
PE File Structure

The "portable executable file format" (PE) is the format of the binary programs (exe, dll, sys,

scr) for MS windows NT, windows 95 and win32s. It can also be used for object files (bpl, dpl,
cpl, ocx, acm, ax).

The format was designed by Microsoft and then in 1993 standardized by the Tool Interface Standard
Committee (Microsoft, Intel, Borland, Watcom, IBM and others) , apparently based on the "common object file
format" (COFF), the format used for object files and executables on several UNIX and VMS OSes.

The following 3 paragraphs copied from Mark Pietrek's article on MSDN

The term "Portable Executable" was chosen because the intent was to have a common file format for all flavors
of Windows, on all supported CPUs. To a large extent, this goal has been achieved with the same format used
on Windows NT and descendants, Windows 95 and descendants, and Windows CE.

A very handy aspect of PE files is that the Data Structures on disk are the same data structures used in
memory. Loading an executable into memory is primarily a matter of mapping certain ranges of a PE file into the
address space. Thus, a data structure is identical on disk and in memory. The key point is that if you know how
to find something in a PE file, you can almost certainly find the same information after the file is loaded in
memory. It's important to note that PE files are not just mapped into memory as a single memory-mapped file.
Instead, the Win32 loader looks at the PE file and decides what portions of the file to map in. This mapping is
consistent in that higher offsets in the file correspond to higher memory addresses when mapped into memory.
The offset of an item in the disk file may differ from its offset once loaded into memory. However, all the
information is present to allow you to make the translation from disk offset to memory offset.

A module in memory represents all the code, data, and resources from an executable file that is needed by a
process. Other parts of a PE file may be read, but not mapped in (for instance, relocations). Some parts may
not be mapped in at all, for example, when debug information is placed at the end of the file. A field in the PE
header tells the system how much memory needs to be set aside for mapping the executable into memory.
Data that won't be mapped in is placed at the end of the file, past any parts that will be mapped in.

The PE data structures are: DOS header, DOS stub, PE File Header, Image Optional

Header, Section Table - which has a trailing array of Section Headers - Data Directories -
these directories contain pointers to data in the individual sections and, lastly, the individual

Sections themselves.

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 1/18

Each section header has some flags about what kind of data it contains ("initialized data"," readable

data","writable data" and so on), whether it can be shared etc., and pointers (RVA's). A PE header component is

called the "IMAGE_DIRECTORY HEADER". This header holds information about some PE Sections (Resources,
Import, and so on). Each Record being [PointerToSection] [Size].

Some sections also have additional headers (for example .rsrc) called Section Data Headers. Some don't,
directoryless types of contents of sections are, for example, "executable code" or "initialized data". Essentially,
the sections' contents is what you really need to execute a program, and all the header and directory stuff is just
there to help you or the win32 loader to find it.

PE File Layout RosAsm Base3.exe

Dos MZ Header

This makes a PE file an MS-DOS executable. First 2 bytes are always: 4Dh 5Ah > "MZ" is dos exe signature
starting at 0h, Last Page Size (2 bytes),Total Pages in File (2 bytes), Relocation Items (2 bytes). The word
at offset 8h tells the # of 16 byte paragraphs the DOS header contains > Dos Header Size 4h (16*4) = 40h bytes

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 2/18

in length,

Min Size (2 bytes), Max Size FFFFh @ offset 0Ch, Initial Stack Segment (SP register value at run time 2
bytes), Initial Stack Pointer 2 bytes, 2 byte Checksum for Header @ offset 12h, Initial Instruction Pointer 2
bytes, Initial Code Segment 2 bytes, Relocation Table Offset 40h @ offset 18h 2 bytes,Overlay # default 2
bytes, Betov's CheckSum 4 bytes @ offset 38h (located in the last part of 8 reserved words) and the PE Header
Pointer > 80h 4 bytes @ offset 3Ch.

The above as seen in Quickv iew. (00h thru 3Fh)

In a Win32 system the PE loader just skips the following MS-DOS Stub.

MS-DOS executable ("stub")

The DOS stub is actually a valid EXE for PE-files, it is a MS-DOS 2.0 compatible executable that almost always
consists of a small number of bytes that output an error message. It can simply display a string like "This program
requires Windows" or "Cannot be run in DOS mode" or the "RosAsm message above".

