
46 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

Pythran: Enabling Static Optimization of Scientific
Python Programs

Serge Guelton∗†, Pierrick Brunet‡, Alan Raynaud‡, Adrien Merlini‡, Mehdi Amini§

http://www.youtube.com/watch?v=KT5-uGEpnGw

F

Abstract—Pythran is a young open source static compiler that turns modules
written in a subset of Python into native ones. Based on the fact that scientific
modules do not rely much on the dynamic features of the language, it trades
them in favor of powerful, eventually inter procedural, optimizations. These
include detection of pure functions, temporary allocation removal, constant
folding, Numpy ufunc fusion and parallelization, explicit thread-level parallelism
through OpenMP annotations, false variable polymorphism pruning, and auto-
matic vector instruction generation such as AVX or SSE.

In addition to these compilation steps, Pythran provides a C++ runtime library
that leverages the C++ STL to provide generic containers, and the Numeric
Template Toolbox (NT2) for Numpy support. It takes advantage of modern
C++11 features such as variadic templates, type inference, move semantics and
perfect forwarding, as well as classical ones such as expression templates.

The input code remains compatible with the Python interpreter, and output
code is generally as efficient as the annotated Cython equivalent, if not more,
without the backward compatibility loss of Cython. Numpy expressions run faster
than when compiled with numexpr, without any change of the original code.

Index Terms—static compilation, numpy, c++

Introduction

The Python language is growing in popularity as a language
for scientific computing, mainly thanks to a concise syntax, a
high level standard library and several scientific packages.

However, the overhead of running a scientific application
written in Python compared to the same algorithm written
in a statically compiled language such as C is high, due to
numerous dynamic lookup and interpretation cost inherent
in high level languages. Additionally, the Python compiler
performs no optimization on the bytecode, while scientific
applications are first-class candidates for many of them.

Following the saying that scientific applications spend 90%
of their time in 10% of the code, it is natural to focus on
computation-intensive piece of code. So the aim may not be to
optimize the full Python application, but rather a small subset
of the application.

* Corresponding author: serge.guelton@telecom-bretagne.eu
† ENS, Paris, France
‡ Télécom Bretagne, Plouzané, France
§ SILKAN, Los Altos, USA

Copyright © 2013 Serge Guelton et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Several tools have been proposed by an active community to
fill the performance gap met when running these computation-
intensive piece of code, either through static compilation or
Just In Time (JIT) compilation.

An approach used by Cython [cython] is to suppress the
interpretation overhead by translating Python Programs to
C programs calling the Python C API [pythoncapi]. More
recently, Nuitka [nuitka] has taken the same approach using
C++ has a back-end. Going a step further Cython also uses an
hybrid C/Python language that can efficiently be translated to
C code, relying on the Python C API for some parts and on
plain C for others. ShedSkin [shedskin] translates implicitly
strongly typed Python program into C++, without any call to
the Python C API.

The alternate approach consists in writing a Just In
Time(JIT) compiler, embedded into the interpreter, to dynami-
cally turn the computation intensive parts into native code. The
numexpr module [numexpr] does so for Numpy expressions
by JIT-compiling them from a string representation to native
code. Numba [numba] extends this approach to Numpy-
centric applications while PyPy [pypy] applies it to the whole
language.

To the notable exception of PyPy, these compilers do not
apply any of the static optimization techniques that have
been known for decades and successfully applied to statically
compiled language such as C or C++. Translators to statically
compiled languages do take advantage of them indirectly,
but the quality of generated code may prevent advanced
optimizations, such as vectorization, while they are available
at higher level, i.e. at the Python level. Taking into account
the specificities of the Python language can unlock many new
transformations. For instance, PyPy automates the conversion
of the range builtin into xrange through the use of a dedicated
structure called range-list.

