
CONCURRENCY

1

Proving the Correctness of
Nonblocking Data Structures

Nonblocking synchronization can yield astonishing results in terms of scalability and
realtime response, but at the expense of verification state space.

Mathieu Desnoyers, EfficiOS

So you’ve decided to use a nonblocking data structure, and now you need to be certain of its
correctness. How can this be achieved?

When a multithreaded program is too slow because of a frequently acquired mutex, the
programmer’s typical reaction is to question whether this mutual exclusion is indeed required.
This doubt becomes even more pronounced if the mutex protects accesses to only a single variable
performed using a single instruction at every site. Removing synchronization improves performance,
but can it be done without impairing program correctness?

Whether this feat can be achieved—and whether it can be extended to algorithms involving more
complex data structures—depends on the relationship of the variable to the rest of the program. It
also depends on the compiler, architecture, and operating system details, as well as other interesting
aspects discussed throughout this article.

Nonblocking data structures27 can be used to communicate between threads without using mutual
exclusion or other synchronization that would otherwise make a thread block awaiting another
thread. This article looks at what makes nonblocking data structure design and implementation
tricky, and it surveys modeling techniques and verification tools that can provide valuable feedback
on the correctness of those algorithms.

WHAT MAKES NONBLOCKING DATA STRUCTURE PROGRAMMING TRICKY?
There are many aspects to consider when programming nonblocking data structures, including the
language and architecture memory models, atomicity, ordering, linearizability, and performance.

MEMORY MODELS

Unless the programmer provides explicit key words or synchronization hints, programming
languages such as C, C++, and Java presume that a single thread performs variable accesses, leaving
the behavior of nonsynchronized concurrent data accesses on multiprocessor systems either
undefined or not well understood by programmers. With multicore and multiprocessor computers
becoming pervasive, however, it is important to allow concurrent execution. One of the usual ways
of providing consistency in concurrent systems is through the use of critical sections and mutual
exclusion to ensure serializability,5 which ends up creating regions of sequential code by excluding
other execution threads from accessing critical sections concurrently. Unfortunately, this approach
does not result in the best performance in many cases, especially when scalability to many cores is
considered. Relaxing sequential execution by shrinking the duration of critical sections, however,
increases complexity.

People have commonly used the volatile keyword in C and C++24 to indicate that a variable

CONCURRENCY

2

can be modified outside of its current scope to disable optimizations that may interfere with the
correctness of the program. This keyword, however, tells the compiler only to assume that the
variable could be modified outside of the local thread and that order among volatile accesses within
a single thread needs to be preserved; it does nothing to prevent reordering by the processor. The
ordering guarantees of the volatile keyword vary greatly from language to language, and even
between language versions: for example, the volatile keyword in Java has a much stricter memory-
ordering semantic starting from JDK 1.5 than it had in JDK 1.4.15

ATOMICITY

Another possible problem with nonblocking data structure programming is that an instruction
executing atomically on a processor is not sufficient to ensure that its effect is made visible to other
processors atomically.

Unaligned word-sized memory accesses are a good example: many architectures will allow those
to be performed by a single instruction, but there is no guarantee that the in-memory result will be
updated atomically.

Another example is a nonatomic read-modify-write operation. Although some architectures might
end up turning the C i++ statement into a single instruction, the compiler can very well choose
to perform this in three separate instructions: load from memory to register; increment register;
store register to memory. The compiler may choose to do so either because it is required by the
instruction set (e.g., RISC) or simply because register pressure is too high. Moreover, with the Intel
x86 instruction set, for example, variables meant to be read, modified, and written atomically by
many processors running concurrently must have a LOCK prefix.23 Unless special double compare-
and-swap or transactional memory instructions are being used, if supported by the architecture,
memory accesses that need to touch more than one word-aligned word-sized data structure must be
performed in many instructions, and thus nonatomically.

Finally, the compiler is allowed to refetch variables from memory. Therefore, what someone might
think will always be performed in a single load operation might not be.

