Perfect Hash Families in Polynomial Time

Charles J. Colbourn ${ }^{1}$

${ }^{1}$ School of Computing, Informatics, and Decision Systems Engineering
Arizona State University
October 2010

Perfect Hash Families

Definition

- A perfect hash family $\operatorname{PHF}(N ; k, v, t)$ is an $N \times k$ array on v symbols, in which in every $N \times t$ subarray, at least one row consists of distinct symbols.
- The smallest N for which a $\operatorname{PHF}(N ; k, v, t)$ exists is the perfect hash family number, denoted $\operatorname{PHFN}(k, v, t)$.

Perfect Hash Families

Example $\operatorname{PHF}(6 ; 12,3,3)$

Perfect Hash
Families in
Polynomial Time
Charles J. Colbourn

Perfect Hash Families

$$
\left[\begin{array}{llllllllllll}
0 & 1 & 2 & 2 & 1 & 2 & 2 & 0 & 1 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 & 2 & 2 & 2 & 1 & 0 & 1 & 2 & 1 \\
1 & 0 & 0 & 2 & 2 & 2 & 1 & 1 & 2 & 1 & 0 & 2 \\
2 & 0 & 1 & 1 & 2 & 0 & 2 & 0 & 1 & 1 & 2 & 1 \\
2 & 0 & 2 & 1 & 2 & 1 & 0 & 2 & 2 & 1 & 1 & 0 \\
2 & 0 & 1 & 2 & 1 & 1 & 2 & 2 & 0 & 1 & 2 & 1
\end{array}\right]
$$

Perfect Hash Families

Example $\operatorname{PHF}(6 ; 12,3,3)$

Families in
Polynomial Time
Charles J. Colbourn

Perfect Hash Families

$$
\left[\begin{array}{llllllllllll}
0 & 1 & 2 & 2 & 1 & 2 & 2 & \downarrow & \downarrow & \downarrow & 1 & 0 \\
0 & 0 \\
0 & 2 & 1 & 0 & 2 & 2 & 2 & 1 & 0 & 1 & 2 & 1 \\
1 & 0 & 0 & 2 & 2 & 2 & 1 & 1 & 2 & 1 & 0 & 2 \\
2 & 0 & 1 & 1 & 2 & 0 & 2 & 0 & 1 & 1 & 2 & 1 \\
2 & 0 & 2 & 1 & 2 & 1 & 0 & 2 & 2 & 1 & 1 & 0 \\
2 & 0 & 1 & 2 & 1 & 1 & 2 & 2 & 0 & 1 & 2 & 1
\end{array}\right]
$$

Perfect Hash Families

- It is "well known" that, for fixed v and $t, \operatorname{PHFN}(k, v, t)$ grows like $\log k$ (see Mehlhorn 82, Fredman-Komlos 84, Blackburn-Wild 98, for example).
- But constructing specific PHFs remains challenging!
- Why am I (and why should you be) interested?

Covering Array. Definition

Perfect Hash

- Let N, k, t, and v be positive integers.
- Let C be an $N \times k$ array with entries from an alphabet Σ of size v; we typically take $\Sigma=\{0, \ldots, v-1\}$.
$\left(c_{1}, \ldots, c_{t}\right)$ is a tuple of t column indices $\left(c_{i} \in\{1, \ldots, k\}\right)$, and $c_{i} \neq c_{j}$ whenever $\nu_{i} \neq \nu_{j}$, the t-tuple $\left\{\left(c_{i}, \nu_{i}\right): 1 \leq i \leq t\right\}$ is a t-way interaction.
- The array covers the t-way interaction $\left\{\left(c_{i}, \nu_{i}\right): 1 \leq i \leq t\right\}$ if, in at least one row p of C , the entry in row ρ and column c_{i} is ν_{i} for $1 \leq i \leq t$. Array C is a covering array $\mathrm{CA}(N ; t, k, v)$ of strength t when every t-way interaction is covered.

Perfect Hash Families

Covering Array. Definition

- Let N, k, t, and v be positive integers.
- Let C be an $N \times k$ array with entries from an alphabet Σ of size v; we typically take $\Sigma=\{0, \ldots, v-1\}$.
- When $\left(\nu_{1}, \ldots, \nu_{t}\right)$ is a t-tuple with $\nu_{i} \in \Sigma$ for $1 \leq i \leq t$, $\left(c_{1}, \ldots, c_{t}\right)$ is a tuple of t column indices
$\left(c_{i} \in\{1, \ldots, k\}\right)$, and $c_{i} \neq c_{j}$ whenever $\nu_{i} \neq \nu_{j}$, the t-tuple $\left\{\left(c_{i}, \nu_{i}\right): 1 \leq i \leq t\right\}$ is a t-way interaction.

