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Abstract

Depth-First Search (DFS) is a pervasive algorithm, often used as a build-
ing block for topological sort, connectivity and planarity testing, among
many other applications. We propose a novel work-efficient parallel algo-
rithm for the DFS traversal of directed acyclic graph (DAG). The algorithm
traverses the entire DAG in a BFS-like fashion no more than three times.
As a result it finds the DFS pre-order (discovery) and post-order (finish
time) as well as the parent relationship associated with every node in a
DAG. We analyse the runtime and work complexity of this novel parallel
algorithm. Also, we show that unlike many of its predecessors, our algo-
rithm is easy to implement and optimize for performance. In particular, we
show that its CUDA implementation on the GPU outperforms sequential
DFS on the CPU by up to 6× in our experiments.

1 Introduction

Let a graph G = (V,E) be defined by its vertex V = {1, ..., n} and edge E =
{(i1, j1), ..., (im, jm)} sets. Also, assume that it has n nodes and m edges.

The sequential depth-first search (DFS) algorithm was proposed in [25]. It is
a pervasive algorithm, often used as a building block for topological sort [10, 18],
connectivity and planarity testing [15, 28], among many other applications.

In the DFS traversal problem we are interested in finding parent, pre-order
and post-order for every node in a graph. For example, for the graph on Fig. 1
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these relationships are

node = {a, b, c, d, e, f}
pre-order = {0, 1, 4, 5, 2, 3}

post-order = {5, 2, 4, 3, 1, 0}
parent = {∅, a, a, c, b, e}
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Figure 1: Graph, adjacency matrix and CSC sparse storage format

Algorithm 1 Sequential DFS (Recursive)

1: Let G = (V,E) be a graph with a root node r.
2: Let d and f be global variables initially set to 0.
3: Let parent, pre- and post-order be global arrays.
4: Call dfs(G,r) recursive routine defined below.
5: routine dfs(G,p)

6: Mark node p as visited
7: Set pre-order(p) = d . Discovery time
8: Set d = d+ 1
9: Let Cp be the set of children of p . Adjacent nodes

10: for node i ∈ Cp do . Process in lexicographic order
11: if i has not been visited then
12: parent(i) = p
13: Call dfs(G,i)
14: end if
15: end for
16: Set post-order(p) = f . Finish time
17: Set f = f + 1

18: end routine
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The DFS traversal can be computed sequentially using many equivalent for-
mulations of Alg. 1 [10]. Notice that unless stated otherwise, we assume that the
children of a node are processed in some specified order, such as the lexicographic
order, as shown on line 10 in Alg. 1.

2 Related Work

There has been a significant effort to create a parallel variation of DFS algorithm
in the past. The DFS on planar graphs has been considered in [14, 23, 24]. In
particular, it has been shown in [23] that for such graphs it is possible to perform
a parallel DFS traversal in O(log2 n) time with n processors. On the other hand,
the DFS on directed acyclic graphs (DAGs) has been considered in [13, 30], where
it has been shown that for such graphs it is possible to find the DFS traversal
in O(log2 n) time with nω/ log n processors, where ω < 2.373 is the matrix
multiplication exponent. Also, the DFS on directed graphs with cycles has been
considered in [3, 4], where it has been shown that such traversal can be found in
O(
√
n log11 n) time with n3 processors. Finally, a relaxation of the problem from

lexicographic to unordered DFS, where the children of a node are not required
to be explored in lexicographic order, but the parent relationship should still be
such that it results in a DFS tree [17, 20, 22], has been explored for undirected
graphs in [1, 2], where it has been shown that using randomized algorithms the
unordered traversal can be obtained in O(log5 n) time with nω+1 processors.

Recall that a given problem is in class P if there is a constant α such that
this problem can be solved in O(nα) time on a single processor. Also, a given
problem is in class NC and RNC if there are constants α and β such that this
problem can be solved in O(logα n) time on O(nβ) processors with deterministic
and randomized algorithms, respectively [6]. It has been shown that the lexico-
graphic DFS traversal problem for general graphs is P-complete, in other words,
all problems in class P can be reduced to it [21]. Therefore, a parallel algorithm
that solves this problem in polylogarithmic time using polynomial number of
processors would imply that P = NC or RNC, which is unlikely. However,
it is misleading to use this result to simply state that DFS is an inherently
sequential algorithm without specifying the taxonomy of the (lexicographic ver-
sus unordered) type of the traversal and the (planar, directed or general) class
of graphs we are working with. As shown by the scientific literature review, we
may conclude in particular that the lexicographic DFS traversal problem for pla-
nar graphs and DAGs ∈ NC and unordered DFS traversal problem for general
graphs ∈ RNC.
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3 Contributions

Let us define a directed tree (DT) to be a DAG, where every node has a single
parent. We will show that in a DT finding pre-order (discovery) and post-order
(finish time) of a node is equivalent to computing an offset based on the number
of nodes to the left and below yourself.

Also, we will propose two approaches for identifying the parent of a node
corresponding to a lexicographic DFS of a DAG. The first will be based on the
path comparisons and second will rely on the solution of a single source shortest
path (SSSP) problem. We will use them to transform a DAG into a DT.

