Parallel Depth-First Search on a DAG

Divyanshu Talwar¹ Viraj Parimi ²

¹2015028

²2015068

Course Project - GPU Computing, Winter 2018

Outline

Problem Definition

2 Computational Complexity

3 Problem Subdivisions

- Pre-Order and Post-Order Time
- DAG to Directed Tree
- 4 Analysis of the Problem
- 5 Performance Comparision Plan

Deliverables

Outline

Problem Definition

- 2 Computational Complexity
- 3 Problem Subdivisions
- 4 Analysis of the Problem
- 5 Performance Comparision Plan
- 6 Deliverables

• Let a graph G = (V, E), be defined by its vertex $V = \{1, 2, ..., n\}$ and edges $E = \{(i_1, j_1), (i_2, j_2), ..., (i_m, j_m)\}$ sets, with |V| = n and |E| = m.

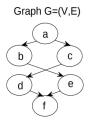
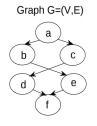


Figure: 1

- Let a graph G = (V, E), be defined by its vertex $V = \{1, 2, ..., n\}$ and edges $E = \{(i_1, j_1), (i_2, j_2), ..., (i_m, j_m)\}$ sets, with |V| = n and |E| = m.
- Lexicographic Depth-First Search (DFS) traversal problem requires computation of parent information , pre-order (start time) and post-order (end time) for every node in *G*.



node = $\{a, b, c, d, e, f\}$ pre-order = $\{0, 1, 4, 5, 2, 3\}$ post-order = $\{5, 2, 4, 3, 1, 0\}$ parent = $\{\emptyset, a, a, c, b, e\}$

Figure: 2

Figure: 1

- 2 Computational Complexity
 - 3 Problem Subdivisions
 - 4 Analysis of the Problem
- 5 Performance Comparision Plan
- 6 Deliverables

• DFS traversal - in a general sense - is *P*-complete where class *P*, typically consists of all the "tractable" problems for a sequential computer.

- DFS traversal in a general sense is *P*-complete where class *P*, typically consists of all the "tractable" problems for a sequential computer.
- DFS for DAGs ∈ NC class, where the class NC (for "Nick's Class") is the set of decision problems decidable in poly-logarithmic (O(log^αn) for some constant α) time on a parallel computer with a polynomial number of processors.

2 Computational Complexity

Problem Subdivisions

- Pre-Order and Post-Order Time
- DAG to Directed Tree

4 Analysis of the Problem

5 Performance Comparision Plan

6 Deliverables

2 Computational Complexity

Problem Subdivisions

- Pre-Order and Post-Order Time
- DAG to Directed Tree
- 4 Analysis of the Problem
- 5 Performance Comparision Plan

6 Deliverables

Definition 1

Let ς_p and ζ_p denote the number of nodes reachable under and including node p, where if a sub-graph is reachable from k multiple parents then its nodes are counted once and k times, respectively.

For example, in Fig. 1 we have ζ_a = 7 and ζ_a = 6, because we double counted the node f in the former case.

Definition 1

Let ς_p and ζ_p denote the number of nodes reachable under and including node p, where if a sub-graph is reachable from k multiple parents then its nodes are counted once and k times, respectively.

For example, in Fig. 1 we have ζ_a = 7 and ζ_a = 6, because we double counted the node f in the former case.

• Also, notice the recursive relationship :

$$\zeta_{p} = 1 + \sum_{i \in C_{p}} \zeta_{i}$$

where C_p is ordered set of children of p.

Pre-Order and Post-Order Time

Definition 2

Let $\tilde{\zeta}_I$ where I is an index of exclusive prefix sum list, of the list ζ_i , where i $\in C_p$.

$$\tilde{\zeta}_I = \sum_{i < I, i \in C_p} \zeta_i$$

• For example, in Fig. 1 we have $\tilde{\zeta}_b = 0$ and $\tilde{\zeta}_c = 3$.

Definition 3

Let us define a directed tree (DT) to be a DAG, where every node has a single parent.

