Register Level Sort Algorithm on Multi-Core SIMD
Processors

Tian Xiaochen, Kamil Rocki and Reiji Suda
Graduate School of Information Science and Technology
The University of Tokyo & CREST, JST
{xchen, kamil.rocki, reiji}@is.s.u-tokyo.ac.jp

ABSTRACT

State-of-the-art hardware increasingly utilizes SIMD paral-
lelism, where multiple processing elements execute the same
instruction on multiple data points simultaneously. How-
ever, irregular and data intensive algorithms are not well
suited for such architectures. Due to their importance, it
is crucial to obtain efficient implementations. One example
of such a task is sort, a fundamental problem in computer
science. In this paper we analyze distinct memory accessing
models and propose two methods to employ highly efficient
bitonic merge sort using SIMD instructions as register level
sort. We achieve nearly 270x speedup (525M integers/s) on
a 4M integer set using Xeon Phi coprocessor, where SIMD
level parallelism accelerates the algorithm over 3 times. Our
method can be applied to any device supporting similar
SIMD instructions.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: PROCESSOR

ARCHITECTURES—Single-instruction-stream, multiple-data-

stream processors (SIMD)

General Terms

Algorithms, Performance, Design

Keywords
SIMD, Parallel, Sort, Xeon Phi, Register, Irregular

1. INTRODUCTION

Multi-core architecture has been widely used in state-of-
art processors. For example, NVIDIA’s Tesla K20 GPU
has 14 Stream Multiprocessors(SMX) and Intel’s Xeon Phi
has 60 cores. Xeon Phi supports 512 bits SIMD instruc-
tion i.e. AVX-512 which can process 16 integers (4 bytes)

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

SC13 November 17-21, 2013, Denver CO, USA

Copyright is held Copyright is held by the owner/author(s).

ACM 978-1-4503-2503-5/13/11
http://dx.doi.org/10.1145/2535753.2535762.

simultaneously. GPU employs a similar architecture: single-
instruction-multiple-threads(SIMT). On K20, each SMX has
192 CUDA cores which act as individual threads. Even a
desktop type multi-core x86 platform such as i7 Haswell
CPU family supports AVX2 instruction set (256 bits). De-
veloping algorithms that support multi-core SIMD architec-
ture is the precondition to unleash the performance of these
processors. Without exploiting this kind of parallelism, only
a small fraction of computational power can be utilized.

Parallel sort as well as sort in general is fundamental and
well studied problem in computer science. Algorithms such
as Bitonic-Merge Sort or Odd Even Merge Sort are widely
used in practice. However, implementing sort algorithm
on SIMD processors efficiently, especially on Xeon Phi or
x86 CPU remains a challenging job. Until now, many algo-
rithms have been proposed for GPU or CPU. GPU version
of the algorithm cannot be directly transplanted a proces-
sor supporting 512-bit wide vector instructions such as Xeon
Phi. Nvidia GPUs have fast, explicitly manageable on-chip
shared memory and their cores are more functional and ex-
ecute individual threads concurrently with SIMT synchro-
nization on hardware level. Programming Xeon Phi poses a
different challenge - the instruction restrictions of memory
accesses (discussed in Section 3.1) needed during SIMD sort
or merge. Previous algorithms designed for SSE or CELL
processor require too many registers or not strong scalable
enough for long SIMD instructions. On Xeon Phi, proces-
sor’s resources can easily run out with previous methods.
A general, strong scaling algorithm for Xeon Phi or future
SIMD instruction capable processors is necessary.

In this paper, we focus on developing parallel sort and
merge algorithms only in register, under the constraints of
memory accessing model within registers. We propose two
in-register sort/merge algorithms which only take a constant
number of registers (2 or 3) no matter how long SIMD in-
struction is. Then, we present theoretical and empirical
analysis of the execution time. We chose AVX-512 and Xeon
Phi as our main experiment environment as a extreme case
of SIMD parallelism combined with restricted access pat-
terns and limited bandwidth. We also implemented the al-
gorithm on Intel E5-2670 with AVX instructions. The same
algorithm can be derived for other SIMD processors.