The bytes from 40h to 4Dh above is the actual code: push cs // pop ds // mov dx 0E // mov ah 09 // int 021 // mov
ax 4C01 // int 021 to print the message if the program is run in DOS.

PE File header (in the COFF-format)

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 3/18

First row: The 32-bit-PE signature (first 4 bytes contains the number 4550h > "PE") @ offset 80h , the 2 byte

IMAGE_FILE_MACHINE @ offset 84h for x86: (14Ch) for Intel 80386 processor or better, (14Dh) for Intel 80486
processor or better,(14Eh) for Intel Pentium processor or better. 2 bytes @offset 86h contains how many
sections are in it 04h . Next is a timestamp 'TimeDateStamp' (32 bit value).The members

'PointerToSymbolTable' (32 bit value) and,

Second row:'NumberOfSymbols' 0h @ offset 90h (32 bit value) are used for debugging information.

'SizeOfOptionalHeader' E0h (16 bit) @ offset 94h:This header tells us how the binary should be loaded: The
starting address, the amount of stack to reserve, the size of the data segment etc..'Characteristics' is 16 bits
10Fh (1_00001111) @ offset 96h and consists of a collection of flags, most of which are valid for libraries and
object files. Optional Header Starts @ offset 98h the 16-bit-word is 'Magic' always contains the value 10Bh.The
next 2 bytes 3h @ offset 9Ah are the 'Version' of the linker.'SizeOfCode' is last 4 bytes Size of the
executable code.

The above as seen in Quickv iew. (80h thru 9Fh)

Thusfar in Base3.exe as written by RosAsm, we have encountered the Dos header, Dos stub and the PE 'image
file header' - that tells us most importantly, what machine it runs on, how many sections are in it and the size of
the 'Image Optional Header', which immediately follows and we are now in....starting at 98h,with magic and is
E0h bytes long, adding the two together we get 178h... which is the start of the IMAGE_DATA_DIRECTORY array
as we will see below after we finish with the 'Image Optional Header' ..

First row: The next 2 longwords @ offset A0h (32 bits each) are intended to be the size of the initialized data
('SizeOfInitializedData'), the "data segment" and the size of the uninitialized data ('SizeOfUninitializedData')
the so-called "bss segment". This is the size of everything but Code and Virtual data (size of initialized data .data
+ .rsrc+... + .reloc). Next is a 32-bit-value @ offset A8h that is an RVA (relative virtual address). This RVA is
the offset to the code's entry point, program execution starts here ('AppRVAentryPoint').The next 2 32-bit-values
are the offsets to the executable code ('AppBaseOfCode') and,

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 4/18

Second row: The initialized data @ offset B0h ('SHAppBaseOfData').The next entry is a 32-bit-value giving

the preferred (linear) load address ('ImageBase') of the entire binary, including all headers 400000h = (The image
base linker default value). The next 2 32-bit-values @ offset B8h are the alignments of the PE-file's sections in

RAM 'Section Alignment' when the image has been loaded and in the 'File Alignment' in the file.

The above as seen in Quickv iew. (A0h thru BFh)

First row: The next 4 16-bit-words are the expected operating system version ('MajorOperatingSystemVersion'
and 'MinorOperatingSystemVersion, the next 2 16-bit-words are the expected subsystem version and 4 bytes of
reserved space.

Second row: 'SizeOfImage' 32 bit value@ offset D0h.It is the sum of all headers' and sections' lengths if aligned
to 'SectionAlignment'. It is a hint to the loader how many pages it will need in order to load the image in RAM.
Next 'SizeOfHeaders' @ offset D4h a 32-bit-value giving the total length of all headers including the data
directories and the section headers, it is also the offset to the sections. Then we have got a 32-bit-checksum

'CheckSum'. The algorithm to compute the checksum is property of Microsoft, and they won't tell you, it is only
needed for Driver PEs. The checksum need not be supplied and may be 0. Then there is a 16-bit-word

'Subsystem' @ offset DCh IMAGE_SUBSYSTEM_WINDOWS_GUI (2h). Windows 95 binaries will always use the
Win32 subsystem, so the only legal values for these binaries are 2 and 3. The last thing in the second row is a 16-
bit-value that tells, if the image is a DLL.

