
CORE
Back to the

PoC

• ACE

• Target for ACE

• KernelIo

• Target for kernelIo

• Overflows & techs

• KASLR,

PoolSpary,

Info Leaks

• MMU

• Conclusions

ROP
- Historical issue

- First ROP appear in

MSDOS

- Widely used as

bypass for DEP

- Using gadgets

- ROP compilers /

finders

- Depends on prepared

stack layout

http://www.exploit-monday.com/2011/11/man-vs-rop-overcoming-adversity-one.htmlhttps://www.auscert.org.au/render.html?it=13408

http://www.exploit-monday.com/2011/11/man-vs-rop-overcoming-adversity-one.html
https://www.auscert.org.au/render.html?it=13408

Solving old problem

ROP

• offset to code

gadgets - relative

• Reuse of existing

code

• Jumps from one

gadget to another

• Based on gadgets

• Depends heavily on

stack layout

anti-ROP

• Randomization of

function position

• Randomization of

instructions (pos)

• Symbolic execution

at selected points

• CFG

• X

CFG
- Protect virtual calls

- In kernel mode not so

widely used anyway,

unfortunately …

- Per process bitmap

- Per process registered

functions

- Fast lookup!

- Only approximation of

problem

- Handle only old known

ROP way of thinking

- But finally there! Good

job!!

- Not handle stack

hooking / pivoting

- Not handle integrity

problems

- Not handle ROP in

general

http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-control-flow-guard-in-windows-10/

http://www.powerofcommunity.net/poc2014/mj0011.pdf http://www.alex-ionescu.com/?p=246

http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-control-flow-guard-in-windows-10/
http://www.powerofcommunity.net/poc2014/mj0011.pdf
http://www.alex-ionescu.com/?p=246

CF Hijack

continue!
- Do not use ROP for

everything!

- ROP are old & obsolete

- Use functions in smart

way!

- Check args, checks

output, match your

goal!

- Mix ROP and functions

- Misuse functions as

your payload!

- Use stack hooking if

you *really* need ACE

on your code

- Find similar, but

CFG-approved functions!

- 一步一步 (step-by-step)

http://blogs.msdn.com/b/vcblog/archive/2014/12/08/visual-studio-2015-preview-work-in-progress-security-feature.aspx

http://research.microsoft.com/pubs/101332/BGI-SOSP.pdfhttp://research.microsoft.com/pubs/69217/ccs05-cfi.pdf

http://blogs.msdn.com/b/vcblog/archive/2014/12/08/visual-studio-2015-preview-work-in-progress-security-feature.aspx
http://research.microsoft.com/pubs/101332/BGI-SOSP.pdf
http://research.microsoft.com/pubs/69217/ccs05-cfi.pdf

TO THE ROOTS OF

PROBLEM!

Integrity guards
fast, reliable, no easy targets anymore!

Integrity guards

• No PLAIN function pointers anymore!

– Target reduction

– More info leaks needed!

• Protect integrity per object level

– Results in UAF mitigations as byproduct

• Easy implementation

– Objective-C manually (PROTECTED_ASIGN)

– C++ => compiler can hide this logic

• Protect only virtual calls

• Fast : only few instructions added

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1332.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1332.pdf

Control Flow Stack
Separated stack, only CF instructions can write

to this stack

idea comes to me from this creative guy : https://sk.linkedin.com/pub/ladislav-nevery/26/a87/498

https://sk.linkedin.com/pub/ladislav-nevery/26/a87/498

Control flow stack

• Two stacks

– args & vars

– return pointers

• ROP is not applicable anymore

• Stack hooking and pivoting are offline
as well!