This article presents Pythran, an optimizing compiler for
a subset of the Python language that turns implicitly stati-
cally typed modules into parametric C++ code. It supports
many high-level constructs of the 2.7 version of the Python
language such as list comprehension, set comprehension,
dict comprehension, generator expression, lambda functions,
nested functions or polymorphic functions. It does not support
global variables, user classes or any dynamic feature such as
introspection, polymorphic variables.

http://www.youtube.com/watch?v=KT5-uGEpnGw
mailto:serge.guelton@telecom-bretagne.eu

PYTHRAN: ENABLING STATIC OPTIMIZATION OF SCIENTIFIC PYTHON PROGRAMS 47

Unlike existing alternatives, Pythran does not solely perform
static typing of Python programs. It also performs various
compiler optimizations such as detection of pure functions,
temporary allocation removal or constant folding. These trans-
formations are backed up by code analysis such as alias-
ing, inter-procedural memory effect computations or use-def
chains.

The article is structured as follows: Section 1 introduces the
Pythran compiler compilation flow and internal representation.
Section 2 presents several code analysis while Section 3
focuses on code optimizations. Section 4 presents back-end
optimizations for the Numpy expressions. Section 5 briefly in-
troduces OpenMP-like annotations for explicit parallelization
of Python programs and section 6 presents the performance
obtained on a few synthetic benchmarks and concludes.

Pythran Compiler Infrastructure

Pythran is a compiler for a subset of the Python language.
In this paper, the name Pythran will be used indifferently to
refer to the language or the associated compiler. The input
of the Pythran compiler is a Python module —not a Python
program— meant to be turned into a native module. Typically,
computation-intensive parts of the program are moved to a
module fed to Pythran.

Pythran maintains backward compatibility with CPython.
In addition to language restrictions detailed in the following,
Pythran understands special comments such as:
#pythran export foo(int list, float)

as optional module signature. One does not need to list all
the module functions in an export directive, only the functions
meant to be used outside of the module. Polymorphic functions
can be listed several times with different types.

The Pythran compiler is built as a traditional static compiler:
a front-end turns Python code into an Internal Representation
(IR), a middle-end performs various code optimizations on this
IR, and a back-end turns the IR into native code. The front-end
performs two steps:

1. turn Python code into Python Abstract Syntax
Tree(AST) thanks to the ast module from the stan-
dard library;

2. turn the Python AST into a type-agnostic Pythran
IR, which remains a subset of the Python AST.

Pythran IR is similar to Python AST, as defined in the
ast module, except that several nodes are forbidden (most
notably Pythran does not support user-defined classes, or the
exec instruction), and some nodes are converted to others to
form a simpler AST easier to deal with for further analyses
and optimizations. The transformations applied by Pythran on
Python AST are the following:

• list/set/dict comprehension are expanded into loops
wrapped into a function call;

• tuple unpacking is expanded into several variable assign-
ments;

• lambda functions are turned into named nested functions;
• the closure of nested functions is statically computed to

turn the nested function into a global function taking the
closure as parameter;

• implicit return None are made explicit;
• all imports are fully expanded to make function access

paths explicit
• method calls are turned into function calls;
• implicit __builtin__ function calls are made explicit;
• try ... finally constructs are turned into nested try ... except

blocks;
• identifiers whose name may clash with C++ keywords are

renamed.
The back-end works in three steps:
1. turning Pythran IR into parametric C++ code;
2. instantiating the C++ code for the desired types;
3. compiling the generated C++ code into native

code.
The first step requires to map polymorphic variables and

polymorphic functions from the Python world to C++. Pythran
only supports polymorphic variables for functions, i.e. a
variable can hold several function pointers during its life
time, but it cannot be assigned to a string if it has already
been assigned to an integer. As shown later, it is possible to
detect several false variable polymorphism cases using use-def
chains. Function polymorphism is achieved through template
parameters: a template function can be applied to several types
as long as an implicit structural typing is respected, which is
very similar to Python’s duck typing, except that it is checked
at compile time, as illustrated by the following implementation
of a generic dot product in Python:
def dot(l0, l1):

return sum(x*y for x,y in zip(l0,l1))

and in C++:
template<class T0, class T1>

auto dot(T0&& l0, T1&& l1)
-> decltype(/* skipped */)
{

return pythonic::sum(
pythonic::map(

operator_::multiply(),
pythonic::zip(

std::forward<T0>(l0),
std::forward<T1>(l1))

)
);

}

Although far more verbose than the Python version, the C++
version also uses a form of structural typing : the only
assumption these two version make are that l0 and l1 are
iterable, their content can be multiplied and the result of the
multiplication is accumulatable.

