
TEL-AVIV UNIVERSITY

RAYMOND AND BEVERLY SACKLER

FACULTY OF EXACT SCIENCES

SCHOOL OF COMPUTER SCIENCE

Programming with
Hardware Lock Elision

Dissertation submitted in partial fulfillment of the requirements for the M.Sc.

degree in the School of Computer Science, Tel-Aviv University

by

Amir Levy

The research work for this thesis has been carried out at Tel-Aviv University

under the supervision of Prof. Yehuda Afek

and the consultation of Mr. Adam Morrison

September 2013





Abstract

This thesis addresses performance problems in hardware lock elision (HLE), which is being

introduced into commercial processors. Using Intel’s Haswell HLE as a study vehicle, we show that

even a few transactional aborts can severely limit the amount of concurrency and speedup obtained

using HLE. We then provide a software-based technique to solve this problem and restore the lost

potential concurrency in lock elision executions.

We present a lock elision approach based on Haswell’s transactional memory support that

serializes only conflicting threads, allowing non-conflicting threads to continue their speculative run.

To do this we add a serializing path to the lock implementation, in which a thread experiencing a

conflict acquires a distinct auxiliary lock (without using lock elision) and then rejoins the speculative

execution.

We evaluate our methods on a Haswell processor, using a set of data structure benchmarks

and applications from the STAMP suite. Our methods lead to performance improvement of up to

3.5× on STAMP and up to 10× on the data structure benchmarks, compared to using Haswell’s

hardware lock elision as is.

We also describe how to extend Haswell’s HLE mechanism to achieve a similar effect to our

software-assisted scheme entirely in hardware, by distinguishing between conflicts on the lock and

on the data cache lines. Our proposal requires no cache-coherence protocol changes.

iii



Acknowledgements

I am deeply grateful to my advisor, Prof. Yehuda Afek for his insightful comments, suggestions

and warm encouragement. I would particularly like to thank Mr. Adam Morrison, I have greatly

benefited from our joint work.

Finally, I would like to thank my wife Noga for her constant and consistent support, encour-

agement and good advice during the accomplishment of this work and in general.

iv



Contents

1 Introduction 1

2 Transactional Synchronization Extensions 5

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Haswell’s TSX Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 HLE Avalanche Effect 9

4 Software-Assisted Conflict Management 16

5 Evaluation 22

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Red-black Tree Data Structure Benchmark . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 STAMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Adjusting Fair Locks to Work with HLE 29

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 Ticket Lock Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.3 CLH Lock Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.4 Lock Adjustments Correctness Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Extending Haswell’s HLE Implementation 35

8 Related work 39

v



vi



Chapter 1

Introduction

Transactional memory (TM) [12] is being introduced into mainstream mass-market processors (e.g.,

Intel’s latest Haswell microarchitecture, IBM POWER architecture [1, 7]), and practitioners try

to use the offered hardware-based lock elision [17], a hardware mechanism to dynamically remove

unnecessary lock-induced serialization, to improve the performance of their lock-based programs [2].

The premise of Hardware Lock Elision (HLE), and the scope of this work, is to enable simple

coarse-grained programming with the performance of fine-grained locks. Hence, our work stud-

ies problems and solutions to gain the potential concurrency in coarse-grained global lock based

programs.

The idea behind lock elision is to transactionally execute lock-protected critical sections, and

serialize them if an actual data conflict occurs. (Two memory operations conflict if they both access

the same cache line and one of them is a write.) This allows programmers to use coarse-grained

locking, which is easier to program and reason about, while getting the performance of fine-grained

locking.

However, as this work demonstrates, naively using hardware lock elision can lead to disappoint-

ing performance results. We therefore provide software techniques for assisting the hardware’s lock

elision, to get around the limitations of the hardware which cause excessive serialization and prevent

the materialization of the full concurrency in the application from being exposed. Our techniques

significantly improve the performance obtainable when using lock elision.

In this work we use Haswell’s hardware lock elision (HLE) as an example. We begin by studying

the performance behavior of several lock implementations under Haswell’s HLE. We find that the

1



HLE mechanism can lead to an avalanche behavior pathology which causes unnecessary serialization

and limits the concurrency exposed. We then propose several simple software-assisted lock elision

algorithms to address these problems.

Algorithm 1 TTAS (Test&Test&Set) Lock Using HLE

TTAS Lock

1: while true do
2: while (lock == 1) do
3: {busy-wait}
4: end while
5: ret = XACQUIRE lock.get&set(1)
6: if (ret == 0) then
7: return
8: end if
9: end while

TTAS Unlock

1: XRELEASE lock = 0

Figure 1.1: Applying hardware lock elision to a TTAS lock.

With standard HLE (Figure 1.1), one prefixes the store instruction acquiring the lock with a

new XACQUIRE prefix and the store releasing the lock with an XRELEASE prefix. Executing an

XACQUIRE store initiates a speculative transactional execution in which the hardware elides the

lock acquisition, treating it as a load instead. This allows multiple transactions to run concurrently

without conflicting on the lock. In a successful conflict-free execution, the XRELEASE store which

ends the critical section causes the transaction to commit, making its memory updates globally

visible.

Thus, Haswell’s HLE mechanism conservatively requires that the store releasing the lock restores

the lock to its original state prior to the acquisition [1]. Unfortunately, the popular (fair) ticket

lock [14] (used in the Linux kernel [16]) and CLH lock [13, 9] do not meet this requirement. As an

additional contribution, we adapt these locks for use under HLE, thus enabling HLE-based code to

maintain the progress guarantees fair locks provide, and making HLE applicable to programs that

use ticket locks or CLH locks.

However, our main contribution concerns HLE’s avalanche behavior (Chapter 3). When a

transaction aborts (e.g., due to a conflict) the execution rolls back to the acquiring store which is

2



now re-issued non-transactionally. In other words, an abort causes the thread to try to enter the

critical section in a standard manner. The globally visible lock acquisition by the aborted thread

conflicts with the speculative loads of the lock performed by speculative HLE transactions, and

causes all the threads that are in a transaction to abort. In addition, new threads arriving at the

critical section see that the lock is taken. This in turn causes such threads to delay their entrance

into a transactional execution, or even (in the case of fair locks) serializes the run until a quiescent

period in which no thread tries to access the lock.

To prevent the avalanche problem in HLE transactions, we introduce a simple yet effective

software-assisted conflict management (SCM) technique that allows the non-conflicting threads to

continue their speculative HLE-based run without any interference from conflicting threads. To do

this we add a serializing path to the lock implementation, in which an aborted thread acquires a

distinct auxiliary lock (without using lock elision) and then rejoins the speculative execution with

the other threads. Using this approach conflicting threads are serialized among themselves and

do not interfere with other threads, greatly reducing the probability that a thread aborts so many

times that it must give up and acquire the original lock. Furthermore, to the best of our knowledge,

SCM is the only scheme that enables HLE-based fair locks, with starvation freedom and progress

guarantees and with no performance degradation.

While straightforward, implementing our lock elision technique is more complex than simply

adding an instruction prefix as in Haswell’s native HLE. We therefore describe in Chapter 7 how

to extend (what we believe to be) Haswell’s HLE implementation to achieve a similar effect to our

lock elision scheme entirely in hardware, by distinguishing between conflicts on the lock and the

data cache lines. We show how such a mechanism can be used to allow speculative sections that do

not conflict on data lines to continue with their speculative runs even in the presence of conflicting

threads that abort, acquire the lock, and serialize.

The contributions of this thesis:

• Analyzing the performance dynamics of Haswell’s HLE and quantifying the impact of its avalanche

behavior (Chapter 3).

• Solving the avalanche effect using lightweight software-assisted conflict management (Chapter 4).

• Evaluating the lock elision schemes which demonstrates that they can improve performance by

3



up to 3.5× in application benchmarks and up to 10× in data structure benchmarks compared to

HLE (Chapter 5).

• HLE compatible locks: adapting ticket and CLH locks to HLE (Chapter 6).

• Extending Haswell’s HLE implementation to achieve a similar effect to our lock elision scheme

entirely in hardware (Chapter 7).

This thesis summarizes our two papers: [3, 4].

In the future We plan to explore more refined policies for handling conflict management. In

particular, utilizing abort information provided by the hardware (such as the location in which a

conflict occurs, and/or the identify of the conflicting thread) appears to be a promising direction.

4



Chapter 2

Transactional Synchronization

Extensions

2.1 Overview

In this background section we describe the specification of Intel’s transactional synchronization

extensions (TSX) [1], the commercial name for Intel’s TM. We then describe the initial implemen-

tation of this specification in the Haswell processor.

A memory transaction is an instruction sequence whose memory accesses appear as if they were

executed atomically at some point in time, i.e., a transaction appears to execute instantaneously

without observing any concurrent memory updates.

The set of cache lines read/written by a transaction is called its read/write set. A conflict occurs

if another processor reads or writes to a cache line in the transaction’s write set, or writes to a

cache line in the transaction’s read set.

During its execution the processor may abort a transaction. (for example, due to a data conflict).