The above as seen in Quickv iew. (C0h thru DFh)

First row: The next 4 32-bit-values starting @ offset E0h are the size of stack reserve ('SizeOfStackReserve'),
the size of initially committed stack ('SizeOfStackCommit') , the size of the reserved
heap('SizeOfHeapReserve') and the size of the committed heap ('SizeOfHeapCommit').

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 5/18

Second row: After these stack- and heap-descriptions, we find 32 bits of 'LoaderFlags'. Then the Size of Data
Directory, number of possible entries in the following section table (16 records) 4 bytes @ offset F4h.called

'NumberOfRvaAndSizes'. The last 8 bytes would be for the Export Directory pointers entry if used..

The above as seen in Quickv iew. (E0h thru FFh)

First row: The next 4 32-bit-values starting @ offset 100h are Import Directory Virtual Address

('AppBaseOfImport'), the Import Directory Size ('AppImportSize'), Resource Directory Virtual Address

('AppBaseOfRsrc') and the Resource Directory Size ('AppRsrcSize').

Second row: The 32-bit-values starting @ offset 110h and those following to 157h are filled with zeros and would
be entries, RVAs and Sizes for: Exception, Security, Relocation Table, Debug, Copyright, Global Mips gp and
Global Pointer, Thread Local Storage and Load Configuration, if used.

The above as seen in Quickv iew. (100h thru 10Fh)

First row: The 32-bit-values starting @ offset 158h are the Second Import Address Table 'AppSecondImport' and
its size 'AppSecondImportSize' This is explained below.

Second row: The the space from 160h filled with zeros is reserved and the Image Optional Header ends at

177h.

The entire 'Image Optional Header' as seen in Quickview

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 6/18

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 7/18

Section Headers

Between the PE headers and the raw data for the image's Sections lies the Section Table.

There is one section header for each section, and each data directory will point to one of the sections. Several
data directories may point to the same section, and there may be sections without a data directory pointing to
them.

The sections in the image are sorted by their starting address (RVAs), rather than alphabetically.

Section Table - Image Data Directories

Sections have two alignment values, one within the disk file (Pointer to Raw Data) and the other in memory
(Virtual Address). The PE file header specifies both of these values, which can differ. Each section starts at an
offset that's some multiple of the alignment value. For instance, in the PE file, a typical alignment would be 200h.
Thus, every section begins at a file offset that's a multiple of 200h. Once mapped into memory, sections always
start on at least a page boundary. That is, when a PE section is mapped into memory, the first byte of each
section corresponds to a memory page. On x86 CPUs pages are 4KB aligned, while on the IA-64 CPUs they are
8KB aligned.

The Section Table is an array of IMAGE_NUMBER_OF_DIRECTORY ENTRIES (16 spaces reserved for entries)
IMAGE_DATA_DIRECTORYs. Each of these directories describes the location (32 bits RVA called 'Virtual
Address') and size (also 32 bit, called 'Size of Raw Data') of a particular piece of information, which is located in
one of the sections that follow the directory entries. Some elements at the end of the array are currently unused.

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 8/18

This array allows the loader to quickly find a particular section of the image (for example, the imported function

table), without having to iterate through each of the images sections, comparing names as it goes along. In
the section table the first entry of an array element is of the SHORT_NAME 8 bytes, that make up the name (in
ASCII) of the section. If all of the 8 bytes are used there is no 0 terminator for the string... Followed by two sets of
Dwords that are the sizes and the second ones that are the RVA addresses for each entry and data
characteristics sometimes called flags.

Partial Section Records of Directory entries of Base3.exe each .jpg showing the relevant entry.

Import Table - Data Section Header starts at 178h

'.idata ': @ offset 178h padded with 2 zeros = 8 bytes, AppImportTrueSize: (Virtual Size) 204h @ offset 180h 4
bytes, AppBaseOfImports: RVA 1000h @ offset 184h 4 bytes, AppImportAlignedSize: 400h @ offset 188h 4
bytes, AppStartOfImport: 400h @ offset 18Ch 4 bytes,12 bytes not used. The flags describing how the section's

memory should be treated DataCharacteristics D$ 0_C0000040 @ offset 19Ch; readable, writeable, initialized

data.

The above as seen in Quickv iew. (170h thru 19Fh)

As we can see the .idata section starts at 400h in the file and is 400h bytes in length...