2. RELATED WORK

First algorithm that needs to be mentioned is parallel
Radiz sort[5] as it is often used. The main advantage of the
method is that if the size of digits is fixed, it only needs O(n)
time complexity, where n is the length of data. The idea is

to sort data digit by digit. Intel Laboratories’ report[2] is the
first published result presenting performance of radix sort on
Xeon Phi. Later in the paper, we are presenting our results
compared to those shown in this paper. Its main disadvan-
tage on the other hand is that it is limited to the integer type
of data and exploits its decimal character. Contrary to more
general, comparative sort for example, float numbers need
extra transformation[13] using radix sort. Furthermore, if
the data type size is longer, the algorithm becomes slower.
Nadathur Satish et al.[6] studied how radix sort and merge
sort performs when size of data type varies. Though both
of them get slower when data type changes from 32bit to
128bit, radix sort get higher deceleration.

Comparison based sort is a more general sort algorithm.
Q(nlog(n)) is the lower bound of its time complexity. Many
theoretical results have been published in the field of parallel
sorting. Bitonic-Merge Sort[3] or Odd-Even Merge Sort[8]
are just two algorithms usually used in practice. They are
also sorting networks traversed in O(log?(n)) steps. Though
log(n)-step algorithm has been invented[9], due to the large
overhead it is hardly used in practice. Our algorithm keeps
the generality of a comparative sort while achieving speedup
only slightly worse than with radix sort.

There is a large number of research papers which describe
implementing parallel sort. We classify the algorithms into
two types: Register Level Sort and Multi-Core Level Sort.
This classification is made by the way of synchronization in
processors. In register level, SIMD instructions play the role
of cores. Synchronization is not necessary(GPU may need
synchronization explicitly) since SIMD computation is natu-
rally synchronized after each instruction. In the situation of
Multi-Core level, communication happens in slow cache or
RAM. The cost of synchronization becomes more expensive.

2.1 Register Level Sort

Register level sort means sorting a part of a small amount
of data only using SIMD instructions. Usually the data
should be loaded into a register from the main memory and
then sorted in registers in parallel. Finally the data should
be copied back to the main memory. Some implementations
may use Odd-FEven Merge Sort at this point, for example an
algorithm using SSE instructions[1] by Jatin Chhugani et al.
In their approach, the algorithm requires sorting 4 groups
at the same time , each group comprises 4 elements (since
SSE registers can hold 4 integer values - 128 bits) at once,
using 4 registers at least. Then it transposes these 16 ele-
ments so that elements belonging to one group can be laid
in the same register. An example is shown in Figure 1. This
algorithm works in the following way - let 4 cores do 4 jobs.
It is not strong scalable enough and requires a large number
of registers in practice. If the length of SIMD instruction is
K, then K registers are needed. In the situation of sorting
4 bytes integers on Xeon Phi, it requires 16 registers.

R1 [12 21| 4 3|0 SIS e

Rzil9 |8 417 8 | 111421

R3 [1 14| 3 6108 [5]4]6]1s

R4 15 11|15 15 | 13 ol 7 1013
Transpose

Figure 1: Example of Jatin’s register level sort algorithm

Another highly scalable algorithm was proposed by Tim-

othy Furtak[7], it generates the code with search method.
The main idea is to search a set of SSE instructions which
follow exactly the same logic as Odd-Even Merge Sort at
each step. The advantage of this method is that the gener-
ated code can be locally optimal. However they ignore the
usage of the number of registers and the speed of genera-
tion. Finally, AA sort[10] is a different approach which does
not employ odd-even or any other sorting network. Comb
Sort[11] is their choice. However, Comb Sort needs O(n?)
in worst case, also this algorithm requires the same number
of registers as the aforementioned Jatin’s algorithm.

We propose two strong scaling register-level-sort algorithms
which only need constant number of registers. The two algo-
rithms are both derived from the code generation approach
which is based on constructing methods. It can be finished
in polynomial time (the same as bitonic merge sort).