Upon an abort the processor rolls back the transactional execution, restoring the processor’s state to

the point before the transaction started (including discarding any memory updates it performed).

Execution then continues non-transactionally. TSX makes no progress guarantees and is allowed

to abort a transaction even if no conflict occurs.

TSX defines two interfaces to designate the scope of a memory transaction, i.e., its beginning

5



and end:

Hardware lock elision (HLE): In HLE, the scope of a lock-protected critical section defines

a transaction’s scope. HLE is implemented as a backward-compatible instruction set extension of

two new prefixes, XACQUIRE and XRELEASE. Upon executing an instruction writing to memory

(e.g., a store or compare-and-swap) which is prefixed by XACQUIRE (see Figure 1.1), the processor

starts a transaction and elides the actual store, treating it as a transactional read instead (i.e.,

placing the lock cache line in the read set). Internally, however, the processor maintains an illusion

that the lock was acquired: if the transaction reads the lock, it sees the value stored locally by the

XACQUIRE-prefixed instruction. Upon executing an XRELEASE store, the transaction commits.

HLE requires that an XRELEASE store restores the lock to its original state; otherwise, it aborts the

transaction. If an HLE transaction aborts, the XACQUIRE store is re-executed non-transactionally

to acquire the lock in order to ensure progress. Notice that such a non-transactional store conflicts

with every concurrent HLE transaction eliding the same lock, since such a transaction has the lock’s

cache line in its read set.

Restricted transactional memory (RTM): RTM provides a generic TM interface with three

new instructions: XBEGIN, XEND, and XABORT. XBEGIN begins a transaction, XEND commits

and XABORT allows a transaction to abort itself. The XBEGIN instruction takes an operand that

points to fall-back code which is executed if the transaction aborts. Upon an abort the processor

writes an abort status to one of the registers, which the fall-back code can then consult. For

example, the abort status indicates whether the abort was due to an XABORT, a data conflict, or

an “internal buffer overflow” [1].

RTM can be used to implement custom lock elision algorithms [2] by replacing the lock ac-

quisition code with custom code that begins a transaction and reads from the lock’s cache line.

However, such a lock elision scheme fails to maintain the illusion that the thread wrote to the lock,

as the lock’s cacheline is indistinguishable from any other line in the read-set.

2.2 Haswell’s TSX Implementation

Various statements in Intel’s documentation shed light on Haswell’s TM implementation [2]. Of

importance to us is that Haswell appears to use a requestor wins conflict management policy. If a

6



coherency message (read or write) arrives for a cache line in the write set, the transaction aborts.

Similarly, if an eviction due to a write arrives for a cache line in the read set, the transaction aborts.

Experiments we conducted show that transactions are prone to spurious aborts that are not

explained by data conflicts or read/write set overflow. The existence of spurious aborts is a serious

issue because, as the next section explains, an abort can negatively impact performance on HLE

executions. Spurious aborts imply that even in a perfect conflict free workload, such performance

degradation is possible.

Read and write set tracking According to Intel’s manuals, “the processor tracks both the read-

set addresses and the write-set addresses in the first level data cache (L1 cache) of the processor.”

Therefore, running out of cache space (due to capacity or associativity) can cause a transactional

abort.

Conflict management Quoting the manual:

• “Data conflicts are detected through the cache coherence protocol.”

• “Data conflicts cause transactional aborts.”

• “The thread that detects the data conflict will transactionally abort.”

This amounts to a requestor wins policy. If a coherency message (read or write) arrives for a cache

line in the write set, the transaction aborts. Similarly, if an eviction due to a write arrives for a

cache line in the read set, the transaction aborts.

Transactional behavior in practice To better understand transactional behavior in practice,

we conduct an experiment on a Haswell processor. We use a Core i7-4770 3.4 GHz processor. This

processor has 4 cores, each with 2 hyperthreads. Each core has private L1 and L2 caches, whose

sizes are 32 KB and 256 KB respectively. There is also an 8 MB L3 cache shared by all cores.

We run a benchmark that initiates a transaction which reads (or writes) every cache line in

an array of a given size. We repeat this 107 times for various sizes and collect the number of

transactions that successfully commit. Figure 2.1 shows the results: It is clear that the L1 cache,

whose size is 32 KB, holds the write set. Transactions that attempt to write more than 32 KB of

data always abort. However, it appears that a more sophisticated mechanism is used for tracking

the read set, as transactions succeed for sizes that exceed not only the L1 cache but also the 256

KB L2 cache.

7



128 512 2K 8K 32K 128K 512K 2M 4M 6M 8M

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Read/Write Set Size

F
ai

lu
re

s 
F

ra
ct

io
n

Sporadic Speculative Failures
 1 Thread no Contention

 

 

Read
Write

Figure 2.1: Transactional behavior in practice.

Spurious aborts A final observation from this benchmark is that transactions are prone to

spurious aborts, i.e., aborts which are not explained by data conflicts or read/write set overflow.

This is evidenced by the non-zero abort probability that exists even when the array the benchmark

accesses fits well in the L1 cache. The existence of spurious aborts is important because, as the

next section explains, an abort can negatively impact performance on HLE executions. Spurious

aborts imply that even in a perfect conflict free workload, such degradation remains possible.

8



Chapter 3

HLE Avalanche Effect

In this section we experimentally quantify the serialization penalty due to transactional aborts

during an HLE execution. We focus our analysis on the HLE-based test-and-test-and-set (TTAS)

lock (Algorithm 1) and the fair HLE-based MCS lock (Algorithm 2). We use the MCS lock as the

representative of the class of fair locks because it is compatible with HLE, unlike other fair locks

such as ticket locks or CLH locks. However, we have verified that both these locks suffer from the

same problems reported below for the MCS lock.

Our experiments consist of threads accessing a red-black tree data structure which is protected

by a single global lock. Varying the number of threads, the operation mix, and the tree size allows

us to control the conflict level and the length and amount of data accessed in the critical section.

Small tree and/or many mutating insert/delete threads result in higher conflict levels. Increasing

the size of the tree reduces the chance that two operations’ data accesses conflict, as the elements

accessed are more sparsely distributed. For a given size, s, we initially fill the tree with random

elements from a domain of size 2s. Then, we run for a period of 3 seconds in which each thread

continuously performs random insert, delete and lookup operations, according to a specified

distribution. (We use an equal rate of inserts and deletes so that on average the tree size does

not change.)

Experiments were performed on a Core i7-4770 3.4 GHz Haswell processor, with 4 cores, each

with 2 hyperthreads. Each core has private L1 and L2 caches, whose sizes are 32 KB and 256 KB

respectively. There is also an 8 MB L3 cache shared by all cores.

Each test point is the average on 10 runs (with little observed variance). We measured the

9



2 8 32 128 512 2K 8K 32K 128K 512K

1

2

3

4

5

6

Tree Size

S
pe

ed
−

up

Avalanche Effect 8 Threads
10% insertion 10% deletion 80% lookups

 

 

TTAS
MCS

2 8 32 128 512 2K 8K 32K 128K 512K
0

1

2

3

4

Tree Size

A
tte

m
pt

s
pe

r 
O

pe
ra

tio
n

Average Execution Attempts per Critical Section

 

 

2 8 32 128 512 2K 8K 32K 128K 512K
0

0.5

1

Tree Size

F
ra

ct
io

n

Execution Analysis

 

 

TTAS Total Work
MCS Total Work

TTAS Non−Speculative
MCS Non−Speculative
TTAS Arrival with Lock Held

Figure 3.1: Impact of aborts on executions under different lock implementations. For each tree size
we show the average number of times a thread attempts to execute the critical section until success-
fully completing a tree operation, and the fraction of operations that complete non-speculatively.
CLH and ticket results are omitted, as they are similar to the MCS lock results.

following: (1) the total number of operations completed, (2) S, the number of successful speculative

operations, (3) A, the number of aborted speculative operations and (4) N , the number of operations

that complete via a normal (non-speculative) execution. The total number of operations performed

is S + N . In some lock implementations an operation can start and abort several speculation

attempts before completing, so there is no formula relating A to S and N .

10



Figures 3.1 , 3.3 , and 3.4 depict the avalanche effect during an HLE execution. Figure 3.1 shows

the amount of serialization caused by aborts, as a function of the tree size, for a moderate level of

tree modifications (20%). In addition to the fraction of operations that complete non-speculatively

(i.e.,
N

N + S
), we report the amount of work required to complete an operation, i.e.,

A + N + S

N + S
,

the number of times a thread tries to complete the critical section before succeeding.

Figure 3.1 shows, the serialization dynamics for each lock type are quite different. With an MCS

lock, the benchmark executes virtually all operations non-speculatively after an initial speculative

section aborts. As a result, an HLE MCS lock offers little if any speedup over a standard MCS

lock, even when there is little underlying contention.

The TTAS lock, on the other hand, manages to recover from aborts. At high conflict levels (on

small trees) it requires 2− 3.5 attempts to complete a single operation, but nevertheless a fraction

of 30% to 70% of the operations complete speculatively. As the tree size increases and conflict

levels decrease, HLE shines and nearly all operations complete speculatively.

