
..

PROPRIETARY VERSUS OPEN
INSTRUCTION SETS

..

MOST WIDELY USED INSTRUCTION SET ARCHITECTURES (ISAS) ARE PROPRIETARY, WHILE

MUCH SOFTWARE INNOVATION IS FACILITATED BY BEING OPEN. MIGHT HARDWARE

INNOVATION ALSO BE ACCELERATED BY ISAS BEING OPEN? THIS ARTICLE EXAMINES THIS

QUESTION WITH AN EDITED TRANSCRIPT OF A DEBATE FROM THE 4TH WORKSHOP ON

COMPUTER ARCHITECTURE RESEARCH DIRECTIONS.

......An instruction set architecture
(ISA) is one of the most important interfaces
in a computer system because it divides soft-
ware from hardware. Most widely used ISAs
were developed decades ago and are propriet-
ary. This may make sense because hardware
implementations were and are mostly propri-
etary and most software was proprietary when
these ISAs were developed. Today, however,
we appreciate how open source software (such
as LAMP stack) and open standards (such
as TCP/IP) can unleash competition and
creativity.

Might open ISAs accelerate the innovation
of computer hardware, or are the lessons of
open software not pertinent? That was the
subject of the debate Mark D. Hill moderated
at the 4th Workshop on Computer Architec-
ture Research Directions in June 2015. Nor-
mally, a moderator is conflict free. In this case,
Hill is conflict full, because David Patterson
coadvised my PhD with Alan Smith, and he
currently consults for Advanced Micro Devi-
ces, where Dave Christie has worked for
decades.

The first panelist was Dave Christie, a
senior fellow at AMD. He first worked for the
Control Data Corporation before moving to
AMD in the late 1980s. He spent two decades

contributing to virtually all of AMD’s x86
processors, including the K5, Athlon, and
Opteron. He developed the microcode for the
K5, the first superscalar x86 processor
designed independently from Intel. He is also
known for having co-designed the x86-64
instruction set (the 64-bit extensions to the
x86 instruction set). Currently, he is serving as
AMD’s ARM architecture liaison. He argued
in favor of proprietary ISAs.

The second panelist was David Patterson,
who holds the E.H. and M.E. Pardee Chair of
Computer Science at the University of Cali-
fornia, Berkeley. Of all his accomplishments
and honors, most pertinent to this debate was
that he led the design and implementation of
RISC I, an early VLSI reduced-instruction-set
computer. This research served as the founda-
tion of the Sparc architecture. He has con-
sulted for 25 years at various microprocessor
companies, including spending a sabbatical at
Digital Equipment Corp. in 1979 working on
the VAX minicomputer and consulting for
Intel for a few years on microprocessors, and
he was the first person hired by Sun Microsys-
tems to develop the Sparc architecture. He is a
member of both the National Academy of
Engineering and the National Academy of
Sciences, and a Fellow of both IEEE and

Mark D. Hill

University of

Wisconsin–Madison

Dave Christie

Advanced Micro Devices

David Patterson

University of California,

Berkeley

Joshua J. Yi

Dechert

Derek Chiou

University of Texas at Austin

Resit Sendag

University of Rhode Island

..

2 Published by the IEEE Computer Society 0272-1732/16/$33.00�c 2016 IEEE

dechiou
Comment on Text
Ideally, add Microsoft as the first affiliation

dechiou
Cross-Out

dechiou
Inserted Text
Hill's

ACM. He argued in favor of open source
ISAs.

The format of this panel was as follows:
each panelist had 10 minutes to present his
position statement, after which the modera-
tor asked the panelists a few questions.
Finally, the floor opened up to the audience
to ask questions.

Dave Christie: It’s Not the ISA, It’s the
Ecosystem!
Mainstream commercial ISAs—particularly
x86 and ARM but also Power, MIPS, and
Sparc—have served the industry well. Com-
mercial ISAs operate as very effective de facto
standards; standards provide stability, stability
supports strong ecosystems, and strong ecosys-
tems enable a tremendous breadth of applica-
tions. These commercial ISAs achieved a
critical mass of support and took on lives of
their own not solely due to an inherent
“architectural goodness” in the ISA; they did so
because of the ecosystems that have developed
around them and the underlying economics.

Broadly speaking, the necessary conditions
for an ISA to be commercially successful are
that it should provide the basics needed to
support the software development needs at
the present time (for example, an instruction
set that compilers can readily target, and pro-
tection mechanisms and virtual memory for
multitasking OS support) and be commer-
cially feasible to implement. Over the years,
many ISAs have met these two conditions.
But simply meeting these conditions is not
sufficient to achieve the critical mass required
for commercial success. Rather, commercial
success depends more on marketing, support
capabilities, economics, timing, and luck than
on specific features within the ISA. Because
the world is full of tradeoffs, architecting the
“perfect” ISA does not ensure its commercial
success.

But once an ISA achieves critical mass, the
huge ecosystem supporting it makes it quite
formidable. For example, we all know what
happened when Intel tried to kill off x86.