2.2 Multi-Core Level Sort

In principle, Multi-Core Level Sort focuses on utilizing
multiple cores. MIMD (Multiple Instruction, Multiple Data)
and PRAM are the appropriate hardware models. On GPU,
Odd-Even Merge Sort is still a widely chosen algorithm [12,
14]. Tt has high parallelism, but suffers from high work
complexity. Theoretically Bitonic-Merge Sort can be per-
formed in O(nlogn) time by using a subtree(i.e. an address
pointer) exchanging algorithm[16] utilizing a tree data struc-
ture. Contrary to merge, divide-and-conquer is another idea
of sorting elements. For example, Bucket Sort, the quick
sort’s parallel version can divide the data into a numbers of
bucket by selecting several pivots. The data in each bucket
can be sorted by other sorting algorithms, since the buck-
ets are ordered by pivots. An GPU implementation[15] uses
hybrid algorithm of bucket sort and merge sort. However
the algorithm may not be well balanced since buckets’ sizes
depend on the chosen of pivots. Some buckets may be too
large or too small. A typical x86-family processor, such
as Intel i7 does not have as many core as common GPUs.
Multi-way merge is an optional algorithm in such a CPU
implementation[1]. Although, multi-way merge can be as
efficient as merge sort from time complexity aspect. If there
are too many cores, the communication between cores will
be the major bottleneck of the algorithm. Since Xeon Phi
may have more than 60 cores and Odd-FEven merge takes
higher work complexity, we choose parallel merge sort based
on partition as our algorithm.

- I
L . !
B ' :

g ‘il |
7 .

S N i
step: 1 ! 2 3 4 5 6
stage: 1 | 2 | 3

Figure 2: Bitonic-Merge sorting network of 8 element.

3. OUR APPROACH

First, let’s define K as the number of elements that one
vector instruction can handle and two available registers as
R1 and R2. Bitonic-Merge Sort is a often used as a parallel

sort algorithm. Figure 2 shows the sorting network of 8
elements.

The number in the box represents the indices of element.
An arrow represents a comparison of a pair of elements,
storing the larger element where the arrow is pointing and
the smaller element on the opposite side. Figure 3 shows an
example of Bitonic-Merge Sort.

e um . -
|
19 167 (67} l (67} l 21
67 19 76) (76} {13} {24 (24)
58 (13} (37} 1 (53) (53) (53} ! (37)
A (o= —poa || -@n{ o
L B
B e e85+ (7e)
step: 1 2 3 4 5 6

Figure 3: An example of Bitonic-Merge sort.

3.1 AVX-512 Capability of Comparison

To implement Bitonic-Merge Sorting network using recent
Intel’s vector extensions, it is necessary to ravel out what
AVX-512 can do in a sort problem. On GPU, CUDA core
seems to more flexible, since one core corresponds to one
real thread from the programming point of view (CUDA,
OpenCL and etc.). On the other hand, programming us-
ing AVX-512 is more like assembling instructions together
in a procedural way. From the hardware perspective, GPU
has on-chip shared memory which makes CUDA random ac-
cesses memory possible. Therefore memory accessing pat-
tern of CUDA core is PRAM. When we consider AVX-512,
vector register has to load data from main memory or cache
before calculation in a vector-manner, meaning chunks of
memory at once. Many operations have to be executed
between two registers. So memory access pattern is not
PRAM.

!
R1
J
ISRy,
5 !
[] [@)nvalid situation | [] [@]

Figure 4: Capability of AVX-512 instruction set

Let’s assume that some data is loaded into registers R1
and R2. Figure 4 shows the capability of AVX-512. No-
tice that the second operation is invalid, because elements
in the same register can not be compared with each other.
With permutation operation (e.g. _mmb512_shuffle_epi32)
and mask operation (e.g. _mm512 mask min_epi32), it is
possible to do comparison like (3) and (4). Corresponding
pseudocode is shown in Table 1. We can conclude from the
discussion that: A comparison is valid on AVX-512 if each
pair of elements be is placed in two separate registers and
compare option is applied between them. Our goal is to gen-
erate the sorting network like in Figure 2 and at the same
time satisfy the memory access constraints. Then, the pro-
gram can be hard-coded from generated network with AVX-

512 instructions. Intuitively the fewer instructions the code
has, the faster the program becomes. We propose two meth-
ods to generate new sorting network from Bitonic-Merge
sorting network.

