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ABSTRACT
We present parallel algorithms and implementations of a
bzip2-like lossless data compression scheme for GPU archi-
tectures. Our approach parallelizes three main stages in
the bzip2 compression pipeline: Burrows-Wheeler transform
(BWT), move-to-front transform (MTF), and Huffman cod-
ing. In particular, we utilize a two-level hierarchical sort
for BWT, design a novel scan-based parallel MTF algo-
rithm, and implement a parallel reduction scheme to build
the Huffman tree. For each algorithm, we perform detailed
performance analysis, discuss its strengths and weaknesses,
and suggest future directions for improvements. Overall,
our GPU implementation is dominated by BWT perfor-
mance and is 2.78× slower than bzip2, with BWT and MTF-
Huffman respectively 2.89× and 1.34× slower on average.

1. INTRODUCTION
In this work, we implement parallel data compression on a

GPU. We study the challenges of parallelizing compression
algorithms, the potential performance gains offered by the
GPU, and the limitations of the GPU that prevent optimal
speedup. In addition, we see many practical motivations
for this research. Applications that have large data stor-
age demands but run in memory-limited environments can
benefit from high-performance compression algorithms. The
same is true for systems where performance is bottlenecked
by data communication. These distributed systems, which
include high-performance multi-node clusters, are willing to
tolerate additional computation to minimize the data sent
across bandwidth-saturated network connections. In both
cases, a GPU can serve as a compression/decompression co-
processor operating asynchronously with the CPU to relieve
the computational demands of the CPU and support effi-
cient data compression with minimal overhead.

The GPU is a highly parallel architecture that is well-
suited for large-scale file processing. In addition to provid-
ing massive parallelism with its numerous processors, the
GPU benefits the performance of our parallel compression
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through its memory hierarchy. A large global memory resid-
ing on the device allows us to create an efficient implemen-
tation of a compression pipeline found in similar CPU-based
applications, including bzip2. The data output by one stage
of compression remains in GPU memory and serves as in-
put to the next stage. To maintain high performance within
the algorithms of each stage, we use fast GPU shared mem-
ory to cache partial file contents and associated data struc-
tures residing as a whole in slower global memory. Our
algorithms also benefit from the atomic primitives provided
in CUDA [12]. These atomic operations assist in the devel-
opment of merge routines needed by our algorithms.

We implement our compression application as a series of
stages shown in Figure 1. Our compression pipeline, simi-
lar to the one used by bzip2, executes the Burrows-Wheeler
transform (BWT), the move-to-front transform (MTF), and
ends with Huffman coding. The BWT inputs the text string
to compress, then outputs an equally-sized BWT-transformed
string; MTF outputs an array of indices; and the Huffman
stage outputs the Huffman tree and the Huffman encoding
of this list. The BWT and MTF apply reversible trans-
formations to the file contents to increase the effectiveness
of Huffman coding, which performs the actual compression.
Each algorithm is described in greater detail in the next sec-
tions. This execution model is well suited to CUDA, where
each stage is implemented as a set of CUDA kernels, and the
output from kernels are provided as input to other kernels.

Although Gilchrist presents a multi-threaded version of
bzip2 that uses the Pthreads library [6], the challenges of
mapping bzip2 to the GPU lie not only in the implementa-
tion, but more fundamentally, in the algorithms. bzip2 is
designed with little thought given to data locality and par-
allelism. The BWT implementation in bzip2 is based on
radix sort and quicksort, which together require substantial
global communication. We redesign BWT using a hierar-
chical merge sort that sorts locally and globally. The use of
a local sort distributes the workload to the GPU cores and
minimizes the global communication. The traditional MTF
algorithm is strictly serial with a character-by-character de-
pendency. We invent a novel scan-based MTF algorithm
that breaks the input MTF list into small chunks and pro-
cesses them in parallel. We also build the Huffman tree using
a parallel reduction scheme.

We make the following contributions in the paper. First,
we design parallel algorithms and GPU implementations for
three major stages of bzip2: BWT, MTF, and Huffman cod-
ing. Second, we conduct a comprehensive performance anal-
ysis, which reveals the strengths and weaknesses of our par-
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Figure 1: Our compression pipeline consists of three stages:
(1) Burrows-Wheeler Transform; (2) Move-to-Front Trans-
form; (3) Huffman Coding.

allel algorithms and implementations, and further suggests
future directions for improvements. Third, our implementa-
tion enables the GPU to become a compression coprocessor,
which lightens the processing burden of the CPU by using
idle GPU cycles. We also assess the viability of using com-
pression to trade computation for communication over the
PCI-Express bus.