We now turn to analyze the causes for these differences.

TTAS spinlock (Algorithm 1, and the boxed line in Figure 3.1) The first thread to

abort successfully acquires the lock non-speculatively. As for the remaining threads, we distinguish

between two behaviors. First, a thread that aborts because of this lock acquisition re-executes its

acquiring TAS instruction, which returns 1 because the lock is held. The thread then spins, and

once it observes the lock free re-issues its XACQUIRE TAS and re-enters a speculative execution.

Second, a newly arriving thread initially observes the lock as taken and spins. Once the thread

in the critical section releases the lock, the waiting thread issues an XACQUIRE TAS as in the

first case. The bottom line is that all threads are blocked from entering a speculative execution

until the initial aborted thread exits the critical section, but then all the threads resume execution

speculatively. The flip side of this behavior is that a thread may thus abort several times before

successfully completing its operation, either speculatively or non-speculatively.

Fair lock (represented by the MCS lock (Algorithm 2, and the circled line in Fig-

ure 3.1)) The MCS lock represents the lock as a linked list of nodes, where each node represents

a thread waiting to acquire the lock. An arriving thread uses an atomic SWAP [11] to atomically

append its own node to the tail of the queue, and in the process retrieves a pointer to its predecessor

11



Algorithm 2 MCS Lock Using HLE

Require:
initialization: tail = NULL
local variables: myNode, pred

MCS Lock

1: myNode.locked = true
2: myNode.next = NULL
3: pred = XACQUIRE SWAP(tail, myNode)
4: if (pred != NULL) then
5: pred.next = myNode
6: while (myNode.locked) { busy-wait }
7: end if

MCS Unlock

1: if (myNode.next == NULL) then
2: ret = XRELEASE CAS(tail, myNode, NULL)
3: if (ret) then
4: return
5: else
6: while (myNode.next == NULL) { busy-wait }
7: end if
8: end if
9: myNode.next.locked = false

Figure 3.2: Applying hardware lock elision to a MCS lock.

in the queue. It then spins on the locked field of its node, waiting for its predecessor to set this

field to false.

Similarly to the TTAS lock, the first thread to abort acquires the lock (line 3) and causes

all subsequent threads to spin. In contrast to the TTAS lock, in the MCS lock spinning threads

announce their presence, which leads to an avalanche effect that makes it hard to recover and

re-enter speculative execution.

Consider first a thread that aborted because of the lock acquisition. The processor re-issues

its acquire SWAP operation which returns the thread‘s turn in the queue. The thread then spins

and once its turn arrives (its predecessor sets its locked field to false) enters the critical section

non-speculatively. Thus, a single abort causes the serialization of all concurrent critical sections,

which will now execute non-speculatively.

Now consider a newly arriving thread. It executes an XACQUIRE SWAP to obtain its turn.

12



0 20 40 60 80 100 120 140 160 180 200

0.6

0.8

1

1.2

Time [mSec]

N
or

m
al

iz
ed

 O
pe

ra
tio

ns
Serialization Dynamics of HLE Execution with MCS Lock

10% insertion 10% deletion 80% lookups, 8 Threads, Size 64

 

 
Total Normalized Operations

0 20 40 60 80 100 120 140 160 180 200
0.1

1

Time [mSec]

N
or

m
al

iz
ed

 O
pe

ra
tio

ns
 (

lo
g 

sc
al

e)

 

 

Normalized Non−Speculative Operations

0 20 40 60 80 100 120 140 160 180 200

0.6

0.8

1

1.2

Time [mSec]

N
or

m
al

iz
ed

 O
pe

ra
tio

ns

Serialization Dynamics of HLE Execution with TTAS Lock
10% insertion 10% deletion 80% lookups, 8 Threads, Size 64

 

 
Total Normalized Operations

0 20 40 60 80 100 120 140 160 180 200
0.1

1

Time [mSec]

N
or

m
al

iz
ed

 O
pe

ra
tio

ns
 (

lo
g 

sc
al

e)

 

 
Normalized Non−Speculative Operations

(a) MCS lock: all operations complete (b) TTAS lock: most operations complete
non-speculatively. speculatively but there are periods of serialization.

Figure 3.3: Normalized throughput and serialization dynamics over time. We divide the execution
into 1 millisecond time slots. Top: Throughput obtained in each time slot, normalized to the
average throughput over the entire execution. Bottom: Fraction of operations that complete
non-speculatively in each time slot.

However, it sees a state in which a lock is held and must therefore spin (in the speculative execution)

waiting for the lock to be released. As a result, its speculative execution is doomed to abort: when

the thread‘s predecessor releases the lock, the releasing write conflicts with the reads performed

in the waiting thread’s spin loop. In fact, the speculative execution may abort earlier if the spin

loops issues a PAUSE instruction, as is often the case. In this case, as discussed above, the thread

executes the critical section non-speculatively.

Essentially, because of the fairness guarantees the MCS lock provides, it “remembers” conflict

events and makes it harder to resume a speculative execution. Even when the original lock holder

releases the lock, it moves it into a state that does not allow new threads to speculatively execute.

The MCS lock requires a quiescence period, in which no new threads arrive, so that all waiting

threads acquire the lock, execute the critical section and leave. Only then does the MCS lock

return to a state that allows speculative execution.

13



2 8 32 128 512 2K 8K 32K 128K 512K
0

1

2

4

6

8

10

12

Tree Size

S
pe

ed
−

up

No Contention
Lookups−Only

 

 

TTAS
MCS

2 8 32 128 512 2K 8K 32K 128K 512K
0

1

2

4

6

Tree Size

S
pe

ed
−

up

Moderate Contention
10% insertion 10% deletion 80% lookups

 

 

TTAS
MCS

2 8 32 128 512 2K 8K 32K 128K 512K
0

1

2

4

Tree Size

S
pe

ed
−

up

Extensive Contention
50% insertion 50% deletion

 

 

TTAS
MCS

2 8 32 128 512 2K 8K 32K 128K 512K
0
1
2

4

6

8

10

12

14

Tree Size

S
pe

ed
−

up

No Contention
Lookups−Only

 

 

TTAS
MCS

2 8 32 128 512 2K 8K 32K 128K 512K
0

1

2

4

6

8

10

Tree Size

S
pe

ed
−

up

Moderate Contention
10% insertion 10% deletion 80% lookups

 

 

TTAS
MCS

2 8 32 128 512 2K 8K 32K 128K 512K
0

1

2

4

6

8

10

Tree Size

S
pe

ed
−

up

Extensive Contention
50% insertion 50% deletion

 

 

TTAS
MCS

Figure 3.4: The HLE speedup of 8 threads with different types of locks. The base-line of each
speedup line is the standard version of that specific lock (the horizontal dotted black line at y=1).
By mixing different access operations we vary the amount of contention: (i) lookups only - no
contention, (ii) moderate contention - a tenth of the tree accesses are node insertions and another
tenth are node deletions and (iii) extensive contention all the accesses are either node insertion or
deletion.

Performance impact In Figure 3.3 we divide the benchmark’s execution into 1 millisecond time

slots and show the throughput obtained in each slot, normalized to the throughput over the entire

execution. We also show the fraction of operations that completed via a non-speculative execution

in each time slot. As can be seen, TTAS performance can fluctuate severely, sometimes falling

by as much as 2.5×. These throughput drops are correlated with periods in which more critical

sections finish non-speculatively, i.e., after serialization caused by an abort. The MCS performance

reinforces the results of the previous benchmark: the benchmark executes virtually all operations

non-speculatively due to serialization caused by an abort.

Finally, Figure 3.4 depicts the performance advantage of the lock elision usage with different

types of locks. As observed, MCS lock gains no benefit with HLE usage. On the other hand the

TTAS lock gains performance boost while using the HLE mechanism.

The two software schemes presented in the following sections eliminate the serialization effect

described here, improving the performance not only of the MCS lock but also of the HLE-based

TTAS.

14



2 8 32 128 512 2K 8K 32K 128K 512K
5

10

15

Tree Size

S
pe

ed
−

up
Speedup of the two Lock Elision Mechanisms 8 Threads

Lookups−Only

 

 

HLE−based TTAS
RTM−based TTAS

2 8 32 128 512 2K 8K 32K 128K 512K
0

2

4

6

8

10

Tree Size

S
pe

ed
−

up

10% insertion 10% deletion 80% lookups

2 8 32 128 512 2K 8K 32K 128K 512K
0

2

4

6

8

10

Tree Size

S
pe

ed
−

up

50% insertion 50% deletion

2 8 32 128 512 2K 8K 32K 128K 512K
0.8

0.9

1

1.1

1.2

Tree Size

S
pe

ed
−

up

Speedup of the two Lock Elision Mechanisms 8 Threads
Lookups−Only

 

 

HLE−based MCS
RTM−based MCS

2 8 32 128 512 2K 8K 32K 128K 512K
0.5

1

1.5

Tree Size

S
pe

ed
−

up

10% insertion 10% deletion 80% lookups

2 8 32 128 512 2K 8K 32K 128K 512K
0.8

0.9

1

1.1

1.2

Tree Size
S

pe
ed

−
up

50% insertion 50% deletion

(a) TTAS lock (b) MCS lock

Figure 3.5: The performance differences between the two lock elision mechanisms. The base-line
of each speedup line is the standard version of that specific lock (the horizontal dotted black line
at y=1): on the left - TTAS lock and on the right - MCS lock.

