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1 INTRODUCTION

DEPTH-FIRST search, abbreviated as DFS, is well-known to
be an important technique for designing sequential

algorithms on graphs [13]. One might expect that if the DFS
technique can be parallelized efficiently, a lot of sequential
graph algorithms can be done as well. Unfortunately, Reif
[10] proved that it seems very hard to check efficiently in
parallel whether a given order of vertices is equal to the
visiting sequence obtained by performing an ordered DFS
on a graph, and concluded that ordered DFS is inherently
sequential. By ªorderedº we mean that for each vertex u in
the DFS tree its children are visited in the same order as
they appear on the adjacency list of u. Reif's result is
pessimistic. Therefore, many researchers turned their
attention to other related topics. When the ordered
restriction is removed, some positive results can be derived.
Hagerup [5] proposed an O�logn� time parallel unordered
DFS algorithm on planar undirected graphs. Aggarwal et al.
[1] proposed a randomized NC algorithm for performing
unordered DFSs on general directed graphs. Opposite to the
construction of a DFS tree, Schevon and Vitter [11]
considered the problem of determining whether a given
spanning tree of a directed graph is an unordered DFS tree
of the graph. Schevon and Vitter showed that the problem
can be solved in O�log2 n� time.

In this paper, we study the problem of determining

whether a given spanning tree of an undirected graph is an

unordered DFS tree of the graph. We show that for an

undirected graph containing n vertices and m�� nÿ 1�
edges, its unordered DFS trees can be recognized in

O�m=p� logm� time using p processors on the EREW

PRAM.
The problem of verifying whether a given spanning tree

satisfies some specific properties is of theoretical interest.

Thus, the problem of recognizing various spanning trees
had been extensively studied in literatures. For example,
besides DFS trees, Manber [8] studied the problem of
recognizing breadth-first search trees, Tarjan [14] and
Chazelle [2] studied the problem of recognizing minimum
spanning trees, and Peng et al. [9] studied the problem of
recognizing shortest path trees.

An efficient algorithm for recognizing DFS trees has

several applications [7], [11]. For example, in [11], it was
mentioned that an efficient algorithm for recognizing DFS
trees can be used as a subroutine for an algorithm that
constructs a DFS tree by successively generating candidates
until a valid one is obtained. In [7], Korach and Ostfeld gave
two examples. Consider an undirected graph G in which no
two edges have the same weight. The first example in [7]
was to answer the following question: Is the unique
minimum spanning tree of G obtained by performing a
DFS in G? The second example, described in [7], is to solve a
certain task scheduling problem. The description of the
application is long and thus omitted here.

Besides being of theoretical interest, the recognition
problem of DFS trees is also of practical importance. In the
real world, a computation environment is not always
reliable. Thus, it is necessary to verify the outputs of a
DFS tree construction algorithm or to check the validness of
a DFS tree inputted into a procedure.

Consider that G � �V ;E� is an undirected graph com-
posed of jV j � n vertices and jEj � m�� nÿ 1� edges. An
unordered depth-first search tree, or abbreviated as unordered

DFS tree, of G is a rooted spanning tree of G output by
performing the following nondeterministic DFS algorithm.

Algorithm 1. (Unordered depth-first search)
Input: An undirected connected graph G.
Output: An unordered DFS tree T of G.

a. Select a vertex r as the starting point.
b. call DFS(r).

Procedure DFS(v)
1. Mark v as visited.
2. for each vertex w adjacent to v do

3. if w is not visited then mark (v; w) as an edge of T
and call DFS(w).
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The starting point selected in Step a is treated as the root
of the output DFS tree. Since Steps a and 2 are nondetermi-
nistic, there may be more than one unordered DFS tree. To
recognize an unordered DFS tree is to determine whether a
given spanning tree is a possible output of the above
unordered depth first search algorithm, and to decide the
visiting order. In fact, if T is known to be an unordered DFS
tree of graph G, the visiting order can be derived by
performing a preorder traversal on T using the algorithm
proposed by Chen, Das, and Akl in [3].

The nondeterminism of Steps a and 2 makes the
recognition problem more complicated. Suppose that these
two steps are deterministic, i.e., a specific vertex r is
designated as the root of T , and for each vertex v we
traverse the adjacent vertices of v following the order of the
prescribed adjacency list of it. Then, to check whether T is a
DFS tree or not can be simply done in linear time using the
common depth first search algorithm. Note that in case the
two steps are deterministic, the obtained DFS tree is
ordered. If only step 2 is nondeterministic and a specific
vertex r is designated as the root of T , we can verify easily
by using the famous property of DFS trees: T is a DFS tree if
and only if T has no cross edge [11]. In the case that both
Steps a and 2 are nondeterministic, a linear time sequential
algorithm for recognizing unordered DFS trees was
proposed by Korach and Ostfeld [7].

The recognition problem for the case of directed graphs
can be defined similarly. The recognition problem on
directed graphs are harder than that on undirected graphs,
because an undirected graph can be easily converted into a
directed one by replacing each undirected edge (v; w) with
two directed edges (v; w) and (w; v), and then can be solved
by using the algorithms for directed graphs. Schevon and
Vitter [11] showed that the recognition of unordered DFS
trees for directed graphs can be done in O�log2 n� time using
O�n2:376� processors on a CREW PRAM. In the directed case,
there is only one vertex of in-degree 0 in a directed
spanning tree T , and thus the root is always designated. In
this paper, we show that the recognition for undirected
graphs without a designated root can be done in O�m=p�
logm� parallel time using p processors on the EREW PRAM.
The major technique utilized in our algorithms is the Euler-
tour technique [12], [15], [16], which is well-known to be a
good paradigm for designing efficient parallel algorithms
on trees.