2. BURROWS-WHEELER TRANSFORM
The first stage in the compression pipeline, an algorithm

introduced by Burrows and Wheeler [3], does not itself per-
form compression but applies a reversible reordering to a
string of text to make it easier to compress. The Burrows-
Wheeler transform (BWT) begins by producing a list of
strings consisting of all cyclical rotations of the original string.
This list is then sorted, and the last character of each ro-
tation forms the transformed string. Figure 2 shows this
process being applied to the string “ababacabac”, where the
cyclical rotations of the string are placed into rows of a block
and sorted from top to bottom. The transformed string is
formed by simply taking the last column of the block.

The new string produced by BWT tends to have many
runs of repeated characters, which bodes well for compres-
sion. To explain why their algorithm works, Burrows and
Wheeler use an example featuring the common English word
“the”, and assume an input string containing many instances
of “the”. When the list of rotations of the input is sorted,
all the rotations starting with “he” will sort together, and a
large proportion of them are likely to end in ‘t’ [3]. In gen-
eral, if the original string has several substrings that occur
often, then the transformed string will have several places
where a single character is repeated multiple times in a row.
To be feasible for compression, BWT has another important
property—reversibility. Burrows and Wheeler also describe
the process to reconstruct the original string [3].

The main stage of BWT, the sorting of the rotated strings,
is also the most computationally expensive stage. Sorting
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Figure 2: BWT permutes the string “ababacabac” by sorting
its cyclical rotations in a block. The last column produces the
output “ccbbbaaaaa”, which has runs of repeated characters.

in BWT is a specialized case of string sort. Since the input
strings are merely rotations of the original string, they all
consist of the same characters and have the same length.
Therefore, only the original string needs to be stored, while
the rotations are represented by pointers or indices into a
memory buffer.

The original serial implementation of BWT uses radix sort
to sort the strings based on their first two characters followed
by quicksort to further sort groups of strings that match at
their first two characters [3]. Seward [18] shows the com-
plexity of this algorithm to be O(A · n logn), where A is
the average number of symbols per rotation that must be
compared to verify that the rotations are in order.

Sorting has been extensively studied on the GPU, but
not in the context of variable-length keys (such as strings)
and not in the context of very long, fixed-length keys (such
as the million-character strings required for BWT). Two
of the major challenges are the need to store the keys in
global memory because of their length and the complexity
and irregularity of a comparison function to compare two
long strings.

2.1 BWT with Merge Sort
In our GPU implementation of BWT, we leverage a string

sorting algorithm based on merge sort [5]. The algorithm
uses a hierarchical approach to maximize parallelism dur-
ing each stage. Starting at the most fine-grained level, each
thread sorts 8 elements with bitonic sort. Next, the algo-
rithm merges the sorted sequences within each block. In the
last stage, a global inter-block merge is performed, in which
b blocks are merged in log2 b steps. In the later inter-block
merges, only a small number of large unmerged sequences
remain. These sequences are partitioned so that multiple
blocks can participate in merging them.

Since we are sorting rotations of a single string, we use
the first four characters of each rotation as the sort key.
The corresponding value of each key is the index where the
rotation begins in the input string. The input string is long
and must be stored in global memory, while the sort keys are
cached in registers and shared memory. When two keys are
compared and found equal, a thread continually fetches the
next four characters from global memory until the tie can
be broken. Encountering many ties causes frequent access
to global memory while incurring large thread divergence.
This is especially the case for an input string with long runs
of repeating characters. After sorting completes, we take



the last characters of each string to create the final output
of BWT: a permutation of the input string that we store in
global memory.

No previous GPU work implements the full BWT, pri-
marily (we believe) because of the prior lack of any efficient
GPU-based string sort. One implementation alternative is
to substitute a simpler operation than BWT. The Schindler
Transform (STX), instead of performing a full sort on the
rotated input string, sorts strings by the first X characters.
This is less effective than a full BWT, but is computation-
ally much cheaper, and can be easily implemented with a
radix sort [16].

3. MOVE-TO-FRONT TRANSFORM
The move-to-front transform (MTF) improves the effec-

tiveness of entropy encoding algorithms [1], of which Huff-
man encoding is one of the most common. MTF takes
advantage of repeated characters by keeping recently used
characters at the front of the list. When applied to a string
that has been transformed by BWT, MTF tends to output
a new sequence of small numbers with more repeats.