ISA owners also have to be responsive to
the needs of their customer bases. As such,
they add extensions that make sense for their
customer base and that will be accepted. The
evolution of mainstream commercial ISAs—

at least in the past decade or two—has dem-
onstrated responsible stewardship by the ISA
owners through the addition of extensions
that have been carefully thought out from
a benefit and need perspective, often in
consultation with others in the industry. For
example, one cannot reasonably view SIMD
instructions, 64-bit computing, and machine
virtualization as architectural missteps. Yes,
there are occasional missteps—some things
that seemed like a good idea at the time. But
the same will eventually be true of RISC-V. In
any case, this evolution, coupled with back-
wards compatibility, keeps proprietary ISAs
very much alive.

In conclusion, the strong ecosystems that
developed around mainstream commercial
ISAs and the underlying economics of those
ecosystems are a formidable hurdle for any
open source ISA effort that would aspire to
achieve parity, let alone replace them. In this
vein, I have several important questions:
What benefits and advantages would these
open source ISAs have? How many open
source ISAs do we need? Who will drive and
participate in the development of these open
source ISAs? And what is the business case
for these ISAs?

I reviewed the RISC-V specification.
Overall, it is interesting, a decent effort, and
a clean design. It is clear that RISC-V’s archi-
tects know what they are doing. They appear
to recognize that widespread success is not
going to happen overnight. RISC-V incorpo-
rates good lessons from the past, including
base plus extensions. (While I have seen sug-
gestions that this is a new invention from
RISC-V, I disagree. x86 has had extensions
for a long time; there are software visible ID
bits that indicate whether an extension is
present. ARM is similarly extensible.) Finally,
it looks like a lot of fun. Designing an ISA is
a lot of fun and something we do not do very
often, but it is even more fun if we actually
put it into wide use.

So, what are the holes in RISC-V? First, I
think the need for it is questionable. Open
RISC is a similar kind of effort. Lattice
Mico32 is a 32-bit open source RISC pro-
cessor that some people in industry are already
using. Why do we need RISC-V when these
other ISAs are commercially accepted alterna-
tives, at least in certain embedded areas?

...

JULY/AUGUST 2016 3

Second, a very long instruction word
(VLIW) format appears to be an option in
RISC-V. I think that this option goes a little
too far and is too academic in that it is trying
to be too many things for too many people.
VLIW is best suited to highly specialized uses
where there’s little point in standardization.
That said, I understand that this option may
not be under serious consideration.

Third, I disagree with the premise that
shared open-core designs, like RISC-V,
shorten the time to market. It is not obvious
to me that having a library of open source
designs that you can pick from is faster than
licensing a proprietary core, for example, an
M3 core from ARM.

Fourth, I disagree with the premise that
the industry needs a standardized ISA to save
the world from proprietary ISA lock-in.
Much has been done to improve software
portability, and most software is ISA-agnostic
(as illustrated by Apple’s ISA shifts, Windows
on ARM, XBOX ISA shifts, and smart TVs
that are MIPS or ARM based from the same
TV maker, running the same software).

Rather than standardizing at the ISA, I
believe that the proper place to standardize
the software/machine interface is with a vir-
tual ISA or intermediate language. Heteroge-
neous System Architecture (HSA) is a great
example of that approach.1 It is designed to
support the CPU and GPU, and it targets
HSAIL (HSA Intermediate Language). ISA
owners provide a finalizer that does a transla-
tion (at build time or runtime), and com-
pilers can pass optimization information to
it. HSAIL is currently in place for x86,
ARM, and AMD GPUs, and is expected to
be applied to other kinds of accelerators.

David Patterson: The Case for Open Source
ISAs
We live in a remarkable world, one where
open source standards and open implemen-
tations of those standards really work. They
are everywhere. Given that the computing
industry has been revolutionized by open
standards and open source software, why is
one of the most important interfaces—the
ISA—proprietary? Table 1 illustrates this
fact. While ISAs may be proprietary for his-
torical or business reasons, there is no good
technical reason for the lack of free, open
ISAs.

Dave Christie argues that ISAs do not
matter that much because performance is due
to the algorithms and software above that
interface, or the hardware below it. I disagree;
ISAs do matter. If they don’t matter, why is
the x86 ISA unsuccessful in mobile devices
and why is the ARM ISA unsuccessful in
datacenters? They matter because they are the
most important interface in a computer sys-
tem and where the hardware meets the soft-
ware. This fact is particularly meaningful
given that most of the cost of a new chip is
the cost to port the software to it. On the
other hand, I agree that most of the perform-
ance and energy running software on a com-
puter is due to the algorithm, application
code, compiler, OS/runtime libraries, micro-
architecture, circuit design, physical design,
and the fabrication process, but not the ISA.
So if the ISA does not matter that much to
the energy and performance, but it costs a lot
to use different ones, why do we not have a
free, open ISA that anyone can use for
everything?

Table 1. Standards and implementations thereof in the computing industry.

Field Standard Free, open implementation Proprietary implementation

Networking Ethernet, TCP/IP Many Many

Operating system Posix Linux, FreeBSD Microsoft Windows

Compilers C GCC, LLVM Intel icc, armcc

Databases SQL MySQL, PostgreSQL Oracle 12C, Microsoft DB2

Graphics OpenGL Mesa3D Microsoft DirectX

Architecture None None x86, ARM

..