Remark It is not possible to count aborts when using Haswell’s HLE, since with HLE an abort

results in a re-issue of the XACQUIRE write, which is completely opaque to the lock implemen-

tation. Therefore, in our tests we use an equivalent lock elision mechanism based on the RTM

instructions, which allows us to count aborts before re-issuing the acquiring write. We have verified

that the performances of the two lock elision mechanisms are comparable (Figure 3.5).

15



Chapter 4

Software-Assisted Conflict

Management

In this section we introduce the software-assisted conflict management (SCM), a simple yet effec-

tive lock elision scheme, which mitigates aborts serializing effect of HLE and allows to maintain

higher levels of concurrency despite conflicts. The conflict management scheme serializes conflicting

threads that cannot run concurrently, but does this without acquiring the lock to avoid impact on

the other threads in the system. The scheme is compatible with any lock implementation.

Our scheme uses two locks, the original main lock which is taken using the HLE mechanism

and an auxiliary standard lock which is only acquired in a standard non-transactional manner.

The auxiliary lock groups all the threads that are involved in a conflict and serializes them (see

Figure 4.1). When a transaction is aborted, the aborted thread non-transactionally acquires the

auxiliary lock and then rejoins the speculative execution of the original critical section. We refer to

the process of acquiring the auxiliary lock in order to rejoin the speculative run as the serializing

path (see the flow-chart in Figure 4.2). The thread may retry its transaction before going to the

serializing path.

When applied to HLE our conflict management scheme prevents the problem in which an abort

causes the lock to acquired, aborting all concurrent transactions in the process, hence resolves the

avalanche problem in HLE transactions.

One usability advantage of software-assisted conflict management is that, like HLE, it provides

16



a transaction the illusion that the lock is acquired while it runs. As a result, one can plug our

scheme into a legacy lock-based application by changing only the locking library.

Preventing livelock To see why this scheme prevents livelock, consider two transactions, T1

and T2, which repeatedly abort each other. Once T1 acquires the auxiliary lock and re-joins the

speculative execution, one of the following can happen: (1) T1 aborts again, but T2 commits, or

(2) T2 aborts and thus tries to acquire the auxiliary lock, where it must wait for T1 to commit.

Generalizing this, once a thread T acquires the auxiliary lock any transaction that conflicts with

T either commits or gets serialized to run after T . Thus the system makes progress.

Preventing starvation In the above scheme starvation remains possible due to one of two

scenarios: (1) a thread fails to acquire the auxiliary lock (as can happen with a TTAS lock), or (2)

a thread holding the auxiliary lock fails to commit. To solve issue (1) we require that the auxiliary

lock be a starvation-free (or “fair”) lock, such as an MCS lock. Our scheme then inherits any fairness

 
Serializing path 

optimistic unlock 

optimistic lock 

standard unlock 

standard lock 
speculative run start 

Common HLE 
path 

Figure 4.1: A block diagram of a run using our software scheme. The entry point of a speculative
section is the ‘speculative run’ rectangle. All threads acquire the original main lock using the lock-
elision mechanism. If a conflict occurs (described by ‘x’), the conflicting threads are sent to the
serializing path. Once a thread acquires the auxiliary standard lock in a non-speculative manner,
it rejoins the speculative run.

17



Common HLE Path

Lock-Protected 
Code Segment

Main lock optimistic acquire. 
The speculative run is started.

Speculative run 
conflict (detected by 

the HW)

no

Main lock optimistic release.
The speculative run is completed.

no

yes

Over max 
retries?

no

Main lock standard acquire. The 
execution continues in a non-

speculative mode.
yes

Main lock is locked 
in standard 

manner?

yes

Auxiliary lock standard 
release.

no

Main & auxiliary locks standard 
release. The non-speculative run is 

completed.

yes

Auxiliary lock standard acquire.

The speculative run is aborted. 
The processor switches to a 

non-speculative mode.

Serializing Path

Serializing-path 
usage?

Figure 4.2: The flow-chart of our software-assisted conflict management scheme. The entry point
of a speculative segment is the common path. This path enables speculative execution of a lock
protected code segment. The serializing path is used only by conflicting threads. The optimistic
acquire/release uses the lock elision mechanism.

properties of the auxiliary lock. To solve issue (2), the auxiliary lock holder non-transactionally

acquires the main lock after failing to commit a given number of times. If all accesses to the main

lock go through the HLE mechanism, then only the auxiliary lock holder can ever try to acquire

the main lock and is therefore guaranteed to succeed. Otherwise (i.e., if the program sometimes

explicitly acquires the lock non-transactionally), the main lock must be starvation-free as well.

Implementation and HLE compatibility (Algorithm 3) Our scheme maintains HLE-compatibility

by nesting an HLE transaction within an RTM transaction. When used with HLE, we first start

an RTM transaction which “acquires” the lock with an XACQUIRE store. Because TSX provides

a flat nesting model [1], an abort will abort the parent RTM transaction and execute the fall-back

code instead of re-issuing the XACQUIRE store and aborting all the running transactions.

18



Algorithm 3 Software-Assisted Conflict Management (SCM)

Require:
main lock //the main lock

aux lock //the auxiliary standard lock

thread-local variables:
retries = 0
aux lock owner = false

Lock()

1: primary path:

2: XBEGIN (serializing path)
3: call HLE Lock()
4: return

5: serializing path:

6: if (aux lock owner == true) then
7: retries++
8: else
9: aux lock.lock() //standard lock acquire

10: aux lock owner = true
11: end if
12: if (retries < MAX RETRIES) then
13: GOTO primary path
14: else
15: main lock.lock() //standard lock acquire

16: end if
17: return

Unlock()

1: //XTEST return true if the run is speculative

2: if (XTEST == true) then
3: call HLE Unlock()
4: XEND
5: else
6: main lock.unlock() //standard lock release

7: end if
8: if (aux lock owner == true) then
9: aux lock.unlock() //standard lock release

10: aux lock owner = false
11: end if
12: return

Lock(): The XBEGIN command (line 2) starts the thread’s speculative run (the primary path)

and passes the fallback code address (the serializing path label) as a parameter. In the serializing

path (the fallback code for aborted threads), a thread tries to acquire the auxiliary lock in a standard

non-speculative manner (lines 9-10) and rejoins the speculative execution (line 13). Only after a

19



few failed speculative attempts the thread gives up and executes non-speculatively by acquiring the

main lock in a standard non-speculative manner (line 15).

Unlock(): If the call is part of a speculative execution (line 2), lines 3-4 complete it (commit

the transaction). Otherwise, the main lock is released in a standard non-speculative manner (line

6). In case the auxiliary lock is held by the thread, lines 9-10 release it.

Remark Unfortunately, the initial implementation of TSX in Haswell does not support nesting

of HLE within RTM. Therefore, in our experiments we use RTM also to perform lock elision (by

reading the lock address), which does not provide the self-illusion that the lock is taken. More

precisely, in our current implementation we omit Line 3 of the Unlock() function in Algorithm 3,

and perform the following at Line 3 of the Lock():

1: // put the main lock in the read set

2: // and check that it is free

3: if (main lock is locked) then

4: XABORT(‘non-speculative run’)

5: end if

Remark In principle, grouping the conflicting threads in one group may be too strict since a

single conflicting thread does not have to conflict with the entire group. A natural extension (left

for future work) to explore is dividing the conflicting threads to different groups, each containing

only threads that conflict among themselves.

Software-assisted lock removal: Rajwar and Goodman [18] observed that one can simply

execute transactions with the same scope of the critical section (i.e., start a transaction instead

of acquiring the lock and commit instead of releasing the lock) without accessing the lock at all,

provided the TM offers some progress guarantee for conflicting transactions. However, Haswell’s

TM has a simple “requestor wins” conflict resolution policy [2] which is prone to livelock [6]. We

therefore propose software-assisted lock removal (SLR), in which a transactionally executing critical

section does not access the lock until it is ready to commit. It then reads the lock and commits if

the lock is not held; otherwise, it aborts and retries, giving up and acquiring the lock after a few

attempts. A more comprehensive report can be found in [4].

20



The conflict management scheme applies both to lock elision and lock removal. One can simply

replace the HLE Lock()/Unlock() calls in Algorithm 3 (the boxed lines) with appropriate SLR

Lock()/Unlock() calls.

Though it benefits mainly HLE, the software-assisted conflict management scheme can be used

to further reduce any progress problems caused when SLR threads give up and acquire the lock

non-transactionally.