When you use code or data from a DLL, you're importing it. When any PE file loads, one of the jobs of the Win32

loader is to locate all the imported functions and data and make those addresses available to the file being

loaded. When you link directly against the code and data of another DLL, you're implicitly linking against the DLL.

You don't have to do anything to make the addresses of the imported APIs available to your code. Within a PE
file, (Not shown in .jpgs) there's an array of data structures, one per imported DLL. Each of these structures
gives the name of the imported DLL and points to an array of function pointers. The array of function pointers is
known as the Import Address Table (IAT). Each imported API has its own reserved spot in the IAT where the
address of the imported function is written by the Win32 loader. This last point is particularly important: once a
module is loaded into RAM, the IAT contains the address that is invoked when calling imported APIs. The beauty
of the IAT is that there's just one place in a PE file when loaded into RAM where an imported API's address

is stored. all the calls go through the same function pointer in the IAT.

Actual table as seen in Quickv iew.

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 9/18

The important parts of an import table are the imported DLL name and the two arrays of IMAGE_IMPORT_BY_NAME pointers. In the EXE

file, the two arrays (pointed to by the Characteristics and FirstThunk fields) run parallel to each other, and are terminated by a NULL pointer

entry at the end of each array. The pointers in both arrays point to an IMAGE_IMPORT_BY_NAME structure. Why are there two parallel

arrays of pointers to the IMAGE_IMPORT_BY_NAME structures? The array pointed at by the Characteristics field is left alone, and never

modified. It's sometimes called the hint-name table. The array pointed at by the FirstThunk field is overwritten by the PE loader. The

loader iterates through each pointer in the array and finds the address of the function that each IMAGE_IMPORT_BY_NAME structure refers

to. The loader then overwrites in RAM the pointer with the found function's address. Since the array of pointers that are overwritten by the

loader eventually holds the addresses of all the imported functions, it's called the Import Address Table.

Resource - Data Section Header

'.rsrc': padded with 3 zeros = 8 bytes, AppRsrcTrueSize: virtual size 680h 4 bytes, AppBaseOfRsrcs: virtual
address 2000h 4 bytes, RVA AppRsrcAlignedSize: size of raw data 800h 4 bytes, AppStartOfRsrc: pointer to
raw data 800h 4 bytes, 12 bytes not used.The flags describing how the section's memory should be treated,

DataCharacteristics:D$ 0_40000040 ; readable, initialized data.

The resources, such as dialog boxes, menus, icons and so on, are in the data directory pointed to by

IMAGE_DIRECTORY_ENTRY_RESOURCE.

It is in a section that has, at least, the bits 'IMAGE_SCN_CNT_INITIALIZED_DATA' and 'IMAGE_SCN_MEM_READ' set.

The above as seen in Quickv iew. (1A0h thru 1C7h)

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 10/18

As we can see the resource section starts at 800h in the file and is 800h bytes in length...

The following was copied from some of Mark Pietrek's articles:

Navigating the resource directory hierarchy is l ike navigating a hard disk. There's a 'Section Data Header' - master directory

(the root directory), which has subdirectories. The subdirectories have subdirectories of their own that may point to the raw

resource data for things like dialog templates. In the PE format, both the root directory of the resource directory hierarchy

and all of its subdirectories are structures of type IMAGE_RESOURCE_DIRECTORY.

A directory entry can either point at a subdirectory (that is, to another IMAGE_RESOURCE_DIRECTORY), or it can point to

the raw data for a resource. Generally, there are at least three directory levels before you get to the actual raw resource data.

The top-level directory (of which there's only one) is always found at the beginning of the resource section (.rsrc). The

subdirectories of the top-level directory correspond to the various types of resources found in the fi le. For example, if a PE

file includes dialogs, string tables, and menus, there will be three subdirectories: a dialog directory, a string table directory,

and a menu directory. Each of these type subdirectories will in turn have ID subdirectories. There wil l be one ID subdirectory

for each instance of a given resource type.Each ID subdirectory will have either a string name (such as "MyDialog") or the

integer ID used to identify the resource in the RC fi le.

IMAGE_RESOURCE_DIRECTORY Format

DWORD Characteristics - Theoretically this field could hold flags for the resource, but appears to always be 0.

DWORD TimeDateStamp - The time/date stamp describing the creation time of the resource.

WORD *MajorVersion - These *fields would hold a version number for the resource.

WORD *MinorVersion - These *fields appear to always be set to 0.