We will combine these results to develop a work-efficient parallel algorithm
for computing lexicographic DFS traversal of a DAG. The algorithm will traverse
the entire DAG in parallel in a Breadth-First Search (BFS)-like fashion no more
than three times, with at least one traversal requiring that all edges to each
parent are visited prior to proceeding to its children. As a result it will obtain
the DFS parent, pre- and post-order relationship associated with every node.

We will show that for sparse graphs the parallel DFS can be performed in
O(η log n) steps, where η is the length of the longest path between a root and
a node. The length η depends on the connectivity structure of a graph. It
can be short O(1), balanced O(log n) or long O(n) and we will propose several
optimizations and a novel data structure that can effectively compress it.

Also, we will show that the work complexity of the proposed parallel DFS
is O(m + n), matching that of the sequential algorithm. We point out that to
achieve this work complexity bound the number of processors t ≤ m+n actively
doing work varies at each step of the algorithm.

Finally, we will show that unlike many of its predecessors, our algorithm is
easy to implement and optimize for performance. In particular, we will show
that its CUDA implementation on the GPU outperforms sequential DFS on the
CPU by up to 6× in our experiments.

4 Algorithm

Let us assume that we are working with a DAG, in other words, a graph G =
(V,E) that has directed edges and no cycles. The graph and its adjacency matrix
can be stored in arbitrary data structures. Suppose that we use the standard
CSR/CSC format, which simply concatenates all non-zero entries of the matrix
in row/column-major order and records the starting position for the entries of
each row/column, see Fig. 1. Notice that this format allows us to easily traverse
and access information associated with outgoing edges.
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Definition 1. Let ςp and ζp denote the number of nodes reachable under and
including node p, where if a sub-graph is reachable from k multiple parents then
its nodes are counted once and k times, respectively.

Lemma 1. For a DT, where each node has a single parent, ζp = ςp is simply
the sub-graph size, while for a DAG we have ζp ≥ ςp.

For example, in Fig. 1 we have ζa = 7 and ςa = 6, because we double counted
node f in the former case.

Also, notice that we have the recursive relationship

ζp = 1 +
∑
i∈Cp

ζi (1)

where Cp is a set of children of p. On the other hand, ςp can be expensive to
compute [5, 27].

Let Cp be an ordered set, then let

ζ̃l =
∑

i<l,i∈Cp

ζi (2)

Notice that ζ̃l and ζp − 1 can be obtained as a result of the prefixsum of ζi
starting with 0 for i ∈ Cp. Also, note that computation of ζ̃l does not include ζl
because i < l above.

The values ζp, ζi and ζ̃l for every node in the example on Fig. 1 are listed in
Tab. 1. Notice that if we had laid out this data linearly we would have fit into
CSR/CSC format. Thus, ζp can be stored and extracted in O(1) time.

ζp ζi for i ∈ Cp ζ̃l = prefixsum(ζi,0)

ζa = 7 [0,ζb,ζc]=[0,3,3] [ζ̃b,ζ̃c,(ζa − 1)]=[0,3,6]

ζb = 3 [0,ζe] =[0,2] [ζ̃e,(ζb − 1)] =[0,2]

ζc = 3 [0,ζd] =[0,2] [ζ̃d,(ζc − 1)] =[0,2]

ζd = 2 [0,ζf ] =[0,1] [ζ̃f ,(ζd − 1)] =[0,1]

ζe = 2 [0,ζf ] =[0,1] [ζ̃f ,(ζe − 1)] =[0,1]
ζf = 1 [0] =[0] [(ζf − 1)] =[0]

Table 1: Values ζp, ζi and ζ̃l for every node on Fig. 1

Finally, using recursive relationship (1) the values ζp can be computed for a
DT or DAG by traversing the graph bottom-up, from leafs to roots, as shown
in Alg. 2.
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Algorithm 2 Sub-Graph Size (bottom-up traversal)

1: Initialize all sub-graph sizes to 0.
2: Find leafs and insert them into queue Q.
3: while Q 6= {∅} do
4: for node i ∈ Q do in parallel
5: Let Pi be a set of parents of i and queue C = {∅}
6: for node p ∈ Pi do in parallel
7: Mark p outgoing edge (p, i) as visited
8: Insert p into C if all outgoing edges are visited
9: end for

10: end for
11: for node p ∈ C do in parallel
12: Let Cp be an ordered set of children of node p
13: Compute a prefix-sum on Cp, obtaining ζp

(use lexicographic ordering of elements in Cp)
14: end for
15: Set queue Q = C for the next iteration
16: end while

4.1 Directed Trees, Sub-Graph Size and DFS

Notice that for a node p in a DT the pre-order and post-order is based on the
number of nodes visited before itself, which is related to the number of nodes
found to the left of the node throughout different depth levels. In this section,
we will use this observation to efficiently construct the pre-order and post-order
based on the sub-graph size ζp. We note that a related but not the same approach
has been used for finding Euler tours [7, 16, 26].

Definition 2. Let a path from root r to node p be an ordered set of nodes
Pr,p = {r, i1, ..., ik−1, p}, where k is the depth of the node p.

Theorem 1. Let ζi be the sub-graph size for node i in a DT and ζ̃l be the
corresponding prefixsum value. Then,

pre-order(p) = k + τp (3)

post-order(p) = (ζp − 1) + τp (4)

where path Pr,p = {r, i1, ..., ik−1, p} and

τp =
∑
l∈Pr,p

ζ̃l (5)
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Figure 2: Sample DT

Proof. We will refer to the graph on Fig. 2, where triangles denote sub-graphs
of arbitrary size, throughout the proof. Also, assume that lexicographic order is
such that the node within the same level are processed left-to-right.