COMPUTER ARCHITECTURE

...

4 IEEE MICRO

It is not an error of omission that ISAs are
proprietary. It is not that AMD and Intel
simply forgot to make x86 open. Rather,
companies with successful ISAs like ARM,
IBM, Intel, and MIPS have patents on quirks
of their ISAs, which prevent others from
using them without license. And they have
lawyers to sue you if you allegedly infringe
their patents and/or breach your license with
them. Even taking a license, however, may
not protect you from lawsuits. For example,
Nvidia thinks the Imagination and ARM
GPUs violate their patents. But Nvidia is not
suing ARM; it is suing Qualcomm for using
their intellectual property and Samsung for
using Qualcomm chips.

Even IBM’s Open Power is an oxymoron
because you must pay IBM to use its ISA.

An ARM license does not let you design an
ARM core; it only allows you to use ARM’s
designs. (Only about 10 to 15 big companies
have licenses that allow them to design custom
versions of ARM cores.) The cost of an ARM
license is prohibitively high such that academ-
ics and many small companies cannot afford
to take a license. While this business model
may be sound, licenses stifle competition and
innovation by stopping many from designing
and sharing their ISA-compatible cores.

Apart from the intellectual property issues,
there is no technical reason why an ISA should
be proprietary. First, despite the value of the
software ecosystems that grow around popular
proprietary ISAs, the owners of proprietary
ISAs do not do most of that software develop-
ment. Rather, outsiders build almost all of the
software in the ecosystem. Second, these com-
panies do not have a monopoly on the experi-
ence needed to design a competent ISA.
While it is a lot of work, many today can
design an ISA. Third, a company that designs
an ISA is not the only one who can verify it.
Rather, long ago, open organizations devel-
oped mechanisms to ensure compatibility
with hardware standards, such as floating-
point units (IEEE 754), networking chips and
switches (Ethernet), and I/O buses (PCIe). If
not for such organizations, open standards
would not be so popular. Fourth, the most
popular ISAs are not particularly clean or ele-
gant. For example, ARM and x86 are not con-
sidered to be exemplary ISAs; they are just
functional and successful.

Finally, proprietary ISAs are not guaran-
teed to last. Rather, the ISA is tied to the for-
tunes of a particular company such that if the
company dies, it takes its ISAs with it. An
excellent example of this point is Digital
Equipment Corporation; its demise termi-
nated the Alpha and VAX ISAs.

What are the benefits of an open source
ISA? First, open source ISAs would produce
greater innovation because more people would
get to design them, not just the engineers at
Intel, ARM, and so on. Rather, engineers
working for both open and closed companies
and researchers all over the world could design
and improve them. Furthermore, as is true in
other fields, open source means that engineers
can share their designs, which in turn produ-
ces further innovation.

Second, sharing cores will reduce the time
to market and the cost because engineers do
not have to design the cores themselves. Cost
is becoming a very important factor because
chips for the Internet of Things must cost
less than a dollar.

Third, sharing cores reduces the number
of errors because more people are looking at
and debugging the designs. If you are afraid
that some government agency has inserted a
backdoor or kill switch into your chip, you
have a better chance to discover it from the
RTL itself when everybody can look at.

Finally, for those of us in academia, like
our colleagues in operating systems and com-
pilers, we can do our research on “industrial-
strength” platforms that will not run into
proprietary limits. For example, the lowRISC
effort in Cambridge is trying to produce fully
open hardware systems using RISC-V.

Why is this happening now? I think it is
because Moore’s law is ending. More specifi-
cally, improvements in cost and/or perform-
ance are not coming from the semiconductor
manufacturers, but they are coming from
architectural innovation. A lot of people
believe that we are going to see a renaissance
in domain-specific coprocessors like GPUs,
DSPs, image processors, and so forth. If so,
we do not want each type of coprocessor to
have its own ISA. By contrast, we want to use
an ISA that is standards-based, minimal,
open, unencumbered by patents, that can
run all standard software, and to which you
can add your own coprocessors.

...

JULY/AUGUST 2016 5

The difference between proprietary ISAs,
labeled as “20th-century architecture” in
Table 2, and minimal modular ISAs like
RISC-V, labeled “21st-century architecture,”
is where the ISA is intended to run. In a
20th-century architecture, the ISA is bundled
into the hardware. As such, I call these
“monolithic ISA microprocessors.” In this
architecture, a company like Intel designs the
ISA and gives you the chip. This microproc-
essor has to run anything and everything. As
such, it cannot shrink; it will only enlarge
over time. For example, the x86 ISA has
gained an average of two new instructions a
month for each of the past 40 years.

In a 21st-century architecture, the ISA
should be intended for a SoC. The SoC will
normally customize to the application, so it
knows what software it is running. I called
this approach “minimal modular ISA,” an
example of which is RISC-V.