The remainder of this paper is organized as follows: In
Section 2, a necessary and sufficient condition for recogniz-
ing unordered DFS trees is given. In Section 3, we present a
linear time sequential recognition algorithm. In Section 4, by
parallelizing the sequential algorithm proposed in Section 3,
an efficient parallel solution is presented on the EREW
PRAM. Finally, in Section 5, we conclude this paper.

2 A NECESSARY AND SUFFICIENT CONDITION FOR

RECOGNIZING DFS TREES

Let G � �V ;E� be an undirected graph composed of
jV j � n vertices and jEj � m edges, and T be a spanning
tree of G. The edges of T are called tree edges, and the edges
of E ÿ T are called nontree edges. A tree path is a simple path

going along only tree edges. Since the tree path connecting

any two vertices v and w is unique, it can be unambiguously

denoted as treepath�v; w�. Note that the given spanning tree

T is a free tree, that is, no root is designated. When a root r

is assigned for T , the spanning tree will be denoted as T�r�
instead.

If a rooted spanning tree T�r� is given, the recognition

problem will become simple. In such a case, all nontree

edges can be classified into two classes: cross edges and

back edges. A nontree edge (v; w) is called a cross edge if v

and w are not ancestors of each other; otherwise, it is called

a back edge. It is well-known that T�r� is a DFS tree of G if and

only if there is no cross edge, or equivalently, all nontree

edges are back edges [11]. For example, consider the tree T

and the graph G depicted in Fig. 1. If we select v1 as the

root, T�v1� is not a DFS tree, since it has two cross edges:

(v2; v4) and (v2; v5). On the other hand, if we select v2 as the

root, T�v2� is a DFS tree, since it has no cross edge. Thus, to

recognize a DFS tree T�r� can be done with the following

procedure.

1. Use Chen, Das, and Akl's algorithm in [3] to
determine the preorder number pre�v� and the
postorder number post�v� for every vertex v 2 T�r�
in O�n=p� logn� time using p processors on the
EREW PRAM.

2. Check whether all nontree edges are back edges.
Given two vertices v and w in T�r�, to check whether v
is an ancestor of w is equivalent to verifying whether
pre�v� < pre�w� and post�v� > post�w� [6], which can
be done in O�1� time using a single processor. Thus,
this step can be easily implemented in O�m=p�
logm� time using p processors on the EREW PRAM.

The total time complexity of the above procedure is

O�m=p� logm�.
In our problem, the root of the given spanning tree T is

not designated. Since any vertex v of T could be the root

such that T�v� is a DFS tree, it is necessary to check for every

vertex v whether all nontree edges are back edges with

respect to T�v�. Such a vertex v is called a candidate root of T .

The tree T is a DFS tree if and only if there exists a

candidate root. Thus, the main job of our recognition

problem is to determine if there exists a candidate root.
We should be aware of that the terms ªcross edgeª and

ªback edgeª are meaningful only for a rooted tree. A

nontree edge may be a cross edge with respect to some root,

but a back edge with respect to another root. For example,
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in Fig. 1, the nontree edge (v2; v5) is a cross edge with
respect to T�v1�, but a back edge with respect to T�v2�.

For each nontree edge e 2 E ÿ T , we define CROSS�e�
as the set of vertices v in V such that e is a cross edge with

respect to T�v�. Similarly, for each nontree edge e 2 E ÿ T ,

we define BACK�e� as the set of vertices v in V such that e

is a back edge with respect to T�v�. Note that for each

nontree edge e 2 E ÿ T , CROSS�e� \BACK�e� � ; and

CROSS�e� [BACK�e� � V .
We have the following theorem.

Theorem 1. T is an unordered DFT tree of G if and only if

V ÿSe2EÿT CROSS�e� is not an empty set.

Proof. Suppose V ÿSe2EÿT CROSS�e� is not empty. Let s
be a vertex in V ÿSe2EÿT CROSS�e�. For each nontree

edge e 2 E ÿ T , s is not in CROSS�e�. Therefore, by
definition, all nontree edges in E ÿ T are back edges

with respect to T�s�. Consequently, T�s� is a DFS tree, and
thus, T is a DFS tree of G. The if-part of this theorem is

established.
Now, suppose that T is a DFS tree of G. Recall that T

is a DFS tree of G if and only if there is a vertex v 2 V
such that T�v� has no cross edge. Let s be a vertex in V
such that T�s� has no cross edge. Since T�s� has no cross
edge, s is not in CROSS�e� for every nontree edge
e 2 E ÿ T . Thus, s is in V ÿSe2EÿT CROSS�e� Therefore,
V ÿSe2EÿT CROSS�e� is not empty. The only-if part of
this theorem is established. tu

Theorem 1 is a necessary and sufficient condition for

recognizing DFS trees. According to it, our recognition

problem becomes the problem of determining whether V ÿS
e2EÿT CROSS�e� is empty. In case V ÿSe2EÿT CROSS�e�

is not empty, T is a DFS tree of G and each vertex v in

V ÿSe2EÿT CROSS�e� is a candidate root of T .
The above discussion provides the base of our recogni-

tion algorithms. Later, in this section, we will give some

properties which are helpful for determining CROSS�e� for

a given nontree edge e. To speedup the computation of

V ÿSe2EÿT CROSS�e�, we need an efficient way to

represent the set V such that we can remove each set

CROSS�e� easily. In our algorithms, we will use an Euler

tour of T to represent the set V . Using this representation, as

we will show in Section 3, each CROSS�e� can be removed

from V by performing a constant number of weight

assignments together with a prefix sum computation.