First, notice that in lexicographic DFS the pre- and post-order is not affected
by the nodes to the right of the current node on the same level. Thus, t has no
influence on node s.

Second, notice that in lexicographic DFS the nodes to the left of the current
node on the same level, would have all been visited before the current node.
Thus, q and s with their corresponding sub-graphs would have been visited
before t.

Therefore, the number of nodes to the left of the node l on the same level
is given by ζ̃l, which was defined in (2) and can be computed using a prefixsum
operation. In our example,

ζ̃t = ζq + ζs

ζ̃p = ζh (6)

Third, notice that as we go down a level, all nodes on the previous level to
the left of our parent node must have been visited before the current node. For
instance, q and s must have been visited before node p.

Therefore, the number of nodes visited before node p at an arbitrary level is
given by

τp =
∑
l∈Pr,p

ζ̃l (7)

Finally, notice that to compute the pre-order of the node we must include the
nodes present directly on the path Pr,p because they would have been discov-
ered before the current node. If node p is at depth k, there are k such nodes.
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Therefore,
pre-order(p) = k + τp (8)

On the other hand, to compute post-order of the node we must include the
nodes under it because they would have been finished before the current node.
Therefore,

post-order(p) = (ζp − 1) + τp (9)

Also, notice that τp can be computed recursively using the following result.

Corollary 1. Let a path from root r to node p be an ordered set of nodes Pr,ik =
{r, i1, ..., ik−1, p}. Then,

τp = τik−1
+ ζ̃p (10)

Therefore, using recursive relationship (10) the pre- and post-order can be
computed for a DT by traversing the graph top-down, from roots to leafs, and
accumulating the sub-graph size as shown in Alg. 3.

Algorithm 3 Pre- and Post-Order (top-down traversal)

1: Initialize pre and post-order of every node to 0.
2: Find roots and insert them into queue Q.
3: while Q 6= {∅} do
4: for node p ∈ Q do in parallel
5: Let pre = pre-order(p)
6: Let post= post-order(p)
7: Let Cp be a set of children of p and queue P = {∅}
8: for node i ∈ Cp do in parallel

9: Set pre-order(i) = pre + ζ̃i
10: Set post-order(i)= post+ ζ̃i
11: Mark i incoming edge (p, i) as visited
12: Insert i into P if all incoming edges are visited
13: end for
14: Set pre-order(p) = pre + depth(p)
15: Set post-order(p)= post+ ζp
16: end for
17: Set queue Q = P for the next iteration
18: end while
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So far we have shown how to compute a DFS traversal of a DT using Alg.
2 and 3. Next we will show how we can transform a DAG into a valid DT
by selecting a single parent for every node, such that it corresponds to a DFS
traversal. For this purpose we will develop Path- and SSSP-based complemen-
tary variations of the algorithm.

4.2 Path-based DFS

In the Path-based DFS we obtain a DT from a DAG by keeping track of multiple
paths from root r to node p and selecting among them the DFS path according
to the following rules.

Definition 3. Let Pr,p = {r, i1, i2, ..., ik−1, p} and Qr,p = {r, j1, j2, ..., jl−1, p} be
two paths of potentially different length to node p. We say that path Pr,p has the
first lexicographically smallest node and denote it

Pr,p < Qr,p (11)

when during the pair-wise comparison of the elements in the two paths going
from left-to-right the path Pr,p has the lexicographically smallest element in the
first mismatch.

For example, in Fig. 1 the two paths to node f are

Pa,f = [a, b, e, f ] (12)

Qa,f = [a, c, d, f ] (13)

When we compare these paths pairwise from left-to-right, we notice that the
first mismatch between paths happens in the second pair [ bc ], where the lexico-
graphically smallest digit b is contained in (12) and therefore we say that

Pa,f < Qa,f (14)

Notice that the next pairwise mismatch [ ed ], where the lexicographically smallest
digit d is contained in (13), does not affect this decision.

Theorem 2. Let Pr,p = [r, i1, i2, ..., ik−1, p] and Qr,p = [r, j1, j2, ..., jl−1, p] be
two paths to node p. If Pr,p < Qr,p then Pr,p is the path taken by DFS.

Proof. Let us prove the theorem by contradiction. Suppose Pr,p has the first
lexicographically smallest node left-to-right i at depth k, but path Qr,p is the
one taken by DFS.
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Notice that since i is the first lexicographically smallest node left-to-right,
then all nodes preceding it in both paths must be the same. Also, notice that i
must have been explored before the node at depth k in path Qr,p because it is
lexicographically smallest. Finally, notice that DFS always explores the entire
sub-graph under a node before proceeding. Therefore, DFS would have visited
the entire sub-graph under i, including node p, before it was visited from path
Qr,p, which is a contradiction.

Corollary 2. Let S be the set of all paths from root r to node p. The DFS
traversal takes

Pr,p = min
Qr,p∈S

Qr,p (15)

Notice that the identification of the DFS path allows us to correctly select a
single valid parent for each node. Finally, the algorithm that traverses the graph
top-down, from roots to leafs, and transforms a DAG into a valid DT using path
comparisons is shown in Alg. 4.

