
 

              
      
 
 
 
  

 
 
 
 
Keyword(s):   
 
 
 
Abstract: 
 

 

 

 
                                                                                                      
                                                                                                                      
 

  

   

                                                       

  

Persistence Programming Models for Non-Volatile Memory

Hans-J. Boehm, Dhruva R. Chakrabarti

HP Laboratories
HPL-2015-59

non-volatile memory; locks; transactions; consistency; semantics

It is expected that DRAM memory will be augmented, and eventually replaced, by one of several up-and-coming memory
technologies, all of which are non-volatile, in that they retain their contents without power. This allows primary memory to be used
as a fast disk replacement. It also enables more aggressive programming models that directly leverage persistence of primary
memory. However, it is challenging to maintain consistency of memory in such an environment. There is no consensus on the
right programming model for doing so, and subtle differences can have large, and sometimes surprising, effects on the
implementation and its performance. The existing literature describes several programming systems that provide selective
persistence for user data structures. We more carefully and precisely describe the semantics of those systems, and thus the
associated programming rules. We expose subtle and generally ignored trade-offs of programming generality vs implementation
difficulty, as well as additional interesting points in the design space.

External Posting Date: August 6, 2015 [Fulltext]          Approved for External Publication

Internal Posting Date: August 6, 2015 [Fulltext]

Copyright 2015 Hewlett-Packard Development Company, L.P.



NVM Programming Models

Persistence Programming Models for Non-Volatile Memory

Hans-J. Boehm ∗ Dhruva R. Chakrabarti
Hewlett-Packard Laboratories

{hboehm@google.com, dhruva.chakrabarti@hp.com}

Abstract
It is expected that DRAM memory will be augmented, and eventu-
ally replaced, by one of several up-and-coming memory technolo-
gies, all of which are non-volatile, in that they retain their con-
tents without power. This allows primary memory to be used as
a fast disk replacement. It also enables more aggressive program-
ming models that directly leverage persistence of primary memory.
However, it is challenging to maintain consistency of memory in
such an environment. There is no consensus on the right program-
ming model for doing so, and subtle differences can have large, and
sometimes surprising, effects on the implementation and its perfor-
mance.

The existing literature describes several programming systems
that provide selective persistence for user data structures. We more
carefully and precisely describe the semantics of those systems,
and thus the associated programming rules. We expose subtle and
generally ignored trade-offs of programming generality vs imple-
mentation difficulty, as well as additional interesting points in the
design space.

Categories and Subject Descriptors D.3.3 Programming Lan-
guages [Language Constructs and Features]: Concurrent Program-
ming Structures

General Terms Languages, Design, Reliability, Performance

Keywords non-volatile memory, locks, transactions, consistency,
semantics

1. Introduction
It is widely believed [1] that conventional DRAM primary memory
technology will not continue to scale, and is thus likely to be
replaced over the next 5 or 10 years. At the same time. a number of
new memory (NVRAM) technologies, such as memristors [33] and
phase change memory (PCM) [24], are being developed. These
provide an interesting twist to programming, since they are non-
volatile. They allow the CPU to store data that will persist across
power failures directly at DRAM-like speed through ordinary CPU
store instructions.

Current applications maintain their data structures in DRAM,
and periodically copy important data, often in a different format to

∗ Current affiliation: Google. Most of this work was done while both authors
were at HP Labs.

[Copyright notice will appear here once ’preprint’ option is removed.]

disk, in order to ensure that it persists beyond the end of the process.
A system based on NVRAM potentially eliminates that need by allow-
ing in memory data structures to be persistent. This model removes
the frequent need to maintain both an in-memory object format
and a separate persistent file format, together with the substantial
amounts of code needed to keep them consistent. Data structures
persist in NVRAM as they are created and modified and the evolved
state can be reused when an application is restarted.

Several fundamentally different approaches to handling failures
in such a scenario have been proposed. All of them are complicated
by the fact that only primary memory, and not CPU caches, are
likely to be nonvolatile; thus it is hard to preserve the entire system
state.

One approach, suggested in [29] is to restart the whole system
in exactly the state before it failed, and to keep the whole process
transparent to software. This approach is clearly worthy of further
investigation, but it currently imposes two challenges:

• There is no actual hardware that makes this possible, and build-
ing such hardware is extremely challenging. It requires that all
register and cache state be saved in a form suitable for restart.
This is challenging for CPU registers and cache, and seems bor-
derline intractable for state held in peripheral devices.

• It can deal with a relatively limited set of failure scenarios, like
power failures. There is no clear way of coping with any kind
of software failure, for example.

Here we instead follow [7, 10, 35], and look at restarting an
application with a subset of its data structures explicitly identified
as persistent by the programmer. This results in other challenges
that we address here:

• When the program is restarted, data structures must be in a
consistent state, i.e. crashes half-way through an update must
be hidden.

• As mentioned above, some of the program state at the time of
the crash may still have been in the CPU cache and will be lost.
Thus we need to ensure that “important” program state reaches
NVRAM soon enough to allow us to recover.

Many of the consistency issues encountered in this context are
reminiscent of those encountered for shared memory communica-
tion between threads. And indeed we show that we can leverage
synchronization constructs already found in most existing applica-
tions to infer most of the required consistency properties for NVRAM.

Most prior work in this area [10, 32, 35] has extended trans-
actional memory facilities [23, 34] to provide a transactional pro-
gramming construct that not only ensures isolation, i.e. that other
threads do not see incomplete transactions, but also guarantees
atomicity in the event of failures, i.e. transactions appear to have
completely executed or not at all when the program is restarted af-
ter a failure.

NVM Programming Models 1 2015/7/14



if (persistent_data_exists()) {
restart_from_persistent_data();

} else {
initialize_persistent_data();

}
use_persistent_data();

Figure 1. Structure of an NVRAM Program

We instead follow our approach from [7] and take a lock-based
view, for several reasons:

• A lock-based model is strictly more general. From our perspec-
tive, which is concerned only with correctness and not perfor-
mance, critical sections acquiring a single global lock are a
good model of transactions.1

• It is unlikely that transactional memory will completely replace
locks. There are reasons to expect transactional memory to be-
come much more popular[13, 18]. But we expect future sys-
tems to still contain some locks. Notably, there is a non-trivial
effort required to convert lock-based programs to ones based
on TM [4], and we expect such conversions to be gradual. Ad-
ditionally, some constructs, such as condition wait, arguably do
not lend themselves well to the TM paradigm (cf. [19] but also
[26]). We expect the relatively small amounts of code that need
to directly use condition variables to continue to use locks. The
draft specification of TM constructs for C++ [34] requires the
co-existence of locks with transactions.

• As we pointed out in [7], a lock-based approach, by allowing
thread communication within critical sections, raises issues hid-
den by the transactional memory approach.

This paper explores several different possible semantics for
lock-based programs in the context of NVRAM all based on this gen-
eral approach. We sketch corresponding implementation variants.
In the process we highlight the simplifications that would be en-
abled if we restricted ourselves to transactions.

2. Setting and Core Issues
Applications will normally be structured as in Figure 1, though we
will simplify this in the more precise treatment in Section 4.3. For
this paper, we will assume that there are persistent variables, such
as persistent data here, that are initially set to zero, but will
have their old value if the program is being restarted.2 The pro-
grammer adds restart code that checks the state of these persistent
variables, and either reuses the persistent data, or initializes it if
there was none. Our goal is to ensure that if the programmer finds
an existing data structure, then it is sufficiently consistent for use.

We assume a fail-stop or crash-recovery model. Persistent vari-
ables survive a tolerated failure,3 other program state does not.