The second step only consists in the instantiation of the top-
level functions of the module, using user-provided signatures.
Template instantiation then triggers the different correctly
typed instantiations for all functions written in the module.
Note that the user only needs to provide the type of the
functions exported outside the module. The possible types of
all internal functions are then inferred from the call sites.

The last step involves a template library, called pythonic
that contains a polymorphic implementation of many functions
from the Python standard library in the form of C++ template
functions. Several optimizations, most notably expression tem-
plate, are delegated to this library. Pythran relies on the C++11
[cxx11] language, as it makes heavy use of recent features such

48 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

Python Module [.py] Type InfoOpenMP

Pythran

C++boost::python pythonic++

g++

Native Module [.so]

Fig. 1: Pythran compilation flow.

as move semantics, type inference through decltype(...) and
variadic templates. As a consequence it requires a compatible
C++ compiler for the native code generation. Boost.Python
[boost_python] is involved for the Python-to-C++ glue. Gen-
erated C++ code is compatible with g++ 4.7.2 and clang++
3.2.

It is important to note that all Pythran analyses are type-
agnostic, i.e. they do not assume any type for the variables
manipulated by the program. Type specialization is only
done in the back-end, right before native code generation.
Said otherwise, the Pythran compiler analyzes polymorphic
functions and polymorphic variables.

Figure 1 summarizes the compilation flow and the involved
tools.

Code Analyses

A code analysis is a function that takes a part of the IR (or the
whole module’s IR) as input and returns aggregated high-level
information. For instance, a simple Pythran analysis called
Identifiers gathers the set of all identifiers used throughout
the program. This information is later used when the creation
of new identifiers is required so that no conflict occurs with
existing ones.

One of the most important analysis in Pythran is the alias
analysis, sometimes referred as points-to analysis. For each
identifiers, it computes an approximation of the set of locations
this identifier may point to. For instance, let us consider the
polymorphic function foo defined as follows:
def foo(a,b):

c = a or b
return c*2

The identifier c involved in the multiplication may refer to
• a fresh location if a and b are scalars
• the same location as a if a evaluates to True
• the same location as b otherwise.
As we do not specialise the analysis for different types and

the true value of a is unknown at compilation time, the alias
analysis yields the approximated result that c may point to a
fresh location, a or b.

Without this kind of information, even a simple instruction
like sum(a) would yield very few informations as there is no
guarantee that the sum identifiers points to the sum built-in.

When turning Python AST to Pythran IR, nested functions
are turned into global functions taking their closure as param-
eter. This closure is computed using the information provided
by the Globals analysis that statically computes the state of
the dictionary of globals, and ImportedIds that computes the
set of identifiers used by an instruction but not declared in this
instruction. For instance in the following snippet:
def outer(outer_argument):

def inner(inner_argument):
return cos(outer_argument) + inner_argument

return inner

The Globals analysis called on the inner function defini-
tion marks cos as a global variable, and ImportedIds marks
outer_argument and cos as imported identifiers.

A rather high-level analysis is the PureFunctions analysis,
that computes the set of functions declared in the module that
are pure, i.e. whose return value only depends from the value
of their argument. This analysis depends on two other anal-
yses, namely GlobalEffects that computes for each function
whether this function modifies the global state (including I/O,
random generators, etc.) and ArgumentEffects that computes
for each argument of each function whether this argument may
be updated in the function body. These three analyses work
inter-procedurally, as illustrated by the following example:
def fibo(n):

return n if n < 2 else fibo(n-1) + fibo(n-2)

def bar(l):
return map(fibo, l)

def foo(l):
return map(fibo, random.sample(l, 3))

The fibo function is pure as it has no global effects or argument
effects and only calls itself. As a consequence the bar function
is also pure as the map intrinsic is pure when its first argument
is pure. However the foo function is not pure as it calls the
sample function from the random module, which has a global
effect (on the underlying random number generator internal
state).