Algorithm 4 Compute DFS-Parent by Comparing Path (top-down traversal)

1: Initialize path to {∅} and parent to −1 for every node.
2: Find roots and insert them into queue Q.
3: while Q 6= {∅} do
4: for node p ∈ Q do in parallel
5: Let Cp be a set of children of p and queue P = {∅}
6: for node i ∈ Cp do in parallel
7: Let the existing path be Qr,i

8: Let the new path be Pr,i

(Pr,i is a concatenation of path to p & node i)
9: if Pr,i ≤ Qr,i then

10: Set Qr,i = Pr,i

11: Set parent(i) = p
12: end if
13: Mark i incoming edge (p, i) as visited
14: Insert i into P if all incoming edges are visited
15: end for
16: end for
17: Set queue Q = P for the next iteration
18: end while
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In a naive implementation, to perform the comparison on line 9 in Alg. 4, we
can store the path nodes in a linear array, align the arrays on the left and compare
the elements pairwise left-to-right until a mismatch is found between the two
arrays. In practice, the path length is between O(log n) and O(n) and therefore,
in order to shorten it, we perform the following optimizations to minimize the
storage and comparison time requirements.

4.2.1 Path Static Pruning

Notice that when we look at two paths that reach the same node, there will be
a parent p with outgoing edges (p, i) and (p, j) to nodes i and j, respectively,
where one node will be preferred over the other due to its lexicographic ordering.
It is the comparison of i and j stored in different paths in such a situation that
allows us to distinguish between them. On the other hand, parent nodes p with
a single outgoing edge (p, i) will never be a decision point on which we prefer
one path over the other, because the path would have split before or after such
point, it simply can not split at it.

This reasoning allows us to conclude the following theorem, which implies
that we do not need to store nodes in the path whose parents have single outgoing
edge.

Theorem 3. If parent p has only a single outgoing edge (p, j) to node j then j
does not need to be stored in the path, in other words, it will not affect the path
comparison.

For example, using static pruning we may conclude that the two paths to
node f in Fig. 1 can be stored as

[a, b, f ] (16)

[a, c, f ] (17)

The effect of pruning the path is shown in Fig. 3, where we plot how much
shorter the longest path became after pruning was applied to graphs in Tab. 3.

4.2.2 Path Compression

Notice that we can lexicographically associate an edge number with each outgo-
ing edge from a node and store it instead of the node itself in the path. While
storing a node typically requires 32 (or 64) bits, the number of outgoing edges is
always less than or equal to the number of nodes, and in many cases significantly
smaller. If there are at most µ outgoing edges from a node, than we only need
log2 µ bits to store each element in the path.
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Figure 3: Reduction in longest path length with pruning

For example, µ = 2 in the graph on Fig. 1 and therefore we only need a
single bit to store the information for every node in the path. In fact, both
paths to node f fit into 4 bits, and can be represented as

[0, 0, 0, 0] (18)

[0, 1, 0, 0] (19)

Let us define the compression rate as the ratio (# of bits required to store
a node)/(# of bits required to store an edge). This compression rate is shown
for realistic graphs from Tab. 3 on Fig. 4, where we have assumed that the
numerator is 32 bits and therefore plot the ratio 32/ log2 µ.
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4.2.3 Path Data Structure

Notice that there are two extremes for storing the path. On one hand, we could
store the path elements in a linear array. In this case comparisons would be
easily performed in parallel, but the setting of a new path would require a copy
of data. Also, this approach is relatively expensive in terms of memory. On
the other hand, we could perform path comparisons by simply traversing the
parent pointers back to the root. In this case setting the path would be easy,
but the comparisons would be relatively expensive and would need to be done
sequentially.

We propose a special data structure for storing the path that combines the
two approaches and can be easily tailored for the hardware architecture at hand.
It resembles a linked list of blocks, where each block stores part of the path.

First, we let the user specify the size of the block of elements of the path to
be stored linearly, which for example could be 32 elements corresponding to a
warp (32 threads) on the GPU or the width of a SIMD unit on the CPU. We
reserve two elements of this blocks to indicate the tail size and the “parent”
relationship explained next.

Then, we chain these blocks to create the full path in the following fashion.
If the path fits into its fixed block than we store its size in the first reserved
element and we are done. If it does not fit, we store a tail of the path in its fixed
block and use the second reserved element to point to its “parent” block, where
the beginning of the path can be found. We apply these rules recursively.

1, -1    a

2, -1    a,  b

2, -1    a,  c

1,  c     d

1,  c     e

b

c

d

e

f

a

2,  c     d   f

parent block

node
path tail size

reserved path tail

Figure 5: Path data structure

For example, suppose the size of the block is 2, then the path data structure
for graph on Fig. 1 is shown in Fig. 5, where −1 indicates no “parent”.

Notice that by chaining the blocks in this way we reuse the path already
stored for earlier nodes therefore saving memory. Also, we allow the comparisons
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to be performed in parallel and enable early exit if the same “parent” is detected
for both paths. Moreover, the cost of setting a new path is proportional to its
tail size only.

Finally, the parallel DFS traversal of a DAG can be computed as shown in
Alg. 5, where the first phase often consumes more than 80% of the total time
as shown in the profiling of realistic examples from Tab. 3 on Fig. 6.