We assume that data structures are inconsistent only in critical
sections, and hence treat lock operations as indicators of consistent
program points. We will call program points at which the executing

1 This model was used in [18], and then refined slightly quite late in the
process. We ignore explicit transaction aborts, whose utility is controver-
sial [19].
2 Our implementation supports a slightly different model in which persistent
data is allocated in named persistent regions containing a root pointer that
can be used to access the data, as in [7]. This is orthogonal to the issues
discussed here.
3 We assume that the hardware defines the notion of “tolerated failure”, and
that it includes at least power failures. Clearly some failures, e.g. a direct
hit by a large meteorite, are not tolerated.

x, y are persistent and initially x=y=0
T1 T2

1: lock(l2)
2: lock(l1)
3: x = 1
4: unlock(l1)

5: lock(l1)
6: y = x
7: unlock(l1)

8: ...
9: unlock(l2)

Figure 2. An example program: Outermost critical sections are
failure-atomic and can have happens-before relations among them.

thread holds no locks thread-consistent. If no locks are held by any
thread, all data structures should be in a consistent state. For many
applications, this is naturally true. If not, the programmer can add
“critical sections”, using locks acquired only by a single thread,
to explicitly delimit other regions during which data structures
are inconsistent. This establishes our assumption without adding
contention between threads.4

Since we assume that data structures may be inconsistent while
any lock is held, we must effectively guarantee, as in [7], that
“outermost critical sections” are failure atomic, i.e. intermediate
states within an outermost critical section are never visible to restart
code. Note that

lock(l1);
x = a;
lock(l2);
unlock(l1);
y = b;
unlock(l2);

has a single outermost critical section; an outermost critical section
may be delimited by lock and unlock on different locks.

Using locks to ensure atomicity of persistent updates gives rise
to situations not encountered in a purely transactional setting [7].
Consider the program in figure 2 with 2 threads. Each thread exe-
cutes a single outermost critical section. Note that at step 8, thread
1 has completed its outermost critical section, but there is no way to
advance to a consistent state unless thread 2 also completes steps 8
and 9. In the event of a crash at step 8, even if all of Thread 1’s up-
dates have reached persistent memory, implementations will gen-
erally have to undo Thread 1’s completed critical section [7]. This
preserves causality and ensures that while the unit of durability is
an outermost critical section, any happens-before dependences be-
tween such units are maintained in NVRAM.

Updates to persistent memory outside critical sections or non-
CS code (i.e. when no locks are held) may have to be handled
in a special manner since restoring a consistent state may require
undoing updates in non-CS code. Restoring a consistent state either
requires

• Maintaining a single undo log and backing up to an actually
encountered state in which no thread held a lock.

• Tracking happens-before between thread-specific undo logs.

The former adds contention and may require extra operations to
be reverted, so we focus on the latter.

3. Contributions
NVRAM enables a variety of new and different programming mod-
els. Even if we restrict our attention, as we do, to those solutions

4 Implementations may wish to add additional syntax for this case.

NVM Programming Models 2 2015/7/14



ri = x; Load a global variable
x = ri Store into a global variable
x = c
lock lj Acquire lock lj
unlock lj Release lock lj

Figure 3. Simple statements in base language

that persist only a user-specified subset of program data and rely
on lock- or transaction-like update mechanisms, and if we ignore
a number of interesting issues related to, for example, combining
pointer-containing persistent data regions occupying the same ad-
dress space in a single process, as we also do, some profound trade-
offs remain.

Prior work in this area has selected a point in that space and
explored an implementation on that space, with only nominal at-
tention to semantic implications. Most other work (cf. [10, 35])
assumes a restrictive database-like setting of transactions (for our
purposes a single lock) and restricting persistent memory updates
to within those transactions. This model prohibits idioms that are
common in existing lock-based or transactional-memory-based
programs, such as first building a data structure privately, unpro-
tected by transactions or locks, and then “publishing” it on comple-
tion by setting a flag or pointing to it. Quite recently, [7] developed
a much more general model, supporting both multiple locks, and
updates to persistent memory outside of critical sections, at the
expense of added implementation cost and complexity.

Our contribution consists of precisely defining the semantics
and corresponding programming rules for these models in a single
framework, and analyzing at a foundational level, the implementa-
tion impact of those choices. In the process we explore some poten-
tially interesting intermediate models that have not been previously
studied.

4. A minimal language
Consider a tiny programming language subset, similar to that
used in [5], in which a program consists of a collection of code
sequences, each denoting the actions performed by a particular
thread. We denote local variables (or registers) with ri, locks with
names lj, and global variables with names pi and ti. Informally,
variables pi are persistent, and their contents are preserved across
application restarts. Variables ti are transient, and reset on restart.

We assume that variables take integer values. We assume that
the sets of local variables ri appearing in the code sequence for
each thread are disjoint. We allow the statements S shown in
Figure 3 in each code sequence. Here c refers to an integer constant.

By restricting ourselves to loop- and recursion-free code, we do
not need to distinguish programs and traces, simplifying the discus-
sion. We avoid relying on this oversimplification in any substantive
ways.

We assume that only the final values of transient variables are
observable at program termination. This is yet another assumption
made only for convenience: It significantly simplifies the later
presentation, without hiding essential issues. It is again not needed
in practice.

The grammar for a code sequence is given in figure 4. Here x
represents either a persistent variable pi or a transient variable ti.
The conditional tests for a nonzero value of ri. A program consists
of a set of statement sequences corresponding to its threads.

We assume that a given local (register) variable ri is mentioned
in the code sequence for at most one thread.

SS ::= ε
| S; SS
| if (ri) { SS } else { SS }; SS

Figure 4. Code sequences

4.1 Sequential failure-free semantics
We can define sequential, failure-free semantics of a code sequence
as follows:

Code sequences update a state consisting of two components:

• The variable state V maps local (register) and global (persis-
tent and transient) variables to integer values. (We distinguish
register and global transient variables only in that the former
are mentioned by a single thread. We distinguish persistent and
transient variables later.)

• The lock state L maps locks to integers informally correspond-
ing to the number of times each (reentrant) lock is held.

Statements and code sequences define a map from a state, i.e.
an element of V × L to V × L ∪ {abort}.

Assignment statements copy or set the appropriate state com-
ponent. A lock li statement increments the count associated with
the lock li. An unlock li statements decrements the count asso-
ciated with li, or aborts if the count was already zero.

The mapping for a statement sequence is the composition of that
for the initial statement with that for the remaining statement se-
quence, except that it produces abort if the initial statement aborts.
The code sequence if (ri) then SS1 else SS2; SS3 is equiva-
lent to SS1; SS3 if R(ri) is nonzero, and SS2; SS3 otherwise.

A single threaded program P allows a final state sf for an initial
state s0 if the mapping for its statement sequence does not abort,
and produces the final state sf .

Throughout this paper we will assume that no locks are held in
initial states, i.e. s0.L(l) = 0 for all l.

4.2 Concurrent failure-free semantics
Most mainstream languages [6, 27] assign semantics to this lan-
guage essentially as follows.5

An execution consists of a triple (X, W, S), where

1. X is a set of pairs (s, i) denoting program actions, where s is
a statement in the program or a conditional and i is an integer.
Informally, the presence of s in X indicates s was executed, and
assigned the corresponding value i, or resulted in the final lock
count i. We sometimes write X(s) to denote the value assigned
by s.6 If a conditional c is in X , the condition was executed,
and x(c) indicates the value of c and hence which branch was
executed.

2. The write-seen-by function W maps each load or conditional
(i.e. each read) l to the corresponding store (write) of the same
variable, or to a special init action indicating an implied as-
signment of its initial value. Intuitively W (l) is the store seen
by l.

3. A synchronization order S is a total order on the lock acquisi-
tions and releases in X .

We say that statement or conditional S1 is sequenced before
statement statement or conditional S2 if either

5 The Java situation is actually somewhat more complicated, in that it tries,
somewhat unsuccessfully, to also assign semantics to programs with data
races.
6 If our programs had loops, the first element of each pair would be a specific
program action, not a statement.

NVM Programming Models 3 2015/7/14



• S1 is immediately followed by S2 in the statement sequence for
a thread, or

• S1 is a conditional and S2 is the first statement or conditional
in either the then or the else clause, or

• S1 is sequenced before Sm and Sm is sequenced before S2.

We say that an action is sequenced before another action if that
relation applies to the statements they contain.

Given a synchronization order S, we say that an unlock lj
statement synchronizes with a lock lj statement referring to the
same lock, if the lock statement follows the unlock statement in
S. In addition, the special init action synchronizes with the first
action (in sequenced before order) of every thread.

We say that a statement a happens before b if

• a is sequenced before b, or
• a synchronizes with b, or
• There exists a statement c such that a happens before c and c

happens before b.

We say that a (potentially incomplete) execution is valid with
respect to an initial state if:

• The synchronization order is consistent with the behavior of
reentrant locks: For every lock operation, either the last pre-
ceding (in S) lock operation on the same lock was performed
by the same thread, or X(l) is 0, i.e. the lock is not held. For ev-
ery unlock operation u, X(u) > 0, and the last lock operation
on the same lock was performed by the same thread.

