
38 September 2008 ACM QUEUE rants: feedback@acmqueue.com

Parallel
Programming
with
Programming
with
Programming

While still primarily a research project, transactional memory shows
promise for making parallel programming easier.

Transactional Memory

ACM QUEUE September 2008 39 more queue: www.acmqueue.com

With the speed of individual cores no longer increas-
ing at the rate we came to love over the past decades,
programmers have to look for other ways to increase
the speed of our ever-more-complicated applica-
tions. The functionality provided by the CPU
manufacturers is an increased number of
execution units, or CPU cores.

To use these extra cores, programs
must be parallelized. Multiple paths of
execution have to work together to
complete the tasks the program has
to perform, and as much of that
work as possible has to happen
concurrently. Only then is

Ulrich Drepper, Red Hat

40 September 2008 ACM QUEUE rants: feedback@acmqueue.com

it possible to speed up the program (i.e., reduce the total
runtime). Amdahl’s law expresses this as:

1__________
(1-P) + P/S

Here P is the fraction of the program that can be parallel-
ized, and S is the number of execution units.

SYNCHRONIZATION PROBLEMS
This is the theory. Making it a reality is another issue.
Simply writing a normal program by itself is a problem,
as can be seen in the relentless stream of bug fixes avail-
able for programs. Trying to split a program into multiple
pieces that can be executed in parallel adds a whole
dimension of additional problems:
• Unless the program consists of multiple independent
pieces from the onset and should have been written as
separate programs in the first place, the individual pieces
have to collaborate. This usually takes the form of sharing
data in memory or on secondary storage.
• Write access to shared data cannot happen in an uncon-
trolled fashion. Allowing a program to see an inconsis-
tent, and hence unexpected, state must be avoided at all
times. This is a problem if the state is represented by the
content of multiple memory locations. Processors are not
able to modify an arbitrary number (in most cases not
even two) of independent memory locations atomically.
• To deal with multiple memory locations, “traditional”
parallel programming has had to resort to synchroniza-
tion. With the help of mutex (mutual exclusion) direc-
tives, a program can ensure that it is alone in executing
an operation protected by the mutex object. If all read or
write accesses to the protected state are performed while
holding the mutex lock, it is guaranteed that the program
will never see an inconsistent state. Today’s program-
ming environments (e.g., POSIX) allow for an arbitrary
number of mutexes to coexist, and there are special types
of mutexes that allow for multiple readers to gain access
concurrently. The latter is allowed since read accesses do

not change the state. These mechanisms allow for reason-
able scalability if used correctly.
• Locking mutexes open a whole new can of worms,
though. Using a single program-wide mutex would in
most cases dramatically hurt program performance by
decreasing the portion of the program that can run in
parallel (P in the formula). Using more mutexes increases
not only P, but also the overhead associated with locking
and unlocking the mutexes. This is especially problem-
atic if, as it should be, the critical regions are only lightly
contended. Dealing with multiple mutexes also means
the potential for deadlocks exists. Deadlocks happen
if overlapping mutexes are locked by multiple threads
in a different order. This is a mistake that happens all
too easily. Often the use of mutexes is hidden in library
functions and not immediately visible, complicating the
whole issue.

THE PROGRAMMER’S DILEMMA
The programmer is caught between two problems:
• Increasing the part of the program that can be executed
in parallel (P).
• Increasing the complexity of the program code and
therefore the potential for problems.

An incorrectly functioning program can run as fast as
you can make it run, but it will still be useless. Therefore,
the parallelization must go only so far as not to introduce
problems of the second kind. How much parallelism this
is depends on the experience and knowledge of the pro-
grammer. Over the years many projects have been devel-
oped that try to automatically catch problems related to
locking. None is succeeding in solving the problem for
programs of sizes that appear in the real world. Static
analysis is costly and complex. Dynamic analysis has to
depend on heuristics and on the quality of the test cases.

For complex projects it is not possible to convert
the whole project at once to allow for more parallelism.
Instead, programmers iteratively add ever more fine-
grained locking. This can be a long process, and if the
testing of the intermediate steps isn’t thorough enough,
problems that are not caused by the most recently added
set of changes might pop up. Also, as experience has
shown, it is sometimes very hard to get rid of the big
locks. For an example, look at the BKL (big kernel lock)
discussions on the Linux kernel mailing list. The BKL was
introduced when Linux first gained SMP (symmetric
multiprocessing) support in the mid-90s, and we still
haven’t gotten rid of it in 2008.