REORDERING

Reordering can be performed at many levels for performance reasons. First, many processors can
reorder loads and stores. In addition, processors can reorder execution of instructions that don’t have
interdependencies. Finally, compilers can reorder expression evaluation, statements, and instructions
as long as program order is preserved. Unfortunately, these reorderings do not take into account that
threads executing concurrently may assume that operations performed by other threads will appear
in program order from their own points of view. This is why processors provide memory-barrier
instructions and compilers provide compiler barriers. These operations limit reordering across the
barriers in the instruction and code flows.

It is important to understand that atomicity of a memory access does not necessarily provide
ordering. In some architectures such as x86, the LOCK prefix, used to specify atomic operations,
implies a memory barrier. A great many other architectures, however, such as PowerPC,22 ARM,2 and
MIPS,28 perform their atomic operations with LL/SC (load-linked/store-conditional) instructions and
usually require explicit memory-barrier instructions to provide ordering.

CONCURRENCY

3

LINEARIZABILITY

Atomicity and ordering are not necessarily enough to ensure that an entire nonblocking data
structure will behave in the same way as one that is always accessed sequentially. Nonblocking
operations normally contain a linearization point20 to guarantee correctness with respect to the
sequential definition of that operation. Linearization points are the atomic operations that will
perform the mutations necessary to provide the correct externally observable effects with respect to
the sequential specification of the data structure simultaneously with validation of operation success
or failure. This ensures that no globally visible inconsistent operation state lingers when an update
operation aborts. This also ensures that the behavior of the data structure as a whole matches the
behavior expected from using the data structure sequentially. It should be understood that reasoning
in terms of linearization points has some limitations. For example, it does not consider delay
between invocation of a method and execution of its linearization point.18,25

The following is a good example of a linearization issue: suppose you have a queue such as the
concurrent queue with wait-free enqueue/blocking dequeue (http://lttng.org/urcu). This enqueues
nodes at the tail and dequeues from the head of the queue. It provides nonblocking (wait-free)
enqueue by requiring threads performing dequeue, splice, and iterations to busy-wait if they find a
NULL next pointer in a node that is not the tail of the queue. The dequeue operation dequeues one
node at a time, whereas the splice operation moves all nodes from a source queue into a destination
queue. To illustrate enqueue and splice operations, figures 1, 2, 3, 4, 5, and 6 represent queue nodes
as boxes. Within these boxes, circles represent pointers to the next node. A gray circle is a NULL
pointer. Solid arrows represent the target of a pointer, and dashed arrows represent the previous
pointer target. Circles containing a number represent the order in which updates are stored in
memory.

The empty queue is shown in figure 1. An enqueue operation is performed in two steps, shown
in figures 2 and 3. The first step moves the tail pointer to the next node using an atomic exchange
operation. It leads to a transient state during which threads concurrently performing a dequeue,

tail

head

Empty Wait-Free Concurrent Queue

tail

head A

1

Enqueue First Node Transient State

CONCURRENCY

4

tail

head A

1

2

First Node Enqueue Completed

tail
source queue

head A B

head

destination queue

tail

Splice Completed

CONCURRENCY

5

splice, or iteration need to busy-wait. Enqueuing is completed by storing the new node’s address into
the last node’s next pointer.

Performing one more enqueue operation adds a new node B at the tail, so you end up with a
queue that has two nodes, A and B, leading to the initial state of the source queue presented in
figure 4. The splice operation shown in this figure moves all nodes from the source queue into the
destination queue.

Note that an arbitrary number of operations can occur while the queue is in a transient state. This
would allow, for example, the enqueue operation of a second node to complete while the first node
is not yet completely enqueued, as shown in figure 5. When encountering this queue structure, both

tail

head A B

1

2

Enqueue Second Node Over First-Node-Enqueue Transient State

ERUGIF

tail
source queue

head A B

Splice Waiting For First-Node-Enqueue Completion

ERUGIF

CONCURRENCY

6

splice and dequeue operations would need to busy-wait until the first enqueue completes.
Queues in a transient state, as illustrated in figure 6, raise the possibility of an interesting

optimization to the splice operation: instead of busy-waiting when encountering the first node with
a NULL next pointer in a non-empty queue, one could simply assume that the queue is empty. After
all, if the splice operation is called again after a short time, then it would eventually get the queue
content. Unfortunately, even though this approach might seem appropriate at first glance, it would
break the linearizability of the queue. Consider the following scenario: one thread X is enqueuing
node A, and another thread Y is first enqueuing B, then performing a splice operation to grab the
entire queue. Given a program that has only those two threads and no other dequeuer thread,
thread Y should be allowed to expect that if it performs an enqueue operation followed by a splice,
the splice will never encounter an empty queue because it must contain the element added by the
previous enqueue. If thread X is preempted while adding the first element into the queue, however,
thread Y’s splice operation could encounter a queue that would appear empty, even though its
sequential specification should allow it to assume the queue contains at least one node.