In a nutshell, the base RISC-V ISA has a
minimal number of instructions, less than 50,
and it supports three different address sizes; 32,
64, and 128 bits. If you want the standard
extensions, you add integer multiply and
divide; atomic memory operations; and single,
double, and quad floating-point instructions.
RISC-V also supports smaller instruction sizes
(16-bit and 32-bit). The key difference between
monolithic and modular ISAs is that in the lat-
ter, software runs just on the base. You can add
or subtract instructions and the rest of the
software will still work. Finally, RISC-V has
reserved space for domain-specific SoC instruc-
tions. See the “RISC-V Background” sidebar
for more information.

Dave Christie suggested that we already
tried the open ISA approach in the past and
it failed. Perhaps surprisingly, I agree. Twenty
years ago, Sun Microsystems had an open
version of Sparc, and 15 years ago, there was
another effort based on Deluxe (DLX). Why
did these efforts not catch on? I think that
they were simply too early. They were intro-
duced in the monolithic microprocessor era,
and there was no business need for it. By con-
trast, the era of minimal modular ISAs for
SoCs may embrace open source ISAs.

Dave Christie opined that there’s been
good stewardship by proprietary ISAs. Again, I
disagree. For example, 10 years ago, Intel tried
to foist the Itanium architecture on everyone.
The only reason it did not work is because
there was a second source, AMD, which is a
rarity for proprietary ISAs. Nevertheless, the
industry wasted billions of dollars and compa-
nies went out of business all because Intel tried
to force everyone to use a new ISA. ARM is
doing the same thing right now. It’s forcing the
industry to use the ARMv8 ISA. But in this
case, there is no second source.

I have spent a lot of time analyzing the
ARMv8 ISA, and while it is gigantic—the
ARMv8 manual is 5,400 pages long—it is
still missing things. For example, while it has
more than a thousand instructions, it does
not have 16-bit instructions, so the code size
is very large, even bigger than x86. As such,
running the code will result in higher instruc-
tion cache miss rates. To compensate, their
current cores have larger instruction caches.

In conclusion, given the consensus on ISA
principles, there are no good technical reasons

Table 2. Difference between monolithic (20th-century) and minimal modular (21st-century) instruction set

architectures.

20th-century architecture 21st-century architecture

ISA hardware is the microprocessor:

� Microprocessor has a complete ISA, including what

will not be used in the application because we

cannot determine the environment when hardware

is built.

� ISAs only grow over time to support the past.

ISA hardware is intellectual property (IP) intended for a system on

a chip (SoC):

� SoC will customize the ISA used for this application

when hardware is built.

Monolithic ISA microprocessors Minimal modular ISA, such as RISC-V

..

COMPUTER ARCHITECTURE

...

6 IEEE MICRO

not to have a free and open ISA standard, as is
the case in other fields. A standard ISA enables
an open source ecosystem of cores and periph-
erals. An open source ecosystem allows many
more people—not just a few companies—to
use and build upon it, which will spur more
innovation and reuse. If we are going to do
that, which ISA would you pick? We should
pick the one designed for the 21st century. It
should be free and open. It should be minimal
because a lot of innovation will come from the
coprocessor, as compared to the cores. It should
have a full stack of software running on it.
Finally, it should be modular. It should have a
minimal, standard subset of instructions,
standard extensions, and space for application-
specific unique instructions. I believe RISC-V
should be that ISA.

Moderator and Audience Questions
Here, we present an edited transcription of
the conversations that took place.

Are There Reasons against a Non-x86/Non-ARM
Ecosystem?
Hill: A question for Dave Christie: You can
argue that the ARM ISA had no initial eco-
system and it started out as a response to x86

and its very closed ecosystem. Now, ARM
has a flourishing ecosystem with different
goals than x86, but it’s still semiclosed. So
why shouldn’t an open source architecture
start and we get going on it?

Christie: I have no reason at all. Have at it.
But I don’t think there’s the commercial pull
for it that Dave Patterson seems to think
there is. Maybe in time; it is certainly worth
taking a shot.

Patterson: I think that if there was no open
source software and we were the first people
to try that, then there’s a lot of reason to be
skeptical. But when Linux started, it didn’t
have an ecosystem. It remarkably caught on
with companies, and they poured resources
into it. Obviously, this is like the Innovator’s
Dilemma. It’s incomplete yet very promising,
but it doesn’t have everything you need. In
this open source world, we think volunteers
will help supply the missing pieces and build
that ecosystem. We bet that in five years,
RISC-Vþ is going to be a significant force.
We’ll see; time will tell.

Is the ARM Ecosystem Sufficiently Open?
Hill: Another question for Dave Christie:
Another reason why this might fail is if the

..

RISC-V History and Momentum
RISC-V (“RISC Five”) is a modern RISC instruction set developed at the

University of California, Berkeley, that was made free and openly

available in response to requests from industry. In addition to a full

software stack (compilers, operating systems, and simulators), there

are several RISC-V implementations available for use in custom chips

or in field-programmable gate arrays (FPGAs). Developed 30 years

after the first RISC instruction sets, RISC-V inherits its ancestors’

good ideas (a large set of registers, easy-to-pipeline instructions, and

a lean set of operations) while avoiding their omissions or mistakes

(branches are not delayed, it has support for virtualization, and it

offers both 32- and 64-bit addresses).