Parallel
Programming
with
Transactional Memory

ACM QUEUE September 2008 41 more queue: www.acmqueue.com

More and more people have come to the conclusion
that locking is the wrong approach to solving the consis-
tency issue. This is especially true for programmers who
are not intimately familiar with all the problems of paral-
lel programming (which means almost everybody).

LOOKING ELSEWHERE
The problem of consistency is nothing new in the world
of computers. In fact, it has been central to the entire
solution in one particular area: databases. A database,
consisting of many tables with associated indexes, has
to be updated atomically for the reason already stated:
consistency of the data. It must not happen that one part
of the update is performed while the rest is not. It also
must not happen that two updates are interleaved so that
in the end only parts of each modification are visible.

The solution in the database world is transactions.
Database programmers explicitly declare which data-
base operations belong to a transaction. The operations
performed in the transaction can be done in an arbitrary
order and do not actually take effect until the transaction
is committed. If there are conflicts in the transaction (i.e.,
other operations are concurrently modifying the same
data sets), the transaction is rolled back and has to be
restarted.

The concept of the transaction is something that falls
out of most programming tasks quite naturally. If all
changes that are made as part of a transaction are made
available atomically all at once, the order in which the
changes are added to the transaction does not matter.
The lack of a requirement to perform the operations in a
particular order helps tremendously. All that is needed is
to remember to modify the data sets always as part of a
transaction and not in a quick-and-dirty, direct way.

TRANSACTIONAL MEMORY
The concept of transactions can be transferred to memory
operations performed in programs as well. One could of
course regard the in-memory data a program keeps as
tables corresponding to those in databases, and then just
implement the same functionality. This is rather limiting,
though, since it forces programmers to dramatically alter
the way they are writing programs, and systems program-
ming cannot live with such restrictions.

Fortunately, this is not needed. The concept of TM
(transactional memory) has been defined without this
restriction. Maurice Herlihy and J. Eliot B. Moss in their
1993 paper1 describe a hardware implementation that
can be implemented on top of existing cache coherency
protocols reasonably easily.2

The description in the paper is generic. First, there is
no need to require that transactional memory be imple-
mented in hardware, exclusively or even in part. For the
purpose mentioned in the paper’s title (lock-free data
structures), hardware support is likely going to be a must.
But this is not true in general, as we will see shortly. Sec-
ond, the description must be transferred to today’s avail-
able hardware. This includes implementation details such
as the possible reuse of the cache coherency protocol and
the granularity of the transactions, which most likely will
not be a single word but instead a cache line.

Hardware support for TM will itself be mostly interest-
ing for the implementation of lock-free data structures.
To implement, for example, the insert of a new element
into a double-linked list without locking, four pointers
have to be updated atomically. These pointers are found

in three list elements, which means that it is not possible
to implement this using simple atomic operations. HTM
(hardware TM) provides a means to implement atomic
operations operating on more than one memory word. To
provide more general support for transactional memory
beyond atomic data structures, software support is
needed. For example, any hardware implementation will
limit the size of a transaction. These limits might be too
low for nontrivial programs or they might differ among
implementations. Software can and must complete the
HTM support to extend the reach of the TM implementa-
tion meant to be used for general programming.

This has been taken a step further. Because today’s
hardware is mostly lacking in HTM support, STM

Software can and must complete
the HTM support to extend the reach

of the TM implementation meant
 to be used for general programming.

42 September 2008 ACM QUEUE rants: feedback@acmqueue.com

(software TM) is what most research projects are using
today. With STM-based solutions it is possible to pro-
vide interfaces to TM functionality, which later could
be implemented in hybrid TM implementations, using
hardware if possible. This allows programmers to write
programs using the simplifications TM provides even
without HTM support in the hardware.