PERFORMANCE CONSIDERATIONS

Other elements that make nonblocking data structure programming hard are the considerations
of throughput and scalability associated with atomic accesses and memory barriers. Depending
on the design and use of the data structure, it might be cheaper, performance-wise, to hold a lock
and perform the operation using a sequence of regular nonatomic instructions than to perform
a sequence of more expensive atomic operations with memory barriers of their own. Therefore,
performance considerations are largely driving the careful choice of atomic instructions and barriers
to implement higher-level operations, thus increasing complexity.

Nonblocking data structures have many interesting properties such as reentrancy and mutual-
exclusion deadlock immunity, as well as, in some cases, good scalability and throughput.
Implementing them efficiently, however, involves understanding interactions with interruptions and
traps (at kernel level), signals (at userspace level), multithreading, scheduler preemption, and thread
migration, in addition to the low-level compiler and processor aspects.

MODELS
As shown in the previous section’s discussion about linearizability, providing counterexamples is
a great way of illustrating problems in nonblocking data structure design and implementation.
Designers of nonblocking algorithms should try to find representations that will provide a deeper
understanding of the algorithm, helping them to consider as many race scenarios as possible. These
representations will not only enhance the designers’ understanding of detailed interactions between
threads, but will also help in expressing their ideas to others.

Which brings us to code review: encouraging many people to think of different ways in which an
algorithm could misbehave, each with his or her own focus and expertise, will likely shed more light
on the problem than having just one person look at it from a single point of view. This is a useful
trick even for an individual reviewing a nonblocking algorithm: looking at an algorithm over and
over, at different moments in the day, in all sorts of contexts, with a plethora of models to represent
the algorithm, will help achieve a thorough study from various viewpoints.

This calls for representing algorithms in various ways. Diagrams are a great way of showing the

CONCURRENCY

7

relationships between various objects in a data structure, dependency between memory operations,
and the various state transitions that an object can go through.

The concurrent queue with wait-free enqueue/blocking dequeue presented in the previous
section illustrates how to use diagrams to represent nonblocking data structures. Previous work has
provided examples of the states of a data structure represented as diagrams: in the RCU (read-copy-
update) linked list and grace period explanation;12 showing the various states in which a hash table
can be found in Cliff Click’s hash table explanation;8 and showing instruction dependencies at the
processor level.10,11

Many optimizing compilers internally use models to represent dependencies between statements.
It helps them move statements around and carry optimizations without changing the behavior as
seen from program order. Some of these representations, to name a few, are DFG (data flow graph),
which represents the data dependencies between statements (for example, memory accesses or
register accesses); CFG (control flow graph), which represents the control dependencies between
statements (for example, branches or loops); and a convenient combination of those two, PDG
(program dependence graph).14 Modeling algorithms at the PDG level can be useful for verification,
as will be shown in the Testing section.

Representing algorithms as sequences of statements in a programming language is another
representation that allows thinking about the code in a more sequential manner. However, it should
not be assumed that the code executes sequentially. This representation is merely a starting point
for considering all possible reorderings that could be performed. As silly as it might sound, writing
the code on a computer, with pencil and paper, with or without thorough commenting on the
possible reordering at each line, as an initial draft, or recopying from memory are all different ways
of interacting with the code that can lead to a better understanding of the reasons why the code is
written a certain way.