Algorithm 5 Parallel DFS (Path)

1: Let graph G = (V,E) and its adjacency matrix A
2: Run Alg. 4 . Phase 1: Transform DAG to DT
3: Run Alg. 2 . Phase 2: Compute sub-graph size
4: Run Alg. 3 . Phase 3: Compute pre- and post-order
5: Resulting in parent, pre- and post-order for every node.
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2nd	Phase

1st	Phase

Figure 6: Profiling of time consumed by three phases of Path-based DFS

4.3 SSSP-based DFS

In the Single-Source Shortest Path (SSSP)-based DFS we construct a DT from
a DAG implicitly. We do that by associating a positive weight with each edge in
the DAG, such that the shortest path selected during the solution of the SSSP
problem on this weighted DAG results precisely in the path selected by DFS.

Similarly to (2), let us define

ζ̄l = 1 +
∑

i<l,i∈Cp

ζi = 1 + ζ̃l (20)

where Cp is a ordered set of children of p. Notice that ζ̄l and ζp can be obtained
as a result of the prefixsum of ζi starting with 1 (rather than 0) for i ∈ Cp.
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Notice that ζp and ζ̄l can be computed for a DAG using Alg. 2, because it
propagates ζi to all parents by default. For example, the values ζp, ζi and ζ̄l for
every node in a graph on Fig. 1 are listed in Tab. 2.

ζp ζi for i ∈ Cp ζ̄l = prefixsum(ζi,1)

ζa = 7 [1,ζb,ζc]=[1,3,3] [ζ̄b,ζ̄c,ζa]=[1,4,7]
ζb = 3 [1,ζe] =[1,2] [ζ̄e,ζb] =[1,3]
ζc = 3 [1,ζd] =[1,2] [ζ̄d,ζc] =[1,3]
ζd = 2 [1,ζf ] =[1,1] [ζ̄f ,ζd] =[1,2]
ζe = 2 [1,ζf ] =[1,1] [ζ̄f ,ζe] =[1,2]
ζf = 1 [1] =[1] [ζf ] =[1]

Table 2: Values ζp, ζi and ζ̄l for every node on Fig. 1

Now, let us state the following key result that relates DFS traversal to the
SSSP problem.

Theorem 4. Let ζ̄l be the weight associated with every node l in a DAG. Suppose
that the shortest path between root r and node p based on these weights is Pr,p.
Then, Pr,p is also the path taken by DFS.

Proof. Let the weight ωPr,p of the path Pr,p be the sum of the weight of all
nodes in it

ωPr,p =
∑
l∈Pr,p

ζ̄l (21)

Notice that ζ̄l ≥ 1, therefore for non-empty path ωPr,p ≥ 1.
Further, notice that using (1) and (20), we may write

ζp = 1 +
∑
i∈Cp

ζi

= 1 +
∑

i<l,i∈Cp

ζi + ζl +
∑

i>l,i∈Cp

ζi

= ζ̄l + ζl +
∑

i>l,i∈Cp

ζi (22)

for some node l among the children of p.
Let there be two distinct path Pr,k = {r, ..., k} and Qr,k = {r, ..., k} from root

r to node k. Let [ ij ] be the first mismatch in left-to-right pairwise comparison of
these paths, with i ∈ Pr,k being lexicographically smaller than j ∈ Qr,k. Also,
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let their parent p belong to both paths Pr,k and Qr,k. Notice that node p can
be the root r, while i and j can be the node k, as shown in Fig 7.

Notice that based on the above assumptions paths are the same from root
r to node p, therefore we only need to consider the difference in path weight
starting at node p.

Then, notice that the weight of path Qp,k is given by

ωQp,k
=

∑
l∈Qp,k

ζ̄l

≥ ζ̄j ≥ ζ̄i + ζi (23)

≥ ζ̄i +
∑
z∈Pi,k

ζ̄z + ζk (24)

=
∑

z∈Pp,k

ζ̄z + ζk (25)

>
∑

z∈Pp,k

ζ̄z = ωPp,k
(26)

where we have used (20) to obtain (23), applied (22) recursively, while dropping
the third term, to obtain (24), regrouped the terms to obtain (25) and took
advantage of the fact that ζk ≥ 1 to obtain (26).

Thus, we have proven that the shortest path computed using weights ζ̄l
indeed coincides with the lexicographically smallest DFS path.

4.3.1 SSSP Algorithms

There exist a variety of algorithms for computing SSSP [10, 11]. We propose a
specific approach for a DAG that traverses the graph top-down, from roots to
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leafs, in Alg. 6. In our experiments, this custom approach often outperforms
the parallel SSSP implemented in GUNROCK [11, 29], as shown in Fig. 8.

We point out that using the custom implementation is particularly advanta-
geous because we have access to the queue of nodes that belong to each level of
the graph from the previous phase of the algorithm. This additional information
allows for a significant speedup in the custom implementation.