21



Chapter 5

Evaluation

5.1 Overview

In this section we evaluate the benefit provided by our lock elision schemes using two data structure

benchmarks and applications from the STAMP suite (commonly used for evaluating hardware TM

implementations [10, 20, 15]), which consists of eight applications that cover a variety of domains

and exhibit different characteristics in terms of transaction lengths, read and write set sizes and

amounts of contention.

The premise of HLE is to enable simple coarse-grained programming with the performance of

fine-grained locks, thus obviating the need for fine-grained locking. Therefore, we deliberately use

coarse-grained benchmarks. PARSEC [5], for example, has been optimized to use fine-grained locks

and so applying HLE there is not relevant and would not show any performance improvement.

Hardware setup As in Chapter 3, we use a Core i7-4770 3.4 GHz processor with 4 cores, each

with 2 hyperthreads. We run the benchmarks on an otherwise idle machine using the jemalloc

memory allocator which is tuned for multi-threaded programs.

Methodology We evaluate our methods on both the MCS lock (as a representative of the class

of fair locks) and the TTAS lock. For each lock type we test the following six schemes: (1) Standard

(non-speculative) version of the lock, (2) HLE version of the lock (3) HLE version of the lock with

conflict management (HLE-SCM), (4) Pessimistic SLR version, in which a thread acquires the

lock non-speculatively after one failure (Pes SLR), (5) Optimistic SLR version, in which a thread

22



1 2 4 8
0

1

2

3

4

Threads

S
pe

ed
−

up
Speedup Normalized to Single Thread Execution (with no locking)

10% insertion 10% deletion 80% lookups

 

 

TTAS
HLE TTAS
HLE−SCM TTAS
opt SLR TTAS
opt SLR−SCM TTAS

1 2 4 8
0

1

2

3

4

Threads

S
pe

ed
−

up

Speedup Normalized to Single Thread Execution (with no locking)
10% insertion 10% deletion 80% lookups

 

 

MCS
HLE MCS
HLE−SCM MCS
opt SLR MCS
opt SLR−SCM MCS

(a) TTAS lock (b) MCS lock

Figure 5.1: The execution results on a small tree size (128 nodes) under moderate contention. The
two graphs are normalized to the throughput of a single thread with no locking (the horizontal
dotted black line at y=1). The software assisted schemes scale well and the performance gap
between MCS and TTAS is closed.

only acquires the lock non-speculatively after retrying speculatively 10 times (Opt SLR), and (6)

Optimistic SLR version with conflict management applied (SLR-SCM).

Conflict management tuning Because SLR and HLE behave differently when the main lock

is taken non-speculatively, we tune the conflict management as appropriate for each technique.

Taking the lock non-speculatively in an HLE-based execution has large performance impact, and

so the thread holding the auxiliary lock retries to complete its operation speculatively 10 times

before giving up and acquiring the main lock. In contrast, SLR is much less sensitive to the main

lock being taken and so if the bits in the abort status register indicate the transaction is unlikely

to succeed, we switch to a non-speculative execution. We have verified that using other tuning

options only degrade the schemes’ performance.

5.2 Red-black Tree Data Structure Benchmark

We evaluate our methods using two data structure benchmarks, the red-black tree (described in

Chapter 3) and a hash table. In each test, we measure the average number of operations per second

(throughput) when running the benchmark 20 times on an otherwise idle machine.

The results of the two data structure benchmarks are comparable, as hash table transactions

are always short and therefore “zoom in” on the short transaction portion of the red-black workload

spectrum. We therefore discuss only the red-black tree.

23



2 8 32 128 512 2K 8K 32K 128K 512K
0

0.5

1

1.5

Tree Size

S
pe

ed
−

up
All Schemes Speedup HLE lock baseline 8 Threads

Lookups−Only

2 8 32 128 512 2K 8K 32K 128K 512K
0

1

2

3

4

Tree Size

S
pe

ed
−

up

10% insertion 10% deletion 80% lookups

2 8 32 128 512 2K 8K 32K 128K 512K
0

1

2

3

Tree Size

S
pe

ed
−

up

50% insertion 50% deletion

 

 

HLE−SCM TTAS
pes SLR TTAS
opt SLR TTAS
opt SLR−SCM TTAS

2 8 32 128 512 2K 8K 32K 128K 512K
0

5

10

15

Tree Size

S
pe

ed
−

up

All Schemes Speedup HLE lock baseline 8 Threads
Lookups−Only

2 8 32 128 512 2K 8K 32K 128K 512K
0

2

4

6

8

10

Tree Size

S
pe

ed
−

up

10% insertion 10% deletion 80% lookups

2 8 32 128 512 2K 8K 32K 128K 512K
0

2

4

6

8

10

Tree Size
S

pe
ed

−
up

50% insertion 50% deletion

 

 

HLE−SCM MCS
pes SLR MCS
opt SLR MCS
opt SLR−SCM MCS

(a) TTAS lock (b) MCS lock

Figure 5.2: The speedup of our generic software lock elision schemes compared to Haswell HLE.
The base-line of each speedup line is the HLE version of that specific lock (the horizontal dotted
black line at y=1): on the left - TTAS lock and on the right - MCS lock. Since the performances
are scaled using different base lines, the reader can not compare between the performance of the
different lock types.

Red-black tree Figure 5.1 shows the speedup (relative to the throughput of a single thread with

no locking) obtained by the various methods on a 128-node tree under moderate contention (20%

updates). It can be seen that using our scheme, the throughput scales with the number of threads.

In contrast, with HLE the MCS lock does not scale at all, and even the TTAS does not scale beyond

4 threads. Using our methods eliminates the performance gap between MCS and TTAS.

Figure 5.2 depicts the speedup that our methods obtain (relative to the HLE version of the

specific lock) across the full spectrum of workloads. Notice that increasing the tree size also

increases the size of the critical section, resulting in a lower conflict probability but also lower

throughput. Our software schemes (except the pessimistic SLR with TTAS) improved the speedup

compared to the plain HLE version of the specific lock (especially on fair locks).

24



2 8 32 128 512 2K 8K 32K 128K 512K

1
2
3
4
5
6
7
8
9

Tree Size

S
pe

ed
−

up

Software Assisted Speed−up − Closer Look
 8 Threads − 50% insertion 50% deletion

 

 

HLE−SCM MCS
HLE MCS

2 8 32 128 512 2K 8K 32K 128K 512K
0

1

2

3

Tree Size

A
tte

m
pt

s 
pe

r 
O

pe
ra

tio
n

Average Execution Attempts per Critical Section

 

 

2 8 32 128 512 2K 8K 32K 128K 512K
0

0.5

1

Tree Size

F
ra

ct
io

n

The Fraction of Non−Speculative Execution

 

 

HLE−SCM MCS Total Work
HLE MCS Total Work

HLE−SCM MCS Non−Speculative
HLE MCS Non−Speculative

2 8 32 128 512 2K 8K 32K 128K 512K

1

2

3

Tree Size

S
pe

ed
−

up

Software Assisted Speed−up − Closer Look
 8 Threads − 50% insertion 50% deletion

 

 

HLE−SCM TTAS
opt SLR TTAS
opt SLR−SCM TTAS

2 8 32 128 512 2K 8K 32K 128K 512K
0

2

4

6

8

10

12

Tree Size

A
tte

m
pt

s 
pe

r 
O

pe
ra

tio
n

Average Execution Attempts per Critical Section

 

 

2 8 32 128 512 2K 8K 32K 128K 512K
0

0.5

1

Tree Size
F

ra
ct

io
n

The Fraction of Non−Speculative Execution

 

 

HLE−SCM TTAS Total Work
opt SLR TTAS Total Work
opt SLR−SCM TTAS Total Work

HLE−SCM TTAS Non−Speculative
opt SLR TTAS Non−Speculative
opt SLR−SCM TTAS Non−Speculative

(a) The impact of the software assisted (b) The impact of the different software
conflict management on high contended assisted schemes on high contended

HLE based MCS lock HLE based TTAS lock

Figure 5.3: Impact of aborts on executions under different schemes. For each tree size we show
the average number of times a thread attempts to execute the critical section until successfully
completing a tree operation, and the fraction of operations that complete non-speculatively.

TTAS lock On the lookup only (no contention) workload, applying our methods to the TTAS

lock shows no performance improvement – the HLE-based TTAS is good enough. However, as we

increase the level of contention, by increasing the fraction of mutating operations, our methods

outperform the plain HLE-based TTAS by up to 3×. This is the result of letting new arriving

threads immediately enter the critical section speculatively, instead of waiting for the aborted

thread currently in the critical section to leave. The pessimistic SLR version fails to scale and gives

overall poor results.

The HLE-SCM and SLR versions of TTAS give comparable performance in general, except

for short transactions. There, HLE-SCM outperforms SLR and SLR-SCM by up to 2×, exactly

because of the serialization it induces (see below).

25



MCS lock Our software assisted schemes increase throughput by 2−10× in every MCS workload

(even in a read-only workload, the MCS lock experiences severe avalanche behavior due to spurious

aborts). We again see comparable results for HLE-SCM and SLR, with a slight advantage to HLE-

SCM in short transactions. The pessimistic SLR version gives comparable performance to the plain

HLE-based MCS lock, and provides a little speedup in longer transactions.