A convenient way of presenting counterexamples is to demonstrate race scenarios by side-by-side
execution sequences of two or more processors or threads. Initial variable states, valid within the
specifications of the algorithm, are first detailed, and then portions of the algorithm are examined.
This can be achieved by detailing, in program order, execution sequences for each processor or
thread involved. Then the order of one or two statements can be altered within the constraints
allowed by the compiler and processor. For each modified execution scenario, all invariants imposed
by algorithm correctness should be respected. If it is possible to find a scenario that breaks those
invariants, then it should be treated as a bug. It might be caused by an algorithm design issue,
by missing memory barriers, or by incorrect assumptions about the atomicity of a sequence of
operations.

For smaller code snippets, moving to the instruction-level scope to represent key pieces of the
algorithm can be worthwhile. This is especially useful when considering memory reordering
performed by the processor. It gets the compiler out of the way and lets the reviewer focus on
instruction and processor semantics—at the expense of a less compact model.

The issue with nonblocking algorithms is that it is not sufficient to consider the sequentially
equivalent high-level algorithm operations as happening one after another: after each instruction
within the algorithm, one needs to consider what happens if other processors execute any
concurrent operation of the algorithm a possibly infinite number of times. Moreover, when there
are no compiler- or processor-level memory barriers in place, every reordering allowed within the

CONCURRENCY

8

specification of the architecture needs to be taken into account. This quickly increases the number
of concurrent execution flows to consider, which explains why making sure no execution flow can
misbehave is hard. When faced with a large number of states to validate, model checkers, presented
in the Testing section, can be very helpful in automating tedious and error-prone verification.

Every assumption made in a concurrent piece of code should be revisited with prejudice. It is
important to assure that these assumptions will hold across hardware memory models, programming
language memory models, and higher-level correctness constraints (such as linearizability). For each
assumption made, many attempts should be made to come up with a race, as far-fetched as it may be,
that can make the algorithm misbehave.

MODEL ACCURACY
To come up with an accurate model of a nonblocking algorithm, the memory models of all targeted
architectures need to be taken into account. At first glance, it might appear that nonblocking
algorithms should be specifically tied to a single architecture, but there are methods to model
nonblocking algorithms in a way that allows reasoning about their correctness across a large set of
architectures.

To model an algorithm in a way that is portable across multiple architectures, you can think of
the algorithm as running on a model consisting of all the worst reordering possibilities that can be
performed by the set of architectures. Memory models targeting a set of architectures can be found
in the Linux kernel (http://www.kernel.org), the Userspace RCU project (http://lttng.org/urcu), and
within the Concurrency Kit (http://concurrencykit.org).

The algorithm models should therefore consist of the worst-case reordering that could happen by
combining the characteristics of all architectures targeted. Of course, this increases the state space
to validate, but the benefit is in having a single model of an algorithm that works on a wide range of
architectures. Proving that a single targeted architecture can fail is sufficient to identify an error.

When targeting many architectures, stress testing under all supported architectures is mandatory,
because some specific reordering characteristics that would cause the algorithm to misbehave could
be specific to only one architecture within the set.

Targeting architectures with weaker memory models will increase the size of the model’s state
space, because many more reorderings can occur. On the other hand, if architectures with weak
memory consistency models are covered, then other architectures with stricter memory consistency
models—in every way equally or more strict than previously validated models—will be a given.

This demonstrates a limitation of models: their completeness is unfortunately limited by how
accurately they represent architecture behavior. Techniques such as litmus tests can help improve the
accuracy of models. Those will be discussed in the Formal Methods section.

TESTING
Notwithstanding the amount of care taken while designing and implementing a nonblocking
algorithm, there is always the chance that some characteristics of the processor, compiler, or
operating system have gone unnoticed. Therefore, no modeling or review can replace the good
old testing approach. Moreover, testing is very effective in discovering issues when porting to an
unforeseen architecture.

When nonblocking algorithms are being tested, the testing coverage needs to be slightly adapted,

CONCURRENCY

9

compared with its usual definition. Indeed, when a simple sequential algorithm is being tested,
covering a large percentage of lines and branches can be a good indicator that tests were thoroughly
performed. Unfortunately, this is not sufficient when testing algorithms that can execute in parallel.
Testing coverage must check not only that every line of code and branch has been executed, but also
that each one was executed in every context of other threads.

This means that it might take a long time for an error to trigger in production if it is caused by a
small race window in which two sequences of instructions misbehave when executed concurrently.
Therefore, moderate testing can be sufficient for making sure that the common cases work fine, but
making sure that corner cases don’t misbehave can be quite challenging.