MTF replaces each symbol in a stream of data with its
corresponding position in a list of recently used symbols.
Figure 3 shows the application of MTF to the string “ccbb-
baaaaa” produced by BWT from an earlier example, where
the list of recent symbols is initialized as the list of all ASCII
characters. Although the output of MTF stores the indices
of a list, it is essentially a byte array with the same size as
the input string.

Algorithm 1 Serial Move-to-Front Transform

Input: A char-array mtfIn.
Output: A char-array mtfOut.

1: {Generate Initial MTF List}
2: for i = 0→ 255 do
3: mtfList[i] = i
4: end for
5: for j = 0→ sizeof(mtfIn)− 1 do
6: K = mtfIn[j]
7: mtfOut[j] = K’s position in mtfList
8: Move K to front of mtfList
9: end for

Algorithm 1 shows pseudo-code for the serial MTF algo-
rithm. At first glance, this algorithm appears to be com-
pletely serial; exploiting parallelism in MTF is a challenge
because determining the index for a given symbol is depen-
dent on the MTF list that results from processing all prior
symbols. In our approach, we implement MTF as a paral-
lel operation, one that can be expressed as an instance of
the scan primitive [17]. We believe that this parallelization
strategy is a new one for the MTF algorithm.

3.1 Parallel MTF Theory and Implementation
Each step in MTF encodes a single character by finding

that character in the MTF list, recording its index, and then
moving the character to the front of the list. The algorithm
is thus apparently serial. We break this serial pattern with
two insights:

1. Given a substring s of characters located somewhere
within the input string, and without knowing anything

Iteration MTF List Transformed String

ccbbbaaaaa …abc… (ASCII) [99]

ccbbbaaaaa c…ab… [99,0]

ccbbbaaaaa c…ab… [99,0,99]

ccbbbaaaaa bc…a… [99,0,99,0]

ccbbbaaaaa bc…a… [99,0,99,0,0]

ccbbbaaaaa bc…a… [99,0,99,0,0,99]

ccbbbaaaaa abc… [99,0,99,0,0,99,0]

ccbbbaaaaa abc… [99,0,99,0,0,99,0,0]

ccbbbaaaaa abc… [99,0,99,0,0,99,0,0,0]

ccbbbaaaaa abc… [99,0,99,0,0,99,0,0,0,0]

Figure 3: The MTF transform is applied to a string pro-
duced by BWT, “cccbbbaaaaa”. In the first step, the charac-
ter ‘c’ is found at index 99 of the initial MTF list (the ASCII
list). Therefore, the first value of the output is byte 99. The
character ‘c’ is then moved to the front of the list and now
has index 0. At the end of the transform, the resulting byte
array has a high occurrence of 0’s, which is beneficial for
entropy encoding.

about the rest of the string either before or following,
we can generate a partial MTF list that computes the
partial MTF for s that only contains the characters
that appear in s (Algorithm 2).

2. We can efficiently combine two partial MTF lists for
two adjacent substrings to create a partial MTF list
that represents the concatenation of the two substrings
(Algorithm 3).

We combine these two insights in our parallel divide-and-
conquer implementation. We divide the input strings into
small 64-character substrings and assign each substring to
a thread. We then compute a partial MTF list for each
substring per thread, then recursively merge those partial
MTF lists together to form the final MTF list. We now take
a closer look at the two algorithms.

Algorithm 2 MTF Per Thread

Input: A char-array mtfIn.
Output: A char-array myMtfList.

1: Index = 0
2: J = Number of elements per substring
3: for i = ((threadID + 1)× J)− 1→ threadID× J do
4: mtfVal = mtfIn[i]
5: if mtfVal does NOT exist in myMtfList then
6: myMtfList[Index++] = mtfVal
7: end if
8: end for

Algorithm 2 describes how we generate a partial MTF list
for a substring s of length n. In this computation, we need
only keep track of the characters in s. For example, the
partial MTF list for “dead” is [d,a,e], and the partial list for
“beef” is [f,e,b]. We note that the partial MTF list is simply
the ordering of characters from most recently seen to least
recently seen. Our implementation runs serially within each
thread, walking s from its last element to its first element
and recording the first appearance of each character in s.



Our per-thread implementation is SIMD-parallel so it runs
efficiently across threads. Because all computation occurs
internal to a thread, we benefit from fully utilizing the reg-
isters in each thread processor, and n should be as large as
possible without exhausting the hardware resources within
a thread processor. The output list has a maximum size of n
or the number of possible unique characters in a string (256
for 8-bit byte-encoded strings), whichever is smaller. After
each thread computes its initial MTF list, there will be N/n
independent, partial MTF lists, where N is the length of our
input string.