RISC-V has gained considerable momentum since this debate last year.

� Four RISC-V workshops sold out, with the last workshop in Boston

having 200 attendees from more than 90 organizations.

� The RISC-V foundation was established in August 2015 to support

and evolve the RISC-V instruction set. Initial sponsors include

Google, Hewlett Packard Labs, IBM, Lattice Semiconductor, Mel-

lanox, Microsemi, Nvidia, Oracle, Rambus, Western Digital, and

several smaller companies and start-ups.

� An optional compact extension was announced that makes RISC-

V programs smaller than both the x86 programs and other RISC

architectures.

� In addition to the initial free and open RISC-V core with a conven-

tional five-stage pipeline and in-order execution core (Rocket),

we’ve released a tiny, 0.01 mm2 RISC-V core (Zscale) and a more

sophisticated core that issues multiple instructions per clock cycle

and executes instructions out-of-order (BOOM).

� Beyond the cores designed at UC Berkeley, designs are underway

in Colombia, England, India, and Russia. In fact, the Indian

government has invested US$45 million so far in RISC-V

implementations.

� One RISC-V design optimized for FPGAs (Jan Gray’s GRVI-Phalanx)

runs faster than 300 MHz and fits 400 cores in a single affordable

FPGA, thereby offering a peak performance of more than 100 bil-

lion instructions per second.

As a result of the rising popularity of RISC-V, the 2017 edition of the

venerable textbook Computer Architecture: A Quantitative Approach will

switch to RISC-V as its reference instruction set.

...

JULY/AUGUST 2016 7

ARM ecosystem is sufficiently open to enable
the SOCs. Would you say that is the case?

Christie: Yes. There are so many players in
the ARM ecosystem in terms of tools; you
can buy instruction set simulators, program
development tools, and debug tools for sili-
con from a variety of companies. This shared
development of the ecosystem and shared
cost of tool development is very effective for
ARM’s customer base.

Hill: Dave Patterson, do you think ARM
has opened enough?

Patterson: No. They have not defined a
coprocessor interface in the ARMv8 architec-
ture, and a lot of people in this room really
believe that coprocessors are the future of ar-
chitecture. I presume ARM wants to supply all
the coprocessors you ever want from them, as
oppose to making it open. That’s a glaring
omission. ARM is a great company if what
you are building right now fits and you can
afford it. But it has been documented where
ARM says it takes six or more months to nego-
tiate a contract,2–4 so for a lot of small compa-
nies this delay is a real problem. Furthermore,
ARM doesn’t even want to do business with a
lot of companies unless you’re going to have
volume. So they’re kind of a monopoly, and
they get to pick who works with them; they
are not as open to business as you might think.
Why wouldn’t they have a coprocessor inter-
face? There are business reasons for that deci-
sion, but no technical reasons.

Christie: The ARMv7 has this coprocessor
interface—at least in the ISA—which they
did away with because it really wasn’t put to
any use except for mapping system registers
into the various functions. Why isn’t—if
we’re talking coprocessors though—memory
mapped a solution?

Patterson: Memory map works for some
things, but you wouldn’t want to do floating-
point or vectors that way. There are some
things you’d rather have closer to the processor.

What Are the Incentives for Open Source, and
How Can One Develop Them as Quickly as
Possible?
Hill: Assume that open ISAs are a good idea.
To make that work, you need large ecosys-
tems. How does one develop an ecosystem
for a new open architecture, and what are the
incentives for the various parties to partici-

pate, given that you can’t just replicate hard-
ware for free but you have to fabricate it?

Patterson: The incentives are similar to the
incentives for open source software. You can
participate in the design and evolution of
those systems, or you buy the proprietary sys-
tem. There are advantages in helping shape
what the future is going to look like, both for
the ISA and their implementations.

In terms of getting RISC-V started, we’re
launching a foundation that we hope will
have its first members at the RISC-V work-
shop, so it’s not just a Berkeley effort. And we
think that people will be attracted to building
the missing pieces. We have faith in open
source systems in general, and we think it
will apply to hardware as well.

Some people are frustrated with ARM, as
it’s kind of a monopoly right now. I think it
is beneficial—just like it is beneficial to oper-
ating systems and compilers—that there are
open ones and closed ones. I think it’d be
good for our field if there was an open ISA,
which might temper the behavior of compa-
nies if they realize they’re not the only sources
in town.

Hill: David Christie, if you wanted to do
this, how would you develop an ecosystem as
quickly as possible?

Christie: Building an ecosystem, it’s not
just the tools, it’s critical mass—it’s critical
volume of implementations and software
support, it’s people knowing that they write
applications (or tools) for processors that will
be mainstream products, and that it’s worth-
while investing money in developing your
application because there will be a market for
it. Reaching that critical mass is somewhat
less tangible, I think; that’s why you need
marketing and luck, along with good tools.
ARM has done this, but it’s been a long, slow
climb.

How Many Open Source Cores Do We Really
Need?
Christie: I have a question for Dave Patterson.
I’m not sure how big the market is for people
who really want to design their own cores. A
lot of people who want to design systems for a
particular function like a set-top box or a
TV—they aren’t necessarily keen on designing
the host processor or even any of the microcon-
trollers that handle various functions, power

..

