. The join methods are 
also specified.

Example 19–2 Specifying a Full Set of Hints

SELECT /*+ LEADING(e2 e1) USE_NL(e1) INDEX(e1 emp_emp_id_pk) 
           USE_MERGE(j) FULL(j) */
    e1.first_name, e1.last_name, j.job_id, sum(e2.salary) total_sal
  FROM employees e1, employees e2, job_history j
  WHERE e1.employee_id = e2.manager_id
    AND e1.employee_id = j.employee_id
    AND e1.hire_date = j.start_date
  GROUP BY e1.first_name, e1.last_name, j.job_id
  ORDER BY total_sal;

Specifying a Query Block in a Hint
To identify a query block in a query, you can use an optional query block name in a 
hint to specify the block to which the hint applies. The syntax of the query block 
argument is of the form @queryblock, where queryblock is an identifier that specifies a 
block in the query. The queryblock identifier can either be system-generated or 
user-specified.

Note the following guidelines:

■ You can obtain the system-generated identifier by using EXPLAIN PLAN for the 
query. You can determine pre-transformation query block names by running 
EXPLAIN PLAN for the query using the NO_QUERY_TRANSFORMATION hint. 



Specifying Hints

Using Optimizer Hints 19-9

■ You can set the user-specified name with the QB_NAME hint.

Assumptions
This tutorial assumes the following:

■ You intend to create a join view of employees and job_history that contains a 
nested query block.

■ You want to query all rows in the view, but apply the NO_UNNEST hint to the query 
block only.

To apply the NO_UNNEST hint to the query block:

1. Start SQL*Plus and log in as user hr.

2. Create the view.

For example, run the following statement:

CREATE OR REPLACE VIEW v_emp_job_history AS
  SELECT e1.first_name, e1.last_name, j.job_id, sum(e2.salary) total_sal
  FROM   employees e1, (SELECT * FROM employees e3) e2, job_history j
  WHERE  e1.employee_id = e2.manager_id
  AND    e1.employee_id = j.employee_id
  AND    e1.hire_date = j.start_date
  AND    e1.salary = ( SELECT max(e2.salary) 
                       FROM employees e2 
                       WHERE e2.department_id = e1.department_id ) 
  GROUP BY e1.first_name, e1.last_name, j.job_id
  ORDER BY total_sal;

3. Explain the plan for a query of v_emp_job_history.

For example, run the following SQL statement:

EXPLAIN PLAN FOR SELECT * FROM v_emp_job_history; 

4. Query the plan table.

For example, run the following SQL statement:

SELECT PLAN_TABLE_OUTPUT 
FROM   TABLE(DBMS_XPLAN.DISPLAY(NULL, NULL, 'ALL'));

The database displays the plan.

5. In the query plan output, obtain the operation ID associated with the query block, 
and then use the ID to find the query block name.

For example, the following plan shows that the full scan of the employees table 
occurs in operation 11, which corresponds to query block @SEL$4:

------------------------------------------------------------------------------
|Id| Operation                        |Name        |Rows|Bytes|Cost |Time
------------------------------------------------------------------------------
|0 | SELECT STATEMENT                 |            |1   |46   |9(34)|00:00:01|
.
.
.
|11|          TABLE ACCESS FULL       | EMPLOYEES  |107 |749  |3(0) |00:00:01|
.
.
.
-------------------------------------------------------------------------------



Specifying Hints

19-10 Oracle Database Performance Tuning Guide

Query Block Name / Object Alias (identified by operation id):
-------------------------------------------------------------
 
   1 - SEL$2980E977 / V_EMP_JOB_HISTORY@SEL$1
   2 - SEL$2980E977
   8 - SEL$8F9407EC / VW_SQ_1@SEL$32F848CB
   9 - SEL$8F9407EC
  11 - SEL$8F9407EC / E2@SEL$4

6. Query the view using the NO_UNNEST hint.

For example, run the following SQL statement to apply the NO_UNNEST hint to 
query block @SEL$4 (sample output included):

SQL> SELECT /*+ NO_UNNEST( @SEL$4 ) */ * FROM v_emp_job_history;

FIRST_NAME           LAST_NAME                 JOB_ID      TOTAL_SAL
-------------------- ------------------------- ---------- ----------
Michael              Hartstein                 MK_REP           6000

Specifying Global Table Hints
Hints that specify a table typically refer to tables in the DELETE, SELECT, or UPDATE 
query block in which the hint occurs, not to tables inside any views referenced by the 
statement. When you want to specify hints for tables that appear inside views, Oracle 
recommends using global hints instead of embedding the hint in the view. You can 
transform the table hints described in this chapter into a global hint by using an 
extended tablespec syntax that includes view names with the table name. 

In addition, an optional query block name can precede the tablespec syntax. See 
"Specifying a Query Block in a Hint" on page 19-8.

Hints that specify a table use the following syntax, where view specifies a view name 
and table specifies the name or alias of the table:

tablespec::= 

If the view path is specified, then the database resolves the hint from left to right, 
where the first view must be present in the FROM clause, and each subsequent view 
must be specified in the FROM clause of the preceding view.

Example 19–3 creates a view v to return the first and last name of the employee, his or 
her first job, and the total salary of all direct reports of that employee for each 
employee with the highest salary in his or her department. When querying the data, 
you want to force the use of the index emp_job_ix for the table e3 in view e2.

Note: The view_name.table_name notation for global hints does not 
work for queries using ANSI join syntax because the optimizer 
generates additional views during parsing. When using ANSI join 
syntax, specify the query block name in the hint instead of the 
view_name.table_name notation.

view .
table



Specifying Hints

Using Optimizer Hints 19-11

Example 19–3 Using Global Hints Example

CREATE OR REPLACE VIEW v AS
  SELECT e1.first_name, e1.last_name, j.job_id, sum(e2.salary) total_sal
  FROM   employees e1, ( SELECT * FROM employees e3) e2, job_history j
  WHERE e1.employee_id = e2.manager_id
  AND e1.employee_id = j.employee_id
  AND e1.hire_date = j.start_date
  AND e1.salary = ( SELECT max(e2.salary) FROM employees e2
                    WHERE e2.department_id = e1.department_id )
  GROUP BY e1.first_name, e1.last_name, j.job_id
  ORDER BY total_sal;

By using the global hint structure, you can avoid the modification of view v with the 
specification of the index hint in the body of view e2. To force the use of the index 
emp_job_ix for the table e3, you can use one of the following statements:

SELECT /*+ INDEX(v.e2.e3 emp_job_ix) */  * FROM v;

SELECT /*+ INDEX(@SEL$2 e2.e3 emp_job_ix) */ * FROM v;

SELECT /*+ INDEX(@SEL$3 e3 emp_job_ix) */ * FROM v;

Example 19–4 Using Global Hints with NO_MERGE

The global hint syntax also applies to unmergeable views as in Example 19–4. 

CREATE OR REPLACE VIEW v1 AS
  SELECT *
    FROM employees
    WHERE employee_id < 150;

CREATE OR REPLACE VIEW v2 AS
  SELECT v1.employee_id employee_id, departments.department_id department_id
    FROM v1, departments
    WHERE v1.department_id = departments.department_id;

SELECT /*+ NO_MERGE(v2) INDEX(v2.v1.employees emp_emp_id_pk)
                        FULL(v2.departments) */ *
  FROM v2
  WHERE department_id = 30;

The hints cause v2 not to be merged and specify access path hints for the employee 
and department tables. These hints are pushed down into the (nonmerged) view v2.

Note: Oracle Database ignores global hints that refer to multiple 
query blocks. For example, the LEADING hint is ignored in the 
following query because it uses the dot notation to the main query 
block containing table a and view query block v:

SELECT /*+ LEADING(v.b a v.c) */ *
FROM a, v
WHERE a.id = v.id;

To avoid this issue, Oracle recommends that you specify a query block 
in the hint using the @SEL notation:

SELECT /*+ LEADING(A@SEL$1 B@SEL$2 C@SEL$2) */
FROM a a, v v
WHERE a.id = v.id;



Using Hints with Views

19-12 Oracle Database Performance Tuning Guide

Specifying Complex Index Hints
Hints that specify an index can use either a simple index name or a parenthesized list 
of columns as follows:

indexspec::= 

The semantics are as follows:

■ table specifies the name

■ column specifies the name of a column in the specified table

– The columns can optionally be prefixed with table qualifiers allowing the hint 
to specify bitmap join indexes where the index columns are on a different table 
than the indexed table. If tables qualifiers are present, then they must be base 
tables, not aliases in the query. 

– Each column in an index specification must be a base column in the specified 
table, not an expression. Function-based indexes cannot be hinted using a 
column specification unless the columns specified in the index specification 
form the prefix of a function-based index.

■ index specifies an index name

When tablespec is followed by indexspec in the specification of a hint, a comma 
separating the table name and index name is permitted but not required. Commas 
are also permitted, but not required, to separate multiple occurrences of 
indexspec.

The hint is resolved as follows:

■ If an index name is specified, then the database only considered the specified 
index. 

■ If a column list is specified, and if an index exists whose columns match the 
specified columns in number and order, then the database only consider this 
index. If no such index exists, then any index on the table with the specified 
columns as the prefix in the order specified is considered. In either case, the 
behavior is exactly as if the user had specified the same hint individually on all the 
matching indexes. 

For example, in Example 19–3 the job_history table has a single-column index on the 
employee_id column and a concatenated index on employee_id and start_date 
columns. To specifically instruct the optimizer on index use, you can hint the query as 
follows:

SELECT /*+ INDEX(v.j jhist_employee_ix (employee_id start_date)) */ * FROM v;

Using Hints with Views
Oracle does not encourage hints inside or on views (or subqueries) because you can 
define views in one context and use them in another. Also, such hints can result in 

See Also: "Using Hints with Views" on page 19-12

index

(
table .

column )



Using Hints with Views

Using Optimizer Hints 19-13

unexpected execution plans. In particular, hints inside views or on views are handled 
differently, depending on whether the view is mergeable into the top-level query.

To specify a hint for a table in a view or subquery, the global hint syntax is preferable. 
See "Specifying Global Table Hints" on page 19-10.

If you decide to use hints with views, then the following sections describe the 
behavior.

Hints and Complex Views
By default, hints do not propagate inside a complex view. For example, if you specify a 
hint in a query that selects against a complex view, then this hint is not honored, 
because it is not pushed inside the view.

Unless the hints are inside the base view, they might not be honored from a query 
against the view.

Hints and Mergeable Views
A mergeable view is a view that Oracle Database can replace with the query that 
defines the view. For example, suppose you create a view as follows:

CREATE OR REPLACE VIEW emp_view AS 
  SELECT last_name, department_name FROM employees e, departments d
  WHERE e.department_id=d.department_id;

This view is mergeable because the database can optimize the following query to use 
the SELECT statement that defines the view, avoiding use of the view itself. 

SELECT * FROM emp_view;

Optimization Approaches and Goal Hints in Views
Optimization approach and goal hints can occur in a top-level query or inside views. 

■ If such a hint exists in the top-level query, then the database uses this hint 
regardless of any such hints inside the views. 

■ If there is no top-level optimizer mode hint, then the database uses mode hints in 
referenced views as long as all mode hints in the views are consistent. 

■ If two or more mode hints in the referenced views conflict, then the database 
discards all mode hints in the views and uses the session mode, whether default or 
user-specified.

Access Path and Join Hints on Views
Access path and join hints on referenced views are ignored unless the view contains a 
single table or references an Additional Hints view with a single table. For such 
single-table views, an access path hint or a join hint on the view applies to the table 
inside the view. 

Access Path and Join Hints Inside Views
Access path and join hints can appear in a view definition. 

Note: If the view is on a single table, then the hint is propagated. 



Using Hints with Views

19-14 Oracle Database Performance Tuning Guide

■ If the view is an inline view (that is, if it appears in the FROM clause of a SELECT 
statement), then all access path and join hints inside the view are preserved when 
the view is merged with the top-level query. 

■ For views that are non-inline views, access path and join hints in the view are 
preserved only if the referencing query references no other tables or views (that is, 
if the FROM clause of the SELECT statement contains only the view).

Hints and Nonmergeable Views
With nonmergeable views, optimization approach and goal hints inside the view are 
ignored; the top-level query decides the optimization mode. 

Because nonmergeable views are optimized separately from the top-level query, access 
path and join hints inside the view are preserved. For the same reason, access path 
hints on the view in the top-level query are ignored. 

However, join hints on the view in the top-level query are preserved because, in this 
case, a nonmergeable view is similar to a table.



20

Using Plan Stability 20-1

20Using Plan Stability

This chapter describes how to use plan stability to preserve performance 
characteristics. Plan stability also facilitates migration from the rule-based optimizer to 
the query optimizer when you upgrade to a new Oracle Database release.

This chapter contains the following topics:

■ Using Plan Stability to Preserve Execution Plans

■ Using Plan Stability with Query Optimizer Upgrades

Using Plan Stability to Preserve Execution Plans
Plan stability prevents certain database environment changes from affecting the 
performance characteristics of applications. Such changes include changes in 
optimizer statistics, changes to the optimizer mode settings, and changes to 
parameters affecting the sizes of memory structures, such as SORT_AREA_SIZE and 
BITMAP_MERGE_AREA_SIZE. Plan stability is most useful when you cannot risk any 
performance changes in an application. 

Note: Stored outlines will be desupported in a future release in favor 
of SQL plan management. In Oracle Database 11g, stored outlines 
continue to function as in past releases. However, Oracle strongly 
recommends that you use SQL plan management for new 
applications. SQL plan management creates SQL plan baselines, 
which offer superior SQL performance and stability compared with 
stored outlines.

If you have existing stored outlines, then consider migrating them to 
SQL plan baselines by following the steps in "Migrating Stored 
Outlines to SQL Plan Baselines" on page 15-12. When the migration is 
complete, disable or remove the stored outlines.

See Also: 

■ Chapter 15, "Using SQL Plan Management" for information about 
SQL plan management

■ Oracle Database PL/SQL Packages and Types Reference for 
information about the DBMS_SPM package

■ Oracle Database Licensing Information to determine whether your 
database edition includes SQL Plan Management



Using Plan Stability to Preserve Execution Plans

20-2 Oracle Database Performance Tuning Guide

Plan stability preserves execution plans in stored outlines. An outline is implemented 
as a set of optimizer hints that are associated with the SQL statement. If the use of the 
outline is enabled for the statement, then Oracle Database automatically considers the 
stored hints and tries to generate an execution plan in accordance with those hints. 

Oracle Database can create a public or private stored outline for one or all SQL 
statements. The optimizer then generates equivalent execution plans from the outlines 
when you enable the use of stored outlines. You can group outlines into categories and 
control which category of outlines Oracle Database uses to simplify outline 
administration and deployment. 

The plans that Oracle Database maintains in stored outlines remain consistent despite 
changes to a system's configuration or statistics. Using stored outlines also stabilizes 
the generated execution plan if the optimizer changes in subsequent Oracle Database 
releases.

Using Hints with Plan Stability
The degree to which plan stability controls execution plans is dictated by how much 
the Oracle Database hint mechanism controls execution plans, because Oracle 
Database uses hints to record stored plans. 

There is a one-to-one correspondence between SQL text and its stored outline. If you 
specify a different literal in a predicate, then a different outline applies. To avoid this 
situation, replace literals in applications with bind variables. 

Plan stability relies on preserving execution plans at a point in time when performance 
is satisfactory. In many environments, however, attributes for data types such as dates 
or order numbers can change rapidly. In these cases, permanent use of an execution 
plan can result in performance degradation over time as the data characteristics 
change. 

This implies that techniques that rely on preserving plans in dynamic environments 
are somewhat contrary to the purpose of using query optimization. Query 
optimization attempts to produce execution plans based on statistics that accurately 
reflect the state of the data. Thus, you must balance the need to control plan stability 
with the benefit obtained from the optimizer's ability to adjust to changes in data 
characteristics. 

How Outlines Use Hints 
An outline consists primarily of a set of hints that is equivalent to the optimizer's 
results for the execution plan generation of a particular SQL statement. When Oracle 
Database creates an outline, plan stability examines the optimization results using the 

Note: If you develop applications for mass distribution, then you 
can use stored outlines to ensure that all customers access the same 
execution plans.

See Also: Oracle Database can allow similar statements to share 
SQL by replacing literals with system-generated bind variables. 
This works with plan stability if the outline was generated using 
the CREATE_STORED_OUTLINES parameter, not the CREATE OUTLINE 
statement. Also, the outline must have been created with the 
CURSOR_SHARING parameter set to FORCE, and the parameter must 
also set to FORCE when attempting to use the outline. See Chapter 7, 
"Configuring and Using Memory" for more information. 



Using Plan Stability to Preserve Execution Plans

Using Plan Stability 20-3

same data used to generate the execution plan. That is, Oracle Database uses the input 
to the execution plan to generate an outline, and not the execution plan itself. 

Storing Outlines
Oracle Database stores outline data in the OL$, OL$HINTS, and OL$NODES tables. Unless 
you remove them, Oracle Database retains outlines indefinitely. 

The only effect outlines have on caching execution plans is that the database uses the 
outline category name in addition to the SQL text to determine whether the plan is in 
cache. This ensures that Oracle Database does not use an execution plan compiled 
under one category to execute a SQL statement that the database should compile 
under a different category. 

Enabling Plan Stability
Settings for several parameters, especially those ending with the suffix _ENABLED, must 
be consistent across execution environments for outlines to function properly. These 
parameters are: 

■ QUERY_REWRITE_ENABLED 

■ STAR_TRANSFORMATION_ENABLED 

■ OPTIMIZER_FEATURES_ENABLE 

Using Supplied Packages to Manage Stored Outlines
The DBMS_OUTLN and DBMS_OUTLN_EDIT package provides procedures used for 
managing stored outlines and their outline categories. 

Users need the EXECUTE_CATALOG_ROLE role to execute DBMS_OUTLN, but public has 
execute privileges on DBMS_OUTLN_EDIT. The DBMS_OUTLN_EDIT package is an invoker's 
rights package.

Some of the useful DBMS_OUTLN and DBMS_OUTLN_EDIT procedures are:

■ CLEAR_USED - Clears specified outline

■ DROP_BY_CAT - Drops outlines that belong to a specified category

■ UPDATE_BY_CAT - Changes the category of outlines in one specified category to a 
new specified category

■ EXACT_TEXT_SIGNATURES - Computes an outline signature according to an exact 
text matching scheme

■ GENERATE_SIGNATURE - Generates a signature for the specified SQL text

Note: Oracle Database creates the USER_OUTLINES and 
USER_OUTLINE_HINTS views in the SYS tablespace based on data in 
the OL$ and OL$HINTS tables, respectively. Direct manipulation of 
the OL$, OL$HINTS, and OL$NODES tables is prohibited. 

You can embed hints in SQL statements, but this has no effect on 
how Oracle Database uses outlines. Oracle Database considers a 
SQL statement that you revised with hints to be different from the 
original SQL statement stored in the outline. 

See Also: Oracle Database PL/SQL Packages and Types Reference for 
detailed information on using DBMS_OUTLN package procedures



Using Plan Stability to Preserve Execution Plans

20-4 Oracle Database Performance Tuning Guide

Creating Outlines
Oracle Database can automatically create outlines for all SQL statements, or you can 
create them for specific SQL statements. In either case, the outlines derive their input 
from the optimizer. 

Oracle Database creates stored outlines automatically when you set the initialization 
parameter CREATE_STORED_OUTLINES to true. When activated, Oracle Database creates 
outlines for all compiled SQL statements. You can create stored outlines for specific 
statements using the CREATE OUTLINE statement. 

When creating or editing a private outline, the outline data is written to global 
temporary tables in the SYSTEM schema. These tables are accessible with the OL$, 
OL$HINTS, and OL$NODES synonyms.

Using Category Names for Stored Outlines
You can categorize outlines to simplify the management task. The CREATE OUTLINE 
statement allows for specification of a category. The DEFAULT category is chosen if 
unspecified. Likewise, the CREATE_STORED_OUTLINES initialization parameter lets you 
specify a category name, where specifying true produces outlines in the DEFAULT 
category. 

If you specify a category name using the CREATE_STORED_OUTLINES initialization 
parameter, then Oracle Database assigns all subsequently created outlines to that 
category until you reset the category name. Set the parameter to false to suspend 
outline generation. 

If you set CREATE_STORED_OUTLINES to true, or if you use the CREATE OUTLINE 
statement without a category name, then Oracle Database assigns outlines to the 
category name of DEFAULT. 

Note: You must ensure that schemas in which outlines are to be 
created have the CREATE ANY OUTLINE privilege. Otherwise, despite 
having turned on the CREATE_STORED_OUTLINE initialization 
parameter, no outlines appear in the database after you run the 
application. 

Also, the default system tablespace can become exhausted if the 
CREATE_STORED_OUTLINES initialization parameter is enabled and 
the running application has many literal SQL statements. If this 
happens, then use the DBMS_OUTLN.DROP_UNUSED procedure to 
remove those literal SQL outlines.

See Also: 

■ Oracle Database SQL Language Reference for more information on 
the CREATE OUTLINE statement

■ Oracle Database PL/SQL Packages and Types Reference for more 
information on the DBMS_OUTLN and DBMS_OUTLN_EDIT packages

■ "Moving from RBO to the Query Optimizer" on page 20-8 to 
learn how to move from the rule-based optimizer to the query 
optimizer



Using Plan Stability to Preserve Execution Plans

Using Plan Stability 20-5

Using Stored Outlines
When you activate the use of stored outlines, Oracle Database always uses the query 
optimizer. Outlines rely on hints. To be effective, most hints require the optimizer. 

To use stored outlines when Oracle Database compiles a SQL statement, set the system 
parameter USE_STORED_OUTLINES to true or to a category name. If you set 
USE_STORED_OUTLINES to true, then Oracle Database uses outlines in the default 
category. If you specify a category with the USE_STORED_OUTLINES parameter, then 
Oracle Database uses outlines in that category until you reset the parameter to another 
category name or until you suspend outline use by setting USE_STORED_OUTLINES to 
false. If you specify a category name, and if Oracle Database does not find an outline 
in that category that matches the SQL statement, then the database searches for an 
outline in the default category. 

To use a specific outline rather than all the outlines in a category, execute the ALTER 
OUTLINE statement to enable the specific outline. To use the outlines in a category 
except for a specific outline, use the ALTER OUTLINE statement to disable the specific 
outline in the category that is being used. The ALTER OUTLINE statement can also 
rename a stored outline, reassign it to a different category, or regenerate it.

The designated outlines only control the compilation of SQL statements that have 
outlines. If you set USE_STORED_OUTLINES to false, then Oracle Database does not use 
outlines. When you set USE_STORED_OUTLINES to false and you set 
CREATE_STORED_OUTLINES to true, Oracle Database creates outlines but does not use 
them. 