Algorithm 3 AppendUnique()

Input: Two MTF lists Listn,Listn−1.
Output: One MTF list Listn.

1: j = sizeof(Listn)
2: for i = 0→ sizeof(Listn−1)− 1 do
3: K = Listn−1[i]
4: if K does NOT exist in Listn then
5: Listn[j++] = K
6: end if
7: end for

To reduce two successive partial MTF lists into one partial
MTF list, we use the AppendUnique() function shown in
Algorithm 3. This function takes characters from the first
list that are absent in the second list and appends them in
order to the end of the second list. For example, applying
AppendUnique() to the two lists [d,a,e] for the string “dead”
and [f,e,b] for the string “beef” results in the list [f,e,b,d,a].
This new list orders the characters of the combined string
“deadbeef” from most recently seen to least recently seen.
Note that this merge operation only depends on the size of
the partial lists (which never exceed 256 elements for byte-
encoded strings), not the size of the substrings.

To optimize our scan-based MTF for the GPU, we adapt
our implementation to the CUDA programming model. First,
we perform a parallel reduction within each thread-block
and store the resulting MTF lists in global memory. Dur-
ing this process, we store and access each thread’s partial
MTF list in shared memory. Next, we use the MTF lists re-
sulting from the intra-block reductions to compute a global
block-wise scan. The result for each block will be used by
the threads of the subsequent block to compute their final
outputs independent of threads in other blocks. In this final
step, each thread-block executes scan using the initial, par-
tial lists stored in shared memory and the lists outputted by
the block-wise scan stored in global memory. With the scan
complete, each thread replaces symbols in parallel using its
partial MTF list outputted by scan, which is the state of the
MTF list after processing prior characters. Figure 4 shows
a high-level view of our algorithm.

MTF can be formally expressed as an exclusive scan com-
putation, an operation well-suited for GPU architectures [17].
Scan is defined by three entities: an input datatype, a bi-
nary associative operation, and an identity element. Our
datatype is a partial MTF list, our operator is the func-
tion AppendUnique(), and our identity is the initial MTF
list (for a byte string, simply the 256-element array a where
a[i] = i). It is likely that the persistent-thread-based GPU
scan formulation of Merrill and Grimshaw [10] would be a
good match for computing the MTF on the GPU.
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Figure 4: Parallel MTF steps: A) Each thread computes
a partial MTF list for 64 characters (Algorithm 2). B) An
exclusive scan executes in parallel with AppendUnique() as
the scan operator (Algorithm 3). C) The scan output for
each thread holds the state of the MTF list after all prior
characters have been processed. Each thread is able to inde-
pendently compute a part of the MTF transform output.

3.2 Reverse MTF Transform
The reverse MTF transform, shown in Algorithm 4, re-

stores the original sequence by taking the first index from
the encoded sequence and outputting the symbol found at
that index in the initial MTF list. The symbol is moved
to the front of the MTF list, and the process is repeated
for all subsequent indices stored in the encoded sequence.
Like MTF, reverse MTF appears to be a highly serial algo-
rithm because we cannot restore an original symbol without
knowing the MTF list that results from restoring all prior
symbols. A similar scan-based approach can be used, in
which the intermediate data is a MTF list and the operator
is a permutation of a MTF list. We leave a parallel imple-
mentation of reverse MTF, as outlined in this section, for
future work.

Algorithm 4 Serial Reverse Move-to-Front Transform

Input: A char-array mtfRevIn.
Output: A char-array mtfRevOut.

1: {Generate Initial MTF List}
2: for i = 0→ 255 do
3: mtfList[i] = i
4: end for
5: for j = 0→ sizeof(mtfRevIn)− 1 do
6: K = mtfRevIn[j]
7: mtfRevOut[j] = mtfList[K]
8: Move mtfList[K] to front of mtfList
9: end for

4. HUFFMAN CODING
Huffman coding is an entropy-encoding algorithm used in



data compression [7]. The algorithm replaces each input
symbol with a variable-length bit code, where the length of
the code is determined by the symbol’s frequency of occur-
rence. There are three main computational stages in Huff-
man coding: (1) generating the character histogram, (2)
building the Huffman tree, and (3) encoding data.

First, the algorithm generates a histogram that stores the
frequency of each character in the data. Next, we build the
Huffman tree as a binary tree from the bottom up using the
histogram. The process works as follows. At each step, the
two least-frequent entries are removed from the histogram
and joined via a new parent node, which is inserted into the
histogram with a frequency equal to the sum of the frequen-
cies of its two children. This step is repeated until one entry
remains in the histogram, which becomes the root of the
Huffman tree.

