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1987; van Beek 1989; 1990; van Beek & Cohen 1990;Vilain & Kautz 1986; Vilain, Kautz, & van Beek 1989).We extend these previous results in three ways.Firstly, we present a new tractable subclass of Allen'sinterval algebra, which we call ORD-Horn subclass.This subclass is considerably larger than all otherknown tractable subclasses (it contains 10% of the fullalgebra) and strictly contains the pointisable subclass(Ladkin & Maddux 1988; van Beek 1989). Secondly, weshow that the path-consistency method is su�cient fordeciding satis�ability in this subclass. Thirdly, usingan extensive machine-generated case analysis, we showthat this subclass is a maximal subclass such that sa-tis�ability is tractable (assuming P6=NP).1From a practical point of view, these results implythat the path-consistency method has a much largerrange of applicability than previously believed, provi-ded we are mainly interested in satis�ability. Further,our results can be used to design backtracking algo-rithms for the full algebra that are more e�cient thanthose based on other tractable subclasses.Reasoning about Interval Relationsusing Allen's Interval AlgebraAllen's (1983) approach to reasoning about time isbased on the notion of time intervals and binary re-lations on them. A time interval X is an orde-red pair (X�; X+) such that X� < X+, where X�and X+ are interpreted as points on the real line.2So, if we talk about interval interpretations or I-interpretations in the following, we mean mappingsof time intervals to pairs of distinct real numbers suchthat the beginning of an interval is strictly before theending of the interval.1The programs we used and an enumeration of theORD-Horn subclass can be obtained from the authorsor by anonymous ftp from duck.dfki.uni-sb.de as/pub/papers/DFKI-others/RR-93-11.programs.tar.Z.2Other underlying models of the time line are also possi-ble, e.g., the rationals (Allen & Hayes 1985; Ladkin 1987).For our purposes these distinctions are not signi�cant,however.1



Basic Interval Sym- EndpointRelation bol RelationsX before Y � X� < Y �, X� < Y +,Y after X � X+ < Y �, X+ < Y +X meets Y m X� < Y �, X� < Y +,Y met-by X m^ X+ = Y �, X+ < Y +X overlaps Y o X� < Y �, X� < Y +,Y overlapped-by X o^ X+ > Y �, X+ < Y +X during Y d X� > Y �, X� < Y +,Y includes X d^ X+ > Y �, X+ < Y +X starts Y s X� = Y �, X� < Y +,Y started-by X s^ X+ > Y �, X+ < Y +X �nishes Y f X� > Y �, X� < Y +,Y �nished-by X f^ X+ > Y �, X+ = Y +X equals Y � X� = Y �, X� < Y +,X+ > Y �, X+ = Y +Table 1: The set B of the thirteen basic relations.Given two interpreted time intervals, their relativepositions can be described by exactly one of the ele-ments of the set B of thirteen basic interval relati-ons (denoted by B in the following), where each basicrelation can be de�ned in terms of its endpoint re-lations (see Table 1). An atomic formula of the formXBY , where X and Y are intervals and B 2 B, is saidto be satis�ed by an I-interpretation i� the interpre-tation of the intervals satis�es the endpoint relationsspeci�ed in Table 1.In order to express inde�nite information, unions ofthe basic interval relations are used, which are writ-ten as sets of basic relations leading to 213 binary in-terval relations (denoted by R;S; T )|including thenull relation ; (also denoted by ?) and the univer-sal relation B (also denoted by >). The set of allbinary interval relations 2B is denoted by A.An atomic formula of the form X fB1; : : : ; Bng Y(denoted by �) is called interval formula. Such aformula is satis�ed by an I-interpretation = i� X Bi Yis satis�ed by = for some i, 1 � i � n. Finite sets ofinterval formulas are denoted by �. Such a set � iscalled I-satis�able i� there exists an I-interpretation= that satis�es every formula of �. Further, such asatisfying I-interpretation = is called I-model of �.If an interval formula � is satis�ed by every I-model ofa set of interval formulas �, we say that � is logicallyimplied by �, written � j=I �.Fundamental reasoning problems in this frame-work include (Golumbic & Shamir 1992; Ladkin & Ma-ddux 1988; van Beek 1990; Vilain & Kautz 1986): Gi-ven a set of interval formulas �, (1) decide the of I-satis�ability of � (ISAT), and (2) determine for eachpair of intervalsX;Y the strongest implied relation bet-ween them (ISI).In the following, we often consider restricted rea-soning problems where the relations used in intervalformulas in � are only from a subclass S of all in-