COMPUTER ARCHITECTURE

...

8 IEEE MICRO

management, et cetera. They’ve got all they can
deal with just to assemble the SoC functionality
that they need for the product they envisioned.
They’re quite happy to use whatever ISA and
processor implementation they can get their
hands on. So there’s limited appeal for people
wanting to design those cores. There will be
libraries, in some form, and there may be some
financial backing for some of that from for-
profit companies along the lines of Red Hat.
So, I can see the ecosystem developing that
way. But I wonder what the demand is for a
wide variety of different cores: how many cores
does an SoC or TV designer want to be able to
choose from? Five or maybe 15—how many?

Patterson: We shall see. I think that in the
open source community, a lot of the software
gets done in academia; some of the implemen-
tation is done by the students and faculty. In
terms of who would want to design that, I
could imagine that that would be one source.
I believe ARM has somewhere between 10
and 15 licensed companies who have the right
to design their own cores and who have spent
a lot of money for that right. So there’s at least
10 to 15 companies that want to design ARM
cores even though they can get one directly
from ARM. For the high-end stuff—which
AMD does—that’s really rocket science. I
think opportunities for RISC-V are going to
be in the Internet of Things; we’re talking
about amazingly energy-efficient, amazingly
involved small things, things that are 0.01
mm2. There are no legacy barriers for the
Internet of Things, there is a lot of innovation
there that a lot of people can do, so I can
imagine many people might be building cores
for the Internet of Things.

Will Open Source Kill Innovation Rather than Grow it?
Audience member: I am a little worried that
open source ISA and open source microproc-
essor cores will change the business model,
possibly through killing innovation in much
the same way that open office software has
killed innovation.

Patterson: Right now, there’s only a couple
of microprocessor companies, so to innovate
in cores you have to work for one of those
companies. Let’s try an experiment where we
let a lot more people design cores. What’s
interesting, especially over my career, is the
widespread agreement on ISA designs. A lot

of stuff we tried over the decades didn’t work
out so well, but there is also stuff that still
seems like a pretty good idea. I don’t know
that we need a lot of innovation in ISA design
now, but I think for cores, it’s wide open given
that Moore’s law is slowing down and energy
is becoming more important. These $1 chips
for the Internet of Things offer a vast design
space to explore. I think this will enable inno-
vation because most architects will try some-
thing on their own. If they did a custom ISA,
they’d try to port software over to it and noth-
ing would run, and it would take several years.
With RISC-V, you have the OS base, Linux,
and all these compilers ready, so you can inno-
vate on the things you want to do and inno-
vate underneath the ISA, but the big pieces of
software will run. I’m willing to take bets that,
at worst, we’re going to see a lot more innova-
tion than we get from the ARM. Those cores
are designed at one company. By contrast, if
you look at the cores we designed at Berke-
ley—just one group at Berkeley—I think we
designed some cores better than ARM. We’ll
show you the data.

Christie: I think that’s an interesting obser-
vation. RISC-V has got a huge fan club and a
lot of very smart people participating in the
effort, and doing really cool things. But over
time, the initial people go off and do other
things, and the business that was built around
it gets certain constraints, and things mire
down and …

Patterson: So, don’t do anything, is that it?
[Mark Hill throws penalty flag.]
Christie: No, I just mean innovation that’s

happening now might taper off.

How Does One Experiment with New Instructions
in a Proprietary ISA?
Audience member: I know with RISC-V that
if I want to experiment with transactional
memory, new security models, or new mem-
ory systems, I can see how I can build those
in that infrastructure. In a proprietary ISA
ecosystem, how does a researcher experiment
with these new innovations and get them
updated?

Christie: For transactional memory work—
I noticed that’s a blank chapter in the RISC-V
specification, which I don’t fault them for. But
there’s been no shortage in the ability to experi-
ment and develop, for example, transactional

...

JULY/AUGUST 2016 9

capabilities that could be adopted by any ISA,
so I think that’s not been a problem.

Patterson: We’re doing extensions where
we think there’s a consensus in the architec-
ture community. There’s no consensus in
transactional memory, and that’s why we put
a placeholder in there. However, we think we
need to make more progress to figure what to
do on something like transactional memory,
and once we do, there is space to add it to
RISC-V. I agree with the questioner that this
is an opportunity to do significant stuff; we
can build chips and run software and try
things out. We’ll give you an ecosystem, a
register transfer level (RTL) design that you
can start modifying, and then do your
experiments.

As a concrete example, security research is
done mostly by pointing out flaws rather
than building things and seeing if they work.
With RISC-V, you can try your idea and
build a system, usually from field-program-
mable gate arrays, and try it out. You can put
it up on the Internet and claim that it’s going
to work. You’d get sued if you try to do that
with ARM. So you can’t use the proprietary
ISAs to do such experiments. ARM seems to
believe in security by obscurity, while no
security researcher that I know of agrees with
that philosophy. Experts think their best path
forward is where everybody knows what is
going on, and then you try to break into it.
You can do that with RISC-V. You could put
your RTL out there and share it, so every-
body doesn’t have to do it themselves. I think
one of the big releases of innovation in archi-
tecture is for the things we don’t know how
to do, because many could build systems that
run software and try the ideas out. Other-
wise, you have to wait for Intel or ARM to
figure it out. And they’ll give you their solu-
tion, and that’s what you will be allowed to
use.