Table 1: Capability of AVX-512

Situation | Pseudocode
(1) | R’ = SIMD_min(R1,R2);
R2’' = SIMD_max(R1,R2);
(2) | (invalid)
(3) | R2’ = permute(R2,<2,1,3,4>);
R1’ = SIMD_min(R1,R2);
R2’ = SIMD_max(R1,R2);
(4) | R’ = SIMD_mask_min(R1,R2,0b1010);
R2’ = SIMD_mask _min(R1,R2,0b0101);
R1’ = SIMD_mask max(R1,R2,0b0101);
R2’ = SIMD_mask max(R1,R2,0b1010);

3.2 1-Register Method

The 1-Register Method does not mean that we are only
using one register, but it means sorting such number of ele-
ments that can be stored in one register at the same time, i.e.
K elements. Let’s assume that the data is loaded into R1
initially. The target is to get elements which are stored in R1
to be compared with each other. The idea is to make a copy
of R1, for instance copy it to R2. In such a way, elements
can be compared with each other. The right-hand part of
Figure 5 shows the example of 4 elements sorting network-
ing using 1-register method. The left-hand part of the figure
represents the 4 elements sorting network of bitonic merge.
Obviously, the left-hand side and the right-hand side parts
follow the same logic. The difference is 1-Register Method
compares each pair of elements twice. The order of permu-
tation is generated from bitonic merge sorting network.

I l
:
ol gh

4 elements sorting D I

network of bitonic D

merge sort D —v]

[
Step 1 2 3

4 elements sorting network of 1 Register Method
Figure 5: 1-Register Method Sorting Network

Let’s define = as the position of element and f;(z) as
the corresponding position should be compared to at ith
step. fi(z) can be calculated from normal bitonic merge
sort. Then we have code as in Algorithm 1 using AVX-512
instructions. There are 10 steps in total, and each step con-
tains 3 AVX-512 instructions.

Algorithm 1 1-Register Method Sorting Algorithm

: _mbl2i a,b;
: b= _mmbl2_shuf fle_epi32(a,_ MM_PERM _CDAB);
a = _mm512_mask_min_epi32(a, 026996, a, b);
a = _mmb512_mask_mazx_epi32(a, 029669, a, b);

> 3 instructions in one step. The rest of the steps
are similar.

AN

3.3 2-Register Method

One disadvantage of the previous approach is that the el-
ements need to be compared twice. Therefore, we developed
the 2-Register Method to avoid it. The 2-Register Method
sorts 2K elements at once each time. At first, the data is
loaded into registers R1 and R2. However, this time, bitonic
merge sorting network scheme is applied directly. Unfortu-
nately, bitonic merge cannot be simply applied even in the
first step (leftmost arrows in Figure 6).

L
2]

Can be

2
3y
| A - | considered
5, _L E as
7]

DDDDﬁ&éH
EEEE -]

o]

First 2 steps of Bitonic merge sort Step 1 2(invalid)

Figure 6: Invalid situation of first 2 steps

Since initially the dataset is unsorted at all, it can be
considered as being in any order. In the second step, in-
valid situation would occur again if the sorting network is
applied directly. To solve this problem, the position of the
elements should be prepared for the next step so that no in-
valid situation occurs. The idea is to look one step ahead.
Before introducing the one step ahead approach, it is bet-
ter to describe how to perform exchanging the elements at
the same time with comparing them. Doing comparison and
then exchange of a pair of elements is equivalent to doing
the comparison in the opposite direction. Figure 7 shows
this procedure.

n— equivalent
E to
a

<«<—> :exchange @ ------ > :Changed direction compare

(oo]o] |
(& eo]o] S |
o] o]

Figure 7: Exchange a pair of two elements

If the following step requires a pair of elements to be com-
pared, and they are in the same register in the current step,
they should be exchanged with one another, so that they are
in different registers in the next step.

(~Jo]efnfe]ols]]
HDHD[EF[E?

(68] sl S

7 S T B |

]
]
= FI .
1

1 2

:old direction 77773 > :actual direction ~ ----- > :exchange

—

Figure 8: Solution of invalid situation

Figure 8 shows an example how the invalid situation be
avoided in the first two steps. The whole sorting network
is given in Figure 9. In this figure, a dashed black arrow
corresponds to exchanging positions of the elements.