One way of tackling this issue is stress testing. When an error condition takes time to reproduce,
focusing on triggering the race over and over for a long period of time can increase the chance of
reproducing it more quickly. The main aspect that can be controlled is the frequency at which the
race window is executed. Therefore, as the runtime length of the algorithm to stress test increases,
the time ratio spent executing each individual race window diminishes.

To accelerate this process, you can use what could be called “oriented stress testing.” This entails
changing the configuration of the test bench while doing the stress test, based on an understanding
of the design, so corner cases are more likely to be hit frequently. For example, to stress test a
hash table, keeping a number of buckets purposefully low and testing with thousands of nodes
with the same key are both likely to generate long hash chains. This corner case might be hard to
trigger with a large hash table, even after weeks of testing, without oriented stress testing. Besides
configuration changes, some tools can help automate oriented testing: CONCURRIT can help
specify a deterministic execution order that should be enforced by testing runs;6 the Relacy tool
(http://www.1024cores.net/home/relacy-race-detector) allows controlling the interleaving of atomic
operations between threads.

Another trick for stress testing is to add random delays within the algorithm, so different
execution timings are tested. This can make race windows slightly larger, which can help hit issues
more quickly.

There has been a fair amount of research on deterministic multithreading,4,29 which consists
of deterministically fixing the order of critical sections with a scheduler. Regarding correctness,
the objective is to obtain repeatable results across runs, thus making bugs easier to reproduce in
testing. Even though this leads to acceptable results in some cases, it remains to be seen whether this
approach will scale to fine-grained locking and larger multiprocessor systems, while having a low
overhead. Limitations of this approach include its requirement for concurrent accesses to use locks,
which are more expensive than RCU and nonblocking synchronization; the increase of state-space
size needed to track the patterns with the frequency of lock acquisition; the extra communication
overhead required at lock acquisition; and the fact that small changes to the source code can
significantly change lock access patterns.

When scalability, performance, and realtime response matter, stress testing can yield better results
than deterministic multithreading, by using a statistical approach to testing coverage rather than
fixing the layout of lock acquisition at runtime.

MODEL CHECKING
Wouldn’t it be nice if the time-consuming exercise of validating a nonblocking algorithm by
manually coming up with counterexamples based on all states that can be reached by concurrent

CONCURRENCY

10

threads for any given state of a thread, and statistically through testing, could be automated?
Fortunately, there are approaches that allow this, to some extent.

FORMAL METHODS

Model checking undertakes a full state-space search to verify specific assertions of a given model.3,7
While very powerful, this approach has important limitations. For one, the amount of memory
and time required to perform the full state-space search grows very quickly with the size of the
state space. Therefore, this approach applies only to relatively small models. This is why keeping
nonblocking algorithms very compact in terms of state space is important: it allows easier thorough
state-space search. In order to ensure this, nonblocking algorithms should be designed in ways that
will keep state space as small as possible.

One way to leverage model checking for nonblocking algorithms is to design algorithms as small
building blocks, none of which exceeds the state-space search capacity of current computers. Each
algorithm can then provide memory-ordering guarantees through an API, and can then be assumed
correct by another nonblocking algorithm that would use it. Therefore, it is possible to compose
nonblocking algorithms into quite complex algorithms by cutting the state-space search at their
interfaces.

Another limitation of model checking is that the verification is only as accurate as the model and
assertions. If the model is too simple compared with the reordering that can be performed by the
processor, some errors won’t be caught by the checker. Moreover, if assertions don’t represent what is
intended to be verified, the checker may never find a bug that would be assumed to be caught. This
is because model checkers work a little bit like oracles: when everything is fine, they just report that
everything went fine. It’s only when an assertion fails that they provide a detailed sequence of events
that led to the issue.

One way of limiting the risk of modeling errors is error injection into the model. If it is assumed
that a given model and assertion should catch one type of error, a slightly altered model that triggers
the assertion should be created, just to make sure that it catches the error if it is added purposefully.