Should There Be More than One Open ISA?
Audience member: Should there be more than
one of these open ISAs?

Patterson: No, I don’t think so. [Laughter]
First of all, it’s a lot of work. When Krste Asa-
novic, Yunsup Lee, and Andrew Waterman
started this, I said, “Don’t do this, it’s a bad
idea.” Krste said, “This will be three months.”
It took four years.

Remember that initially there were a
bunch of competing BSD Unixes out there
(FreeBSD, NetBSD, OpenBSD, PC-BSD),
which divided the community. One of them
had to be successful, but none of them were.
Linux came later and took off when the field
rallied around it. You could try to do another
open ISA, and there are other efforts besides
ours right now. For example, there is one
that’s based around the Hitachi SuperH. But
my opinion is that the community needs to
build the ecosystem to make one ISA success-
ful before trying to build ecosystems for mul-
tiple ISAs.

I think if RISC-V became a monopoly or
something, and you couldn’t influence what
was going on, that would be a good reason
for another ISA. But we don’t even know if
RISC-V is going to work yet. The problem
isn’t that there’s not enough open ISAs. The
question is whether we can do this in hard-
ware at all; can a free and open ISA be as suc-
cessful as the LLVM compiler or Linux?
That’s the question.

Christie: I’m going to agree with the prem-
ise that one open source effort kind of makes
sense. Although I disagree that they can cover
anything you want to do. Do you have a
GPU? Various accelerators? Is that the most
efficient way to do a GPU?

Patterson: Yes, that’s a good question.
Christie: Like I said, for certain accelera-

tors, you want give the designers freedom to
do their own customized ISA. And I think
the intermediate layer is a good approach to
deal with that.

Patterson: Yes, I think the question is could
we build a GPU? We think you could build
the GPU around RISC-V, but we haven’t dem-
onstrated it. [Authors’ note: Since this talk, two
other groups have announced open GPUs: the
MIAOW GPU from the University of Wis-
consin (http://miaowgpu.org) and Nyami
from Binghamton University.]

Why Can’t We Have a Choice between Open and
Proprietary ISAs?
Audience member: Will it be possible to have
both an open ISA and a proprietary ISA
together and have a choice, just like we have
in the software world, such that we can go
with the proprietary one if we wanted to and

..

COMPUTER ARCHITECTURE

...

10 IEEE MICRO

if we want innovation in the research com-
munity we can go with the open source?

Patterson: Okay, we promise not to drive
Intel and ARM out of business.

Hill: You notice Dave Christie didn’t
promise. [Laughter at implied reference to Intel.]

Patterson: I think that in every case in
Table 1, there was a viable, money-making
proprietary one and a free and open one.
Linux did not destroy all operating systems;
Microsoft still makes a lot of money selling
operating systems. The experiment is to see if
we can have an open ISA. The proprietary
ones are absolutely not going to go away, but
can open source sustain a viable ISA, too?

How Does One Deprecate Something from an
Open Source ISA?
Audience member: So how do you deprecate
something from an open ISA?

Patterson: What I expected from the ques-
tion is how you prevent wretched excess like
what’s happening with x86 and ARMv7.
Like other open source organizations, we are
setting up a RISC-V foundation. I think of it
like the US Constitution in that it gets seeded
with principles, which are the instructions.
And then we’re going to have a voting mecha-
nism by the members of the foundation to
amend it. So we can add things to it and we
can take things out, but it’s going to be like
the US Congress; it’s a slow-changing system,
and that’s on purpose. For the areas we
haven’t defined, like transactional memory,
there’s a hole there; but once there’s a pro-
posal, that will be different. For stuff that gets
established, it will probably be a slow-chang-
ing thing. That is why I think it’s not going
to add two instructions per month for 40
years like the x86. I think those parts will
change slowly; the places that are brand new
as they come along, but those will pop up.

Christie: Do you have a mechanism for
the software discovery of features, namely,
where the software is able to query whether
or not the feature is present, and if not, it
takes an alternate path?

Patterson: Yes, that’s there.

Will the Quality of an Open Source ISA Be
Competitive with That of Proprietary Ones?
Audience member: My personal experience of
the quality of most open source software is it

is sort of like driving a Yugo. Why should we
expect that the quality of this open source
effort will be competitive with what we get
commercially?

Patterson: Many think proprietary software
also has dubious quality. ARM abandoned the
ARM C compiler and endorsed the LLVM C
compiler. That was an open source University
of Illinois effort. I don’t know if you used the
Apache open source Web server, but I would
be surprised if you don’t. A huge part of this
software you use every day is open source. I
know there’s lousy open source, but a lot of
software the world depends on is open source.
For example, Amazon’s cloud computing soft-
ware is all open source. As a second example,
every time you do a Google search, you use
open source software. I’d be thrilled if the
RISC-V cores are the equivalent quality of the
same “crappy” software that Google runs to
do searches.