Covering Array. Definition

- Let N, k, t, and v be positive integers.
- Let C be an $N \times k$ array with entries from an alphabet Σ of size v; we typically take $\Sigma=\{0, \ldots, v-1\}$.
- When $\left(\nu_{1}, \ldots, \nu_{t}\right)$ is a t-tuple with $\nu_{i} \in \Sigma$ for $1 \leq i \leq t$, $\left(c_{1}, \ldots, c_{t}\right)$ is a tuple of t column indices $\left(c_{i} \in\{1, \ldots, k\}\right)$, and $c_{i} \neq c_{j}$ whenever $\nu_{i} \neq \nu_{j}$, the t-tuple $\left\{\left(c_{i}, \nu_{i}\right): 1 \leq i \leq t\right\}$ is a t-way interaction.
- The array covers the t-way interaction $\left\{\left(c_{i}, \nu_{i}\right): 1 \leq i \leq t\right\}$ if, in at least one row ρ of C , the entry in row ρ and column c_{i} is ν_{i} for $1 \leq i \leq t$.
- Array C is a covering array $\mathrm{CA}(N ; t, k, v)$ of strength t when every t-way interaction is covered.

Covering Array

CA(13;3,10,2)

0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1
1	1	1	0	1	0	0	0	0	1
1	0	1	1	0	1	0	1	0	0
1	0	0	0	1	1	1	0	0	0
0	1	1	0	0	1	0	0	1	0
0	0	1	0	1	0	1	1	1	0
1	1	0	1	0	0	1	0	1	0
0	0	0	1	1	1	0	0	1	1
0	0	1	1	0	0	1	0	0	1
0	1	0	1	1	0	0	1	0	0
1	0	0	0	0	0	0	1	1	1
0	1	0	0	0	1	1	1	0	1

Covering Array

Motivation Software interaction testing

- Construct a large software system by combining software, hardware, and network components each intended to perform some simple function.
- Even when each component operates 'correctly', interactions among selections for components may cause faults.
- Columns are components or factors; selections of particular components are levels for the factors.
- Rows are tests or runs.
- Every t-way interaction is tested in at least one run!
- The sparsity of effects...

Perfect Hash Families

The First Connection

Theorem
If a $\operatorname{PHF}(s ; k, m, t)$ and $a \mathrm{CA}(N ; t, m, v)$ both exist then a $\mathrm{CA}(s N ; t, k, v)$ exists.

- $\mathrm{B}=\left(b_{i j}\right)$ is an $s \times k$ array on m symbols forming a $\operatorname{PHF}(s ; k, m, t)$.
- $\mathrm{A}=\left(a_{i j}\right)$ is an $N \times m$ array on v symbols forming a CA($N ; t, m, v)$.
- Produce an $s N \times k$ array $\mathrm{C}=\left(c_{i j}\right)$ as follows. For each $1 \leq i \leq s, 1 \leq j \leq N$, and $1 \leq \ell \leq k$, set $c_{(i-1) N+j, \ell}=a_{j, b_{i, \ell}}$.

Perfect Hash Families

Methods

- A number of methods construct PHFs:

Perfect Hash

Charles J. Colbourn

Perfect Hash Families

Methods

- Direct methods: From codes, orthogonal arrays, finite geometries, modular sequences of integers, no three in arithmetic progression, algebraic curves.
- Recursive methods: "Cut-and-paste", column replacement techniques.
- Probabilistic methods: Select an array at random, and if there are enough rows, it "works" with high probability.
- Computational methods: Random, greedy, local optimization, or metaheuristic search such as simulated annealing, tabu search, genetic algorithms, ...

Perfect Hash Families

Methods and Limitations

- But there remains a big problem...
> - Direct methods appear to apply for a very limited set of parameters.
> - Recursive methocls require very good 'small' ingredients, and appear to work well only when the strength is 'small'.
> - Probabilistic methods ensure the existence of the PHF but do not typically give us the actual array.
> - Computational methods, when sophisticated, do not seem fast enough; and when naive, do not seem to yield results competitive with the direct techniques.
> $>$ We need to construct PHFs explicitly.