Once the tree is built, each character is represented by
a leaf in the tree, with less-frequent characters at a deeper
level in the tree. The code for each character is determined
by traversing the path from the root of the tree to the leaf
representing that character. Starting with an empty code, a
zero bit is appended to the code each time a left branch is
taken, and a one bit is appended each time a right branch is
taken. Characters that appear more frequently have shorter
codes, and full optimality is achieved when the number of
bits used for each character is proportional to the logarithm
of the character’s fraction of occurrence. The codes gener-
ated by Huffman coding are also known as “prefix codes”,
because the code for one symbol is never a prefix of a code
representing any other symbol, thus avoiding ambiguity that
can result from having variable-length codes. Finally, dur-
ing the encoding process, each character is replaced with its
assigned bit code.

In trying to parallelize the construction of the Huffman
tree, we note that as nodes are added and joined, the his-
togram changes, so we cannot create nodes in parallel. In-
stead, we perform the search for the two least-frequent his-
togram entries in parallel using a reduction scheme. Paral-
lelizing the encoding stage is difficult because each Huffman
code is a variable-length bit code, so the location to write the
code in the compressed data is dependent on all prior codes.
In addition, variable-length bit codes can cross byte bound-
aries, which complicates partitioning the computation. To
perform data encoding in parallel, we use an approach that
encodes into variable-length, byte-aligned bit arrays.

The bzip2 application implements a modified form of Huff-
man coding that uses multiple Huffman tables [19]. The im-
plementation creates 2 to 6 Huffman tables and selects the
most optimal table for every block of 50 characters. This
approach can potentially result in higher compression ra-
tios. For simplicity and performance, we do not employ this
technique in our implementation.

4.1 Histogram
To create our histogram, we use an algorithm presented

by Brown et al. that builds 256-entry per-thread histograms
in shared memory and then combines them to form a thread-
block histogram [2]. We compute the final global histogram
using one thread-block.

4.2 Huffman Tree
We use a parallel search algorithm to find the two least-

frequent values in the histogram. Our algorithm, shown in

0 1 2 3 4 5 6 7

(X,Y) =
2-Min(0,1,2,3)

(Z,W) =
2-Min(4,5,6,7)

(Min1,Min2) =
2-Min(X,Y,Z,W)

Figure 5: We use a parallel reduction to find the two lowest
occurrences. This technique is used in the building of the
Huffman tree.

Figure 5, can be expressed as a parallel reduction, where
each thread searches four elements at a time. Our reduce
operator is a function that selects the two least-frequent val-
ues out of four. Each search completes in log2 n− 1 stages,
where n is the number of entries remaining in the histogram.

4.3 Encoding
We derive our GPU implementation for Huffman encoding

from a prior work by Cloud et al. [4], who describe an encod-
ing scheme that packs Huffman codes into variable-length,
byte-aligned bit arrays but do not give specific details for
their implementation in CUDA. Our implementation works
in the following way. We use 128 threads per thread-block
and assign 4096 codes to each block, thereby giving each
thread 32 codes to write in serial. Similar to Cloud et al.,
we byte-align the bit array written by each parallel proces-
sor, or each thread-block in our case, by padding the end
with zeroes so that we do not have to handle codes cross-
ing byte boundaries across blocks and so that we can later
decode in parallel. We also save the size of each bit array
for decoding purposes. To encode variable-length codes in
parallel, each block needs the correct byte offset to write its
bit array, and each thread within a block needs the correct
bit offset to write its bit subarray (we handle codes crossing
byte boundaries across threads). To calculate these offsets,
we use a parallel scan across blocks and across threads within
each block, where the scan operator sums bit array sizes for
blocks and bit subarray sizes for threads. After encoding
completes, our final output is the compressed data, which
stores the Huffman tree, the sizes of the bit arrays, and
the bit arrays themselves interleaved with small amounts of
padding.

4.4 Decoding
Huffman decoding is a straightforward algorithm that pro-

cesses one bit at a time, thus avoiding the bit-wise operations
needed to handle codes across byte boundaries. To decode in
serial, we traverse the Huffman tree, starting from the root.
We take the left branch when a zero is encountered and the
right branch when a one is encountered. When we reach
a leaf, we write the uncompressed character represented by
the leaf and restart our traversal at the root. To perform
decoding in parallel on the GPU, we assign each bit array to
a thread so that each thread is responsible for writing 4096
uncompressed characters. Although this simple approach
uses less parallelism than our encoding implementation, we



do not determine this to be a performance issue because
decoding, unlike encoding, does not require the extra scan
operations and bitwise operations needed to support writing
variable-length datatypes.