WORD NumberOfNamed Entries - The number of array elements that use names and that follow this structure.

WORD NumberOfIdEntries - The number of array elements that use integer IDs, and which follow this structure.

IMAGE_RESOURCE_DIRECTORY_ENTRY - Directory Entries.

This field isn't really part of the IMAGE_RESOURCE_DIRECTORY structure.

Rather, its an array of IMAGE_RESOURCE_DIRECTORY_ENTRY structures that immediately follow the

IMAGE_RESOURCE_DIRECTORY structure. The number of elements in the array is the sum of the

NumberOfNamedEntries and NumberOfIdEntries fields. The directory entry elements that have name identifiers (rather than

integer IDs) come first in the array. A directory entry can either point at a subdirectory (that is, to another

IMAGE_RESOURCE_DIRECTORY), or it can point to the raw data for a resource.

IMAGE_RESOURCE_DIRECTORY_ENTRY - Format

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 11/18

DWORD Name

This field contains either an integer ID or a pointer to a structure that contains a string name. If the high bit (0x80000000) is

zero, this field is interpreted as an integer ID. If the high bit is nonzero, the lower 31 bits are an offset (relative to the start

of the resources) to an IMAGE_RESOURCE_DIR_STRING_U structure. This structure contains a WORD character count,

followed by a UNICODE string with the resource name. Yes, even PE fi les intended for non-UNICODE Win32

implementations use UNICODE here. To convert the UNICODE string to an ANSI string, use the WideCharToMultiByte

function.

DWORD OffsetToData

This field is either an offset to another resource directory or a pointer to information about a specific resource instance. If the

high bit (0x80000000) is set, this directory entry refers to a subdirectory and the lower 31 bits are an offset (relative to the

start of the resources) to another IMAGE_RESOURCE_DIRECTORY. If the high bit isn't set, the lower 31 bits point to an

IMAGE_RESOURCE_DATA_ENTRY structure. The IMAGE_RESOURCE_DATA_ENTRY structure contains the location of the

resource's raw data, its size, and its code page.

To go further into the resource formats, for each resource type (dialogs, menus, and so on) if you're interested, the

RESFMT.TXT fi le from the Win32 SDK has a detailed description of all the resource type formats.

Data - Data Section Header

'.data':padded with 3 zeros = 8 bytes, AppDataTrueSize: virtual size129h 4 bytes, AppBaseOfData: virtual
address 3000h 4 bytes, AppDataAlignedSize: size of raw data 200h 4 bytes, AppStartOfData: pointer to raw
data 1000h bytes, 12 bytes not used,The flags describing how the section's memory should be treated

DataCharacteristics: 4bytes D$ 0_C0000040 ; readable, writeable, initialized data.

The above as seen in Quickv iew. (1C0h thru 1E0h)

As we can see the .data section starts at 1000h in the file and is 200h bytes in length...

Text - Data Section Header

The .text section is where all general-purpose code emitted by the compiler or assembler ends up.

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 12/18

'.text' padded with 3 zeros = 8 bytes, AppTrueCodeSize: virtual size 4 bytes; true size of code in file,

AppCodeRVAoffset: 4 bytes, RVA offset (aligned on 01000 boundary) AppFileSizeOfCode:size of raw data 4
bytes, file aligned size of code (200h aligned) , AppStartOfCode:pointer to raw data 4 bytes pointer to code
(true first code in file - not entry point-). The four 'dummy' D$ and W$ have no meaning in EXE and DLL
files: D$ 00 ; dummy reloc ptr D$ 00 ; dummy line number ptr W$ 00 ; dummy reloc number W$ 00 ; dummy

number of line number = 12 bytes not used. CodeCharacteristics: DataCharacteristics:D$ 0_60000020 ;
readable, runable/executable.

The above as seen in Quickv iew. (1F0h thru 21Fh)

As we can see the .text section starts at 1200h in the file and is 200h bytes in length...

RosAsm 'Source Code' - Source Section Header:

As Betov has hidden the RosAsm 'source code' in the file, Quickview does not see it nor display it.

Used by RosAsm only (not by the loader which only sees 4 sections, not the actual 5).

Can you figure out how he does it ? Clue: Go back to Image File Header....