Algorithm 6 Compute DFS-Parent by Tracking SSSP (top-down traversal)

1: Initialize cost to ∞ and parent to −1 for every node.
2: Find roots, set cost to 0 and insert them into queue Q.
3: while Q 6= {∅} do
4: for node p ∈ Q do in parallel
5: Let Cp be a set of children of p and queue P = {∅}
6: for node i ∈ Cp do in parallel
7: Let current cost for node i be stored in cost(i)
8: Let new cost α = cost(p) + ζ̄i
9: if α < cost(i) then

10: Set cost(i) = α
11: Set parent(i) = p
12: end if
13: Mark i incoming edge (p, i) as visited
14: Insert i into P if all incoming edges are visited
15: end for
16: end for
17: Set queue Q = P for the next iteration
18: end while
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Figure 8: Speedup of custom vs. GUNROCK SSSP implementation
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4.3.2 Pre- and Post-order

Once we have resolved the parent relationship, we could simply apply Alg. 2
and 3 as done in phases 2 and 3 of Path-based approach to find the pre- and
post-order traversal of every node. However, in this section we will show that it
is possible to completely avoid those traversals when pre-order only is needed.

Corollary 3. The ordering of nodes based on their path weight ωPr,p or pre-order
time is the same.

Proof. First, notice that we can not directly use Thm. 1 to compute pre-order
and post-order of the nodes because the weights ζ̄l = 1 + ζ̃l have been computed
for a DAG and not a DT in this section.

However, notice that computed path weight ωPr,p imposes an ordering on
the nodes. For instance, nodes in the same path must come one after another
according to their path weight. Also, nodes with the same parent are ordered
lexicographically as shown in Thm. 4. If we apply this arguments recursively,
we may conclude that the ordering based on path weight ωPr,p coincides with
pre-order ordering.

On the other hand, notice that post-order can be expressed in terms of pre-
order of a node as shown in the next Corollary. Therefore, if depth k is known
for every node then we can completely avoid calling both Alg. 2 and 3 for
computation of the pre- and post-order traversal. If the depth is not available
then we can call Alg. 2 to obtain and use it for computing the post-order only.

Corollary 4. For a DT the post-order of node p can be expressed through its
pre-order

post-order(p) = pre-order(p)− k + (ζp − 1) (27)

where k is the depth and ζp is the sub-graph size.

Proof. Follows directly from Thm. 1.

Finally, the SSSP-based parallel DFS traversal of a DAG can be computed
as shown in Alg. 7. Notice that for graphs listed in Tab. 3 its first and second
phase often consume more than 80% of the total time as shown in Fig. 9.

Also, notice that the time consumed by the first and last phases using Alg.
2 for DAG and DT traversals, respectively, is starkly different. This discrepancy
is due mainly to two factors: (i) in the former case the graph has many more
edges, and (ii) in the latter case a node may be scheduled into the queue earlier
because its dependencies, have been already satisfied. It is important to keep
this distinction in mind when analysing the algorithm.
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Algorithm 7 Parallel DFS (SSSP)

1: Let graph G = (V,E) and its adjacency matrix A
2: Run Alg. 2 . Phase 1: Compute DAG Edge Weights
3: Run Alg. 6 . Phase 2: Transform DAG to DT
4: Sort nodes based on SSSP length . Phase 3a: Pre-order
5: if post-order needed then
6: Run Alg. 2 and use (27) . Phase 3b:Post-order
7: end if
8: Resulting in parent, pre- and post-order for every node.
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Figure 9: Profiling of time consumed by three phases of SSSP-based DFS

4.3.3 Weight Overflow

A potential disadvantage of the SSSP-based algorithm is that the weights ζ̄l
computed by the first phase of the algorithm might overflow. Notice that in
Alg. 2 for DAGs at every depth of the graph we are accumulating ζ̄l, rather
than the sub-graph size ςl, which double counts the node with multiple parents.
It is possible to come up with adversarial patterns for the algorithm, such that
it will double the weight at every depth. Therefore, if the weight is stored in
64 bit integer then overflow could happen at depth 64. We have found such
patterns to be unlikely in realistic scenarios, but there are situations where we
still need a significant number of bits to represent the weights. For example, in
Tab. 3 the matrix delaunay n21 requires 1024 bits and matrix auto requires
512 to store their weights. In practice, it is possible to handle such overflow by
using arbitrary precision arithmetic, but this was beyond the scope of this study
and we have left it as a future work.
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4.4 Complexity Analysis

Let n and m be the number of nodes and edges in a DAG. Also, let us assume
a standard theoretical PRAM (CREW) model for the formal analysis [16].

Definition 4. Let ki be the number of elements inserted into the queue at iter-
ation i and k = maxi ki in Alg. 2-4 and 6.

Definition 5. Let di denote the degree of node i and d = maxi di denote the
maximum degree in a DAG.

Definition 6. Let δi denote the minimum depth1 of node i and δ = maxi δi
denote the diameter in a DAG.

Definition 7. Let ηi denote the maximum depth2 of node i and η = maxi ηi
denote the length of the longest path in a DAG.

Lemma 2. The parallel prefixsum of n numbers, can be computed in O(log n)
steps. Also, the algorithm performs O(n) work.

Proof. Please refer to [8].

Lemma 3. The parallel (comparison-based) sort of n numbers, can be computed
in O(log n) steps. The algorithm performs O(n log n) work.

Proof. Please refer to [9].

Lemma 4. Let n = min(n1, n2) then identifying the first left-to-right pair of
digits that is different in two sequences of n1 and n2 numbers can be performed
in O(log n) steps. Also, the algorithm performs O(n) work.