Analysis To gain deeper insight into the behavior of the benchmarks, we run them (see Figure 5.3)

with statistics turned on (at the cost of a 5-10% degradation in throughput). Figure 5.3 shows the

amount of serialization caused by aborts, as a function of the tree size, for a high level of tree

modifications. On the left part, one can see the impact of the SCM scheme on the HLE-based MCS

lock. As the conflict level decreases (as the tree size increases), the HLE-SCM requires less attempts

in order to complete a single operation (converges to single attempt) and the speedup increases.

HLE-SCM manages to complete very high fraction of the operations speculatively. On the right

part, one can see the impact of multiple software assisted schemes on HLE-based TTAS lock.

The SLR scheme enables (at least partial) speculative execution while the lock is non-speculatively

taken. Yet, serializing of conflicting threads to prevent recurrence of known conflicts helps to reduce

the number of aborts and eventually to increase the performance. In the highest contention part

(small tree sizes) the HLE-SCM performs significantly less attempts per operation, hence gains the

better speedup.

5.3 STAMP

To apply our methods to the STAMP suite of benchmark programs [8], we replace the transactions

with critical sections that all use the same global lock. Figure 5.4 shows the runtime of the STAMP

programs with the various lock elision methods, normalized to the execution time using the plain

non-speculative lock.

As with the red-black tree data structure benchmark, MCS lock gains no benefit from HLE

usage. But, MCS lock provides considerable benefit when used with HLE combined with our

conflict management scheme. The HLE-SCM scheme typically improves the performance by up to

2.5×.

On the other hand, TTAS lock gains some benefit of HLE usage (up to 2× in intruder) but

26



genome intruder kmeans_high kmeans_low ssca2 vacation_high vacation_low
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Tests

N
or

m
al

iz
ed

 T
im

e
STAMP Results 8 Threads

 

 

TTAS
HLE TTAS
HLE−SCM TTAS
pes SLR TTAS
opt SLR TTAS
opt SLR−SCM TTAS

genome intruder kmeans_high kmeans_low ssca2 vacation_high vacation_low
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Tests

N
or

m
al

iz
ed

 T
im

e

STAMP Results 8 Threads

 

 

MCS
HLE MCS
HLE−SCM MCS
pes SLR MCS
opt SLR MCS
opt SLR−SCM MCS

(a) Relative execution time over (b) Relative execution time over
non-speculative TTAS lock non-speculative MCS lock

genome intruder kmeans_high kmeans_low ssca2 vacation_high vacation_low
0

2

4

6

8

10

Tests

A
tte

m
pt

s 
pe

r 
O

pe
ra

tio
n

Average Execution Attempts per Critical Section

genome intruder kmeans_high kmeans_low ssca2 vacation_high vacation_low
0

0.2

0.4

0.6

0.8

1

Tests

F
ra

ct
io

n

The Fraction of Non−Speculative Execution

genome intruder kmeans_high kmeans_low ssca2 vacation_high vacation_low
0

2

4

6

8

10

Tests

A
tte

m
pt

s 
pe

r 
O

pe
ra

tio
n

Average Execution Attempts per Critical Section

genome intruder kmeans_high kmeans_low ssca2 vacation_high vacation_low
0

0.2

0.4

0.6

0.8

1

Tests

F
ra

ct
io

n

The Fraction of Non−Speculative Execution

(c) Impact of aborts on executions under (d) Impact of aborts on executions under
TTAS based LE and LR schemes MCS based LE and LR schemes

Figure 5.4: Normalized run time of STAMP applications using standard locking, HLE, and our
software-assisted methods.

the HLE-SCM scheme with TTAS gives modest improvement with the exception of genome (up

to 1.5×). Here too we see that the benefit of HLE usage in TTAS depends on the workload’s

characteristics.

Both locks benefit considerably from lock removal usage. In most of the tests, the optimistic

SLR scheme gives the highest improvement (with one exception of kmeans-high MCS HLE-SCM

lock), sometimes up to 2× compared to the HLE-based scheme and up to 4× compare to the plain

non-speculative version of the lock.

For the most part, when the SCM scheme is used with SLR, the performance gain is negligible

with only one exception. In the vacation low test, the SLR-SCM gives 15% improvement over

the Opt-SLR. In general, the pessimistic SLR gives modest performance gain but for the most part

substantially lower than the other software assisted schemes.

27



Conclusion: One can see the impact of our SCM scheme on the performance of HLE-based locks

in both data structure benchmarks and STAMP no matter what the contention level is. MCS lock

(or any other fair lock) gains the highest performance boost since these locks need quiescence period

in order to overcome the avalanche behavior and return to speculative execution. The impact of

our SCM method on the SLR is more modest and depends on the characteristics of the execution

(such as transaction length and contention level).

28



Chapter 6

Adjusting Fair Locks to Work with

HLE

6.1 Overview

HLE can be applied to a lock implementation only if an unlock of the lock restores the lock to its

original state (see Chapter 2). Unfortunately, the techniques used to provide fairness in the two

popular ticket lock [14] and CLH lock [13, 9] algorithms do not meet this requirement.

Ticket lock: The ticket lock maintains two counters, next and owner, which are usually imple-

mented in one memory word. An arriving thread atomically fetch-and-adds [11] the next counter

and then spins, waiting for the owner variable to match the value returned by the fetch-and-add

operation. Upon exiting the critical section the thread releases the lock by advancing the owner

counter. See Algorithm 4 in Section 6.1 for the pseudo-code.

CLH lock: The CLH queue lock maintains a queue of waiting threads using a linked list of

nodes. Each thread has two node pointers, myNode and pred (its predecessor in the queue). An

arriving thread uses SWAP [11] on the tail variable to atomically enqueue its own myNode pointer

and retrieve a pred pointer. It then waits to acquire the lock by spinning on the locked flag of its

predecessor (pred) node. To release the lock, the thread sets the locked flag in myNode to false,

and recycles pred for use as myNode on its next lock acquisition. (See Algorithm 6 in Section 6.1

for the pseudo-code.) Thus, a CLH lock release does not write to the queue’s tail and is therefore

29



not compatible with HLE.

HLE adjustments We adjust both locks in a way that guarantees that a thread running alone

(which is the illusion given by HLE) restores the lock to its original state when it releases the lock.

The idea is that a thread releasing the lock first tries to optimistically restore the original state

using a compare-and-swap instruction. If this fails – which can never happen in HLE – the thread

reverts to using the standard lock algorithm. But if the CAS succeeds, the lock’s state is restored,

which is exactly what HLE requires. Sections 6.2 and 6.3 contain the full details, and Section 6.4

proves the correctness of these adjustments.

6.2 Ticket Lock Adjustments

The new implementation handles both speculative and standard (non-speculative) runs. We use a

compare-and-swap (CAS) primitive [11] in order to distinguish between the two cases: the release

attempts to CAS the lock back to its original value, i.e., decrement the next counter instead of

incrementing the owner. If successful, it removes all traces of the lock acquisition; this occurs in

either a speculative execution or a non-speculative single-thread execution. An unsuccessful CAS

indicates a standard run with multiple requesters.

The only difference in the lock acquiring function is the XACQUIRE usage. In the adjusted

unlock function, either line 1 or 3 are successfully executed. If line 1 is successfully executed, either:

(i) the lock is taken in a standard manner and the lock owner is the only running thread (no other

requesters) or (ii) the lock is taken in speculative manner and the lock owner (can be one of many)

removes all traces of its run. Line 3 is used to release the lock when the lock is taken in a standard

manner and the lock owner is not the only requester. This behavior is identical to the original

implementation.

6.3 CLH Lock Adjustments

The pseudo-code of the CLH lock implementation, adjusted to the HLE mechanism, is depicted in

Algorithm 7. As in the ticket lock, we need to adjust the CLH lock so that the lock reverts to its

original state when released in a solo run. Again, we use a CAS to do this, in an attempt to place

30



Algorithm 4 Ticket lock

Require:
initialization: next = 0, owner = 0
local variable current

Ticket Lock

1: current = F&A(next, 1)
2: while (owner!=current) {busy-wait}
3: {
4: CS
5: }

Ticket Unlock

1: F&A(owner, 1)

Algorithm 5 Lock elision adjusted ticket lock

Require:
initialization: next = 0, owner = 0
local variable current

Ticket Lock

1: current = XACQUIRE F&A(next, 1)
2: while (owner!=current) {busy-wait}
3: {
4: CS
5: }

Ticket Unlock

1: ret = XRELEASE CAS(next, current+1, current)
2: if (!ret) then
3: F&A(owner, 1)
4: end if

pred at the tail of the queue, effectively erasing the presence of our node.

6.4 Lock Adjustments Correctness Proofs

Theorem 1. Correctness of the adjusted ticket lock (i) For speculative runs, the new ticket

lock implementation preserves the initial state on release. (ii) The new lock implementation fulfills

the mutual exclusion, deadlock free and lockout free properties, similarly to the standard implemen-

tation of the lock.