SHOW ME THE PROBLEM
To convince the reader that TM is worth all the trouble,
let’s look at a little example. This is not meant to reflect
realistic code but instead illustrates problems that can
happen in real code:

long counter1;
long counter2;
time_t timestamp1;
time_t timestamp2;

void f1_1(long *r, time_t *t) {
 *t = timestamp1;
 *r = counter1++;
}

void f2_2(long *r, time_t *t) {
 *t = timestamp2;
 *r = counter2++;
}

void w1_2(long *r, time_t *t) {
 *r = counter1++;
 if (*r & 1)
 *t = timestamp2;
}

void w2_1(long *r, time_t *t) {
 *r = counter2++;
 if (*r & 1)
 *t = timestamp1;
}

Assume this code has to be made thread-safe. This
means that multiple threads can concurrently execute
any of the functions and that doing so must not produce
any invalid result. The latter is defined here as return
counter and timestamp values that don’t belong together.

It is certainly possible to define one single mutex
lock and require that this mutex be taken in each of the
four functions. Verifying that this would generate the
expected results is easy, but the performance is potentially
far from optimal.

Assume that most of the time only the functions f1_1
and f2_2 are used. In this case there would never be any
conflict between callers of these functions: callers of f1_1
and f2_2 could peacefully coexist. This means that using
one single lock slows down the code unnecessarily.

So, then, use two locks. But how to define them?
The semantics would have to be in the one case “when
counter1 and timestamp1 are used” and “when coun-
ter2 and timestamp2 are used,” respectively. This might
work for f1_1 and f2_2, but it won’t work for the other
two functions. Here the pairs counter1/timestamp2 and
counter2/timestamp1 are used together. So we have to go
yet another level down and assign a separate lock to each
of the variables.

Assuming we would do this, we could easily be
tempted to write something like this (only two functions
are mentioned here; the other two are mirror images):

void f1_1(long *r, time_t *t) {
 lock(l_timestamp1);
 lock(l_counter1);

 *t = timestamp1;
 *r = counter1++;
}

void w1_2(long *r, time_t *t) {
 lock(l_counter1);

 *r = counter1++;
 if (*r & 1) {
 lock(l_timestamp1);
 *t = timestamp2;
 unlock(l_timestamp1);
 }

 unlock(l_counter1);
}

Parallel
Programming
with
Transactional Memory

ACM QUEUE September 2008 43 more queue: www.acmqueue.com

The code for w1_2 in this example is wrong. We can-
not delay getting the l_timestamp1 lock because it might
produce inconsistent results. Even though it might be
slower, we always have to get the lock:

void w1_2(long *r, time_t *t) {
 lock(l_counter1);
 lock(l_timestamp1);

 *r = counter1++;
 if (*r & 1) {
 *t = timestamp2;

 unlock(l_timestamp1);
 unlock(l_counter1);
}

It’s a simple change, but the result is also wrong. Now
we try to lock the required locks in w1_2 in a different
order from f1_1. This potentially will lead to deadlocks. In
this simple example it is easy to see that this is the case,
but with just slightly more complicated code it is a very
common occurrence.

What this example shows is: (1) it is easy to get into a
situation where many separate mutex locks are needed to
allow for enough parallelism; and (2) using all the mutex
locks correctly is quite complicated by itself.

As can be expected from the theme of this article, TM
will be able to help us in this and many other situations.

REWRITTEN USING TM
The previous example could be rewritten using TM. In the
following example we are using nonstandard extensions
to C that in one form or another might appear in a TM-
enabled compiler. The extensions are easy to explain.

void f1_1(long *r, time_t *t) {
 tm_atomic {
 *t = timestamp1;
 *r = counter1++;
 }
}

void f2_2(long *r, time_t *t) {
 tm_atomic {
 *t = timestamp2;
 *r = counter2++;
 }
}

void w1_2(long *r, time_t *t) {
 tm_atomic {
 *r = counter1++;
 if (*r & 1)
 *t = timestamp2;
 }
}

void w2_1(long *r, time_t *t) {
 tm_atomic {
 *r = counter2++;
 if (*r & 1)
 *t = timestamp1;
 }
}

All we have done in this case is enclose the operations
within a block called tm_atomic. The tm_atomic keyword
indicates that all the instructions in the following block
are part of a transaction. For each of the memory accesses,
the compiler could generate code as listed below. Calling
functions is a challenge since the called functions also
have to be transaction-aware. Therefore, it is potentially
necessary to provide two versions of the compiled func-
tion: one with and one without support for transactions.
In case any of the transitively called functions uses a
tm_atomic block by itself, nesting has to be handled. The
following is one way of doing this:
1. Check whether the same memory location is part of

another transaction.
2. If yes, abort the current transaction.
3. If no, record that the current transaction referenced the

memory location so that step 2 in other transactions
can find it.