Several analyses depend on the PureFunctions analysis.
ParallelMaps uses aliasing information to check if an identifier
points to the map intrinsic, and checks if the first argument is
a pure function using PureFunctions. In that case the map is
added to the set of parallel maps, because it can be executed
in any order. This is the case for the first map in the following
snippet, but not for the second because the print b involves an
I/O.
def pure(a):

return a**2

def guilty(a):
b = pure(a)
print b
return b

l = list(...)
map(pure, l)
map(guilty, l)

ConstantExpressions uses function purity to decide whether
a given expression is constant, i.e. its value only depends
on literals. For instance the expression fibo(12) is a constant
expression because fibo is pure and its argument is a literal.

PYTHRAN: ENABLING STATIC OPTIMIZATION OF SCIENTIFIC PYTHON PROGRAMS 49

UseDefChains is a classical analysis from the static com-
pilation world. For each variable defined in a function, it
computes the chain of use and def. The result can be used
to drive various code transformations, for instance to remove
dead code, as a def followed by a def or nothing is useless. It
is used in Pythran to avoid false polymorphism. An intuitive
way to represent use-def chains is illustrated on next code
snippet:
a = 1
if cond:

a = a + 2
else:

a = 3
print a
a = 4

In this example, there are two possible chains starting from
the first assignment. Using U to denote use and D to denote
def, one gets:

D U D U D

and:

D D U D

The fact that all chains finish by a def indicates that the last
assignment can be removed (but not necessarily its right hand
part that could have a side-effect).

All the above analyses are used by the Pythran developer
to build code transformations that improve the execution time
of the generated code.

Code Optimizations

One of the benefits of translating Python code to C++ code is
that it removes most of the dynamic lookups. It also unveils
all the optimizations available at C++ level. For instance, a
function call is quite costly in Python, which advocates in favor
of using inlining. This transformation comes at no cost when
using C++ as the back-end language, as the C++ compiler
does it.

However, there are some informations available at the
Python level that cannot be recovered at the C++ level. For
instance, Pythran uses functor with an internal state and a goto
dispatch table to represent generators. Although effective, this
approach is not very efficient, especially for trivial cases. Such
trivial cases appear when a generator expression is converted,
in the front-end, to a looping generator. To avoid this extra
cost, Pythran turns generator expressions into call to imap and
ifilter from the itertools module whenever possible, removing
the unnecessary goto dispatching table. This kind of transfor-
mation cannot be made by the C++ compiler. For instance,
the one-liner len(set(vec[i]+i for i in cols)) extracted from
the nqueens benchmarks from the Unladen Swallow project
is rewritten as len(set(itertools.imap(lambda i: vec[i]+i,cols))).
This new form is less efficient in pure Python (it implies one
extra function call per iteration), but can be compiled into C++
more efficiently than a general generator.

A similar optimization consists in turning map, zip or filter
into their equivalent version from the itertool module. The
benefit is double: first it removes a temporary allocation,
second it gives an opportunity to the compiler to replace list

accesses by scalar accesses. This transformation is not always
valid, nor profitable. It is not valid if the content of the output
list is written later on, and not profitable if the content of the
output list is read several times, as each read implies the (re)
computation, as illustrated in the following code:

def valid_conversion(n):
this map can be converted to imap
l = map(math.cos, range(n))
return sum(l) # sum iterates once on its input

def invalid_conversion(n):
this map cannot be converted to imap
l = map(math.cos, range(n))
l[0] = 1 # invalid assignment
return sum(l) + max(l) # sum iterates once

The information concerning constant expressions is used to
perform a classical transformation called ConstantUnfolding,
which consists in the compile-time evaluation of constant
expressions. The validity is guaranteed by the ConstantEx-
pressions analysis, and the evaluation relies on Python ability
to compile an AST into byte code and run it, benefiting from
the fact that Pythran IR is a subset of Python AST. A typical
illustration is the initialization of a cache at compile-time:

def esieve(n):
candidates = range(2, n+1)
return sorted(

set(candidates) - set(p*i
for p in candidates
for i in range(p, n+1))

)

cache = esieve(100)

Pythran automatically detects that eseive is a pure function
and evaluates the cache variable value at compile time.

Sometimes, coders use the same variable in a function
to represent value with different types, which leads to false
polymorphism, as in:

a = cos(1)
a = str(a)

These instructions cannot be translated to C++ directly because
a would have both double and str type. However, using
UsedDefChains it is possible to assert the validity of the
renaming of the instructions into:

a = cos(1)
a_ = str(a)

that does not have the same typing issue.
In addition to these python-level optimizations, the Pythran

back end library, pythonic, uses several well known optimiza-
tions, especially for Numpy expressions.