Model checkers that can be used for nonblocking algorithms include Spin,21 which allows
describing a model in Promela and verifying LTL (linear temporal logic) assertions on that model.
The properties to validate can be as simple as an assertion in the code, but the real power of LTL is
that it provides temporal operators. It is then possible to validate that a certain state is never reached
until another state is reached, for all possible executions.

Other model checkers focus on reproducing architecture behavior at the instruction level.
Previous articles have reported on the results of litmus tests on a wide range of architectures to
characterize their respective behavior and to formalize their memory models.1 The authors then
created a tool that allows running ARM and Power litmus tests in a verifier (http://www.cl.cam.
ac.uk/~pes20/ppcmem/).30

The important question regarding model checking of nonblocking algorithms is: What should
be modeled? In previous research, I proposed a model for compiler, memory, and processor
reordering.10 Its purpose was to allow expressing algorithms in a model that takes into account
PDG dependencies at the code and instruction levels. Depending on the accuracy level needed, the
complexity of the algorithm, and the resources available to run the model checker, a different degree
of detail can be either included or omitted from the models.

http://www.cl.cam.ac.uk/~pes20/ppcmem/
http://www.cl.cam.ac.uk/~pes20/ppcmem/

CONCURRENCY

11

EXECUTION-BASED MODEL CHECKING

Driving the model checker by executing the program to verify is another model-checking approach,
known as EMC (execution-based model checking).13

Rather than traversing all states required to prove formally that a condition is never false, driving
the verification with the states reached by execution of the verified system can significantly limit the
number of states to explore, at the expense of completeness of the proof. Therefore, if the execution
of the program causes the verified condition to fail, it will be reported. Absence of error does not
guarantee validity of the program, however, since it may contain errors in states not reached by its
execution.

A good EMC example is found in the lockdep verifier9 implemented within the Linux kernel.
Perhaps its most important verification is performed by constructing a graph of encountered
lock dependency chains, and reporting errors if lock usage could trigger a deadlock. It is worth
mentioning that lockdep can be adapted to validate locking within arbitrary applications and is
therefore within the grasp of any programmer.

EMC can be performed either directly alongside execution of the program or based on a trace of
the program execution. This execution trace can act as a container storing the events driving an off-
line model checker.

FORMAL VERIFICATION THROUGH MATHEMATICAL PROOF
Formal mathematical proof is another way of verifying that an algorithm does not contain
unwanted characteristics. The idea is to start with a theorem to prove. This typically assumes that
some invariant is always true. Then the proof is obtained through induction based on ordering
constraints enforced by the compiler and processor memory models, as well as the algorithm.
Examples of formal mathematical proofs can be found in the literature,12,17 and other authors have
also presented interesting proofs on algorithm progress and correctness.16,19,26

CONCLUSIONS
When it comes to nonblocking algorithms and data structures, we are balancing different goals.
On one side, compiler writers and chip designers want to exploit all the freedom allowed by any
unspecified behavior. On the other, designers and developers of parallel algorithms want precisely
defined behavior when it comes to dependency ordering.

Nonblocking synchronization can yield astonishing results in terms of scalability and realtime
response, but it comes at the expense of verification state space. Verifying algorithms on multiple
architectures, each with its own memory model, also increases state-space size. Once the weakest
ordering constraints are modeled, however, new architectures that fit within those constraints can
be added with no extra verification cost, other than testing to ensure that the memory model is well
defined.

There are various ways to increase confidence in a nonblocking algorithm, including oriented
stress testing, formal and execution-based model checking, mathematical proofs, and code review.
Given that the state space to explore increases quickly with the complexity of a nonblocking
algorithm, designing small algorithms with full state-space verification in mind helps full state-space
verification. Those can then be composed into more complex algorithms.

CONCURRENCY

12

As programming languages improve their awareness of concurrency, it will be interesting to see
the continuing advance in modeling and verification of concurrency at the compiler level and by
static-code analyzers.