terval relations. In this case we say that � is a setof formulas over S, and we use a parameter in theproblem description to denote the subclass considered,e.g., ISAT(S). As is well-known, ISAT and ISI areequivalent with respect to polynomial Turing-reduc-tions (Vilain & Kautz 1986) and this equivalence alsoextends to the restricted problems ISAT(S) and ISI(S),provided S contains all basic relations.The most prominent method to solve these problems(approximately for all interval relations or exactlyfor subclasses) is constraint propagation (Allen 1983;Ladkin & Maddux 1988; N�okel 1989; van Beek 1989;van Beek & Cohen 1990; Vilain & Kautz 1986) usinga slightly simpli�ed form of the path-consistency al-gorithm (Mackworth 1977; Montanari 1974). In thefollowing, we briey characterize this method withoutgoing into details, though. In order to do so, we �rsthave to introduce Allen's interval algebra.Allen's interval algebra (1983) consists of the setA = 2B of all binary interval relations and the ope-rations unary converse (denoted by �^), binary in-tersection (denoted by \), and binary composition(denoted by �), which are de�ned as follows:8X;Y : XR^Y $ Y RX8X;Y : X (R \ S) Y $ XRY ^XSY8X;Y : X (R � S) Y $ 9Z: (XRZ ^ ZSY ):Assume an operator � that maps �nite sets of inter-val formulas to �nite sets of interval formulas in thefollowing way:�(�) = �[fX>Y j X;Y appear in �g[fXRY j (Y R^ X) 2 �g[fX (R \ S) Y j (XRY ); (XSY ) 2 �g[fX (R � S) Y j (XRZ); (ZSY ) 2 �g:Since there are only �nitely many di�erent interval for-mulas for a �nite set of intervals and � is monotone, itfollows that for each � there exists a natural numbern such that �n(�) = �n+1(�). �n(�) is called theclosure of �, written �. Considering the formulas ofthe form (XRiY ) 2 � for givenX;Y , it is evident thatthe Ri's are closed under intersection, and hence thereexists (XSY ) 2 � such that S is the strongest relationamongst the Ri's, i.e., S � Ri, for every i. The subsetof a closure � containing for each pair of intervals onlythe strongest relations is called the reduced closureof � and is denoted by b�.As can be easily shown, every reduced closure of aset � is path consistent (Mackworth 1977), whichmeans that for every three intervals X;Y; Z and forevery interpretation = that satis�es (XRY ) 2 b�, thereexists an interpretation =0 that agrees with= onX andY and in addition satis�es (XSZ); (ZS0Y ) 2 b�. Underthe assumption that (XRY ) 2 � implies (Y R^ X) 2�, it is also easy to show that path consistency of �implies that � = b�. For this reason, we will use theterm path-consistent set as a synonym for a set that2



is the reduced closure of itself. Finally, computing b�is polynomial in the size of � (Mackworth & Freuder1985; Montanari 1974).The ORD-Horn SubclassPrevious results on the tractability of ISAT(S) (andhence ISI(S)) for some subclass S � A made use ofthe expressibility of interval formulas over S as certainlogical formulas involving endpoint relations.As usual, by a clause we mean a disjunction of li-terals, where a literal in turn is an atomic formula ora negated atomic formula. As atomic formulas weallow a � b and a = b, where a and b denote endpointsof intervals. The negation of a = b is also written asa 6= b. Finite sets of such clause will be denoted by 
.In the following, we consider a slightly restricted formof clauses, which we call ORD clauses. These clausesdo not contain negations of atoms of the form (a � b),i.e., they only contain literals of the form:a = b; a � b; a 6= b:The ORD-clause form of an interval formula �,written �(�), is the set of ORD clauses over endpointrelations that is equivalent to �, i.e., every intervalmodel of � can be transformed into a model of theORD-clause form over the reals and vice versa usingthe obvious transformation. Consider, for instance,�(X fd; o; sgY ):f (X� � X+); (X� 6= X+);(Y � � Y +); (Y � 6= Y +);(X� � Y +); (X� 6= Y +);(Y � � X+); (X+ 6= Y �);(X+ � Y +); (X+ 6= Y +)g:The function �(�) is extended to �nite sets of intervalformulas in the obvious way, i.e., for identical inter-vals in �, identical endpoints are used in �(�). Si-milarly to the notions of I-satis�ability, we de�ne R-satis�ability of 