Library Level Optimizations

Using the proper library, the C++ language provides an ab-
straction level close to what Python proposes. Pythran provides
a wrapper library, pythonic, that leverage on the C++ Standard
Template Library (STL), the GNU Multiple Precision Arith-
metic Library (GMP) and the Numerical Template Toolbox
(NT2) [nt2] to emulate Python standard library. The STL is
used to provide a typed version of the standard containers
(list, set, dict and str), as well as reference-based memory

50 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

management through shared_ptr. Generic algorithms such as
accumulate are used when possible. GMP is the natural pick
to represent Python’s long in C++. NT2 provides a generic
vector library called boost.simd [boost_simd] that enables the
vector instruction units of modern processors in a generic way.
It is used to efficiently compile Numpy expressions.

Numpy expressions are the perfect candidates for library
level optimizations. Pythran implements three optimizations
on such expressions:

1. Expression templates [expression_templates] are
used to avoid multiple iterations and the creation
of intermediate arrays. Because they aggregates all
ufunc into a single expression at compile time,
they also increase the computation intensity of the
loop body, which increases the impact of the two
following optimizations.

2. Loop vectorization. All modern processors have
vector instruction units capable of applying the same
operation on a vector of data instead of a single data.
For instance Intel Sandy Bridge can run 8 single-
precision additions per instruction. One can directly
use the vector instruction set assembly to use these
vector units, or use C/C++ intrinsics. Pythran relies
on boost.simd from NT2 that offers a generic vector
implementation of all standard math functions to
generate a vectorized version of Numpy expressions.
Again, the aggregation of operators performed by the
expression templates proves to be beneficial, as it
reduces the number of (costly) loads from the main
memory to the vector unit.

3. Loop parallelization through OpenMP [openmp].
Numpy expression computation do not carry any
loop-dependency. They are perfect candidates for
loop parallelization, especially after the expression
templates aggregation, as OpenMP generally per-
forms better on loops with higher computation in-
tensity that masks the scheduling overhead.

To illustrate the benefits of these three optimizations com-
bined, let us consider the simple Numpy expression:
d = numpy.sqrt(b*b+c*c)

When benchmarked with the timeit module on an hyper-
threaded quad-core i7, the pure Python execution yields:
>>> %timeit np.sqrt(b*b+c*c)
1000 loops, best of 3: 1.23 ms per loop

then after Pythran processing and using expression templates:
>>> %timeit my.pythranized(b,c)
1000 loops, best of 3: 621 us per loop

Expression templates replace 4 temporary array creations and
4 loops by a single allocation and a single loop.

Going a step further and vectorizing the generated loop
yields an extra performance boost:
>>> %timeit my.pythranized(b,c)
1000 loops, best of 3: 418 us per loop

Although the AVX instruction set makes it possible to store
4 double precision floats, one does not get a 4x speed up

because of the unaligned memory transfers to and from vector
registers.

Finally, using both expression templates, vectorization and
OpenMP:

>>> %timeit my.pythranized(b,c)
1000 loops, best of 3: 105 us per loop

The 4 hyper-threaded cores give an extra performance boost.
Unfortunately, the load is not sufficient to get more than an
average 4x speed up compared to the vectorized version. In the
end, Pythran generates a native module that performs roughly
11 times faster than the original version.

As a reference, the numexpr module that performs JIT
optimization of the expression yields the following timing:

>>> %timeit numexpr.evaluate("sqrt(b*b+c*c)")
1000 loops, best of 3: 395 us per loop

Next section performs an in-depth comparison of Pythran with
three Python optimizers: PyPy, ShedSkin and numexpr.

Explicit Parallelization

Many scientific applications can benefit from the parallel
execution of their kernels. As modern computers generally
feature several processors and several cores per processor, it
is critical for the scientific application developer to be able to
take advantage of them.

As explained in the previous section, Pythran takes advan-
tage of multiple cores when compiling Numpy expressions.
However, when possible, it is often more profitable to paral-
lelize the outermost loops rather than the inner loops —the
Numpy expressions— because it avoids the synchronization
barrier at the end of each parallel section, and generally offers
more computation intensive computations.