1] B
14 B 4] 4] 14 4]

g @l -—al o E&%
— BIERrS 7 | :
Bilo 'IZI 15]D ‘D 2] %
a8 e ¥
o—o g—a
B—i i B B g—o-a
Step 1 2 3 4 5 6 additional step

Figure 9: Capability of AVX-512 instruction set

In order to generate the network, not only do we need to
know f;(x) of each step, but also we should decide whether to
put z in R1, f;(z) in R2 or f;(z) in R1, z in R2. Specifically,
in ith step, being in position j we should look ahead i + 1
steps to check whether fi11(j) is in the same register or
not. If it is, it is necessary to exchange j and f;(j) in the
ith step. After applying bitonic merge sort, the elements
are ordered as <14 6 72 3 5 8> finally. Based on the last
step of Bitonic-merge, elements 2 and 3, 6 and 7 are in wrong
registers so to speak, because the final order should be 1...8.
It is required to restore the order of the elements, so that
they can be written back to memory. To bring elements
2 and 3 back to R1, 2 , another comparison is needed as
an additional step shown in Figure 9 (dashed red arrow).
Finally, we permute registers R1 and R2 (red line in figure)
and 2K elements are sorted. Algorithm2 shows the pseudo-
code of the 2-register method and how the sorting network
can be generated.

Algorithm 2 Algorithm for Generating 2-Register Method
Sorting Network

1: Initial State: R1 holds elements 1, 3 ...2K — 1. R2
holds 2, 4 ...2K.

2: Output: Element order X in R1 at each step, (the cor-
responding element order in R2 will be f;(X)), and flag
array D to record whether changing comparison direc-

tions.
3: for i =1 to number of steps do
5: > Look ahead next step:
6: Y fi+1(Xi)
7 > Find intersection(invalid situation):
8: Z+—X;NnY
9: > Exchange conflict elements:
10: for all zin Z do
11: > Swap the smaller element(but either is fine):
12: z + min(z, fiy1(x))
13: mark D;[z] as changing comparison direction
14: > exchange with corresponding element in R2:
15: Rl[z] «+ fi(z)
16: end for
17: end for

The essential sorting program code is similar to the 1-
Register Method, and it is presented as Algorithm 1.

Algorithm 3 2-Register Method

1 _mbl2i a, b, a2;

a2 = _mmb12_mask_min_epi32(a, 026996, a, b);

a2 = _mmb512_mask_max_epi32(a, 029669, a, b);

b = _mm512_mask_-mazx_epi32(a, 026996, a, b);

b = _mmb512_mask_min_epi32(a, 029669, a, b);

b =_mm512_shuf fle_epi32(b,_MM_PERM_CDAB);
> five instructions consist of one step. The rest of

the steps are similar.

8 ... > additional step:

9: a = _mmb512_min_epi32(a2, b)

10: b = _mmb12_maz_epi32(a2,b)

11: permute a and b to correct order.

Let’s recall a naive merge procedure:
1. Pick two elements a,b from L1 and L2
2. Compare a to b, put the smaller element into L3

3. If a is put to L3, assign a another element fetched from
L1, go to step 2 until one sequence is empty. Perform
analogous steps for b.

In case of SIMD, 2K elements are merged in one step and
we require that L1 and L2 are sorted in different direction.
We use the Kth position element to decide from which se-
quence to fetch another K elements. Algorithm 4 shows this
procedure.

Algorithm 4 Merge with SIMD

Because the procedure is exactly the same as Bitonic-
merge sort, the theoretical time complexity has no difference
in these two methods. Since 2-Register Method only uses 1
permute instruction per step, it saves 1 instruction in each
given step. However, the 2-Register Method does not keep
the order of elements in registers, so it needs one more step
to rearrange the elements. Table 2 shows a comparison of
the two methods regarding instruction count.

