
P: Safe Asynchronous Event-Driven Programming

November 2012

Technical Report
MSR-TR-2012-116

We describe the design and implementation of P, a domain specific language to write asynchronous event driven code. P allows the
programmer to specify the system as a collection of interacting state machines, which communicate with each other using events. P
unifies modeling and programming into one activity for the programmer. Not only can a P program be compiled into executable code,
but it can also be verified using model checking. P allows the programmer to specify the environment, used to “close” the system
during model checking, as nondeterministic ghost machines. Ghost machines are erased during compilation to executable code; a
type system ensures that the erasure is semantics preserving. The P language is carefully designed so that we can check if the systems
being designed is responsive, i.e., it is able to handle every event in a timely manner. By default, a machine needs to handle every
event that arrives in every state. The default safety checker looks for violations of this rule. Sometimes, handling every event at every
state is impractical. The language provides a notion of deferred events where the programmer can annotate when she wants to delay
processing an event. The language also provides default liveness checks that an event cannot be potentially deferred forever. Call
transitions (which are like subroutines) are used to factor common event handling code, and allow programmers to write complicated
state machines. P was used to implement and verify the core of the USB device driver stack that ships with Microsoft Windows 8. The
resulting driver is more reliable and performs better than its prior incarnation (which did not use P), and we have more confidence in
the robustness of its design due to the language abstractions and verification provided by P.

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

1. Introduction
Asynchronous systems code that is both performant and correct is
hard to write. Engineers typically design asynchronous code us-
ing state machine notations, use modeling and verification tools to
make sure that they have covered corner cases, and then implement
the design in languages like C. They use a variety of performance
tricks, as a result of which the structure of the state machines is
lost in myriad of details. Clean state machine diagrams that were
initially written down become out-of-date with the actual code as it
evolves, and the resulting system becomes hard to understand and
evolve. During the development of Windows 8, the USB team took
a bold step and decided to unify modeling and programming. Var-
ious components of the USB driver stack were specified as state
machines and asynchronous driver code was auto-generated from
these state machines. We were able to use model checking tech-
niques directly on the state machines to find and fix design bugs.
Since the executable code was auto-generated from the source, we
could make changes at the level of state machines and perform both
verification and compilation from one description. This methodol-
ogy was used to design, validate and generate code for the USB
stack that ships with Windows 8. The resulting driver stack is not
only more reliable, but also more performant.

In this paper, we formalize and present the salient aspects of
this methodology as a domain specific language P. Though P has
a visual programming interface, in this paper, we represent P as a
textual language with a simple core calculus, so that we can give a
full formal treatment of the language, compiler and verification al-
gorithms. A P program is a collection of state machines. Each state
machine has a set of states, accepts a set of events, and enumerates
the transition that are allowed to happen on each (state,event) pair.
For programming convenience, call-transitions are used to factor
out common code that needs to be repeated in various situations
(similar to nested modes in state charts [9]). Each state has an entry
function, which contains code to read and update local variables,
send events to other state machines, send private events to itself,
or call external C functions. The external C functions are used to
write parts of the code that have do with data transfer and has no
relevance to the control logic.

OS components are required to be responsive. Consequently
P programs are required to handle every message that can possi-
bly arrive in every state. Our notion of responsiveness is weaker
than synchronous languages like Esterel [3] (which require input
events to be handled synchronously during every clock tick, and are
hence too strong to be implemented in asynchronous software), but
stronger than purely asynchronous languages like Rhapsody [10]
(where asynchronous events can be queued arbitrarily long before
being handled). Thus, our notion of responsiveness lies in an inter-
esting design point between synchrony and asynchrony. In practice,
handling every event at every state would lead to combinatorial ex-
plosion in the number of control states, and is hence impractical.
The language provides a notion of deferred events to handle such
situations and allow a programmer to explicitly specify that it is ac-
ceptable to delay processing of certain events in certain states. The
language also provides default liveness checks, which ensure that
events cannot be deferred for ever.

We also show how to efficiently apply model checking to a P
program. The environment can be modeled as set of ghost ma-
chines, which are used only during modeling and verification and
elided during compilation. The type system of P ensures that the
ghost machines can be erased during compilation without chang-
ing the semantics. Using delay bounding scheduling [6] we can
efficiently check for large programs that events are properly han-
dled, there is no assertion failure, and that the program is memory
safe. Our delay bounded scheduler prioritizes schedules that follow
the causal sequence of events, parameterized by a delay bound d.

A delay bound of 0 captures all executions that are feasible in a
single-threaded runtime, and most bugs that occur in practice are
found using low values of the delay bound.

In summary, our contributions are the following:

• We design a DSL P to program asynchronous interacting state
machines at a higher level of abstraction, than detailed event
handlers that lose the state machine structure.
• We present formal operational semantics,a compiler and run-

time that enables P programs to run as KMDF (Kernel Mode
Driver Framework) device drivers.
• We show how to efficiently model check P programs and pro-

vide a new delay bounding algorithm that explores schedules of
the programs by following the causal order of events.
• We report on the use of P in a production environment. Our

case study is the USB stack in Windows 8.

2. Overview

Init
Deferred:
Ignored:

Timer = new Timer(Elevator = this);
Door = new Door(Elevator = this);
raise(unit)

start

Closed
Deferred:
Ignored: CloseDoor

send(Door ,SendCmdToReset)

Opening

Deferred: CloseDoor
Ignored: OpenDoor

send(Door ,SendCmdToOpen)

Opened

Deferred: CloseDoor
Ignored:

send(Door ,SendCmdToReset);
send(Timer ,StartTimer)

OkToClose
Deferred: OpenDoor
Ignored:

send(Timer ,StartTimer)

Closing

Deferred: CloseDoor
Ignored:

send(Door ,SendCmdToClose)

StoppingDoor

Deferred: CloseDoor
Ignored: OpenDoor ,

ObjectDetected ,
DoorClosed

send(Door ,SendCmdToStop)

StoppingTimer

Deferred: OpenDoor ,
ObjectDetected ,
CloseDoor

Ignored:

send(Timer ,StopTimer)

WaitingForTimer

Deferred: OpenDoor ,
ObjectDetected ,
CloseDoor

Ignored:

skip

ReturnState
Deferred:
Ignored:

raise(StopTimerReturned)

unit

OpenDoor

DoorOpened

TimerFired
StopTimerReturned

StopTimerReturned
TimerFired

OpenDoor

DoorClosed

ObjectDetected

DoorOpened

DoorClosed

DoorStopped

OperationSuccess

OperationFailure

TimerFired

OpenDoor CloseDoor

Figure 1: Elevator example

P is a domain-specific language for writing asynchronous event-
driven programs. Protocols governing the interaction among con-
currently executing components are essential for safe execution of
such programs. The P language is designed to clearly explicate
these control protocols; to process data and perform other func-
tions irrelevant to control flow, P machines have the capability to
call external functions written in C. We call those functions foreign
functions.

A P program is a collection of machines. Machines commu-
nicate with each other asynchronously through events. Events are
queued, but machines are required to handle them in a responsive
manner (defined precisely later)—failure to handle events is de-
tected by automatic verification.

1

Init
Deferred:
Ignored:

Elevator = new Elevator();
raise(unit)

start

Loop

Deferred:
Ignored:

if ∗ then
send(Elevator ,OpenDoor);

else if ∗ then
send(Elevator ,CloseDoor);

raise(unit)

unit
unit

(a) User ghost machine

Init
Deferred:
Ignored: SendCmdToStop,

SendCmdToReset

skip

start

OpenDoor

Deferred:
Ignored:

send(Elevator ,DoorOpened);
raise(unit)

ObjectEncountered

Deferred:
Ignored:

send(Elevator ,ObjectDetected);
raise(unit)

CloseDoor
Deferred:
Ignored:

send(Elevator ,DoorClosed);
raise(unit)

StopDoor

Deferred:
Ignored:

send(Elevator ,DoorStopped);
raise(unit)

Reset
Deferred:
Ignored: SendCmdToOpen,

SendCmdToClose,
SendCmdToStop

skip

ConsiderClosingDoor

Deferred:
Ignored:

if ∗ then
raise(unit)

else if ∗ then
raise(ObjectEncountered)

SendCmdToOpen

unit

SendCmdToClose

unit

ObjectEncountered

SendCmdToStop

unit

unit

unit

SendCmdToReset

(b) Door ghost machine

Init
Deferred:
Ignored: StopTimer

skip

start

TimerStarted
Deferred: StartTimer
Ignored:

if ∗ then
raise(unit)

SendTimerFired
Deferred: StartTimer
Ignored:

send(Elevator ,TimerFired);
raise(unit)

ConsiderStopping

Deferred: StartTimer
Ignored:

if ∗ then
send(Elevator ,OperationFailure);
send(Elevator ,TimerFired)

else
send(Elevator ,OperationSuccess);

raise(unit)

StartTimer

unit

StopTimer

unit

unit

(c) Timer ghost machine

Figure 2: Environment for elevator

We illustrate the features of P using the example of an elevator,
together with a model of its environment. The elevator machine
is shown in Figure 1 and the environment machines in Figure 2.
The environment is composed of ghost machines which are used
only during verification, and elided during compilation and actual
execution. Machines that are not ghost are called real machines.
We use the term machine in situations where it is not necessary to
distinguish between real and ghost machines. A text version of the
example with explanation can be found in Appendix A.

Machines communicate with each other using events. Events are
partitioned into two classes: public or private. Public events are sent
between different machines and private events are raised within a
machine. Each machine is composed of control states, transitions,
local events and variables. The elevator machine has private events
unit and StopTimerReturned (which are used for communication
locally inside the elevator machine), and two ghost variables Timer
and Door. Ghost variables are used only during verification and are
used to hold references to ghost machines.

Each state description consists of a 4-tuple (n, d, i, s), where
(1) n is a state name, (2) d is a set of events (called deferred
set), (3) i is a set of events (called ignored set), and (4) s is a
statement (called entry statement), which gets executed when the
state is entered. For instance, the Init state in Figure 1 has an
empty deferred set, empty ignored set, and an entry statement that
creates an instance of the Timer and Door machines and raises the
event unit. Note that Timer and Door are ghost machines and their
references are stored in ghost variables. As another example, the
Opening state has {CloseDoor} as the deferred set, {OpenDoor}
as the ignored set, and send(Door, SendCmdToOpen) as the
entry statement. If the state machine enters the Opening state,
the following things happen: On entry to the state, the statement
send(Door, SendCmdToOpen) is executed, which results in
the event SendCmdToOpen being sent to the Door machine. On
finishing the execution of the entry statement, the machine waits
for events on the input buffer. The initial state of the Elevator
machine is Init. Whenever an instance of the Elevator machine
is created (using the new statement), the machine instance’s state
is initialized to Init.

Deferred and ignored events. Events sent to a machine are stored
in a FIFO queue. However, it is possible to influence the order in
which the events are delivered. In a given state, some events can
be deferred or ignored. When trying to receive an event a machine
scans its event queue, starting from the front. Assume that the first
event in the queue is e. If e is ignored it is dequeued and the
machine looks at the next event in the queue. If e is deferred the
machine looks at the next event but e stays in the queue. If e is
neither ignored nor deferred then the machine dequeues e and takes
the appropriate transition. For instance, in the Opening state, the
event CloseDoor is deferred and OpenDoor is ignored.