Furthermore, the removal of
S
e2EÿT CROSS�e� can be

done efficiently by performing O�n� weight assignments

and a prefix sum computation. Section 3 will define Euler

tours and give a sequential implementation of the above

idea in detail. Most steps of the sequential algorithm

proposed in Section 3 are easily parallelized. However, a

straightforward parallel implementation will result in write

conflicts. Section 4 will provide some noble tricks to avoid

write conflicts and describe our parallel implementation.
First, in the remainder of this section, we give some

properties which are helpful for determining CROSS�e�
and BACK�e� for any nontree edge e.

Lemma 1. Let e � �v; w� be a nontree edge in E ÿ T
a n d treepath�v; w� � �v; u1; . . . ; uk; w�; k > 0. T h e n ,
CROSS�e� � V ÿ �Sv [ Sw� a n d BACK�e� � Sv [ Sw,
where Sv and Sw denote, respectively, the subtree of T
attached to u1 via the edge �v; u1� and the subtree of T attached
to uk via the edge �w; uk�.

Proof. Removing all edges in treepath�v; w� from T;

k� 2 disjoint subtrees can be obtained. Denote

Sv; S1; S2; . . . ; Sk; and Sw as the obtained subtrees

containing v; u1; u2; . . . ; uk, and w, respectively, as shown

in Fig. 2. Consider any vertex x in Si; 1 � i � k. If x is

the root of T , the edge �v; w� is a cross edge. Thus, all

vertices in Si; 1 � i � k, are in CROSS�e�. On the other

hand, consider any vertex x in Sv and Sw. If x is the

root of T , the edge (v; w) is a back edge. Thus,

CROSS�e� � S1�i�k Si and BACK�e� � Sv [ Sw. SinceS
1�i�k Si � V ÿ �Sv [ Sw�, the lemma holds. tu

In the algorithms we shall propose in the next two
sections, we will choose an arbitrary vertex r 2 V and then
orient T into a rooted tree T�r�. In the rooted tree T�r�, a
nontree edge e � �v; w� is either a cross edge or a back edge,
as shown in Fig. 3a and 3b, respectively. Suppose e is a cross
edge in T�r�, as shown in Fig. 3a. In this case, treepath�v; w�
is the conjunction of the tree path from v up to lca�v; w� and
the tree path from w up to lca�v; w�, where lca�v; w� denotes
the lowest common ancestor of v and w. By comparing
Fig. 3a with Fig. 2, we obtain the following corollary from
Lemma 1 immediately .

Corollary 1. Let e � �v; w� be a cross edge with respect to T�r�.
Then, CROSS�e� � V ÿ �Xv [Xw� and

BACK�e� � Xv [Xw;

where Xv and Xw denote the two subtrees in T�r� rooted at v
and w, respectively.

On the other hand, suppose e is a back edge in T�r�, as
shown in Fig. 3b. Without loss of generality, assume v is an
ancestor of w. In this case, treepath�v; w� can be traced by
starting from w up to v directly. We define child�v; w� as the
child of v on treepath�v; w�. By comparing Fig. 3b with
Fig. 2, we obtain the following corollary from Lemma 1
immediately.
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Corollary 2. Let e � �v; w� be a back edge with respect to T�r� and

v be an ancestor of w. Then, CROSS�e� � Xchild�v;w� ÿ
Xw and BACK�e� � V ÿ �Xchild�v; w� ÿXw�, whe re

Xchild�v; w� and Xw denote the two subtrees in T�r� rooted

at child�v; w� and w, respectively.

3 A SEQUENTIAL RECOGNITION ALGORITHM

In this section, we shall explain the motivation why we

apply the Euler-tour technique to our problem, and give a

sequential algorithm to validate the correctness of our

strategy. Most steps in our sequential algorithm can be

easily parallelized.
Let G � �V ;E� be an undirected graph and T be an

spanning tree of G. Based upon Theorem 1 and Corollaries 1

and 2, we can recognize whether T is a DFS tree as follows.

First, we choose an arbitrary vertex r in V and orient T into

a rooted tree T�r�. Second, we compute the set U �
V ÿSe2EÿT CROSS�e� by initially setting U � V and then

pruning away from U the vertices in CROSS�e� for every

nontree edge e 2 E ÿ T . During the computation of U , each

set CROSS�e� is determined by Corollaries 1 and 2. Finally,

by Theorem 1, we determine whether T is a DFS tree of G

by checking whether U is not empty. Clearly, the correct-

ness of the above recognition procedure is ensured by

Theorem 1 and Corollaries 1 and 2.

For example, consider the tree T and the graph G

depicted in Fig. 4. Assume that v4 is chosen as the root of T .

Initially, set U � fv1; v2; . . . ; v6g. There are three nontree

edges, i.e., �v2; v4�, �v2; v5�, and �v3; v5�. According to

Corollary 2, vertices v1 and v3 are pruned away from U

for the nontree edge �v2; v4�, since they are in the subtree

rooted at v3�� child�v4; v2�� but not in the subtree rooted at

v2. According to Corollary 1, vertices v1; v3; v4, and v6

are pruned away from U for the nontree edge �v2; v5�, since

they are not in the two subtrees rooted at v2 and v5,

respectively. Similarly, vertices v4 and v6 are pruned away

from U for the nontree edge �v3; v5�, since they are not in
the subtrees rooted at v3 and v5, respectively. After the

pruning, only two vertices v2 and v5 remain in U . Thus,

U � V ÿSe2EÿT CROSS�e� � v2; v5. Since U is not empty,

by Theorem 1 T is a DFS tree of G, and v2 and v5 are

candidate roots.
It is obvious that to perform Corollaries 1 and 2

efficiently, we should be able to check whether a vertex is

inside the subtree rooted at another vertex. By virtue of this,
Euler tours will be very helpful.