31



Algorithm 6 CLH lock

Require:
initialization: tail.locked = false
local variables: myNode, pred

CLH Lock

1: myNode.locked = true
2: pred = SWAP(tail, myNode)
3: while (pred.locked) { busy-wait }
4: {
5: CS
6: }

CLH Unlock

1: myNode.locked = false
2: myNode = pred

Algorithm 7 Lock elision adjusted CLH lock

Require:
initialization: tail.locked = false
local variables: myNode, pred

CLH Lock

1: myNode.locked = true
2: pred = XACQUIRE SWAP(tail, myNode)
3: while (pred.locked) { busy-wait }
4: {
5: CS
6: }

CLH Unlock

1: ret = XRELEASE CAS(tail, myNode, pred)
2: if (!ret) then
3: myNode.locked = false
4: myNode = pred
5: end if

32



Proof. (i) For a speculative run, threads are not aware of each other and every thread behaves as

if it runs alone. When a thread calls the unlock() function (Algorithm 5 ), its current value equals

the lock’s next value, since next never changes by a speculative thread. Hence, the condition in

line 1 of the unlock function is always satisfied and the unlock() ends. (ii) We separate the possible

runs into three cases – only standard (non-speculative) threads are run, only speculative threads

are run and both speculative and standard threads are run (mixed).

• Standard run The lock() is identical to the original one (the XACQUIRE prefix is ignored).

During unlock(), either line 1 is successfully executed (solo run) and all traces of the run are

removed, or line 3 is successfully executed, which is equivalent to the standard implementation.

– Mutual Exclusion – Assume the CS is empty and there are one or more requesters. lock():1

creates order between the requesters (each one has a unique current). Hence, exactly one

of them has the current value of owner and it is the only one that can enter the CS. While

the winner is in the CS, all other requesters are busy waiting (lock():2) and cannot enter the

CS. When the winner releases the lock, either unlock():1 is successfully executed and no other

requester is waiting, or unlock():3 is successfully executed and owner is incremented by one.

The unique requester whose current equals the new owner value can then enter the CS.

– Deadlock Free – lock():1 is always successfully executed, and an order is created between the

requesters. Each requester is aware of its turn and no extra synchronization is needed between

the requesters to guarantee progress.

– Lockout Free – lock():1 creates order between the requesters. Given a thread with a current

value, exactly current minus owner requesters will enter the CS before it does.

• Speculative and mixed runs When the first case is proven, the correctness of the other two

is trivially achieved by the correctness of the HLE mechanism itself.

Theorem 2. Correctness of the CLH lock (i) For speculative runs, the new CLH lock imple-

mentation preserves the initial state on release. (ii) The new lock implementation fulfills the mutual

exclusion, deadlock free and lockout free properties, similarly to the standard implementation of the

lock.

Proof. (i) For a speculative run, threads are not aware of each other and every thread behaves as

33



if it runs alone. When a thread calls unlock() function (Algorithm 7 ), its own node (myNode) is

pointed out by the lock’s tail even though tail is never changed by a speculative thread. Hence,

the condition in line 2 of the unlock function is always satisfied, and the unlock() ends. (ii) We

separate the possible runs into three cases – only standard non-speculative threads are run, only

speculative threads are run and both speculative and standard threads are run (mixed).

• Standard run The lock() is identical to the original one (the XACQUIRE prefix is ignored).

During unlock(), either line 1 is successfully executed (solo run) and all traces of the run are

removed, or lines 3,4 are successfully executed, which is equivalent to the standard implementa-

tion.

– Mutual Exclusion – Assume the CS is empty and there are one or more requesters. The CLH

lock holds some tail node with clear locked flag (the CS is empty). lock():2 creates order

between the requesters. Every requester has a unique pred, which is a specific position in the

queue. Hence, exactly one requester has a clear pred.locked flag and it is the only one that can

enter the CS. While the winner is in the CS, all other requesters are busy waiting (lock():3)

and cannot enter the CS. When the winner releases the lock, either unlock():1 is successfully

executed and no other requester is waiting, or unlock():3 is successfully executed and locked

flag is cleared. The unique requester whose pred equals the last winner’s node can then enter

the CS.

– Deadlock Free – lock():2 is always successfully executed, and an order is created between the

requesters. Each requester is aware of its turn and no extra synchronization is needed between

the requesters to guarantee progress.

– Lockout Free – lock():2 creates order between the requesters. Given a thread position in the

queue, new requesters cannot precede.

• Speculative and mixed runs When the first case is proven, the correctness of the other two

is trivially achieved by the correctness of the HLE mechanism itself.

34



Chapter 7

Extending Haswell’s HLE

Implementation

Here we present an alternative hardware-based solution (no software-assistance is needed), to cope

with the avalanche phenomenon described in Chapter 3. We suggest extending HLE’s conflict

detection to distinguish between conflicts on the lock and conflicts on the data cache lines, allowing

speculative threads to make progress even when encountering a held lock. In turn, this allows

speculative sections that do not conflict on data lines to continue with their speculative runs while

the conflicting ones do serialize. Our proposal does not require cache-coherence protocol changes.

Our proposal is based on the following observation. In contrast to a conflict on the data

in the critical section, which means the conflicting sections need to be serialized, a conflict on

the lock’s cache line is merely a synchronization signal. It indicates that some thread T has

acquired the lock, but T does not necessarily conflict with all running speculative threads. Yet, as

Lemma 1 below shows, allowing a speculative thread to ignore a conflict on the lock and continue

running concurrently with T (until either it experiences a data conflict with T or commits) can lead

to incorrect executions. That is why the Haswell processor implements a conservative approach

that guarantees correctness, terminating all speculative threads when the lock is non-speculatively

acquired.

Lemma 1. Concurrent execution of both speculative and non-speculative threads can lead to incon-

sistent state.

35



Proof. When different critical-section segments are protected by the same lock, any two speculative

threads that run any of these segments see each other as a transaction. However, when a thread T

holds the lock and runs non-speculatively, this does not hold. Memory updates performed by such

a thread are made globally visible one at a time, making it possible for a concurrent speculative

thread to observe T ’s individual writes, hence to observe inconsistent state (as depicted in the

following erroneous example).

Example: Consider the case of two code segments protected by the same lock L:

C1: C2:

lock(L) lock(L)

load(X) store(Y)

load(Y) store(X)

unlock(L) unlock(L)

Suppose now that thread T1 transactionally executes C1 without accessing L and reads X = 0 from

memory. Now another thread, T2, executes C2 non-transactionally. It therefore acquires L and

then stores 1 to Y . Following this T1 reads Y from memory. Since Y is not in T1’s read set, there

is no conflict with T2’s previous store and T1 observes Y = 1. T1 then commits. Thus T1 observes

an inconsistent state, X = 0 and Y = 1.

Our proposal We define a lock state change as any cache-coherence state change of the lock’s

cache-line, and data access conflict as any other conflict. Note that the processor can identify the

lock cache line since it is written to by the instruction prefixed with XACQUIRE.

Define group A as a group of threads that are part of a speculative run, all of them using the

same lock L. Assume that during this speculative run, a non-speculative thread T takes L in a

standard non-speculative manner. Instead of automatically aborting group A, every speculative

thread tries to complete its speculative execution. Upon receiving the cache eviction event for L,

the processor does not abort the thread. Instead it enters a special state S, in which it behaves

as follows: as long as the speculative thread accesses only data which is already in its caches, it

can safely continue. If the speculative execution encounters a cache miss (due to a read or a write

operation), it reads the lock address again. If the lock is free (i.e., contains the same value as before

the XACQUIRE), the speculative execution can continue, otherwise, it is suspended. Hence, while

36



the lock is taken, speculative threads can proceed as long as they do not incur a cache miss in

order to expand their read or write sets. When the lock is released, the resulting cache coherency

operation releases the suspended speculative threads which continue their speculative execution by

redoing the memory operation that caused the cache miss.

The lock cache-line is placed in the read/write-set only if it gets accessed for data. If the lock’s

cache-line gets evicted, either (i) it’s in the read/write-set, and we abort, or (ii) it’s not (only the

lock got accessed so far), so we proceed with the described protocol.

Correctness Intel TSX gives full isolation of transactional code from the outside environment.

Every transaction, including a live (not yet completed) one, accesses only a consistent state (a

state produced by a sequence of previously committed transactions), which ensures that every

return value of an operation executed by a transaction is consistent with the return values of all

previous operations of the very same transaction. On the other hand, every transaction appears as

if it was a black-box operation – only the end result of the transaction is counted.

Our extension of the HLE’s conflict detection preserves these characteristics and guarantees that

no lock-elided read is done in parallel with lock protected write. Given a speculative thread that

successfully completes its run despite some conflicts that occurred during its speculative execution,

we claim the following:

• No real conflict has occurred during the speculative run of the thread since in case of data access

conflict (other than the lock’s cache-line), the speculative run is aborted.