Step and call transitions. The edges in Figure 1 specify how the
state of the Elevator machine transitions on events. There are two
types of transitions: (1) step transitions, and (2) call transitions.
Both these transition types have the form (n1, e, n2), where n1

is the source state of the transition, e is an event name, and n2

is the target state of the transition. Step transitions are show by
simple edges and call transitions by double edges. For instance,
when the machine is in the Init state, if an event unit event arrives
the machine transitions to the Closed state. On the other hand, call
transitions have the semantics of pushing the new state on the top of
the call stack. Call transitions are used to provide a subroutine-like
abstraction for machines. For instance, there is a call transition to
the StoppingTimer state from the Opened state on the OpenDoor
event, and a similar call transition to the StoppingTimer state
from the OkToClose state on the CloseDoor event. One can think
about the StoppingTimer state as the starting point of a subroutine
that needs to be executed in both these contexts. This subroutine
has 3 states: StoppingTimer, WaitingForTimer and ReturnState.
The “return” from the call happens when ReturnState raises the
StopTimerReturned event. This event gets handled by the callers of
the subroutine Opened and OkToClose respectively.

Unhandled events. The P language has been designed to aid the
implementation of responsive systems. Responsiveness is under-
stood as follows. If an event e arrives in a state n, and there is
no transition defined for e, then the verifier flags an “unhandled
event” violation. There are certain circumstances under which the
programmer may choose to delay handling of specific events or
ignore the events by dropping them. These need to be specified ex-
plicitly by marking such events in the associated deferred set or ig-
nored set, so that they are not flagged by the verifier as unhandled.
The verifier also implements a liveness check that prevents defer-
ring events indefinitely. This check avoids trivial ways to silence
the verifier by making every event deferred in every state.

2

Environment modeling. Figure 2 shows the environment ma-
chines (which are ghost machines) and initialization statement for
the elevator. There are 3 ghost machines: User, Door and Timer.
These machines are used as environment models during verifi-
cation, but no code generation is done for these machines. For
the purpose of modeling, the entry statements in the states of
these machines are allowed to include nondeterminism. For exam-
ple, the entry statement of the TimerStarted state is specified as
“if ∗ then raise(unit)”. The ∗ expression evaluates nondeter-
ministically to true or false. Thus, when the Timer machine enters
this state, it can nondeterministically raise the unit event. The ver-
ifier considers both possibilities and ensures absence of errors in
both circumstances. In the real world, the choice between these pos-
sibilities depends on environmental factors (such as timing), which
we choose to ignore during modeling.

In this example, the initial machine is the User machine, and
this is the starting point for the model checker to perform verifi-
cation. Note that the initial state of the User machine creates an
instance of Elevator, and the Elevator instance in turn creates
instances of Timer and Door (in Figure 1). During execution, it is
the responsibility of some external code to create an instance of the
Elevator machine.

More examples are found in Appendix B.

3. P Syntax and Semantics
Figure 3 shows the syntax of the core of P. Some of the features
presented in the examples of Section 2 can be compiled using a pre-
processor into this core language. In particular, state descriptions
in the core language are triples of the from (n, d, s), where n is a
state name, d is a set of deferred events, and s is an entry statement.
Note that the ignored set has been dropped from the syntax shown
in the Elevator example. The reason is that an ignored set can be
implemented using call transitions and self loops as shown later.

A program in the core language consists of declaration of
events, a nonempty list of machines, and one machine creation
statement. Each event declaration also specifies a list of types,
which are types of data arguments that are sent along with the event
(can be thought of as “payload” of the event).

A machine declaration consists of (1) a machine name, (2) a
list of events, (3) a list of variables, (4) a list of states, (5) a list of
function signatures, and (6) a list of transitions. The events declared
inside a machine are its private, or local, events (as opposed to
the events declared outside all the machines, which are global
events). Each variable has a declared type, which can be int, byte,
bool, event or machine identifier type (denoted Id). The function
signatures are used to link P machines to foreign code. Transitions
are either steps or calls.

A machine can optionally be declared as ghost by prefixing its
declaration by the keyword ghost. Variables can be also declared
as ghost. Events sent to ghost machines are (implicitly) ghost
events. Ghost machines, events and ghost variables are used only
during verification, and are elided during compilation and execu-
tion of the P program.

As mentioned in Section 2, a state declaration consists of a
name n, a set of events (called deferred set), and a statement. Each
state declaration must have a distinct name. Thus, we can use the
name n to denote the state. The statement associated with a state
n is executed whenever control enters n. Given a machine name
m and a state n in m, let Deferred(m,n) denote the associated
set of deferred events, and let Entry(m,n) denote the associated
statement. The initial state of the machine m is the first state in the
state list and is denoted by Init(m).

Each transition declaration comprises a source state, an event,
and a target state. The set of transitions ofmmust be deterministic,
that is, if (n, e, n1) and (n, e, n2) are two transitions then n1 =

program ::= evdecl machine+ m(init∗)
machine ::= optghostmachinem

evdecl vrdecl fctdecl
stdecl trdecl

optghost ::= ε | ghost
vrdecl ::= rvrdecl gvrdecl
trdecl ::= spdecl cldecl
evdecl ::= ε | event edecl+
rvrdecl ::= ε | var vdecl+

gvrdecl ::= ε | ghost var vdecl+

fctdecl ::= ε | function fdecl+

stdecl ::= ε | state sdecl+

spdecl ::= ε | step tdecl+

cldecl ::= ε | call tdecl+
edecl ::= e | e(type)
vdecl ::= x : type
sdecl ::= (n, {e1, e2, . . . , ek}, stmt)
tdecl ::= (n, e, n)
fdecl ::= ftype f(arg1)
arg1 ::= ε | type arg2
arg2 ::= ε | , type arg2

type ::= int | byte | bool
| event | Id

ftype ::= void | type

stmt ::= skip
| x := expr
| x := newm(init∗)
| delete
| send(expr, e, expr)
| raise (e, expr)
| return
| assert(expr)
| stmt; stmt
| if expr then stmt else stmt
| while expr stmt

init ::= x = expr
expr ::= this |msg | arg

| c |⊥| x
| uop expr | expr bop expr
| choose(type)
| f(explst1)

explst1 ::= ε | expr explst2
explst2 ::= ε | , expr explst2

c ∈ int b ∈ bool
¬,− ∈ uop +,−,∧,∨ ∈ bop
r ∈ expr e,m, l, x, f ∈ name

Figure 3: Syntax

n2. The list of transitions is partitioned into step transitions and
call transitions. A call transition is similar to function calls in
programming languages and is implemented using a stack (more
details below).

The entry statement associated with a state is obtained by com-
posing primitive statements using standard control flow constructs
such as sequential composition, conditionals, and loops. Primitive
statements are described below. The skip statement does nothing.
The assignment x := r evaluates an expression r and writes the
result into x. The statement x := new m(init∗) creates a new
machine and stores the identifier of the created machine into x.
The initializers give the initial values of the variables in the cre-
ated machine. The delete statement terminates the current ma-
chine (which is executing the statement) and release its resources.
The statement send(r1, e, r2) sends event e to the target machine
identified by evaluating the expression r1, together with arguments

3

obtained by evaluating r2. The event e must be a global event.
When e does not have any argument null is expected. In the exam-
ples, we use send(r1, e) as syntactic sugar for send(r1, e, null).
The statement raise(e, r) terminates the evaluation of the state-
ment raising an event e with arguments obtained by evaluating r.
The event e must be a local event. The return statement termi-
nates the evaluation of the statement and returns to the caller (see
below for more details). The statement assert(r) moves the ma-
chine to an error state of the expression r evaluates to false, and
behaves like skip otherwise.

Foreign functions. To interact with external code, also called for-
eign code, a P program has the ability to call functions written
in the C language. These functions needs to be introduced in the
scope of a machine by a declaration that give the function’s name
and type signature. The runtime semantics of a function call to a
foreign functions is similar to a standard C method call. For veri-
fication purposes we allow the user to optionally give a body to a
foreign function. The body has to be erasable, i.e. using only ghost
variables. If a foreign function has no body, the function call is re-
placed by the appropriate nondeterministic choose(type) expres-
sion during verification. Appendix B.2 shows an example using this
feature.

Expressions and evaluation. The expressions in the language, in
addition to the declared variables, can also refer to three special
variables—this, msg and arg. While this is a constant contain-
ing the identifier of the executing machine, msg contains the event
that is last received from the input buffer of the machine, and arg
contains the payload from the last event. Expressions also include
constants c, the special constant ⊥, variables, and compound ex-
pressions constructed from unary and binary operations on primi-
tive expressions. Binary and unary operators evaluate to ⊥ if any
of the operand expressions evaluate to⊥.⊥ values arise either as a
constant, or if an expression reads a variable whose value is unini-
tialized, and propagate through operators in an expression. The ex-
pression choose(type) nondeterministically evaluates to any of
the values of the given type. The expression ∗ is used as syntac-
tic sugar for choose(bool). Nondeterministic expressions are al-
lowed only in ghost machines and are used to model abstractions
of the environment conveniently.

Memory management. P programs manage memory manually by
using the new and delete commands. The new command allo-
cates a new instance of a machine and returns its reference, and
the delete command terminates the machine which executes the
command and frees its resources. It is the responsibility of the P
programmer to perform cleanup and ensure absence of dangling
references, or pending message exchanges before calling delete.
Manually managing the memory add some complexity in order
to retain a precise control over the footprint of the program. Ap-
pendix B.1 shows a variant of the elevator example where the en-
vironment allocates several instances of the elevator machine and
gracefully cleans up these machines in the presence of asynchrony.

3.1 Operational semantics
The role played by the environment is different during execution
and verification of a P program. During execution, the environ-
ment is responsible for creating initial machines in the P program,
sending some initial messages to it, and responding to events sent
by the P machines. During verification, the environment is speci-
fied using ghost machines, and the program starts execution with a
single machine instance of the machine specified by the initializa-
tion statement at the end of the program, and this machine begins
execution in its initial state with an empty input queue. However,
once the initial configuration is specified (which is different during

execution and verification), the transition rules are the same for ex-
ecution as well as verification. We formally specify the transition
semantics using a single set of transition rules below.

Since our language allows dynamic creation of machines, a
global configuration would contain, in general, a collection of
machines. A machine identifier id represents a reference to a
dynamically-created machine; we denote by Name(id) the name
of the machine with identifier id . A global configuration M is a
map from a machine identifier to a tuple representing the machine
configuration. A machine configuration is of the form (γ, σ, s, q)
with components defined as follows:

• γ is a sequence of pairs (n, d), where n is a state name and d is
a set of deferred events. This sequence functions as a call stack,
to implement call and return.
• σ is a map from variables declared in the machine to their

values; this map contains an entry for the local variables this,
msg and arg.
• s is the statement remaining to be executed in machine id .
• q is a sequence of pairs of a event-argument pairs representing

the input buffer of machine id .

We define Trans(m,n, e) to be equal to (step, n′) if there is a
step transition labeled e between n and n′ in machine m, and
(call, n) if there is a call transition labeled e between n and n′

in machine m; otherwise, Trans(m,n, e) =⊥, denoting that no
transition has been defined for event e at state n in machine m.

Let S be constructed according to the following grammar:

S ::= � | S; stmt

The leftmost position in S is a hole denoted by �; there is exactly
one � in any derivation for S. We denote by S[s] the substitution
of statement s ∈ stmt for the unique hole in S. Finally, we have
|q| =

⋃
(e,v)∈q{e}.

The rules in Figure 4 give the operational semantics of our pro-
gramming language. The program starts execution in a configu-
ration M defined at a single id0 such that Name(id0) = m,
where m is the machine name specified in the program’s ini-
tialization statement (at the end of the program). and M [id0] =
((Init(m), {}), λx. ⊥,Entry(m, Init(m)), ε). The semantics is
defined as a collection of rules for determining transitions of the
form M −→ M ′. All existing state machines are running concur-
rently retrieving events from their input queue, performing local
computation, and possibly sending events to other machines. Each
rule picks an existing machine with identifier id and executes it for
a step. To simplify the rule we use small steps (−→) for statements
and big steps (↓) for the expression. The rules for expressions are
as expected, thus, omitted.