For a rooted tree T�r�, an Euler tour is a directed path
starting and ending at r and traversing each tree edge

forward and backward exactly once. An Euler tour for the

rooted tree T�v4� depicted in Fig. 4 is

v4 ! v3 ! v1 ! v2 ! v1 ! v3 ! v4 ! v5 ! v4 ! v6 ! v4:

To construct such an Euler tour, we simply apply a depth-

first search on the given tree T�r�, and record the sequence of

visited edges. An Euler tour is usually represented by a

sequence of vertices interlaced with arrow signs.
Because of the definition of an Euler tour, the informa-

tion about all subtrees of T�r� is stored in its Euler tour.

Consider the above example again. We can see the
following, for instance.

1. The entire sequence corresponds to the whole tree
T�v4�.

2. The subtree rooted at v3 corresponds to the
subsequence enclosed by the two occurrences of v3,
which is

v3 ! v1 ! v2 ! v1 ! v3:
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In general, the subtree rooted at a vertex in T�r�
corresponds to the subsequence enclosed by the first and
the last occurrences of the vertex in the Euler tour. If a
vertex is a leaf in T�r�, then it occurs in the Euler tour exactly
once and its subtree is this vertex itself.

With the above property in mind, Corollaries 1 and 2 can
be easily implemented by using Euler tours.

From the above discussion, whether T is a DFS tree of G
can be recognized using the following steps.

0. Select an arbitrary vertex r and orient T into a rooted
tree T�r�.

1. Construct an Euler tour U of T�r�. Note that the set of
vertices in U is equal to V .

2. For every cross edge e � �v; w� with respect to T�r�, prune
away from U the vertices outside the two subsequences
corresponding to the two subtrees rooted at v and w,
respectively.

3. For every back edge e � �v; w� with respect to T�r�,
assuming v is an ancestor of w, we first find child�v; w�,
and then prune away from U the vertices that corre-
spond to the subtree rooted at child�v; w�, except the
vertices that correspond to the subtree rooted at w.

4. Output the vertices remaining in U as candidate roots.

Since there may be O�n� vertices to be pruned for every
nontree edge and there are O�m� nontree edges, a
straightforward implementation will take O�mn� time. To
reduce the time complexity, the vertex-pruning procedure
will be implemented by a prefix sum computation along the
Euler tour.

Consider that a subsequence of vertices from vi to vj
should be pruned away. We assign ª�1º to the directed
edge before vi, ªÿ1º to the directed edge after vj, and 0 to all
other directed edges and vertices. After a prefix sum
operation is performed, the prefix sums of the vertices in
this subsequence are 1, and the prefix sums of other vertices
are 0, which is illustrated as follows.

� � � ! viÿ1!�1
vi ! vi�1 ! � � � ! vjÿ1 ! vj!ÿ1

vj�1 ! � � �
� � � 0 1 1 � � � 1 1 0 � � � :

Apparently, every vertex with a prefix sum greater than
0 should be pruned away. If there are two or more
subsequences to be pruned away, we can also assign
ª�1ª and ªÿ1ª, respectively, to the beginning and end of
each subsequence. For instance, see the following diagram.
If the subsequence of vertices from vi to vk should be
pruned, we assign ª�1ª to the directed edge before vi and
ª-1ª to the one after vk. If there is another subsequence of
vertices from vj to vs to be pruned, ª+1ª and ª-1ª will be
assigned to the directed edges before vj and after vs,
respectively. For all the other directed edges and vertices,
we assign ª0ª. After a prefix sum operation is performed,
the vertices with prefix sums greater than 0 are pruned
away.

���!viÿ1!�1
vi!���!vjÿ1!�1

vj���!vk!ÿ1
vk�1!���!vs!ÿ1

vs�1!���
��� 0 1 ��� 1 2 ��� 2 1 ��� 1 0 ���:

We know that there may be O�n� vertices to be pruned
for a nontree edge. However, according to Corollaries 1 and
2, the vertices to be pruned will be contained in only two or
three subsequences in an Euler tour. Since two nonzero
weight assignments are sufficient for each subsequence, the
total number of nonzero weight assignments is O�m�. The
prefix sum operation is performed just one time after all
weights have been assigned. Therefore, we can reduce the
total time to O�m� n�.

In our problem, no root is designated for the given
spanning tree T in advance. However, in order to apply
Corollaries 1 and 2 and the Euler-tour technique, we will
arbitrarily select a vertex r as the root of T . After r is
selected, all nontree edges will be classified as cross edges
and back edges with respect to T�r�. Note that a nontree
edge may be classified as a different type if a different root
is selected. However, the final result will be the same no
matter what vertex r is chosen.

Let U be an Euler tour of T�r�. If we want to prune away
from U a subsequence starting from a vertex s, we need to
assign ª�1ª to the directed edge before s. In case that s is
the first vertex in U , there is no directed edge before s.
Notice that the first vertex in U is an occurrence of r. To
avoid such ambiguity, in the remainder of this section, we
assume that there is a virtual directed edge ��! r� preceding
the first vertex in U .

Our algorithm is composed of two stages. At stage one,
for all nontree edges, we add weights to the corresponding
directed edges on the Euler tour. According to Corollaries 1
and 2, the weights will be assigned by two different rules
for the cross edges and the back edges, respectively. At
stage two, we compute the prefix sums of these assigned
weights along the Euler tour. Finally, all vertices associated
with nonzero prefix sums are pruned away. The remaining
vertices are candidate roots.