The USE_PRIVATE_OUTLINES parameter lets you control the use of private outlines. A 
private outline is an outline seen only in the current session and whose data resides in 
the current parsing schema. Any changes made to such an outline are not seen by any 
other session on the system, and applying a private outline to the compilation of a 
statement can only be done in the current session with the USE_PRIVATE_OUTLINES 
parameter. Only when you explicitly choose to save your edits back to the public area 
are they seen by the rest of the users. 

While the optimizer usually chooses optimal plans for queries, there are times when 
users know things about the execution environment that are inconsistent with the 
heuristics that the optimizer follows. By editing outlines directly, you can tune the SQL 
query without having to alter the application. 

When the USE_PRIVATE_OUTLINES parameter is enabled and an outlined SQL statement 
is issued, the optimizer retrieves the outline from the session private area rather than 
the public area used when USE_STORED_OUTLINES is enabled. If no outline exists in the 
session private area, then the optimizer does not use an outline to compile the 
statement. 

Any CREATE OUTLINE statement requires the CREATE ANY OUTLINE privilege. 
Specification of the FROM clause also requires the SELECT privilege. This privilege 
should be granted only to those users who would have the authority to view SQL text 
and hint text associated with the outlined statements. This role is required for the 
CREATE OUTLINE FROM command unless the issuer of the command is also the owner of 
the outline. 

Note: The USE_STORED_OUTLINES and USE_PRIVATE_OUTLINES 
parameters are system or session specific. They are not initialization 
parameters. For more information on these parameters, see the 
Oracle Database SQL Language Reference.



Using Plan Stability to Preserve Execution Plans

20-6 Oracle Database Performance Tuning Guide

You can test whether the database is using an outline with the V$SQL view. Query the 
OUTLINE_CATEGORY column in conjunction with the SQL statement. If the database 
applied an outline, then this column contains the category to which the outline 
belongs. Otherwise, it is NULL. The OUTLINE_SID column tells you whether this 
particular cursor is using a public outline (value is 0) or a private outline (session's SID 
of the corresponding session using it).

For example:

SELECT OUTLINE_CATEGORY, OUTLINE_SID
  FROM V$SQL 
  WHERE SQL_TEXT LIKE 'SELECT COUNT(*) FROM emp%';

Viewing Outline Data
You can access information about outlines and related hint data that Oracle Database 
stores in the data dictionary from the following views: 

■ USER_OUTLINES 

■ USER_OUTLINE_HINTS 

■ ALL_OUTLINES 

■ ALL_OUTLINE_HINTS 

■ DBA_OUTLINES 

■ DBA_OUTLINE_HINTS 

Use the following syntax to obtain outline information from the USER_OUTLINES view, 
where the outline category is mycat: 

SELECT NAME, SQL_TEXT 
  FROM USER_OUTLINES 
  WHERE CATEGORY='mycat';

Oracle Database responds by displaying the names and text of all outlines in category 
mycat. 

To see all generated hints for the outline name1, use the following syntax: 

SELECT HINT 
  FROM USER_OUTLINE_HINTS 
  WHERE NAME='name1';

You can check the flags in _OUTLINES views for information about compatibility, 
format, and whether an outline is enabled. For example, check the ENABLED field in the 
USER_OUTLINES view to determine whether an outline is enabled or not. 

SELECT NAME, CATEGORY, ENABLED FROM USER_OUTLINES;

Moving Outline Tables
Oracle Database creates the USER_OUTLINES and USER_OUTLINE_HINTS views based on 
data in the OL$ and OL$HINTS tables, respectively. These tables and the OL$NODES table 
reside in the outln schema.

See Also: Oracle Database SQL Language Reference to learn about 
the ALTER OUTLINE statement

See Also: Oracle Database Reference to learn about views related to 
outlines



Using Plan Stability to Preserve Execution Plans

Using Plan Stability 20-7

The outln schema stores data in the SYSTEM tablespace. If outlines use too much space 
in the SYSTEM tablespace, then you can move them. To achieve this goal, create a 
separate tablespace and move the outline tables into this tablespace.

To move outline tables into a new tablespace:

1. Use the Oracle Data Pump Export utility to export the OL$, OL$HINTS, and 
OL$NODES tables.

The following example exports these tables to the exp.dmp file located in the 
directory that maps to the outln_dir object:

% expdp outln DIRECTORY=outln_dir DUMPFILE=exp.dmp TABLES=OL$,OL$HINTS,OL$NODES
Password: password

2. Start SQL*Plus and connect to the database as the outln user, as shown in the 
following example:

SQL> CONNECT outln
Enter password: password

3. Remove the previous OL$, OL$HINTS, and OL$NODES tables, as shown in the 
following example:

SQL> DROP TABLE OL$;
SQL> DROP TABLE OL$HINTS; 
SQL> DROP TABLE OL$NODES; 

4. Create a new tablespace for the tables.

The following example connects as SYSTEM and creates a tablespace named 
outln_ts:

SQL> CONNECT SYSTEM
Enter password: password

SQL> CREATE TABLESPACE outln_ts DATAFILE 'tspace.dat' SIZE 2M
  2 DEFAULT STORAGE ( INITIAL 10K NEXT 20K MINEXTENTS 1 MAXEXTENTS 999
  3                   PCTINCREASE 10 ) ONLINE; 

5. Change the default tablespace for the outln schema.

The following statement changes the default tablespace to outln_ts:

SQL> ALTER USER OUTLN DEFAULT TABLESPACE outln_ts;

6. To force the import into the outln_ts tablespace, perform the following tasks:

a. Set the quota for the SYSTEM tablespace to 0K for the outln user.

b. Revoke the UNLIMITED TABLESPACE privilege and all roles, such as the 
RESOURCE role, that have unlimited tablespace privileges or quotas.

c. Set a quota for the outln tablespace.

Note: The default system tablespace could become exhausted if the 
CREATE_STORED_OUTLINES parameter is on and if the running 
application has many literal SQL statements. In this case, use the 
DBMS_OUTLN.DROP_UNUSED procedure to remove the literal SQL 
outlines.



Using Plan Stability with Query Optimizer Upgrades

20-8 Oracle Database Performance Tuning Guide

7. Use the Data Pump Import utility to import the OL$, OL$HINTS, and OL$NODES 
tables, as in the following example:

% impdp outln DIRECTORY=outln_dir DUMPFILE=exp.dmp TABLES=OL$,OL$HINTS,OL$NODES
Password: password

When the import completes, the OL$, OL$HINTS, and OL$NODES tables are re-created 
in the schema named outln and reside in the outln_ts tablespace.

8. Optionally, adjust the tablespace quotas for the outln user appropriately by 
adding any privileges and roles that were removed in a previous step.

Using Plan Stability with Query Optimizer Upgrades
This section describes procedures you can use to significantly improve performance by 
taking advantage of query optimizer functionality. Plan stability provides a way to 
preserve a system's targeted execution plans with satisfactory performance while also 
taking advantage of new query optimizer features for the rest of the SQL statements. 

While there are classes of SQL statements and features where an exact reproduction of 
the original execution plan is not guaranteed, plan stability can still be a highly useful 
part of the migration. Before the migration, outline capturing of execution plan should 
be turned on until all or most of the applications SQL-statement have been covered. 

If performance problems for some specific SQL-statement occur after migration, then 
you can turn on the stored outline for the specified statement as a way of restoring the 
old behavior. Stored outlines are not always the best way of resolving a migration 
related performance problem because they prevent plans from adapting to changing 
data properties. However, stored outlines add to the arsenal of techniques that you can 
use to address such problems. 

Topics covered in this section are: 

■ Moving from RBO to the Query Optimizer

■ Moving to a New Oracle Release under the Query Optimizer

Moving from RBO to the Query Optimizer
If an application was developed using the rule-based optimizer, then a considerable 
amount of effort might have gone into manually tuning the SQL statements to 
optimize performance. You can use plan stability to leverage the effort that has gone 
into performance tuning by preserving the behavior of the application when 
upgrading from rule-based to query optimization. 

By creating outlines for an application before switching to query optimization, the 
plans generated by the rule-based optimizer can be used, while statements generated 
by newly written applications developed after the switch use query plans. To create 
and use outlines for an application, use the following process.

See Also: 

■ Oracle Database Utilities for detailed information about using the 
Data Pump Export and Import utilities

■ Oracle Database PL/SQL Packages and Types Reference for detailed 
information about using the DBMS_OUTLN package



Using Plan Stability with Query Optimizer Upgrades

Using Plan Stability 20-9

1. Ensure that schemas in which outlines are to be created have the CREATE ANY 
OUTLINE privilege. For example, from SYS:

GRANT CREATE ANY OUTLINE TO user-name 

2. Execute syntax similar to the following to designate; for example, the RBOCAT 
outline category.

ALTER SESSION SET CREATE_STORED_OUTLINES = rbocat;

3. Run the application long enough to capture stored outlines for all important SQL 
statements. 

4. Suspend outline generation:

ALTER SESSION SET CREATE_STORED_OUTLINES = FALSE;

5. Gather statistics with the DBMS_STATS package. 

6. Alter the parameter OPTIMIZER_MODE to CHOOSE. 

7. Enter the following syntax to make Oracle database use the outlines in category 
RBOCAT:

ALTER SESSION SET USE_STORED_OUTLINES = rbocat;

8. Run the application. 

Subject to the limitations of plan stability, access paths for this application's SQL 
statements should be unchanged. 

Moving to a New Oracle Release under the Query Optimizer
When upgrading to a new Oracle Database release under query optimization, some 
SQL statements may have their execution plans changed because of changes in the 
optimizer. While such changes benefit performance, you might have applications that 
perform so well that you would consider any changes in their behavior to be an 
unnecessary risk. For such applications, you can create outlines before the upgrade 
using the following procedure. 

1. Enter the following syntax to enable outline creation:

ALTER SESSION SET CREATE_STORED_OUTLINES = ALL_QUERIES;

Note: Carefully read this procedure and consider its implications before 
executing it! 

Note: If a query was not executed in step 2, then you can capture 
the old behavior of the query even after switching to query 
optimization. To achieve this goal, change the optimizer mode to 
RULE, create an outline for the query, and then change the optimizer 
mode back to CHOOSE. 

Note: Carefully read this procedure and consider its implications before 
running it! 



Using Plan Stability with Query Optimizer Upgrades

20-10 Oracle Database Performance Tuning Guide

2. Run the application long enough to capture stored outlines for all critical SQL 
statements. 

3. Enter this syntax to suspend outline generation: 

ALTER SESSION SET CREATE_STORED_OUTLINES = FALSE;

4. Upgrade the production system to the new version of the RDBMS.

5. Run the application.

After the upgrade, you can enable the use of stored outlines, or alternatively, you can 
use the outlines that were stored as a backup if you find that some statements exhibit 
performance degradation after the upgrade. 

With the latter approach, you can selectively use the stored outlines for such 
problematic statements as follows: 

1. For each problematic SQL statement, change the CATEGORY of the associated stored 
outline to a category name similar to this: 

ALTER OUTLINE outline_name CHANGE CATEGORY TO problemcat;

2. Enter this syntax to make Oracle database use outlines from the category 
problemcat.

ALTER SESSION SET USE_STORED_OUTLINES = problemcat;

Upgrading with a Test System
A test database, separate from the production database, is useful for conducting 
experiments with optimizer behavior after an upgrade. You can migrate statistics from 
the production system to the test system using import/export. This technique 
alleviates the need to fill the tables in the test database with data. 

You can move outlines between the systems by category. For example, after you create 
outlines in the problemcat category, export them by category using the query-based 
export option. This is a convenient and efficient way to export only selected outlines 
from one database to another without exporting all outlines in the source database. 
Use the Data Pump Export utility with the QUERY parameter as in the following 
example (note the use of the line continuation character):

% expdp outln DIRECTORY=outln_dir DUMPFILE=exp_file.dmp \
?  TABLES=OL$,OL$HINTS,OL$NODES QUERY='WHERE CATEGORY="problemcat"'
Password: password

See Also: Oracle Database Utilities for detailed information about 
using the Data Pump Export and Import utilities



21

Using Application Tracing Tools 21-1

21Using Application Tracing Tools

Oracle Database provides several tracing tools that can help you monitor and analyze 
applications running against an Oracle database.

End-to-End Application Tracing can identify the source of an excessive workload, such 
as a high load SQL statement, by client identifier, service, module, action, session, 
instance, or an entire database. This isolates the problem to a specific user, service, 
session, or application component.

Oracle Database provides the trcsess command-line utility that consolidates tracing 
information based on specific criteria. 

The SQL Trace facility and TKPROF are two basic performance diagnostic tools that can 
help you monitor applications running against the Oracle database. 

This chapter contains the following sections: 

■ End-to-End Application Tracing

■ Using the trcsess Utility

■ Understanding SQL Trace and TKPROF

■ Using the SQL Trace Facility and TKPROF

■ Avoiding Pitfalls in TKPROF Interpretation

■ Sample TKPROF Output

End-to-End Application Tracing
End-to-End Application Tracing simplifies the process of diagnosing performance 
problems in multitier environments. In these environments, a request from an end 
client is routed to different database sessions by the middle tier, making it difficult to 
track a client across database sessions. End-to-End Application Tracing uses a client ID 
to uniquely trace a specific end client through all tiers to the database. 

This feature could identify the source of an excessive workload, such as a high-load 
SQL statement, and enables you to contact the specific user responsible. Also, a user 
having problems can contact you. You can then identify what this user session is doing 
at the database level.

End-to-End Application Tracing also simplifies management of application workloads 
by tracking specific modules and actions in a service. End-to-End Application Tracing 
can identify workload problems for the following:

See Also: SQL*Plus User's Guide and Reference for information 
about the use of Autotrace to trace and tune SQL*Plus statements



End-to-End Application Tracing

21-2 Oracle Database Performance Tuning Guide

■ Client identifier

This specifies an end user based on the logon ID, such as HR.HR.

■ Service

This specifies either a single application (such as ACCTG for an accounting 
application), or a group of applications with common attributes, service level 
thresholds, and priorities.

■ Module

This specifies a functional block, such as Accounts Receivable or General Ledger, 
of an application.

■ Action

This specifies an action, such as an INSERT or UPDATE operation, in a module.

■ Session

This represents the state of a current user login to a database.

■ Instance

This represents the combination of the system global area (SGA) and background 
processes.

After tracing information is written to files, you can consolidate this information with 
the trcsess utility and diagnose it with an analysis utility such as TKPROF.

To create services on single-instance Oracle databases, use the 
DBMS_SERVICE.CREATE_SERVICE procedure or set the SERVICE_NAMES initialization 
parameter.

The module and action names are set by the application developer. For example, you 
would use the SET_MODULE and SET_ACTION procedures in the DBMS_APPLICATION_INFO 
package to set these values in a PL/SQL program.

The recommended interface for End-to-End Application Tracing is Oracle Enterprise 
Manager. Using Enterprise Manager, you can view the top consumers for each 
consumer type, and enable or disable statistics gathering and SQL tracing for specific 
consumers. Whenever possible, you should use Enterprise Manager to manage 
End-to-End Application Tracing, as described in Oracle Database 2 Day + Performance 
Tuning Guide. If Oracle Enterprise Manager is unavailable, then you can manage this 
feature using the DBMS_MONITOR APIs, as described in the following sections:

■ Enabling and Disabling Statistic Gathering for End-to-End Tracing

■ Viewing Gathered Statistics for End-to-End Application Tracing

■ Enabling and Disabling for End-to-End Tracing

■ Viewing Enabled Traces for End-to-End Tracing



End-to-End Application Tracing

Using Application Tracing Tools 21-3

Enabling and Disabling Statistic Gathering for End-to-End Tracing
To gather the appropriate statistics using PL/SQL, you need to enable statistics 
gathering for client identifier, service, module, or action using procedures in the 
DBMS_MONITOR package.

You can gather statistics by the following criteria:

■ Statistic Gathering for Client Identifier

■ Statistic Gathering for Service, Module, and Action

The default level is the session-level statistics gathering. Statistics gathering is global 
for the database and continues after an instance is restarted.

Statistic Gathering for Client Identifier
The procedure CLIENT_ID_STAT_ENABLE enables statistic gathering for a given client 
identifier. For example, to enable statistics gathering for a specific client identifier:

EXECUTE DBMS_MONITOR.CLIENT_ID_STAT_ENABLE(client_id => 'OE.OE');

In the example, OE.OE is the client identifier for which you want to collect statistics. 
You can view client identifiers in the CLIENT_IDENTIFIER column in V$SESSION.

The procedure CLIENT_ID_STAT_DISABLE disables statistic gathering for a given client 
identifier. For example:

EXECUTE DBMS_MONITOR.CLIENT_ID_STAT_DISABLE(client_id => 'OE.OE');

Statistic Gathering for Service, Module, and Action
The procedure SERV_MOD_ACT_STAT_ENABLE enables statistic gathering for a 
combination of service, module, and action. For example:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(service_name => 'ACCTG', 
        module_name => 'PAYROLL');

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_STAT_ENABLE(service_name => 'ACCTG', 
        module_name => 'GLEDGER', action_name => 'INSERT ITEM');

If both of the previous commands are executed, then statistics are gathered as follows:

■ For the ACCTG service, because accumulation for each service name is the default

■ For all actions in the PAYROLL module

■ For the INSERT ITEM action within the GLEDGER module

The procedure SERV_MOD_ACT_STAT_DISABLE disables statistic gathering for a 
combination of service, module, and action. For example:

See Also: 

■ Oracle Database Concepts to learn about services

■  Oracle Call Interface Programmer's Guide to learn how to set the 
necessary parameters in an OCI application

■ Oracle Database PL/SQL Packages and Types Reference for 
information about the DBMS_MONITOR, DBMS_SESSION, 
DBMS_SERVICE, and DBMS_APPLICATION_INFO packages

■ Oracle Database Reference for information about V$ views and 
initialization parameters



End-to-End Application Tracing

21-4 Oracle Database Performance Tuning Guide

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_STAT_DISABLE(service_name => 'ACCTG', 
        module_name => 'GLEDGER', action_name => 'INSERT ITEM');

Regarding statistics gathering, when you change the module or action using these 
procedures, the change takes effect when the next user call is executed in the session. 
For example, if a module is set to module1 in a session, and if the module is reset to 
module2 in a user call in the session, then the module remains module1 during this user 
call. The module is changed to module2 in the next user call in the session.

Viewing Gathered Statistics for End-to-End Application Tracing
You can display the statistics that have been gathered with several dynamic views.

■ The accumulated global statistics for the currently enabled statistics can be 
displayed with the DBA_ENABLED_AGGREGATIONS view.

■ The accumulated statistics for a specified client identifier can be displayed in the 
V$CLIENT_STATS view.

■ The accumulated statistics for a specified service can be displayed in 
V$SERVICE_STATS view.

■ The accumulated statistics for a combination of specified service, module, and 
action can be displayed in the V$SERV_MOD_ACT_STATS view.

■ The accumulated statistics for elapsed time of database calls and for CPU use can 
be displayed in the V$SERVICEMETRIC view.

Enabling and Disabling for End-to-End Tracing
To enable tracing for client identifier, service, module, action, session, instance or 
database, execute the appropriate procedures in the DBMS_MONITOR package. You can 
enable tracing for specific diagnosis and workload management by the following 
criteria: 

■ Tracing for Client Identifier

■ Tracing for Service, Module, and Action

■ Tracing for Session

■ Tracing for Entire Instance or Database

With the criteria that you provide, specific trace information is captured in a set of 
trace files and combined into a single output trace file.

Tracing for Client Identifier
The CLIENT_ID_TRACE_ENABLE procedure enables tracing globally for the database for a 
given client identifier. For example:

EXECUTE DBMS_MONITOR.CLIENT_ID_TRACE_ENABLE(client_id => 'OE.OE', 
        waits => TRUE, binds => FALSE);

In this example, OE.OE is the client identifier for which SQL tracing is to be enabled. 
The TRUE argument specifies that wait information will be present in the trace. The 
FALSE argument specifies that bind information will not be present in the trace.

The CLIENT_ID_TRACE_DISABLE procedure disables tracing globally for the database for 
a given client identifier. To disable tracing, for the previous example:

EXECUTE DBMS_MONITOR.CLIENT_ID_TRACE_DISABLE(client_id => 'OE.OE');



End-to-End Application Tracing

Using Application Tracing Tools 21-5

Tracing for Service, Module, and Action
The SERV_MOD_ACT_TRACE_ENABLE procedure enables SQL tracing for a given 
combination of service name, module, and action globally for a database, unless an 
instance name is specified in the procedure.

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE(service_name => 'ACCTG', 
        waits => TRUE, binds => FALSE, instance_name => 'inst1');

In this example, the service ACCTG is specified. The module or action name is not 
specified. The TRUE argument specifies that wait information will be present in the 
trace. The FALSE argument specifies that bind information will not be present in the 
trace. The inst1 instance is specified to enable tracing only for that instance.

To enable tracing for all actions for a given combination of service and module:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_TRACE_ENABLE(service_name => 'ACCTG', 
        module_name => 'PAYROLL', waits => TRUE,  binds => FALSE, 
        instance_name => 'inst1');

The SERV_MOD_ACT_TRACE_DISABLE procedure disables the trace at all enabled instances 
for a given combination of service name, module, and action name globally. For 
example, the following disables tracing for the first example in this section:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_TRACE_DISABLE(service_name => 'ACCTG',
        instance_name => 'inst1');

This example disables tracing for the second example in this section:

EXECUTE DBMS_MONITOR.SERV_MOD_ACT_TRACE_DISABLE(service_name => 'ACCTG', 
        module_name => 'PAYROLL', instance_name => 'inst1');

Tracing for Session
The SESSION_TRACE_ENABLE procedure enables the trace for a given database session 
identifier (SID), on the local instance.

To enable tracing for a specific session ID and serial number, determine the values for 
the session to trace:

SELECT SID, SERIAL#, USERNAME FROM V$SESSION;

       SID    SERIAL# USERNAME
---------- ---------- ------------------------------
        27         60 OE
...

Use the appropriate values to enable tracing for a specific session:

EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(session_id => 27, serial_num => 60,
        waits => TRUE, binds => FALSE);

The TRUE argument specifies that wait information will be present in the trace. The 
FALSE argument specifies that bind information will not be present in the trace.

The SESSION_TRACE_DISABLE procedure disables the trace for a given database session 
identifier (SID) and serial number. For example:

EXECUTE DBMS_MONITOR.SESSION_TRACE_DISABLE(session_id => 27, serial_num => 60);

While the DBMS_MONITOR package can only be invoked by a user with the DBA role, 
any user can also enable SQL tracing for their own session by using the DBMS_SESSION 



Using the trcsess Utility

21-6 Oracle Database Performance Tuning Guide

package. A user can invoke the SESSION_TRACE_ENABLE procedure to enable 
session-level SQL trace for the user's session. For example:

EXECUTE DBMS_SESSION.SESSION_TRACE_ENABLE(waits => TRUE, binds => FALSE);

The TRUE argument specifies that wait information will be present in the trace. The 
FALSE argument specifies that bind information will not be present in the trace.