• The happens before relation is irreflexive, i.e. there are no
cycles that result in a happens before a.

• W (l) happens before l (or is init), i.e. every load “sees” a store
that happens before it.7

• It is never the case that W (l) = s and there is another store s′

to the same variable that “happens between” them, i.e. such that
s happens before s′ and s′ happens before l.

• If W (l) = w, then X(l) = X(w), i.e. the value observed by
a load or conditional is the stored value. If W (l) = init, then
X(l) is the initial value of the variable read by l.

• If statement or conditional S2 was executed, and S1 is se-
quenced before S2, then so was S1.

• The executed statements are consistent with values loaded by
conditionals: If c is a conditional in X and X(c) is nonzero,
then, and only then, the first statement in the then clause is in
X . Otherwise, and only then, is the first statement in the else
clause in X .

• A lock or unlock operation appears in S iff it appears in X .

We say that an execution is complete, if also:

• If the first of two consecutive (non-conditional) statements is in
X , then so is the second. If a conditional is in X , then so is
the first statement of the then- or else-clause, and so is the first
statement in the subsequent statement sequence (if any).

We say that a valid execution has a data race if there are
two store statements to the same variable, or a load and a store
statement accessing the same variable, that are not ordered by the
happens before relation, i.e. that are not prevented from executing
concurrently.

7 Loads never see “racing” stores. This is realistic since we do not assign
meaningful semantics to programs with data races. It is also essential;
see [6] for details.

Main program:
initialize_persistent_data();
use_persistent_data();

Restart code:
restart_from_persistent_data();
use_persistent_data();

Figure 5. Simplified structure of an NVRAM Program

The semantics of a particular program define the allowable final
values of variables, given a set of initial values. This is defined as
follows:

• If there exists an execution with a data race, we consider the
program to be erroneous.

• Otherwise a multithreaded program is said to allow a final state
sf if there is an execution in which the value of each variable
v in sf is X(a), where a is last (in happens-before order)
assignment to v. (If this last preceding store were not unique,
there would be a data race.)8 It is equal to the initial value of the
variable if there is no such assignment.

We say that (X ′, W ′, S′) is a prefix of (X, W, S) if both are
valid executions for the same initial state, X ′ ⊆ X , W ′ is W
restricted to X ′ and S′ is S restricted to X ′.

4.3 Desired failure semantics
Informally, we expect to be able to restart a program after a failure,
and for tolerated failures, the new execution of the program should
find the heap in a consistent state, i.e. in a state that could have
occurred in the original execution, and in which no locks were held.

We will continue to simplify the discussion by assuming that
each statement is executed at most once. To this end, we will
assume a single failure, and that a restartable program pair, or just
restartable program consists of two programs as defined before9:
The main program and the restart code. Rather than having the
code test for preexisting persistent data as in 1, we completely
separate out the recovery code and replicate the actual body of the
program accesses the persistent data, as in Figure 5. (Both figures
show a simplified single-threaded case.)

We define a state s to be consistent with respect to a main
program m and a given input state s0, if:

• A (partial) execution of m from s0 allows s, and
• there are no locks held in s, i.e. ∀i . s.L(li) = 0.

We define the semantics of a restartable program pair as follows.
An execution of a restartable program (m, r) from initial state s0

to final state sf consists of either an execution of m with final state
s (the failure-free case) or a pair of executions (the failure case)10:

1. An execution of m from s0 to a failure state s†, consistent with
respect to m and s0, and

2. An execution of r from state clean(s†) to sf

where clean(s) is defined to be s with all transient and register
variables reset to zero.

8 In fact, W (l) is uniquely determined by the synchronization order. For
non-erroneous executions, our semantics are equivalent to sequential con-
sistency [22].
9 Each of these in turn consists of statement sequences corresponding to
each thread.
10 The fully general repeated failure case would require a sequence.

NVM Programming Models 4 2015/7/14



We say that (m, r) on s0 allows final state sf if there is an
execution of (m, r) from s0 to sf .

Our goal is to provide implementation strategies, possibly cou-
pled with program restrictions, that ensure that the observable pro-
gram behavior, i.e. final values of transient variables, correspond to
an allowed final state.

For example, if our main program is p0 = 1000; p1 = 1000;,
and our initial state maps all variables to zero, these semantics pre-
clude starting the restart code in a state in which p1 = 1000 and
p0 = 0. As a result of compiler and hardware optimizations, this
is typically nontrivial to enforce. In fact, programming languages
like C and C++ currently carefully avoid even specifying that the
individual assignments here are indivisible; they may be performed
e.g. a byte at a time. Thus, with a naive implementation and/or in
the absence of program restrictions, restart code may run in a con-
text in which assignments were only partially completed when they
were interrupted by the crash, something that we clearly also wish
to preclude.

These semantics are clearly desirable, in that they allow the
restart code to only see consistent failure states, and hide effects
of caching and the like. It is less clear that they are reasonably im-
plementable, or required for reasonable programs. Understanding
those issues requires an (abstract) look at possible implementations.
We begin by presenting an abstract machine to use as a translation
target.

5. The target language
Implementations of our minimal language consist of a transla-
tion from minimal language programs to augmented programs in
a slightly extended target language, together with an algorithm for
reconstructing the program state after a crash of such an augmented
program. This target language exposes the addition of three addi-
tional state components:

• An undo log U , which, for each thread contains a sequence of
(statement, variable or lock, old value) triples.11

• A synchronization history H , which maps each lock to the last
statement to acquire or release that lock, and each lock or
unlock statement to the previous statement to update the lock.

• A subset P of the persistent variables that have reached NVRAM
and will thus be visible after a failure.

We also explicitly include the program counters C, one for each
thread, in the state. C maps the thread index to the next statement
or conditional to be executed by each thread, or to a special done
value.

Thus our state is now a 6-tuple (C, V, L, U, H, P ), comprising
program counters, the variable state, the lock state, the undo log,
the synchronization history, and the persistence state P .

When talking about running a target program in a given state,
we will typically specify only V , and then only the bindings to
persistent variables. We implicitly assume that initially all locks
and other variables are bound to zero, U , and H are empty, P
contains all persistent variables, and C refers to the initial statement
in each statement sequence.

In reality, an implementation would include mechanisms to
occasionally prune U and H , thus limiting their size, as is discussed
in [7]. We’ll omit that here, since it is orthogonal to our goal of
understanding the semantic issues.

11 This clearly biases our implementation strategies towards those based
on an undo log. Although those are not the only viable strategies, we
believe they suffice to illustrate the trade-offs between implementation and
semantics.

flush Flush persistent variables into NVRAM

log xi Append (a way to identify the) immediately following
statement, xi and its current value to log

Figure 6. Added statements in target language

Our abstract target language is the same as our minimal lan-
guage, except that we add the statements in Figure 6.

We (somewhat informally) specify the operational semantics
of the target language as follows. Each execution step chooses a
thread t to execute next. If its next instruction, i.e. Ct is lock li,
then L(li) must be zero or H(li) must be in the same thread.
An execution step for statement s in thread t is then performed
as follows:

• If s is an assignment, update V as in the sequential semantics.
If the assigned variable is in P , remove it. Update Ct to refer to
the next statement, or done if there is none.

• If s is a lock or unlock operation on li, acquire or release the
lock and update L as in the previous semantics. After acquiring
the lock, or before releasing it, set H(s) to H(li). Then set
H(li) to s. Update Ct as above.

• If s is flush, add all persistent variables in V to P . Update Ct

as above.
• If s is log pi, and the immediately following statement in t is

s′, append (s′, i, V (pi)) to U(t). If s is log li, instead append
(s′, i, L(li)) to U(t). Update Ct as above.

• If s is a conditional if(ri) ..., set C(t) to the first statement
in the then or else clause, depending on V (ri)

• At any point, without modifying C, optionally add one or more
persistent variables to P . This reflects the fact that a processor
cache may choose to evict variables from the cache without an
explicit flush.

For a data-race-free and abort-free program in the base lan-
guage, this process produces a final state consistent with the se-
mantics in Section 4.2. It is easy to derive X and W for the corre-
sponding Section 4.2 semantics from the above program interpreta-
tion. The synchronization order S is encoded in the synchronization
history H .

In the event of a failure at state s, a target language program
produces a crash state containing U and an incomplete version
of V mapping all persistent variables in P to their values in s.
Other persistent variables modified by the computation since the
last flush may contain any values whatsoever.

