Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Perfect Hash Families

Perfect Hash Families in Polynomial Time

Charles J. Colbourn¹

¹School of Computing, Informatics, and Decision Systems Engineering Arizona State University

October 2010

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Definition

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Perfect Hash Families

- A perfect hash family PHF(N; k, v, t) is an N × k array on v symbols, in which in every N × t subarray, at least one row consists of distinct symbols.
- The smallest N for which a PHF(N; k, v, t) exists is the perfect hash family number, denoted PHFN(k, v, t).

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Example PHF(6; 12, 3, 3)

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Example PHF(6; 12, 3, 3)

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

- It is "well known" that, for fixed v and t, PHFN(k, v, t) grows like log k (see Mehlhorn 82, Fredman-Komlos 84, Blackburn-Wild 98, for example).
- But constructing specific PHFs remains challenging!
- Why am I (and why should you be) interested?

Covering Array. Definition

- ▶ Let *N*, *k*, *t*, and *v* be positive integers.
- Let C be an N × k array with entries from an alphabet Σ of size v; we typically take Σ = {0,..., v − 1}.
- ▶ When (ν_1, \ldots, ν_t) is a *t*-tuple with $\nu_i \in \Sigma$ for $1 \le i \le t$, (c_1, \ldots, c_t) is a tuple of *t* column indices $(c_i \in \{1, \ldots, k\})$, and $c_i \ne c_j$ whenever $\nu_i \ne \nu_j$, the *t*-tuple $\{(c_i, \nu_i) : 1 \le i \le t\}$ is a *t*-way interaction.
- The array *covers* the *t*-way interaction {(*c_i*, ν_i) : 1 ≤ *i* ≤ *t*} if, in at least one row ρ of C, the entry in row ρ and column *c_i* is ν_i for 1 ≤ *i* ≤ *t*.
- Array C is a covering array CA(N; t, k, v) of strength t when every t-way interaction is covered.

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Covering Array. Definition

- ▶ Let *N*, *k*, *t*, and *v* be positive integers.
- Let C be an N × k array with entries from an alphabet Σ of size v; we typically take Σ = {0,..., v − 1}.
- ▶ When (ν_1, \ldots, ν_t) is a *t*-tuple with $\nu_i \in \Sigma$ for $1 \le i \le t$, (c_1, \ldots, c_t) is a tuple of *t* column indices $(c_i \in \{1, \ldots, k\})$, and $c_i \ne c_j$ whenever $\nu_i \ne \nu_j$, the *t*-tuple $\{(c_i, \nu_i) : 1 \le i \le t\}$ is a *t*-way interaction.
- The array *covers* the *t*-way interaction {(*c_i*, ν_i) : 1 ≤ *i* ≤ *t*} if, in at least one row ρ of C, the entry in row ρ and column *c_i* is ν_i for 1 ≤ *i* ≤ *t*.
- Array C is a covering array CA(N; t, k, v) of strength t when every t-way interaction is covered.

Charles J. Colbourn

Covering Array. Definition

- Let N, k, t, and v be positive integers.
- Let C be an N × k array with entries from an alphabet Σ of size v; we typically take Σ = {0,..., v − 1}.
- ▶ When (ν_1, \ldots, ν_t) is a *t*-tuple with $\nu_i \in \Sigma$ for $1 \le i \le t$, (c_1, \ldots, c_t) is a tuple of *t* column indices $(c_i \in \{1, \ldots, k\})$, and $c_i \ne c_j$ whenever $\nu_i \ne \nu_j$, the *t*-tuple $\{(c_i, \nu_i) : 1 \le i \le t\}$ is a *t*-way interaction.
- ► The array *covers* the *t*-way interaction $\{(c_i, \nu_i) : 1 \le i \le t\}$ if, in at least one row ρ of C, the entry in row ρ and column c_i is ν_i for $1 \le i \le t$.
- Array C is a covering array CA(N; t, k, v) of strength t when every t-way interaction is covered.

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Covering Array CA(13;3,10,2)

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Covering Array

Motivation Software interaction testing

- Construct a large software system by combining software, hardware, and network components each intended to perform some simple function.
- Even when each component operates 'correctly', interactions among selections for components may cause faults.
- Columns are components or *factors*; selections of particular components are *levels* for the factors.
- Rows are *tests* or *runs*.
- Every t-way interaction is tested in at least one run!
- ► The sparsity of effects...

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

The First Connection

Theorem

If a PHF(s; k, m, t) and a CA(N; t, m, v) both exist then a CA(sN; t, k, v) exists.