• Special register for cf-stack

– cpl0 & cpl3, maintained by context switch

– No direct write, as (e/r)ip at x86

– Write onto cf-stack only by cf-instructions

• call, jmp, jx, ret, privileged switch

– Processor solution needed …

Safe

Memory

- Code-Pointer

Integrity

- Kuznetsov at OSDI

- Separate memory for

‘sensitive’ pointers

- Isolation on

instruction level by

using segments fs

(gs)

- Impressive results –

performance & output

- No need for addition

instructions / regs

http://www.cs.berkeley.edu/~dawnsong/papers/
osdi14-paper-kuznetsov.pdf

https://www.usenix.org/sites/default/files/conference/
protected-files/osdi14_slides_kuznetsov.pdf

http://www.cs.berkeley.edu/~dawnsong/papers/osdi14-paper-kuznetsov.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/osdi14_slides_kuznetsov.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/osdi14_slides_kuznetsov.pdf

KERNEL IO – SMEP / SMAP

windows memory layout
On linux caches, on windows pools

http://www.alex-ionescu.com/?p=231 http://www.alex-ionescu.com/?p=246

http://www.alex-ionescu.com/?p=231
http://www.alex-ionescu.com/?p=246

Cool objects everywhere

• Kernel objects in plain state

– function pointers

– object pointers (buffers, other objs)

– object members (size,count,refcount..)

• In modules RW states – plain

– freelists

– ‘vtables’

– locks

• Target pool & find your object

– nt!_eprocess (->VadRoot)

– win32k!tagWND

– page tables (cr3)

– ...

OVERFLOWS

protections

• SMAP

• SMEP

• KASLR

• Pool hardening

response

• Your data is in
kernel already!

• Turn your bug to
boosted kernel io

• ExAllocatePool or

Pagetables

• You pwn pool object

- be relative!

• Try - big allocs ...

POC : http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/Pwn2Own-2015-Day-One-results/ba-p/6722204
details soon!

http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/Pwn2Own-2015-Day-One-results/ba-p/6722204

Kernel

Pool
- About BIG allocs :

- Deterministic

- especial windows

- Linux SLUB +1

- User controllable

- alloc

- free

- data control!

- FULL == epic!

- Predictable :

- Pointers

{base + align}

- size

- properties

- Layout-able!

- Targeted overflow

TBD : http://confidence.org.pl/en/agenda/lecture/when-something-overflowing/

http://confidence.org.pl/en/agenda/lecture/when-something-overflowing/

X64 vs overflows!

• virt addr space > phys addr space

– gaps => page_noaccess

• Randomized bases of pools

• Hunting for buffer overflows :

– boost pageheap

– Use virt-phys gap more!

– Use page guards more!

– Randomize more!

https://msdn.microsoft.com/en-us/library/windows/hardware/ff549561%28v=vs.85%29.aspx

https://msdn.microsoft.com/en-us/library/windows/hardware/ff549561(v=vs.85).aspx

reserve, randomize, guard!

Overflow results in trap, no stable UAF,

sometimes wasting address space can secure it

whole! – see cfg ..

Hunting pool overflows

try {

• Over/under flow to
another object

• Try to use UAF

• Performance

• Waste of space

• Small allocs

ex(p/c)ect }

• Results in trap –
page_noaccess

• Reused pool but object
at different address

• Page tables & Vad

– coalescing :/

– classic pageheap problems

• X64 finally, use it!

• Target only big allocs,
and (+inner)arrays
(compile time)

KASLR & MMU

KASLR – user calling!

• _sidt / _sgdt

– Instruction :/

– basically leaks

&ntoskrnl

(use kernelio)

• user32!gSharedInfo

– Bad joke of security

– Leaks session pool

– leaks nt!_eprocess

pointers!

(use kernelio)

http://www.mista.nu/research/mandt-win32k-slides.pdf

http://www.mista.nu/research/mandt-win32k-slides.pdf

KASLR – user calling!

• SESSION_POOL - Problem bro ?

• X64 large address space

• but leaks session pool

• On session pool mighty objects!

win32k!_bitmap
• arbitrary write to boost size, or other
property

• Pool layout & align *NO PROBLEM*
• PWN DONE!

KASLR – timer is calling!
Guess where is pool for nt!_ethread ;)

Timing

attacks

- Doable

- Simple

- MMU mechanism was

build:

- To be fast not

‘too secure’!