The SESSION_TRACE_DISABLE procedure disables the trace for the invoking session. For 
example:

EXECUTE DBMS_SESSION.SESSION_TRACE_DISABLE();

Tracing for Entire Instance or Database
The DATABASE_TRACE_ENABLE procedure enables SQL tracing for a given instance or an 
entire database. Tracing is enabled for all current and future sessions. For example:

EXECUTE DBMS_MONITOR.DATABASE_TRACE_ENABLE(waits => TRUE, binds => FALSE, 
        instance_name => 'inst1');

In this example, the inst1 instance is specified to enable tracing for that instance. The 
TRUE argument specifies that wait information will be present in the trace. The FALSE 
argument specifies that bind information will not be present in the trace. This example 
results in SQL tracing of all SQL in the inst1 instance.

The DATABASE_TRACE_ENABLE procedure overrides all other session-level traces, but 
will be complementary to the client identifier, service, module, and action traces. All 
new sessions will inherit the wait and bind information specified by this procedure 
until the DATABASE_TRACE_DISABLE procedure is called. When this procedure is 
invoked with the instance_name parameter specified, it will reset the session-level 
SQL trace for the named instance. If this procedure is invoked without the 
instance_name parameter specified, then it will reset the session-level SQL trace for 
the entire database.

The DATABASE_TRACE_DISABLE procedure disables the tracing for an entire instance or 
database. For example:

EXECUTE DBMS_MONITOR.DATABASE_TRACE_DISABLE(instance_name => 'inst1');

In this example, all session-level SQL tracing will be disabled for the inst1 instance. 
To disable the session-level SQL tracing for an entire database, invoke the 
DATABASE_TRACE_DISABLE procedure without specifying the instance_name parameter:

EXECUTE DBMS_MONITOR.DATABASE_TRACE_DISABLE();

Viewing Enabled Traces for End-to-End Tracing
An Oracle Enterprise Manager report or the DBA_ENABLED_TRACES view can display 
outstanding traces. In the DBA_ENABLED_TRACES view, you can determine detailed 
information about how a trace was enabled, including the trace type. The trace type 
specifies whether the trace is enabled for client identifier, session, service, database, or 
a combination of service, module, and action.

Using the trcsess Utility
The trcsess utility consolidates trace output from selected trace files based on several 
criteria: 

■ Session ID



Using the trcsess Utility

Using Application Tracing Tools 21-7

■ Client ID

■ Service name

■ Action name

■ Module name

After trcsess merges the trace information into a single output file, the output file 
could be processed by TKPROF.

trcsess is useful for consolidating the tracing of a particular session for performance 
or debugging purposes. Tracing a specific session is usually not a problem in the 
dedicated server model as a single dedicated process serves a session during its 
lifetime. You can see the trace information for the session from the trace file belonging 
to the dedicated server serving it. However, in a shared server configuration a user 
session is serviced by different processes from time to time. The trace pertaining to the 
user session is scattered across different trace files belonging to different processes. 
This makes it difficult to get a complete picture of the life cycle of a session.

Syntax for trcsess
The syntax for the trcsess utility is: 

trcsess  [output=output_file_name]
         [session=session_id]
         [clientid=client_id]
         [service=service_name]
         [action=action_name]
         [module=module_name]
         [trace_files]

where 

■ output specifies the file where the output is generated. If this option is not 
specified, then the utility writes to standard output.

■ session consolidates the trace information for the session specified. The session 
identifier is a combination of session index and session serial number, such as 
21.2371. You can locate these values in the V$SESSION view.

■ clientid consolidates the trace information given client ID.

■ service consolidates the trace information for the given service name.

■ action consolidates the trace information for the given action name.

■ module consolidates the trace information for the given module name.

■ trace_files is a list of all the trace file names, separated by spaces, in which 
trcsess should look for trace information. You can use the wildcard character (*) 
to specify the trace file names. If you do not specify trace files, then trcsess takes 
all the files in the current directory as input.

You must specify one of the session, clientid, service, action, or module options. If 
more then one of the session, clientid, service, action, or module options is 
specified, then the trace files which satisfies all the criteria specified are consolidated 
into the output file. 

Sample Output of trcsess
This sample output of trcsess shows the consolidation of traces for a particular 
session. In this example the session index and serial number equals 21.2371.



Understanding SQL Trace and TKPROF

21-8 Oracle Database Performance Tuning Guide

You can invoke trcsess with various options. In the following case, all files in current 
directory are taken as input:

trcsess session=21.2371

In this case, several trace files are specified:

trcsess session=21.2371 main_12359.trc main_12995.trc 

The sample output is similar to the following:

[PROCESS ID = 12359] 
*** 2002-04-02 09:48:28.376 
PARSING IN CURSOR #1 len=17 dep=0 uid=27 oct=3 lid=27 tim=868373970961 
hv=887450622 ad='22683fb4' 
select * from cat 
END OF STMT 
PARSE #1:c=0,e=339,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=868373970944 
EXEC #1:c=0,e=221,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=868373971411 
FETCH #1:c=0,e=791,p=0,cr=7,cu=0,mis=0,r=1,dep=0,og=4,tim=868373972435 
FETCH #1:c=0,e=1486,p=0,cr=20,cu=0,mis=0,r=6,dep=0,og=4,tim=868373986238 
*** 2002-04-02 10:03:58.058 
XCTEND rlbk=0, rd_only=1 
STAT #1 id=1 cnt=7 pid=0 pos=1 obj=0 op='FILTER  ' 
STAT #1 id=2 cnt=7 pid=1 pos=1 obj=18 op='TABLE ACCESS BY INDEX ROWID OBJ$ ' 
STAT #1 id=3 cnt=7 pid=2 pos=1 obj=37 op='INDEX RANGE SCAN I_OBJ2 ' 
STAT #1 id=4 cnt=0 pid=1 pos=2 obj=4 op='TABLE ACCESS CLUSTER TAB$J2 ' 
STAT #1 id=5 cnt=6 pid=4 pos=1 obj=3 op='INDEX UNIQUE SCAN I_OBJ# ' 
[PROCESS ID=12995] 
*** 2002-04-02 10:04:32.738 
Archiving is disabled 
Archiving is disabled 

Understanding SQL Trace and TKPROF
The SQL Trace facility and TKPROF let you accurately assess the efficiency of the SQL 
statements an application runs. For best results, use these tools with EXPLAIN PLAN 
rather than using EXPLAIN PLAN alone. 

Understanding the SQL Trace Facility
The SQL Trace facility provides performance information on individual SQL 
statements. It generates the following statistics for each statement:

■ Parse, execute, and fetch counts

■ CPU and elapsed times

■ Physical reads and logical reads

■ Number of rows processed

■ Misses on the library cache

■ Username under which each parse occurred

■ Each commit and rollback

■ Wait event data for each SQL statement, and a summary for each trace file

If the cursor for the SQL statement is closed, then SQL Trace also provides row source 
information that includes:



Using the SQL Trace Facility and TKPROF

Using Application Tracing Tools 21-9

■ Row operations showing the actual execution plan of each SQL statement

■ Number of rows, number of consistent reads, number of physical reads, number of 
physical writes, and time elapsed for each operation on a row

Although it is possible to enable the SQL Trace facility for a session or for an instance, 
it is recommended that you use the DBMS_SESSION or DBMS_MONITOR packages instead. 
When the SQL Trace facility is enabled for a session or for an instance, performance 
statistics for all SQL statements executed in a user session or in the instance are placed 
into trace files. Using the SQL Trace facility can have a severe performance impact and 
may result in increased system overhead, excessive CPU usage, and inadequate disk 
space.

Oracle Database provides the trcsess command-line utility that consolidates tracing 
information from several trace files based on specific criteria, such as session or client 
ID. See "Using the trcsess Utility" on page 21-6.

Understanding TKPROF
You can run the TKPROF program to format the contents of the trace file and place the 
output into a readable output file. TKPROF can also:

■ Create a SQL script that stores the statistics in the database

■ Determine the execution plans of SQL statements

TKPROF reports each statement executed with the resources it has consumed, the 
number of times it was called, and the number of rows which it processed. This 
information lets you easily locate those statements that are using the greatest resource. 
With experience or with baselines available, you can assess whether the resources used 
are reasonable given the work done.

Using the SQL Trace Facility and TKPROF
Follow these steps to use the SQL Trace facility and TKPROF:

1. Set initialization parameters for trace file management. 

See "Step 1: Setting Initialization Parameters for Trace File Management" on 
page 21-10.

2. Enable the SQL Trace facility for the desired session, and run the application. This 
step produces a trace file containing statistics for the SQL statements issued by the 
application. 

See "Step 2: Enabling the SQL Trace Facility" on page 21-11.

See Also: "Enabling and Disabling for End-to-End Tracing" on 
page 21-4 to learn how to use the DBMS_SESSION or DBMS_MONITOR 
packages to enable SQL tracing for a session or an instance

Note: If the cursor for a SQL statement is not closed, then TKPROF 
output does not automatically include the actual execution plan of 
the SQL statement. In this situation, you can use the EXPLAIN option 
with TKPROF to generate an execution plan.



Using the SQL Trace Facility and TKPROF

21-10 Oracle Database Performance Tuning Guide

3. Run TKPROF to translate the trace file created in Step 2 into a readable output file. 
This step can optionally create a SQL script that you can use to store the statistics 
in a database. 

See "Step 3: Formatting Trace Files with TKPROF" on page 21-12.

4. Interpret the output file created in Step 3. 

See "Step 4: Interpreting TKPROF Output" on page 21-16.

5. Optionally, run the SQL script produced in Step 3 to store the statistics in the 
database. 

See "Step 5: Storing SQL Trace Facility Statistics" on page 21-20.

The following sections discuss each step in depth.

Step 1: Setting Initialization Parameters for Trace File Management
When the SQL Trace facility is enabled for a session, Oracle Database generates a trace 
file containing statistics for traced SQL statements for that session. When the SQL 
Trace facility is enabled for an instance, Oracle Database creates a separate trace file for 
each process. Before enabling the SQL Trace facility:

1. Check the settings of the TIMED_STATISTICS, MAX_DUMP_FILE_SIZE, and 
DIAGNOSTIC_DEST initialization parameters, as indicated in Table 21–1.

2. Devise a way of recognizing the resulting trace file.

Be sure you know how to distinguish the trace files by name. You can tag trace 
files by including in your programs a statement like SELECT 'program_name' FROM 
DUAL. You can then trace each file back to the process that created it.

You can also set the TRACEFILE_IDENTIFIER initialization parameter to specify a 
custom identifier that becomes part of the trace file name. For example, you can 

Table 21–1  Initialization Parameters to Check Before Enabling SQL Trace

Parameter Description

DIAGNOSTIC_DEST Specifies the location of the Automatic Diagnostic Repository 
(ADR) Home. The diagnostic files for each database instance are 
located in this dedicated directory. Oracle Database Reference for 
information about the DIAGNOSTIC_DEST initialization parameter.

MAX_DUMP_FILE_SIZE When the SQL Trace facility is enabled at the database instance 
level, every call to the database writes a text line in a file in the 
operating system's file format. The maximum size of these files 
in operating system blocks is limited by this initialization 
parameter. The default is UNLIMITED. See Oracle Database 
Administrator's Guide to learn how to control the trace file size.

TIMED_STATISTICS Enables and disables the collection of timed statistics, such as 
CPU and elapsed times, by the SQL Trace facility, and the 
collection of various statistics in the V$ views.

If STATISTICS_LEVEL is set to TYPICAL or ALL, then the default 
value of TIMED_STATISTICS is TRUE. If STATISTICS_LEVEL is set to 
BASIC, then the default value is FALSE. See Oracle Database 
Reference for information about the STATISTICS_LEVEL 
initialization parameter.

Enabling timing causes extra timing calls for low-level 
operations. This is a dynamic parameter. It is also a session 
parameter. See Oracle Database Reference for information about 
the TIMED_STATISTICS initialization parameter.



Using the SQL Trace Facility and TKPROF

Using Application Tracing Tools 21-11

add my_trace_id to subsequent trace file names for easy identification with the 
following:

ALTER SESSION SET TRACEFILE_IDENTIFIER = 'my_trace_id';

3. If the operating system retains multiple versions of files, then ensure that the 
version limit is high enough to accommodate the number of trace files you expect 
the SQL Trace facility to generate. 

4. The generated trace files can be owned by an operating system user other than 
yourself. This user must make the trace files available to you before you can use 
TKPROF to format them. 

Step 2: Enabling the SQL Trace Facility
Enable the SQL Trace facility at either of the following levels: 

■ Database instance

Use DBMS_MONITOR.DATABASE_TRACE_ENABLE procedure to enable tracing, and 
DBMS_MONITOR.DATABASE_TRACE_DISABLE procedure to disable tracing.

■ Database session

Use DBMS_SESSION.SET_SQL_TRACE procedure to enable tracing (TRUE) or disable 
tracing (FALSE).

To enable and disable tracing at the database instance level:

1. Start SQL*Plus, and connect to the database with administrator privileges.

2. Enable tracing at the database instance level.

The following example enables tracing for the orcl instance:

EXEC DBMS_MONITOR.DATABASE_TRACE_ENABLE(INSTANCE_NAME => 'orcl');

3. Execute the statements to be traced.

4. Disable tracing for the database instance.

The following example disables tracing for the orcl instance:

EXEC DBMS_MONITOR.DATABASE_TRACE_DISABLE(INSTANCE_NAME => 'orcl');

To enable and disable tracing at the session level:

1. Start SQL*Plus, and connect to the database with the desired credentials.

See Also: Oracle Database Reference for information about the 
TRACEFILE_IDENTIFIER initialization parameter

See Also: 

■ "Setting the Level of Statistics Collection" on page 10-7 for 
information about STATISTICS_LEVEL settings

■ Oracle Database Reference for information about the 
STATISTICS_LEVEL initialization parameter

Caution: Because running the SQL Trace facility increases system 
overhead, enable it only when tuning SQL statements, and disable 
it when you are finished.



Using the SQL Trace Facility and TKPROF

21-12 Oracle Database Performance Tuning Guide

2. Enable tracing for the current session.

The following example enables tracing for the current session:

EXEC DBMS_SESSION.SET_SQL_TRACE(sql_trace => TRUE);

3. Execute the statements to be traced.

4. Disable tracing for the current session.

The following example disables tracing for the current session:

EXEC DBMS_SESSION.SET_SQL_TRACE(sql_trace => FALSE);

Step 3: Formatting Trace Files with TKPROF
TKPROF accepts as input a trace file produced by the SQL Trace facility, and it produces 
a formatted output file. TKPROF can also be used to generate execution plans. 

After the SQL Trace facility has generated trace files, you can:

■ Run TKPROF on each individual trace file, producing several formatted output files, 
one for each session.

■ Concatenate the trace files, and then run TKPROF on the result to produce a 
formatted output file for the entire instance.

■ Run the trcsess command-line utility to consolidate tracing information from 
several trace files, then run TKPROF on the result. See "Using the trcsess Utility" on 
page 21-6.

TKPROF does not report COMMITs and ROLLBACKs that are recorded in the trace file.

Sample TKPROF Output
Sample output from TKPROF is as follows:

SELECT * FROM emp, dept 
WHERE emp.deptno = dept.deptno;

call   count      cpu    elapsed     disk    query current    rows
---- -------  -------  --------- -------- -------- -------  ------
Parse      1     0.16      0.29         3       13       0       0
Execute    1     0.00      0.00         0        0       0       0
Fetch      1     0.03      0.26         2        2       4      14 
 
Misses in library cache during parse: 1 
Parsing user id: (8) SCOTT 

Rows     Execution Plan
-------  --------------------------------------------------- 
14  MERGE JOIN
 4   SORT JOIN
 4     TABLE ACCESS (FULL) OF 'DEPT'
14    SORT JOIN
14      TABLE ACCESS (FULL) OF 'EMP'

For this statement, TKPROF output includes the following information:

■ The text of the SQL statement

See Also: Oracle Database PL/SQL Packages and Types Reference to 
learn about DBMS_MONITOR.DATABASE_TRACE_ENABLE



Using the SQL Trace Facility and TKPROF

Using Application Tracing Tools 21-13

■ The SQL Trace statistics in tabular form

■ The number of library cache misses for the parsing and execution of the statement.

■ The user initially parsing the statement.

■ The execution plan generated by EXPLAIN PLAN.

TKPROF also provides a summary of user level statements and recursive SQL calls for 
the trace file.

Syntax of TKPROF
TKPROF is run from the operating system prompt. The syntax is:

tkprof filename1 filename2 [waits=yes|no] [sort=option] [print=n]
    [aggregate=yes|no] [insert=filename3] [sys=yes|no] [table=schema.table]
    [explain=user/password] [record=filename4] [width=n]

The input and output files are the only required arguments. If you invoke TKPROF 
without arguments, then the tool displays online help. Use the arguments in 
Table 21–2 with TKPROF.

Table 21–2  TKPROF Arguments

Argument Description

filename1 Specifies the input file, a trace file containing statistics produced by the SQL Trace 
facility. This file can be either a trace file produced for a single session, or a file 
produced by concatenating individual trace files from multiple sessions. 

filename2 Specifies the file to which TKPROF writes its formatted output. 

WAITS Specifies whether to record summary for any wait events found in the trace file. 
Values are YES or NO. The default is YES.

SORT Sorts traced SQL statements in descending order of specified sort option before 
listing them into the output file. If multiple options are specified, then the output is 
sorted in descending order by the sum of the values specified in the sort options. If 
you omit this parameter, then TKPROF lists statements into the output file in order of 
first use. Sort options are listed as follows:

PRSCNT Number of times parsed.

PRSCPU CPU time spent parsing.

PRSELA Elapsed time spent parsing.

PRSDSK Number of physical reads from disk during parse.

PRSQRY Number of consistent mode block reads during parse. 

PRSCU Number of current mode block reads during parse.

PRSMIS Number of library cache misses during parse. 

EXECNT Number of executes.

EXECPU CPU time spent executing.

EXEELA Elapsed time spent executing.

EXEDSK Number of physical reads from disk during execute.

EXEQRY Number of consistent mode block reads during execute.

EXECU Number of current mode block reads during execute.

EXEROW Number of rows processed during execute.

EXEMIS Number of library cache misses during execute.



Using the SQL Trace Facility and TKPROF

21-14 Oracle Database Performance Tuning Guide

FCHCNT Number of fetches.

FCHCPU CPU time spent fetching.

FCHELA Elapsed time spent fetching.

FCHDSK Number of physical reads from disk during fetch.

FCHQRY Number of consistent mode block reads during fetch.

FCHCU Number of current mode block reads during fetch.

FCHROW Number of rows fetched.

USERID Userid of user that parsed the cursor.

PRINT Lists only the first integer sorted SQL statements from the output file. If you omit 
this parameter, then TKPROF lists all traced SQL statements. This parameter does not 
affect the optional SQL script. The SQL script always generates insert data for all 
traced SQL statements. 

AGGREGATE If you specify AGGREGATE = NO, then TKPROF does not aggregate multiple users of the 
same SQL text.

INSERT Creates a SQL script that stores the trace file statistics in the database. TKPROF creates 
this script with the name filename3. This script creates a table and inserts a row of 
statistics for each traced SQL statement into the table. 

SYS Enables and disables the listing of SQL statements issued by the user SYS, or 
recursive SQL statements, into the output file. The default value of YES causes 
TKPROF to list these statements. The value of NO causes TKPROF to omit them. This 
parameter does not affect the optional SQL script. The SQL script always inserts 
statistics for all traced SQL statements, including recursive SQL statements. 

TABLE Specifies the schema and name of the table into which TKPROF temporarily places 
execution plans before writing them to the output file. If the specified table exists, 
then TKPROF deletes all rows in the table, uses it for the EXPLAIN PLAN statement 
(which writes more rows into the table), and then deletes those rows. If this table 
does not exist, then TKPROF creates it, uses it, and then drops it. 

The specified user must be able to issue INSERT, SELECT, and DELETE statements 
against the table. If the table does not exist, then the user must also be able to issue 
CREATE TABLE and DROP TABLE statements. For the privileges to issue these 
statements, see the Oracle Database SQL Language Reference.

This option allows multiple individuals to run TKPROF concurrently with the same 
user in the EXPLAIN value. These individuals can specify different TABLE values and 
avoid destructively interfering with each other's processing on the temporary plan 
table. 

If you use the EXPLAIN parameter without the TABLE parameter, then TKPROF uses the 
table PROF$PLAN_TABLE in the schema of the user specified by the EXPLAIN 
parameter. If you use the TABLE parameter without the EXPLAIN parameter, then 
TKPROF ignores the TABLE parameter. 

If no plan table exists, TKPROF creates the table PROF$PLAN_TABLE and then drops it at 
the end.

Table 21–2 (Cont.) TKPROF Arguments

Argument Description



Using the SQL Trace Facility and TKPROF

Using Application Tracing Tools 21-15

Examples of TKPROF Statement
This section provides two brief examples of TKPROF usage. For an complete example of 
TKPROF output, see "Sample TKPROF Output" on page 21-24. 

TKPROF Example 1  If you are processing a large trace file using a combination of SORT 
parameters and the PRINT parameter, then you can produce a TKPROF output file 
containing only the highest resource-intensive statements. For example, the following 
statement prints the 10 statements in the trace file that have generated the most 
physical I/O:

TKPROF ora53269.trc ora53269.prf SORT = (PRSDSK, EXEDSK, FCHDSK) PRINT = 10

TKPROF Example 2  This example runs TKPROF, accepts a trace file named 
examp12_jane_fg_sqlplus_007.trc, and writes a formatted output file named 
outputa.prf:

TKPROF examp12_jane_fg_sqlplus_007.trc OUTPUTA.PRF
EXPLAIN=scott/tiger TABLE=scott.temp_plan_table_a INSERT=STOREA.SQL SYS=NO
SORT=(EXECPU,FCHCPU)

This example is likely to be longer than a single line on the screen, and you might need 
to use continuation characters, depending on the operating system. 

Note the other parameters in this example: 

■ The EXPLAIN value causes TKPROF to connect as the user scott and use the EXPLAIN 
PLAN statement to generate the execution plan for each traced SQL statement. You 
can use this to get access paths and row source counts.

■ The TABLE value causes TKPROF to use the table temp_plan_table_a in the schema 
scott as a temporary plan table. 

■ The INSERT value causes TKPROF to generate a SQL script named STOREA.SQL that 
stores statistics for all traced SQL statements in the database. 

■ The SYS parameter with the value of NO causes TKPROF to omit recursive SQL 
statements from the output file. In this way, you can ignore internal Oracle 
Database statements such as temporary table operations.

EXPLAIN Determines the execution plan for each SQL statement in the trace file and writes 
these execution plans to the output file. TKPROF determines execution plans by 
issuing the EXPLAIN PLAN statement after connecting to Oracle Database with the 
user and password specified in this parameter. The specified user must have CREATE 
SESSION system privileges. TKPROF takes longer to process a large trace file if the 
EXPLAIN option is used.