The rules from ASSIGN to WHILE-DONE execute small steps
performed during the computation of the entry function of a state.
During this computation, local variables could be modified and
events could be sent to other state machines.

The rule SEND shows the semantics of the statement
send(r1, e, r2). First, the target of the send id′ = σ(r1), and the
payload of the event v = σ(r2) are evaluated and the event (e, v) is
appended to the queue of the target machine identified by id′ using
the special append operator �. The operator � is defined as fol-
lows. If (e, v) 6∈ q, then q� (e, v) = q · (e, v). Otherwise, q� (e, v)
= q. Thus, event-value pairs in event queues are unique, and if the
same event-value pair is sent more than once to a machine, only
one instance of it is added to the queue, avoiding flooding of the
queue due to events generated by hardware, for instance. In some
cases, the programmer may want multiple events to be queued, and
they can enable this by differentiating the instances of these events
using a counter value in the payload.

4

M [id] = (γ, σ, S[x := r], q) σ(r) ↓ v
M −→M [id := (γ, σ[x := v], S[skip], q)]

(ASSIGN)

M [id] = (γ, σ, S[x := newm
′
(x1 = r1, x2 = r2, . . . , xn = rn)], q)

id
′

= fresh(m
′
)

n
′

= Init(m
′
) σ(r1) ↓ v1 σ(r2) ↓ v2 · · · σ(rn) ↓ vn

σ
′

= λx. ⊥ [this := id
′
][x1 := v1][x2 := v2] · · · [xn := vn]

M −→M [id := (γ, σ[x := id
′
], S[skip], q)]

[id
′

:= ((n
′
, {}), σ′

,Entry(m
′
, n

′
), ε)]

(NEW)

M [id] = (γ, σ, S[delete], q)

M −→M [id :=⊥]
(DELETE)

M [id] = (γ, σ, S[send(r1, e, r2)], q)
σ(r1) ↓ id

′
σ(r2) ↓ v M [id

′
] = (γ

′
, σ

′
, C

′
, q

′
)

M −→M [id := (γ, σ, S[skip], q)][id
′

:= (γ
′
, σ

′
, C

′
, q

′ � (e, v))]
(SEND)

M [id] = (γ, σ, S[raise (e, r)], q) σ(r) ↓ v
M −→M [id := (γ, σ, raise (e, v), q)]

(RAISE)

M [id] = ((n, d) · γ, σ, S[return], q)

M −→M [id := (γ, σ, skip, q)]
(RETURN)

M [id] = (γ, σ, S[assert(r)], q) σ(r) ↓ true

M −→M [id := (γ, σ, S[skip], q)]
(ASSERT-PASS)

M [id] = (γ, σ, S[skip; s], q)

M −→M [id := (γ, σ, S[s], q)]
(SEQ)

M [id] = (γ, σ, S[if r then s1 else s2], q) σ(r) ↓ true

M −→M [id := (γ, σ, S[s1], q)]
(IF-THEN)

M [id] = (γ, σ, S[if r then s1 else s2], q) σ(r) ↓ false

M −→M [id := (γ, σ, S[s2], q)]
(IF-ELSE)

M [id] = (γ, σ, S[while r s], q) σ(r) ↓ true

M −→M [id := (γ, σ, S[s;while r s], q)]
(WHILE-ITERATE)

M [id] = (γ, σ, S[while r s], q) σ(r) ↓ false

M −→M [id := (γ, σ, S[skip], q)]
(WHILE-DONE)

M [id] = ((n, d) · γ, σ, skip, q1 · (e, v) · q2) m = Name(id)
d1 = Deferred(m,n) t = {e | Trans(m,n, e) 6=⊥}

d
′

= (d ∪ d1)− t |q1| ⊆ d′ e 6∈ d′

M −→M [id := ((n, d) · γ, σ, raise (e, v), q1 · q2)]
(DEQUEUE)

M [id] = ((n, d) · γ, σ, raise (e, v), q) m = Name(id)
Trans(m,n, e) = (step, n

′
), σ

′
= σ[msg := e][arg := v]

M −→M [id := ((n
′
, d) · γ, σ′

,Entry(m,n
′
), q)]

(STEP)

M [id] = ((n, d) · γ, σ, raise (e, v), q)
m = Name(id) Trans(m,n, e) = (call, n

′
)

d
′

= d ∪Deferred(m,n) σ
′

= σ[msg := e][arg := v]

M −→M [id := ((n
′
, d

′
) · (n, d) · γ, σ′

,Entry(m,n
′
), q)]

(CALL)

M [id] = ((n, d) · γ, σ, raise (e, v), q)
m = Name(id) Trans(m,n, e) =⊥
M −→M [id := (γ, σ, raise (e, v), q)]

(POP)

Figure 4: Operational semantics: correct transitions

M [id] = (γ, σ, S[assert(r)], q) σ(r) ↓ false

M −→ error
(ASSERT-FAIL)

M [id] = (γ, σ, S[send(r1, e, r2)], q) σ(r1) ↓⊥
M −→ error

(SEND-FAIL1)

M [id] = (γ, σ, S[send(r1, e, r2)], q)
σ(r1) ↓ id

′
M [id

′
] =⊥

M −→ error
(SEND-FAIL2)

M [id] = (ε, σ, raise (e, v), q)

M −→ error
(POP-FAIL)

Figure 5: Operational semantics: error transitions

The computation terminates either normally via completion of
executing all statements in the entry statement, execution of a
return statement (which results in popping from the call stack), or
by raising an event e. In the first two cases, the machine attempts to
remove an event from the input queue via the rule DEQUEUE prior
to taking a step based on the retrieved event via the rule STEP. In
the third case, the raised event emust be processed immediately via
the rules STEP or CALL. If these two rules are not applicable due
to the unavailability of a suitable transition, then the topmost state
on the machine stack is popped via the rule POP to allow the next
state to process the event.

Each state in a state machine can opt to defer a set of events
received from the outside world. The logic for dequeuing an event
from the input buffer is cognizant of the current set of deferred
events and skips over all deferred events from the front of the
queue. The deferred set of a stack of state is interpreted to be the
union of the deferred set at the top of the call stack with the value
resulting from evaluating the deferred set expression declared with
that state. In case an event e is both in the deferred set and has a
defined transition from a state, the defined transition overrides, and
the event e is not deferred (see rule DEQUEUE).

Figure 5 specifies error transitions. The error configuration,
denoted by error , can be reached in one of 4 ways: (1) by failing
an assertion (rule ASSERT-FAIL), (2) by executing a statement
send(r1, e, r2) with r1 evaluating to ⊥ (rule SEND-FAIL1), (3)
by executing a statement send(r1, e, r2) with r1 evaluating to
some id′, but with M [id′] =⊥, thereby attempting to send to
an uninitialized or deleted machine (rule SEND-FAIL1), and (4)
attempting to handle an event from an empty stack (rule POP-
FAIL). In Section 5, we show how to detect all these 4 types of
errors automatically using model checking.

Responsiveness. Beyond providing constructs for building safe
programs, the design of the P language also contains constructs to
build responsive programs. Explicitly deferring messages instead
of doing so implicitly is such a design choice. However, it is still
possible to excessively defer events, thus not processing them.
Therefore, we propose a stronger notion of progress. We identify
two properties that every real machine m has to satisfy: (1) if
m with a non-empty queue is scheduled infinitely often then m
eventually dequeues an event; (2) if event e is sent to m and m
dequeues infinitely often then m eventually process e. In Section 5
we show how to encode responsiveness as Büchi automata.

The first property checks that no machine can get into a cycle of
private events. A machine entering such a cycle will loop forever
which leads to a non-terminating program. The second property
ensures the absence of excessive deferring. The goal is to prevent
events from being always deferred, thus never processed. In some
case, it may happen that this property is not respected. For instance,
in a system with prioritized events, enough high priority events
may delay the lower priority events. Thus, we provide the ability
to annotate some events as exempt from (2).

Implementing ignored sets. We briefly describe how ignored sets
(as used in the examples from Section 2) can be implemented using
call transitions, thereby justifying that ignored sets can be omitted
from the core language, and implemented using a pre-processor.
For every state description of the from (n, d, i, s) where n is a state
name, d is a deferred set, i is a non-empty ignored set and s is
a statement, we perform the following transformation: (1) Add a
new state with name n′ with an empty deferred set, and a skip
statement as entry statement. (2) Add a new event e ignore . (3)
Add a raise(e ignore) statement at the end of S. (4) Add a call
transition (n, e ignore, n′). (5) For every event e ∈ I add the self-
loop step transition (n′, e, n′).

5

It is easy to argue that this transformation implements ignored
sets correctly. When the state n is reached, after executing the entry
statement s, the statement raise e ignore forces a call transition
to the state n′. Any events in i that are received while at n′ are
ignored, consistent with the semantics of ignored sets. If an event
e 6∈ i is received while at state n′, the state n′ is popped (according
to rule POP) in the operational semantics, and the event is handled
by the transitions from state n.

3.2 Type system and erasure
The type system of P is, on purpose, kept very simple. It mostly
does simple checks to make sure the machines, transitions, and
statements are well-formed. In particular, the following checks are
performed: (1) check that identifiers for machines, state names,
events, and variables are unique, (2) check that statements inside
real machines are deterministic, (3) ensure that private events are
raised and public events are sent, and (4) ensure that ghost ma-
chines, ghost variables and ghost events can be erased during com-
pilation and execution.

The formal presentation of the type system with typing rules is
present in Appendix C. The only non-trivial part of our type system
is the rules that deal with the erasure property of ghost variables,
and ghost machines. We identify “ghost terms” in statements of real
machines, and check that they do not affect the runs of real ma-
chines (except for assertions). The separation is needed since ghost
terms are kept only for verification purposes and are erased during
the compilation. Therefore, only a limited flow of information is
allowed between real and ghost terms. For machine identifiers we
enforce complete separation, because we need to unambiguously
identify the send operation that targets ghost machine, so that it
can be preserved during verification and erased during compilation.

The error transitions specified in Figure 5 cannot be detected
by our type checker. Instead, we use state-space exploration tech-
niques with appropriate bounding techniques (described in Sec-
tion 5) to check for these errors statically.

4. Execution
This section explains how we generate code from a state machine
specified in P, so that the generated code can run as a Windows de-
vice driver. This needs a host driver framework and our current im-
plementation uses Windows KMDF (Kernel Mode Driver Frame-
work).

The complete driver, which runs inside Windows, has 4 com-
ponents: (1) The generated code is a C file which is produced
by the P compiler from a state machine description. For instance,
elevator.p is compiled to elevator.c. (2) The runtime is a li-
brary stateMachine.dll that interacts with the generated code
and provides utilities for synchronization and management of state,
execution, and memory. (3) The foreign code is a skeletal KMDF
driver which mediates between the OS and the generated code by
creating instances of P machines and getting the execution started,
and translating OS callbacks into P state machine events that are
queued into the queues of the respective machines. (4) The foreign
functions are provided as C source files or libraries. The function
calls occurring in the machines are linked to those files.

Generated code. When P is compiled to C, the state of a ma-
chine is wrapped into an object of type StateMachineContext
defined as in Figure 6. The pointer locals is downcast to an ob-
ject of appropriate type in the code generated by the compiler. The
MemoryBlob is downcast, interpreted and managed by the foreign
code and functions. The EventQueue is a linked list of items of
type Event. Each instance of Event has a name and value. The re-
maining components of the StateMachineContext are explained
in the comments in Figure 6.