The OpenMP standard [openmp] is a widely used solution
for Fortran, C and C++ to describe loop-based and task-based
parallelism. It consists of a few directives attached to the code,
that describe parallel loops and parallel code sections in a
shared memory model.

Pythran makes this directives available at the Python level
through string instructions. The semantic is roughly similar
to the original semantics, assuming that all variables have
function level scope.

The following listing gives a simple example of explicit
loop-based parallelism. OpenMP 3.0 task-based parallelism
form is also supported.

def pi_estimate(darts):
hits = 0
"omp parallel for private(x,y,dist), reduction(+:hits)"
for i in xrange(darts):

x,y = random(), random()
dist = sqrt(pow(x, 2) + pow(y, 2))
if dist <= 1.0:

hits += 1.0
pi = 4 * (hits / DARTS)
return pi

The loop is flagged as parallel, performing a reduction using
the + operator on the hits variable. Variable marked as private
are local to a thread and not shared with other threads.

PYTHRAN: ENABLING STATIC OPTIMIZATION OF SCIENTIFIC PYTHON PROGRAMS 51

Tool CPython Pythran PyPy ShedSkin
Timing 861ms 11.8ms 29.1ms 24.7ms
Speedup x1 x72.9 x29.6 x34.8

TABLE 1: Benchmarking result on the Pystone program.

Tool CPython Pythran PyPy ShedSkin
Timing 1904.6ms 358.3ms 546.1ms 701.5ms
Speedup x1 x5.31 x3.49 x2.71

TABLE 2: Benchmarking result on the NQueen program.

Benchmarks

All benchmarks presented in this section are ran on
an hyper-threaded quad-core i7, using examples shipped
along Pythran sources, available at https://github.com/
serge-sans-paille/pythran in the pythran/test/cases directory.
The Pythran version used is the HEAD of the scipy2013
branch, ShedSkin 0.9.2, PyPy 2.0 compiled with the -jit flag,
CPython 2.7.3, Cython 0.19.1 and Numexpr 2.0.1. All timings
are made using the timeit module, taking the best of all runs.
All C++ codes are compiled with g++ 4.7.3, using the tool
default compiler option, generally -O2 plus a few optimizing
flags depending on the target.

Cython is not considered in most benchmarks, because
to get an efficient binary, one needs to rewrite the original
code, while all the considered tools are running the very
same Python code that remains compatible with CPython.
The experiment was only done to have a comparison with
Numexpr.

Pystone is a Python translation of whetstone, a famous
floating point number benchmarks that dates back to Algol60
and the 70’s. Although non representative of real applications,
it illustrates the general performance of floating point number
manipulations. Table 1 illustrates the benchmark result for
CPython, PyPy, ShedSkin and Pythran, using an input value
of 10**3. Note that the original version has been updated to
replace the user class by a function call.

It comes at no surprise that all tools get more than decent
results on this benchmark. PyPy generates a code almost as
efficient as ShedSkin. Altough both generate C++, Pythran
outperforms ShedSkin thanks to a higher level generated code.
For instance all arrays are represented in ShedSkin by pointers
to arrays that likely disturbs the g++ optimizer, while Pythran
uses a vector class wrapping shared pointers.

Nqueen is a benchmark extracted from the former Unladen
Swallow* project. It is particularly interesting as it makes an
intensive use of non-trivial generator expressions and integer
sets. Table 2 illustrates the benchmark results for CPython,
PyPy, ShedSkin and Pythran. The code had to be slightly
updated to run with ShedSkin because type inference in
ShedSkin does not support mixed scalar and None variables.
The input value is 9.

It seems that compilers have difficulties to take advantage
of high level constructs such as generator expressions, as the
overall speedup is not breathtaking. Pythran benefits from the
conversion to itertools.imap here, while ShedSkin and PyPy

Tool CPython Pythran PyPy ShedSkin
Timing 1295.4ms 270.5ms 277.5ms 281.5ms
Speedup x1 x4.79 x4.67 x4.60

TABLE 3: Benchmarking result on the hyantes kernel, list version.