RECORD Creates a SQL script with the specified filename4 with all of the nonrecursive SQL 
in the trace file. You can use this script to replay the user events from the trace file.

WIDTH An integer that controls the output line width of some TKPROF output, such as the 
explain plan. This parameter is useful for post-processing of TKPROF output.

Note: If the cursor for a SQL statement is not closed, then TKPROF 
output does not automatically include the actual execution plan of 
the SQL statement. In this situation, you can use the EXPLAIN option 
with TKPROF to generate an execution plan.

Table 21–2 (Cont.) TKPROF Arguments

Argument Description



Using the SQL Trace Facility and TKPROF

21-16 Oracle Database Performance Tuning Guide

■ The SORT value causes TKPROF to sort the SQL statements in order of the sum of the 
CPU time spent executing and the CPU time spent fetching rows before writing 
them to the output file. For greatest efficiency, always use SORT parameters.

Step 4: Interpreting TKPROF Output
This section provides pointers for interpreting TKPROF output. 

■ Tabular Statistics in TKPROF

■ Row Source Operations

■ Wait Event Information

■ Interpreting the Resolution of Statistics

■ Understanding Recursive Calls

■ Library Cache Misses in TKPROF

■ Statement Truncation in SQL Trace

■ Identification of User Issuing the SQL Statement in TKPROF

■ Execution Plan in TKPROF

■ Deciding Which Statements to Tune

While TKPROF provides a very useful analysis, the most accurate measure of efficiency 
is the actual performance of the application in question. At the end of the TKPROF 
output is a summary of the work done in the database engine by the process during 
the period that the trace was running. 

Tabular Statistics in TKPROF
TKPROF lists the statistics for a SQL statement returned by the SQL Trace facility in 
rows and columns. Each row corresponds to one of three steps of SQL statement 
processing. Statistics are identified by the value of the CALL column. See Table 21–3.

The other columns of the SQL Trace facility output are combined statistics for all 
parses, all executes, and all fetches of a statement. The sum of query and current is the 
total number of buffers accessed, also called Logical I/Os (LIOs). See Table 21–4.

Table 21–3  CALL Column Values

CALL Value Meaning

PARSE Translates the SQL statement into an execution plan, including 
checks for proper security authorization and checks for the 
existence of tables, columns, and other referenced objects. 

EXECUTE Actual execution of the statement by Oracle. For INSERT, UPDATE, 
and DELETE statements, this modifies the data. For SELECT 
statements, this identifies the selected rows.

FETCH Retrieves rows returned by a query. Fetches are only performed for 
SELECT statements.

Table 21–4  SQL Trace Statistics for Parses, Executes, and Fetches.

SQL Trace Statistic Meaning

COUNT Number of times a statement was parsed, executed, or fetched. 



Using the SQL Trace Facility and TKPROF

Using Application Tracing Tools 21-17

Statistics about the processed rows appear in the ROWS column. See Table 21–5.

For SELECT statements, the number of rows returned appears for the fetch step. For 
UPDATE, DELETE, and INSERT statements, the number of rows processed appears for the 
execute step. 

Row Source Operations
Row source operations provide the number of rows processed for each operation 
executed on the rows and additional row source information, such as physical reads 
and writes. The following is a sample:

Rows     Row Source Operation
-------  ---------------------------------------------------
      0  DELETE  (cr=43141 r=266947 w=25854 time=60235565 us)
  28144   HASH JOIN ANTI (cr=43057 r=262332 w=25854 time=48830056 us)
  51427    TABLE ACCESS FULL STATS$SQLTEXT (cr=3465 r=3463 w=0 time=865083 us)
 647529    INDEX FAST FULL SCAN STATS$SQL_SUMMARY_PK 
                      (cr=39592 r=39325 w=0 time=10522877 us) (object id 7409)

In this sample TKPROF output, note the following under the Row Source Operation 
column:

■ cr specifies consistent reads performed by the row source

CPU Total CPU time in seconds for all parse, execute, or fetch calls for 
the statement. This value is zero (0) if TIMED_STATISTICS is not 
turned on.

ELAPSED Total elapsed time in seconds for all parse, execute, or fetch calls for 
the statement. This value is zero (0) if TIMED_STATISTICS is not 
turned on.

DISK Total number of data blocks physically read from the data files on 
disk for all parse, execute, or fetch calls.

QUERY Total number of buffers retrieved in consistent mode for all parse, 
execute, or fetch calls. Usually, buffers are retrieved in consistent 
mode for queries. 

CURRENT Total number of buffers retrieved in current mode. Buffers are 
retrieved in current mode for statements such as INSERT, UPDATE, 
and DELETE. 

Table 21–5  SQL Trace Statistics for the ROWS Column

SQL Trace Statistic Meaning

ROWS Total number of rows processed by the SQL statement. This total 
does not include rows processed by subqueries of the SQL 
statement.

Note: The row source counts are displayed when a cursor is 
closed. In SQL*Plus, there is only one user cursor, so each statement 
executed causes the previous cursor to be closed; therefore, the row 
source counts are displayed. PL/SQL has its own cursor handling 
and does not close child cursors when the parent cursor is closed. 
Exiting (or reconnecting) causes the counts to be displayed. 

Table 21–4 (Cont.) SQL Trace Statistics for Parses, Executes, and Fetches.

SQL Trace Statistic Meaning



Using the SQL Trace Facility and TKPROF

21-18 Oracle Database Performance Tuning Guide

■ r specifies physical reads performed by the row source

■ w specifies physical writes performed by the row source

■ time specifies time in microseconds

Wait Event Information
If wait event information exists, then the TKPROF output includes a section similar to 
the following:

Elapsed times include waiting on following events:
  Event waited on                             Times   Max. Wait  Total Waited
  ----------------------------------------   Waited  ----------  ------------
  db file sequential read                      8084        0.12          5.34
  direct path write                             834        0.00          0.00
  direct path write temp                        834        0.00          0.05
  db file parallel read                           8        1.53          5.51
  db file scattered read                       4180        0.07          1.45
  direct path read                             7082        0.00          0.05
  direct path read temp                        7082        0.00          0.44
  rdbms ipc reply                                20        0.00          0.01
  SQL*Net message to client                       1        0.00          0.00
  SQL*Net message from client                     1        0.00          0.00

In addition, wait events are summed for the entire trace file at the end of the file.

To ensure that wait events information is written to the trace file for the session, run 
the following SQL statement:

ALTER SESSION SET EVENTS '10046 trace name context forever, level 8';

Interpreting the Resolution of Statistics
Timing statistics have a resolution of one hundredth of a second; therefore, any 
operation on a cursor that takes a hundredth of a second or less might not be timed 
accurately. Keep this in mind when interpreting statistics. In particular, be careful 
when interpreting the results from simple queries that execute very quickly. 

Understanding Recursive Calls
Sometimes, to execute a SQL statement issued by a user, Oracle Database must issue 
additional statements. Such statements are called recursive calls or recursive SQL 
statements. For example, if you insert a row into a table that does not have enough 
space to hold that row, then Oracle Database makes recursive calls to allocate the space 
dynamically. Recursive calls are also generated when data dictionary information is 
not available in the data dictionary cache and must be retrieved from disk.

If recursive calls occur while the SQL Trace facility is enabled, then TKPROF produces 
statistics for the recursive SQL statements and marks them clearly as recursive SQL 
statements in the output file. You can suppress the listing of Oracle Database internal 
recursive calls (for example, space management) in the output file by setting the SYS 
command-line parameter to NO. The statistics for a recursive SQL statement are 
included in the listing for that statement, not in the listing for the SQL statement that 
caused the recursive call. So, when you are calculating the total resources required to 
process a SQL statement, consider the statistics for that statement and those for 
recursive calls caused by that statement. 

Note: Recursive SQL statistics are not included for SQL-level 
operations.



Using the SQL Trace Facility and TKPROF

Using Application Tracing Tools 21-19

Library Cache Misses in TKPROF
TKPROF also lists the number of library cache misses resulting from parse and execute 
steps for each SQL statement. These statistics appear on separate lines following the 
tabular statistics. If the statement resulted in no library cache misses, then TKPROF does 
not list the statistic. In "Sample TKPROF Output" on page 21-12, the statement resulted 
in one library cache miss for the parse step and no misses for the execute step. 

Statement Truncation in SQL Trace
The following SQL statements are truncated to 25 characters in the SQL Trace file:

SET ROLE
GRANT
ALTER USER
ALTER ROLE
CREATE USER
CREATE ROLE

Identification of User Issuing the SQL Statement in TKPROF
TKPROF also lists the user ID of the user issuing each SQL statement. If the SQL Trace 
input file contained statistics from multiple users, and if the statement was issued by 
multiple users, then TKPROF lists the ID of the last user to parse the statement. The user 
ID of all database users appears in the data dictionary in the column 
ALL_USERS.USER_ID. 

Execution Plan in TKPROF
If you specify the EXPLAIN parameter on the TKPROF statement line, then TKPROF uses 
the EXPLAIN PLAN statement to generate the execution plan of each SQL statement 
traced. TKPROF also displays the number of rows processed by each step of the 
execution plan.

Deciding Which Statements to Tune
You need to find which SQL statements use the most CPU or disk resource. If the 
TIMED_STATISTICS parameter is on, then you can find high CPU activity in the CPU 
column. If TIMED_STATISTICS is not on, then check the QUERY and CURRENT columns.

With the exception of locking problems and inefficient PL/SQL loops, neither the CPU 
time nor the elapsed time is necessary to find problem statements. The key is the 
number of block visits, both query (that is, subject to read consistency) and current 
(that is, not subject to read consistency). Segment headers and blocks that are going to 
be updated are acquired in current mode, but all query and subquery processing 

Note: Trace files generated immediately after instance startup 
contain data that reflects the activity of the startup process. In 
particular, they reflect a disproportionate amount of I/O activity as 
caches in the system global area (SGA) are filled. For the purposes 
of tuning, ignore such trace files. 

See Also: Chapter 12, "Using EXPLAIN PLAN" for more 
information on interpreting execution plans

See Also: "Examples of TKPROF Statement" on page 21-15 for 
examples of finding resource intensive statements



Using the SQL Trace Facility and TKPROF

21-20 Oracle Database Performance Tuning Guide

requests the data in query mode. These are precisely the same measures as the instance 
statistics CONSISTENT GETS and DB BLOCK GETS. You can find high disk activity in the 
disk column.

The following listing shows TKPROF output for one SQL statement as it appears in the 
output file:

SELECT * 
FROM emp, dept 
WHERE emp.deptno = dept.deptno;

call   count      cpu    elapsed     disk    query current    rows
---- -------  -------  --------- -------- -------- -------  ------
Parse     11     0.08      0.18        0       0       0         0
Execute   11     0.23      0.66        0       3       6         0
Fetch     35     6.70      6.83      100   12326       2       824
------------------------------------------------------------------
total     57     7.01      7.67      100   12329       8       826

Misses in library cache during parse: 0 

If it is acceptable to have 7.01 CPU seconds and to retrieve 824 rows, then you need not 
look any further at this trace output. In fact, a major use of TKPROF reports in a tuning 
exercise is to eliminate processes from the detailed tuning phase.

You can also see that 10 unnecessary parse call were made (because there were 11 
parse calls for this one statement) and that array fetch operations were performed. You 
know this because more rows were fetched than there were fetches performed. A large 
gap between CPU and elapsed timings indicates Physical I/Os (PIOs). 

Step 5: Storing SQL Trace Facility Statistics
You might want to keep a history of the statistics generated by the SQL Trace facility 
for an application, and compare them over time. TKPROF can generate a SQL script that 
creates a table and inserts rows of statistics into it. This script contains:

■ A CREATE TABLE statement that creates an output table named TKPROF_TABLE. 

■ INSERT statements that add rows of statistics, one for each traced SQL statement, 
to the TKPROF_TABLE.

After running TKPROF, you can run this script to store the statistics in the database. 

Generating the TKPROF Output SQL Script 
When you run TKPROF, use the INSERT parameter to specify the name of the generated 
SQL script. If you omit this parameter, then TKPROF does not generate a script. 

Editing the TKPROF Output SQL Script
After TKPROF has created the SQL script, you might want to edit the script before 
running it. If you have created an output table for previously collected statistics, and if 
you want to add new statistics to this table, then remove the CREATE TABLE statement 
from the script. The script then inserts the new rows into the existing table. 

If you have created multiple output tables, perhaps to store statistics from different 
databases in different tables, then edit the CREATE TABLE and INSERT statements to 
change the name of the output table. 



Using the SQL Trace Facility and TKPROF

Using Application Tracing Tools 21-21

Querying the Output Table
The following CREATE TABLE statement creates the TKPROF_TABLE: 

CREATE TABLE TKPROF_TABLE (
DATE_OF_INSERT    DATE,
CURSOR_NUM        NUMBER,
DEPTH             NUMBER,
USER_ID           NUMBER,
PARSE_CNT         NUMBER,
PARSE_CPU         NUMBER,
PARSE_ELAP        NUMBER,
PARSE_DISK        NUMBER,
PARSE_QUERY       NUMBER,
PARSE_CURRENT     NUMBER,
PARSE_MISS        NUMBER,
EXE_COUNT         NUMBER,
EXE_CPU           NUMBER,
EXE_ELAP          NUMBER,
EXE_DISK          NUMBER,
EXE_QUERY         NUMBER,
EXE_CURRENT       NUMBER,
EXE_MISS          NUMBER,
EXE_ROWS          NUMBER,
FETCH_COUNT       NUMBER,
FETCH_CPU         NUMBER,
FETCH_ELAP        NUMBER,
FETCH_DISK        NUMBER,
FETCH_QUERY       NUMBER,
FETCH_CURRENT     NUMBER,
FETCH_ROWS        NUMBER,
CLOCK_TICKS       NUMBER,
SQL_STATEMENT     LONG);

Most output table columns correspond directly to the statistics that appear in the 
formatted output file. For example, the PARSE_CNT column value corresponds to the 
count statistic for the parse step in the output file. 

The columns in Table 21–6 help you identify a row of statistics.

Table 21–6  TKPROF_TABLE Columns for Identifying a Row of Statistics

Column Description

SQL_STATEMENT This is the SQL statement for which the SQL Trace facility collected 
the row of statistics. Because this column has data type LONG, you 
cannot use it in expressions or WHERE clause conditions. 

DATE_OF_INSERT This is the date and time when the row was inserted into the table. 
This value is not exactly the same as the time the statistics were 
collected by the SQL Trace facility. 

DEPTH This indicates the level of recursion at which the SQL statement 
was issued. For example, a value of 0 indicates that a user issued 
the statement. A value of 1 indicates that Oracle Database 
generated the statement as a recursive call to process a statement 
with a value of 0 (a statement issued by a user). A value of n 
indicates that Oracle Database generated the statement as a 
recursive call to process a statement with a value of n-1. 

USER_ID This identifies the user issuing the statement. This value also 
appears in the formatted output file. 

CURSOR_NUM Oracle database uses this column value to keep track of the cursor 
to which each SQL statement was assigned. 



Avoiding Pitfalls in TKPROF Interpretation

21-22 Oracle Database Performance Tuning Guide

The output table does not store the statement's execution plan. The following query 
returns the statistics from the output table. These statistics correspond to the formatted 
output shown in the section "Sample TKPROF Output" on page 21-12. 

SELECT * FROM TKPROF_TABLE;

Oracle Database responds with something similar to: 

DATE_OF_INSERT CURSOR_NUM DEPTH USER_ID PARSE_CNT PARSE_CPU PARSE_ELAP
-------------- ---------- ----- ------- --------- --------- ---------- 
21-DEC-1998          1      0     8         1        16         22

PARSE_DISK PARSE_QUERY PARSE_CURRENT PARSE_MISS EXE_COUNT EXE_CPU 
---------- ----------- ------------- ---------- --------- ------- 
    3          11           0            1           1         0 

EXE_ELAP EXE_DISK EXE_QUERY EXE_CURRENT EXE_MISS EXE_ROWS FETCH_COUNT 
-------- -------- --------- ----------- -------- -------- ----------- 
    0        0        0          0          0        0         1 

FETCH_CPU FETCH_ELAP FETCH_DISK FETCH_QUERY FETCH_CURRENT FETCH_ROWS 
--------- ---------- ---------- ----------- ------------- ---------- 
     2        20          2          2            4           10 

SQL_STATEMENT 
---------------------------------------------------------------------
SELECT * FROM EMP, DEPT WHERE EMP.DEPTNO = DEPT.DEPTNO 

Avoiding Pitfalls in TKPROF Interpretation
This section describes some fine points of TKPROF interpretation:

■ Avoiding the Argument Trap

■ Avoiding the Read Consistency Trap

■ Avoiding the Schema Trap

■ Avoiding the Time Trap

Avoiding the Argument Trap
If you are not aware of the values being bound at run time, then it is possible to fall 
into the argument trap. EXPLAIN PLAN cannot determine the type of a bind variable 
from the text of SQL statements, and it always assumes that the type is varchar. If the 
bind variable is actually a number or a date, then TKPROF can cause implicit data 
conversions, which can cause inefficient plans to be executed. To avoid this situation, 
experiment with different data types in the query.

To avoid this problem, perform the conversion yourself.

Avoiding the Read Consistency Trap
The next example illustrates the read consistency trap. Without knowing that an 
uncommitted transaction had made a series of updates to the NAME column, it is very 
difficult to see why so many block visits would be incurred.

See Also: "EXPLAIN PLAN Restrictions" on page 12-4 for 
information about TKPROF and bind variables



Avoiding Pitfalls in TKPROF Interpretation

Using Application Tracing Tools 21-23

Cases like this are not normally repeatable: if the process were run again, it is unlikely 
that another transaction would interact with it in the same way.

SELECT name_id
FROM cq_names 
WHERE name = 'FLOOR';

call     count     cpu     elapsed     disk     query current     rows
----     -----     ---     -------     ----     ----- -------     ----
Parse        1    0.10        0.18        0         0       0        0
Execute      1    0.00        0.00        0         0       0        0
Fetch        1    0.11        0.21        2       101       0        1

Misses in library cache during parse: 1
Parsing user id: 01 (USER1)

Rows     Execution Plan
----     --------- ----
   0     SELECT STATEMENT
   1       TABLE ACCESS (BY ROWID) OF 'CQ_NAMES'
   2         INDEX (RANGE SCAN) OF 'CQ_NAMES_NAME' (NON_UNIQUE) 

Avoiding the Schema Trap
This example shows an extreme (and thus easily detected) example of the schema trap. 
At first, it is difficult to see why such an apparently straightforward indexed query 
needs to look at so many database blocks, or why it should access any blocks at all in 
current mode.

SELECT name_id
FROM cq_names 
WHERE name = 'FLOOR';

call        count        cpu      elapsed     disk  query current rows
--------  -------   --------    ---------  ------- ------ ------- ----
Parse           1       0.06         0.10        0      0       0    0
Execute         1       0.02         0.02        0      0       0    0 
Fetch           1       0.23         0.30       31     31       3    1

Misses in library cache during parse: 0
Parsing user id: 02  (USER2)

Rows     Execution Plan
-------  ---------------------------------------------------
      0  SELECT STATEMENT
   2340    TABLE ACCESS (BY ROWID) OF 'CQ_NAMES'
      0      INDEX (RANGE SCAN) OF 'CQ_NAMES_NAME' (NON-UNIQUE)

Two statistics suggest that the query might have been executed with a full table scan. 
These statistics are the current mode block visits, plus the number of rows originating 
from the Table Access row source in the execution plan. The explanation is that the 
required index was built after the trace file had been produced, but before TKPROF had 
been run. 

Generating a new trace file gives the following data:

SELECT name_id
FROM cq_names 
WHERE name = 'FLOOR'; 

call    count    cpu   elapsed  disk  query current     rows



Sample TKPROF Output

21-24 Oracle Database Performance Tuning Guide

-----  ------ ------  -------- ----- ------ -------    -----
Parse       1   0.01      0.02     0      0       0        0
Execute     1   0.00      0.00     0      0       0        0
Fetch       1   0.00      0.00     0      2       0        1

Misses in library cache during parse: 0
Parsing user id: 02  (USER2)

Rows     Execution Plan
-------  ---------------------------------------------------
      0  SELECT STATEMENT
      1    TABLE ACCESS (BY ROWID) OF 'CQ_NAMES'
      2      INDEX (RANGE SCAN) OF 'CQ_NAMES_NAME' (NON-UNIQUE)

One of the marked features of this correct version is that the parse call took 10 
milliseconds of CPU time and 20 milliseconds of elapsed time, but the query 
apparently took no time at all to execute and perform the fetch. These anomalies arise 
because the clock tick of 10 milliseconds is too long relative to the time taken to 
execute and fetch the data. In such cases, it is important to get lots of executions of the 
statements, so that you have statistically valid numbers.

Avoiding the Time Trap
Sometimes, as in the following example, you might wonder why a particular query 
has taken so long.

UPDATE cq_names SET ATTRIBUTES = lower(ATTRIBUTES)
WHERE ATTRIBUTES = :att 

call       count       cpu    elapsed     disk    query current        rows
-------- -------  --------  --------- -------- -------- -------  ----------
Parse          1      0.06       0.24        0        0       0           0
Execute        1      0.62      19.62       22      526      12           7
Fetch          0      0.00       0.00        0        0       0           0

Misses in library cache during parse: 1
Parsing user id: 02  (USER2)

Rows     Execution Plan
-------  ---------------------------------------------------
      0  UPDATE STATEMENT
  2519  TABLE ACCESS (FULL) OF 'CQ_NAMES'

Again, the answer is interference from another transaction. In this case, another 
transaction held a shared lock on the table cq_names for several seconds before and 
after the update was issued. It takes a fair amount of experience to diagnose that 
interference effects are occurring. On the one hand, comparative data is essential when 
the interference is contributing only a short delay (or a small increase in block visits in 
the previous example). However, if the interference contributes only modest overhead, 
and if the statement is essentially efficient, then its statistics may not require analysis.

Sample TKPROF Output
This section provides an example of TKPROF output. Portions have been edited out for 
the sake of brevity.



Sample TKPROF Output

Using Application Tracing Tools 21-25

Sample TKPROF Header
TKPROF: Release 10.1.0.0.0 - Mon Feb 10 14:43:00 2003

(c) Copyright 2001 Oracle Corporation.  All rights reserved.