Let us consider the case of cross edges with respect to
T�r�. This is illustrated in Fig. 5. Suppose that �v; w� is a cross
edge with respect to T�r�. Recall that by Corollary 1, all
vertices outside the two subtrees rooted at v and w,
respectively, should be pruned away. Let p�v� and p�w�
denote the parent vertices of v and w, respectively. We shall
assign weights to the corresponding directed edges on the
Euler tour by the following rule.

Rule 1. Weight assignments for a cross edge (v, w).

a. Assign ÿ1 to the edges �p�v� ! v� and �p�w� ! w�,
i.e., the edges where the Euler tour enters into the
subtrees rooted at v and w, respectively.

b. Assign �1 to the edges v! p�v�) and (w! p�w�),
i.e., the edges where the Euler tour exits from the
subtrees rooted at v and w, respectively.

c. Assign �1 to the edge (� ! r).
d. Assign 0 to all other vertices and directed edges.

Lemma 2. Let e � �v; w� be a cross edge with respect to T�r�. Let
s be a vertex in the Euler tour. After the weights are assigned
according to Rule 1 and a prefix sum operation is performed,
the prefix sum of s is 1 if s 2 CROSS�e�, and is 0 otherwise.

Proof. Let Xv and Xw denote the two subtrees of T�r� rooted
at v and w, respectively. Let Sv and Sw denote the
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subsequences in the Euler tour corresponding to Xv and

Xw, respectively. From Fig. 5, it can be observed that

after assigning weights according to Rule 1 the prefix

sum of s is 0 if s is in Sv or Sw, and is 1 otherwise. The

whole Euler tour, Sv, and Sw correspond to T�r�, Xv, and

Xw, respectively. Thus, we can easily conclude that after

the weight assignments the prefix sum of s is 0 if

s 2 �Xv [Xw�, and is 1 if s 2 �V ÿ �Xv [Xw��. Since by

Corollary 1 CROSS�e� � V ÿ �Xv [Xw�, the lemma

holds. tu

For all back edges with respect to T�r�, we shall assign

weights properly such that a vertex is to be pruned away if

its prefix sum is greater than 0. Suppose that �v; w� is a back

edge with respect to T�r�. Without loss of generality, we

assume that v is an ancestor of w. This is illustrated in Fig. 6.

Recall that by Corollary 2, all vertices in the subtree rooted

at child�v; w� but not in the subtree rooted at w should be

pruned away. Let p�w� denote the parent vertex of w. We

shall assign weights to the corresponding directed edges on

the Euler tour by the following rule.
Rule 2. Weight assignments for a back edge �v; w�, where

v is an ancestor of w.
a. The edge �v! child�v; w��, where the Euler tour enters

into the subtree rooted at child�v; w�, is assigned �1.

b. The edge �child�v1; w� ! v1�, where the Euler tour

exits from the subtree rooted at child�v1; w�, is assigned ÿ1.
c. The edge �p�w� ! w�, where the Euler tour enters into

the subtree rooted at w, is assigned ÿ1.
d. The edge �w! p�w��, where the Euler tour exits from

the subtree rooted at w, is assigned �1.
e. Assign 0 to all other vertices and directed edges.

Lemma 3. Let e � �v; w� be a back edge with respect to T�r�. Let s

be a vertex in the Euler tour. After the weights are assigned

according to Rule 2 and a prefix sum operation is performed,

the prefix sum of s is 1 if s 2 CROSS�e�, and is 0 otherwise.

Proof. Similar to Lemma 2. tu

For each nontree edge e, to prune away CROSS�e�, we

need to apply either Rule 1 or Rule 2 once and then to

perform a prefix sum operation. There are O�m� nontree

edges. Thus, if we perform a prefix sum operation for each

of them, the resulting time complexity will be O�mn�. To

save time, we can prune away CROSS�e� for every nontree

edge e by performing only one prefix sum operation as

follows. First, we apply Rules 1 and 2 for all nontree edges

simultaneously and accumulate the assigned weights for

each directed edge and vertex in the Euler tour. Then, a

prefix sum operation along the Euler tour is performed.

564 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 6, JUNE 2000

Fig. 5. The weight assignment for a cross edge �v; w�.



For each vertex s, we define the pruning level of it,
denoted by pl�s�, as the number of nontree edges �v; w� that
are cross edges with respect to T�s�. By definition, a vertex s
is a candidate root if and only if its pruning level is 0; in
other words, a vertex s should be pruned away if and only
if pl�s� > 0. We have the following lemma.

Lemma 4. For each vertex s in the Euler tour, its pruning level
pl�s� is equal to its prefix sum after applying Rules 1 and 2 for
all nontree edges and then performing a prefix sum operation.

Proof. Let s be a vertex in the Euler tour. The resulting
prefix sum of s is equal to

�d is a directed edge before s �the total weight assigned to d�
��d is a directed edge before s �e is a nontree edge

ÿ
�the weight assigned to d for e��

��e is a nontree edge �d is a directed edge before s

ÿ
�the weight assigned to d for e��

��e is a nontree edge the prefix sum of s after weight�
assignments for e�;

which, by Lemmas 2 and 3, is equal to

�e2EÿT and s 2 CROSS�e�1� �e2EÿT and s =2 CROSS�e�0

� jfeje 2 E ÿ T and e is a cross edge in T �s�gj:
The lemma holds. tu
Now, we are ready to discuss our sequential recognition

algorithm. At first, an Euler tour of T is built by using a

depth first search on T�r�. We use an array W � � to store the

accumulated weights for all directed edges of this Euler

tour. Until all weights have been assigned, a prefix sum

operation is performed. Finally, all vertices to be pruned are

marked, and the remaining vertices are outputted as

candidate roots. (Note that p�v� denotes the parent vertex

of v.)