- $B = (b_{ij})$ is an $s \times k$ array on m symbols forming a PHF(s; k, m, t).
- ► A = (a_{ij}) is an N × m array on v symbols forming a CA(N; t, m, v).
- Produce an sN × k array C = (c_{ij}) as follows. For each 1 ≤ i ≤ s, 1 ≤ j ≤ N, and 1 ≤ ℓ ≤ k, set c_{(i-1)N+j,ℓ} = a_{j,b_{i,ℓ}.}

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Methods

A number of methods construct PHFs:

- Direct methods: From codes, orthogonal arrays, finite geometries, modular sequences of integers, no three in arithmetic progression, algebraic curves.
- Recursive methods: "Cut-and-paste", column replacement techniques.
- Probabilistic methods: Select an array at random, and if there are enough rows, it "works" with high probability.
- Computational methods: Random, greedy, local optimization, or metaheuristic search such as simulated annealing, tabu search, genetic algorithms, ...

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Methods

- A number of methods construct PHFs:
 - Direct methods: From codes, orthogonal arrays, finite geometries, modular sequences of integers, no three in arithmetic progression, algebraic curves.
 - Recursive methods: "Cut-and-paste", column replacement techniques.
 - Probabilistic methods: Select an array at random, and if there are enough rows, it "works" with high probability.
 - Computational methods: Random, greedy, local optimization, or metaheuristic search such as simulated annealing, tabu search, genetic algorithms, ...

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Methods and Limitations

But there remains a big problem...

- Direct methods appear to apply for a very limited set of parameters.
- Recursive methods require very good 'small' ingredients, and appear to work well only when the strength is 'small'.
- Probabilistic methods ensure the existence of the PHF but do not typically give us the actual array.
- Computational methods, when sophisticated, do not seem fast enough; and when naive, do not seem to yield results competitive with the direct techniques.
- ▶ We need to construct PHFs explicitly.

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Methods and Limitations

- But there remains a big problem...
 - Direct methods appear to apply for a very limited set of parameters.
 - Recursive methods require very good 'small' ingredients, and appear to work well only when the strength is 'small'.
 - Probabilistic methods ensure the existence of the PHF but do not typically give us the actual array.
 - Computational methods, when sophisticated, do not seem fast enough; and when naive, do not seem to yield results competitive with the direct techniques.
- We need to construct PHFs explicitly.

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Methods and Limitations

- But there remains a big problem...
 - Direct methods appear to apply for a very limited set of parameters.
 - Recursive methods require very good 'small' ingredients, and appear to work well only when the strength is 'small'.
 - Probabilistic methods ensure the existence of the PHF but do not typically give us the actual array.
 - Computational methods, when sophisticated, do not seem fast enough; and when naive, do not seem to yield results competitive with the direct techniques.
- We need to construct PHFs explicitly.

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

A Random Method

- ► Choose an array from {1,..., v}^{N×k} uniformly at random.
- ► For any set of *t* columns, the probability that it is not separated is $\left(1 \frac{\prod_{i=1}^{t} \nu + 1 i}{\nu^{t}}\right)^{N}$.
- ► So the expected number of sets of *t* columns not separated is $\binom{k}{t} \left(1 \frac{\prod_{i=1}^{t} v + 1 i}{v^{t}}\right)^{N}$.
- When this expected number is less than 1, some array has all sets of t columns separated!

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへつ

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

A Random Method

Fix *t* independent of *n*.

► Take logarithms of $\binom{k}{t} \left(1 - \frac{\prod_{i=1}^{t} v + 1 - i}{v^{t}}\right)^{N} < 1$ to get

 $N > ct \log k$

for a constant c depending only on t and v.

• This shows us the right growth rate for PHFN(k, v, t).

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

The Stein-Lovász Method

- ► Instead of generating the array at random {1,..., v}^{N×k}, generate one row at a time at random from {1,..., v}^k.
- After ρ rows have been generated, keep track of the number of sets of t columns separated so far.
- For an as-yet-unseparated set of columns, what is the probability that the next row chosen separates it?
- Because the row is selected at random, this is just $\frac{\prod_{i=1}^{t} v+1-i}{v^{t}}.$

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

The Stein-Lovász Method

- Now count in two ways all possible ways to choose a row and a *t*-set of columns separated by that row for the first time. Suppose that the number of *t*-sets not yet separated is σ.
- First, if the expected number of *t*-sets separated by a row is ψ then the number of (row,separated column) pairs is ψν^k.
- Secondly, for any specific *t*-set *T* that is not yet separated, the number of rows separating it is v^{k−t} ∏^t_{i=1} v + 1 − i, so the number of (row,separated column) pairs is σv^{k−t} ∏^t_{i=1} v + 1 − i.

• So
$$\psi = \frac{\prod_{i=1}^{t} v + 1 - i}{v^t} \sigma$$
.

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

The Stein-Lovász Method

So in every row, if σ t-sets of columns were not yet separated before the row, the expected number still not separated after the row is

$$\sigma - \frac{\prod_{i=1}^{t} \nu + 1 - i}{\nu^{t}} \sigma = \frac{\nu^{t} - \prod_{i=1}^{t} \nu + 1 - i}{\nu^{t}} \sigma.$$

- To derandomize, choose the row that separates the largest number of previously unseparated *t*-sets.
- ► Let σ_i be the number of as-yet-unseparated *t*-sets after *i* rows are selected. Then $\sigma_0 = \binom{k}{t}$ and $\sigma_{i+1} \leq \frac{v^t \prod_{i=1}^t v + 1 i}{v^t} \sigma_i$ for i > 0.