1 struct StateMachineContext
2 {
3 void * locals; //local variables
4 void * MemoryBlob; //for use by foreign code
5 Queue EventQueue ; //event queue
6 Event PrivateEvent;//slot for internal event
7 Stack CallStack; //state stack
8 Bool IsRunning; //is state machine running
9 WdfSpinLock lock; //For exclusive access to context

10 }
11 struct Event
12 {
13 String name;
14 void * value;
15 }

Figure 6: StateMachineContext and Event types

P statement Runtime API
raise(e,v) SMAddPrivateEvent(smc,e,v)
return SMReturn(smc)
send (m,e,v) SMAddEvent(m,e,v)
new m(x,...) SMCreateMachine(...)
delete SMDeleteMachine(m)

Figure 7: Mapping from DSL primitives to runtime API

The P compiler generates code for the follow-
ing methods that that are called by the runtime. The
method GNExistsTransition(curState,e) returns
true if the state curState has a transition correspond-
ing to event e, and false otherwise. The methods
GNGetTargetStateOfTransition(curState,e) and
GNIsCallTransition(curState,e) can be called only if
GNExistsTransition(curState,e) has returned true. The
method GNGetTargetStateOfTransition(curState, e)
returns the new state obtained by executing the transition, and the
method GNIsCallTransition(curState, e) returns true if
the transition in question is a call transition and false otherwise.
The method GNExecuteEntryFunction(curState, locals)
executes the entry function of curState reading and possibly
mutating the state of locals. The compiler generates code for the
body of the entry function using the operational semantics given in
Section 3. The table in Figure 7 shows the mapping between the
primitives in the P code and the methods used to implement these
primitives in the runtime.

Runtime. Windows drivers are parsimonious with threads. Worker
threads are rarely created and drivers typically use calling threads to
do all the work. Thus, when the OS calls the driver, either due to an
application request or due to a hardware interrupt or DPC (deferred
procedure call), the driver uses the calling thread to process the
event and run to completion. Every driver has one or more device
objects, and all the state of the driver is stored in the heap attached
to the device object (since the driver does not have a thread, and
hence no call stack on its own that is preserved across callback
invocations from the OS).

The runtime supports the following API methods described be-
low. The method SMCreateStateMachine creates a state machine
and returns a unique identifier for it. The method SMAddEvent
adds an external event into the state machine’s queue, and
also executes the state machine by calling the internal method
SMRunStateMachine if the machine is blocked, waiting for an
external event. The method SMAddPrivateEvent adds an inter-
nal event to the state machine. This method is called only from
the generated code. The method SMRunStateMachine looks for

6

a suitable event in the event queue and executes the transition on
the event, and if successful, executes the entry function associated
with the new state. The process of running machines continues re-
cursively until all the consequences of adding the event have been
computed. When receiving an event priority is given to the pri-
vate events stored in smc->PrivateEvent over events stored in
smc->EventQueue. The runtime is also responsible for updating
the call stack and the set of deferred events when executing a ma-
chine. More details about the implementation of the runtime API
and the handling of transitions and events by the internal methods
of the runtime can be found in Appendix D.

Foreign code. The foreign code is used to mediate between the
OS and the P code. It is written as a skeletal KMDF driver, which
handles callbacks from the Windows OS and translates them into
events it adds to the queue of the P machine, using the runtime API.

In KMDF, the EvtAddDevice callback is used to create the
state machine using the SMCreateMachine API. All events such
as Plug and Play or Power management or other events are handled
by the foreign code by queuing a corresponding event using the
SMAddEvent API. The EvtRemoveDevice callback results in a
special event Delete added to the P driver. Every P state machine
is required to handle this event by cleaning up and executing the
delete statement. Note that the P machine may have to do internal
bookkeeping and keep track of other machines it has created, and
the state of the interactions it has with other machines, cleanup
the state of the interactions, and only then execute the delete
statement.

Foreign functions. The foreign functions are provided by the pro-
grammer to complement the P machines. The foreign functions
must have one additional argument on top of the ones declared in
P. This argument, of type void *, points to a zone of memory
that can be used by the programmer to persist some information as
part of the state of calling machine, see Figure 6. The foreign func-
tions are assumed to terminate and to limit any side effect to the
provided memory. The foreign functions are usually coupled with
the foreign code. Whereas the foreign code contains part which are
generic enough so that they can be fully automated. the foreign
functions give the ability to handle more specific interactions with
the environment.

In order to make the P compiler work for other driver frame-
works such as NDIS or even other systems than Windows OS, the
runtime and foreign code needs to be reimplemented appropriately,
but the generated code does not need to change.

Efficiency of generated code and runtime. In order to evaluate
the efficiency of the code generated by P and the runtime, we
performed the following experiment. We developed two drivers
for a simple switch-and-led device, one using P, and one directly
using KMDF. Both drivers use the same level of asynchrony. The
P code is about 150 lines (see Appendix B.2). The driver machine
has 15 states and 23 transitions, and there are 4 ghost machines
each with 3–4 states and transitions. The foreign code is 1720 lines,
written directly in C, interfacing between KMDF and the P code.
In contrast, the full KMDF driver (written without using P) is about
6000 lines of C code.

We tested both drivers in an environment which sends 100
events per second, and both drivers are able process each event
with an average processing time of 4ms, demonstrating that the
P compiler and runtime do not introduce additional overhead. We
present a more substantial case study in Section 6.

5. Verification
P is designed so that it is easy to verify P programs using model
checking. Ghost machines, which are used to model the environ-

ment, generate a “closed” program. The nondeterministic state-
ments present in the ghost machines model a range of behaviors of
the environment. The model checker systematically explores every
possible outcome of this nondeterminism, and checks for the pos-
sible errors (see Figure 5) namely, (1) assertion failures, (2) execut-
ing send commands with uninitialized target identifiers, (3) sending
events to machine that has been already freed, and (4) unhandled
events. On top of the safety properties described above, we also
check that P programs are responsive.

Partial order reduction. When exploring the state-space of con-
current programs the number of interleavings that needs to be ex-
plored is a critical factor in the state-explosion problem. Since the
machines communicate with each other only through events, the
model checker explores only interleavings where context-switches
occur during sends of events, and machine creation. If an error can
occur in an execution with a more fine-grained context-switching,
it can be shown to occur in another equivalent execution in which
context-switches happen only at the points mentioned above. This
reduction of the search space is a form of partial order reduction [5].

Delay bounding. Unfortunately, the coarse-grained context-
switching described above is not sufficient to prevent the state space
explosion problem. Assuming that there are k machines enabled at
each interleaving point, the number of possible schedules for runs
of with n context switched is kn. In addition, since there are no re-
strictions on the length of the message buffers, it is possible to write
P programs that have an infinite number of states. Consequently,
we have designed a delay bounded scheduler to model check P
programs.

Intuitively, the delay bounded scheduler explores schedules that
follow the causal sequence of events. Diverging from that sequence
is done by delaying some machine. Given a bound d, the scheduler
may introduce at most d delays. Suppose machine m1 sends an
event e to machine m2’s input buffer. Then, at a later point m2

removes e from its input buffer, and processes this message, thereby
resulting in an event e′ sent to machinem3’s input buffer. The delay
bounded scheduler follows the causal sequence of steps which
consists of machine m1 sending the event e to m2, machine m2

processing the event e and sending the event e′ tom3, and machine
m3 handling the event e′. A delay that the scheduler may choose
to introduce is, for instance, at the second context-switch delaying
m3 and executing m2.

More formally, the delay bounded scheduler maintains a stack
S of P machine identifiers, and an integer delay score. Initially, the
stack S contains a single machine identifier corresponding to the
instance created by the initialization statement of the P program,
and the delay score is set to 0. For example, in the Elevator
example from Section 2, the stack initially contains the id of the
User ghost machine.

Let m be the machine id at the top of S. m executes until it
reaches a scheduling point (which is a send or the creation of a
machine). At the scheduling point the scheduler decides to either
follow the event-causal schedule or delay m. In either case, it
updates S and the delay score according to the following rules:

• If m is scheduled and m sends an event to machine m′, and
m′ 6∈ S, it pushes m′ on S. Otherwise, if m′ ∈ S then S is left
unchanged. The delay score is left unchanged.
• If m is scheduled and m creates a new machine m′, then it

pushes m′ on S. The delay score is left unchanged.
• Ifm is delayed, movesm from top of S to the bottom of S, and

increments the delay score by 1.

Given a delay bound d, a delay bounded scheduler explores only
those schedules which have a delay score lesser than or equal to d.
The scheduler is encoded as a part of the model checker’s input.

7

q0start q1

q2

q3
e sent to m

*
m scheduled,
not processing e

m not
scheduled

m scheduled,
processing e

m scheduled,
processing e

m scheduled,
not processing e

m not scheduled

*

Figure 8: Büchi automaton for responsiveness condition (2)

0

50000000

100000000

150000000

200000000

250000000

300000000

350000000

400000000

450000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u

m
b

e
r

o
f

st
at

e
s

Delay bound

German

Elevator x100

Switch-LEDx10

Figure 9: States explored with increasing delay bound.

We can show that for d = 0, the real part of schedules ex-
plored by the delay bounded scheduler are exactly the same as the
one executed by the P runtime in Section 4, assuming no mul-
tithreading (that is, at most one thread calls into the P runtime
from the kernel). Differences between the runtime and the delay
bounded scheduler occur only in the interaction with the ghost ma-
chines/environment. Increasing the delay bound d let the scheduler
explores more schedules and captures more interactions with the
environment. We can also show that as d approaches infinity, in the
limit, the delay bounded scheduler explores all possible schedules
of a P program, and in particular includes all cases where the P
runtime is invoked by an arbitrary number of parallel threads from
the kernel. However, even for low values of d, the delay bounded
scheduler is very useful in error detection, as shown below.

Responsiveness. We also check the responsiveness properties us-
ing model checking. Responsiveness as defined in Section 3 is a
liveness property that can be captured by Büchi automata. Figure 8
presents such an automaton for the second responsiveness condi-
tion. This automaton has two parameters: a machinem and an event
e. It detects cycles where m is not making progress w.r.t. e, i.e. an
infinite trace where m takes steps but never processes e.

Whereas the delay bounded scheduler can be used to check
safety properties without modification of the model checker, check-
ing liveness properties such as responsiveness is not as simple. The
paths described by liveness properties are infinite paths. Embed-
ding theses paths in a finite state-space creates lassos, composed of
a finite prefix (the stem) and a cycle. The model checker needs to
carefully handle the delays in order to preserve the cycles.

Empirical results. In order to evaluate the efficacy of delay bound-
ing, we conducted the following experiments. For three benchmark
P programs (elevator example from Section 2, driver for Switch-
and-LED device, and for a software implementation of German’s
cache coherence protocol), we studied the behavior of delay bound-
ing for varying values of the delay bound parameter d. Figure 9
shows how the number of explored states varies as we increase the
value of the delay bound parameter. We scaled the number of states
in the Switch-LED by a factor of 10 and Elevator by a factor of 100
to make the graphs legible. We also experimented with buggy ver-
sions of these designs and determined that bugs are found within a
delay bound of 2. The data can be summarized as follows: bugs are
found for low values of delay bound (note the low value of number
of states explored for delay bound of 2 in Figure 9 within which
bugs were found), and as we increase the delay bound we eventu-
ally explore all states within a delay bound of around 12.

6. Case Study

USB Hub Driver: Context and challenges. The state machine
methodology described in this paper, together with code generation
as well as verification, was used in the development of core com-
ponents of the USB 3.0 stack that was released as part of Microsoft
Windows 8. In particular, the USB hub driver (“USBHUB3.sys”)
was developed using our methodology. The USB hub driver is re-
sponsible for managing USB hubs, the ports in these hubs, enu-
merating the devices and other hubs connected to their downstream
ports. It receives a large number of un-coordinated events sent from
different sources such as OS, hardware and other drivers, in tricky
situations when the system is suspending or powering down. It can
receive unexpected events from disabled or stopped devices, non-
compliant hardware and buggy drivers. The hub driver can fail re-
quests from incorrect hardware or buggy function drivers. How-
ever, it is important that the USB hub itself handles all events and
does not crash or hang itself.