Pre-Order and Post-Order Time

Algorithm Sub-Graph Size (bottom-up traversal)
1: Initialize all sub-graph sizes to 0.
2: Find leafs and insert them into queue Q .
3: while $Q \neq \{\emptyset\}$ do
4: for node $i \in Q$ do in parallel
5: Let P_i be a set of parents of i and queue $C = \{\emptyset\}$
6: for node $p \in P_i$ do in parallel
7: Mark p outgoing edge (p, i) as visited
8: Insert p into C if all outgoing edges are visited
9: end for
10: end for
11: for node $p \in C$ do in parallel
12: Let C_p be an ordered set of children of node p
13: Compute a prefix-sum on C_p , obtaining ζ_p
(use lexicographic ordering of elements in C_p)
14: end for
15: Set queue $Q = C$ for the next iteration
16: end while

Problem Subdivision

Pre-Order and Post-Order Time

• Notice that for DT, the sub-graph size at node $p = \zeta_p$.

• Notice that for DT, the sub-graph size at node $p = \zeta_p$.

Definition 4

Let a path from root r to node p be an ordered set of nodes $\mathfrak{P}_{r,p} = \{r, i_1, i_2, ..., i_{k-1}, p\}$, where k is the depth of the node p.

• Notice that for DT, the sub-graph size at node $p = \zeta_p$.

Definition 4

Let a path from root r to node p be an ordered set of nodes $\mathfrak{P}_{r,p} = \{r, i_1, i_2, ..., i_{k-1}, p\}$, where k is the depth of the node p.

Theorem

Let ζ_i be the sub-graph size for node *i* in a DT and $\tilde{\zeta}_i$ be the corresponding prefix-sum value. Then,

$$preorder(p) = k + \tau_p \tag{1}$$

postorder
$$(p)=(\zeta_{p}-1)+ au_{p}$$

where $\mathfrak{P}_{r,p} = \{r, i_1, i_2, ..., i_{k-1}, p\}$ and, $\tau_p = \sum_{l \in \mathfrak{P}_{r,p}} \zeta_l$

(2)

Pre-Order and Post-Order Time

Algorithm Pre- and Post-Order (top-down traversal)
1: Initialize pre and post-order of every node to 0.
2: Find roots and insert them into queue Q.
3: while $Q \neq \{\emptyset\}$ do
4: for node $p \in Q$ do in parallel
5: Let $pre = pre-order(p)$
6: Let $post = post - order(p)$
7: Let C_p be a set of children of p and queue $P = \{\emptyset\}$
8: for node $i \in C_p$ do in parallel
9: Set pre-order(i) = pre + $\tilde{\zeta}_i$
10: Set post-order(i) = post+ $\tilde{\zeta}_i$
11: Mark i incoming edge (p, i) as visited
 Insert i into P if all incoming edges are visited
13: end for
14: Set $pre-order(p) = pre + depth(p)$
15: Set post-order(p)= post+ ζ_p
16: end for
17: Set queue $Q = P$ for the next iteration
18: end while

2 Computational Complexity

Problem Subdivisions

- Pre-Order and Post-Order Time
- DAG to Directed Tree

4 Analysis of the Problem

5 Performance Comparision Plan

6 Deliverables

Problem Subdivision

DAG to Directed Tree

Definition 5

Let $\mathfrak{P}_{r,p} = \{r, i_1, i_2, ..., i_{k-1}, p\}$ and $\mathfrak{Q}_{r,p} = \{r, j_1, j_2, ..., j_{k-1}, p\}$ be two paths of potentially different length to node p. We say that path \mathfrak{P} has the first lexicographically smallest node and denote it by

$$\mathfrak{P}_{\mathfrak{r},\mathfrak{p}} < \mathfrak{Q}_{\mathfrak{r},\mathfrak{p}}$$
 (3)

when during the pair-wise comparison of the elements in the two paths going from left-to-right the path $\mathfrak{P}_{\mathfrak{r},\mathfrak{p}}$ has the lexicographically smallest element in the first mismatch.