'.src': padded with 4 zeros = 8 bytes, AppSrcTrueSize 234Ch 4 bytes, AppBaseOfSrc 5000h RVA 4 bytes,
AppSrcAlignedSize 2400h 4 bytes, AppStartOfSrc 1400h 4 bytes, 12 bytes not used, DataCharacteristics: D$
06000840 ; Not readable initialized data; don't keep; don't cache...

RosAsm Base3.exe source code starts at 1400h and is 234Ch in length and continues to the EOF......

EOF is commonly used to signify the end of fi le...

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 13/18

The above IMAGE_DATA_DIRECTORYs in 178h to 267h are followed by unused space and are padded with zeros
to the file boundary 3FFh.... As we saw above the Import Section begins at 400 H , Resource Section at 800h,
Data Section at 1000h, Text at 1200h, RosAsm source at 1400h. Each of these sections are also padded with
zeros to the file boundaries, which in our files is 200h > 512 bytes and just happens to be the exact size of a
single disk sector..... As we have also seen the RVAs and offsets are used by the Win32 loader to map the file
into memory differently....

To see how the file is loaded into memory click here........

The Sections found in RosAsm Base3.exe

The .idata section contains information about functions (and data) that the module imports from other DLLs.

The .rsrc section contains all the resources for the module.

The .data section is where your initialized data goes.

The .text section is where all general-purpose code emitted by the compiler or assembler resides.

The .src section contains all the RosASM source code for the module.

Other Sections that you may encounter in other PE files

The .bss section is where any uninitialized static and global variables are stored.

The .crt is another initialized data section utilized by the Microsoft C/C++ run-time libraries (hence the name).

The .edata section is a list of the functions and data that the PE file exports for other modules.

The .reloc section holds a table of base relocations. A base relocation is an adjustment to an instruction or
initialized variable value that's needed if the loader couldn't load the file where the linker assumed it would. If the
loader is able to load the image at the linker's preferred base address, the loader completely ignores the relocation
information in this section.

The .tls section, which refers to "thread local storage," and is related to the TlsAlloc family of Win32 functions.
When dealing with a .tls section, the memory manager sets up the page tables so that whenever a process
switches threads, a new set of physical memory pages is mapped to the .tls section's address space. This
permits per-thread global variables.

The .rdata section is used for at least two things. First, in Microsoft linker-produced EXEs, the .rdata section
holds the debug directory, which is only present in EXE files.The other useful portion of an .rdata section is the
description string.

NOTE: There seems to be a wide latitude in the way PE files are written by the various Compilers/Linkers and if
you look at a number of different PE files you will find that some of them may not adhere to what is found in this
document. Nevertheless most of it applies and the Win32 Loader is capable of uploading them into RAM, therefore
the loader seems to be quite flexible in its own right. It also seems that while the Linker Version is present in the
Optional Header it is useless as it does not identify which linker it is.... Of course we do know that RosAsm wrote

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 14/18

our Base3.exe....

Home page <.>Links Page

Notes about Relative Virtual Addresses:The PE format makes heavy use of so-called RVAs.

An RVA, aka "relative virtual address", is used to describe a memory address if you don't know
the image base address. It is the value you need to add to the image base address to get the

actual linear address. The base address is the address the PE image is loaded to in RAM, and
may vary from one invocation to the next. Example: Suppose an executable file is loaded to

address 400000h and program execution starts at RVA 4000h. The effective execution start will
then be at the address 404000h. If the executable were loaded to 100000h, the execution start
would be 104000h.

...Defined directory indexes are:

IMAGE_DIRECTORY_ENTRY_EXPORT (0)The directory of exported symbols. mostly used for
DLLs.

IMAGE_DIRECTORY_ENTRY_IMPORT (1) The directory of imported symbols.

IMAGE_DIRECTORY_ENTRY_RESOURCE (2) Directory of resources.

IMAGE_DIRECTORY_ENTRY_EXCEPTION (3) Exception directory - structure and purpose
unknown.

IMAGE_DIRECTORY_ENTRY_SECURITY (4) Security directory - structure and purpose
unknown.

IMAGE_DIRECTORY_ENTRY_BASERELOC (5) Base relocation table. Neccessary for DLLs.

IMAGE_DIRECTORY_ENTRY_DEBUG (6) Debug directory - contents is compiler dependent.
Moreover, many compilers stuff the debug information into the code section and don't create a
separate section for it.

IMAGE_DIRECTORY_ENTRY_COPYRIGHT (7) Description string - some arbitrary copyright
note or the like.