ACKNOWLEDGMENTS

Thanks to Paul E. McKenney for his work on RCU and nonblocking synchronization, David Miller
for his work on Linux kernel atomic operations, David Howells for his work on Linux kernel atomic
operations and memory barriers, and Hugh Dickins for his work on type-safe memory. Thanks
also to the Linux kernel community for their work and feedback on nonblocking synchronization,
memory models, and lockdep, in particular Lai Jiangshan, Ingo Molnar, Peter Zijlstra, and Arjan van
de Ven. I am indebted to Paul E. McKenney, Samy Bahra, Christian Babeux, Jeremie Galarneau, and
Michel R. Dagenais for reviewing this article.

LEGAL STATEMENT

This work represents the views of the author and does not necessarily represent the view of EfficiOS.
Linux is a registered trademark of Linus Torvalds. Other company, product, and service names may
be trademarks or service marks of others.

REFERENCES

1. Alglave, J., Maranget, L., Sarkar, S., Sewell, P. 2011. Litmus: running tests against hardware. In
Proceedings of the 17th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems: 41-44; http://dl.acm.org/citation.cfm?id=1987389.1987395.

2. ARM. 2010. ARM Architecture Reference Manual; http://infocenter.arm.com/help/ index.jsp?topic=/
com.arm.doc.set.architecture/index.html.

3. Baier, C., Katoen, J. 2008. Principles of Model Checking. Cambridge: MIT Press; http://books.google.
ca/books?id=nDQiAQAAIAAJ.

4. Bergan, T., Anderson, O., Devietti, J., Ceze, L., Grossman, D. 2010. Coredet: a compiler and
runtime system for deterministic multithreaded execution. ACM SIGARCH Computer Architecture
News 38(1): 53-64; http://doi.acm.org/10.1145/ 1735970.1736029.

5. Bernstein, P., Shipman, D., Wong, W. 1979. Formal aspects of serializability in database
concurrency control. IEEE Transactions on Software Engineering 5(3): 203-216.

6. Burnim, J., Elmas, T., Necula, G., Sen, K. 2012. CONCURRIT: testing concurrent programs with
programmable state-space exploration. In Proceedings of the 4th Usenix Conference on Hot Topics in
Parallelism: 16-16; http://dl.acm.org/citation.cfm?id=2342788.2342804.

7. Clarke, E., Grumberg, O., Peled, D. 1999. Model checking. Cambridge: MIT Press; http://books.
google.ca/books?id=Nmc4wEaLXFEC.

8. Click, C. 2007. A lock-free hash table. JavaOne Conference.
9. Corbet, J. 2006. The kernel lock validator. LWN; http://lwn.net/Articles/185666/.
10. Desnoyers, M. 2009. Low-impact operating system tracing. Ph.D. dissertation. Ecole

Polytechnique de Montreal; http://www.lttng. org/pub/thesis/desnoyers-dissertation-2009-12.pdf.
11. Desnoyers, M., McKenney, P. E., Dagenais, M. R. Forthcoming. Multicore systems modeling for

formal verification of parallel algorithms. Operating Systems Review.

http://infocenter.arm.com/help/ index.jsp?topic=/com.arm.doc.set.architecture/index.html
http://infocenter.arm.com/help/ index.jsp?topic=/com.arm.doc.set.architecture/index.html
http://books.google.ca/books?id=nDQiAQAAIAAJ
http://books.google.ca/books?id=nDQiAQAAIAAJ
http://doi.acm.org/10.1145/ 1735970.1736029
http://books.google.ca/books?id=Nmc4wEaLXFEC
http://books.google.ca/books?id=Nmc4wEaLXFEC
http://www.lttng. org/pub/thesis/desnoyers-dissertation-2009-12.pdf.

CONCURRENCY

13

12. Desnoyers, M., McKenney, P. E., Stern, A. S., Dagenais, M. R., Walpole, J. 2012. User-level
implementations of read-copy-update. IEEE Transactions on Parallel and Distributed Systems 23(2):
375-382.

13. Drusinsky, D. 2011. Modeling and Verification Using UML Statecharts. Elsevier Science; http://books.
google.ca/books?id=JMz-SWTfgiAC.

14. Ferrante, J., Ottenstein, K. J., Warren, J. D. 1987. The program dependence graph and its use in
optimization. ACM Transactions on Programming Languages and Systems 9(3): 319-349; http://doi.
acm.org/10.1145/24039.24041.