- TSX is to be

disabled by

microcode update

- But other research &

approaches well

known!

http://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/

http://felinemenace.org/~nem
o/docs/TR-HGI-2013-001.pdf

http://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/
http://felinemenace.org/~nemo/docs/TR-HGI-2013-001.pdf

MMU continue!
concept, multiple layers of PXN in real

https://labs.mwrinfosecurity.com/http://www.cs.ucla.edu/classes/spring14/cs111/scribe/14b/

https://labs.mwrinfosecurity.com/
http://www.cs.ucla.edu/classes/spring14/cs111/scribe/14b/

Basic

idea

1. Per page privilages

2. Supervisor vs User

priv

3. Make mmap /

VirtualAlloc

4. memcpy data

5. Flag you page as

Supervisor

6. Trigger ACE or Data

access

7. Bypass SMEP

8. Bypass SMAP

http://viralpatel.net/taj/tutorial/paging.php

http://viralpatel.net/taj/tutorial/paging.php

POC – by MWR labs

1.choose address with isolated page

tables

1.To be sure write-where does not hit other

used memory

2.0x100804020001 => far enough in memory

3.mmap 0x100804020001

4.memcpy

5.Patch S/U bits (write-where)

6.S/U bits need to patch per PXE !

7.pwn

https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass/

https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass/

MMU logic

• Unmapped memory

cause PageFault

• Bad access cause

PageFault

• PageFault handler do

lookups

• VAD / vm_area

• On behalf of lookup

will continue

• Create / Read Page

Tables

VAD /

VM_AREA

 malloc is lazy

 Reserve memory in

memory struct (AVL

tree)

 Do not create Page

Table entries!

 PTE are created on

first access in

PageFault handler!

 NULLPTR deref killed

by checking here

 - cheaper, faster

 - simple, not

hardened

 and .. point of

attack

http://www.codemachine.com/article_protopte.html

http://www.codemachine.com/article_protopte.html

MMU

PWNED!
1. write-where

2. nt!_eprocess->VadRoot

(task_struct->mm)

3. Substitue with own

simple member

4. Fake member covers

whole memory range

5. Trigger PageFault

(f.e. nullptr deref ;)

6. PageFault handler

find it in Vad / mm

7. MMU will create page

tables

8. FirstPrototypePte is

physical address, you

choose!

9. Leads to read / write

arbitrary memory!

10.nullptr revival!

Virtual address == SYMBOLIC

Not checked if it is *really* cpl0 or cpl3 page!

KERNEL - FAIL – SAFE – CHECKS
copy_to/from_user

ProbeForRead/Write

The ProbeForRead routine checks that a
user-mode buffer actually resides in the
user portion of the address space, and is
correctly aligned.

Think deeper!

Self -

REF

• write-where to patch

• but where to write ?

• x64 => 4lvl of PXE

• PML4, PDP, PT, PTE

• c3 holds the PML4

base

• others PXE are need

to be readed!

• … unless self

referencing comes in

place!

• bonus cr3 : physical

addresses not so

well randomized ;)

!pte 0x100804020001
How magic is it, self-ref tricking…

Exploring

Potential
 in every PXE is

physical addresses!

 We point to PM4,

after last

translation

 Byte Offset points

to PHYSICAL address

to be read / write /

exec

 Virtual addresses

are just symbolic

links to physical

ones

 RWE to all physical

memory

 Equivalent to broke

KASLR, SMEP, SMAP,

W^X, NonPagePoolNx

Framework

1. Provide page dir

addr

2. Provide write-where

vuln

1. will be used

once in current

state of OS

2. more generic,

write more times

3. Use as KernelIo

4. Snapshot for arm

Conclusions

• Kernel was build meant to be faster
than secure

• Security is (/can be) boosted by
hardware features, incredibly!

• Compiler can secure a lot, especially
for C++

• Patching to add security != security
based model

• Redesigning from scratch is not
undoable, and maybe not bad idea ..

• But I do not expect many core changes,
or changes at all, so facts remains :

– Changes are hard & slow process

– Attack surface is large

• We are hiring!

 Kernel & app sec

 A *LOT* of research

 mobile, pc

 M$, android, OSX ..

Thank You!

Q & A

@K33nTeam

@zer0mem

peter (at) keencloudtech.com