Problem Subdivision

DAG to Directed Tree

Definition 5

Let $\mathfrak{P}_{r,p} = \{r, i_1, i_2, ..., i_{k-1}, p\}$ and $\mathfrak{Q}_{r,p} = \{r, j_1, j_2, ..., j_{k-1}, p\}$ be two paths of potentially different length to node p. We say that path \mathfrak{P} has the first lexicographically smallest node and denote it by

$$\mathfrak{P}_{\mathfrak{r},\mathfrak{p}} < \mathfrak{Q}_{\mathfrak{r},\mathfrak{p}}$$
 (3)

when during the pair-wise comparison of the elements in the two paths going from left-to-right the path $\mathfrak{P}_{\mathfrak{r},\mathfrak{p}}$ has the lexicographically smallest element in the first mismatch.

For example, in Fig. 1 the two paths to node f are

$$\mathfrak{P}_{\mathfrak{r},\mathfrak{p}} = [a, b, e, f]$$

 $\mathfrak{Q}_{\mathfrak{r},\mathfrak{p}} = [a, c, d, f]$

Let $\mathfrak{P}_{r,p} = \{r, i_1, i_2, ..., i_{k-1}, p\}$ and $\mathfrak{Q}_{r,p} = \{r, j_1, j_2, ..., j_{k-1}, p\}$ be two paths of potentially different length to node p. If $\mathfrak{P}_{r,p} < \mathfrak{Q}_{r,p}$ then $\mathfrak{P}_{\mathfrak{r},\mathfrak{p}}$ is the path taken by DFS traversal.

Let $\mathfrak{P}_{r,p} = \{r, i_1, i_2, ..., i_{k-1}, p\}$ and $\mathfrak{Q}_{r,p} = \{r, j_1, j_2, ..., j_{k-1}, p\}$ be two paths of potentially different length to node p. If $\mathfrak{P}_{r,p} < \mathfrak{Q}_{r,p}$ then $\mathfrak{P}_{\mathfrak{r},\mathfrak{p}}$ is the path taken by DFS traversal.

Corollary

Let \mathfrak{G} be the set of all paths from root r to node p. The DFS traversal takes

$$\mathfrak{P}_{\mathfrak{r},\mathfrak{p}} = \min_{\mathfrak{Q}_{r,p} \in \mathfrak{G}} \mathfrak{Q}_{r,p} \tag{4}$$

Algorithm (Compute DFS-Parent by Comparing Path (top-down traversal)
1: Initialize pa	th to $\{\emptyset\}$ and parent to -1 for every node.
2: Find roots	and insert them into queue Q .
3: while $Q \neq$	{Ø} do
4: for node	$p \in Q$ do in parallel
5: Let C_p	be a set of children of p and queue $P = \{\emptyset\}$
6: for no	de $i \in C_p$ do in parallel
7: Let	the existing path be $\mathfrak{Q}_{r,i}$
8: Let	the new path be $\mathfrak{P}_{r,i}$
(\mathfrak{P}_r)	$_i$ is a concatenation of path to $p \& \text{ node } i$)
9: if ¥	$\mathfrak{D}_{r,i} \leq \mathfrak{Q}_{r,i} ext{ then }$
10: Se	et $\mathfrak{Q}_{r,i} = \mathfrak{P}_{r,i}$
11: S	et parent(i) = p
12: end	if
13: Mar	k <i>i</i> incoming edge (p, i) as visited
14: Inse	rt i into P if all incoming edges are visited
15: end fo	r
16: end for	
17: Set queue	Q = P for the next iteration
18: end while	

Outline

Problem Definition

- 2 Computational Complexity
- 3 Problem Subdivisions
- 4 Analysis of the Problem
 - 5 Performance Comparision Plan
 - 6 Deliverables

Analysis of the Problem

The aforementioned parallel algorithm to compute the DFS traversal of a DAG is work-efficient.

- Parallel prefix-sum can be computed in O(logn), by doing O(n) work.
- The parallel sorting can be computed in *O*(*logn*), by doing *O*(*nlogn*) work.

Analysis of the Problem

The aforementioned parallel algorithm to compute the DFS traversal of a DAG is work-efficient.