Table 2: Comparison of 1-Register and 2-Register methods

Algorithm | 1-Register Method

2-Register Method

Set Length K 2K

Number of steps

log(K)(log(K)+1)
2

Intructions/step 3 5
Total instructions® 86 77

When sorting 32 elements and K = 16
(Xeon Phi implementation)

3.4 Register Merge

Merging two sorted sequence is an essential part of the
merge sort algorithm. Sequential merge algorithm can be
done in O(n) time complexity, where n is defined as the
length of data. However, in the parallel case, it is very
hard to achieve linear speedups in practice, e.g. merging
K elements with K cores in O(1) time. Needless to say effi-
cient merging using SIMD Instructions is even harder. With
bitonic merge, O(Klog(K)) work complexity, it is possible
to merge K elements in O(log(K)) steps. The procedure of
merging in registers is exactly the same as bitonic merge,
which is also the last stage of bitonic merge sort. There
are two methods in this case too: 1-Register and 2-Register.
Since it is only the last stage of bitonic merge sort, it shares
some common code with register-level sort. Input is given a
two sorted sequences. One needs to be sorted in descending
and the other in ascending order. Applying SIMD paral-
lelism to merge longer sequence (e.g.longer than K) needs a
little bit more work. Assume that the two input sequences
are L1, L2 and we would like to merge them into an non-
descending sequence L3.

log(2K)(log(2K)+1)+2
2

1: Input: Sequence L1 sorted in assending order, L2 in
decending order.

2: Output: Sequence L3 sorted in assending order

3: > R, and R, are two K length vector registers.
4: R, < fetch K elements from the beginning of L1

5: Ry + fetch K elements from the end of L2

6: repeat

7 > Rq[K] is the largest in X, Rp[1] is the largest in Y’
8: if Rq[K] < Rp[1] then

9: SIMD merge R, and Ry, keep R;, decending

10: Write R, back to memory

11: R, < fetch next K elements from L1

12: else

13: SIMD merge R, and Ry, keep R; assending

14: Write R, back to memory

15: R, + fetch next K elements from L2

16: end if

17: until reach the end of L1 or L2
18: concatenate the rest elements of L1 or L2 to L3

Thus all SIMD components of the algorithm are prepared.
The rest is to assemble them together.

3.5 Implementation

Figure 10 shows the overview of the whole algorithm. The
subroutines are divided according to the size of data. Gen-
erally the outer algorithm is merge sort algorithm. Firstly,
each core sorts a part of data recursively (the orange color
merge sort procedure in Figure 10). When the size of data
is small enough, register-level sort is employed. Alternately
sorted subsequence should be merged recursively with the
algorithm introduced in Section 3.4. When each core fin-
ishes sorting its own data, merge procedure becomes multi-
core-level merge (cyan color merge sort procedure in Figure
10). This subroutine is in charge of merging two sorted sub-
sequences in parallel using multiple cores. Synchronization
between multi-cores is required. Here our algorithm uses
Merge Path algorithm([4] to help dividing sequences, so that
each core can do merging independently. Merge Path algo-
rithm is a parallel merge algorithm which uses binary search
in order to divide two sequences into pairs of subsequences.
Then each core can merge such two short subsequence. It
is highly balanced algorithm because the partitioning guar-
antees that the total length of any pair of subsequences are
the same. Hence each core process the same mount of data.
Merge Path algorithm is used only for partitioning, but it

Sorted sequence ‘

Core #1

Synchronization is

required
Parallel merge sorted sequence
by 2 cores
e

Recursive
Merge

Recursive
Merge

4

Parallel merge sorted sequence by 4 cores

- - N
Core #2 Core #3 Core #4 \

Parallel merge sorted sequence
by 2 cores

Merge sort
algorithm, with
register level
Recursive Recursive merge

Merge Merge

Bitonic-
Merge sort

AN

algorithm

Register Level Sort

Input sequence 1

Figure 10: Algorithm Overview

contributes to extra computation which becomes the main
overhead of our algorithm. Recursive merging is being done
by multiple cores and whole data is finally sorted.

4. PERFORMANCE AND ANALYSIS

We analyse the algorithm by studying the time and work
complexity of the subroutine in a single core or multi-core
separately. Except for register level sort which uses Bitonic
merge sort, other parts are all Merge sort. The work com-
plexity is generally in O(nlog(n)). The result are shown in
Table 3.