Trace file: main_ora_27621.trc
Sort options: default

********************************************************************************
count    = number of times OCI procedure was executed
cpu      = cpu time in seconds executing 
elapsed  = elapsed time in seconds executing
disk     = number of physical reads of buffers from disk
query    = number of buffers gotten for consistent read
current  = number of buffers gotten in current mode (usually for update)
rows     = number of rows processed by the fetch or execute call
********************************************************************************

Sample TKPROF Body
call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.01       0.00          0          0          0           0
Execute      1      0.00       0.00          0          0          0           0
Fetch        0      0.00       0.00          0          0          0           0
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total        2      0.01       0.00          0          0          0           0

Misses in library cache during parse: 1
Optimizer mode: FIRST_ROWS
Parsing user id: 44  

Elapsed times include waiting on following events:
  Event waited on                             Times   Max. Wait  Total Waited
  ----------------------------------------   Waited  ----------  ------------
  SQL*Net message to client                       1        0.00          0.00
  SQL*Net message from client                     1       28.59         28.59
********************************************************************************

select condition 
from
 cdef$ where rowid=:1

call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.00       0.00          0          0          0           0
Execute      1      0.00       0.00          0          0          0           0
Fetch        1      0.00       0.00          0          2          0           1
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total        3      0.00       0.00          0          2          0           1

Misses in library cache during parse: 1
Optimizer mode: CHOOSE
Parsing user id: SYS   (recursive depth: 1)

Rows     Row Source Operation
-------  ---------------------------------------------------
      1  TABLE ACCESS BY USER ROWID OBJ#(31) (cr=1 r=0 w=0 time=151 us)



Sample TKPROF Output

21-26 Oracle Database Performance Tuning Guide

********************************************************************************

SELECT last_name, job_id, salary
  FROM employees
WHERE salary =
  (SELECT max(salary) FROM employees)

call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.02       0.01          0          0          0           0
Execute      1      0.00       0.00          0          0          0           0
Fetch        2      0.00       0.00          0         15          0           1
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total        4      0.02       0.01          0         15          0           1

Misses in library cache during parse: 1
Optimizer mode: FIRST_ROWS
Parsing user id: 44  

Rows     Row Source Operation
-------  ---------------------------------------------------
      1  TABLE ACCESS FULL EMPLOYEES (cr=15 r=0 w=0 time=1743 us)
      1   SORT AGGREGATE (cr=7 r=0 w=0 time=777 us)
    107    TABLE ACCESS FULL EMPLOYEES (cr=7 r=0 w=0 time=655 us)

Elapsed times include waiting on following events:
  Event waited on                             Times   Max. Wait  Total Waited
  ----------------------------------------   Waited  ----------  ------------
  SQL*Net message to client                       2        0.00          0.00
  SQL*Net message from client                     2        9.62          9.62
********************************************************************************

********************************************************************************
 delete
         from stats$sqltext st
        where (hash_value, text_subset) not in
             (select --+ hash_aj
                     hash_value, text_subset
                from stats$sql_summary ss
               where (   (   snap_id     < :lo_snap
                          or snap_id     > :hi_snap
                         )
                         and dbid            = :dbid
                         and instance_number = :inst_num
                     )
                  or (   dbid            != :dbid
                      or instance_number != :inst_num)
              )

call     count       cpu    elapsed       disk      query    current rows
------- ------  -------- ---------- ---------- ---------- ---------- ----------
Parse        1      0.00       0.00          0          0          0          0
Execute      1     29.60      60.68     266984      43776     131172      28144
Fetch        0      0.00       0.00          0          0          0          0
------- ------  -------- ---------- ---------- ---------- ---------- ----------
total        2     29.60      60.68     266984      43776     131172      28144

Misses in library cache during parse: 1
Misses in library cache during execute: 1
Optimizer mode: CHOOSE



Sample TKPROF Output

Using Application Tracing Tools 21-27

Parsing user id: 22

Rows     Row Source Operation
-------  ---------------------------------------------------
      0  DELETE  (cr=43141 r=266947 w=25854 time=60235565 us)
  28144   HASH JOIN ANTI (cr=43057 r=262332 w=25854 time=48830056 us)
  51427    TABLE ACCESS FULL STATS$SQLTEXT (cr=3465 r=3463 w=0 time=865083 us)
 647529    INDEX FAST FULL SCAN STATS$SQL_SUMMARY_PK 
                      (cr=39592 r=39325 w=0 time=10522877 us) (object id 7409)

Elapsed times include waiting on following events:
  Event waited on                             Times   Max. Wait  Total Waited
  ----------------------------------------   Waited  ----------  ------------
  db file sequential read                      8084        0.12          5.34
  direct path write                             834        0.00          0.00
  direct path write temp                        834        0.00          0.05
  db file parallel read                           8        1.53          5.51
  db file scattered read                       4180        0.07          1.45
  direct path read                             7082        0.00          0.05
  direct path read temp                        7082        0.00          0.44
  rdbms ipc reply                                20        0.00          0.01
  SQL*Net message to client                       1        0.00          0.00
  SQL*Net message from client                     1        0.00          0.00
********************************************************************************

Sample TKPROF Summary
OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS

call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        4      0.04       0.01          0          0          0           0
Execute      5      0.00       0.04          0          0          0           0
Fetch        2      0.00       0.00          0         15          0           1
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total       11      0.04       0.06          0         15          0           1

Misses in library cache during parse: 4
Misses in library cache during execute: 1
Elapsed times include waiting on following events:
  Event waited on                             Times   Max. Wait  Total Waited
  ----------------------------------------   Waited  ----------  ------------
  SQL*Net message to client                       6        0.00          0.00
  SQL*Net message from client                     5       77.77        128.88

OVERALL TOTALS FOR ALL RECURSIVE STATEMENTS

call     count       cpu    elapsed       disk      query    current        rows
------- ------  -------- ---------- ---------- ---------- ----------  ----------
Parse        1      0.00       0.00          0          0          0           0
Execute      1      0.00       0.00          0          0          0           0
Fetch        1      0.00       0.00          0          2          0           1
------- ------  -------- ---------- ---------- ---------- ----------  ----------
total        3      0.00       0.00          0          2          0           1

Misses in library cache during parse: 1
    5  user  SQL statements in session.
    1  internal SQL statements in session.
    6  SQL statements in session.
********************************************************************************



Sample TKPROF Output

21-28 Oracle Database Performance Tuning Guide

Trace file: main_ora_27621.trc
Trace file compatibility: 9.00.01
Sort options: default
       1  session in tracefile.
       5  user  SQL statements in trace file.
       1  internal SQL statements in trace file.
       6  SQL statements in trace file.
       6  unique SQL statements in trace file.
      76  lines in trace file.
     128  elapsed seconds in trace file.



Glossary-1

Glossary

access path

The means by which data is retrieved from a database. For example, a query using an 
index and a query using a full table scan use different access paths.

asynchronous I/O

Independent I/O, in which there is no timing requirement for transmission, and other 
processes can start before the transmission has finished.

Automatic Workload Repository

Collects, processes, and maintains performance statistics for problem detection and 
self-tuning purposes.

Autotrace

Generates a report on the execution path used by the SQL optimizer and the statement 
execution statistics. The report is useful to monitor and tune the performance of DML 
statements.

bind variable 

A variable in a SQL statement that must be replaced with a valid value, or the address 
of a value, in order for the statement to successfully execute. 

block

A unit of data transfer between main memory and disk. Many blocks from one section 
of memory address space form a segment. 

bottleneck

The delay in transmission of data, typically when a system's bandwidth cannot 
support the amount of information being relayed at the speed it is being processed. 
However, many factors can create a bottleneck in a system. 

buffer

A main memory address where the buffer manager caches currently and recently used 
data read from disk. Over time, a buffer can hold different blocks. When a new block is 
needed, the buffer manager can discard an old block and replace it with a new one.

buffer pool

A collection of buffers.

cache

Also known as buffer cache. All buffers and buffer pools. 



cache recovery

Glossary-2

cache recovery

The part of instance recovery where Oracle Database applies all committed and 
uncommitted changes in the redo log files to the affected data blocks. Also known as 
the rolling forward phase of instance recovery.

Cartesian product

A join with no join condition results in a Cartesian product, or a cross product. A 
Cartesian product is the set of all possible combinations of rows drawn one from each 
table. Thus, for a join of two tables, each row in one table is matched in turn with 
every row in the other. A Cartesian product for more than two tables is the result of 
pairing each row of one table with every row of the Cartesian product of the remaining 
tables. All other types of joins are subsets of Cartesian products effectively created by 
deriving the product and then excluding rows that fail the join condition.

compound query

A query that uses set operators (UNION, UNION ALL, INTERSECT, or MINUS) to combine 
two or more simple or complex statements. Each simple or complex statement in a 
compound query is called a component query. 

contention

When some process has to wait for a resource that another process is using. 

dictionary cache

A collection of database tables and views containing reference information about the 
database, its structures, and its users. Oracle Database accesses the data dictionary 
frequently during the parsing of SQL statements. Two special locations in memory are 
designated to hold dictionary data. One area is called the data dictionary cache, also 
known as the row cache because it holds data as rows instead of buffers (which hold 
entire blocks of data). The other area is the library cache. All Oracle processes share 
these two caches for access to data dictionary information. 

direct I/O

I/O which bypasses the buffer cache. See "PIO" on page Glossary-5.

distributed statement

A statement that accesses data on two or more distinct nodes/instances of a 
distributed database. A remote statement accesses data on one remote node of a 
distributed database. 

dynamic performance views

The views database administrators create on dynamic performance tables (virtual 
tables that record current database activity). Dynamic performance views are called 
fixed views because they cannot be altered or removed by the database administrator. 

dynamic statistics

An optimization technique in which the database executes a recursive SQL statement 
to scan a small random sample of a table's blocks to estimate predicate selectivities.

enqueue 

This is another term for a lock.

equijoin

A join condition containing an equality operator.



latch

Glossary-3

estimator

Uses statistics to estimate the selectivity, cardinality, and cost of execution plans. The 
main goal of the estimator is to estimate the overall cost of an execution plan.

execution plan

The combination of steps used by the database to execute a SQL statement. Each step 
either retrieves rows of data physically from the database or prepares them for the 
user issuing the statement. You can override execution plans by using hints.

EXPLAIN PLAN

A SQL statement that enables examination of the execution plan chosen by the 
optimizer for DML statements. EXPLAIN PLAN causes the optimizer to choose an 
execution plan and then to put data describing the plan into a database table. 

fast full index scan

A full index scan in which the database reads the index blocks in no particular order. 
The database accesses the data in the index itself, without accessing the table.

full index scan

A scan of an index in which the database reads the entire index in order.

full table scan

A scan of table data in which the database sequentially reads all rows from a table and 
filters out those that do not meet the selection criteria. During full table scans the 
database scans all data blocks under the high water mark.

hash join

A join in which the database uses the smaller of two tables or data sources to build a 
hash table in memory. In hash joins, the database scans the larger table, probing the 
hash table for the addresses of the matching rows in the smaller table.

hint

An instruction passed to the optimizer through comments in a SQL statement. The 
optimizer uses hints to choose an execution plan for the statement.

index clustering factor

A measure of the row order in relation to an indexed value such as last name. The 
more order that exists in row storage for this value, the lower the clustering factor.

instance recovery

The automatic application of redo log records to data blocks after a database failure.

join

A query that selects data from multiple tables. A join is characterized by multiple 
tables in the FROM clause. Oracle Database pairs the rows from these tables using the 
condition specified in the WHERE clause and returns the resulting rows. This condition 
is called the join condition and usually compares columns of all the joined tables. 

latch

A simple, low-level serialization mechanism to protect shared data structures in the 
System Global Area.



library cache

Glossary-4

library cache

A memory structure containing shared SQL and PL/SQL areas. The library cache is 
one of three parts of the shared pool. 

LIO

Logical I/O. A block read which may or may not be satisfied from the buffer cache. 

literal

A constant value, written at compile-time and read-only at run-time. The database can 
access literals quickly and uses them when modification is not necessary.

mirroring

Maintaining identical copies of data on one or more disks. Typically, mirroring occurs 
on duplicate hard disks at the operating system level, so that if one disk becomes 
unavailable, the other disk can service requests without interruptions.

MTBF

Mean time between failures. A common database statistic important to tuning I/O. 

nonequijoin

A join condition containing something other than an equality operator. 

optimizer

Built-in database software that determines the most efficient way to execute a SQL 
statement. The query optimizer is made up of the query transformer, the estimator, 
and the plan generator.

The optimizer generates a set of potential execution plans for SQL statements, 
estimates the cost of each plan, calls the plan generator to generate the plan, compares 
the costs, and chooses the plan with the lowest cost. The database uses this approach 
when the data dictionary has statistics for at least one of the tables accessed by the SQL 
statements.

optimizer mode

The optimizer operates in either normal mode or tuning mode. In normal mode, the 
optimizer compiles the SQL and generates an execution plan. In tuning mode, the 
optimizer performs additional analysis and generates a series of actions, along with 
their rationale and expected benefit for producing a significantly better plan. When 
running in tuning mode, the optimizer is known as the Automatic Tuning Optimizer.

outer join

A join condition using the outer join operator (+) with one or more columns of one of 
the tables. Oracle Database returns all rows that meet the join condition. Oracle 
Database also returns all rows from the table without the outer join operator for which 
there are no matching rows in the table with the outer join operator. 

paging

A technique for increasing the memory space available by moving infrequently-used 
parts of a program's working memory from main memory to a secondary storage 
medium, usually a disk. The unit of transfer is called a page.

parse 

A hard parse occurs when a SQL statement is executed, and the SQL statement is 
either not in the shared pool, or it is in the shared pool but it cannot be shared. A SQL 



row source generator

Glossary-5

statement is not shared if the metadata for the two SQL statements is different. This 
can happen if a SQL statement is textually identical as a preexisting SQL statement, 
but the tables referred to in the two statements resolve to physically different tables, or 
if the optimizer environment is different. 

A soft parse occurs when a session attempts to execute a SQL statement, and the 
statement is in the shared pool, and it can be used (that is, shared). For a statement to 
be shared, all data, (including metadata, such as the optimizer execution plan) 
pertaining to the existing SQL statement must be equally applicable to the current 
statement being issued. 

parse call 

A call to Oracle Database to prepare a SQL statement for execution. This includes 
syntactically checking the SQL statement, optimizing it, and building (or locating) an 
executable form of that statement. 

parser

Performs syntax analysis and semantic analysis of SQL statements, and expands views 
(referenced in a query) into separate query blocks.

PGA

Program Global Area. A nonshared memory region that contains data and control 
information for a server process, created when the server process is started.

PIO

Physical I/O. A block read which could not be satisfied from the buffer cache, either 
because the block was not present or because the I/O is a direct I/O which bypasses 
the buffer cache. 

plan generator

Tries out different possible plans for a given query so that the query optimizer can 
choose the plan with the lowest cost. It explores different plans for a query block by 
trying out different access paths, join methods, and join orders.

predicate 

A WHERE condition in SQL.

query optimizer

See optimizer.

query transformer

Decides whether to rewrite a user query to generate a better query plan, merges views, 
and performs subquery unnesting. 

RAID

Redundant arrays of inexpensive disks. RAID configurations provide improved data 
reliability with the option of striping (manually distributing data). Different RAID 
configurations (levels) are chosen based on performance and cost, and are suited to 
different types of applications, depending on their I/O characteristics.

row source generator

Receives the optimal plan from the optimizer and outputs the execution plan for the 
SQL statement. A row source is an iterative control structure that processes a set of 
rows in an iterated manner and produces a row set.



segment

Glossary-6

segment

A set of extents allocated for a specific type of database object, such as a table, index, 
or cluster.

selectivity

In a query, the measure of how many rows from a row set pass a predicate test, for 
example, WHERE last_name = 'Smith'.

simple query

A SELECT statement that references only one table and does not make reference to 
GROUP BY functions.

simple statement

An INSERT, UPDATE, DELETE, or SELECT statement that involves only a single table. 

SGA

System Global Area. A memory region within main memory used to store data for fast 
access. Oracle database uses the shared pool to allocate SGA memory for shared SQL 
and PL/SQL procedures.

skewed data

Values with large variations in the number of duplicates.

SQL Compiler

Compiles SQL statements into a shared cursor. The SQL Compiler is made up of the 
parser, the optimizer, and the row source generator.

SQL profile

A collection of information that enables the query optimizer to create an optimal 
execution plan for a SQL statement.

SQL statements (identical)

Textually identical SQL statements do not differ in any way. 

SQL statements (similar)

Similar SQL statements differ only due to changing literal values. If literal values were 
replaced with bind variables, then the SQL statements would be textually identical. 

SQL Trace

A basic performance diagnostic tool to help monitor and tune applications running 
against the Oracle database. SQL Trace lets you assess the efficiency of the SQL 
statements an application runs and generates statistics for each statement. The trace 
files produced by this tool serve as input for TKPROF.

SQL tuning set (STS)

A database object that includes one or more SQL statements along with their execution 
statistics and execution context.

SQL*Loader

Reads and interprets input files. Use this tool to load large amounts of data.



work area

Glossary-7

Statspack

A set of SQL, PL/SQL, and SQL*Plus scripts that allow the collection, automation, 
storage, and viewing of performance data. This feature has been replaced by the 
Automatic Workload Repository.

striping

The interleaving of a related block of data across disks. Proper striping reduces I/O 
and improves performance. 

■ Stripe depth is the size of the stripe, sometimes called stripe unit.

■ Stripe width is the product of the stripe depth and the number of drives in the 
striped set.

TKPROF

A diagnostic tool to help monitor and tune applications running against the Oracle 
database. TKPROF primarily processes SQL trace output files and translates them into 
readable output files, providing a summary of user-level statements and recursive SQL 
calls for the trace files. It can also assess the efficiency of SQL statements, generate 
execution plans, and create SQL scripts to store statistics in the database.

transaction recovery

The part of instance recovery where Oracle Database applies the rollback segments to 
undo the uncommitted changes. Also known as the rolling back phase of instance 
recovery.

UGA

User Global Area. A memory region in the large pool used for user sessions.

wait events

Statistics that are incremented by a server process/thread to indicate that it had to wait 
for an event to complete before being able to continue processing. Wait events are one 
of the first places for investigation when performing reactive performance tuning.

wait events (idle)

These events indicate that the server process is idle and waiting for work. Ignore these 
events when tuning because they do not indicate the nature of the performance 
bottleneck. 

work area

A private allocation of memory used for sorts, hash joins, and other operations that are 
memory-intensive. A sort operator uses a work area (the sort area) to perform the 
in-memory sort of a set of rows. Similarly, a hash-join operator uses a work area (the 
hash area) to build a hash table from its left input.



work area

Glossary-8



Index-1

Index

A
access paths

cluster scans, 11-21
defined, 11-34
execution plans, 11-32
hash scans, 11-21
index scans, 11-15

Active Session History, 5-3
report

activity over time, 5-41
load profile, 5-39
top events, 5-39
top files, 5-41
top Java, 5-40
top latches, 5-41
top objects, 5-41
top PL/SQL, 5-40
top sessions, 5-40
Top SQL, 5-40
using, 5-38

adaptive thresholds, 5-10
ALL_OUTLINE_HINTS view

stored outline hints, 20-6
ALL_OUTLINES view

stored outlines, 20-6
ALL_ROWS hint, 11-38
allocation of memory, 7-1
ALTER INDEX statement, 14-5
ALTER SESSION statement

examples, 21-11
SET SESSION_CACHED_CURSORS clause, 7-32

ANALYZE statement, 13-5
antijoins, 11-23
applications

deploying, 2-19
design principles, 2-9
development trends, 2-16
implementing, 2-14

Automatic Database Diagnostic Monitor
actions and rationales of recommendations, 6-4
analysis results example, 6-5
and DB time, 6-3
CONTROL_MANAGEMENT_PACK_ACCESS 

parameter, 6-5
DBIO_EXPECTED, 6-6

example report, 6-5
findings, 6-4
overview, 6-1
results, 6-4
setups, 6-5
STATISTICS_LEVEL parameter, 6-5
types of problems considered, 6-3
types of recommendations, 6-4

automatic database diagnostic monitoring, 1-5, 16-5
automatic segment-space management, 4-4, 8-9, 

10-20
Automatic Shared Memory Management, 7-2
automatic SQL tuning, 1-5, 16-5

analysis, 17-2
overview, 17-1

Automatic Tuning Optimizer, 17-1
automatic undo management, 4-3
Automatic Workload Repository, 1-5

configuring, 5-8
data gathering, 5-1
DBMS_WORKLOAD_REPOSITORY 

package, 5-13, 5-14, 5-17
default settings, 5-12
factors affecting space usage, 5-12
managing with APIs, 5-13, 5-14, 5-17
minimizing space usage, 5-12
overview, 5-8
recommendations for retention period, 5-12
reports, 5-22, 5-28, 5-34
retention period, 5-12
settings in DBA_HIST_WR_CONTROL 

view, 5-14
space usage, 5-12
statistics collected, 5-8
turning off automatic snapshot collection, 5-12
unusual percentages in reports, 5-23
views for accessing data, 5-21

awrrpt.sql
Automatic Workload Repository report, 5-22, 

5-28, 5-34

B
baselines, 1-2, 5-9

performance, 5-1
benchmarking workloads, 2-17



Index-2

big bang rollout strategy, 2-19
bind variables, 7-19

peeking, 11-8
bitmap indexes, 2-11

inlist iterator, 12-17
on joins, 14-9
when to use, 14-9

block cleanout, 10-15
block size

choosing, 8-9
optimal, 8-9

bottlenecks
elimination, 1-3
fixing, 3-1
identifying, 3-1
memory, 7-1
resource, 10-38

broadcast
distribution value, 12-20

B-tree indexes, 2-11
buffer busy wait events, 10-14, 10-19

actions, 10-20
buffer cache

contention, 10-21, 10-23, 10-32
hit ratio, 7-10
reducing buffers, 7-11, 7-28

buffer pools
default cache, 7-12
hit ratio, 7-13
KEEP, 7-15
KEEP cache, 7-12
multiple, 7-12
RECYCLE cache, 7-12

business logic, 2-6, 2-14
BYTES column

PLAN_TABLE table, 12-18

C
CARDINALITY column

PLAN_TABLE table, 12-18
cardinality, column, 11-6
cartesian joins, 11-28
chained rows, 10-16
classes

wait events, 5-2, 10-7
client/server applications, 9-9
clusters, 14-10

hash and scans of, 11-21
scans of, 11-21
sorted hash, 14-11

column order
indexes, 2-12

columns
cardinality, 11-6
to index, 14-2

COMPATIBLE initialization parameter, 4-2
components

hardware, 2-5
software, 2-6

composite indexes, 14-3
composite partitioning

examples of, 12-12
conceptual modeling, 3-3
consistency

read, 10-15
consistent gets from cache statistic, 7-9
consistent mode

TKPROF, 21-17
constraints, 14-6
contention

library cache latch, 10-33
memory, 7-1, 10-1
shared pool, 10-33
tuning, 10-1
wait events, 10-31

context switches, 9-9
CONTROL_FILES initialization parameter, 4-2
CONTROL_MANAGEMENT_PACK_ACCESS 

initialization parameter
enabling automatic database diagnostic 

monitoring, 6-5
cost

optimizer calculation, 11-2
COST column

PLAN_TABLE table, 12-18
cost-based optimizations

procedures for plan stability, 20-8
upgrading to, 20-9

CPUs, 2-5
statistics, 5-5, 10-3
utilization, 9-8

CREATE INDEX statement
PARALLEL clause, 4-7

CREATE OUTLINE statement, 20-4
create_extended_statistics, 13-17, 13-19
CREATE_STORED_OUTLINES initialization 

parameter, 20-4
CREATE_STORED_OUTLINES parameter, 20-4
current mode

TKPROF, 21-17
CURSOR_NUM column

TKPROF_TABLE table, 21-21
CURSOR_SHARING initialization parameter, 7-20
CURSOR_SPACE_FOR_TIME initialization 

parameter, 7-31
cursors

accessing, 7-21
sharing, 7-21

D
data

and transactions, 2-7
cache, 9-2
gathering, 5-1
modeling, 2-10
queries, 2-9
searches, 2-9

data dictionary, 7-27



Index-3

statistics in, 13-27
views used in optimization, 13-27

Data Pump
Export utility

statistics on system-generated columns 
names, 13-21

Import utility
copying statistics, 13-21

database monitoring, 1-5, 16-5
diagnostic, 6-1

Database Resource Manager, 9-4, 9-5, 9-10, 10-3
database tuning

transient performance problems, 5-34
databases

buffers, 7-11, 7-27
diagnosing and monitoring, 6-1
size, 2-9
statistics, 5-2

DATE_OF_INSERT column
TKPROF_TABLE table, 21-21

db block gets from cache statistic, 7-9
db file scattered read wait events, 10-14, 10-21

actions, 10-21, 10-23
db file sequential read wait events, 10-14, 10-21, 

10-23
actions, 10-23

DB time
metric, 6-2
statistic, 5-3

DB_BLOCK_SIZE initialization parameter, 4-2, 8-4
DB_CACHE_ADVICE parameter, 7-11
DB_CACHE_SIZE initialization parameter, 7-11, 