 to be the satis�ability of 
 over thereal numbers.Proposition 1 � is I-satis�able i� �(�) is R-satis�able.Not all relations permit a ORD-clause form that isas concise as the the one shown above, which containsonly unit clauses. However, in particular those rela-tions that allow for such a clause form have intere-sting computational properties. For instance, the con-tinuous endpoint subclass (which is denoted by C)can be de�ned as the subclass of interval relations that(1) permit a clause form that contains only unit clau-ses, and (2) for each unit clause a 6= b, the clause formcontains also a unit clause of the form a � b or b � a.As demonstrated above, the relation fd; o; sg is amember of the continuous endpoint subclass. Thissubclass has the favorable property that the path-consistency method solves ISI(C) (van Beek 1989;van Beek & Cohen 1990; Vilain, Kautz, & van Beek

1989). A slight generalization of the continuous end-point subclass is the pointisable subclass (denotedby P) that is de�ned in the same way as C, but wit-hout condition (2). Path-consistency is not su�cientfor solving ISI(P) (van Beek 1989) but still su�cientfor deciding satis�ability (Ladkin & Maddux 1988;Vilain & Kautz 1986).We generalize this approach by being more liberalconcerning the clause form. We consider the subclassof Allen's interval algebra such that the relations per-mit an ORD-clause form containing only clauses withat most one positive literal, which we call ORD-Hornclauses. The subclass de�ned in this way is calledORD-Horn subclass, and we use the symbol H torefer to it. The relation fo; s; f^g is, for instance, anelement of H because �(X fo; s; f^gY ) can be expres-sed as follows:f (X� � X+); (X� 6= X+);(Y � � Y +); (Y � 6= Y +);(X� � Y �); (X� � Y +); (X� 6= Y +);(Y � � X+); (X+ 6= Y �); (X+ � Y +);(X� 6= Y � _X+ 6= Y +)g:By de�nition, the ORD-Horn subclass contains thepointisable subclass. Further, by the above example,this inclusion is strict.Consider now the theory ORD that axiomatizes \="as an equivalence relation and \�" as a partial orderingover the equivalence classes:8x; y; z: x � y ^ y � z ! x � z8x: x � x8x; y: x � y ^ y � x ! x = y8x; y: x = y ! x � y8x; y: x = y ! y � x:Although this theory is much weaker than the theoryof the reals, R-satis�ability of a set 
 of ORD clauses isnevertheless equivalent to the satis�ability of 
[ORDover arbitrary interpretations.Proposition 2 A set of ORD clauses 
 is R-satis�able i� 
 [ORD is satis�able.3Proof Sketch. Any linearization of a partial orderthat satis�es all atoms appearing in ORD clauses alsosatis�es these atoms. Hence, a model of 
 [ ORDcan be used to generate an R-model for 
. The otherdirection is trivial.In the following, ORD
 shall denote the axioms ofORD instantiated to all endpoints mentioned in 
. Asa specialization of the Herbrand theorem, we obtainthe next proposition.Proposition 3 
 [ ORD is satis�able i� 
 [ORD
is satis�able.3Full proofs are given in the long paper (Nebel &B�urckert 1993), which can be obtained by anonymous ftpfrom duck.dfki.uni-sb.de.3



From the fact that ORD
 and 
 are propositio-nal Horn formulas, polynomiality of ISAT(H) is im-mediate.Theorem 4 ISAT(H) is polynomial.The Applicability of Path-ConsistencyEnumerating the ORD-Horn subclass reveals thatthere are 868 relations (including the null relation ?)in Allen's interval algebra that can be expressed usingORD-Horn clauses. Since the full algebra contains213 = 8192 relations, H covers more than 10% of thefull algebra. Comparing this with the continuous end-point subclass C, which contains 83 relations, and thepointisable subclass P, which contains 188 relations,4having shown tractability for H is a clear improvementover previous results. However, there remains the que-stion of whether the \traditional" method of reasoningin Allen's interval algebra, i.e., constraint propagation,gives reasonable results. As it turns out, this is indeedthe case.Theorem 5 Let b� be a path-consistent set of intervalformulas over H. Then b� is I-satis�able i� (X?Y ) 62b�.Proof Sketch. A