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

The Stein-Lovász Method

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Perfect Hash Families

• So
$$\sigma_m \leq \binom{k}{t} \left(\frac{v^t - \prod_{i=1}^t v + 1 - i}{v^t} \right)^m$$
.

Solve for
$$m$$
 in $\sigma_m < 1$.

But how can we choose the 'best' row at each stage?

Derandomizing Hypergraph Colouring

- At any stage the set of t-sets remaining to distinguish forms a t-uniform hypergraph on k vertices.
- When all remaining *t*-sets are to be separated by the next row, the row must form a colouring of the *k* vertices in *v* colours.
- Every t-set must be polychromatic ('rainbow'), receiving t different colours.
- The strong chromatic number is the minimum number of colours in such a strong colouring of the hypergraph.

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Derandomizing Hypergraph Colouring

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Perfect Hash Families

- But computing the strong chromatic number is NP-hard in general...
- So although we have found a natural greedy method, its running time remains exponential in k.

・ロト・日本・日本・日本・日本・日本

Derandomizing Average is Good Enough

- A simple but key observation... Our analysis did not depend on picking the best row, just on picking one at least as good as the average!
- But can we choose a row that is at least average? Evidently we can compute the average, and we can compute the number of newly separated *t*-sets for any specific candidate row, so given one we could certify that it is at least average (or that it is not).
- Generate candidate rows at random? But then we have reintroduced randomness to the method.

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

- A partial row R is a vector in ({1,..., v} ∪ {*})^k. Think of * as meaning 'not yet determined'.
- We can ask: If we fill in the * entries in R randomly, what is the expected number of t-sets newly separated? Call this the *density* for R.
- When R and R' are partial rows, write R → R' when R' is obtained from R by changing one * to a value from {1,..., v}.
- A fill sequence is a collection R_k,..., R₀ of partial rows where R_i contains exactly i ★ entries and R_i → R_{i-1} for 1 ≤ i ≤ k.

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

- Consider a fill sequence $R_k \rightarrow R_{i-1} \rightarrow \cdots \rightarrow R_0$.
 - ► If the density of R_{i-1} is at least that of R_i for $1 \le i \le k$, then because
 - the density of *R_k* is <u>Π^t_{i=1} v+1-i</u> σ, which is exactly the average number of previously unseparated *t*-sets separated by a random row, then
 - the density of R₀ is at least the average number of previously unseparated *t*-sets separated by a random row —
 - but R₀ has no * entries, and hence its density is the actual number of previously unseparated t-sets separated by this row.

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

- So all we need to do is find a way to get R_{i-1} from R_i so that the density does not decrease, and to do this efficiently.
- Consider R_i. Let the indices of the * entries be free and the remainder fixed.
- Choose one free index. There are v ways to change the * here to an entry.
- For each of the ^{k-1}_{t-1} ways to select t − 1 other indices, consider the t-set containing those t − 1 together with the chosen free index.

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

- For each way to choose a symbol to place in the free index, determine the expectation that the *t*-set is separated for the first time, conditioned on fixing the chosen symbol in the free index.
- Then for every choice of symbol s of the free index, form the sum δ_s of these conditional expectations over all (^{k−1}) ways to select t − 1 other indices.
- Select a symbol s whose sum is at least the average!
- (Indeed if we carry out the same computation of the sum δ_{*} of conditional expectations by placing a * again in the free index, the change in density from R_i to R_{i-1} is δ_s − δ_{*}, but δ_{*} = ¹/_v ∑^v_{i=1} δ_i.)

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Perfect Hash Families

- When t is fixed, the effort to make a new row that is at least as good as average is polynomial in k.
- But beware: t is in the exponent, so for practical reasons t had better be small, not just 'fixed'.

・ロト・西ト・山田・山田・山下

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

- This method is greedy in its selection of rows, and greedy in its selection of symbols within a row.
- Its efficiency results from backing off from requiring a best row, and settling for an average one.
- We did not do this to get a method that was intended to be practical, but here comes the surprise.

Density in Practice

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Perfect Hash Families

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ · < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Density in Practice

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

Perfect Hash Families

Figure: PHFN(k, 6, 6)

・ロト・四ト・モート ヨー うへぐ

Density in Practice

Perfect Hash Families in Polynomial Time

Charles J. Colbourn

Perfect Hash Families

・ロト・西・・日・・日・・日・

Perfect Hash Families in Polynomial Time

> Charles J. Colbourn

- Derandomizing a greedy randomized algorithm leads to an efficient deterministic algorithm for generating PHFs, and
- perhaps more surprisingly, this gives the best current general method for making them!