4. Depending on whether it is a read or write access,
either (a) load the value of the memory location if the
variable has not yet been modified or load it from the
local storage in case it was already modified, or (b)
write it into a local storage for the variable.
Step 3 can fall away if the transaction previously

accessed the same memory location. For step 2 there
are alternatives. Instead of aborting immediately, the
transaction can be performed to the end and then the
changes undone. This is called the lazy abort/lazy commit
method, as opposed to the eager/eager method found
in typical database transactions (described earlier in this
article).

What is needed now is a definition of the work that is
done when the end of the tm_atomic block is reached

44 September 2008 ACM QUEUE rants: feedback@acmqueue.com

(i.e., the transaction is committed). This work can be
described as follows:
1. If the current transaction has been aborted, reset all

internal state, delay for some short period, then retry,
executing the whole block.

2. Store all the values of the memory locations modified
in the transaction for which the new values are placed
in local storage.

3. Reset the information about the memory locations
being part of a transaction.
The description is simple enough; the real problem is

implementing everything efficiently. Before we discuss
this, let’s take a brief look at whether all this is correct
and fulfills all the requirements.

CORRECTNESS AND FIDELITY
Assuming a correct implementation (of course), we are
able to determine whether a memory location is currently
used as part of another implementation. It does not mat-
ter whether this means read or write access. Therefore, it
is easy to see that we are not ever producing inconsistent
results. Only if all the memory accesses inside the tm_
atomic block succeed and the transaction is not aborted
will the transaction be committed. This means, however,
that as far as memory access is concerned, the thread is
completely alone. We have reduced the code back to the
initial code without locks, which obviously is correct.

The only remaining question about correctness is:
will the threads using this TM technology really termi-
nate if they are constantly aborting each other? Showing
this is certainly theoretically possible, but in this article
it should be sufficient to point at a similar problem. In
IP-based networking (unlike token-ring networks) all the
connected machines could start sending out data at the
same time. If more than one machine sends data, a con-
flict arises. This conflict is automatically detected and the
sending attempt is restarted after a short waiting period.
IP defines an exponential backup algorithm that the
network stacks have to implement. Given that we live in
a world dominated by IP-based networks, this approach

must work fine. The results can be directly transferred
over to the problem of TM.

One other question remains. Earlier we rejected the
solution of using a single lock because it would prevent
the concurrent execution of f1_1 and f2_2. How does it
look here? As can easily be seen, the set of memory loca-
tions used for the two functions is disjunct. This means
that the set of memory locations in the transactions in
f1_1 and f2_2 is also disjunct, and therefore the checks for
concurrent memory uses in f1_1 will never cause an abort
because of the execution of f2_2 and vice versa. Thus, it is
indeed trivially possible to solve the issue using TM.

Add to this the concise way of describing transactions,
and it should be obvious why TM is so attractive.

WHERE IS TM TODAY?
Before everybody gets too excited about the prospects
of TM, we should remember that it is still very much a
topic of research. First implementations are becoming
available, but we still have much to learn. The VELOX
project (http://www.velox-project.eu/), for example, has
as its goal a comprehensive analysis of all the places in an
operating system where TM technology can be used. This
extends from lock-free data structures in the operating-
system kernel to high-level uses in the application server.
The analysis includes TM with and without hardware
support.

The VELOX project will also research the most useful
semantics of the TM primitives that should be added to
higher-level programming languages. In the previous
example it was a simple tm_atomic keyword. This does
not necessarily have to be the correct form; nor do the
semantics described need to be optimal.

A number of self-contained STM implementations
are available today. One possible choice for people to
get experience with is TinySTM (http://tinystm.org). It
provides all the primitives needed for TM while being
portable, small, and depending on only a few services,
which are available on the host system.