Perfect Hash Families

Methods and Limitations

- But there remains a big problem...
- Direct methods appear to apply for a very limited set of parameters.
- Recursive methods require very good 'small' ingredients, and appear to work well only when the strength is 'small'.
- Probabilistic methods ensure the existence of the PHF but do not typically give us the actual array.
- Computational methods, when sophisticated, do not seem fast enough; and when naive, do not seem to yield results competitive with the direct techniques.

Perfect Hash Families

Methods and Limitations

- But there remains a big problem...
- Direct methods appear to apply for a very limited set of parameters.
- Recursive methods require very good 'small' ingredients, and appear to work well only when the strength is 'small'.
- Probabilistic methods ensure the existence of the PHF but do not typically give us the actual array.
- Computational methods, when sophisticated, do not seem fast enough; and when naive, do not seem to yield results competitive with the direct techniques.
- We need to construct PHFs explicitly.

A Random Method

- Choose an array from $\{1, \ldots, v\}^{N \times k}$ uniformly at random.
- For any set of t columns, the probability that it is not separated is $\left(1-\frac{\prod_{i=1}^{t} v+1-i}{v^{t}}\right)^{N}$.
- So the expected number of sets of t columns not separated is $\binom{k}{t}\left(1-\frac{\prod_{i=1}^{t} v+1-i}{v^{t}}\right)^{N}$.
- When this expected number is less than 1 , some array has all sets of t columns separated!

A Random Method

- Fix t independent of n.
- Take logarithms of $\binom{k}{t}\left(1-\frac{\prod_{i=1}^{t} v+1-i}{v^{t}}\right)^{N}<1$ to get

$$
N>c t \log k
$$

for a constant c depending only on t and v.

- This shows us the right growth rate for $\operatorname{PHFN}(k, v, t)$.

Derandomizing

The Stein-Lovász Method

- Instead of generating the array at random $\{1, \ldots, v\}^{N \times k}$, generate one row at a time at random from $\{1, \ldots, v\}^{k}$.
- After ρ rows have been generated, keep track of the number of sets of t columns separated so far.
- For an as-yet-unseparated set of columns, what is the probability that the next row chosen separates it?
- Because the row is selected at random, this is just $\frac{\prod_{i=1}^{t} v+1-i}{v^{t}}$.

Derandomizing

The Stein-Lovász Method

- Now count in two ways all possible ways to choose a row and a t-set of columns separated by that row for the first time. Suppose that the number of t-sets not yet separated is σ.
- First, if the expected number of t-sets separated by a row is ψ then the number of (row,separated column) pairs is ψv^{k}.
- Secondly, for any specific t-set T that is not yet separated, the number of rows separating it is $v^{k-t} \prod_{i=1}^{t} v+1-i$, so the number of (row,separated column) pairs is $\sigma v^{k-t} \prod_{i=1}^{t} v+1-i$.
- So $\psi=\frac{\prod_{i=1}^{t} v+1-i}{v^{t}} \sigma$.

Derandomizing

The Stein-Lovász Method

- So in every row, if σt-sets of columns were not yet separated before the row, the expected number still not separated after the row is

$$
\sigma-\frac{\prod_{i=1}^{t} v+1-i}{v^{t}} \sigma=\frac{v^{t}-\prod_{i=1}^{t} v+1-i}{v^{t}} \sigma .
$$

- To derandomize, choose the row that separates the largest number of previously unseparated t-sets.
- Let σ_{i} be the number of as-yet-unseparated t-sets after i rows are selected. Then $\sigma_{0}=\binom{k}{t}$ and

$$
\sigma_{i+1} \leq \frac{v^{t}-\prod_{i=1}^{t} v+1-i}{v^{t}} \sigma_{i} \text { for } i>0
$$

Derandomizing

The Stein-Lovász Method

- So $\sigma_{m} \leq\binom{ k}{t}\left(\frac{v^{t}-\prod_{i=1}^{t} v+1-i}{v^{t}}\right)^{m}$.
- Solve for m in $\sigma_{m}<1$.
- But how can we choose the 'best' row at each stage?