For convenience we will assume that the synchronization his-
tory H is also available; in practice it might be reconstructed from
an augmented version of the undo log.

The first step of recovering after a failure will be to reconstruct
L from U by counting lock and unlock operations in U .

It is the job of the implementation to add flush and log
statements to the main program, and to transform the crash state
to a consistent state for the restart code. We describe several such
implementation strategies below.

5.1 Our target language vs. reality
Note that this target language reflects an optimistic view of actual
hardware capabilities. Most existing hardware and operating sys-
tems at best allow user-level programs to at most flush individual
cache lines to the underlying memory, be it NVRAM or DRAM [15].
In such environments, our flush statement could be implemented
with a software “write barrier” that maintains a set of possibly dirty
cache lines, so the the flush implementation knows which lines
to flush. Alternatively, most architectures provide a “flush entire

NVM Programming Models 5 2015/7/14



cache” operation that could possibly be exposed to user programs
via a new system call. A third option is to map the affected memory
range as write-through or uncacheable, in which case we expect a
relatively light-weight fence instruction to suffice as the flush im-
plementation. We expect the implementation options to improve as
NVRAM gains more practical significance.

Note that our flush statement is entirely different from, and
typically more expensive than, the memory fences often used to
enforce memory visibility among multiple threads. Memory fences
typically only ensure that memory operations are visible to the
cache, so that cache coherency mechanisms ensure a consistent
view. Our flush operation typically must ensure that stores have
reached actual physical non-volatile memory.

In order to ensure that U survives a crash, every log operation
must also ensure that log entries have reached NVRAM before con-
tinuing, or at least before the corresponding assignment reaches
NVRAM. This can be done directly with cache line flushes, or proba-
bly with other architecture-specific mechanisms, such as x86 “non-
temporal” stores.[35] Various optimizations are possible and use-
ful. Consecutive writes to the log are combinable, and repeated log
entries for the same variable can often be elided.

Current memory controllers add other challenges, but we expect
those to disappear with NVRAM support, such as Intel’s newly added
PCOMMIT instruction [16].

6. Implementation Strategy 1: Log all updates to
persistent memory locations

Our first implementation strategy roughly models that in [7] and
reconstructs a consistent state from the crash log by undoing all
updates in reverse-happens-before order until a consistent state is
reached such that the consistent state corresponds to a point that is
just after an unlock operation.

We “compile” the main program of a restartable program pair
by inserting a few statements into the original:

• Each assignment to a persistent global variable pi in the original
program is preceded by a log pi statement.

• Each lock statement is preceded by log li.
• Each unlock statement s is preceded by flush; log li.

The combination of the undo log U and synchronization history
H allows us to compute a happened-before relationship between
log entries:

• If a and b are both entries in Ut, i.e. they reflect actions by
the same thread, and a was added to the log before b, then a
happened before b.

• If a is an unlock operation, and b is a lock operation, and
H(b) = a, i.e. b acquired the lock immediately after a released
it, then a happened before b.

• If a happened before b and b happened before c, then a happens
before c.

This is essentially the same as the happens before relation from
Section 4.2, but defined on log entries.

Given an undo log U and a synchronization history H , we say
that an entry u in U is undo-eligible if either

• (directly eligible) the prefix of Ut ending with u contains more
lock than unlock actions (i.e. t still held a lock after u), and
no longer prefix contains an equal number of lock and unlock
actions, or

• (indirectly eligible) u happened after another undo-eligible
unlock action in U .

Given (V , U , H) generated when main program m started
from s0 failed, we can use the following algorithm to construct
a consistent state from the crash state:

ALGORITHM 1. We reconstruct L from U by subtracting the num-
ber of unlock operations for any given lock from the number of lock
operations for the same lock.12 We start with the variable state V at
the time of the failure, but reset all transient and register variables
to zero.

We then repeatedly update this lock state L, together with the
partial variable state V and undo log U , from the crash state, based
on the synchronization history H , as long as one of the following
applies to any thread t:

• If the last entry of a thread t’s undo log refers to an assignment
to pi, remove the undo log entry, and replace the value for pi in
V with the one saved in Ut.

• If the last entry of a thread t’s undo log refers to a lock
statement, remove the corresponding entry and decrement the
corresponding lock value in L.

• If the last entry u of a thread t’s undo log refers to an unlock
statement, the unlock entry is undo-eligible, and there is no
other lock entry l in U , such that H(l) = u, then remove the
entry for u from Ut and increment the corresponding lock value
in L. The last condition ensures that this critical section does
not happen before another one in a different thread that should
be undone first. We always undo actions in an order consistent
with reverse happens-before order; a critical section cannot be
undone before those that might have observed its effects.

LEMMA 1. If the execution of m on s0 was data-race-free, then
the state produced after repeated application of the above 3 undo
steps depends only on the resulting U , i.e. which unwind steps were
applied, not the order in which they were applied.

Proof. State updates are constrained to be undone in reverse
happened-before order. For different orders to produce different
outcomes, there would have to be two updates to the same lock
or persistent variable that are not ordered by happens-before. For
operations on the same lock, that’s impossible, since they are al-
ways ordered. Since there are no data races, there also cannot be
unordered assignments to the same persistent variable. •

LEMMA 2. For every U generated during the undo process, there
is a partial execution E′ of m from s0 resulting in that U , and
a synchronization history H ′, such that for every statement S for
which H ′(S) is defined, H ′(S) = H(S), i.e. lock acquisitions and
releases were performed in the same order as in the actual exe-
cution. Furthermore, the execution E′ results in lock and variable
states L′ and V ′ such that

• L′ is identical to that generated during the unwind process.
• V (pi) generated during unwinding is either equal to its value

at the time of the failure (if no undo log entries for that variable
were processed), or to V ′(pi) (if undo actions for V (pi) were
processed).

Proof. Take E′ to be the original execution restricted to any log
actions that are reflected in U , together with the immediately fol-
lowing statement corresponding to that log action, and any actions
that are sequenced before any of those actions. We then show, by
induction on the number of performed unwind actions, that E′ de-
fined this way always preserves this property. As each undo action
performed during the process, the state is restored to correspond to

12 This gives us an L consistent with U . It will include the effect of lock
or unlock operations that were logged, but not actually executed before the
failure.

NVM Programming Models 6 2015/7/14



a new E′ execution that terminated just after the previous action
logged by that thread, but is otherwise identical. •

LEMMA 3. Algorithm 1 always terminates in a consistent state in
which no locks are held, i.e. L(li) is zero, for all i.

Proof. Algorithm 1 can clearly not terminate while any thread’s
undo log ends in something other than an unlock entry. Since
happened-before is a strict partial order consistent with the total
order in which entries were added, there must always be a thread
undo log whose last entry e did not happen before any other entries.
Once algorithm 1 terminates, the last remaining undo log entry
of every thread must be an unlock entry, and the last entry
corresponding to every such happens-before-maximal thread must
be undo-ineligible. If any undo-eligible unlock remained in U it
would have happened-before one of these undo-ineligible maximal
entries, leading to a contradiction. Thus the algorithm terminates
when all Ut end with an undo-ineligible unlock entry. It follows
from the definition of undo-eligibility that each Ut contains an
equal number of lock and unlock entries. •

We complete the implementation by taking the crash state, re-
verted by Algorithm 1, s†, constructing a new state from the re-
sulting V and (all-zero) L, and using that as the start state for the
restart code.

THEOREM 1. For data-race-free programs, the above implemen-
tation achieves our desired failure semantics, i.e. it produces only
valid executions corresponding to a consistent failure state.

Proof. By Lemma 2 the state s†′ reconstructed by Algorithm 1
corresponds to a partial execution of of m on s0. By Lemma 3
there are no locks held at the end of this partial execution. Since
the undo process terminates just after each thread has performed
an unlock operation (or has just started), and every unlock opera-
tion is preceded by a flush operation, every update to a persistent
variable sequenced before this final unlock action would have been
correctly reflected in the state at failure. If it was not subsequently
modified in its original execution, it would have had, and retained,
its correct value. If it was subsequently modified, the undo action
corresponding to that modification would have restored its correct
value. Hence all persistent variables in s′† correspond to the par-
tial execution from Lemma 2, and all other variables are zero. Thus
we’ve achieved our desired failure semantics: It appears the recov-
ery action was restarted in a consistent persistent state of the origi-
nal execution. •

This algorithm achieves our goal. It also has the practical advan-
tage that it preserves the validity of common compiler optimiza-
tions: Since we always restore the state at the time of an unlock
operation, transformations such as sequentially correct reorderings
of assignments are never visible to the restart code; only transfor-
mations that reorder with respect to unlock operations would be
visible.