7-12
DB_DOMAIN initialization parameter, 4-2
DB_FILE_MULTIBLOCK_READ_COUNT 

initialization parameter, 8-3, 8-4, 10-21, 11-13
cost-based optimization, 11-23

DB_KEEP_CACHE_SIZE
initialization parameter, 7-15

DB_NAME initialization parameter, 4-2
DB_nK_CACHE_SIZE initialization parameter, 7-11
DB_RECYCLE_CACHE_SIZE

initialization parameter, 7-16
DB_WRITER_PROCESSES initialization 

parameter, 10-29
DBA_HIST views, 5-21
DBA_HIST_WR_CONTROL view

Automatic Workload Repository settings, 5-14
DBA_OBJECTS view, 7-14
DBA_OUTLINE_HINTS view

stored outline hints, 20-6
DBA_OUTLINES view

stored outlines, 20-6
DBIO_EXPECTED parameter, 6-6
DBMS_ADDM package

Automatic Database Diagnostic Monitor, 6-6
DBMS_ADVISOR package, 18-1

setting DBIO_EXPECTED, 6-6
setups for ADDM, 6-5, 6-6

DBMS_MONITOR package

End-to-End Application Tracing, 21-2
DBMS_OUTLN package

procedures for managing outlines, 20-3
DBMS_OUTLN_EDIT package

procedures for managing outlines, 20-3
DBMS_RESULT_CACHE, 7-56
DBMS_SHARED_POOL package

managing the shared pool, 7-35
DBMS_SPM

EVOLVE_SQL_PLAN_BASELINE, 15-6
DBMS_SQLDIAG, 16-15
DBMS_SQLTUNE package

SQL Tuning Advisor, 17-10, 17-15
SQL Tuning Sets, 17-15

dbms_stats functions
create_extended_statistics, 13-17
drop_extended_stats, 13-18, 13-19
gather_table_stats, 13-19
show_extended_stats_name, 13-17

DBMS_STATS package, 13-6, 13-11, 18-2
managing query optimizer statistics, 11-38
manually determining sample size for gathering 

procedures, 13-7
dbms_stats package

method_opt, 13-18
DBMS_STATS_DISCOVER, 13-17
DBMS_WORKLOAD_REPOSITORY package

managing the Automatic Workload 
Repository, 5-13, 5-14, 5-17

DBMS_XPLAN package
displaying plan table output, 12-5

debugging designs, 2-18
default cache, 7-12
deploying applications, 2-19
DEPTH column

TKPROF_TABLE table, 21-21
design principles, 2-9
designs

debugging, 2-18
testing, 2-18
validating, 2-18

development environments, 2-14
diagnostic monitoring, 1-5, 6-1, 16-5

introduction, 6-1
DIAGNOSTIC_DEST initialization parameter, 21-10
direct path

read events, 10-24
read events actions, 10-25
read events causes, 10-24
wait events, 10-25
write events actions, 10-26
write events causes, 10-26

disabled constraints, 14-6
disks

monitoring operating system file activity, 10-4
statistics, 5-5

DISTRIBUTION column
PLAN_TABLE table, 12-19

domain indexes
and EXPLAIN PLAN, 12-17



Index-4

using, 14-9
drop_extended_stats, 13-18, 13-19
dynamic statistics

process, 13-23
sampling levels, 13-23
when to use, 13-27

E
emergencies

performance, 3-6
Emergency Performance Method, 3-6
enabled constraints, 14-6
End-to-End Application Tracing, 21-1

action and module names, 2-15, 21-2
creating a service, 21-2
DBMS_APPLICATION_INFO package, 21-2
DBMS_MONITOR package, 21-2

enforced constraints, 14-6
enqueue wait events, 10-14, 10-26

actions, 10-27
statistics, 10-10

equijoins, 16-7
error message documentation, ii-xvi
estimating workloads, 2-17

benchmarking, 2-17
extrapolating, 2-17

examples
ALTER SESSION statement, 21-11
EXPLAIN PLAN output, 21-20
SQL trace facility output, 21-20

EXECUTE_TASK procedure, 18-12
execution plans

capturing SQL plan baselines, 15-3
evolving SQL plan baselines, 15-6
examples, 21-12
joins, 11-22
loading from a SQL Tuning Set, 15-4
loading from AWR snapshots, 15-4
loading from the cursor cache, 15-5
managing SQL plan baselines, 15-3
overview of, 11-32
plan stability, 20-2
preserving with plan stability, 20-1
selecting SQL plan baselines, 15-5
TKPROF, 21-13, 21-15
viewing with the utlxpls.sql script, 11-32

EXPLAIN PLAN statement
access paths, 11-21
and domain indexes, 12-17
and full partition-wise joins, 12-15
and partial partition-wise joins, 12-14
and partitioned objects, 12-11
basic steps, 11-32
examples of output, 21-20
execution order of steps in output, 11-32
invoking with the TKPROF program, 21-15
PLAN_TABLE table, 12-4
restrictions, 12-4
scripts for viewing output, 11-32

viewing the output, 11-32
EXPLAIN_MVIEW procedure, 18-28
expression

mixed-type, 16-7
Expression Statistics, 13-19
Extended Statistics, 13-15
extended syntax

for specifying tables in hints, 19-10
global hints, 19-10

EXTENT MANAGEMENT LOCAL
creating temporary tablespaces, 4-5

extrapolating workloads, 2-17

F
FAST_START_MTTR_TARGET

and tuning instance recovery, 10-46
Fast-Start checkpointing architecture, 10-44
Fast-Start Fault Recovery, 10-43, 10-44
features, new, xvii
FILESYSTEMIO_OPTIONS initialization 

parameter, 9-2
FIRST_ROWS(n) hint, 11-38
free buffer wait events, 10-14, 10-28
free lists, 10-20
FULL hint, 14-5
full outer joins, 11-31
full partition-wise joins, 12-15
full table scans, 10-25
function-based indexes, 2-11, 14-7

G
GATHER_ INDEX_STATS procedure

in DBMS_STATS package, 13-6
GATHER_DATABASE_STATS procedure

in DBMS_STATS package, 13-6
GATHER_DICTIONARY_STATS procedure

in DBMS_STATS package, 13-6, 13-11
GATHER_SCHEMA_STATS procedure

in DBMS_STATS package, 13-6, 13-11
gather_table_stats, 13-19
GATHER_TABLE_STATS procedure

in DBMS_STATS package, 13-6, 13-11
GETMISSES column

in V$ROWCACHE table, 7-27
GETS column

in V$ROWCACHE view, 7-27
global hints, 19-10
GV$BUFFER_POOL_STATISTICS view, 7-13

H
hard parsing, 2-13
hardware

components, 2-5
limitations of components, 2-4
sizing of components, 2-4

hash
distribution value, 12-20

hash clusters



Index-5

scans of, 11-21
sorted, 14-11

hash joins, 11-26
cost-based optimization, 11-23
index join, 11-20

hash partitions, 12-11
examples of, 12-11

hashing, 14-11
high water mark, 11-13
hints

access paths, 16-9, 19-7
as used in outlines, 20-2
cannot override sample access path, 11-22
degree of parallelism, 19-5
FULL, 14-5
global, 19-10
global compared to local, 19-10
INDEX_FFS, 11-20
INDEX_JOIN, 11-20
indexspec syntax, 19-12
location syntax, 19-8
NO_INDEX, 14-5
optimization approach and goal, 19-2
overriding optimizer choice, 11-22
overriding OPTIMIZER_MODE, 11-38
parallel query option, 19-5
specifying a query block, 19-8
specifying indexes, 19-12
tablespec syntax, 19-10
using extended syntax, 19-10

histograms
frequency, 13-29
height-balanced, 13-28

HOLD_CURSOR clause, 7-22
hours of service, 2-9
HW enqueue

contention, 10-27

I
ID column

PLAN_TABLE table, 12-18
idle wait events, 10-30

SQL*Net message from client, 10-37
implementing business logic, 2-6
INDEX hint, 14-5
INDEX_COMBINE hint, 14-5
INDEX_FFS hint, 11-20
INDEX_JOIN hint, 11-20
indexes

adding columns, 2-11
appending columns, 2-11
avoiding the use of, 14-4
bitmap, 2-11, 14-9
B-tree, 2-11
choosing columns for, 14-2
column order, 2-12
composite, 14-3
costs, 2-12
creating, 4-7

design, 2-11
domain, 14-9
dropping, 14-2
enforcing uniqueness, 14-6
ensuring the use of, 14-4
function-based, 2-11, 14-7
improving selectivity, 14-3
index joins, 11-20
joins, 11-20
low selectivity, 14-4
modifying values of, 14-3
non-unique, 14-6
partitioned, 2-12
placement on disk, 8-5
rebuilding, 14-5
re-creating, 14-5
reducing I/O, 2-12
reverse key, 2-12
scans of, 11-15
selectivity, 2-12
selectivity of, 14-3
sequences in, 2-12
serializing in, 2-12
specifying in hints, 19-12
statistics gathering, 13-14

indexspec
hint syntax, 19-12

initialization parameters
CONTROL_FILES, 4-2
DB_BLOCK_SIZE, 4-2
DB_DOMAIN, 4-2
DB_FILE_MULTIBLOCK_READ_COUNT, 11-23
DB_NAME, 4-2
DIAGNOSTIC_DEST, 21-10
OPEN_CURSORS, 4-2
OPTIMIZER_FEATURES_ENABLE, 11-20
OPTIMIZER_MODE, 11-37, 19-2
PGA_AGGREGATE_TARGET, 4-7
PROCESSES, 4-2
SESSIONS, 4-2
STREAMS_POOL_SIZE, 4-3, 7-3

INLIST ITERATOR operation, 12-16
inlists, 12-16
instance caging, 9-8
instance configuration

initialization files, 4-1
performance considerations, 4-1

instance recovery
Fast-Start Fault Recovery, 10-44
performance tuning, 10-43

Internet scalability, 2-3
I/O

and SQL statements, 10-22
contention, 5-2, 10-4, 10-7, 10-21, 10-35
excessive I/O waits, 10-21
monitoring, 10-4
objects causing I/O waits, 10-22
reducing, 14-3



Index-6

J
joins

antijoins, 11-23
cartesian, 11-28
execution plans and, 11-22
full outer, 11-31
hash, 11-26
index joins, 11-20
join order and execution plans, 11-32
nested loop, 11-23
nested loops and cost-based optimization, 11-23
order, 16-10
outer, 11-28
partition-wise

examples of full, 12-15
examples of partial, 12-14
full, 12-15

semijoins, 11-23
sort merge, 11-27
sort-merge and cost-based optimization, 11-23

K
KEEP buffer pool, 7-15
KEEP cache, 7-12

L
LARGE_POOL_SIZE initialization parameter, 7-28
latch contention

library cache latches, 10-12
shared pool latches, 10-12

latch free wait events, 10-14
actions, 10-31

latch wait events, 10-31
latches, 5-41

tuning, 1-2, 10-33
library cache

latch contention, 10-33
latch wait events, 10-31
lock, 10-35
memory allocation, 7-27
pin, 10-35

linear scalability, 2-4
locks and lock holders

finding, 10-26
log buffer

space wait events, 10-14, 10-35
tuning, 7-39

log file
parallel write wait events, 10-35
switch wait events, 10-36
sync wait events, 10-14, 10-36

log writer processes
tuning, 8-6

LOG_BUFFER initialization parameter, 7-38
setting, 7-39

LRU
aging policy, 7-12
latch contention, 10-34

M
managing the user interface, 2-6
materialized views

tuning, 18-28
max session memory statistic, 7-29
MAX_DISPATCHERS initialization parameter, 4-9
MAX_DUMP_FILE_SIZE initialization parameter

SQL Trace, 21-10
MAXOPENCURSORS clause, 7-22
memory

hardware component, 2-5
memory allocation

importance, 7-1
library cache, 7-27
shared SQL areas, 7-27
tuning, 7-6

method_opt, 13-18
metrics, 5-1
migrated rows, 10-16
mirroring

redo logs, 8-7
modeling

conceptual, 3-3
data, 2-10
workloads, 2-18

monitoring
diagnostic, 1-5, 16-5

MultiColumn Statistics, 13-16
multiple buffer pools, 7-12

N
NAMESPACE column

V$LIBRARYCACHE view, 7-23
nested loop joins, 11-23

cost-based optimization, 11-23
network

hardware component, 2-6
speed, 2-8
statistics, 5-6

network communication wait events, 10-37
db file scattered read wait events, 10-21
db file sequential read wait events, 10-21, 10-23
SQL*Net message from Dblink, 10-38
SQL*Net more data to client, 10-38

new features, xvii
NO_INDEX hint, 14-5
NOT IN subquery, 11-23

O
OBJECT_INSTANCE column

PLAN_TABLE table, 12-18
OBJECT_NAME column

PLAN_TABLE table, 12-18
OBJECT_NODE column

PLAN_TABLE table, 12-18
OBJECT_OWNER column

PLAN_TABLE table, 12-18
OBJECT_TYPE column



Index-7

PLAN_TABLE table, 12-18
object-orientation, 2-16
OLAP_PAGE_POOL_SIZE initialization 

parameter, 7-53
OPEN_CURSORS initialization parameter, 4-2
operating system

data cache, 9-2
monitoring disk I/O, 10-4
statistics, 5-4

OPERATION column
PLAN_TABLE table, 12-18, 12-20

optimization
choosing the approach, 11-37
cost calculation, 11-2
cost-based and choosing an access path, 11-21
described, 11-1
hints, 11-20, 11-38
manual, 11-38
operations performed, 11-2

optimizer
cost calculation, 11-2
estimator, 11-6
goals, 11-36
introduction, 1-4, 11-1
modes, 17-1
moving to from RBO, 20-8
operations, 11-2
parameters for setting mode, 11-37
plan stability, 20-2
query, 1-4
statistics, 13-1
throughput, 11-36
upgrading, 20-9

OPTIMIZER column
PLAN_TABLE, 12-18

OPTIMIZER_FEATURES_ENABLE initialization 
parameter, 11-20

OPTIMIZER_MODE initialization parameter, 11-37, 
19-2

hints affecting, 11-38
OPTIONS column

PLAN_TABLE table, 12-18
Oracle CPU statistics, 10-3
Oracle Enterprise Manager

advisors, 1-5
Performance page, 1-5

Oracle Forms
control of parsing and private SQL areas, 7-22

Oracle Managed Files, 8-8
tuning, 8-8

Oracle Orion
calibration tool parameters, 8-15
command-line options, 8-15

Oracle performance improvement method, 3-1
steps, 3-2

order
joins, 16-10

OTHER column
PLAN_TABLE table, 12-19

OTHER_TAG column

PLAN_TABLE table, 12-19
outer joins, 11-28, 16-10
outlines

CREATE OUTLINE statement, 20-4
creating and using, 20-4
description, 20-2
execution plans and plan stability, 20-2
hints, 20-2
moving tables, 20-6
moving to the cost-based optimizer, 20-8
storage requirements, 20-3
using, 20-5
viewing data for, 20-6

P
package

DBMS_RESULT_CACHE, 7-56
packages

DBMS_ADVISOR, 18-1
DBMS_STATS, 18-2

page table, 9-9
paging, 9-9

reducing, 7-5
PARALLEL clause

CREATE INDEX statement, 4-7
parameter

RESULT_CACHE_MAX_SIZE, 7-56
RESULT_CACHE_MODE, 7-59

PARENT_ID column
PLAN_TABLE table, 12-18

parsing
hard, 2-13
Oracle Forms, 7-22
Oracle precompilers, 7-22
reducing unnecessary calls, 7-21
soft, 2-13

PARTITION_ID column
PLAN_TABLE table, 12-19

PARTITION_START column
PLAN_TABLE table, 12-19

PARTITION_STOP column
PLAN_TABLE table, 12-19

partitioned indexes, 2-12
partitioned objects

and EXPLAIN PLAN statement, 12-11
partitioning

distribution value, 12-20
examples of, 12-11
examples of composite, 12-12
hash, 12-11
range, 12-11
start and stop columns, 12-11

partition-wise joins
full, 12-15
full, and EXPLAIN PLAN output, 12-15
partial, and EXPLAIN PLAN output, 12-14

PCTFREE parameter, 4-5, 10-16
PCTUSED parameter, 10-16
peeking



Index-8

bind variables, 11-8
performance

emergencies, 3-6
improvement method, 3-1
improvement method steps, 3-2
mainframe, 9-6
monitoring memory on Windows, 9-9
tools for diagnosing and tuning, 1-4
UNIX-based systems, 9-5
viewing execution plans, 11-32
Windows, 9-5

performance problems
transient, 5-34

performance tuning
Fast-Start Fault Recovery, 10-43
instance recovery, 10-43

FAST_START_MTTR_TARGET, 10-44
setting FAST_START_MTTR_TARGET, 10-46
using V$INSTANCE_RECOVERY, 10-46

PGA_AGGREGATE_TARGET initialization 
parameter, 4-2, 4-7, 7-41, 9-3

physical reads from cache statistic, 7-9
plan stability, 20-2

limitations of, 20-2
preserving execution plans, 20-1
procedures for the cost-based optimizer, 20-8
use of hints, 20-2

PLAN_TABLE table
BYTES column, 12-18
CARDINALITY column, 12-18
COST column, 12-18
creating, 12-4
displaying, 12-5
DISTRIBUTION column, 12-19
ID column, 12-18
OBJECT_INSTANCE column, 12-18
OBJECT_NAME column, 12-18
OBJECT_NODE column, 12-18
OBJECT_OWNER column, 12-18
OBJECT_TYPE column, 12-18
OPERATION column, 12-18
OPTIMIZER column, 12-18
OPTIONS column, 12-18
OTHER column, 12-19
OTHER_TAG column, 12-19
PARENT_ID column, 12-18
PARTITION_ID column, 12-19
PARTITION_START column, 12-19
PARTITION_STOP column, 12-19
POSITION column, 12-18
REMARKS column, 12-17
SEARCH_COLUMNS column, 12-18
STATEMENT_ID column, 12-17
TIMESTAMP column, 12-17

PL/SQL procedures
EXPLAIN_MVIEW, 18-28
TUNE_MVIEW, 18-28

POSITION column
PLAN_TABLE table, 12-18

precompilers

control of parsing and private SQL areas, 7-22
PRIMARY KEY constraint, 14-6
PRIVATE_SGA variable, 7-30
privileges

SQL Access Advisor, 18-6
proactive monitoring, 1-3
processes

scheduling, 9-9
PROCESSES initialization parameter, 4-2
program global area (PGA)

direct path read, 10-24
direct path write, 10-25
shared servers, 7-29

programming languages, 2-14

Q
queries

avoiding the use of indexes, 14-4
data, 2-9
ensuring the use of indexes, 14-4

query optimizer, 1-4
See optimizer

R
range

distribution value, 12-20
examples of partitions, 12-11
partitions, 12-11

rdbms ipc reply wait events, 10-37
read consistency, 10-15
read wait events

direct path, 10-24
scattered, 10-21

REBUILD clause, 14-5
recursive calls, 21-18
RECYCLE cache, 7-12
REDO BUFFER ALLOCATION RETRIES 

statistic, 7-39
redo logs, 4-3

buffer size, 10-35
mirroring, 8-7
placement on disk, 8-6
sizing, 4-3
space requests, 10-15

reducing
contention with dispatchers, 4-8
data dictionary cache misses, 7-27
paging and swapping, 7-5
unnecessary parse calls, 7-21

RELEASE_CURSOR clause, 7-22
REMARKS column

PLAN_TABLE table, 12-17
resources

allocation, 2-6, 2-14
bottlenecks, 10-38
wait events, 10-23

response time, 2-9
cost-based approach, 11-37



Index-9

result cache, 7-54
reverse key indexes, 2-12
rollout strategies

big bang approach, 2-19
trickle approach, 2-19

round-robin
distribution value, 12-20

row cache objects, 10-35
row sources, 11-34
rowids

table access by, 11-15
rows

row sources, 11-34
rowids used to locate, 11-15

S
SAMPLE BLOCK clause, 11-21

access path and hints, 11-22
SAMPLE clause, 11-21

access path and hints cannot override, 11-22
sample table scans, 11-21

hints cannot override, 11-22
sar UNIX command, 9-9
scalability, 2-2

factors preventing, 2-4
Internet, 2-3
linear, 2-4

scans
index, 11-15
index joins, 11-20
index of type bitmap, 11-20
sample table, 11-21
sample table and hints cannot override, 11-22

scattered read wait events, 10-21
actions, 10-21

SEARCH_COLUMNS column
PLAN_TABLE table, 12-18

segment-level statistics, 10-10
SELECT statement

SAMPLE clause, 11-21
selectivity

creating indexes, 14-3
improving for an index, 14-3
indexes, 14-4
ordering columns in an index, 2-12

semijoins, 11-23
sequential read wait events

actions, 10-23
service hours, 2-9
session memory statistic, 7-29
SESSIONS initialization parameter, 4-2
SGA size, 7-39
SGA_TARGET initialization parameter, 4-2

and Automatic Shared Memory 
Management, 7-2

automatic memory management, 7-2
shared pool contention, 10-33
shared server

performance issues, 4-7

reducing contention, 4-8
tuning, 4-8
tuning memory, 7-28

shared SQL areas
memory allocation, 7-27

SHARED_POOL_RESERVED_SIZE initialization 
parameter, 7-34

SHARED_POOL_SIZE initialization 
parameter, 7-27, 7-28, 7-35

allocating library cache, 7-27
tuning the shared pool, 7-30

SHOW SGA statement, 7-6
show_extended_stats_name, 13-17
sizing redo logs, 4-3
snapshots

about, 5-9
soft parsing, 2-13
software

components, 2-6
sort areas

tuning, 7-40
sort merge joins, 11-27

cost-based optimization, 11-23
SQL Access Advisor, 18-1, 18-7

constants, 18-23
creating a task, 18-3
EXECUTE_TASK procedure, 18-12
generating the recommendations, 18-4
privileges, 18-6
recommendation process, 18-17
steps in using, 18-3