IMAGE_DIRECTORY_ENTRY_GLOBALPTR (8) Machine Value (MIPS GP) - structure and
purpose unknown.

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 15/18

IMAGE_DIRECTORY_ENTRY_TLS (9) Thread local storage directory - structure unknown;
contains variables that are declared "__declspec(thread)", i.e. per-thread global variable.

IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG (10) Load configuration directory - structure
and purpose unknown.

IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT (11) Bound import directory - see description
of import directory.

IMAGE_DIRECTORY_ENTRY_IAT (12) Import Address Table - see description of import
directory.

As an example, if we find at index 7 the 2 longwords 1200h and 33h, and the load address is
10000h, we know that the copyright data is at address 10000h+1200h (in whatever section
there may be), and the copyright note is 33h bytes long. If a directory of a particular type is not
used in a binary, the Size and VirtualAddresses are both set to 0h.

Flags:

What most programmers call flags, the COFF/PE format calls characteristics. This field is a

set of flags that indicate the section's attributes (such as code/data, readable, or writeable,). For
a complete list of all possible section attributes, see the IMAGE_SCN_XXX_XXX #defines in
WINNT.H. Some of the more important flags are shown below:

0x00000020 This section contains code. Usually set in conjunction with the executable flag

(0x80000000).

0x00000040 This section contains initialized data. Almost all sections except executable and

the .bss section have this flag set.

0x00000080 This section contains uninitialized data (for example, the .bss section).

0x00000200 This section contains comments or some other type of information. A typical use

of this section is the .drectve section emitted by the compiler, which contains commands for the
linker.

0x00000800 This section's contents shouldn't be put in the final EXE file. These sections are
used by the compiler/assembler to pass information to the linker.

0x02000000 This section can be discarded, since it's not needed by the process once it's

been loaded. The most common discardable section is the base relocations (.reloc).

0x10000000 This section is shareable. When used with a DLL, the data in this section will be

shared among all processes using the DLL. The default is for data sections to be nonshared,
meaning that each process using a DLL gets its own copy of this section's data. In more
technical terms, a shared section tells the memory manager to set the page mappings for this
section such that all processes using the DLL refer to the same physical page in memory. To

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 16/18

section such that all processes using the DLL refer to the same physical page in memory. To
make a section shareable, use the SHARED attribute at link time. For example

0x20000000 This section is executable. This flag is usually set whenever the "contains code"

flag (0x00000020) is set.

0x40000000 This section is readable. This flag is almost always set for sections in EXE files.

0x80000000 The section is writeable. If this flag isn't set in an EXE's section, the loader should

mark the memory mapped pages as read-only or execute-only. Typical sections with this
attribute are .data and .bss. Interestingly, the .idata section also has this attribute set.

/ More Section characteristics.

0x00000000 // Reserved.

0x00000001 // Reserved.

0x00000002 // Reserved.

0x00000004 // Reserved.

0x00000008 // Reserved.

0x00000010 // Reserved.

0x00000020 // Section contains code.

0x00000040 // Section contains initialized data.

0x00000080 // Section contains uninitialized data.

0x00000100 // Reserved.

0x00000200 // Section contains comments or some other type of information.

0x00000400 // Reserved.

0x00000800 // Section contents will not become part of image.

0x00001000 // Section contents comdat.

0x00002000 // Reserved.

Obsolete 0x00004000

0x00008000 // Section content can be accessed relative to GP.

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 17/18

Acknowledgements:

To complete this tutorial I primarily used information that I learned from:

RosAsm source code, Matt Pietrek's article on MSDN & from B.Luevelsmeyer at iplan.heitec.net and other

information, such as winnt.h file with Borland Bcc55, I had in my files.

Words of Matt Pietrek:

"A good understanding of the Portable Executable (PE) file format leads to a good understanding of the

operating system. If you know what's in your DLLs and EXEs, you'll be a more knowledgeable programmer."

.

"You might be wondering why you should care about the executable file format. The answer is the same now

as it was then: an operating system's executable format and data structures reveal quite a bit about the

underlying operating system. By understanding what's in your EXEs and DLLs, you'll find that you've become

a better programmer all around."

Home page < >Links Page

9/12/2008 PE File Structure

http://mirror.sweon.net/madchat/vxde… 18/18