Algorithm 2 (Recognizing depth-first search trees in
sequential)
Input: An undirected graph G and a spanning tree T

of G.
Output: All candidate roots, if T is an unordered DFS tree of

G; otherwise, return none.

0. Arbitrarily select a vertex, say r, as the root of T .
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1. Construct an Euler tour of T by using a depth first
search on T�r�. Then, add a new edge ��! r� to the
beginning of the Euler tour.

2. Compute the following values for each vertex v:
pre�v� � the preorder number of v,
post�v� � the postorder number of v, and
level�v� � the level of v in T�r�.

3. /� Stage 1 : Weight assignments for nontree edges. �/
(a) Set W ��x! y�� as 0, for all directed edges
�x! y�s of the Euler tour.

(b) for each cross edge �v; w� do

Add ÿ1 to W ��p�v� ! v1�� and W ��p�w� ! w��
/� Rule 1a �/

Add �1 to W ��v! p�v��� and W ��w! p�w���
/� Rule 1b �/

Add �1 to W ���! r��
/� Rule 1c �/

endfor

(c) for each back edge �v; w� do /� Let v be an
ancestor of w. �/

Add �1 to W ��v! child�v; w��� /� Rule 2a �/
Add -1 to W ��child�v; w� ! v�� /� Rule 2b �/
Add ÿ1 to W ��p�w� ! w�� /� Rule 2c �/
Add �1 to W ��w! p�w��� /� Rule 2d �/

endfor

4. /� Stage 2 : Perform a prefix sum operation and prune
away vertices with prefix sums larger
than 0 �/

PS  0

for each edge �x! s� along the Euler tour do

PS  PS �W ��x! s��
if PS > 0 then mark s

/� Note that since the total weights assigned to a
vertex s is 0, the prefix sum of s is equal to that of
�x! s�.�/

endfor

5. for each vertex s do

if s is not marked then output s as a candidate
root.

endfor

Note that in Step 3(c), the values of child�v; w�s are used.

Clearly, these values can be easily determined in O�n� time

by scanning T�r� in depth-first order maintaining the path

from the root r to the current vertex in a vector.

Theorem 2. Let T be a given spanning tree of an undirected

graph G. Algorithm 2 reports all candidate roots of T , if T is

an unordered DFS tree of G; otherwise, no candidate root is

reported.

Proof. According to Lemma 4, Algorithm 2 indeed counts

the times that each vertex is pruned for nontree edges.

That is, Algorithm 2 computes the pruning level pl�s� for

every vertex s. According to the definition of pruning

levels, a vertex s is a candidate root of T if and only if

pl�s� � 0. Thus, a vertex s is not marked in Step 4 if and

only if it is a candidate root. This ensures the correctness

of Algorithm 2. The theorem holds. tu

4 A PARALLEL RECOGNITION ALGORITHM

In this section, we shall present a parallel algorithm to
recognize unordered depth-first search trees. As mentioned

before, our algorithm is based on the Euler-tour technique
[12], [15], [16]. The Euler-tour technique works as follows:

1. Convert all of the tree edges in the given tree T into
an Euler tour.

2. Assign proper weights to tree edges according to the
problem to be solved.

3. Apply a list-ranking algorithm to evaluate the prefix
sums of these weights along the Euler tour.

The Euler-tour technique [6] is a good paradigm of

designing parallel algorithms for trees. The most complex
step in the Euler-tour technique is to perform a list-ranking
algorithm. Fortunately, Cole and Vishkin [4] showed that

the list-ranking problem can be solved optimally in O�n=p�
logn� time using p processors on the EREW PRAM.

Most steps in Algorithm 2 can be easily parallelized on

the EREW PRAM. Recall that Chen, Das, and Akl had
showed that the values of pre�v�, post�v�, and level�v� can be
computed in O�n=p� logn� time [3]. The only exception is

the weight assignments performed in Step 3. The weights
are assigned according to Rules 1 and 2. The difficulty for
parallelizing Step 3 is that the concurrent execution of

Rules 1 and 2 for all nontree edges may introduce write
conflicts on edges of the Euler tour. In order to avoid the
write conflicts, we scan the nontree edges adjacent to a

vertex to determine the total weights to be assigned, and
then write the total weights to the corresponding edges of
the Euler tour. Under such a scenario, we rewrite the

statements of Step 3 of Algorithm 2 as follows:

Procedure STEP3 (An alternative way for weight
assignments.)

(a) Set W ��x! y��  0 for all directed edges �x! y�s of
the Euler tour.

(b) /� Weight assignments for cross edges. �/
(1) for each vertex w 6� r do

kw  the number of cross edges adjacent to w.
Add ÿkw to W ��p�w� ! w��. /� Rule 1a �/
Add �kw to W ��w! p�w���. /� Rule 1b �/

endfor

(2) k the number of cross edges with respect to T�r�.
Add �k to W ���! r��. /� Rule 1c �/

(c) /� Weight assignments for back edges. �/
(1) for each vertex u 6� r do

ku  the number of back edges �p�u�; w� such
that p�u� is an ancestor of w.