Based on TinySTM and similar implementations, we
will soon see language extensions such as tm_atomic
appear in compilers. Several proprietary compilers have
support, and the first patches for the GNU compilers are
also available (http://www.hipeac.net/node/2419). With
these changes it will be possible to collect experience with
the use of TM in real-world situations to find solutions to
the remaining issues—and there are plenty of issues left.
Here are just a few:

Recording transactions. In the preceding explanation
we assumed that the exact location of each memory loca-

Parallel
Programming
with
Transactional Memory

ACM QUEUE September 2008 45 more queue: www.acmqueue.com

tion used in the transaction is recorded. This might be
inefficient, though, especially with HTM support. Record-
ing information for every memory location would mean
having an overhead of several words for each memory
location used. As with CPU caches, which theoretically
could also cache individual words, this often constitutes
too high of a price. Instead, CPU caches today handle
cache lines of 64 bytes at once. This would mean for a
TM implementation that step 2 in our description would
not have to record an additional dependency in case the
memory location is in a block that is already recorded.

But this introduces problems as well. Assume that in
the final example code all four variables are in the same
block. This means that our assumption of f1_1 and f2_2
being independently executable is wrong. This type of
block sharing leads to high abort rates. It is related to the
problem of false sharing, which in this case also happens
and therefore should be corrected anyway.

These false aborts, as we might want to call them, are
not just a performance issue, though. Unfortunate place-
ment of variables actually might lead to problems with
them never making any progress at all because they are
constantly inadvertently aborting each other. This can
happen because of several different transactions going
on concurrently that happen to touch the same cache
memory blocks but at different addresses. If blocking is
used, this is a problem that must be solved.

Handling aborts. Another detail described earlier is
the way aborts are handled. What has been described is
the so-called lazy abort/lazy commit method (lazy/lazy
for short). Transactions continue to work even if they
are already aborted, and the results of the transaction
are written into the real memory location only when the
entire transaction succeeds.

This is not the only possibility, though. Another pos-
sibility is the exact opposite: the eager/eager method.
In this case transactions will be recognized as aborted as
early as possible and restarted if necessary. The effect of
store instructions will also immediately take effect. In
this case the old value of the memory location has to be
stored in memory local to the transaction so that, in case
the transaction has to be aborted, the previous content
can be restored.

There are plenty of other ways to handle the details. It
might turn out that no one way is sufficient. Much will
depend on the abort rate for the individual transaction.
It could very well be that compilers and TM runtimes will
implement multiple different ways at the same time and
flip between them for individual transactions if this seems
to offer an advantage.

Semantics. The semantics of the tm_atomic block (or
whatever it will be in the end) have to be specified. It is
necessary to integrate TM into the rest of the language
semantics. For example, TM must be integrated with
exception handling for C++. Other issues are the handling
of nested TM regions and the treatment of local variables
(they need not be part of the transaction but still have to
be reset on abort).

Performance. Performance is also a major issue.
Plenty of optimizations can and should be performed by
the compiler, and all this needs research. There are also
practical problems. If the same program code is used in
contested and uncontested situations (e.g., in a single-
threaded program), the overhead introduced through TM
is too high. It therefore might be necessary to generate
two versions of each function: one with TM support and
the other without. The TM runtime then has to make sure
that the version without TM support is used as frequently
as possible. Failure to the one side means loss of perfor-
mance; failure to the other side means the program will
not run correctly.

CONCLUSION
TM promises to make parallel programming much easier.
The concept of transaction is already present in many
programs (from business programs to dynamic Web appli-
cations), and it has proved reasonably easy to grasp for
programmers. We can see first implementations coming
out now, but all are far from ready for prime time. Much
research remains to be done. Q

REFERENCES

1. Herlihy, M., Moss, J.E.B. 1993. Transactional memory:
Architectural support for lock-free data structures.
Proceedings of the 20th International Symposium on
Computer Architecture; http://citeseer.ist.psu.edu/
herlihy93transactional.html.

2. Drepper, U. 2007. What every programmer should
know about memory; http://people.redhat.com/
drepper/cpumemory.pdf.

LOVE IT, HATE IT? LET US KNOW
feedback@acmqueue.com or www.acmqueue.com/forums

ULRICH DREPPER is a consulting engineer at Red Hat,
where he has worked for the past 12 years. He is interested
in all kinds of low-level programming and has been involved
with Linux for almost 15 years.
© 2008 ACM 1542-773/08/0900 $5.00