5. RESULTS

Experimental Setup.
Our test platform uses a 3.2 GHz Intel Core i5 CPU, an

NVIDIA GTX 460 graphics card with 1 GB video mem-
ory, CUDA 4.0, and the Windows 7 operating system. In
our comparisons with a single-core CPU implementation of
bzip2, we only measure the relevant times in bzip2, such as
the sort time during BWT, by modifying the bzip2 source
code to eliminate I/O as a performance factor. We take a
similar approach for MTF and Huffman encoding.

For our benchmarks, we use three different datasets to test
large realistic inputs. The first of these datasets, linux-2.
6.11.1.tar (203 MB), is a tarball containing source code
for the Linux 2.6.11.1 kernel. The second, enwik8 (97 MB),
is a Wikipedia dump taken from 2006 [9]. The third,
enwiki-latest-abstract10.xml (151 MB), is a Wikipedia
database backup dump in the XML format [20].

bzip2 Comparison.
Table 1 displays our results for each dataset. bzip2 has

an average compress rate of 7.72 MB/s over all three bench-
marks, while our GPU implementation is 2.78× slower with
a compress rate of 2.77 MB/s. Compared to our GPU im-
plementation, bzip2 also yields better compression ratios be-
cause it uses additional compression algorithms such as run-
length encoding and multiple Huffman tables [19]. In terms
of similarities, our implementation and bzip2 both compress
data in blocks of 1 MB. In addition, BWT contributes to
the majority of the runtime in both implementations, with
an average contribution of 91% to the GPU runtime and
81% to the bzip2 runtime. We find the average performance
of MTF and Huffman coding on the GPU to be similar to
that of bzip2. Our BWT and MTF+Huffman implementa-
tions are respectively 2.89× and 1.34× slower than bzip2 on
average.

Memory Bandwidth.
One motivation for this work is to determine whether on-

the-fly compression is suitable for optimizing data transfers
between CPU and GPU. To answer this question, we an-
alyze data compression rates, PCI-Express bandwidth, and
GPU memory bandwidth. Given the numbers of the latter
two, we compute the budget for the compression rate. Fig-
ure 6 shows the various compression rates required in order
for on-the-fly compression to be feasible. These rates range
from 1 GB/s (PCIe BW = 1 GB/s, Compress Ratio1 = 0.01)
to 32 GB/s (PCIe BW = 16 GB/s, Compress Ratio = 0.50).
Our implementation is not fast enough, even at peak com-
pression rates, to advocate “compress then send” as a more
optimal strategy than “send uncompressed”. Assuming a
memory bandwidth of 90 GB/s and a compression rate of
50%, the required compression rate for encoding is 15 GB/s
according to Figure 6, which means the total memory ac-
cess allowed per character is fewer than 90/15 = 6 bytes. A

1Compress Ratio = Compressed size
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Figure 6: The required compression rate (encode only) to
make “compress then send” worthwhile as a function of PCI-
Express bandwidth.

rough analysis of our implementation shows that our BWT,
MTF, and Huffman coding combined require 186 bytes of
memory access per character.

However, we believe that technology trends will help make
compress-then-send more attractive over time. Figure 7
shows the past and current trends for bus and GPU memory
bandwidth. Global memory (DRAM) bandwidth on GPUs
is increasing more quickly than PCIe bus bandwidth, so ap-
plications that prefer doing more work on the GPU rather
using an external bus are aligned with these trends.

Analysis of Kernel Performance.
Our BWT implementation first groups the input string

into blocks, then sorts the rotated strings within each block,
and finally merges the sorted strings. We sort a string of
1 million characters by first dividing the string into 1024
blocks with 1024 strings assigned to each block. The local
block-sort stage on the GPU is very efficient and takes only
5% of the total BWT time, due to little global communica-
tion and the abundant parallelism of divided string blocks.
The rest of the string sort time is spent in the merging stages,
where we merge the 1024 sorted blocks in log2 1024 = 10
steps. The merge sort is able to utilize all GPU cores by
dividing the work up into multiple blocks as discussed in
section 2.1. However, the number of ties that need to be
broken results in poor performance. For each tie, a thread
must fetch an additional 8 bytes (4 bytes/string) from global
memory, leading to high thread divergence.