Derandomizing

- At any stage the set of t-sets remaining to distinguish forms a t-uniform hypergraph on k vertices.
- When all remaining t-sets are to be separated by the next row, the row must form a colouring of the k vertices in v colours.
- Every t-set must be polychromatic ('rainbow'), receiving t different colours.
- The strong chromatic number is the minimum number of colours in such a strong colouring of the hypergraph.

Derandomizing

Hypergraph Colouring
Perfect Hash

- But computing the strong chromatic number is NP-hard in general...
- So although we have found a natural greedy method, its running time remains exponential in k.

Derandomizing

Average is Good Enough

- A simple but key observation... Our analysis did not depend on picking the best row, just on picking one at least as good as the average!
- But can we choose a row that is at least average? Evidently we can compute the average, and we can compute the number of newly separated t-sets for any specific candidate row, so given one we could certify that it is at least average (or that it is not).
- Generate candidate rows at random? But then we have reintroduced randomness to the method.

Density

- A partial row R is a vector in $(\{1, \ldots, v\} \cup\{\star\})^{k}$. Think of \star as meaning 'not yet determined'.
- We can ask: If we fill in the \star entries in R randomly, what is the expected number of t-sets newly separated? Call this the density for R.
- When R and R^{\prime} are partial rows, write $R \rightarrow R^{\prime}$ when R^{\prime} is obtained from R by changing one \star to a value from $\{1, \ldots, v\}$.
- A fill sequence is a collection R_{k}, \ldots, R_{0} of partial rows where R_{i} contains exactly $i \star$ entries and $R_{i} \rightarrow R_{i-1}$ for $1 \leq i \leq k$.

Density

- Consider a fill sequence $R_{k} \rightarrow R_{i-1} \rightarrow \cdots \rightarrow R_{0}$.
- If the density of R_{i-1} is at least that of R_{i} for $1 \leq i \leq k$, then because
- the density of R_{k} is $\frac{\prod_{i=1}^{t} v+1-i}{v^{t}} \sigma$, which is exactly the average number of previously unseparated t-sets separated by a random row, then
- the density of R_{0} is at least the average number of previously unseparated t-sets separated by a random row -
- but R_{0} has no \star entries, and hence its density is the actual number of previously unseparated t-sets separated by this row.

Density

- So all we need to do is find a way to get R_{i-1} from R_{i} so that the density does not decrease, and to do this efficiently.
- Consider R_{i}. Let the indices of the \star entries be free and the remainder fixed.
- Choose one free index. There are v ways to change the \star here to an entry.
- For each of the $\binom{k-1}{t-1}$ ways to select $t-1$ other indices, consider the t-set containing those $t-1$ together with the chosen free index.

Density

- For each way to choose a symbol to place in the free index, determine the expectation that the t-set is separated for the first time, conditioned on fixing the chosen symbol in the free index.
- Then for every choice of symbol s of the free index, form the sum δ_{s} of these conditional expectations over all $\binom{k-1}{t-1}$ ways to select $t-1$ other indices.
- Select a symbol \bar{s} whose sum is at least the average!
- (Indeed if we carry out the same computation of the sum δ_{\star} of conditional expectations by placing a \star again in the free index, the change in density from R_{i} to R_{i-1} is $\delta_{\bar{s}}-\delta_{\star}$, but $\delta_{\star}=\frac{1}{v} \sum_{i=1}^{v} \delta_{i}$.)

Density

- When t is fixed, the effort to make a new row that is at least as good as average is polynomial in k.
- But beware: t is in the exponent, so for practical reasons t had better be small, not just 'fixed'.

Density

- This method is greedy in its selection of rows, and greedy in its selection of symbols within a row.
- Its efficiency results from backing off from requiring a best row, and settling for an average one.
- We did not do this to get a method that was intended to be practical, but here comes the surprise.

Density in Practice

Figure: $\operatorname{PHFN}(k, 5,5)$

Perfect Hash Families in Polynomial Time

Charles J. Colbourn

Perfect Hash Families

Density in Practice

Perfect Hash Families in Polynomial Time

Charles J. Colbourn

Perfect Hash Families

Figure: $\operatorname{PHFN}(k, 6,6)$

Density in Practice

Figure: $\operatorname{PHFN}(k, 5,5)$

Conclusion

- Derandomizing a greedy randomized algorithm leads to an efficient deterministic algorithm for generating PHFs, and
- perhaps more surprisingly, this gives the best current general method for making them!