However, the approach in this section still has several important
shortcomings:

• It requires that we log persistent operations outside of critical
sections. Ideally we would like to be able to run existing un-
modified code outside of critical sections without slowing it
down. The need to eventually flush stored values out of pro-
cessor caches to NVRAM may already make that challenging, but
the need to maintain logs further removes us from this goal.

• We must undo long sequences of synchronization-free code
outside critical sections completely, even if they do not depend
on (happen after) critical sections that need to be undone. A
thread that performs no synchronization will have to be undone
to its start state. As a practical matter, we may have to keep very

large logs before we can be sure that they are no longer needed
for undo operations.

In the next three sections, we explore ways to lessen these
implementation constraints at the expense of additional constraints
on the programmer.

7. Implementation Strategy 2:
Restart-race-freedom

This strategy models the requirement used in [7] where code exe-
cuted outside a critical section should not arbitrarily update persis-
tent locations. Since no assumption can be made about atomicity of
such updates, such updates may appear to the restart code to have
been partially completed. Indeed any implicit atomicity assump-
tions often don’t make sense in higher level code: If a templatized
C++ function assigns to a variable of type T, where T is a template
parameter, it has no way to tell whether T is represented by a single
byte, which the hardware could atomically update, or a megabyte
data structure, which it could not. This is similar to disallowing data
races in multithreaded code [6, 14] or disallowing a signal handler
from accessing data that might be in the midst of an update [17].

Algorithm 1 avoids any such restrictions by reverting more ac-
tions than usually necessary. By always reverting all actions till
the last unlock action, it effectively ensures that statement se-
quences containing no lock or unlock statements are also treated
as atomic. The downside is that we may have to revert long se-
quences of actions unnecessarily.

Similarly to [7], we say that an execution is restart-race-free
if, an update u of a persistent variable pi, performed by the main
program outside a critical section, can only be read by restart code
if that restart code also observes an update u′ performed in a critical
section, such that u happens before u′. This means that if pi is
accessed by the restart code at all, the restart code must first read a
variable set in the later critical section to check that this is safe.

A program is restart-race-free on a given input if all executions
are restart-race-free.

Note that this continues to allow stores to persistent variables
outside of critical sections. The following common idiom is restart-
race-free, provided p1 is initially zero:

main program:
p0 = 42;
lock l1;
p1 = 1;
unlock l1;

restart code:
r1 = p1;
if (r1) then

r2 = p0;

The persistent variable p0 is not accessed by the restart code
unless the main program successfully executes the l1 critical sec-
tion.13

If we require restart-race-freedom, the following variant of Al-
gorithm 1 suffices, with the same code instrumentation as before:

ALGORITHM 2. Identical to Algorithm 1, except that assignments
are reverted only if they are undo-eligible. We no longer revert
assignments after the final unlock action in each thread.

THEOREM 2. For data-race-free and restart-race-free programs,
Algorithm 2 achieves our desired failure semantics.

13 In real code, it is likely that the access of p1 from restart code would also
be inside an l1 critical section, to avoid conventional data races. Purely
from a restart race perspective, that’s not necessary.

NVM Programming Models 7 2015/7/14



x, y are persistent and initially x=y=0
t1 t2

1: lock(lj)
2: lock(li)
3: ...
4: unlock(li)

5: lock li
8: ...
9: unlock(lj)

Figure 7. Lock of li causes lj to be added to ULt1

Proof. The only difference from the preceding algorithm is that
we may fail to undo assignments to persistent variables that are
not followed by a critical section in the reconstructed execution
to a consistent state. Since the program is restart-race-free, these
stores cannot be read by the restart code. Thus the execution of
the restart code and the value of transient variables are unaffected.
We’ve carefully defined the observable behavior of the program
execution to exclude the persistent variables we failed to undo; thus
observable behavior is unchanged.14 •

7.1 Logging elision
Insisting on restart-race-freedom gives us another important ben-
efit: If a program is restart-race-free, updates to persistent mem-
ory outside critical sections do not have to be logged unless there
is a need to undo those updates after a failure. The condition un-
der which such logging can be elided is discussed in [7]. Here we
present an algorithm to realize log elision during program execu-
tion.

The following data structures are maintained:

1. A global lock release history Hrel which maps each lock to the
total number of releases of that lock. We only count “outer-
most” releases of a reentrant lock, i.e. releases of Li such that
afterwards the total number of acquisitions and releases of Li
by that thread are equal.

2. A thread-specific “undo locks” set, ULt, is maintained by every
thread. At any point of execution, this set captures the set of
locks on which execution is currently conditioned; a thread’s
execution is no longer speculative when all such locks are
released at least one more time. Each element of ULt is a pair
(li, c), where c is a lock release count corresponding to the lock
li. A pair (li, c) is included in ULt if li is currently held by t
and li was acquired and released a total of c times before this
last acquisition.
As depicted in Figure 7, given a lock action Alock for lock li
by thread t1, if there exists an unlock action Aunlock (executed
by thread t2 such that t1 6= t2 ) such that Aunlock happens
before Alock , and if a lock lj is held by the thread t2 at the
time of execution of Aunlock , then a pair (lj, cj) is added to the
UL set corresponding to t1, where cj = Hrel (lj) at the point
Aunlock is executed. t1’s execution is now speculative until lj
is released another time.

3. A global history of undo locks Hundo which maps each lock li
to the value of ULt at the point of the last release of li, where t
is the thread that executed the corresponding unlock statement.
Effectively Hundo(li) gives the set of critical sections on which
the last release of li depended at the time it was performed.

14 In a more realistic setting, if we want to use some persistent memory
locations as an output medium, and thus make them observable, we would
still have to revert assignments to those specific “output” locations.

On an acquire of lock li by thread t, the following steps are
executed:

• Using Hrel , obtain cli, the number of times li has been re-
leased.

• Replace ULt by ULt ∪ {(li, cli)} ∪Hundo(li)

On a release of lock li by thread t, the following steps are
executed:

• Remove (li, cli) from ULt.
• Traverse ULt and if for a given lock lj, its corresponding

counter from Hrel(li) is greater than that found in ULt, re-
move that element from ULt. We know that there was an inter-
vening release of that lock, and we can no longer be forced to
undo as a result of that critical section.

• Add a mapping from li to the current value of ULt in Hundo .
• Add a mapping from li to cli + 1 in Hrel , where cli is remem-

bered from the lock acquisition.

Given the above algorithm, the following holds: During an
update outside a critical section, if for all elements in ULt, the
counter value for a lock from Hrel is greater than the corresponding
value found in ULt, the update does not depend on any data written
within a critical section that can be undone. If so, the update does
not have to be logged. Consequently, if the program crashes while
a thread is in the midst of an unlogged update outside a critical
section, that update will not be undone. But that does not matter
since that updated location should not be accessed by restart code
and no critical section that happened before the update can be
undone.

Since log entries outside critical sections are elided whenever
possible, this strategy overcomes the two shortcomings of strat-
egy 1: possibly unnecessary logging of updates outside critical sec-
tions during program execution and possibly unnecessary undoing
of such updates. However, strategy 2 still incurs some runtime over-
head for log elision analysis. The next strategy explores a constraint
on the programmer that enables log elision outside critical sections
without any analysis.

8. Implementation Strategy 3: Log only in critical
sections

Although the insistence on restart-race-freedom often allows us to
optimize away logging at run-time, the need to instrument non-
critical-section stores remains. This may be undesirable, both for
performance and other reasons. For example in a traditional com-
pilation setting it means that all library code that potentially touches
persistent data needs to be recompiled. It also differs from, for ex-
ample, the requirements of volatile-memory transactional memory
systems.

The most common use cases for updating persistent memory
outside of critical sections (or transactions) are similar to the exam-
ple in the previous section, and actually never require undo logging
in a critical section. The variable p0 will only be read if the subse-
quent critical section also completes. If it does, there is no reason to
undo the assignment. If the critical section fails to complete, there
is no reason to log either, since p0 will never be looked at. We can
make the required condition precise as follows:

We say that in a main program execution E of a program (m, r)
on s0, a persistent variable pi is guarded by an unlock action u, if

• pi is only assigned to before u or inside a critical section, and
• restart code r, when started in a consistent state resulting from

executing a prefix E′ of E, only reads pi if E′ includes u.