Add �ku to W ��p�u� ! u�� /� Rule 2a �/
Add -ku to W ��u! p�u��� /� Rule 2b �/

endfor

(2) for each vertex w do

kw  the number of back edges �v; w� such
that (v is an ancestor of w. Add ÿkw to
W ��p�w� ! w��. /� Rule 2c �/

Add �kw to W ��w! p�w���. /� Rule 2d �/
endfor
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We assume that for each nontree edge �v; w�, both the

adjacent lists of v and w have its own data about �v; w�, so

that all adjacent lists are disjoint and the generalized list-

ranking algorithm [4] can be applied to count the cross

edges or back edges adjacent to each vertex. Thus, Steps

(b)(1) and (c)(2) of the above procedure can be implemented

in O�m=p� logm� time. Clearly, Step (b)(2) of Procedure

STEP3 takes O�m=p� logm� time. Therefore, except

Step (c)(1), all steps of Procedure STEP3 can be performed

efficiently in O�m=p� logm� time.
In the following, we discuss the implementation of

Step (c)(1). We note that the purpose of Step (c)(1) is to

assign weights for back edges according to Rules 2a and 2b.
For the convenience of usage, we define the following

terms. A back edge �v; w� is said to pass over a tree edge

�p�u�; u�, if �p�u�; u� is on treepath�v; w�. Let po�u� be the

number of back edges �v; w� passing over �p�u�; u�, and

po1�u� be the number of back edges �p�u�; w� passing over

�p�u�; u�. Note that the back edges counted in po1�u� should

connect to the parent vertex of u. Furthermore, by

definition, we have that po1�u� � po�u�.
Consider the example in Fig. 7. The back edge �v1; w1�

passes over �v1; v�; �v; u1�; and so on. There are two back

edges �v1; w1� and �v; w2� passing over �v; u1�, but only

�v; w2� connects to p�u1�. Thus, we have po�u1� � 2 and

po1�u1� � 1. Similarly, we have po�u2� � po1�u2� � 0 and

po�u3� � po1�u3� � 1.

Lemma 5. The total weight assigned to �p�u� ! u� according to

Rule 2a is �po1�u�; and, the total weight assigned to �u!
p�u�� according to Rule 2b is ÿpo1�u�.

Proof. By the definition of po1�u�, this lemma holds if we can

show that for each back edge �p�u� ! w� passing over

�p�u� ! u�; �p�u� ! u� is assigned �1 according to

Rule 2a, and �u! p�u�� is assigned ÿ1 according to

Rule 2b.
Let v be the parent vertex of u, i.e., p�u�. For a back

edge �v! w� passing over the tree edge �v! u�, w must
be a descendant of u and child�v; w� � u. Thus, �v!
child�v1; w�� � �p�u� ! u� is assigned �1 according to
Rule 2a, and �child�v; w� ! v� � �u! p�u�� is assigned
ÿ1 according to Rule 2b. tu

Using Lemma 5, the weight assignments in Step (c)(1) of

Procedure STEP3 can be rewritten as the follows.

(c) (1) for each vertex u 6� r do

ku ! po1�u�.
Add �ku to W ��p�u� ! u�� /� Rule 2a �/
Add ÿku to W ��u! p�u��� /� Rule 2b �/

endfor

Now, the remaining problem is to compute po1�u� for

every vertex u. Let fv be the number of back edges �v;w�
such that v is an ancestor of w. Clearly, we have the

following lemma.

Lemma 6. Let v be a vertex in T�r� and u1; u2; . . . ; ud be the child

vertices of v. The value of fv is equal to the sum of po1�ui�s,

i � 1; 2; . . . ; d.

In our algorithm, the value of po1�u� is estimated by po�u�,
which can be computed much more easily than po1�u�. We

need the following computations.

1. Compute the values of fvs, which are the number of
back edges �v; w�s such that v is an ancestor of w.

As mentioned above, using Cole and Vishkin's

list-ranking algorithm, the number of back edges

adjacent to each vertex v can be easily computed.

Thus, the values of fvs can be computed in O�m=p�
logm� time.

2. Compute the values of po�u�s. Using the Euler-tour
technique, the values of po�u�s can be computed in
O�m=p� logm� time as follows. As shown in Fig. 8,
for each back edge �v; w� such that v is an ancestor of
w, we assign ÿ1 to �v! p�v�� and �1 to �w! p�w��.
And then, prefix sums of these weights along the
Euler tour are computed. For any tree edge �p�u�; u�
on treepath�v; w�, the weight assignments for the
back edge �v; w� make the prefix sums of its
corresponding directed edges �p�u� ! u� and �u!
p�u�� differ by 1. For other tree edges, which are not
on treepath�v; w�, the weight assignments for the
back edge �v; w� do not have any effect on the
difference between the prefix sums of their corre-
sponding directed edges. Thus, the difference
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between the prefix sums of �p�u� ! u� and �u!
p�u�� are equal to the number of back edges passing
over the edge �p�u�; u�. Therefore, after the prefix
computation, we can compute po�u� as the difference
between the prefix sums of �p�u� ! u� and
�u! p�u��.

3. Determine whether po�u� is equal to po1�u�. By
definition, we have po1�u� � po�u�, and the equality
holds if and only if all back edges passing over
�p�u� ! u� are adjacent to p�u�. Using the Euler-tour
technique, we can determine whether po�u� � po1�u�
for each vertex u in O�m=p� logm� time as follows.
First, as shown in Fig. 9, we assign ÿlevel�v� to �v!
p�v�� and �level�v� to �w! p�w��, for each back edge
�v; w�, where v is an ancestor of w. Then, prefix sums
of these weights along the Euler tour are computed.
And then, we compute the difference between the
prefix sums of �p�u� ! u� and �u! p�u�� for each
vertex u. Denote the difference as differ�u�. Recall
that po�u� � po1�u� if and only if all back edges
passing over �p�u�; u� connect to p�u�. Thus, accord-
ing to the weight assignments, if po�u� � po1�u�, we
have differ�u� � po�u� � level�p�u��. On the other
hand, when po1�u� < po�u�, there are back edges
passing over �p�u�; u�, but connecting to higher
vertices, and thus, the value differ�u� should be
smaller than po�u� � level�p�u��, since they are
assigned smaller level�v�. Therefore, after the prefix
computation, we can easily determine whether po�u�
is equal to po1�u� by determining whether differ�u�
is equal to po�u� � level�p�u��.