We analyze the number of matching prefix characters, or
tie lengths, between strings for each pair of strings during
BWT. Figure 8 shows that there are a higher fraction of
string pairs with long tie lengths in BWT than there are in
a typical string-sort dataset of random words. This is the
same set of words used as the primary benchmark in the
work by Davidson et al. [5], which achieves a sort rate of 30
Mstrings/s on the same GPU.

Figure 9 shows the performance comparison between the
serial MTF and our parallel scan-based MTF. The run-
time of the parallel MTF is the time it takes to compute



Table 1: GPU vs. bzip2 Compression.

File Compress Rate BWT Sort Rate MTF+Huffman Rate Compress Ratio

(Size) (MB/s) (Mstring/s) (MB/s) ( Compressed size
Uncompressed size

)

enwik8 GPU: 7.37 GPU: 9.84 GPU: 29.4 GPU: 0.33
(97 MB) bzip2: 10.26 bzip2: 14.2 bzip2: 33.1 bzip2: 0.29

linux-2.6.11.1.tar GPU: 4.25 GPU: 4.71 GPU: 44.3 GPU: 0.24
(203 MB) bzip2: 9.8 bzip2: 12.2 bzip2: 48.8 bzip2: 0.18

enwiki-latest-abstract10.xml GPU: 1.42 GPU: 1.49 GPU: 32.6 GPU: 0.19
(151 MB) bzip2: 5.3 bzip2: 5.4 bzip2: 69.2 bzip2: 0.10
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Figure 7: Available PCI-Express and GPU memory band-
width over time. The rate of GPU global memory bandwidth
is growing at a much higher rate than bus bandwidth.

individual MTF lists plus the time it takes for all threads
to compute the MTF output using these lists. The com-
putation of the output requires each thread to replace 64
characters in serial and contributes most to the total par-
allel MTF runtime. Initially, we stored both the entire
256-byte MTF lists and the input lists in shared memory.
Due to excessive shared memory usage, we could only fit 4
thread-blocks, or 4 warps (with a block size of 32 threads)
per multiprocessor. This resulted in a low occupancy of
4 warps/48 warps=8.3% and correspondingly low instruc-
tion and shared memory throughput. To improve the occu-
pancy, we changed our implementation to only store partial
MTF lists in shared memory. This allows us to fit more and
larger thread-blocks on one multiprocessor, which improves
the occupancy to 33%. We varied the size of partial lists and
found the sweet spot that saves shared memory for higher
occupancy and at the same time reduces global memory ac-
cesses. Figure 10 shows the MTF local scan performance as
a function of partial list size in shared memory. The opti-
mal points settle around 40 characters per list for all three
datasets, which is the number we use in our implementation.

Figure 11 shows the runtime breakdown of Huffman cod-
ing. For all three datasets, building the Huffman tree con-
tributes to approximately 80% of the total time. The lack
of parallelism is a major performance limiting factor during
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Figure 8: Datasets that exhibit higher compress ratios
also have a higher fraction of string pairs with long tie
lengths. Sorting long rotated strings in BWT yields substan-
tially more ties than other string-sorting applications (e.g.
“words”). These frequent ties lead to lower sort rates on
these datasets (3–20× slower), as shown in Table 1.

Huffman tree construction. Since we build the Huffman tree
from a 256-bin histogram, we have at most 128-way paral-
lelism. As a result, we only run a single thread-block of 128
threads on the entire GPU, which leads to poor performance.

6. DISCUSSION
The lossless data compression algorithms discussed in this

paper highlight some of the challenges faced in compressing
generic data on a massively parallel architecture. Our results
show that the compression of generic data on the GPU for
the purpose of minimizing bus transfer time is far from being
a viable option; however, many domain-specific compression
techniques on the GPU have proven to be beneficial [13, 14,
21] and may be a better option.

Of course, a move to single-chip heterogeneous architec-
tures will reduce any bus transfer cost substantially. How-
ever, even on discrete GPUs, we still see numerous uses
for our implementation. In an application scenario where
the GPU is idle, the GPU can be used to offload compres-
sion tasks, essentially as a compression coprocessor. For
applications with constrained memory space, compression
may be worthwhile even at a high computational cost. For
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Figure 9: Serial MTF vs. parallel scan-based MTF with
five datasets: enwik8, linux tarball, enwiki xml, textbook, and
random numbers (1-9).

distributed/networked supercomputers, the cost of sending
data over interconnect is prohibitively high, higher than a
traditional bus, and compression is attractive in those sce-
narios. Finally, from a power perspective, the cost of compu-
tation falls over time compared to communication, so trad-
ing computation for communication is sensible to reduce
overall system power in computers of any size.