State P P Explored Time Memory
machine states transitions states

(millions) (hh:mm) MB
HSM 196 361 5.9 2:30 1712
PSM 3.0 295 752 1.5 3:30 1341
PSM 2.0 457 1386 2.2 5:30 872
DSM 1919 4238 1.2 5:30 1127

Figure 10: State machine sizes and exploration time

Experience using P in USB Hub. We designed the USB Hub in P
as a collection of state machines. The hub, each of the ports, and
each of the devices are designed as P machines. Using P helped
us serialize the large number of uncoordinated events coming in
from hardware, operating system, function drivers and other driver
components. In order to make hub scalable, the processing in the
hub should be as asynchronous as possible. We captured all the
complexity of asynchronous processing using P state machines,
and fine-grained and explicit states for each step in the processing.
We used sub-state machines to factor common event handling code,
and control the explosion in the number of states in the P code, and
deferred events to delay processing of low-priority events. We made
sure that any code in the driver that lives outside the P state machine
(as foreign functions) is relatively simple and primarily does only
data processing, and no control logic. This helped us ensure that
the most complex pieces of our driver are verified using the state
exploration tools of P.

We had to carefully constrain the environment machines in
several cases to help direct the verification tools. Even with such

8

constraints, the actual state spaces explored by the verifier were on
the order of several millions, and the verifier runs took several hours
to finish (even after using multicores to scale the state exploration),
once our designs became mature and the shallow bugs were found
and fixed. Figure 10 shows the size and scale of state spaces for
the various state machines. The second and third columns show the
number of states and transitions at the level of P. The fourth column
shows the number of states explored by the explored (taking into
account values of variables, state of queues, and state of ghost
machines modeling the environment). The fifth and sixth column
give the time and space needed to complete the exploration.

The systematic verification effort enabled by P helped us greatly
flesh out corner cases in our design, forced us to handle every event
(or explicitly defer it) in every state, and greatly contributed to
the robustness of the shipped product. Overall, state exploration
tools helped us identify and fix over 300 bugs, and justified their
continued use throughout the development cycle. A majority of
the bugs were due to unhandled events that we did not anticipate
arriving. Other bugs were due to unexpected interactions between
machines, or with the environment, which manifested in either
unhandled messages or assertion violations.

Comparison with existing USB stack. The old USB driver in
Windows has existed for several years and predates P. We com-
pare the old USB driver and new driver in terms of functionality,
performance, and reliability.

1. Functionality. The new USB hub driver has to deal with new
USB 3.0 hardware in addition to all the requirements for the
old driver. Therefore the new USB hub driver implements func-
tionality that is a super set of the functionality of the old hub
driver.

2. Reliability. The old USB hub driver had significantly more syn-
chronization issues in PnP, power and error recovery paths even
till date. The number of such issues has dropped dramatically in
the new USB hub driver. The number of crashes in the new USB
hub driver due to invalid memory accesses and race conditions
is insignificant.

3. Performance. The new USB hub driver performs much better
than the old USB hub driver —average enumeration time for
a USB device is 30% faster. We have not seen any instances
of worker item starvation that we used to see with the old hub
driver.

This gain in performance is mainly due to the highly asyn-
chronous nature of the new hub driver. In comparison, the old hub
driver blocks processing of worker items in several situations, lead-
ing to performance degradation. It is theoretically possible to de-
velop a driver that is not based on explicit state machines such as
in P, but is equally (or more) performant. However, in practice,
when we have tried to build such asynchronous drivers directly, we
have run into myriad of synchronization issues and unacceptable
degradation in reliability. The support for asynchrony in P in terms
of explicitly documented states and transitions, and the verification
tools in P that systematically identified corner cases due to asyn-
chrony were the key reasons why we were able to design the new
USB hub driver with both high performance and high reliability.

We note that the new USB hub driver has only been released to
the public for about a month at the time of this writing. Once we get
more empirical data from usage of USB by Windows 8 users, we
can make a more thorough comparison on actual number of crashes
and hangs with the old driver.

7. Related work

Synchronous languages. Synchronous languages such as Esterel
[3], Lustre [8] and Signal [2] have been used to model, and gener-
ate code for real-time and embedded systems for several decades.
All these languages follow the synchrony hypothesis, where time
advances in steps, and concurrency is deterministic —that is, given
a state and an input at the current time step, there is a unique pos-
sible state at the next time step. Lustre and Signal follow a declar-
ative dataflow model. Every variable or expression in Lustre rep-
resents a flow which is a sequence of values. For a flow x, Lustre
uses pre(x) do denote a flow with values postponed by one time
step. A Lustre program [8] is a set of definitions of flows, where
each flow is defined using some constant flows or other flows.
Even though flows can be recursively defined, each recursive cy-
cle should be broken using the pre operator. In contrast, Esterel is
an imperative language [3] where a program consists of a collec-
tion of nested concurrently running threads, and each step is trig-
gered by an external event, and threads are scheduled until all inter-
nally generated events are consumed. The Esterel compiler ensures
a property called constructive causality, which guarantees absence
of cyclical dependencies in propagating events, and ensures that
each step terminates. Harel’s StateCharts [9] is a visual language,
with hierarchical states, broadcast communication of events and a
synchronous fixpoint semantics which involves executing a series
of micro-steps within each time step until all internally generated
events are consumed.

The synchronous model has the advantage that every event
sent to machine is handled in the next clock tick, and is widely
used in hardware and embedded systems. However, in an OS or a
distributed system, it is impossible to have all the components of
the system clocked using a global clock, and hence asynchronous
models are used for these systems. In such models events are
queued, and hence can be delayed arbitrarily before being handled.
However, arbitrary delays are unacceptable in OS components such
as device drivers, which require responsiveness in event handling.
The main focus of our work is an asynchronous model where
responsiveness is enforced using verification, with the ability do
code generation.

Asynchronous languages. Asynchronous languages are used to
model and program software systems. The adaptation of State-
Charts in the Rhapsody tool has produced a variant, which is
suitable for modeling asynchronous software systems. This vari-
ant (see [10]) allows steps that take non-zero time and resembles a
collection of communicating and interacting state machines, where
each machine has a named input queue, and each transition of a ma-
chine consumes a message from its input queue and possibly sends
messages to the output queues of one or more machines. Other
asynchronous models include the actor model [11] and process cal-
culi, such as CSP [12] and CCS [13], and Join Calculus [7], which
have asynchronous processes communicating with each other via
messages. While these models are useful in modeling and reason-
ing about asynchronous systems, our goal is to unify modeling and
verification with programming, and generate code that can run in
an OS kernel.

Domain-specific languages. The Teapot [4] programming lan-
guage shares similar goals to our work in that they attempt to unify
modeling, programming and verification, although in a different ap-
plication domain —cache coherence protocols. Teapot’s continu-
ation passing design is related to the design of P’s call transitions.
The notion of deferred sets, ghost machines and erasure property,
default safety and liveness checks, delay bounding, and the ability
of the P compiler and runtime to generate code that runs in an OS
kernel are all unique to P.

9

Automatic stack management. There have been attempts to pro-
vide automatic stack management for event-driven programming to
allow the possibility of blocking constructs inside procedure calls
(e.g., [1]). In P, entry functions of states are written in non-blocking
style and call transitions are provided to conveniently factor com-
mon event handling code. Thus, stack management is particularly
simple in our current design.

8. Conclusion
We presented P, a domain specific language for writing asyn-
chronous event-driven programs. We have given a full formal treat-
ment of various aspects of P, including operational semantics, type
system, and verifier. We also presented experience using P to pro-
gram the USB stack that ships with Windows 8. The main technical
contribution of our work is an asynchronous model which forces
each event in the queue to be handled as soon as the machine asso-
ciated with the queue is scheduled, and has a chance to dequeue the
event. Our verifier systematically explores the state space of ma-
chines and ensures that there are no unhandled events. In certain
circumstances, such as processing a high priority event, or process-
ing a sequence of event exchanges during a transaction, some other
lower priority events may have to be queued temporarily. P has fea-
tures such as deferred events for a programmer to explicitly specify
such deferrals. Thus, our main contribution is the design of an asyn-
chronous language, which promotes a discipline of programming
where deferrals need to be declared explicitly, and consequently
leads to responsive systems.

References
[1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur.

Cooperative task management without manual stack management. In
C. S. Ellis, editor, USENIX Annual Technical Conference, General
Track, pages 289–302. USENIX, 2002.

[2] A. Benveniste, P. L. Guernic, and C. Jacquemot. Synchronous pro-
gramming with events and relations: the Signal language and its se-
mantics. Sci. Comput. Program., 16(2):103–149, 1991.

[3] G. Berry and G. Gonthier. The Esterel synchronous programming
language: design, semantics, implementation. Sci. Comput. Program.,
19(2):87–152, Nov. 1992.

[4] S. Chandra, B. Richards, and J. R. Larus. Teapot: A domain-specific
language for writing cache coherence protocols. IEEE Trans. Software
Eng., 25(3):317–333, 1999.

[5] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press,
2001.

[6] M. Emmi, S. Qadeer, and Z. Rakamaric. Delay-bounded scheduling.
In T. Ball and M. Sagiv, editors, POPL, pages 411–422. ACM, 2011.

[7] C. Fournet and G. Gonthier. The reflexive CHAM and the join-
calculus. In H.-J. Boehm and G. L. S. Jr., editors, POPL, pages 372–
385. ACM Press, 1996.

[8] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous
dataflow programming language Lustre. Proceedings of the IEEE,
79(9):1305–1320, September 1991.

[9] D. Harel. Statecharts: A visual formalism for complex systems. Sci.
Comput. Program., 8(3):231–274, 1987.

[10] D. Harel and H. Kugler. The Rhapsody semantics of Statecharts
(or, on the executable core of the UML) - preliminary version. In
H. Ehrig, W. Damm, J. Desel, M. Große-Rhode, W. Reif, E. Schnieder,
and E. Westkämper, editors, SoftSpez Final Report, volume 3147 of
Lecture Notes in Computer Science, pages 325–354. Springer, 2004.

[11] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor formal-
ism for artificial intelligence. In Proceedings of the 3rd international
joint conference on Artificial intelligence, IJCAI’73, pages 235–245,
San Francisco, CA, USA, 1973. Morgan Kaufmann Publishers Inc.

[12] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, 1978.

[13] R. Milner. A Calculus of Communicating Systems, volume 92 of
Lecture Notes in Computer Science. Springer, 1980.