NVM Programming Models 8 2015/7/14



We say that a main program execution E of (m, r) on s0 is
strongly restart-race-free if every persistent variable assigned to
outside a critical section in that execution is guarded by a corre-
sponding unlock action. We say that a program (m, r) on s0 is
strongly restart-race-free if all its main program executions are.

In a strongly restart-race-free program, each persistent location
pi written outside a critical section is “published” by a critical
section c that makes it available to restart code. If the program fails
before c is completed, pi is not read by restart code at all. And pi is
not written by the main program outside of a critical section after
u′.

The difference between this and our earlier definition of restart-
race-freedom is that the publishing write, or more properly the crit-
ical section in which it occurs, depends only on the persistent vari-
able pi, and hence must apply to all updates of pi. For plain restart-
race-freedom, there can be a different “guard” critical section for
each update.

This property is satisfied by the most common real-life use cases
for non-critical-section persistent writes. The non-critical-section
code builds up a persistent data structure S, which is followed by a
critical section write w of a well-known location that or signals the
availability of S. In real code, w most commonly writes a pointer
to S. In our minimal language, we are restricted to writing a flag
variable. In the event of a failure before w, S becomes garbage and
can be reclaimed.

Strong restart-race-freedom precludes the following example,
which uses a zero value for p1 to signal that p0 is currently being
modified:

main program, thread 0:
p0 = 42;
lock l1; p1 = 1; unlock l1;
...
lock l1; p1 = 0; unlock l1;
p0 = 17;
a:
lock l1; p1 = 2; unlock l1;

restart code:
r1 = p1;
if (r1) then

r2 = p0;

Consider a failure at a, such that there is a need to undo the
middle critical section because the ellipsized code had observed
the effects of an incomplete critical section in another thread. If we
did not have a way to undo the second assignment to p0 we would
end up unwinding to a state in which p0 is still 17, but p1 is 1. This
is not a consistent state of the main program.

This code is not strongly restart-race-free because there is no
single guard critical section for all assignments to p0.

This program models real code that temporarily removes an
element from a persistent data structure, treats it as private data,
since it now has exclusive access, and then adds it back to the
persistent data structure. Such code is again restart-race-free, but
not strongly restart-race-free.

THEOREM 3. For a strongly restart-race-free program, Algo-
rithm 1 yields a valid execution, even if we fail to insert log state-
ments for persistent assignments outside of critical sections.

Proof. The only difference is that we may fail to correctly re-
store a persistent variable pi that was modified outside a critical
after the state s† restored by Algorithm 1, but before the actual fail-
ure. If s† reflects the execution of pi’s guard, then there can be no
such modification. If it does not, then pi may not be accessed by
the recovery code, and hence does not impact observable behavior.

•A similar implementation strategy can also be applied to other
programming restrictions that further restrict the amount of spec-
ulative state that may need to be undone after a failure. The next
section revisits a fairly draconian restriction along these lines that
has been pursued in other work.

9. Implementation Strategy 4: Undo only active
critical sections

We restrict our implementation strategy to modify Algorithm 1 to
only undo statements, separately for each thread t, until the number
of lock acquisitions and releases in Ut matches. We thus undo only
actions in incompletely executed critical sections.

THEOREM 4. Theorem 1 holds for Strategy 4 for data-race-free
and restart-race-free programs that never hold more than one (pos-
sibly reentrant) lock at a time.

Proof. No action in another thread can happen after an undo-
eligible unlock action. The unlock can only be directly undo-
eligible because it is a release of a nested acquisition of a lock,
and the thread still holds the lock. But that would have prevented
another thread from acquiring it. Thus this case is equivalent to
Algorithm 2, and the same result holds. •

THEOREM 5. Theorem 1 holds for Strategy 4 for data-race-free
and restart-race-free programs that always release all simultane-
ously held locks at once.

Proof. The argument is similar to before. This time there are no di-
rectly undo-eligible unlock actions, since we assume that there are
no failures between unlock actions for simultaneously held locks.
Thus no undo-eligible unlock action happens before anything else,
and there are no indirectly undo-eligible actions either. •

Note that since we do not flush non-critical-section updates
we still need the restart-race-freedom assumption to ensure that
relevant non-critical-section updates from before the last unwound
critical section are visible. Otherwise the restart code could rely on
unflushed persistent variables written after the last critical section.
If we also disallow non-critical-section updates, as in [35] that need
disappears.

Single-global-lock-atomicity transactional memory systems can
be viewed as satisfying this restriction. Disjoint-lock-atomicity [18,
28] can be viewed as releasing all concurrently held locks at once,
making it subject to Theorem 5.

10. Input and Output
In any of these strategies, batch input is easily modeled as providing
the initial state of the computation, and batch output can be mod-
eled as updating distinguished locations in NVRAM. However any
form of interactive or embedded input or output is more difficult
to accommodate. This is primarily because of the delayed commit
that may result from lock nesting. Even if a critical section com-
pletes, it may have to be undone after a failure (see Algorithm 1),
which in turn may result in undoing updates, if any, outside critical
sections. The delayed commit point for an update in a lock-based
program is reached when it can be guaranteed that the update will
not be undone even in the event of a crash.

Transactions [18] have a similar issue with I/O. But there it
suffices to defer I/O within a transaction to its end, i.e. when it
commits. But with all of our models except for Strategy 4, there
may be a need to defer I/O outside a critical section till its (delayed)
commit point. This clearly is a constraint on the program.

To help understand where a programmer can place an I/O op-
eration that cannot be deferred, we can expose a new interface
wait until committed() that blocks until it can be ensured that

NVM Programming Models 9 2015/7/14



Thread 1 Thread 2

lock l1
lock l3
unlock l3

lock l3
lock l2 unlock l3
buffer_not_full.wait(l2) wait_until_committed()
unlock l2 empty_buffer()
unlock l1 buffer_not_full.signal()

Figure 8. wait until committed and condition wait

any update at the program point containing this call cannot be un-
done. The implementation of this interface must ensure that all
prior deferred I/O operations are executed before returning. This
interface thus allows the program to send a message acknowl-
edging that prerequisites have been persisted in NVRAM by calling
wait until committed and then performing I/O conventionally.

Theoretically, wait until committed may acquire any lock
whatsoever, and it can be thought of as acquiring all locks in the
system, so some care is required to ensure deadlock freedom. A
thread must not call wait until committed while holding a lock.
This is sufficient to prevent purely lock-based deadlocks.

Simple uses of condition wait will also work. However, condi-
tion wait with nested locks may not. Consider Figure 8 and assume
that the release of lock l3 in Thread 1 synchronizes with the acquire
of l3 in Thread 2. While holding lock l1, Thread 1 acquires lock
l2 and tries to communicate with I/O Thread 2 through a buffer.
I/O Thread 2 calls wait until committed before emptying the
buffer and signaling Thread 1. But wait until committed will
never return since it is waiting for the delayed commit point to be
reached which in turn requires the outer critical section (protected
by lock l1) in thread 1 to complete (because of the synchronizes-
with relation induced by lock l3) which in turn requires thread 2
to signal Thread 1. Thus, we have a deadlock. A solution is to not
call condition wait under an outer lock in anticipation that there
may be another thread calling wait until committed . An outer
lock can be used as long as care is taken to ensure that offending
synchronizes-with relations (such as the one in Figure 8) do not
exist.15

11. Empirical Comparison
As in [7], we used DRAM to simulate NVRAM. In Table 1, we present
results comparing the 4 persistence strategies using a Linux x86
machine (Intel Xeon quad-core X5355 @ 2.66 GHz). All reported
numbers are averages over 6 runs.

We picked some of the same applications that were used in [7].
MDB [9] is a B-tree based key/value store that has been made
NVRAM-aware. mtest [7, 9] is a workload that belongs to the MDB
test suite and performs insertion, traversal, and deletion over 3000
key/value pairs. We chose all the applications in the SPLASH2 [37]
benchmark suite and adapted them. As in [7], we persist all non-
stack-allocated locations in SPLASH2. This is likely to create a
large number of accesses to persistent data, both inside and outside
critical sections, and is a good way to stress-test our strategies. On
the other hand, this methodology probably exposes tradeoffs that
might not be exhibited by real applications, such as MDB/mtest.