Bottlenecks.
The string sort in our BWT stage is the major bottle-

neck of our compression pipeline. Sorting algorithms on
the GPU have been a popular topic of research in recent
years [8, 11, 15]. The fastest known GPU-based radix-sort
by Merrill and Grimshaw [11] sorts key-value pairs at a rate
of 3.3 GB/s (GTX 480). String sorting, however, is to the
best of our knowledge a new topic on the GPU, and our
implementation was based on the fastest available GPU-
based string sort [5]. Table 1 shows that we achieve sort
rates between 1.49 Mstrings/s to 9.84 Mstrings/s when sort-
ing strings with lengths of 1 million characters. Datasets
with higher compression ratios have lower sort rates and
hence lower throughput: our“string-ties”analysis (Figure 8)
shows that the highest compressed file in our dataset
(enwiki-latest-abstract10.xml) has a much higher frac-
tion of sorted string pairs with longer tie lengths than our
least compressed dataset (enwik8), which in turn has more
and longer ties than Davidson et al.’s “words” dataset. Ad-
ditionally, to separate out the cost of ties from the cost of
sorting, we computed the BWT on a string where every set
of four characters were random and unique. Using this string
we achieved a sort rate of 52.4 Mstrings/s, 5× faster than
our best performing dataset (enwik8) and 37× faster than
our worst performing dataset (enwiki-latest-abstract10.
xml). It is clear that our performance would benefit most of
all from a sort that is optimized to handle string comparisons
with many and lengthy ties.

The performance of our parallel MTF algorithm compared
to a CPU implementation varies depending on the dataset.
On our three datasets, we have seen both a slowdown on the
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Figure 10: MTF local scan performance as a function of
partial list size in shared memory. The performance is shown
for three datasets: enwik8, linux tarball, and enwiki xml.

GPU as well as a 5× speedup. The performance of our MTF
transform diminishes as the number of unique characters in
the dataset increases. Nearly 72% of the runtime in our
MTF algorithm is spent in the final stage, where each thread
is able to independently compute a part of the the final
MTF transform. Currently we break up the input MTF
list into small lists of a fixed size. Our experiments show
that the list size greatly affects the runtime distribution of
MTF algorithmic stages, and the optimal list size is data-
dependent. To address this problem, we hope to employ
adaptive techniques in our future work.

The bottleneck of the Huffman encoding stage is the Huff-
man tree building, which can exploit at most 128-way par-
allelism. Building the Huffman tree contributes to ∼78%
of the Huffman runtime, while the histogram and encoding
steps contribute to ∼16% and ∼6% of the runtime, respec-
tively. Further performance improvement of the Huffman
tree building requires a more parallel algorithm that can
fully utilize all GPU cores.

Overall, we are not able to achieve a speedup over bzip2.
More important than the comparison, though, is the fact
that the required compression rate (1 GB/s to 32 GB/s) for
compress-then-send over PCIe to be worthwhile is much
higher than that of bzip2 (5.3 MB/s to 10.2 MB/s). Our im-
plementation needs to greatly reduce aggregate global mem-
ory bandwidth to approach this goal, and also develop more
efficient fine-grained parallel algorithms for all steps in the
pipeline. We believe that our efforts in this direction, and
our identification and analysis of the performance bottle-
necks of our parallel algorithms and implementations, will
enable us and others to develop and refine further efforts
toward lossless compression techniques. bzip2 was certainly
not designed with an eye toward parallelism, so we believe
that further research toward parallel-friendly algorithms for
compression is an important future direction.

7. CONCLUSION
Our results in this paper suggest that our implementa-

tion on current GPU architectures is not capable of provid-
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Figure 11: The runtime breakdown of Huffman coding.
The majority of the time is spent during the tree building
stage due to a lack of parallelism discussed in section 5.

ing enough performance benefits for on-the-fly lossless data
compression. Compression rates must be at least 1 GB/s for
compress-then-send to be a viable option. Compared to se-
rial bzip2, our overall performance is currently 2.78× slower,
but our implementation enables the GPU to become a com-
pression coprocessor, and we see opportunities for significant
improvements going forward.

Our immediate future directions for this work include: (1)
finding a way to mitigate ties by fetching larger (more than
four-byte) blocks; (2) autotuning the list size and stage tran-
sition points for MTF; (3) developing a more parallel algo-
rithm for the Huffman tree building; (4) overlapping GPU
compression and PCI-Express data transfer; and (5) alter-
nate approaches to string sort that are well-suited for BWT-
like workloads.
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