SQL management base
about, 15-10
disk space usage, 15-10
purging policy, 15-10

SQL plan baseline
automatic plan capture, 15-4
capturing

automatic, 15-4
manual, 15-4

evolving manually, 15-6
evolving with 

DBMS_SPM.EVOLVE_SQL_PLAN_BASELIN
E, 15-6

loading plans from a SQL Tuning Set, 15-4
loading plans from AWR snapshots, 15-4
loading plans from the cursor cache, 15-5
manual plan loading, 15-4
SQL Tuning Advisor, 15-7

SQL plan baseline, fixed, 15-8
SQL plan baselines

about, 15-4
capturing, 15-3
displaying, 15-8
enabling, 15-6
evolving, 15-6
importing and exporting, 15-11
managing, 15-3
plan history, 15-4
selecting, 15-5



Index-10

statement log, 15-3
SQL statements

avoiding the use of indexes, 14-4
ensuring the use of indexes, 14-4
execution plans of, 11-32
modifying indexed data, 14-3
waiting for I/O, 10-22

SQL Test Case Builder, 16-14
SQL trace facility, 21-8, 21-12

example of output, 21-20
output, 21-16
statement truncation, 21-19
steps to follow, 21-9
trace files, 21-10

SQL Tuning Advisor, 1-5, 16-5
administering with APIs, 17-10, 17-15
input sources, 17-9
overview, 17-5
tuning options, 17-10

SQL Tuning Sets
description, 16-5, 17-9, 17-10, 17-11
managing with APIs, 17-15

SQL*Net
message from client idle events, 10-37
message from dblink wait events, 10-38
more data to client wait events, 10-38

SQL, recursive, 13-22
SQL_STATEMENT column

TKPROF_TABLE, 21-21
SQLAccess Advisor, 1-5, 16-5
SQLTUNE_CATEGORY initialization parameter

determining the SQL Profile category, 17-25
ST enqueue

contention, 10-27
start columns

in partitioning and EXPLAIN PLAN 
statement, 12-11

STATEMENT_ID column
PLAN_TABLE table, 12-17

statistics
and STATISTICS_LEVEL initialization 

parameter, 1-4
baselines, 5-1
consistent gets from cache, 7-9
databases, 5-2
db block gets from cache, 7-9
displaying in views, 13-27
exporting and importing, 13-20
gathering, 5-1
gathering stale, 13-9
gathering using sampling, 13-6
gathering with DBMS_STATS package, 13-6, 

13-11
gathering with DBMS_STATS procedures, 13-5
limitations on restoring previous versions, 13-20
locking, 13-21
manually gathering, 13-5
max session memory, 7-29
missing, 13-22
operating systems, 5-4

CPU statistics, 5-5
disk statistics, 5-5
network statistics, 5-6
virtual memory statistics, 5-5

optimizer, 13-1
optimizer mode, 11-37
physical reads from cache, 7-9
restoring previous versions, 13-20
segment-level, 10-10
session memory, 7-29
shared server processes, 4-9
stale, 13-8
system, 13-11
time model, 5-3
user-defined, 13-9
when to gather, 13-10

STATISTICS_LEVEL initialization parameter, 5-7, 
10-7

and Automatic Workload Repository, 5-8
enabling automatic database diagnostic 

monitoring, 6-5
settings for statistic gathering, 1-4

stop columns
in partitioning and EXPLAIN PLAN 

statement, 12-11
stored outlines

creating and using, 20-4
execution plans and plan stability, 20-2
hints, 20-2
moving tables, 20-6
storage requirements, 20-3
using, 20-5
viewing data for, 20-6

STREAMS_POOL_SIZE initialization 
parameter, 4-3, 7-3

striping
manual, 8-5

subqueries
NOT IN, 11-23
unnesting, 16-11

swapping, 9-9
reducing, 7-5

switching processes, 9-9
system architecture, 2-5

configuration, 2-7
hardware components, 2-5

CPUs, 2-5
I/O subsystems, 2-5
memory, 2-5
networks, 2-6

software components, 2-6
data and transactions, 2-7
implementing business logic, 2-6
managing the user interface, 2-6
user requests and resource allocation, 2-6

System Global Area tuning, 7-6

T
tables



Index-11

creating, 4-5
design, 2-10
full scans, 10-25
placement on disk, 8-5
setting storage options, 4-5

tablespaces, 4-4
creating, 4-4
temporary, 4-4

tablespec
hint syntax, 19-10

templates
SQL Access Advisor, 18-7

temporary tablespaces, 4-4
creating, 4-4

testing designs, 2-18
thrashing, 9-9
thresholds

adaptive, 5-10
throughput

optimizer goal, 11-36
time model statistics, 5-3
TIMED_STATISTICS initialization parameter

SQL Trace, 21-10
TIMESTAMP column

PLAN_TABLE table, 12-17
TKPROF program, 21-9, 21-12

editing the output SQL script, 21-20
example of output, 21-20
generating the output SQL script, 21-20
row source operations, 21-17
syntax, 21-13
using the EXPLAIN PLAN statement, 21-15
wait event information, 21-18

TKPROF_TABLE, 21-21
TM enqueue contention, 10-27
tools for performance tuning, 1-4
Top Java

Active Session History report, 5-40
top PL/SQL

Active Session History report, 5-40
Top Sessions

Active Session History report, 5-40
Top SQL

Active Session History report, 5-40
TRACEFILE_IDENTIFIER initialization parameter

identifying trace files, 21-10
tracing

consolidating with trcsess, 21-6
identifying files, 21-10

transactions and data, 2-7
trcsess utility, 21-6
trickle rollout strategy, 2-19
TUNE_MVIEW procedure, 18-28
tuning

and bottleneck elimination, 1-3
and proactive monitoring, 1-3
latches, 1-2, 10-33
logical structure, 14-1
memory allocation, 7-6
resource contention, 10-1

shared server, 4-8
sorts, 7-40
SQL Tuning Advisor, 17-5
System Global Area (SGA), 7-6

TX enqueue contention, 10-27
type conversion, 16-7

U
undo management, automatic mode, 4-3
UNDO TABLESPACE clause, 4-3
UNDO_MANAGEMENT initialization 

parameter, 4-2, 4-3
UNDO_TABLESPACE initialization parameter, 4-2
UNIQUE constraint, 14-6
uniqueness, 14-6
UNIX system performance, 9-5
untransformed column values, 16-7
upgrade

to the cost-based optimizer, 20-9
USE_STORED_OUTLINES parameter, 20-5
user global area (UGA)

shared servers, 4-7, 7-28
V$SESSTAT, 7-29

user requests, 2-6
USER_DUMP_DEST initialization parameter

SQL Trace, 21-10
USER_ID column, TKPROF_TABLE, 21-21
USER_OUTLINE_HINTS view

stored outline hints, 20-6
USER_OUTLINES view

stored outlines, 20-6
user_stat_extensions, 13-18, 13-19
user-defined bind variables, 11-8
users

interaction method, 2-8
interfaces, 2-14
location, 2-8
network speed, 2-8
number of, 2-8
requests, 2-14
response time, 2-9

Using SQL Plan Management, 15-1
UTLCHN1.SQL script, 10-16
UTLXPLP.SQL script

displaying plan table output, 12-5
for viewing EXPLAIN PLANs, 11-32

UTLXPLS.SQL script
displaying plan table output, 12-5
for viewing EXPLAIN PLANs, 11-32
used for displaying EXPLAIN PLANs, 11-33

V
V$ACTIVE_SESSION_HISTORY view, 5-3, 10-8
V$ADVISOR_PROGRESS view, 17-14, 17-27
V$BH view, 7-13
V$BUFFER_POOL_STATISTICS view, 7-13
V$DB_CACHE_ADVICE view, 7-7, 7-9, 7-10, 7-11, 

7-13



Index-12

V$EVENT_HISTOGRAM view, 10-8
V$FILE_HISTOGRAM view, 10-9
V$JAVA_LIBRARY_CACHE_MEMORY view, 7-25
V$JAVA_POOL_ADVICE view, 7-25
V$LIBRARY_CACHE_MEMORY view, 7-25
V$LIBRARYCACHE view

NAMESPACE column, 7-23
V$OSSTAT view, 5-5
V$PGASTAT view, 7-42
V$PROCESS view, 7-44
V$PROCESS_MEMORY view, 7-45
V$QUEUE view, 4-9
V$ROWCACHE view

GETMISSES column, 7-27
GETS column, 7-27
performance statistics, 7-26

V$RSRC_CONSUMER_GROUP view, 10-3
V$SESS_TIME_MODEL view, 5-3, 10-8
V$SESSION view, 10-8, 10-9, 10-17
V$SESSION_EVENT view, 10-8, 10-17
V$SESSION_WAIT view, 10-8, 10-17
V$SESSION_WAIT_CLASS view, 10-8
V$SESSION_WAIT_HISTORY view, 10-8, 10-17
V$SESSTAT view, 7-29, 10-3
V$SHARED_POOL_ADVICE view, 7-25
V$SHARED_POOL_RESERVED view, 7-35
V$SQL_PLAN view

using to display execution plan, 12-3
V$SQL_PLAN_STATISTICS view

using to display execution plan statistics, 12-3
V$SQL_PLAN_STATISTICS_ALL view

using to display execution plan information, 12-4
V$SQL_WORKAREA view, 7-47
V$SQL_WORKAREA_ACTIVE view, 7-46
V$SQL_WORKAREA_HISTOGRAM view, 7-45
V$SYS_TIME_MODEL view, 5-3, 5-5, 10-8
V$SYSMETRIC_HISTORY view, 5-5
V$SYSSTAT view

redo buffer allocation, 7-39
using, 7-9

V$SYSTEM_EVENT view, 10-8, 10-17
V$SYSTEM_WAIT_CLASS view, 10-9
V$TEMP_HISTOGRAM view, 10-9
V$UNDOSTAT view, 4-3
V$WAITSTAT view, 10-9
validating designs, 2-18
views, 2-12

DBA_HIST, 5-21
statistics, 13-27

virtual memory statistics, 5-5
vmstat UNIX command, 9-9

W
wait events, 5-2

buffer busy waits, 10-19
classes, 5-2, 10-7
contention wait events, 10-31
direct path, 10-25
enqueue, 10-26

free buffer waits, 10-28
idle wait events, 10-30
latch, 10-31
library cache latch, 10-31
log buffer space, 10-35
log file parallel write, 10-35
log file switch, 10-36
log file sync, 10-36
network communication wait events, 10-37
rdbms ipc reply, 10-37
resource wait events, 10-23

Windows performance, 9-5
workloads, 2-17, 2-18


	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Oracle Database Performance Tuning Guide?
	Oracle Database 11g Release 2 (11.2.0.4) New Features in Oracle Database Performance
	Oracle Database 11g Release 2 (11.2.0.2) New Features in Oracle Database Performance
	Oracle Database 11g Release 2 (11.2.0.1) New Features in Oracle Database Performance

	Part I Performance Tuning
	1 Performance Tuning Overview
	Introduction to Performance Tuning
	Performance Planning
	Instance Tuning
	Performance Principles
	Baselines
	The Symptoms and the Problems
	When to Tune
	Proactive Monitoring
	Bottleneck Elimination


	SQL Tuning
	Query Optimizer and Execution Plans


	Introduction to Performance Tuning Features and Tools
	Automatic Performance Tuning Features
	Additional Oracle Database Tools
	V$ Performance Views




	Part II Performance Planning
	2 Designing and Developing for Performance
	Oracle Methodology
	Understanding Investment Options
	Understanding Scalability
	What is Scalability?
	System Scalability
	Factors Preventing Scalability

	System Architecture
	Hardware and Software Components
	Hardware Components
	CPU
	Memory
	I/O Subsystem
	Network

	Software Components
	Managing the User Interface
	Implementing Business Logic
	Managing User Requests and Resource Allocation
	Managing Data and Transactions


	Configuring the Right System Architecture for Your Requirements

	Application Design Principles
	Simplicity In Application Design
	Data Modeling
	Table and Index Design
	Appending Columns to an Index or Using Index-Organized Tables
	Using a Different Index Type
	B-Tree Indexes
	Bitmap Indexes
	Function-based Indexes
	Partitioned Indexes
	Reverse Key Indexes

	Finding the Cost of an Index
	Serializing within Indexes
	Ordering Columns in an Index

	Using Views
	SQL Execution Efficiency
	Implementing the Application
	Trends in Application Development

	Workload Testing, Modeling, and Implementation
	Sizing Data
	Estimating Workloads
	Extrapolating From a Similar System
	Benchmarking

	Application Modeling
	Testing, Debugging, and Validating a Design

	Deploying New Applications
	Rollout Strategies
	Performance Checklist


	3 Performance Improvement Methods
	The Oracle Performance Improvement Method
	Steps in The Oracle Performance Improvement Method
	A Sample Decision Process for Performance Conceptual Modeling
	Top Ten Mistakes Found in Oracle Systems

	Emergency Performance Methods
	Steps in the Emergency Performance Method



	Part III Optimizing Instance Performance
	4 Configuring a Database for Performance
	Performance Considerations for Initial Instance Configuration
	Initialization Parameters
	Configuring Undo Space
	Sizing Redo Log Files
	Creating Subsequent Tablespaces
	Creating Permanent Tablespaces - Automatic Segment-Space Management
	Creating Temporary Tablespaces


	Creating and Maintaining Tables for Optimal Performance
	Table Compression
	Estimating the Compression factor
	Tuning to Achieve a Better Compression Ratio

	Reclaiming Unused Space
	Indexing Data
	Specifying Memory for Sorting Data


	Performance Considerations for Shared Servers
	Identifying Contention Using the Dispatcher-Specific Views
	Reducing Contention for Dispatcher Processes

	Identifying Contention for Shared Servers


	5 Automatic Performance Statistics
	Overview of Data Gathering
	Database Statistics
	Wait Events
	Time Model Statistics
	Active Session History
	System and Session Statistics

	Operating System Statistics
	CPU Statistics
	Virtual Memory Statistics
	Disk I/O Statistics
	Network Statistics
	Operating System Data Gathering Tools

	Interpreting Statistics

	Overview of the Automatic Workload Repository
	Snapshots
	Baselines
	Fixed Baselines
	Moving Window Baseline
	Baseline Templates

	Adaptive Thresholds
	Space Consumption

	Managing the Automatic Workload Repository
	Managing Snapshots
	Creating Snapshots
	Dropping Snapshots
	Modifying Snapshot Settings

	Managing Baselines
	Creating a Baseline
	Dropping a Baseline
	Renaming a Baseline
	Displaying Baseline Metrics
	Modifying the Window Size of the Default Moving Window Baseline

	Managing Baseline Templates
	Creating a Single Baseline Template
	Creating a Repeating Baseline Template
	Dropping a Baseline Template

	Transporting Automatic Workload Repository Data
	Extracting AWR Data
	Loading AWR Data

	Using Automatic Workload Repository Views
	Generating Automatic Workload Repository Reports
	Generating an AWR Report
	Generating an Oracle RAC AWR Report
	Generating an AWR Report on a Specific Database Instance
	Generating an Oracle RAC AWR Report on Specific Database Instances
	Generating an AWR Report for a SQL Statement
	Generating an AWR Report for a SQL Statement on a Specific Database Instance

	Generating Automatic Workload Repository Compare Periods Reports
	Generating an AWR Compare Periods Report
	Generating an Oracle RAC AWR Compare Periods Report
	Generating an AWR Compare Periods Report on a Specific Database Instance
	Generating an Oracle RAC AWR Compare Periods Report on Specific Database Instances

	Generating Active Session History Reports
	Generating an ASH Report
	Generating an ASH Report on a Specific Database Instance
	Generating an Oracle RAC ASH Report

	Using Active Session History Reports
	Top Events
	Load Profile
	Top SQL
	Top SQL with Top Events
	Top SQL with Top Row Sources
	Top SQL Using Literals
	Top Parsing Module/Action
	Complete List of SQL Text

	Top PL/SQL
	Top Java
	Top Sessions
	Top Sessions
	Top Blocking Sessions
	Top Sessions Running PQs

	Top Objects/Files/Latches
	Top DB Objects
	Top DB Files
	Top Latches

	Activity Over Time



	6 Automatic Performance Diagnostics
	Overview of the Automatic Database Diagnostic Monitor
	ADDM Analysis
	Using ADDM with Oracle Real Application Clusters
	ADDM Analysis Results
	Reviewing ADDM Analysis Results: Example

	Setting Up ADDM
	Diagnosing Database Performance Problems with ADDM
	Running ADDM in Database Mode
	Running ADDM in Instance Mode
	Running ADDM in Partial Mode
	Displaying an ADDM Report

	Views with ADDM Information

	7 Configuring and Using Memory
	Understanding Memory Allocation Issues
	Oracle Memory Caches
	Automatic Memory Management
	Automatic Shared Memory Management
	Dynamically Changing Cache Sizes
	Viewing Information About Dynamic Resize Operations

	Application Considerations
	Operating System Memory Use
	Reduce Paging
	Fit the SGA into Main Memory
	Allow Adequate Memory to Individual Users

	Iteration During Configuration

	Configuring and Using the Buffer Cache
	Using the Buffer Cache Effectively
	Sizing the Buffer Cache
	Buffer Cache Advisory Statistics
	Using V$DB_CACHE_ADVICE
	Calculating the Buffer Cache Hit Ratio

	Interpreting and Using the Buffer Cache Advisory Statistics
	Increasing Memory Allocated to the Buffer Cache
	Reducing Memory Allocated to the Buffer Cache

	Considering Multiple Buffer Pools
	Random Access to Large Segments
	Oracle Real Application Clusters Instances
	Using Multiple Buffer Pools

	Buffer Pool Data in V$DB_CACHE_ADVICE
	Buffer Pool Hit Ratios
	Determining Which Segments Have Many Buffers in the Pool
	KEEP Pool
	RECYCLE Pool

	Configuring and Using the Shared Pool and Large Pool
	Shared Pool Concepts
	Dictionary Cache Concepts
	Library Cache Concepts
	SQL Sharing Criteria

	Using the Shared Pool Effectively
	Shared Cursors
	Single-User Logon and Qualified Table Reference
	Use of PL/SQL
	Avoid Performing DDL
	Cache Sequence Numbers
	Cursor Access and Management
	Reducing Parse Calls with OCI
	Reducing Parse Calls with the Oracle Precompilers
	Reducing Parse Calls with SQLJ
	Reducing Parse Calls with JDBC
	Reducing Parse Calls with Oracle Forms


	Sizing the Shared Pool
	Shared Pool: Library Cache Statistics
	V$LIBRARYCACHE
	Shared Pool Advisory Statistics
	V$SHARED_POOL_ADVICE
	V$LIBRARY_CACHE_MEMORY
	V$JAVA_POOL_ADVICE and V$JAVA_LIBRARY_CACHE_MEMORY

	Shared Pool: Dictionary Cache Statistics

	Interpreting Shared Pool Statistics
	Increasing Memory Allocation
	Allocating Additional Memory for the Library Cache
	Allocating Additional Memory to the Data Dictionary Cache

	Reducing Memory Allocation

	Using the Large Pool
	Tuning the Large Pool and Shared Pool for the Shared Server Architecture
	Determining an Effective Setting for Shared Server UGA Storage
	Checking System Statistics in the V$SESSTAT View
	Limiting Memory Use for Each User Session by Setting PRIVATE_SGA
	Reducing Memory Use with Three-Tier Connections


	Using CURSOR_SPACE_FOR_TIME
	Caching Session Cursors
	How the Session Cursor Cache Works
	Enabling the Session Cursor Cache
	Tuning the Session Cursor Cache

	Configuring the Reserved Pool
	Using SHARED_POOL_RESERVED_SIZE
	When SHARED_POOL_RESERVED_SIZE Is Too Small
	When SHARED_POOL_RESERVED_SIZE Is Too Large
	When SHARED_POOL_SIZE is Too Small

	Keeping Large Objects to Prevent Aging
	Sharing Cursors for Existing Applications
	How Similar Statements Can Share SQL Areas
	When to Set CURSOR_SHARING to a Nondefault Value

	Maintaining Connections

	Configuring and Using the Redo Log Buffer
	Sizing the Log Buffer
	Log Buffer Statistics

	PGA Memory Management
	Configuring Automatic PGA Memory
	Setting PGA_AGGREGATE_TARGET Initially
	Monitoring the Performance of the Automatic PGA Memory Management
	V$PGASTAT
	V$PROCESS
	V$PROCESS_MEMORY
	V$SQL_WORKAREA_HISTOGRAM
	V$SQL_WORKAREA_ACTIVE
	V$SQL_WORKAREA

	Tuning PGA_AGGREGATE_TARGET
	V$PGA_TARGET_ADVICE
	How to Tune PGA_AGGREGATE_TARGET
	V$PGA_TARGET_ADVICE_HISTOGRAM

	V$SYSSTAT and V$SESSTAT

	Configuring OLAP_PAGE_POOL_SIZE

	Managing the Server and Client Result Caches
	Managing the Server Result Cache
	How the Server Result Cache Works
	Server Result Cache Initialization Parameters
	Managing Memory for the Server Result Cache
	Managing Server Result Cache Memory with Initialization Parameters
	Managing Server Result Cache Memory with DBMS_RESULT_CACHE


	Managing the Client Result Cache
	How the Client Result Cache Works
	Client Result Cache Initialization Parameters

	Specifying Queries for Result Caching
	About the Result Cache Mode
	Using SQL Result Cache Hints
	RESULT_CACHE Hint in Query Blocks: Example

	Using Result Cache Table Annotations

	Requirements for the Result Cache
	Read Consistency Requirements for the Result Cache
	Additional Requirements for the Result Cache
	Query Parameter Requirements for the Result Cache

	Accessing Result Cache Information


	8 I/O Configuration and Design
	About I/O
	I/O Configuration
	Lay Out the Files Using Operating System or Hardware Striping
	Requested I/O Size
	Concurrency of I/O Requests
	Alignment of Physical Stripe Boundaries with Block Size Boundaries
	Manageability of the Proposed System

	Manually Distributing I/O
	When to Separate Files
	Tables, Indexes, and TEMP Tablespaces
	Redo Log Files
	Archived Redo Logs

	Three Sample Configurations
	Stripe Everything Across Every Disk
	Move Archive Logs to Different Disks
	Move Redo Logs to Separate Disks