case analysis over the possible non-unit clauses in �(b�) [ ORD�(b�) reveals that no newunits can be derived by positive unit resolution, if theORD-clause form of the interval formulas satis�es therequirement that it contains all implied atoms and theclauses are minimal. By refutation completeness ofpositive unit resolution (Henschen & Wos 1974), theclaim follows.The only remaining part we have to show is thattransforming � over H into its equivalent path-consistent form b� does not result in a set that containsrelations not in H. In order to show this we prove thatH is closed under converse, intersection, and composi-tion, i.e., H (together with these operations) de�nes asubalgebra of Allen's interval algebra.Theorem 6 H is closed under converse, intersection,and composition.Proof Sketch. The main problem is to show that thecomposition of two relations has an ORD-Horn form.We show that by proving that any minimal clause Cimplied by �(fXRY; Y SZg) is either ORD-Horn orthere exists a set of ORD-Horn clauses that are im-plied by �(fXRY; Y SZg) and imply C.From that it follows straightforwardly that ISAT(H)is decided by the path-consistency method.Theorem 7 If � is a set over H, then � is satis�ablei� (X?Y ) 62 b� for all intervals X;Y .4An enumeration of C and P is given by van Beek andCohen (1990).

The Borderline between Tractable andNP-complete SubclassesHaving identi�ed the tractable fragment H that con-tains the previously identi�ed tractable fragment Pand that is considerably larger than P is satisfyingin itself. However, such a result also raises the que-stion for the the boundary between polynomiality andNP-completeness in Allen's interval algebra.While the introduction of the algebraic structure onthe set of expressible interval relations may have seemto be only motivated by the particular approximationalgorithm employed, this structure is also useful whenwe explore the computational properties of restrictedproblems. For any arbitrary subset S � A, S shalldenote the closure of S under converse, intersection,and composition. In other words, S is the carrier ofthe least subalgebra generated by S. Apparently,it is possible to translate any set of interval formulas� over S into a set �0 over S in polynomial time in away such that I-satis�ability is preserved.Theorem 8 ISAT(S) can be polynomially transfor-med to ISAT(S).In other words, once we have proven that satis�a-bility is polynomial for some set S � A, this resultextends to the least subalgebra generated by S. Con-versely, NP-hardness for a subalgebra is \inherited" byall subsets that generate this subalgebra.It still takes some e�ort to prove that a given frag-ment S is a maximal tractable subclass of Allen's inter-val algebra. Firstly, one has to show that S = S. Forthe ORD-Horn subclass, this has been done in Theo-rem 6. Secondly, one has to show that ISAT(T ) is NP-complete for all minimal subalgebras T that strictlycontain S. This, however, means that these subal-gebras have to be identi�ed. Certainly, such a caseanalysis cannot be done manually. In fact, we used aprogram to identify the minimal subalgebras strictlycontaining H. An analysis of the clause form of therelations appearing in these subalgebras leads us toconsider the following two relations:N1 = fd; d^; o^; s^; fgN2 = fd^; o; o^; s^; f^g:One of these two relations can be found in all mini-mal subalgebras strictly containingH, as can be shownusing a machine-assisted case analysis.Lemma 9 Let S � A be any set of interval relationsthat strictly contains H. Then N1 or N2 is an elementof S.For reasons of simplicity, we will not use the ORDclause form in the following, but a clause form that alsocontains literals over the relations �; <;>. Then theclause form for the relations mentioned in the lemmacan be given as follows:�(X N1 Y ) = f (X� < X+); (Y � < Y +);(X� < Y +); (X+ > Y �);((X� > Y �) _ (X+ > Y +))g;4