• On any cache-coherence state change of the lock’s cache-line

– If the speculative execution can be completed using local registers and available cache-lines

without any further reads or writes (local run), we can serialize the execution as if it has

completed before the lock acquisition, hence it is safe to complete it.

– If the lock is taken and the speculative execution performs a non-cached read address or write-

to-memory operation, the speculative execution is suspended by the hardware. Hence there are

no speculative read/write memory operations done in parallel with non-speculative execution.

– Data access conflicts are determined as defined in the basic HLE’s conflict detection. Hence,

the non-speculative cache-line requester continues its execution (requester wins) while other

speculative owners of the cache-line are terminated by the hardware.

37



– When the lock is released, causing another cache-coherence state change of the lock’s cache-

line to occur, the speculative execution can continue. There was no real conflict between the

speculative and standard non-speculative threads (no conflict other than the lock’s cache-line

has occurred). In that case we can refer to the standard execution as if it has been completed

before the speculative one. The speculative execution can continue its run without the need

to verify the validity of the read and write sets since the hardware does it continuously.

The benefit of our proposal We argue here that our proposal can only improve concurrency

and performance. One of the main differences between TM and HLE is that when HLE is used, an

abort serializes every transactional execution protected by the same lock. The assumption that one

data conflict between two threads must lead to data conflict among all the other speculative threads

is the most pessimistic behavior. On STM-based solutions, handling zombie threads (threads that

eventually must abort but may continue to run even after it has become impossible for them to

commit) can cost more than just abort them on the first conflict. This is not the case with HTM-

based solutions, where the constant validation of the read/write sets is done completely by the

hardware with no cost in terms of computation power spent by the software.

In standard HLE, a non-speculative thread that acquires the lock causes every speculative

thread to abort and wait for the lock to be released. However, in our proposal speculative threads

use this time to continue with their original execution. Only when they access memory (to expand

their read or write sets) do they wait for the lock to be released. In the worst case, a speculative

thread might abort at this point (no worse than the original scenario), but in the best case, it might

continue executing (i.e., if there is no data conflict with the lock holder). Thus our proposal turns

time wasted waiting into time spent working.

38



Chapter 8

Related work

Rajwar and Goodman [17] introduced the concept of speculative lock elision (SLE) to automat-

ically replace locking with speculative hardware transactions which allows parallel execution of

non-conflicting critical sections. The speculative hardware automatically elides the delimiting syn-

chronization operations of a critical section and executes it speculatively, buffering any updates.

If the critical section completes with no data conflicts, the updates are committed, and other-

wise they are discarded, and the critical section is rerun non-speculatively by acquiring the lock.

As in Haswell’s HLE, transactional aborts are handled by acquiring the lock and serializing all the

threads. However, performing conflict resolution in software allows more flexibility. In our software-

assisted conflict management scheme, conflicts are handled in a way that minimizes the need to

switch between speculative and non-speculative executions providing great performance boost.

Rajwar and Goodman subsequently proposed transactional lock removal [18] With TLR, the

lock is never acquired and released but only serves to denote the beginning and end of a transaction.

To prevent livelocks in the case of conflicts, the scheme uses hardware-based conflict management

and serializing conflicting transactions. Our approach achieves a similar goal, but does so using

software techniques without further hardware changes.

Dice et al. [10] studied transactional lock elision (TLE) using Sun’s Rock processor which also

supports hardware TM. Even though theirs lock elision algorithm uses backoffs, they still point

out the lemming effect which is similar to the avalanche behavior and sketch a non-backoff software

mechanism to speedup recovery from it. In contrast, our conflict management scheme prevents the

problem in the first place and manages to prevent the continuous zigzag between speculative and

39



standard executions altogether. The scheme serializes conflicting threads (to prevent recurrence

of known conflicts), enables them to keep participating in the speculative execution but does it

without acquiring the lock to avoid impact on the other threads in the system.

Implementing elision-friendly locks using Intel’s Haswell processor is discussed in [2]. However

Intel’s optimization guidelines essentially turn fair locks into TTAS locks. This has two disadvan-

tages: (1) wasting time when arriving while the lock is taken (as our experiments on STAMP show,

this is significant), and (2) the lock no longer guarantees starvation-freedom and loses its fairness.

Bahar et al. [15] analyze both lock elision and lock removal schemes in the context of embedded

systems with hardware TM. They discuss hardware approaches, whereas we are interested in what

can be done using software to assist the TM.

Roy, Hand, and Harris describe how to perform lock elision using software instrumentation and

no hardware changes [19]. However, they assume a system without hardware TM, whereas we use

software techniques to assist the hardware. But now days, when HTM is on the verge of becoming a

mainstream mass-market feature, the excessive cost of handling TM entirely in software is unlikely.

40



Bibliography

[1] Intel Architecture Instruction Set Extensions Programming Reference. http://software.

intel.com/file/41604, 2012.

[2] Intel 64 and IA-32 Architectures Optimization Reference Manual. https:

//www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/

64-ia-32-architectures-optimization-manual.pdf, July 2013.

[3] Yehuda Afek, Amir Levy, and Adam Morrison. Programming with hardware lock elision. In

PPOPP, pages 295–296, 2013.

[4] Yehuda Afek, Amir Levy, and Adam Morrison. Software-improved hardware lock elision.

Technical report, Tel-Aviv University, 2013.

[5] Christian Bienia. Benchmarking Modern Multiprocessors. PhD thesis, Princeton University,

January 2011.

[6] Jayaram Bobba, Kevin E. Moore, Haris Volos, Luke Yen, Mark D. Hill, Michael M. Swift, and

David A. Wood. Performance pathologies in hardware transactional memory. In Proceedings of

the 34th Annual International Symposium on Computer Architecture, ISCA ’07, pages 81–91,

New York, NY, USA, 2007. ACM.

[7] Harold W. Cain, Maged M. Michael, Brad Frey, Cathy May, Derek Williams, and Hung Le.

Robust architectural support for transactional memory in the power architecture. In ISCA

2013, pages 225–236, New York, NY, USA, 2013. ACM.

[8] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP: Stan-

ford transactional applications for multi-processing. In IISWC ’08: Proceedings of The IEEE

41



International Symposium on Workload Characterization, pages 35–46, Washington, DC, USA,

September 2008. IEEE Computer Society.

[9] Travis S. Craig. Building FIFO and priority-queuing spin locks from atomic swap. Technical

Report 93-02-02, Department of Computer Science and Engineering, University of Washington,

1993.

[10] Dave Dice, Yossi Lev, Mark Moir, Dan Nussbaum, and Marek Olszewski. Early experience

with a commercial hardware transactional memory implementation. Technical Report TR-

2009-180, Sun Microsystems, 2009.

[11] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages

and Systems (TOPLAS), 13:124–149, January 1991.

[12] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for lock-

free data structures. In Proceedings of the 20th Annual International Symposium on Computer

Architecture, ISCA ’93, pages 289–300, New York, NY, USA, 1993. ACM.

[13] Peter S. Magnusson, Anders Landin, and Erik Hagersten. Queue locks on cache coherent

multiprocessors. In Proceedings of the 8th International Symposium on Parallel Processing,

pages 165–171, Washington, DC, USA, 1994. IEEE Computer Society.

[14] John M. Mellor-Crummey and Michael L. Scott. Algorithms for scalable synchronization

on shared-memory multiprocessors. ACM Transactions on Computer Systems, 9(1):21–65,

February 1991.

[15] Dimitra Papagiannopoulou, Giuseppe Capodanno, R. Iris Bahar, Tali Moreshet, Aditya Holla,

and Maurice Herlihy. Energy-efficient and high-performance lock speculation hardware for em-

bedded multicore systems. In The 8th ACM SIGPLAN Workshop on Transactional Computing

(TRANSACT’13), 2013.

[16] Nick Piggin. x86: FIFO ticket spinlocks. http://lkml.org/lkml/2007/11/1/125, 2007.

[17] Ravi Rajwar and James R. Goodman. Speculative Lock Elision: enabling highly concurrent

multithreaded execution. In Proceedings of the 34th Annual ACM/IEEE International Sym-

42



posium on Microarchitecture, MICRO 34, pages 294–305, Washington, DC, USA, 2001. IEEE

Computer Society.

[18] Ravi Rajwar and James R. Goodman. Transactional lock-free execution of lock-based pro-

grams. In Proceedings of the 10th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS ’02, pages 5–17, New York, NY, USA,

2002. ACM.

[19] Amitabha Roy, Steven Hand, and Tim Harris. A runtime system for software lock elision. In

Proceedings of the 4th ACM European Conference on Computer systems, EuroSys ’09, pages

261–274, New York, NY, USA, 2009. ACM.

[20] Amy Wang, Matthew Gaudet, Peng Wu, José Nelson Amaral, Martin Ohmacht, Christopher

Barton, Raul Silvera, and Maged Michael. Evaluation of Blue Gene/Q hardware support

for transactional memories. In Proceedings of the 21st International Conference on Parallel

Architectures and Compilation Techniques, PACT ’12, pages 127–136, New York, NY, USA,

2012. ACM.

43