As discussed in Section 5.1, cache line flushes tend to be expen-
sive, perhaps unrealistically so for future NVRAM systems, and often

15 Similar issues also appear to arise in other related scenarios. For example,
[26] seems to inherently introduce blocking at the end of certain transac-
tions, also creating a need for a non-obvious, at least to us, deadlock analy-
sis.

Statistics Speedup vs s2 (%)
Applications #cs #str #out (%) s3 s4
mtest 0.10M 179K 98 0.5 9.9
barnes 0.13M 586M 99 7.7 10.3
fmm 6.6K 87M 99 10.6 12.9
ocean 788 98M 99 10.5 10.8
radiosity 0.25M 18M 96 0.8 NC
raytrace 74K 18M 99 0.1 37.9
volrend 72K 391M 99 8.7 13.0
water-nsq 6K 45K 99 -38 13.3

Table 1. Comparison of implementation strategies 2-4. 4 user
threads were used in every SPLASH2 application (K=103, M=106,
NC = non-conforming)

hide the overheads of logging. Hence, for all results reported in this
paper, we turned off cache flushing altogether. This helps us iso-
late the overheads and tradeoffs surrounding logging. Strategy 1 is
implemented as discussed in Section 6. Strategy 2 (denoted by s2)
uses log elision analysis described in Section 7. In programs where
a large number of accesses are outside critical sections, a large re-
duction in logging overhead is possible with strategy 2. We imple-
mented strategy 3 (denoted by s3) by inferring whether a store to
persistent memory is outside a critical section and simply not log-
ging that access, without performing any additional analysis. We
implemented strategy 4 (denoted by s4) by simply not building the
synchronization history H (Section 5). As discussed in Section 9,
this is safe if locks do not nest during program execution.

Table 1 summarizes our findings including some program statis-
tics. #cs denotes the total number of critical sections (both nested
and non-nested). #str denotes the total number of stores to persis-
tent memory encountered during execution. #out denotes the per-
centage of the above stores that were dynamically not in any criti-
cal section. We found that for the programs and configurations we
tested, strategy 2 could reduce logging of stores in more than 95%
of encountered stores, considering stores both within and outside
critical sections. It turns out that s2 never needed to log outside
critical sections, except for radiosity. We found that log elision
outside critical sections can lead to a large reduction in overheads.
While not shown in Table 1, compared to strategy 1, the workload
mtest ran 25% faster using strategy 2. For the SPLASH2 appli-
cations, the runtimes using s2 were better than those using s1 by
a number of times, ranging between 3x and 43x16. From these re-
sults, it appears that for performance reasons, we should really con-
sider s2 as the baseline strategy, perhaps relegating s1 to automatic
repair of “buggy” code with known restart races. S2 imposes mini-
mal constraints on the programmer and as Section 7 explains, they
are quite reasonable.

In the last 2 columns of Table 1, we present further reduction
in overheads that we can expect from strategies 3 and 4 with
strategy 2 as the baseline. We saw an improvement in performance
up to around 10% using s3 compared to s217. This is a modest
improvement but the applications we experimented with did not
have much nesting of locks either. Heavy nesting of locks could
lead to a larger cost of log elision analysis. Since we do not perform
any additional analysis to establish whether a program conforms
to strategy 3, it may not be safe all the time to simply not log

16 We may not see such a large reduction in overheads in real applications
simply because there may not be such a large number of stores to persistent
memory outside critical sections. The much more modest reduction for the
real application MDB/mtest is an indicator as well.
17 In the application water-nsq, we saw an unexpected performance degra-
dation using s3 compared to s2. It is possible that the additional log elision
analysis in s2 changes the concurrency pattern in its favor.

NVM Programming Models 10 2015/7/14



outside critical sections (as discussed in Section 8). In fact, for
the application radiosity, s2 needed to log some stores outside
critical sections (around 1% of total stores). While we did not
observe any incorrect behavior of radiosity with s3, it is left to
future work to automatically determine when a program conforms
to strategy 3.

It turns out that, among the applications we experimented with,
radiosity is the only one with dynamic nesting of locks18. Since
we are not assuming that these locks are released all at once, we
consider radiosity as non-conformant to strategy 4. For all the
other applications, simply turning off building and maintaining the
synchronization history is not only safe but also achieves perfor-
mance improvements upto 37%, compared to strategy 2. This indi-
cates that if a program is known to have no lock nesting, strategy
4 is the best option. In reality, strategy 4 should have even better
performance than what we have presented here. An optimal im-
plementation need not log lock and unlock operations at all. It is
sufficient to log just the persistent update operations for the current
critical section, treat those log entries as unnecessary on encoun-
tering an unlock operation, and reuse the existing logs for the next
critical section. Such an implementation should have lower logging
overheads and significantly better cache performance. Implement-
ing strategy 4 in this optimized manner is left to future work.

12. Related Work
There has been a fair amount of work on providing durable, iso-
lated transactions [10, 35]. While this is a very useful abstraction
for maintaining crash-resilience of persistent data structures, and
can be seen as an instance of our Strategy 4, we take the more
general approach of exploring persistence models in the context of
locks. Section 1 compares a lock-based view of persistence with a
transaction-based one.

The persistence model that is closest to our work is the one
presented in [7]. It presents what we call “Strategy 2” using a more
realistic, but less precise formulation. We effectively place this
work in a broader context, by expanding it to a set of models with
different tradeoffs, while giving it a more precise foundation, and
quantifying the expected performance differences between these
models. We present novel models that come with some programmer
restrictions but we make the case that, for many programs, the
performance improvement justifies the tradeoff.

NVM Direct [2] is a C library and a set of C extensions for
use in persistent memory programming. The APIs of NVM Direct
support NVM locking, volatile memory mutexes, and trans-
actions. Their NVM locks must be used together with transactions
to emulate our lock semantics. Their NVM locks are owned by a
transaction rather than a thread of execution. An explicit acquire
operation on an NVM lock is part of the API but no explicit corre-
sponding release operation is available. Locks are released if and
when the owning transaction commits or rolls back. The volatile
memory mutexes, intended to be used for manipulating transient
memory, are exactly the same as traditional mutexes with both ac-
quire and release operations available for them. [2] also supports
some other features, notably open transaction nesting, that we do
not address.

Although we are not completely confident about the semantics,
our reading is that this is essentially another implementation of
our Strategy 4 and, in the absence of volatile memory mutexes,
it benefits directly from Theorem 5. They appear to use a more
aggressive cache-flushing strategy, and do not rely on restart-race-
freedom in the way that we do.

In the presence of volatile memory mutexes or other conven-
tional thread synchronization, it is presumably possible, without a

18 We found that 3% of the critical sections were nested in radiosity.

conventional data race, to observe the nonvolatile effects of a sub-
sequently rolled back transaction in another thread, and as a result
commit a non-volatile memory transaction in that other thread. This
would result in an inconsistent state, and such code is presumably
discouraged. By combining isolation and NVRAM functionality, we
avoid the potential for such inconsistencies.

REWIND [8] is a user-mode library that enables transactional
updates to persistent data structures in NVRAM. The API is a
persistent atomic construct that encloses a set of updates to
persistent memory. The guarantee provided by REWIND is essen-
tially that of failure-atomicity of a bunch of updates. Write-ahead
logs in NVRAM are used to provide recoverability in the event of a
failure during execution. The logs are maintained in a thread-safe
manner but thread-safe access to user data is up to the programmer.
In other words, the persistent atomic construct in REWIND pro-
vides no isolation semantics for user data. It appears that based on
the isolation properties and consistency requirements of user data
structures, a programmer is responsible for correct placement of
the persistent atomic construct. The NVML Library [3] pro-
vides a similar construct whereby a single transaction block works
in the context of a single thread. The programmer is responsible
for thread isolation in the context of parallel code, an approach
again closely related to our Strategy 4. Our more general models
use locks to provide both isolation and persistence semantics in a
more unified manner.

In this paper, we discussed cache line flushes that can be used
to constrain the persist order in which updates are visible in NVRAM.
A number of papers [11, 25, 31] have tried to relax this constraint.
Analogous to memory consistency, [31] introduces memory persis-
tency models that facilitate low-level reasoning about the persist
order with respect to failures. A failure is reasoned as a recovery
observer that atomically reads all of persistent memory at the mo-
ment of failure. [31] explains that the order enforced by memory
consistency models need not be the same as the order enforced by
memory persistency models. A spectrum of models ranging from
strict to relaxed persist ordering are described with corresponding
programming and performance tradeoffs. More recently, notations
were introduced to precisely define the memory persistency mod-
els and show code patterns that can leverage them [21]. Along sim-
ilar lines, Loose-Ordering Consistency (LOC) [25] has been
introduced to reduce the overhead of enforcing persistence order
of updates. Our work targets higher-level programming language
models, while this line of work explores hardware-level failure-
atomicity models. Clearly we need both, and eventually a mapping
of our work to theirs.