Proof. Let the sequences be aligned on the leftmost digit and let processor i be
assigned the i-th pair of numbers. Let it compute either index i if its pair of
digits is different or∞ otherwise, which can be done in O(1). Then, we can find
a minimum of the results using a binary tree-like reduction implemented using
a prefixsum, see Lemma 2.

Lemma 5. The queue can be implemented such that parallel insertion and ex-
traction of n numbers, can be performed in O(log n) and O(1) steps, respectively.
Also, the algorithm performs O(n) work.

1The length of the shortest path from the root to a node.
2The length of the longest path from the root to a node.
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Proof. Suppose that we store the queue data in linear array with the start and
end indices. Also, suppose that at each iteration we extract all data elements
between the start and end indices and we insert new data elements immediately
after the end index. Then, we adjust the start and end indices to point to the
newly inserted data for the next iteration and repeat the process.

In this scenario we can extract all data elements in parallel in O(1) steps. In
order to insert the elements in parallel without write conflicts, we may choose
to assign a unique write index to each processor to indicate a particular location
in the array where the element can be written safely. Notice that such a write
index can be computed using a prefixsum, see Lemma 2.

Notice that for DT η = δ, while for a DAG η ≥ δ. Also, notice that k, d, δ, η ≤
n for a DAG. Let us now state the complexity of each phase of parallel DFS.

Theorem 5. Alg. 2 takes O(η(log d+log k)) steps and performs O(m+n) total
work to traverse a DAG. The number of processors t ≤ m + n actively doing
work varies at each step of the algorithm.

Proof. The Alg. 2 performs η while loop iterations because we enqueue a node
once all its edges are visited.

In each iteration, notice that we can access ζp,i on line 7 in O(1). Also, the
parallel prefixsum performed on line 14 takes no more than O(log d), see Lemma
2. We might need to perform multiple of these prefixsums at once, but we will
never be using more than m edges. Therefore, we need at most O(m) processors
for it. Also, at each iteration we might need to insert k ≤ n elements into a
queue on line 9, which can be done in O(log k), see Lemma 5.

Notice that work performed for each iteration is O(di+ki). Since m =
∑

i di
and n =

∑
i ki, the total work performed is O(m+ n).

Theorem 6. Alg. 3 takes O(η log k) steps and performs O(n) total work to
traverse a DAG. The number of processors t ≤ n actively doing work varies at
each step of the algorithm.

Proof. The Alg. 3 performs O(η) while loop iterations, with each iteration
requiring O(1) operations. However, at each iteration we might need to insert
k ≤ n elements into a queue on line 12, which can be done in O(log k), see
Lemma 5. The work performed for each iteration is O(ki). Since n =

∑
i ki, the

total work performed is O(n).

Theorem 7. Alg. 4 takes O(η(log η + log k)) steps and performs O(ηm + n)
total work to traverse a DAG. The number of processors t ≤ ηd + n actively
doing work varies at each step of the algorithm.

21



Proof. The Alg. 4 performs O(η) while loop iterations.
Notice that per iteration the most time consuming part of the algorithm

involves path comparison Pr,i ≤ Qr,i on line 9. It can be performed in O(log η),
see Lemma 4. We might need to perform multiple path comparisons at once,
therefore we might need O(ηd) processors. The work performed for each path
(sequence) comparison is O(η). There are no more than m =

∑
i di sequences

to compare, therefore we perform O(ηm) total work for it.
The path exchange Qr,i = Pr,i on line 10 can be performed in O(1), be-

cause we only replace the (fixed size) path tail, using previously discussed data
structure, see Fig. 5.

Also, at each iteration we might need to insert k ≤ n elements into a queue
on line 14, which can be done in O(log k), see Lemma 5. The work performed
for this operation at each iteration is O(ki). Since n =

∑
i ki, the total work

performed for this operation is O(n).

Theorem 8. Alg. 6 takes O(η log k) steps and performs O(n) total work to
traverse a DAG. The number of processors t ≤ n actively doing work varies at
each step of the algorithm.

Proof. Follows proof of Thm. 6.

The complexity of sequential DFS is O(m+n). The complexity of the novel
parallel DFS variants is stated below.

Corollary 5. The Path-based DFS in Alg. 5 takes O(η(log d + log k + log η))
steps and performs O(m+ n+ ηm) total work to traverse a DAG. The number
of processors t ≤ m + n + ηd actively doing work varies at each step of the
algorithm.

Notice that in practice ηm → m because the data structure for storing the
path detects the same “parent” block during comparisons, which often implicitly
eliminates additional work, see Fig. 5. Also, recall that d, k, η ≤ n in a DAG
and therefore the Path-based algorithm takes no more than O(η log n) steps and
performs O(m+ n) total work.

Corollary 6. The SSSP-based DFS in Alg. 7 takes O(η(log d + log k)) steps
and performs O(m+ n+ n log n) total work to traverse a DAG. The number of
processors t ≤ m+ n actively doing work varies at each step of the algorithm.

Notice that the work complexity of parallel sort can be improved by using
non-comparison based algorithms, such as radix sort, in which case n log n→ n.
Since d, k ≤ n in a DAG, we may conclude that SSSP-based algorithm takes no
more than O(η log n) steps and performs O(m+ n) total work.
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Moreover, real-world graphs are often sparse with the number of edges m =
γn where γ is some small constant. Consequently, in practice the total work
performed for both Path- and SSSP-based parallel DFS is often O(n).