15. Gosling, J., Joy, B., Steele, G. L., Jr., Bracha, G., Buckley, A. 2013. The Java Language Specification,
Java SE 7 Edition. Pearson Education; http://books.google.ca/books?id=2RYN9exiTnYC.

16. Gotsman, A., Cook, B., Parkinson, M., Vafeiadis, V. 2009. Proving that nonblocking algorithms
don’t block. In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages: 16-28; http: //doi.acm.org/10.1145/1480881.1480886.

17. Gotsman, A., Rinetzky, N., Yang, H. 2013. Verifying concurrent memory reclamation algorithms
with grace. In European Symposium on Programming. Rome, Italy: Springer.

18. Haas, A., Kirsch, C. M., Lippautz, M., Payer, H. 2012. How FIFO is your concurrent FIFO queue? In
Proceedings of the Workshop on Relaxing Synchronization for Multicore and Manycore Scalability.

19. Herlihy, M. 1991. Wait-free synchronization. ACM Transactions on Programming Languages and
Systems 13(1): 124-149; http://doi.acm.org/10.1145/114005.102808.

20. Herlihy, M. P., Wing, J. M. 1990. Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems 12(3): 463-492; http://doi.acm.
org/10.1145/78969.78972.

21. Holzmann, G. J. 1997. The model checker Spin. IEEE Transactions on Software Engineering 23(5):
279-295.

22. IBM. 2010. Power ISA Version 2.06 Revision B; http://www.power.org/ resources/reading/.
23. Intel Corporation. 2011. Intel 64 and IA-32 Architectures Software Developer’s Manual: Instruction Set

Reference, A-Z; http://download.intel.com/products/processor/manual/325383.pdf.
24. International Organization for Standardization. 2011. Programming languages - C++, ISO/IEC

14882:2011.
25. Kirsch, C. M., Lippautz, M., Payer, H. 2012. Fast and scalable k-fifo queues. University of Salzburg,

Salzburg, Austria. Technical Report 2012-04.
26. Michael, M. M. 2004. Hazard pointers: safe memory reclamation for lock-free objects. IEEE

Transactions on Parallel and Distributed Systems 15(6): 491-504; http://ieeexplore.ieee.org/xpl/
articleDetails.jsp?tp=&arnumber=1291819&queryText%3Dhazard+pointers.

27. Michael, M. M., Scott, M. L. 1996. Simple, fast, and practical nonblocking and blocking
concurrent queue algorithms. In Proceedings of the 15th Annual ACM Symposium on Principles of
Distributed Computing: 267-275; http: //doi.acm.org/10.1145/248052.248106.

28. MIPS Technologies Inc. 2012. MIPS Architecture for Programmers, Volume II: The MIPS64 Instruction
Set.

29. Olszewski, M., Ansel, J., Amarasinghe, S. 2009. Kendo: efficient deterministic multithreading in
software. ACM SIGPLAN Notices 44(3): 97-108; http://dl.acm.org/citation.cfm?id=1508256.

30. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D. 2011. Understanding
Power multiprocessors. ACM SIGPLAN Notices 46(6): 175-186; http://doi.acm.
org/10.1145/1993316.1993520.

http://books.google.ca/books?id=JMz-SWTfgiAC
http://books.google.ca/books?id=JMz-SWTfgiAC
http://doi.acm.org/10.1145/24039.24041
http://doi.acm.org/10.1145/24039.24041
http: //doi.acm.org/10.1145/1480881.1480886
http://www.power.org/ resources/reading/
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1291819&queryText%3Dhazard+pointers
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1291819&queryText%3Dhazard+pointers
http: //doi.acm.org/10.1145/248052.248106
http://doi.acm.org/10.1145/1993316. 1993520
http://doi.acm.org/10.1145/1993316. 1993520

CONCURRENCY

14

LOVE IT, HATE IT? LET US KNOW
feedback@queue.acm.org

MATHIEU DESNOYERS is president and founder of EfficiOS. He maintains the LTTng project and
the Userspace RCU library. His research interests are in performance analysis tools, operating systems,
scalability, and realtime concerns. He holds a Ph.D. degree in computer engineering from Ecole
Polytechnique de Montreal (2010).
© 2013 ACM 1542-7730/13/0500 $10.00