Table 3: Theoretical Analysis

Subroutine/Complexity

Merge sort work complexity of one core
O(5log?(K) + Jlog(K)log(;7%))

Merge sort time complexity of one core
O log?(K) + e log (K)log(X))

Parallel merge work complexity
O(log(p)(p x log(N) + N = log(K)))

Parallel merge time complexity
O(log(p)(log(N) + 2zlog(K)))

Total work complexity
O(p * log(p)log(N) + N x log(N)log(K) + N * log?(K))

Total time complexity
O(log(p)log(N) + 3% (log(N)log(K) + log*(K)))

Synchronization times

O(log(p))

In Figure 10, Merge Sort (orange) and Register Sort (pur-
ple) are performed within a single core and shown as the
first two subroutines in Table 3. Parallel Merge requires

synchronization between multiple cores, it is shown as the
3rd and 4th line in table. Work complexity shows how much
computation a parallel algorithm does. Theoretical lower
bound of a general sorting algorithm based on comparison
is O(Nlog(N)). Ignoring negligible overhead (the term that
does not contain N), our algorithm has O(Nlog(N)log(K))
work complexity. log(K) is the consequence of the register
level merge using SIMD instructions. However, it gives K
times speed up, as shown in time complexity analysis. Im-
plementation and empirical experiments are done on Xeon
Phi 5100 series. Data for experiment is generated randomly,
distributed uniformly in range from 0 to 23! — 1. Table 4
shows speedup provided by SIMD and multi-core respec-
tively, when sorting 4 million integer elements.

Table 4: Performance of our sort algorithm using Xeon Phi

Configuration | Speed Up Time(sec)

Sequential merge sort 1.0 2.3
Sequential merge sort w/ SIMD 3.7 0.61
240-thread merge sort w/o SIMD 79 0.029

240-thread merge sort w/ SIMD 291 0.0079

The performance is measured by how much data (how
many elements) can be sorted per second conventionally.
Since comparison sort takes O(nlog(n)) time complexity,
the performance will drop with the growth of data length
n. Our algorithm achieves the peak performance when the
data size is 4 million, which is about 525M integer elements
per second. In our opinion, the architecture of Xeon Phi,
particularly it’s memory bandwidth and cache hierarchy are
responsible for this phenomenon. Further experiments and
optimization of the algorithm may be needed in order to fully
understand the performance peak occurring for a particular
number of elements. Figure 11 compares our result with
other platforms and algorithms. Compared to the fastest,
but limited radix-sort, our algorithm performs almost as
well. Tt is only 13% slower for that particular number of el-
ements with performance slightly dropping as we increased
the dataset size. To show the generality of the algorithm,

1,200.0

N
2 10000 o=

s -

3] Lo

5 800.0 v -

o Lo Xeon Phi Our Approach
9 et -===CPU i7 radix

8 e000 - .

5 ------ e b ——CPU i7 merge

w /” -==-GPU GTXTITAN radix

2 4000 L ——GPU GTX TITAN Merge
c

(5} ~===Xeon Phi Radix

E e

= 200.0

L

c

o

= 0.0 ‘

s 18 20 22 24 26

log of Input data size

Figure 11: Performance compare to other algorithms and platforms

we implement float data sorting program on Xeon Phi and
Intel E5-2670 with AVX, shown in Figure 12. Sorting float
takes about 2 times longer than integer on Xeon Phi, due to
difference in hardware. It proves the main advantage of our
algorithm, meaning its generality regarding the data type
(since it is based on comparison sort, as opposed to radix-
sort).

5. CONCLUSIONS

This paper explored the issue of parallel sort, a fundamen-
tal computer science problem, on a class of SIMD processors.
Main contribution is the proposed register level sort com-
bined with merge algorithm. The key idea of our approach
is changing the bitonic merge sorting network in order to sat-
isfy the constraint of memory accesses within registers. Our
algorithm uses constant number of registers to sort SIMD in-
struction length data, which exposes strong scalability. Gen-
eration of the sorting network has the same time complexity
as bitonic merge sort, which can handle long vector instruc-
tion situation. Furthermore this algorithm can be generally
employed in SSE, AVX or any similar instruction set.

We also implemented the algorithm on Xeon Phi combined
with merge sort algorithm. Empirical performance results
showed promising speed which is not far from the fastest
radix sort implementation, while maintaining the generality
of comparison sort. We achieve nearly 270x speedup (525M
integers/s) on a 4M integer set using Xeon Phi coprocessor,
where SIMD level parallelism accelerates the algorithm over
3 times. Our method can be applied to any device support-
ing similar SIMD instructions.