Tool CPython Pythran Pythran+OpenMP
Timing 450.0ms 4.8ms 2.3ms
Speedup x1 x93.8 x195.7

TABLE 4: Benchmarking result on the hyantes kernel, numpy version.

rely on more costly constructs. A deeper look at the Pythran
profiling trace shows that more than half of the execution time
is spent allocating and deallocating a set used in the internal
loop. There is a memory allocation invariant that could be
taken advantage of there, but none of the compiler does.

Hyantes† is a geomatic application that exhibits typical
usage of arrays using loops instead of generalized expressions.
It is helpful to measure the performance of direct array
indexing.

Table 3 illustrates the benchmark result for CPython, PyPy,
ShedSkin and Pythran, when using lists as the data container.
The output window used is 100x100.

The speed ups are not amazing for a numerical application.
there are two reasons for this poor speedups. First, the hyantes
benchmark makes heavy usage of trigonometric functions, and
there is not much gain there. Second, and most important, the
benchmark produces a big 2D array stored as a list of list, so
the application suffers from the heavy overhead of converting
them from C++ to Python. Running the same benchmark using
Numpy arrays as core containers confirms this assumption, as
illustrated by Table 4. This table also demonstrates the benefits
of manual parallelization using OpenMP.

Finally, arc_distance‡ presents a classical usage of Numpy
expression. It is typically more efficient than its loop alter-
native as all the iterations are done directly in C. Its code is
reproduced below:
def arc_distance(theta_1, phi_1, theta_2, phi_2):

"""
Calculates the pairwise arc distance
between all points in vector a and b.
"""
temp = (np.sin((theta_2-theta_1)/2)**2

+ np.cos(theta_1)*np.cos(theta_2)
* np.sin((phi_2-phi_1)/2)**2)

distance_matrix = 2 * np.arctan2(
sqrt(temp),sqrt(1-temp))

return distance_matrix

Figure 5 illustrates the benchmark result for CPython,
Cython, Numexpr and Pythran, using random input arrays
of 10**6 elements. Table 6 details the Pythran performance.
Cython code is written using the parallel.prange feature and
compiled with -fopenmp -O2 -march=native.

*. http://code.google.com/p/unladen-swallow/
†. http://hyantes.gforge.inria.fr/
‡. The arc_distance test_bed is taken from to https://bitbucket.org/

FedericoV/numpy-tip-complex-modeling

https://github.com/serge-sans-paille/pythran
https://github.com/serge-sans-paille/pythran
http://code.google.com/p/unladen-swallow/
http://hyantes.gforge.inria.fr/
https://bitbucket.org/FedericoV/numpy-tip-complex-modeling
https://bitbucket.org/FedericoV/numpy-tip-complex-modeling

52 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

Tool CPython Cython Numexpr Pythran
Timing 192.2ms 36.0ms 41.2ms 17.1ms
Speedup x1 x5.33 x4.67 x11.23

TABLE 5: Benchmarking result on the arc distance kernel.

Pythran (raw) Pythran
(+AVX)

Pythran
(+OMP)

Pythran (full)

186.3ms 75.4ms 41.1ms 17.1ms
x1.03 x2.54 x4.67 x11.23

TABLE 6: Benchmarking result on the arc distance kernel, Pythran
details.

It shows a small benefit from using expression templates on
their own, most certainly because the loop control overhead
is negligible in front of the trigonometric functions. It gets
a decent x2.5 speed-up when using AVX over not using it.
The benefit of OpenMP, although related to the number of
cores, makes a whole speedup greater than x11 over the
original Numpy version, without changing the input code.
Quite the opposite, Numexpr requires rewriting the input and
does not achieve the same level of performance as Pythran
when OpenMP and AVX are combined.

Writing efficient Cython code requires more work than just
typing the variable declarations using Cython’s specific syntax:
it only takes advantage of parallelism because we made it
explicit. Without explicit parallelization, the generated code
runs around 176ms instead of 36ms. Cython does not generate
vectorized code, and gcc does not vectorize the inner loop,
which explains the better result obtained with Pythran.

Future Work

Although Pythran focuses on a subset of Python and its
standard library, many optimizations opportunities are still
possible. Using as Domain Specific Language(DSL) approach,
one could use rewriting rules to optimize several Python
idioms. For instance, len(set(x)) could lead to an optimized
count_uniq that would iterate only once on the input sequence.