	Oracle Managed Files
	Choosing Data Block Size
	Reads
	Writes
	Block Size Advantages and Disadvantages


	I/O Calibration Inside the Database
	Prerequisites for I/O Calibration
	Running I/O Calibration

	I/O Calibration with the Oracle Orion Calibration Tool
	Introduction to the Oracle Orion Calibration Tool
	Orion Test Targets
	Orion for Oracle Administrators

	Getting Started with Orion
	Orion Input Files
	Orion Parameters
	Orion Required Parameter
	Orion Optional Parameters
	Orion Command Line Samples

	Orion Output Files
	Orion Sample Output Files

	Orion Troubleshooting


	9 Managing Operating System Resources
	Understanding Operating System Performance Issues
	Using Operating System Caches
	Asynchronous I/O
	FILESYSTEMIO_OPTIONS Initialization Parameter
	Limiting Asynchronous I/O in NFS Server Environments

	Memory Usage
	Buffer Cache Limits
	Parameters Affecting Memory Usage

	Using Operating System Resource Managers

	Resolving Operating System Issues
	Performance Hints on UNIX-Based Systems
	Performance Hints on Windows Systems
	Performance Hints on HP OpenVMS Systems

	Understanding CPU
	Resolving CPU Issues
	Finding and Tuning CPU Utilization
	Checking Memory Management
	Paging and Swapping
	Oversize Page Tables

	Checking I/O Management
	Checking Network Management
	Checking Process Management
	Scheduling and Switching
	Context Switching
	Starting New Operating System Processes


	Managing CPU Resources Using Oracle Database Resource Manager
	Managing CPU Resources Using Instance Caging


	10 Instance Tuning Using Performance Views
	Instance Tuning Steps
	Define the Problem
	Examine the Host System
	CPU Usage
	Non-Oracle Processes
	Oracle Processes
	Oracle Database cPU Statistics
	Interpreting CPU Statistics

	Identifying I/O Problems
	Identifying I/O Problems Using V$ Views
	Identifying I/O Problems Using Operating System Monitoring Tools

	Identifying Network Issues

	Examine the Oracle Database Statistics
	Setting the Level of Statistics Collection
	V$STATISTICS_LEVEL

	Wait Events
	Dynamic Performance Views Containing Wait Event Statistics
	System Statistics
	V$ACTIVE_SESSION_HISTORY
	V$SYSSTAT
	V$FILESTAT
	V$ROLLSTAT
	V$ENQUEUE_STAT
	V$LATCH

	Segment-Level Statistics

	Implement and Measure Change

	Interpreting Oracle Database Statistics
	Examine Load
	Changing Load
	High Rates of Activity

	Using Wait Event Statistics to Drill Down to Bottlenecks
	Table of Wait Events and Potential Causes
	Additional Statistics
	Redo Log Space Requests Statistic
	Read Consistency
	Table Fetch by Continued Row
	Parse-Related Statistics


	Wait Events Statistics
	buffer busy waits
	Causes
	Actions
	segment header
	data block
	undo header
	undo block


	db file scattered read
	Actions
	Managing Excessive I/O
	Inadequate I/O Distribution
	Finding the SQL Statement executed by Sessions Waiting for I/O
	Finding the Object Requiring I/O

	db file sequential read
	Actions

	direct path read and direct path read temp
	Causes
	Actions
	Sorts to Disk
	Full Table Scans
	Hash Area Size


	direct path write and direct path write temp
	Causes
	Actions

	enqueue (enq:) waits
	Finding Locks and Lock Holders
	Actions
	ST enqueue
	HW enqueue
	TM enqueue
	TX enqueue


	events in wait class other
	free buffer waits
	Causes
	Actions
	Writes
	Cache is Too Small
	Cache Is Too Big for One DBWR

	Consider Multiple Database Writer (DBWR) Processes or I/O Slaves
	DB_WRITER_PROCESSES
	DBWR_IO_SLAVES
	Choosing Between Multiple DBWR Processes and I/O Slaves


	Idle Wait Events
	latch events
	Actions
	Example: Find Latches Currently Waited For
	Shared Pool and Library Cache Latch Contention
	Unshared SQL
	Reparsed Sharable SQL
	By Session
	cache buffers lru chain
	cache buffers chains
	row cache objects


	log file parallel write
	library cache pin
	library cache lock
	log buffer space
	log file switch
	Actions

	log file sync
	rdbms ipc reply
	SQL*Net Events
	SQL*Net message from client
	Network Bottleneck
	Resource Bottleneck on the Client Process

	SQL*Net message from dblink
	SQL*Net more data to client


	Real-Time SQL Monitoring
	SQL Plan Monitoring
	Parallel Execution Monitoring
	Generating the SQL Monitor Report
	Enabling and Disabling SQL Monitoring

	Tuning Instance Recovery Performance: Fast-Start Fault Recovery
	About Instance Recovery
	Cache Recovery (Rolling Forward)
	Transaction Recovery (Rolling Back)
	Checkpoints and Cache Recovery
	How Checkpoints Affect Performance
	Fast Cache Recovery Tradeoffs


	Configuring the Duration of Cache Recovery: FAST_START_MTTR_TARGET
	Practical Values for FAST_START_MTTR_TARGET
	Reducing Checkpoint Frequency to Optimize Run-Time Performance
	Monitoring Cache Recovery with V$INSTANCE_RECOVERY

	Tuning FAST_START_MTTR_TARGET and Using MTTR Advisor
	Calibrate the FAST_START_MTTR_TARGET
	Determine the Practical Range for FAST_START_MTTR_TARGET
	Determining Lower Bound for FAST_START_MTTR_TARGET: Scenario
	Determining Upper Bound for FAST_START_MTTR_TARGET
	Selecting Preliminary Value for FAST_START_MTTR_TARGET

	Evaluate Different Target Values with MTTR Advisor
	Enabling MTTR Advisor
	Using MTTR Advisor
	Viewing MTTR Advisor Results: V$MTTR_TARGET_ADVICE

	Determine Optimal Size for Redo Logs




	Part IV Optimizing SQL Statements
	11 The Query Optimizer
	Overview of the Query Optimizer
	Optimizer Operations
	Components of the Query Optimizer
	Query Transformation
	View Merging
	Predicate Pushing
	Subquery Unnesting
	Query Rewrite with Materialized Views

	Estimation
	Selectivity
	Cardinality
	Cost

	Plan Generation
	Join Order
	Query Subplans
	Cutoff for Plan Selection


	Bind Variable Peeking
	Adaptive Cursor Sharing
	Bind-Sensitive Cursors
	Bind-Aware Cursors
	Cursor Merging

	Viewing Bind-Related Performance Data


	Overview of Optimizer Access Paths
	Full Table Scans
	Why a Full Table Scan Is Faster for Accessing Large Amounts of Data
	When the Optimizer Uses Full Table Scans
	Lack of Index
	Large Amount of Data
	Small Table
	High Degree of Parallelism

	Full Table Scan Hints
	Parallel Query Execution

	Rowid Scans
	When the Optimizer Uses Rowids

	Index Scans
	Assessing I/O for Blocks, not Rows
	Index Unique Scans
	When the Optimizer Uses Index Unique Scans
	Index Unique Scan Hints

	Index Range Scans
	When the Optimizer Uses Index Range Scans
	Index Range Scan Hints

	Index Range Scans Descending
	When the Optimizer Uses Index Range Scans Descending
	Index Range Scan Descending Hints

	Index Skip Scans
	Full Scans
	Fast Full Index Scans
	Fast Full Index Scan Hints

	Index Joins
	Index Join Hints

	Bitmap Indexes

	Cluster Access
	Hash Access
	Sample Table Scans
	How the Query Optimizer Chooses an Access Path

	Overview of Joins
	How the Query Optimizer Executes Join Statements
	How the Query Optimizer Chooses Execution Plans for Joins
	Nested Loop Joins
	Original and New Implementation for Nested Loop Joins
	Original Implementation for Nested Loop Joins
	New Implementation for Nested Loop Joins

	When the Optimizer Uses Nested Loop Joins
	Nested Loop Join Hints
	Nesting Nested Loops

	Hash Joins
	When the Optimizer Uses Hash Joins
	Hash Join Hints

	Sort Merge Joins
	When the Optimizer Uses Sort Merge Joins
	Sort Merge Join Hints

	Cartesian Joins
	When the Optimizer Uses Cartesian Joins
	Cartesian Join Hints

	Outer Joins
	Nested Loop Outer Joins
	Hash Join Outer Joins
	Sort Merge Outer Joins
	Full Outer Joins


	Reading and Understanding Execution Plans
	Overview of EXPLAIN PLAN
	Steps in the Execution Plan

	Controlling Optimizer Behavior
	Enabling Query Optimizer Features
	Choosing an Optimizer Goal
	Setting the OPTIMIZER_MODE Initialization Parameter
	Using Hints to Change the Optimizer Goal
	Optimizer Statistics in the Data Dictionary



	12 Using EXPLAIN PLAN
	Understanding EXPLAIN PLAN
	How Execution Plans Can Change
	Different Schemas
	Different Costs

	Minimizing Throw-Away
	Looking Beyond Execution Plans
	Using V$SQL_PLAN Views

	EXPLAIN PLAN Restrictions

	The PLAN_TABLE Output Table
	Running EXPLAIN PLAN
	Identifying Statements for EXPLAIN PLAN
	Specifying Different Tables for EXPLAIN PLAN

	Displaying PLAN_TABLE Output
	Customizing PLAN_TABLE Output

	Reading EXPLAIN PLAN Output
	Viewing Parallel Execution with EXPLAIN PLAN
	Viewing Parallel Queries with EXPLAIN PLAN

	Viewing Bitmap Indexes with EXPLAIN PLAN
	Viewing Result Cache with EXPLAIN PLAN
	Viewing Partitioned Objects with EXPLAIN PLAN
	Examples of Displaying Range and Hash Partitioning with EXPLAIN PLAN
	Plans for Hash Partitioning

	Examples of Pruning Information with Composite Partitioned Objects
	Examples of Partial Partition-Wise Joins
	Examples of Full Partition-wise Joins
	Examples of INLIST ITERATOR and EXPLAIN PLAN
	When the IN-List Column is an Index Column
	When the IN-List Column is an Index and a Partition Column
	When the IN-List Column is a Partition Column

	Example of Domain Indexes and EXPLAIN PLAN

	PLAN_TABLE Columns

	13 Managing Optimizer Statistics
	Overview of Optimizer Statistics
	Managing Automatic Optimizer Statistics Collection
	Enabling and Disabling Automatic Optimizer Statistics Collection
	Considerations When Gathering Statistics
	When to Use Manual Statistics
	Restoring Previous Versions of Statistics
	Locking Statistics


	Gathering Statistics Manually
	Gathering Statistics with DBMS_STATS Procedures
	Statistics Gathering Using Sampling
	Parallel Statistics Gathering
	Statistics on Partitioned Objects
	Granularity of Statistics Gathering
	Incremental Statistics Gathering

	Column Statistics and Histograms
	Determining Stale Statistics
	User-Defined Statistics

	Setting Preferences for Manual Statistics Gathering
	When to Gather Statistics
	Comparing Statistics with DBMS_STATS Functions

	System Statistics
	Workload Statistics
	Gathering Workload Statistics
	Multiblock Read Count

	Noworkload Statistics
	Gathering Noworkload Statistics


	Managing Statistics
	Pending Statistics
	Managing Extended Statistics
	Managing Column Group Statistics
	Creating a Column Group
	Getting a Column Group
	Dropping a Column Group
	Monitoring Column Groups
	Gathering Statistics on Column Groups

	Managing Expression Statistics
	Creating Expression Statistics
	Monitoring Expression Statistics
	Dropping Expression Statistics


	Restoring Previous Versions of Statistics
	Exporting and Importing Statistics
	Restoring Statistics Versus Importing or Exporting Statistics
	Locking Statistics for a Table or Schema
	Setting Statistics
	Handling Missing Statistics

	Controlling Dynamic Statistics
	Purpose of Dynamic Statistics
	Dynamic Statistics Concepts
	Dynamic Statistics Levels
	When the Optimizer Uses Dynamic Statistics

	Setting Dynamic Statistics Levels Manually
	Disabling Dynamic Statistics

	Viewing Statistics
	Statistics on Tables, Indexes and Columns
	Viewing Histograms
	Height-Balanced Histograms
	Frequency Histograms



	14 Using Indexes and Clusters
	Understanding Index Performance
	Tuning the Logical Structure
	Index Tuning using the SQLAccess Advisor
	Choosing Columns and Expressions to Index
	Choosing Composite Indexes
	Choosing Keys for Composite Indexes
	Ordering Keys for Composite Indexes

	Writing Statements That Use Indexes
	Writing Statements That Avoid Using Indexes
	Re-creating Indexes
	Compacting Indexes
	Using Nonunique Indexes to Enforce Uniqueness
	Using Enabled Novalidated Constraints

	Using Function-based Indexes for Performance
	Using Partitioned Indexes for Performance
	Using Index-Organized Tables for Performance
	Using Bitmap Indexes for Performance
	Using Bitmap Join Indexes for Performance
	Using Domain Indexes for Performance
	Using Table Clusters for Performance
	Using Hash Clusters for Performance

	15 Using SQL Plan Management
	Overview of SQL Plan Baselines
	Purpose of SQL Plan Baselines
	Architecture of SQL Plan Baselines

	Managing SQL Plan Baselines
	Capturing SQL Plan Baselines
	Capturing Plans Automatically
	Creating Baselines from Existing Plans
	Loading Plans from SQL Tuning Sets and AWR Snapshots
	Loading Plans from the Shared SQL Area


	Selecting SQL Plan Baselines
	Evolving SQL Plan Baselines
	Evolving Plans with Manual Plan Loading
	Evolving Plans with DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE


	Using SQL Plan Baselines with SQL Tuning Advisor
	Using Fixed SQL Plan Baselines
	Displaying SQL Plan Baselines
	SQL Management Base
	Disk Space Usage
	Purging Policy
	SQL Management Base Configuration Parameters

	Importing and Exporting SQL Plan Baselines
	Migrating Stored Outlines to SQL Plan Baselines
	Overview of Stored Outline Migration
	Purpose of Stored Outline Migration
	How Stored Outline Migration Works
	Stages of Stored Outline Migration
	Outline Categories and Baseline Modules

	User Interface for Stored Outline Migration
	Basic Steps in Stored Outline Migration

	Preparing for Stored Outline Migration
	Migrating Outlines to Utilize SQL Plan Management Features
	Migrating Outlines to Preserve Stored Outline Behavior
	Performing Follow-Up Tasks After Stored Outline Migration


	16 SQL Tuning Overview
	Introduction to SQL Tuning
	Goals for Tuning
	Reduce the Workload
	Balance the Workload
	Parallelize the Workload

	Identifying High-Load SQL
	Identifying Resource-Intensive SQL
	Tuning a Specific Program
	Tuning an Application / Reducing Load

	Gathering Data on the SQL Identified
	Information to Gather During Tuning


	Automatic SQL Tuning Features
	ADDM
	SQL Tuning Advisor
	SQL Tuning Sets
	SQL Access Advisor

	Developing Efficient SQL Statements
	Verifying Optimizer Statistics
	Reviewing the Execution Plan
	Restructuring the SQL Statements
	Compose Predicates Using AND and =
	Avoid Transformed Columns in the WHERE Clause
	Write Separate SQL Statements for Specific Tasks

	Controlling the Access Path and Join Order with Hints
	Use Caution When Managing Views
	Use Caution When Joining Complex Views
	Do Not Recycle Views
	Use Caution When Unnesting Subqueries
	Use Caution When Performing Outer Joins to Views

	Store Intermediate Results

	Restructuring the Indexes
	Modifying or Disabling Triggers and Constraints
	Restructuring the Data
	Maintaining Execution Plans Over Time
	Visiting Data as Few Times as Possible
	Combine Multiples Scans Using CASE Expressions
	Use DML with RETURNING Clause
	Modify All the Data Needed in One Statement


	Building SQL Test Cases
	Creating a Test Case
	Accessing SQL Test Case Builder from Enterprise Manager
	Accessing SQL Test Case Builder Using DBMS_SQLDIAG



	17 Automatic SQL Tuning
	Overview of the Automatic Tuning Optimizer
	Statistics Analysis
	SQL Profiling
	Access Path Analysis
	SQL Structure Analysis
	Alternative Plan Analysis

	Managing the Automatic SQL Tuning Advisor
	How Automatic SQL Tuning Works
	Enabling and Disabling Automatic SQL Tuning
	Configuring Automatic SQL Tuning
	Viewing Automatic SQL Tuning Reports

	Tuning Reactively with SQL Tuning Advisor
	Input Sources
	Tuning Options
	Advisor Output
	Running SQL Tuning Advisor
	Creating a SQL Tuning Task
	Configuring a SQL Tuning Task
	Executing a SQL Tuning Task
	Checking the Status of a SQL Tuning Task
	Checking the Progress of SQL Tuning Advisor
	Displaying the Results of a SQL Tuning Task
	Additional Operations on a SQL Tuning Task


	Managing SQL Tuning Sets
	Creating a SQL Tuning Set
	Loading a SQL Tuning Set
	Displaying the Contents of a SQL Tuning Set
	Modifying a SQL Tuning Set
	Transporting a SQL Tuning Set
	Dropping a SQL Tuning Set
	Additional Operations on SQL Tuning Sets

	Managing SQL Profiles
	Overview of SQL Profiles
	SQL Profile Recommendations
	SQL Profile Creation
	SQL Profile APIs

	Accepting a SQL Profile
	Altering a SQL Profile
	Dropping a SQL Profile
	Transporting a SQL Profile

	SQL Tuning Views

	18 SQL Access Advisor
	Overview of SQL Access Advisor
	Overview of Using SQL Access Advisor
	SQL Access Advisor Repository


	Using SQL Access Advisor
	Steps for Using SQL Access Advisor
	Privileges Needed to Use SQL Access Advisor
	Setting Up Tasks and Templates
	Creating Tasks
	Using Templates
	Creating Templates

	SQL Access Advisor Workloads
	SQL Tuning Set Workloads
	Using SQL Tuning Sets
	Linking Tasks and Workloads
	Removing a Link Between a SQL Tuning Set Workload and a Task


	Working with Recommendations
	Recommendations and Actions
	Recommendation Options
	Evaluation Mode
	View Intermediate Results During Recommendation Analysis
	Generating Recommendations
	EXECUTE_TASK Procedure

	Viewing Recommendations
	Stopping the Recommendation Process
	Interrupting Tasks
	Canceling Tasks

	Marking Recommendations
	Modifying Recommendations
	Generating SQL Scripts
	Special Considerations when Script Includes Partitioning Recommendations
	When Recommendations are no Longer Required

	Performing a Quick Tune
	Managing Tasks
	Updating Task Attributes
	Deleting Tasks
	Setting the DAYS_TO_EXPIRE Parameter

	Using SQL Access Advisor Constants
	Examples of Using SQL Access Advisor
	Recommendations From a User-Defined Workload
	Generate Recommendations Using a Task Template
	Evaluate Current Usage of Indexes and Materialized Views


	Tuning Materialized Views for Fast Refresh and Query Rewrite
	DBMS_ADVISOR.TUNE_MVIEW Procedure
	TUNE_MVIEW Syntax and Operations
	Accessing TUNE_MVIEW Output Results
	USER_TUNE_MVIEW and DBA_TUNE_MVIEW Views
	Script Generation DBMS_ADVISOR Function and Procedure

	Fast Refreshable with Optimized Sub-Materialized View



	19 Using Optimizer Hints
	Overview of Optimizer Hints
	Types of Hints
	Hints by Category
	Hints for Optimization Approaches and Goals
	Hints for Enabling Optimizer Features
	Hints for Access Paths
	Hints for Join Orders
	Hints for Join Operations
	Hints for Online Application Upgrade
	Hints for Parallel Execution
	Hints Controlling the Degree of Parallelism
	Hints Controlling the Distribution Method for Joins
	Hints Controlling the Distribution Method for Loads

	Hints for Query Transformations
	Additional Hints


	Specifying Hints
	Specifying a Full Set of Hints
	Specifying a Query Block in a Hint
	Specifying Global Table Hints
	Specifying Complex Index Hints

	Using Hints with Views
	Hints and Complex Views
	Hints and Mergeable Views
	Optimization Approaches and Goal Hints in Views
	Access Path and Join Hints on Views
	Access Path and Join Hints Inside Views

	Hints and Nonmergeable Views


	20 Using Plan Stability
	Using Plan Stability to Preserve Execution Plans
	Using Hints with Plan Stability
	How Outlines Use Hints

	Storing Outlines
	Enabling Plan Stability
	Using Supplied Packages to Manage Stored Outlines
	Creating Outlines
	Using Category Names for Stored Outlines

	Using Stored Outlines
	Viewing Outline Data
	Moving Outline Tables

	Using Plan Stability with Query Optimizer Upgrades
	Moving from RBO to the Query Optimizer
	Moving to a New Oracle Release under the Query Optimizer
	Upgrading with a Test System



	21 Using Application Tracing Tools
	End-to-End Application Tracing
	Enabling and Disabling Statistic Gathering for End-to-End Tracing
	Statistic Gathering for Client Identifier
	Statistic Gathering for Service, Module, and Action

	Viewing Gathered Statistics for End-to-End Application Tracing
	Enabling and Disabling for End-to-End Tracing
	Tracing for Client Identifier
	Tracing for Service, Module, and Action
	Tracing for Session
	Tracing for Entire Instance or Database

	Viewing Enabled Traces for End-to-End Tracing

	Using the trcsess Utility
	Syntax for trcsess
	Sample Output of trcsess

	Understanding SQL Trace and TKPROF
	Understanding the SQL Trace Facility
	Understanding TKPROF

	Using the SQL Trace Facility and TKPROF
	Step 1: Setting Initialization Parameters for Trace File Management
	Step 2: Enabling the SQL Trace Facility
	Step 3: Formatting Trace Files with TKPROF
	Sample TKPROF Output
	Syntax of TKPROF
	Examples of TKPROF Statement
	TKPROF Example 1
	TKPROF Example 2


	Step 4: Interpreting TKPROF Output
	Tabular Statistics in TKPROF
	Row Source Operations
	Wait Event Information
	Interpreting the Resolution of Statistics
	Understanding Recursive Calls
	Library Cache Misses in TKPROF
	Statement Truncation in SQL Trace
	Identification of User Issuing the SQL Statement in TKPROF
	Execution Plan in TKPROF
	Deciding Which Statements to Tune

	Step 5: Storing SQL Trace Facility Statistics
	Generating the TKPROF Output SQL Script
	Editing the TKPROF Output SQL Script
	Querying the Output Table


	Avoiding Pitfalls in TKPROF Interpretation
	Avoiding the Argument Trap
	Avoiding the Read Consistency Trap
	Avoiding the Schema Trap
	Avoiding the Time Trap

	Sample TKPROF Output
	Sample TKPROF Header
	Sample TKPROF Body
	Sample TKPROF Summary



	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W