Finally, notice that while the parallel complexity of BFS is related to diam-
eter δ [19], we have shown that the parallel complexity of lexicographic DFS is
related to the length of the longest path η in a DAG.

5 Experiments

We study the performance of the DFS algorithm on a variety of graphs from
the UFSMC and DIMACS collections [12] shown in Tab. 3. These graphs are
selected from different applications and have very different node degree, longest
path length and other characteristics, which allows us to make a more substantive
analysis of the performance. When necessary we create DAGs based on these
general graphs by dropping the back edges, in other words, only considering the
lower triangular part of the adjacency matrix.

# Graph n m Application

1. coPapersDBLP 540487 15251812 Citations

2. auto 448696 3350678 Numeric. Sim.
3. hugebubbles-000 18318144 30144175 Numeric. Sim.

4. delaunay n24 16777217 52556391 Random Tri.

5. il2010 451555 1166978 Census Data
6. fl2010 484482 1270757 Census Data
7. ca2010 710146 1880571 Census Data
8. tx2010 914232 2403504 Census Data

9. great-britain osm 7733823 8523976 Road Network
10. germany osm 11548846 12793527 Road Network
11. road central 14081817 21414269 Road Network
12. road usa 23947348 35246600 Road Network

Table 3: Sample DIMACS graphs/adjacency matrices

The experiments are performed on the workstation with Intel Core i7-3930K
@3.2GHz CPU and Nvidia Pascal TitanX GPU with Ubuntu 14.04 LTS OS and
CUDA Toolkit 8.0. We use standard sequential implementation of the DFS [10],
written in C programming language and compiled with gcc compiler and -O3
optimization flags. We compare it against the Path- and SSSP-based parallel
DFS implementations written in CUDA and compiled with nvcc compiler with
-O3 optimization flags.
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The comparison of sequential and parallel DFS is shown on Fig. 10. The
performance of the algorithm depends highly on the sparsity pattern of the
adjacency matrix, which reflects the connectivity of the DAG. On one hand, for
graphs with high node degree, such as social network coPapersDBLP, the Path-
based algorithm does not perform well because the length of the longest path η
is very large. On the other hand, for graphs with low node degree, such as road
network road central, the algorithm performs exceedingly well. In this case
the path is often short and can be compressed further using optimizations.
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Figure 10: Speedup of Parallel Path- and SSSP-based vs. Sequential DFS

DFS Path-based Parallel DFS

# Seq. Phase 1 Phase 2 Phase 3 Total

1. 0.063 5.112 0.0102 0.015 5.138
2. 0.033 0.045 0.0029 0.001 0.050
3. 0.748 0.386 0.0090 0.007 0.402
4. 0.781 0.576 0.0135 0.081 0.671
5. 0.016 0.011 0.0008 0.001 0.013
6. 0.018 0.013 0.0009 0.001 0.014
7. 0.029 0.019 0.0009 0.001 0.020
8. 0.033 0.023 0.0009 0.001 0.025
9. 0.260 0.179 0.0121 0.008 0.199
10. 0.446 0.260 0.0113 0.014 0.286
11. 1.045 0.267 0.0041 0.003 0.275
12. 0.791 0.418 0.0066 0.006 0.431

Table 4: Time (s) for seq. and Path-based parallel DFS
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DFS SSSP-based Parallel DFS

# Seq. Phase 1 Phase 2 Phase 3a Phase 3b Total

5. 0.016 0.004 0.001 0.000 0.001 0.006
6. 0.018 0.005 0.002 0.000 0.001 0.007
7. 0.029 0.005 0.003 0.001 0.001 0.009
8. 0.033 0.006 0.004 0.001 0.001 0.011
9. 0.260 0.098 0.034 0.005 0.018 0.154
10. 0.446 0.115 0.053 0.007 0.028 0.203
11 1.045 0.061 0.058 0.010 0.030 0.158
12. 0.791 0.066 0.047 0.015 0.032 0.160

Table 5: Time (s) for seq. and SSSP-based parallel DFS

Also, notice that when there is no weight overflow the SSSP-based DFS
attains higher performance than Path-based DFS. In a way it exchanges the
path comparisons for weight additions, which are more computationally efficient.
However, in practice the algorithms are complementary. The former works best
when there is limited nesting of the sub-graphs (so that the computation of the
weight does not overflow and require special handling), while the latter works
best when the path to every node is relatively short (so that path comparison
can be done quickly).

Finally, the detailed results are stated in Tab. 4 and 5, where results for
which 32 bit integer weights overflowed are not present.

6 Conclusion

In this paper we have developed a work-efficient parallel DFS algorithm that
finds parent, pre- and post-order relationship for every node in a DAG. The
algorithm performs up to three BFS-like traversals of the DAG and has Path-
and SSSP-based complementary variations. We have proven that both variations
of the algorithm obtain correct results and performed their runtime and work
analysis.

The performance of the parallel algorithm depends highly on the connectiv-
ity of the DAG, in other words, the sparsity pattern of the adjacency matrix.
In our experiments its parallel implementation performed particularly well on
DAGs with low node degree, such as census and road networks, where it has
outperformed by up to 6× the sequential DFS.
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