10

1 //global event declarations
2 event OpenDoor, CloseDoor, DoorOpened, DoorClosed,
3 ObjectDetected, DoorStopped, TimerFired,
4 OperationSuccess, OperationFailure, SendCmdToOpen,
5 SendCmdToClose, SendCmdToStop, SendCmdToReset,
6 StartTimer, StopTimer
7

8 machine Elevator
9 event unit, StopTimerReturned //private event

10 ghost var Timer:Id, Door:Id // ghost machine references
11 state (Init, {}, {}, Timer = new Timer(Elevator=this);
12 Door = new Door(Elevator=this);
13 raise(unit))
14 (Closed, {}, {CloseDoor},
15 send(Door, SendCmdToReset))
16 (Opening, {CloseDoor}, {OpenDoor},
17 send(Door, SendCmdToOpen))
18 (Opened, {CloseDoor}, {},
19 send(Door, SendCmdToReset);
20 send(Timer, StartTimer))
21 (OkToClose, {OpenDoor}, {}
22 send(Timer, StartTimer))
23 (Closing, {CloseDoor}, {}
24 send(Door, SendCmdToClose))
25 (StoppingDoor, {CloseDoor},
26 {OpenDoor, ObjectDetected, DoorClosed}
27 send(Door, SendCmdToStop))
28 (StoppingTimer,{OpenDoor, CloseDoor, ObjectDetected},
29 {}, send(Timer, StopTimer))
30 (WaitingForTimer, {OpenDoor, CloseDoor, ObjectDetected},
31 {}, skip))
32 (ReturnState, {}, {}, raise(StopTimerReturned))
33

34 step (Init, unit, Closed)
35 (Closed, OpenDoor, Opening)
36 (Opening, DoorOpened, Opened)
37 (Opened, TimerFired, OkToClose)
38 (Opened, StopTimerReturned, Opened)
39 (OkToClose, StopTimerReturned, Closing)
40 (OkToClose, TimerFired, Closing)
41 (Closing, OpenDoor, StoppingDoor)
42 (Closing, DoorClosed, Closed)
43 (Closing, ObjectDetected, Opening)
44 (StoppingDoor, DoorOpened, Opened)
45 (StoppingDoor, DoorClosed, Closed)
46 (StoppingDoor, DoorStopped, Opening)
47 (StoppingTimer, OperationSuccess, ReturnState)
48 (StoppingTimer, OperationFailure, WaitingForTimer)
49 (WaitingForTimer, TimerFired, ReturnState)
50

51 call (Opened, OpenDoor, StoppingTimer)
52 (OkToClose, CloseDoor, StoppingTimer)

Figure 11: Elevator example

A. Text version of the Elevator example
We illustrate the features of P using the example of an elevator,

together with a model of its environment. The elevator machine
is shown in Figure 1 and the environment machines in Figure 2.
The environment is composed of Ghost machines which are used
only during verification, and elided during compilation and actual
execution. Machines that are not ghost are called real machines.
We use the term machine in situations where it is not necessary to
distinguish between real and ghost machines.

Machines communicate with each other using events. Lines 1–6
in Figure 1 are used to declare events with global scope, which can
be used across all machines.

Lines 8–52 contain the description of the elevator machine
and contains declarations of local events and variables, states,
and transitions. The elevator machine has private events unit and
StopTimerReturned declared in line 9 (which are used for com-
munication locally inside the elevator machine), and two ghost
variables Timer and Door declared in line 10. Ghost variables are

1 ghost machine User
2 var Elevator : Id
3 event unit
4 state
5 (Init, {}, {}, Elevator = new Elevator(); raise(unit))
6 (Loop, {}, {}, if(*) send(Elevator, OpenDoor)
7 else if (*) send(Elevator, CloseDoor);
8 raise(unit))
9 step

10 (Init, unit, Loop)
11 (Loop, unit, Loop)
12

13 ghost machine Door
14 var Elevator : Id
15 event unit, ObjectEncountered
16 state
17 (Init, {}, {SendCmdToStop, SendCmdToReset}, skip)
18 (OpenDoor, {}, {}, send(Elevator, DoorOpened); raise(unit))
19 (ConsiderClosingDoor, {}, {},
20 if(*) raise(unit)
21 else if(*) raise(ObjectEncountered))
22 (ObjectEncountered, {}, {},
23 send(Elevator, ObjectDetected); raise(unit))
24 (CloseDoor, {}, {}, send(Elevator, DoorClosed); raise(unit))
25 (StopDoor, {}, {}, send(Elevator, DoorStopped); raise(unit))
26 (Reset, {}, {SendCmdToOpen, SendCmdToClose,
27 SendCmdToStop}, skip)
28 step
29 (Init, SendCmdToOpen, OpenDoor)
30 (OpenDoor, unit, Reset)
31 (Init, SendCmdToClose, ConsiderClosingDoor)
32 (ConsiderClosingDoor, unit, CloseDoor)
33 (ConsiderClosingDoor, ObjectEncountered, ObjectEncountered)
34 (ConsiderClosingDoor, SendCmdToStop, StopDoor)
35 (CloseDoor, unit, Reset)
36 (StopDoor, unit, OpenDoor)
37 (ObjectEncountered, unit, Init)
38 (Reset, SendCmdToReset, Init)
39

40 ghost machine Timer
41 var Elevator : Id
42 state
43 (Init, {}, {StopTimer}, skip)
44 (TimerStarted, {StartTimer}, {}, if(*) raise(unit))
45 (SendTimerFired, {StartTimer}, {},
46 send(Elevator, TimerFired); raise(unit))
47 (ConsiderStopping,{StartTimer}, {},
48 if(*) {send(Elevator, OperationFailure);
49 send(Elevator, TimerFired)}
50 else send(Elevator, OperationSuccess);
51 raise(unit))
52 step
53 (Init, StartTimer, TimerStarted)
54 (TimerStarted, unit, SendTimerFired)
55 (SendTimerFired, unit, Init)
56 (TimerStarted, StopTimer, ConsiderStopping)
57 (ConsiderStopping, unit, Init)
58

59 //Initialization statement.
60 User()

Figure 12: Environment for elevator

11

used only during verification and are used to hold references to
ghost machines.

Lines 11–32 describe the states of the elevator machine. Each
state description consists of a triple (n, d, i, s), where (1) n is a
state name, (2) d is a set of events (called deferred set), (3) i is a set
of events (called ignored set), and (4) s is a statement (called entry
statement), which gets executed when the state is entered. For in-
stance, lines 11–13 describe the state Init with an empty deferred
set, empty ignored set, and the entry statement which creates an in-
stance of the Timer and Door machines and raises the event unit.
Note that Timer and Door are ghost machines and their references
are stored in ghost variables. As another example, lines 16–17 de-
scribe the state Opening, with {CloseDoor} as the deferred set,
{OpenDoor} as the ignored set, and send(Timer, StartTimer)
as the entry statement. If the state machine enters the Opening
state, the following things happen: On entry to the state, the state-
ment send(Timer, StartTimer) is executed, which results in
the event StartTimer being sent to the Timer machine. On fin-
ishing the execution of the entry statement, the machine waits for
events on the input buffer. In this example the send method takes
two arguments since the event StartTimer does not have any pay-
load.

The initial state of the Elevator machine is Init which is the
first state specified in the list of states. Whenever an instance of
the Elevator machine is created (using the new statement), the
machine instance’s state is initialized to Init.

Deferred and ignored events. Events sent to a machine are stored
in a FIFO queue. However, it is possible to influence the order in
which the events are delivered. In a given state, some events can
be deferred or ignored. When trying to receive an event a machine
scans its event queue, starting from the front. Assume that the first
event in the queue is e. If e is ignored it is dequeued and the
machine looks at the next event in the queue. If e is deferred the
machine looks at the next event but e stays in the queue. If e is
neither ignored nor deferred then the machine dequeue e and takes
the appropriate transition. For instance, in the Opening state (line
16), the event CloseDoor is deferred and occurrences of OpenDoor
are ignored.

Step and call transitions. Lines 34–52 specify how the state of the
Elevator machine transitions on events. There are two types of
transitions: (1) step transitions, and (2) call transitions. Both these
transition types have the form (n1, e, n2), where n1 is the source
state of the transition, e is an event name, and n2 is the target state
of the transition. For instance, line 34 states that when the machine
is in the the Init state, if an event unit event arrives the machine
transitions to the Closed state.

Call transitions have similar syntax, but more complicated se-
mantics —one of pushing the new state on the top of the call stack.
Call transitions are used to provide a subroutine-like abstraction for
machines.

For instance, line 51 specifies a call transition to the
StoppingTimer state from the Opened state on the OpenDoor
event, and line 52 specifies a call transition to the StoppingTimer
state from the OkToClose state on the CloseDoor event. One
can think about the StoppingTimer state as the starting point
of a subroutine that needs to be executed in both these contexts.
This subroutine has 3 states: StoppingTimer, WaitingForTimer
and ReturnState. The states are described in lines 28–29,
and transitions between the states are described in lines 47–49.
The “return” from the call happens the ReturnState raises the
StopTimerReturned event (see line 32). This event gets handled
by the callers of the subroutine in lines 38 and 39 respectively.

Unhandled events. The P language has been designed to help
program responsive systems, which handle events in a responsive

manner. Responsiveness is understood as follows. If an event e
arrives in a state n, and there is no transition defined for e, then
the verifier flags an “unhandled event” violation. There are certain
circumstances under which the programmer may choose to delay
handling of specific events or ignore the events by simply dropping
them. These need to be specified explicitly by marking such events
in the deferred set or ignored set associated with the state, so
that they are not flagged by the verifier as unhandled. The verifier
also implements a liveness check that prevents deferring events
indefinitely. This check avoids trivial ways to silence the verifier
by making every event deferred in every state.

Environment modeling. Figure 2 shows the environment ma-
chines (which are ghost machines) and initialization statement for
the elevator. There are 3 ghost machines: User, Door and Timer.
These machines are used as environment models during verifica-
tion, but no code generation is done for these machines. For the
purpose of modeling, the entry statements in the states of these
machines are allowed to include nondeterminism. For example, in
line 44, the entry statement of the TimerStarted state is specified
as if(*) raise(unit). The ∗ expression evaluates nondetermin-
istically to true or false. Thus, when the Timer machine enters this
state, it can nondeterministically raise the unit event. The verifier
considers both possibilities and ensures absence of errors in both
circumstances. In the real world, the choice between these possi-
bilities depends on environmental factors (such as timing), which
we choose to ignore during modeling.

The initialization statement at line 60 creates one instance of the
User machine, and this is the starting point for the model checker to
perform verification. Note that the initial state of the User machine
creates an instance of Elevator (in line 5), and the Elevator
instance in turn creates instances of Timer and Door (in lines 11
and 12 in Figure 1. During execution, it is the responsibility of some
external code to create an instance of the Elevator machine.

B. Examples
B.1 Memory Management for the Elevator

In our Elevator example from Figures 1 and 2, we created only
one instance of the Elevator machine using the new command
in line 5 of Figure 2, and never deleted that instance.

Figure 13 shows the Elevator machine in a more dynamic set-
ting where the environment repeatedly creates and deletes instances
of the Elevator machine. The Elevator machine now handles
two new events Inc and Dec, which it uses to increment and decre-
ment a reference count. When the reference count reaches 0 on
handling a Dec event, the Elevator machine invokes the delete
statement (see lines 17–20). The User machine initially allocates
an instance of Elevator (in line 36 of Figure 13, and sends an Inc
event to that instance in after creating it (in line 37). Nondetermin-
istically, it deletes the Elevator instance by sending a Dec event
(see line 42), and goes back to the Init state and create a fresh
instance of Elevator.

In the Elevator machine, the Inc and Dec events are handled
using call transitions in lines 29–30, with the corresponding target
states described in lines 17–19. The wild card “ ” in the source state
of these transitions is a macro directive, which expands to a transi-
tion for every possible value of the source state. The Inc transition
results in the variable refcount being incremented, and the Dec
transition results in the variable refcount being decremented, and
delete is executed if the refcount reaches 0 after the decrement.

When the elevator interacts with other machines (such as Door
or Timer), the Elevator sends itself an Inc event so that it cannot
be freed while it is waiting for a a response to come back from the
Door or Timer. Otherwise, a runtime exception can be generated
when Door or Timer sends its response to a freed instance of

12

1 ...
2 //include all the events from Figure 1, and in
3 //addition the two events below
4 event Inc, Dec
5

6 machine Elevator
7 ...
8 var refcount = 0
9 ...