6. FUTURE WORK

Our algorithm is able to apply Bitonic-Merge sorting net-
work on SIMD instruction processor like AVX-512. Other
types of sorting network (e.g. Odd-Even or even less step
algorithm) should also be possible to be adapted to AVX-
512. To verify this, more work is required. Usually, not only
numbers need to be sorted. Sorting keys with values (e.g.

indices or address) is widely used. Efficient implementations
may need more work in order to apply SIMD instructions
like AVX-512. We would also like to perform experiments
using other hardware, such as AVX2 supporting CPUs and
run comparative benchmark on many machines using differ-
ent data types.

400

350

300 /
250

== Xeon Phi Our Approach
—E5-2670

200 /
150

Million 32bit Float Elements Sorted
per second

100 7 ~— —————
50
0 . :
16 18 20 22 24 26

log of Input data size

Figure 12: Float elements sorting performance

7. REFERENCES

[1] Jatin Chhugan et al. Efficient Implementation of
Sorting on Multi-Core SIMD CPU Architecture
Proceedings of the VLDB Endowment, Volume 1 Issue
2, August 2008, pp. 1313-1324
Nadathur Satish et al. Fast Sort on CPUs, GPUs and
Intel MIC Architectures Technical Report, 2010
[3] K. E. Batcher Sorting Network and Their Applications
AFIPS ’68 (Spring) Proceedings of the April 30-May 2,
1968, spring joint computer pp. 307-314
Saher Odeh et al. Merge Path - Parallel Merging Made
Simple Parallel and Distributed Processing Symposium
Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th
International. pp. 1611 - 1618
Nadathur Satish et al. Designing Efficient Sorting
Algorithms for Manycore GPUs Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International
Symposium on Parallel and Distributed Processing
Nadathur Satish et al. Fast sort on CPUs and GPUs: a
case for bandwidth oblivious SIMD sort SIGMOD ’10
Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data pp. 351-362
[7] Timothy Furtak, Jose Nelson Amaral and Robert
Niewiadomski Using SIMD Registers and Instructions
to Enable Instruction-Level Parallelism in Sorting
Algorithms SPAA 07 Proceedings of the nineteenth
annual ACM symposium on Parallel algorithms and
architectures pp. 348-357
[8] D.E. Knuth The Art of Computer Programming,
Volume 3: Sorting and Searching, Third Edition.
Addison-Wesley, 1998. ISBN 0-201-89685-0. Section
5.3.4: Networks for Sorting, pp. 219-247
Miklos Ajtai et al. An nlog(n) sorting network STOC
’83 Proceedings of the fifteenth annual ACM
symposium on Theory of computing pp. 1-9
[10] Hiroshi Inoue et al. AA-Sort: A New Parallel Sorting
Algorithm for Multi-Core SIMD Processors PACT ’07
Proceedings of the 16th International Conference on

[2

[4

[5

6

9

Parallel Architecture and Compilation Techniques pp.
189-198

[11] Bronislava Brejov Analyzing variants of Shellsort
Information Processing Letters Volume 79, Issue 5, 15
September 2001, pp. 223-227

[12] Naga K. Govindaraju et al. GPU:TeraSort: High
Performance Graphics Co-processor Sorting for Large
Database Management SIGMOD 2006 Chicago, Illinois,
USA

[13] Michael Herf, Dec 2001 Radix Tricks: Retrieved Oct
13rd, 2013 from: http://stereopsis.com/radix.html

[14] Andrew Davidson et al. Efficient Parallel Merge Sort
for Fixed and Variable Length Keys Innovative Parallel
Computing(InPar) ,2012 San Jose, USA

[15] Erik Sintorn and Ulf Assarsson Fast parallel
GPU-sorting using a hybrid algorithm Journal of
Parallel and Distributed Computing Volume. 68, Issue
10, October 2008, pp. 1381-1388

[16] Gianfranco Bilardi and Alexandru Nicolau Adaptive
Bitonic Sorting: An Optimal Parallel Algorithm for
Shared-Memory Machines STAM, Journal on
Computing, 1989, Volume 15 Issue 2, pp. 216-228

