
Printing:
This poster is 48” wide
by 36” high. It’s
designed to be printed
on a large-format
printer.

Customizing the
Content:
The placeholders in
this poster are
formatted for you.
Type in the
placeholders to add
text, or click an icon to
add a table, chart,
SmartArt graphic,
picture or multimedia
file.

To add or remove
bullet points from text,
just click the Bullets
button on the Home
tab.

If you need more
placeholders for titles,
content or body text,
just make a copy of
what you need and
drag it into place.
PowerPoint’s Smart
Guides will help you
align it with everything
else.

Want to use your own
pictures instead of
ours? No problem! Just
right-click a picture and
choose Change Picture.
Maintain the
proportion of pictures
as you resize by
dragging a corner.

[1] UF Sparse Matrix Collection. 2015.
https://www.cise.ufl.edu/research/sparse/matrices/list_by_dimensi
on.html
[2] Maxim Naumov, Alysson Vrielink, and Michael Garland. 2017.
Parallel Depth-First Search for Directed Acyclic Graphs. NVIDIA
Technical
[3] Maxim Naumov, Alysson Vrielink, and Michael Garland. 2017.
Parallel Depth-First Search for Directed Acyclic Graphs. In
proceedings of the Seventh Workshop on Irregular Applications:
Architectures and Algorithms (IA3 ’17). NVIDIA, Santa Clara, CA,
Article 4.
[4] R. E. Tarjan. 1972. Depth-first Search and Linear Graph
Algorithms. (SIAM J. Comput. 1). Article 7, 146-160 pages

Parallel Depth-First Search for Directed
Acyclic Graphs

Divyanshu Talwar (2015028), Viraj Parimi (2015068)
Advisor: Dr. Ojaswa Sharma

Introduction
• Let a graph G = (V, E), be defined by its vertex V = {1, 2,

..,n} and edge E = {(i1, j1), (i2, j2), ..,(im, jm)} sets, with
|V | = n and |E| = m. The sequential lexicographic
Depth-First Search (DFS) algorithm was proposed in [4].

• The DFS traversal problem requires us to compute :
parent information , pre-order (start time) and
post-order (end time) for every node in G.

• The sequential DFS algorithm[4], in itself, is not at all
parallelizable.

• In this work, we aim to implement parallel-DFS
algorithm proposed in [2] [3] and report the it’s
speed-up. (using [1] dataset).

Parallel DFS Algorithm
The algorithm is subdivided into 3 components : DAG to
DT conversion, subgraph size calculation, and pre and post
order calculation; where in each execution of component
aids in solving the DFS problem. The GPU kernels
implemented in the CUDA program are as follows :

1. dag_to_dt - It converts a given DAG to a DT. Since, for
computing the parent information one needs to have
only one parent per node. This algorithm computes the
parent part of the DFS problem.

2. subgraph_size - The algorithms traverses the graph in
a top-down fashion computing the prefix sum values of
the zeta values of the nodes, which are used in
calculating the pre and post order of the nodes..

3. pre_post_order - This takes the zeta prefix sum values
as input to compute the pre (discovery time) and post
(finish time) order of the nodes.

The final algorithm, solves the DFS problem by calculating
it’s three subproblems. This parallel DFS algorithm is
proven to be work-efficient.

Results

References
Optimizations

1. Path pruning.
2. CUDA streams for asynchronous memory transfer.
3. Inline functions for faster execution.
4. Use of pinned memory.
5. Use of arithmetic shift operators.
6. Structure of Arrays vs Array of Structures for storing the

dataset in CSC format.
7. Extensively used __constant_memory (where-ever

possible).

(a)

(b)

(c)

(d)

Figure 1: Task Dependency Graphs for (a) Subgraph size calculation,, (b) pre-post
order, (c) DAG to DT conversion, and (d) final algorithms.