10 state
11 ...
12 (AcquireRef, {}, {}, send(Elevator, Inc);
13 raise(unit))
14 (ReleaseRef, {}, {}, send(Elevator, Dec)
15 raise(unit))
16 ...
17 (Increment, {}, {}, refcount = refcount + 1)
18 (Decrement, {}, {}, refcount = refcount - 1;
19 if(refcount =0) delete)
20

21 step
22 ...
23 (Closed, OpenDoor, AcquireRef)
24 (AcquireRef, unit, Opening)
25 (DoorOpening, DoorOpened, ReleaseRef)
26 (ReleaseRef, unit, Opened)
27 ...
28 ...
29 call (_, Inc, Increment)
30 (_, Dec, Increment)
31

32 ghost machine User
33 var Elevator : Elevator
34 event unit, restart
35 state
36 (Init, {}, {}, Elevator = new Elevator();
37 send(Elevator, Inc);
38 raise(unit))
39 (Loop, {}, {}, if(*) {send(Elevator, OpenDoor); raise(unit) }
40 else if (*) {send(Elevator, CloseDoor);
41 raise(unit) };
42 else {send(Elevator, Dec); raise(restart))
43 step
44 (Init, unit, Loop)
45 (Loop, unit, Loop)
46 (Loop, restart, Init);

Figure 13: Elevator with memory management

Elevator. To prevent such runtime exceptions, an increment of
the reference count is done by the Elevator during the time it
is expecting a response from any other machine. For instance,
when the OpenDoor event is received, the Elevator increments its
reference count and keeps it incremented until the DoorOpening
event is received from the Door, upon which the reference count
is decremented back. This is shown using the transitions in line
23–26 and the state descriptions in lines 12–15. Similar increment
and decrement operations need to be done for every state in the
Elevator where it waits for responses from Timer or Door.

B.2 Switch-LED Driver
The P code for the Switch-LED driver can be found in Figure 14
and the ghost machines for the environment can be found in Fig-
ure 15.

C. Type System and Erasure
C.1 Type System
The type system of P, shown in Figure 16, 17, and 18, is on pur-
pose kept very simple. It mostly does simple checks to make sure
the machines, transitions, and statements are well-formed. In par-
ticular, the following checks are performed: (1) check that iden-
tifiers for machines, state names, events, and variables are unique,

(2) check that statements inside real machines are deterministic, (3)
ensure that private events are raised and public events are sent, and
(4) ensure that ghost machines, ghost variables and ghost events
can be erased during compilation and execution.

Notations. A machine is a 6-tuple (N,E, V, F, S, T, C) where N
is the machine name, E is the private events, V is the variables,
F is the foreign functions declaration, S is the states, T is the
transitions, C is the calls.

A state is the triple (n, d, s) where n is the state name, d is the
list of deferred events, s is the entry function (statement).

The symbols are split into two environment. The global one,
denoted Γ, which contains the global events and machines.
The local one, denoted Λ, contains information about the local
machine, private events, variables, states, and transitions.

We use the symbol as wild card for state names and as “don’t
care” value for boolean expressions. There are a few auxiliary
functions. isGhost holds when the argument is a ghost value.
isInit is true when the given state name correspond to the initial
state of the machine. current extracts the name of the machine
being typed from the local environment. Furthermore, We omit
rules for the existence of base types.

Explanation of the rules.
First, there are three global rules that check the global structure

of the program with the machines and events. The top-level PRO-
GRAM rules checks that the event and machines are well-defined.
EVENT makes sure that the payload of is well-typed and that its
name is unique. MACHINE checks that the machine name is unique
and that each component is well-typed.

Then, we have the rules for the inner components of a machine.
INTERNAL EVENT performs the same checks as EVENT with the
additional local scope of the machine. VARIABLE DECL. verifies
that the type exists and that there is no other variable with the
same name. TRANSITION and CALL checks that the source and
target states exist and that there is no ambiguity when receiving the
event. i.e. there is no other edge with the same source and the same
event. STATE first verifies the uniqueness of the state name and that
the deferred set contains only known events. Then is tries to find
the type of the payload. The payload is accessible only if all the
incoming edges carries event with a similar payload.

The rules for statements contains the first checks for ghost
values. Ghost values are allowed in assertions, assignment to ghost
variables and send operations. ASSIGN makes sure that the types
of both sides of the assignment match and that the separation of
ghost and real values is respected. This separation is strict for the
machines ids and more permissive for the other types. ASSERT is
as expected. Assertions that contains ghost values are only checked
during the verification phase. They are removed at compile time.
SEND checks the payload and make sure that only public event are
sent. RAISE is similar as SEND except that only private events can
be raised. IF-THEN-ELSE and WHILE corresponds to the expected
rules with the addition that ghost values cannot be used as part of
the condition. The remaining rules are as expected.

Finally, the rules for the expressions are straightforward. They
contains an additional flag to tell whether a ghost values have to be
used.

C.2 Erasure
Given a set of ghost and real machines our compiler removes the
ghost ones and modifies the real machines to erase the ghost vari-
ables and expressions. Inside real machines, we can distinguish two
different usages for ghost values: (1) reference to ghost machines
that models the environment, and (2) non-Id ghost variables that

13

are used in assertions. Both cases are handled in a sightly different
way.

The simplest case is (2). These variables and the expression
in which they occurs are simply removed since the type system
guarantees that ghost terms do not affect the runs of real machines
if the assertion are valid. The only change in the semantics occurs
for unsafe programs, i.e. the programs which contains invalid ghost
assertions.

In case (1), the compiler replace the send to a ghost machine
by the appropriate call to foreign code, see Section 4 for the details.
This explains why for machine identifiers we enforce complete
separation of ghost and real Id. We need to unambiguously identify
the send operation that targets ghost machine.

D. Details of the Runtime
Figure 19 shows a simplified implementation of the entry methods
of the runtime API. Figure 20 and 21 present a simplified version of
some internal methods of the runtime. Figure 20 shows the methods
that run a machine and Figure 21 shows the methods that interacts
with the event queue.

The internal method SMGetNextEvent gives priority to an
internal event (if one exists, stored in smc->PrivateEvent)
over external events (stored in smc->EventQueue). The method
SMReturn pops the state on top of the call stack. It is called from
the generated code. Pushes to the call stack are done while ex-
ecuting call transitions (see line 37, in Figure 20). The method
UpdateDeferredEventSet is used to update the deferred sets in
lines 27 and 36, during push and pop in accordance with the rules
CALL and POP from Figure 4.

E. Details of the Verification

Algorithm for the delay bounded scheduler. The delay bounded
scheduler’s rules presented in Section 5 can easily be turned into an
nondeterministic algorithm as shown by Algorithm 1. The sched-
uler does not need much information about the machine that are
running. The RUNTOSENDORCREATE method let the machine run
until the next scheduling point which is either a send or the creation
of a machine. In both cases, the method returns (m′) the identifier
of the recipient or the new machine. In case the machine does not
reach a context-switch point the method returns⊥ andm is popped
from the stack. This may happen if a machine blocks when trying
to receive a message or if it calls delete.

Algorithm 1 Pseudocode for delay bounded scheduler
Require: d ≥ 0 a bound on the delay, i the initial machine
currD ← 0 . initialization
S ← new DoubleEndedQueue()
PUSH FRONT(S, i)
while ¬ EMPTY(S) do

m← POP(S)
if ∗ then . delaying

if currD < d then
currD ← currD + 1
PUSH BACK(S, m)

else . no delay
m′ ← RUNTOSENDORCREATE(m)
if m′ 6= ⊥ then

PUSH FRONT(S, m)
if m′ /∈ S then

PUSH FRONT(S, m′)

Responsiveness as Büchi automata. In Figure 8, we presented
an automata for the condition (2) of responsiveness. Figure 22

shows a similar automaton for the condition (1). The structure of
the automaton is similar. The difference lies in the edges label.
Furthermore, the automaton has only one parameter m.

14

event D0Entry, D0Exit, TimerFired, SwitchStatusChange,
TransferSuccess, TransferFailure,
StopTimer, StartDebounceTimer,
UpdateBargraphStateUsingControlTransfer,
SetLedStateToUnstableUsingControlTransfer,
SetLedStateToStableUsingControlTransfer

machine Driver
event OperationSuccess, OperationFailure, TimerStopped,

Yes, No, unit
E2: set of Event = {D0Entry, D0Exit, SwitchStatusChange,

TimerFired, TimerStopped}
E3: set of Event = {SwitchStatusChange,

TransferSuccess, TransferFailure,
D0Entry, D0Exit}

ghost var Timer:Timer, LED: LED, Switch : Switch
function

void StoreSwitchAndEnableSwitchStatusChange()
bool CheckIfSwitchStatusChanged()
void CompleteDStateTransition()
void UpdateBarGraphStateUsingControlTransfer(){

send(LED, UpdateBarGraphStateUsingControlTransfer) }
void SetLedStateToStableUsingControlTransfer(){

send(LED, SetLedStateToStableUsingControlTransfer) }
void SetLedStateToUnstableUsingControlTransfer(){

send(LED, SetLedStateToUnstableUsingControlTransfer) }
void StartDebounceTimer(){ send(Timer, StartDebounceTimer) }

state
(Init, {SwitchStatusChange}, {}, Timer = new Timer(Driver=this);

LED = new LED(Driver=this);
Switch = new Switch(Driver=this); raise(unit))

(Dx, {SwitchStatusChange}, {D0Exit}, skip)
(CompleteD0Entry, {SwitchStatusChange}, {}, raise(OperationSuccess))
(WaitingForSwitchStatusChange, {}, {D0Entry}, skip)
(CompletingD0Exit, {}, {}, raise(OperationSuccess))
(StoringSwitchAndCheckingIfStateChanged, {}, {D0Entry},

StoreSwitchAndEnableSwitchStatusChange();
if (CheckIfSwitchStatusChanged()) raise(Yes)
else raise(No))

(UpdatingBarGraphState, E2, {D0Entry},
UpdateBarGraphStateUsingControlTransfer())

(UpdatingLedStateToUnstable, E2, {D0Entry},
SetLedStateToUnstableUsingControlTransfer())

(WaitingForTimer, {}, {D0Entry}, StartDebounceTimer())
(UpdatingLedStateToStable, E2, {D0Entry},

SetLedStateToStableUsingControlTransfer())
(StoppingTimerOnStatusChange, E3, {D0Entry}, raise(unit))
(StoppingTimerOnD0Exit, E3, {D0Entry}, raise(unit))
//substate machine
(StoppingTimer, {}, {D0Entry}, send(Timer, StopTimer))
(WaitingForTimerToFlush, E3, {D0Entry}, skip)
(ReturningTimerStopped, {}, {D0Entry}, raise(TimerStopped))

step
(Init, unit, Dx)
(Dx, D0Entry, CompleteD0Entry)
(CompleteD0Entry, OperationSuccess, WaitingForSwitchStatusChange)
(WaitingForSwitchStatusChange, D0Exit, CompletingD0Exit)
(CompletingD0Exit, OperationSuccess, Dx)
(WaitingForSwitchStatusChange, SwitchStatusChange,

StoringSwitchAndCheckingIfStateChanged)
(StoringSwitchAndCheckingIfStateChanged, Yes, UpdagingBarGraphState)
(StoringSwitchAndCheckingIfStateChanged, No, WaitingForTimer)
(UpdatingBarGraphState, TransferSuccess, UpdatingLedStateToUnstable)
(UpdatingBarGraphState, TransferFailure, UpdatingLedStateToUnstable)
(UpdatingLedStateToUnstable, TransferSuccess, WaitingForTimer)
(WaitingForTimer, TimerFired, UpdatingLedStateToStable)
(UpdatingLedStateToStable, TransferSuccess,

WaitingForSwitchStatusChange)
(WaitingForTimer, SwitchStatusChange, StoppingTimerOnStatusChange)
(StoppingTimerOnStatusChange, TimerStopped,