Now, we are ready to determine the values of po1�u�s.

Assume that the three computations mentioned above have

already been done. Consider a vertex v and its child vertices

u1; u2; . . . ; and ud. In the following, we show how to

determine the values of po1�ui�s. Let qv be the number of uis

with po1�ui� < po�ui�. Note that since whether po�ui� � po1�ui�
has been determined for each i, we can compute the value

of qv easily. Three cases are to be discussed: 1) qv � 0,

2) qv � 1, and 3) qv > 1. Suppose that case 1 is true. In this

case, we have po�ui� � po1�ui� for all i � 1; 2; . . . ; d. Since the

values of po�ui�s have been computed, each po1�ui� can be

determined in O�1� sequential time easily. Suppose that

case 2 is true. Let uk be the unique vertex with

po1�uk� < po�uk�. In this case, we can compute po1�ui� as

po�ui� for each i 6� k. And then, by Lemma 6, we can

compute po1�uk� as fv ÿ �1�i�d and i 6�kpo1�ui�. Clearly, the

above computation takes O�m=p� logm� time.
Next, let us suppose that case 3 is true. So far, for this

case, the authors have not found an efficient way to
determine the values of po1�ui�s. But, fortunately, as we
shall show in the following, in this case �qv > 1�, the exact
values of po1�ui�s are unnecessary in our recognition
algorithm. Let uk be a vertex with po1�uk� < po�uk�. Since
po1�uk� < po�uk�, there must be a back edge �v0; w0� passing
over �v; uk�, where v0 6� v and v0 is an ancestor of v.
According to Corollary 2, all vertices in the subtrees rooted
at uis, where 1 � i � k and i 6� k, should be pruned away
for the back edge �v0; w0�. Let ul be another vertex with
po1�ul� < po�ul�; l 6� k. Similarly, since po1�ul� < po�ul�, all
vert ices in the subtrees rooted at uis , where
1 � i � k and i 6� l, should be pruned away for some back
edge �v00; w00�. Consequently, in this case, we can conclude
that all vertices in the subtrees rooted at uis, i � 1; 2; . . . ; d,
should be pruned away. For example, consider Fig. 10. In
this example, since po1�u1� < po�u1� and po1�u3� < po�u3�, we
have qv � 2. By Corollary 2, the back edge �v1; w2� will
prune away the two subtrees rooted at u2 and u3,
respectively, and the back edge �v2; w1� will prune away
the two subtrees rooted at u1 and u2, respectively. There-
fore, all the subtrees rooted at u1, u2, and u3 will be pruned
away for the two back edges �v1; w2� and �v2; w1�.

According to Corollary 2, all the vertices pruned away
for back edges �v; w� such that v is an ancestor of w are
contained in the subtrees rooted at uis. Thus, in case 3,
ignoring the weight assignments for all back edges �v;w�
will not produce an incorrect set of candidate roots, because
all the subtrees rooted at uis should be pruned away by
other back edges.
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On the basis of the above discussion, we modify Step (c)
of Procedure STEP3 as follows.

(c) /� Weight assignments for back edges. �/
(0) for each vertex v do

fv  the number of back edges �v; w� such that
v is an ancestor of w

po�v�  the number of back edges passing
over

the tree edge �v; p�v��
Determine whether po1�v� is equal to po�v�.
qv  the number of vs children with

po� � 6� po1� �
if qv > 1 then mark all back edges �v; w� such

that v is an ancestor
of w with a tag ignored.

end

(1) for each vertex u do

if qp�u� � 1 then

ku  po1�u�
Add �ku to W ��p�u� ! u��

/� Rule 2a �/
Add ÿku to W ��u! p�u���

/� Rule 2b �/
endif

endfor

(2) for each vertex w do

kw  the number of back edges �v; w� such
that v is an ancestor of w and �v; w� is not
with a tag ignored.

Add ÿkw to W ��p�w� ! w��. /� Rule 2c �/
Add �kw to W ��w! p�w���. /� Rule 2d �/

endfor

Note that in the above weight assignments, all back
edges �r; w�will not be marked as ignored, because we have
po1�u� � po�u� for every child u of r. This guarantees that
neglecting the weight assignments of all the nontree edges
with a tag ignored will not trap into incorrect circum-
stances.

The above parallel implementation of Step 3(c) of
Algorithm 2 takes O�m=p� logm� time using p processors
on the EREW PRAM. Recall that at the beginning of this
section we showed that all the other steps of Algorithm 2
can be implemented, as well in O�m=p� logm� time using p
processors on the EREW PRAM. We obtain the following
theorem.

Theorem 3. Let T be a given spanning tree of an undirected
graph G that contains n vertices and m edges. We can
determine whether T is an unordered depth-first search tree of
G in O�m=p� logm� time using p processors on the EREW
PRAM.

5 CONCLUDING REMARKS

In this paper, a linear time sequential algorithm was first
proposed for recognizing unordered depth-first search trees
of an undirected graph. Then, by parallelizing it, an efficient
parallel solution was obtained on the EREW PRAM. The
resulting parallel algorithm performs in O�m=p� logm�

time using p processors. When p � m= logm, it is cost-
optimal and achieves linear speedup.

As mentioned at the end of Section 3, our sequential
algorithm can compute the pruning level of every vertex.
However, since some back edges are ignored, our parallel
algorithm can not compute the exact pruning levels. The
problem of efficiently computing the pruning level of each
vertex in parallel requires further studies.
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