Recently, the concept of Timely Sufficient Persistence (TSP) [30]
has been introduced which makes persist barriers unnecessary for
crash resilience. Broadly speaking, TSP encompasses measures
that, instead of being applied continually during program execu-
tion, can be applied when a failure is imminent in such a way that
correct recovery is still possible. A specific example is flushing the
cache on failure – if all of the cache can be reliably flushed at that
point, the order in which persistent updates reach NVRAM does not
matter since the recovery observer will see all of them anyway. [30]
applies TSP to both lock-based and lock-free programs and shows
that for lock free programs, no additional changes are required for
crash-resilience, enhancing both usability and performance.

There has been a fair amount of interest in using NVRAM for
databases. FOEDUS [20] is an OLTP engine for a large number of
cores and NVRAM. Snapshot pages are stored in NVRAM in a manner
designed to optimize performance. [36] evaluates distributed log-
ging in the context of NVRAM. File systems designed to take advan-
tage of NVRAM have been implemented [11, 12]. We believe that our
work on programming models for NVRAM will provide insights that

NVM Programming Models 11 2015/7/14



will guide system software and applications as they try to exploit
the advantages offered by NVRAM.

13. Conclusions
We showed that even the somewhat limited space of NVRAM pro-
gramming approaches and implementations we considered (vari-
ables selectively persistent, no concerns about cross-process or
cross-machine data sharing, undo-log-based implementation style)
is surprisingly rich. There are interesting trade-offs that had largely
been overlooked by prior work. At least the last three strategies we
described seem worthy of serious consideration. We have shown
that various existing approaches, as well as some interesting new
ones, notably our Strategy 3, can be viewed and contrasted in the
same framework.

References
[1] Process Integration, Devices, and Structures. International Technology

Roadmap for Semiconductors, 2007.

[2] NVM Direct Library. At http://www.oracle.com/technetwork
/oracle-labs/open-nvm-download-2440119.html, retrieved
07/2015, .

[3] pmem.io: Persistent Memory Programming. http://pmem.io, re-
trieved 07/2015, .

[4] C. Blundell, E. C. Lewis, and M. M. K. Martin. Deconstructing
transactional semantics: The subtleties of atomicity. In Workshop on
Duplicating, Deconstructing, and Debunking (WDDD), 2005.

[5] H. Boehm. Performance Implications of Fence-based Memory Mod-
els. In MSPC, pages 13–19, 2011.

[6] H.-J. Boehm and S. Adve. Foundations of the C++ Concurrency
Memory Model. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 68–78,
2008.

[7] D. R. Chakrabarti, H. Boehm, and K. Bhandari. Atlas: Leveraging
locks for non-volatile memory consistency. In OOPSLA, Oct. 2014.

[8] A. Chatzistergiou, M. Cintra, and S. D. Viglas. Rewind: Recovery
write-ahead system for in-memory non-volatile data structures. In
VLDB, pages 497–508, 2015.

[9] H. Chu. MDB: A memory-mapped database and backend for OpenL-
DAP. At http://www.openldap.org/pub/hyc/mdm-paper.pdf,
retrieved 03/2014.

[10] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta,
R. Jhala, and S. Swanson. NV-Heaps: Making persistent objects
fast and safe with next-generation, non-volatile memories. In ASP-
LOS ’11: Proc. of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems, pages
105–117, Mar 2011.

[11] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and
D. Coetzee. Better i/o through byte-addressable, persistent memory.
In SOSP 22, pages 133–146, Oct 2009.

[12] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,
R. Sankaran, and J. Jackson. System software for persistent memory.
In Eurosys ’14, Apr 2014.

[13] J. E. Gottschlich and H.-J. Boehm. Generic programming needs
transactional memory. In TRANSACT, Mar 2013.

[14] IEEE and The Open Group. Posix.1-2008, IEEE Std 1003.1, 2013
Edition. 2013.

[15] Intel Corp. Intel64 and IA-32 Architec-
tures Software Developer’s Manuals Combined.
http://www.intel.com/content/www/us/en/processors
/architectures-software-developer-manuals.html, re-
trieved 11/2013, .

[16] Intel Corp. Intel ISA Extensions.
https://software.intel.com/en-us/isa-extensions,
retrieved 07/2015, .

[17] ISO JTC1/SC22/WG14. ISO/IEC 9899 - Programming languages -
C. 2011.

[18] ISO JTC1/SC22/WG21. Technical Specification for C++ Extensions
for Transactional Memory. Available through ISO, or possibly at
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2015/n4514.pdf.

[19] H. J-Boehm. Transactional Memory should be an Implementation
Technique, Not a Programming Interface. In Proceedings of the
1st USENIX Workshop on Hot Topics in Parallelism, Mar. 2009.

[20] H. Kimura. FOEDUS: OLTP engine for a thousand cores and
NVRAM. In SIGMOD ’15, pages 691–706, Jun 2015.

[21] A. Kolli, S. Pelley, A. Saidi, P. M. Chen, and T. F. Wenisch. Persistency
programming 101. In 6th Annual Non-volatile Memories Workshop,
Mar 2015.

[22] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. ACM Transactions on Computers,
C-28(9):690–691, Sep 1979.

[23] J. Larus and R. Rajwar. Transactional Memory. Morgan and Claypool
Publishers, 2007. ISBN 1–59829–124–6.

[24] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase
change memory as a scalable DRAM alternative. In ISCA ’09: Proc.
of the 36th International Symposium on Computer Architecture, pages
2–13, Jun 2009.

[25] Y. Lu, J. Shu, L. Sun, and O. Mutlu. Loose-ordering consistency for
persistent memory. In ICCD, pages 216–223, 2014.

[26] V. Luchangco and V. J. Marathe. Transaction communicators:
enabling cooperation among concurrent transactions. In PPoPP,
pages 169–178, 2011. doi: 10.1145/1941553.1941578. URL
http://doi.acm.org/10.1145/1941553.1941578.

[27] J. Manson, W. Pugh, and S. Adve. The Java Memory Model. In Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, 2005.

[28] V. Menon, S. Balensiefer, T. Shpeisman, A.-R. Adl-Tabatabai, R. L.
Hudson, B. Saha, and A. Welc. Practical Weak-Atomicity Semantics
for Java STM. In Proceedings of the 20th ACM Symposium on
Parallelism in Algorithms and Architectures, June 2008.

[29] D. Narayanan and O. Hodson. Whole-system persistence. In ASPLOS,
2012.

[30] F. Nawab, D. R. Chakrabarti, T. Kelly, and C. B. Morrey. Procrastina-
tion beats prevention: Timely sufficient persistence for efficient crash
resilience. In Proceedings of the 18th International Conference on
Extending Database Technology (EDBT), pages 689–694, Mar 2015.

[31] S. Pelley, P. M. Chen, and T. F. Wenisch. Memory persistency. In
Proc. of the 41st International Symposium on Computer Architecture,
Jun 2014.

[32] M. Saxena, M. Shah, S. Harizopoulos, M. Swift, and A. Merchant.
Hathi: Durable transactions for memory using flash. In DaMoN:
Proceedings of 8th ACM/SIGMOD International Workshop on Data
Management on New Hardware, 2012.

[33] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams. The
missing memristor found. Nature, 453:80–83, 2008.

[34] Draft specification of transactional language constructs for C++.
Transactional memory specification drafting group, Feb 2012. At
https://sites.google.com/site/tmforcplusplus.

[35] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne: Lightweight
persistent memory. In ASPLOS ’11: Proc. of the 16th International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 91–103, Mar 2011.

[36] T. Wang and R. Johnson. Scalable logging through emerging non-
volatile memory. In PVLDB, pages 865–876, 2014.

[37] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
SPLASH-2 Programs: Characterization and Methodological Consid-
erations. In Proceedings of the 22nd Annual International Symposium
on Computer Architecture, pages 24–36, June 1995.

NVM Programming Models 12 2015/7/14