Christie: The idea of having all these eyes
on the correctness for open source can be a
good thing and may work really well, but at
the same time, the Heartbleed bug is open
source code, which is obviously a weakness.
How would you like to have that—some-
thing of the magnitude of Heartbleed—cast
in hardware?

Patterson: Yeah, fortunately, proprietary
software has never had bugs. The argument is
that more people looking at design will help.
I guess if we had to build something with
zero bugs, I don’t think open source would
do it; perhaps try formal verification. But I
think it’s common sense that reuse via sharing
could well reduce the number of bugs.

H ill: Please make a one-minute conclud-
ing statement.

Patterson: Open architecture and imple-
mentations are a real possibility. I hope every-
body in the room believes this could happen.
It has already happened in other software
fields. For it to happen in our field, it’s going
to need people to volunteer. What was great
was that 150 people showed up at our first
workshop. A lot of people came from these
companies, but not representing their com-
pany. For example, there’s a person who did
validation for Qualcomm and he took a vaca-
tion day to come because he wanted to make

...

JULY/AUGUST 2016 11

this happen and was willing to contribute.
People in this room could help make this
happen. And it would be a very exciting
future. I can see a lot of positives coming out
of that, making our research even more rele-
vant. We no longer would have to convince
Intel or ARM to enable people to try our
ideas. Rather, we could do it ourselves, put it
out there, and have people start using it. So I
see a potentially very exciting future, but it’ll
take volunteers to help make it happen. I
hope some of you consider joining us.

Christie: I think if you want to write a
finalizer for HSAIL [HSA’s Intermediate
Language] to target RISC-V, the HSA Foun-
dation would be happy to include it.

Hill: Okay, so with that we will finish our
debate. [Blows whistle.] MICR O

..
References
1. HSA Foundation, 2013; www.hsafoundation.

com.

2. A.L. Shimpi, “The ARM Diaries, Part 1: How

ARM’s Business Model Works,” Anand-

Tech, 28 June 2013; www.anandtech.com/

show/7112/the-arm-diaries-part-1-how-

arms-business-model-works.

3. C. Demerjian, “A Long Look at How ARM

Licenses Chips: Part 1,” SemiAccurate, 7

Aug. 2013; semiaccurate.com/2013/08/07/

a-long-look-at-how-arm-licenses-chips.

4. C. Demerjian, “How ARM Licenses Its IP

for Production: Part 2,” SemiAccurate, 8

Aug. 2013; semiaccurate.com/2013/08/08/

how-arm-licenses-its-ip-for-production.

Mark D. Hill is the John P. Morgridge Pro-
fessor, Gene M. Amdahl Professor of Com-
puter Sciences, and Computer Sciences
Department Chair at the University of Wis-
consin–Madison. His research interests
include parallel-computer system design,
memory system design, and computer simu-
lation. Hill received a PhD in computer sci-
ence from the University of California, Ber-
keley. Contact him at markhill@cs.wisc.edu.

Dave Christie is lead AMD64 architect
emeritus, ARM architecture liaison, and a
Senior Fellow at Advanced Micro Devices.
His research interests include hardware/soft-

ware interface, computer security, CPU
microarchitecture, and performance instru-
mentation techniques. Christie began his
never-ending computer architecture education
at Ryerson Polytechnical [now University].
Contact him at david.christie@amd.com.

David Patterson is the E.H. and M.E. Par-
dee Chair of Computer Science at the Univer-
sity of California, Berkeley. His research inter-
ests include free and open instruction sets,
domain-specific accelerators, and hardware
support for improved security. Patterson
received his PhD in computer science from
the University of California, Los Angeles.
Contact him at pattrsn@cs.berkeley.edu.

Joshua J. Yi is a patent litigation associate at
Dechert. His research interests include
microarchitecture, reliability, variation-tol-
erant processor design, and performance
methodology. Yi received a PhD in electrical
engineering from the University of Minne-
sota, Minneapolis, and a JD from the Uni-
versity of Texas at Austin. Contact him at
joshua.yi@dechert.com.

Derek Chiou is a partner hardware architect
at Microsoft and an associate professor at
the University of Texas at Austin. His
research interests include accelerating data-
center applications and infrastructure; rapid
system design; and fast, accurate simulation.
Chiou received a PhD in electrical engineer-
ing and computer science from the Massa-
chusetts Institute of Technology. Contact
him at derek@ece.utexas.edu.

Resit Sendag is a professor of electrical and
computer engineering at the University of
Rhode Island. His research interests include
microarchitecture, memory systems, and
simulation techniques. Sendag received a
PhD in electrical engineering from the Uni-
versity of Minnesota, Minneapolis. Contact
him at sendag@ele.uri.edu.

..

COMPUTER ARCHITECTURE

...

12 IEEE MICRO

dechiou
Cross-Out

dechiou
Inserted Text
T (I know, it's weird, but "The" is capitalized in front of "University of Texas at Austin")

	table1
	table2
	ref1
	ref2
	ref3
	ref4