- Parallel prefix-sum can be computed in O(logn), by doing O(n) work.
- The parallel sorting can be computed in *O*(*logn*), by doing *O*(*nlogn*) work.

Lemma 1

Let $n = min(n_1, n_2)$, then identifying the first left-to-right pair of digits in two sequences of n_1 and n_2 numbers can be performed in O(logn) steps, by doing O(n) work.

Analysis of the Problem

The aforementioned parallel algorithm to compute the DFS traversal of a DAG is work-efficient.

- Parallel prefix-sum can be computed in O(logn), by doing O(n) work.
- The parallel sorting can be computed in *O*(*logn*), by doing *O*(*nlogn*) work.

Lemma 1

Let $n = min(n_1, n_2)$, then identifying the first left-to-right pair of digits in two sequences of n_1 and n_2 numbers can be performed in O(logn) steps, by doing O(n) work.

Lemma 2

The queue can be implemented such that parallel insertion and extraction of n numbers, can be performed in O(logn) and O(1) steps, respectively. Also, the algorithm performs O(n) work.

Alg.2 takes $O(\eta(\log d + \log k))$ steps and performs O(m + n) total work to traverse a DAG. The number of processors $t \le m + n$ actively doing work varies at each step of the algorithm. Here η is the length of longest path in DAG, d is maximum degree in DAG and k is the maximum number of elements inserted into a queue.

Alg.2 takes $O(\eta(\log d + \log k))$ steps and performs O(m + n) total work to traverse a DAG. The number of processors $t \le m + n$ actively doing work varies at each step of the algorithm. Here η is the length of longest path in DAG, d is maximum degree in DAG and k is the maximum number of elements inserted into a queue.

Theorem

Alg.3 takes $O(\eta \log k)$ steps and performs O(n) total work to traverse a DAG. The number of processors $t \leq n$ actively doing work varies at each step of the algorithm. Here η is the length of longest path in DAG and k is the maximum number of elements inserted into a queue.

Alg.4 takes $O(\eta(\log \eta + \log k))$ steps and performs $O(\eta m + n)$ total work to traverse a DAG. The number of processors $t \le \eta d + n$ actively doing work varies at each step of the algorithm. Here η is the length of longest path in DAG, d is maximum degree in DAG and k is the maximum number of elements inserted into a queue.

Alg.4 takes $O(\eta(\log \eta + \log k))$ steps and performs $O(\eta m + n)$ total work to traverse a DAG. The number of processors $t \le \eta d + n$ actively doing work varies at each step of the algorithm. Here η is the length of longest path in DAG, d is maximum degree in DAG and k is the maximum number of elements inserted into a queue.

Corollary

Path based DFS takes $O(\eta(\log d + \log k + \log \eta))$ steps and performs $O(m + n + \eta m)$ total work to traverse a DAG. The number of processors $t \le m + n + \eta d$ actively doing work varies at each step of the algorithm. Here η is the length of longest path in DAG and k is the maximum number of elements inserted into a queue.

Outline

Problem Definition

- 2 Computational Complexity
- 3 Problem Subdivisions
- 4 Analysis of the Problem
- 5 Performance Comparision Plan

6 Deliverables

• Since, there aren't any existing codes available, thus, we would be comparing our implementation with a serial implementation of DFS traversal.

Outline

1 Problem Definition

- 2 Computational Complexity
- 3 Problem Subdivisions
- 4 Analysis of the Problem
- 5 Performance Comparision Plan

One

- Serial Implementation
- Parents
- Two
 - Pre-order and Post-order Time Calculations
- Three
 - Optimizations
 - Path Pruning
 - Path Compression
 - Path Data Structure (as mentioned in the paper).
 - SSSP based DFS (if time permits)

- Maxim Naumov, Alysson Vrielink, and Michael Garland Parallel Depth-First Search for Directed Acyclic Graphs Technical Report, NVR 2017
- Maxim Naumov, Alysson Vrielink, and Michael Garland Parallel Depth-First Search for Directed Acyclic Graphs Presentation, GTC Presentations 2017