�(X N2 Y ) = f (X� < X+); (Y � < Y +);(X� < Y +); (X+ > Y �);((X� < Y �) _ (X+ > Y +))g:We will show that each of these relations together withthe two relationsB1 = f�; d^; o;m; f^gB2 = f�; d; o;m; sg;which are elements of C, are enough for making the in-terval satis�ability problem NP-complete. The clauseform of these relations looks as follows:�(X B1 Y ) = f (X� < X+); (Y � < Y +);(X� < Y �); (X� < Y +)g�(X B2 Y ) = f (X� < X+); (Y � < Y +);(X+ < Y +); (X� < Y +)gLemma 10 ISAT(S) is NP-complete if1. N1 = fB1;B2;N1g � S, or2. N2 = fB1;B2;N2g � S.Proof Sketch. Since ISAT(A) 2 NP, membership inNP follows.For the NP-hardness part we will show that 3SATcan be polynomially transformed to ISAT(Nk). Wewill �rst prove the claim for N1. Let D = fCig bea set of clauses, where Ci = li;1 _ li;2 _ li;3 and theli;j 's are literal occurrences. We will construct a set ofinterval formulas � over N1 such that � is I-satis�ablei� D is satis�able.For each literal occurrence li;j a pair of intervalsXi;jand Yi;j is introduced, and the following �rst group ofinterval formulas is put into �:(Xi;j N1 Yi;j):This implies that �(�) contains among other thingsthe following clauses (X�i;j > Y �i;j _X+i;j > Y +i;j).Additionally, we add a second group of formulas foreach clause Ci:(Xi;2 B1 Yi;1); (Xi;3 B1 Yi;2); (Xi;1 B1 Yi;3);which leads to the inclusion of the clauses (Y �i;1 > X�i;2),(Y �i;2 > X�i;3), (Y �i;3 > X�i;1) in �(�).This construction leads to the situation that thereis no model of � that satis�es for given i all dis-juncts of the form (X�i;j > Y �i;j) in the clause formof �(Xi;jN1Yi;j). If the jth disjunct (X�i;j > Y �i;j) isunsatis�ed in an I-model of �, we will interpret thisas the satisfaction of the literal occurrence li;j in Ci ofD.In order to guarantee that if a literal occurrence li;jis interpreted as satis�ed, then all complementary lite-ral occurrences in D are interpreted as unsatis�ed, thefollowing third group of interval formulas for comple-mentary literal occurrences li;j and lg;h are added to�: (Xg;h B2 Yi;j); (Xi;j B2 Yg;h);

which leads to the inclusion of (Y +i;j > X+g;h), (Y +g;h >X+i;j). This construction guarantees that � is I-satis�able i� D is satis�able.The transformation for N2 is similar.Based on this result, it follows straightforwardly thatH is indeed a maximal tractable subclass of A.Theorem 11 If S strictly contains H, then ISAT(S)is NP-complete.The next question is whether there are other ma-ximal tractable subclasses that are incomparable withH. One example of an incomparable tractable subclassis U = ff�;�g;>g. Since f�;�g has no ORD-Hornclause form, this subclass is incomparable with H, andsince all sets of interval formulas over U are triviallysatis�able (by making all intervals disjoint), ISAT(U)can be decided in constant time. The subclass U is, ofcourse, not a very interesting fragment. Provided weare interested in temporal reasoning in the frameworkas described by Allen (1983), one necessary require-ment is that all basic relations are contained in the sub-class. A machine-assisted exploration of the space ofsubalgebras leads us to the followingmachine-veri�ablelemma.Lemma 12 If S is a subclass that contains the thir-teen basic relations, then S � H, or N1 or N2 is anelement of S.Using the fact that B1;B2 are elements of the leastsubalgebra generated by the set of basic relations andemploying Lemma 10 again, we obtain the quite sa-tisfying result that H is in fact the unique greatesttractable subclass amongst the subclasses containingall basic relations.Theorem 13 Let S be any subclass of A that containsall basic relations. Then either S � H and ISAT(S) ispolynomial or ISAT(S) is NP-complete.ConclusionWe have identi�ed a new tractable subclass of Al-len's interval algebra, which we call ORD-Horn sub-class and which contains the previously identi�ed con-tinuous endpoint and pointisable subclasses. Enumera-ting the ORD-Horn subclass reveals that this subclasscontains 868 elements out of 8192 elements in the fullalgebra, i.e., more than 10% of the full algebra. Com-paring this with the continuous endpoint subclass thatcovers approximately 1% and with the pointisable sub-class that covers 2%, our result is a clear improvementin quantitative terms.Furthermore, we showed that the \traditional" me-thod of reasoning in Allen's interval algebra, namely,the path-consistency method, is su�cient for decidingsatis�ability in the ORD-Horn subclass. In otherwords, our results indicate that the path-consistencymethod has a much larger range of applicability for5
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