StoringSwitchAndCheckingIfStateChanged)
(WaitingForTimer, D0Exit, StoppingTimerOnD0Exit)
(StoppingTimerOnD0Exit, TimerStopped, CompletingD0Exit)
//submachine steps
(StoppingTimer, StoppingSuccess, ReturningTimerStopped)
(StoppingTimer, StoppingFailure, WiatingForTimerToFlush)
(StoppingTimer, TimerFired, ReturningTimerStopped)
(WaitingForTimerToFlush, TimerFired, ReturningTimerStopped)

call
(StoppingTimerOnStatusChange, unit, StoppingTimer)
(StoppingTimerOnD0Exit, unit, StoppingTimer)

Figure 14: Switch-LED Device Driver

ghost machine User
event unit
var Driver:Driver
state

(Init, {},{}, Driver = new Driver(); raise(unit))
(S0, {},{}, send(Driver, D0Entry); raise(unit))
(S1, {},{}, send(Driver, D0Exit); raise(unit))

step
(Init, unit, S0)
(S0, unit, S1)
(S1, unit, S0)

ghost machine Switch
event unit
var Driver:Driver
state

(Init, {},{}, raise(unit))
(ChangeSwitchState, {},{},

send(Driver, SwitchStatusChange);
raise(unit))

step
(Init, unit, ChangeSwitchState)
(ChangeSwitchState, unit, ChangeSwitchState)

ghost machine LED
event unit
var Driver:Driver

state
(Init, {},{}, skip)
(ProcessUpdate, {},{}, if(*) send(Driver, TransferFailure)

else send(Driver, TransferSuccess);
raise(unit))

(Unstable, {},{}, send(Driver, TransferSuccess))
(Stable, {},{}, send(Driver, TransferSuccess))

step
(Init, UpdateBarGraphStateUsingControlTransfer, ProcessUpdate)
(ProcessUpdate, unit, Init)
(Init, SedLedStateToUnstableUsingControlTransfer, Unstable)
(Init, SedLedStateToStableUsingControlTransfer, Stable)
(Unstable, SetLedStateToStableUsingControlTransfer, Init)

(Stable, unit, Init)

//Timer fires when started
ghost machine Timer
event unit
var Driver:Driver

state
(Init, {}, {StopTimer} skip)
(TimerStarted,{StartDebounceTimer}, {}, if(*) raise(unit))
(SendTimerFired,{StartDebounceTimer}, {},

send(Driver, TimerFired,null); raise(unit))

(ConsiderStopping,{StartDebounceTimer},{},
if(*) {send(Driver, StoppingFailure);

send(Driver, TimerFired);}
else send(Driver, StoppingSuccess);
raise(unit))

step
(Init, StartDebounceTimer, TimerStarted)
(TimerStarted, unit, SendTimerFired)
(sendTimerFired, unit, Init)

(TimerStarted, StopTimer,ConsiderStopping)
(ConsiderStopping, unit, Init)

//initial machine. life starts here!!!
User()

Figure 15: Environment for Switch-LED driver

15

i = |E| ∀k ∈ [1; i]. ∪l 6=k El ` Ek

j = |M | ∀k ∈ [1; j]. E,∪l6=kMl `Mk

E,M ` I
` E M I

(PROGRAM)

e /∈ Γ ` t
Γ ` e(t)

(EVENT)

N /∈ Γ
i = |E| ∀x ∈ [1; i]. Γ,M ∪y 6=x Ey ` Ex

j = |V | ∀x ∈ [1; j]. Γ,M ∪y 6=x Vy ` Vx

k = |F | ∀x ∈ [1; k]. Γ,M ∪y 6=x Fy ` Fx

l = |T | ∀x ∈ [1; l]. Γ,M E ∪y 6=x Ty ` Tx

n = |C| ∀x ∈ [1;n]. Γ,M E T ∪y 6=x Cy ` Cx

m = |S| ∀x ∈ [1;m]. Γ,M E V F ∪y 6=x Sy t ` Sx

Γ ` (N,E, V, F, S, T, C)
(MACHINE)

e /∈ Γ ∪ Λ ` t
Γ,Λ ` e(t)

(INTERNAL EVENT)
` t v /∈ Λ

Γ,Λ ` v : t
(VARIABLE DECL.)

(` t) ∨ t = void f /∈ Λ ∀i ∈ [1, k] ` tk
Γ,Λ ` f : t1 → . . . tk → t

(FOREIGN DECL.)

e ∈ Γ ∪ Λ l1 ∈ Λ l2 ∈ Λ
∀l. l 6= l2 =⇒ (l1, e, l) /∈ Λ

Γ,Λ ` (l1, e, l2)
(TRANSITION)

e ∈ Γ ∪ Λ l1 ∈ Λ l2 ∈ Λ
∀l. l 6= l2 =⇒ (l1, e, l) /∈ Λ

Γ,Λ ` (l1, e, l2)
(CALL)

n /∈ Λ d ⊆ Γ ∀e ∈ d.Trans(current(Λ), n, e) = ⊥
let t s.t. ∀(, e, n) ∈ Λ,Payload(e) = t

if t exists ∧ ¬isInit(n) then Γ,Λ ∪ {arg : t} ` s
otherwise Γ,Λ ` s
Γ,Λ ` (n, d, s)

(STATE)

Figure 16: Type checking rules for the program structure

Λ(x) = t
isGhost(x) ∧ t = id =⇒ Γ,Λ, true ` r : id

isGhost(x) ∧ t 6= id =⇒ Γ,Λ, ` r : t
¬isGhost(x) =⇒ Γ,Λ, false ` r : t

Γ,Λ ` x := r
(ASSIGN)

Γ,Λ, ` r : bool

Γ,Λ ` assert(r)
(ASSERT)

Γ,Λ ` delete
(DELETE)

Γ,Λ, ` r : id Γ(e) = t Γ,Λ, false ` r′ : t

Γ,Λ ` send(r, e, r
′
)

(SEND)

Λ(e) = t Γ,Λ, false ` r : t

Γ,Λ ` raise(e, r)
(RAISE)

Γ,Λ ` return
(RETURN)

Γ,Λ ` skip
(SKIP)

(Γ,Λ, false ` r : bool) ∨ (isGhost(Λ) ∧ r = choose(bool))
Γ,Λ ` s1 Γ,Λ ` s2

Γ,Λ ` if r then s1 else s2
(IF-THEN-ELSE)

Γ,Λ, false ` r : bool Γ,Λ ` s
Γ,Λ ` while r s

(WHILE)

Figure 17: Type checking rules for the statments

m ∈ Λ isGhost(m) = g

Γ,Λ, g ` this : m
(THIS)

Λ(arg) = t

Γ,Λ, false ` arg : t
(ARG)

Γ,Λ, ` c : int
(CONSTANT)

Λ(x) = t isGhost(t) = g

Γ,Λ, g ` x : t
(VARIABLE)

m ∈ Γ g = isGhost(m) ∀k ∈ [1; j].Γ,m ` ik
Γ,Λ, g ` newm(i1 . . . ij) : id

(NEW)

Γ,Λ, g ` r1 : t1 Γ,Λ, g ` r2 : t2 op : t1 → t2 → t3

Γ,Λ, g ` r1 op r2 : t
(OP)

Λ(f) = . . .→ t arity(Λ(f)) = k
∀i ∈ [1; k]. Γ,Λ, false ` ei : ti ∧ Λ(f)[i] = ti

Γ,Λ, false ` f(e1, . . . , ek) : t
(FOREIGNCALL)

Figure 18: Type checking rules for the expressions

1 Hashtable *map; //maps machines to contexts
2 int SMCreateMachine(string machineType){
3 int mid = getNewMachineId();
4 void *smc = AllocateMachineContext(machineType);
5 HasbtableAdd(map, mid, smc);
6 return(mid);
7 }
8 void SMDeleteMachine(int mid){
9 void *smc = HashtableLookup(map, mid);

10 if(smc == null) raise MACHINE_NONEXISTENT;
11 HashtableRemove(map, mid);
12 DeleteMachineContext(smc);
13 }
14 void SMAddEvent(int mid, String n, void *v){
15 Event e; e.name = n; e.value = v;
16 StateMachineContext *smc = HashtableLookup(map,mid);
17 if(smc == null) raise MACHINE_NONEXISTENT;
18 SMEnqueueEvent(smc,e, false);
19 WdfSpinLockAcquire(smc->lock);
20 if(!smc->IsRunning) SMRunStateMachine(smc);
21 else WdfSpinLockRelease(smc->lock);
22 }
23 void SMAddPrivateEvent(StateMachineContext *smc, String n,
24 void *v){
25 Event e; e.name = n; e.value = v;
26 SmEnqueueEvent(smc,e,true);
27 }
28 void SMReturn(StateMachineContext *smc){
29 UpdateDeferredEventsSet(smc);
30 Pop(smc->CallStack);
31 }

Figure 19: Runtime API: External methods

16

1 internal SMRunStateMachine(StateMachineContext *smc){
2 while(true){
3 Event e = SMGetNextEvent(smc);
4 if(e != NULL_EVENT) {
5 smc->IsRunning=true;
6 WdfSpinLockRelease(smc->lock);
7 smc->CurrentState=
8 SMExecuteTransition(smc,e);
9 } else {

10 smc->IsRunning=false;
11 WdfSpinLockRelease(smc->lock);
12 return;
13 }
14 }
15 }
16

17 internal State SMExecuteTransition(
18 StateMachineContext *smc,
19 Event e) {
20 bool foundTransition = false;
21 while(NotEmpty(smc->CallStack){
22 State curState = Top(smc->CallStack);
23 if(GNExistsTransition(curState,e)) {
24 foundTransition = true;
25 break;
26 } else {
27 UpdateDeferredEventsSet(smc);
28 Pop(smc->CallStack);
29 }
30 }
31 if(!foundTransition) raise UNHANDLED_EVENT;
32 State newState =
33 GNGetTargetStateOfTransition(curState, e);
34 Bool isCall = GNIsCallTransition(curState, e);
35 if(isCall){
36 UpdateDeferredEventsSet(smc);
37 Push(smc->CallStack,newState);
38 }
39 GNExecuteEntryFunction(newState, smc->LocalVariables);
40 return(newState);
41 }

Figure 20: Runtime: Internal methods for transitions

1 internal Event SMGetNextEvent(StateMachineContext *smc){
2 Event returnedEvent = NULL_EVENT;
3 if(smc->privateEvent != NULL_EVENT) {
4 returnedEvent = smc->privateEvent;
5 smc->privateEvent = NULL_EVENT;
6 } else {
7 int curr = smc->EventQueue->Head;
8 while(curr != smc->EventQueue->Tail){
9 if(NotInDeferredEvents(smc, curr->e)){

10 returnedEvent = smc->EventQueuecurr;
11 break;
12 } else {
13 curr++;
14 }
15 }
16 }
17 return(returnedEvent);
18 }
19

20 internal void SMEnqueueEvent(StateMachineContext *smc,
21 Event e, bool isPrivate){
22 WdfSpinLockAcquire(smc->lock);
23 //Enqueue event should be an atomic operation
24 if(isPrivate){
25 assert(smc->PrivateEvent == NULL_EVENT);
26 smc->privateEvent = e;
27 } else {
28 Enqueue(smc->EventQueue,e);
29 }
30 WdfSpinLockRelease(smc->lock);
31 }

Figure 21: Runtime: Internal methods for events

q0start q1

q2

q3
event sent to m

*
m scheduled,
nothing dequed

m not
scheduled

m scheduled,
dequeuing

m scheduled,
dequeuing

m scheduled,
nothing dequed

m not scheduled

*

Figure 22: Büchi automaton for responsiveness condition (1)

17