There is naturally more work to be done at the Numpy level,
for instance to support more functions from the original mod-
ule. The extraction of Numpy expressions from for loops is
also a natural optimization candidate, which shares similarities
with code refactoring.

Numpy expressions also fit perfectly well in the polyhedral
model. Exploring the coupling of polyhedral tools with the
code generated from Pythran offers enthusiastic perspectives.

Conclusion

This paper presents the Pythran compiler, a translator, and an
optimizer, that converts Python to C++. Unlike existing static
compilers for Python, Pythran leverages several function-level
or module-level analyses to provide several generic or Python-
centric code optimizations. Additionally, it uses a C++ library
that makes heavy usage of template programming to provide
an efficient API similar to a subset of Python standard library.

This library takes advantage of modern hardware capabilities
—vector instruction units and multi-cores— in its implemen-
tation of parts of the numpy package.

This paper gives an overview of the compilation flow, the
analyses involved and the optimizations used. It also com-
pares the performance of compiled Pythran modules against
CPython and other optimizers: ShedSkin, PyPy and numexpr.

To conclude, limiting Python to a statically typed subset
does not hinders the expressivity when it comes to scientific
or mathematic computations, but makes it possible to use a
wide variety of classical optimizations to help Python match
the performance of statically compiled language. Moreover,
one can use high level information to generate efficient code
that would be difficult to write for the average programmer.

Acknowledgments

This project has been partially funded by the CARP Project§

and the SILKAN Company¶.

REFERENCES

[boost_python] D. Abrahams and R. W. Grosse-Kunstleve. Build-
ing Hybrid Systems with Boost.Python, C/C++ Users
Journal, 21(7), July 2003.

[boost_simd] P. Estérie, M. Gaunard, J. Falcou, J. T. Lapresté,
B. Rozoy. Boost.SIMD: generic programming for
portable SIMDization, Proceedings of the 21st in-
ternational conference on Parallel architectures and
compilation techniques, 431-432, 2012.

[cython] S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. S.
Seljebotn and K. Smith. Cython: The Best of Both
Worlds, Computing in Science Engineering, 13(2):31-
39, March 2011.

[cxx11] ISO, Geneva, Switzerland. Programming Languages
-- C++, ISO/IEC 14882:2011.

[expression_templates] T. Veldhuizen. Expression Templates, C++ Report,
7:26-31, 1995.

[nt2] J. Falcou, J. Sérot, L. Pech, J. T. Lapresté Meta-
programming applied to automatic SMP paralleliza-
tion of linear algebra code, Euro-Par, 729-738, Jan-
uary 2008, https://github.com/MetaScale/nt2.

[nuitka] K. Hayen. Nuitka - The Python Compiler, Talk at
EuroPython2012.

[numba] T. Oliphant et al. Numba, http://numba.pydata.org/.
[numexpr] D. Cooke, T. Hochberg et al. Numexpr - Fast nu-

merical array expression evaluator for Python and
NumPy, http://code.google.com/p/numexpr/.

[openmp] OpenMP Application Program Interface, http:
//www.openmp.org/mp-documents/OpenMP3.1.pdf,
July 2011.

[pypy] C. F. Bolz, A. Cuni, M. Fijalkowski and A. Rigo.
Tracing the meta-level: PyPy’s tracing JIT compiler,
Proceedings of the 4th workshop on the Implemen-
tation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems, 18-25, 2009.

[pythoncapi] G. v. Rossum and F. L. Jr. Drake. Python/C API
Reference Manual, September 20012.

[shedskin] M. Dufour. Shed skin: An optimizing python-to-c++
compiler, Delft University of Technology, 2006.

§. http://carp.doc.ic.ac.uk/external/
¶. http://www.silkan.com/

https://github.com/MetaScale/nt2
http://numba.pydata.org/
http://code.google.com/p/numexpr/
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://carp.doc.ic.ac.uk/external/
http://www.silkan.com/

	Introduction
	Pythran Compiler Infrastructure
	Code Analyses
	Code Optimizations
	Library Level Optimizations
	Explicit Parallelization
	Benchmarks
	Future Work
	Conclusion
	Acknowledgments
	References

