

Scheduling, Thread Context,
and IRQL

August 23, 2016

Abstract

This paper presents information about how thread scheduling, thread context, and a
processor’s current interrupt request level (IRQL) affect the operation of kernel-
mode drivers for the Microsoft® Windows® family of operating systems. It is
intended to provide driver writers with a greater understanding of the environment in
which their code runs.

A companion paper, “Locks, Deadlocks, and Synchronization” at
http://www.microsoft.com/whdc/hwdev/driver/LOCKS.mspx, builds on these
fundamental concepts to address synchronization issues in drivers.

Contents

Introduction ... 3
Thread Scheduling .. 3
Thread Context and Driver Routines ... 4
Driver Threads .. 5
Interrupt Request Levels ... 6

Processor-Specific and Thread-Specific IRQLs ... 8
IRQL PASSIVE_LEVEL ... 8
IRQL PASSIVE_LEVEL, in a critical region ... 9
IRQL APC_LEVEL... 9
IRQL DISPATCH_LEVEL .. 10
IRQL DIRQL .. 11
IRQL HIGH_LEVEL ... 12

Guidelines for Running at IRQL DISPATCH_LEVEL or Higher .. 13
Changing the IRQL at which Driver Code Runs ... 13
Standard Driver Routines, IRQL, and Thread Context ... 14

Interrupting a Thread: Examples ... 17
Single-Processor Example ... 17
Multiprocessor Example ... 18

Testing for IRQL Problems.. 20
Techniques for Finding the Current IRQL... 20
PAGED_CODE Macro ... 20
Driver Verifier Options .. 21

Best Practices for Drivers.. 21
Call to Action and Resources .. 21

Understanding Scheduling, Thread Context, and IRQL -- 2

© 2004 Microsoft Corporation. All rights reserved.

Disclaimer
This is a preliminary document and may be changed substantially prior to final commercial release of the
software described herein.

The information contained in this document represents the current view of Microsoft Corporation on the
issues discussed as of the date of publication. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot
guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights
under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval
system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or
otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property
rights covering subject matter in this document. Except as expressly provided in any written license
agreement from Microsoft, the furnishing of this document does not give you any license to these
patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail
addresses, logos, people, places and events depicted herein are fictitious, and no association with any
real company, organization, product, domain name, email address, logo, person, place or event is
intended or should be inferred.

© 2004 Microsoft Corporation. All rights reserved.

Microsoft, Windows, and Windows NT are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their
respective owners.

Understanding Scheduling, Thread Context, and IRQL -- 3

© 2004 Microsoft Corporation. All rights reserved.

Introduction

Thread scheduling, thread context, and the current interrupt request level (IRQL) for
each processor have important effects on how drivers work.

A thread’s scheduling priority and the processor’s current IRQL determine whether
a running thread can be pre-empted or interrupted. In thread pre-emption, the
operating system replaces the running thread with another thread, usually of higher
thread priority, on the same processor. The effect of pre-emption on an individual
thread is to make the processor unavailable for a while. In thread interruption, the
operating system forces the current thread to temporarily run code at a higher
interrupt level. The effect of interruption on an individual thread is similar to that of a
forced procedure call.

Interruption and pre-emption both affect how code that runs in the thread can
access data structures, use locks, and interact with other threads. Understanding
the difference is crucial in writing kernel-mode drivers. To avoid related problems,
driver writers should be familiar with:

 The thread scheduling mechanism of the operating system

 The thread context in which driver routines can be called

 The appropriate use of driver-dedicated and system worker threads

 The significance of various IRQLs and what driver code can and cannot do at
each IRQL

Thread Scheduling

The Microsoft® Windows® operating system schedules individual threads, not
entire processes, for execution. Every thread has a scheduling priority (its thread
priority), which is a value from 0 to 31, inclusive. Higher numbers indicate higher
priority threads.

Each thread is scheduled for a quantum, which defines the maximum amount of
CPU time for which the thread can run before the kernel looks for other threads at
the same priority to run. The exact duration of a quantum varies depending on what
version of Windows is installed, the type of processor on which Windows is running,
and the performance settings that have been established by a system administrator.
(For more details, see Inside Windows 2000.)

After a thread is scheduled, it runs until one of the following occurs:

 Its quantum expires.

 It enters a wait state.

 A higher-priority thread becomes ready to run.

Kernel-mode threads do not have priority over user-mode threads. A kernel-mode
thread can be pre-empted by a user-mode thread that has a higher scheduling
priority.

Thread priorities in the range 1-15 are called dynamic priorities. Thread priorities in
the range from 16-31 are called real-time priorities. Thread priority zero is reserved
for the zero-page thread, which zeroes free pages for use by the memory manager.

Every thread has a base priority and a current priority. The base priority is usually
inherited from the base priority for the thread’s process. The current priority is the
thread’s priority at any given time. For kernel-mode driver code that runs in the
context of a user thread, the base priority is the priority of the user process that

Understanding Scheduling, Thread Context, and IRQL -- 4

© 2004 Microsoft Corporation. All rights reserved.

originally requested the I/O operation. For kernel-mode driver code that runs in the
context of a system worker thread, such as a work item, the base priority is the
priority of the system worker threads that service its queue.

To improve system throughput, the operating system sometimes adjusts thread
priorities. If a thread’s base priority is in the dynamic range, the operating system
can temporarily increase (“boost”) or decrease its priority, thus making its current
priority different from its base priority. If a thread’s base priority is in the real-time
range, its current priority and base priority are always the same; threads running at
real-time priorities never receive a priority boost. In addition, a thread that is running
at a dynamic priority can never be boosted to a real-time priority. Therefore,
applications that create threads with base priorities in the real-time range can be
confident that these threads always have a higher priority than those in the dynamic
range.

The system boosts a thread’s priority when the thread completes an I/O request,
when it stops waiting for an event or semaphore, or when it has not been run for
some time despite being ready to run (called “CPU starvation”). Threads involved in
the Graphical User Interface (GUI) and the user’s foreground process also receive a
priority boost in some situations. The amount of the increase depends on the
reason for the boost and, for I/O operations, on the type of device involved. Drivers
can affect the boost their code receives by:

 Specifying a priority boost in the call to IoCompleteRequest.

 Specifying a priority increment in the call to KeSetEvent, KePulseEvent,
KeReleaseSemaphore.

Constants defined in ntddk.h and wdm.h indicate the appropriate priority boost for
each device, event, and semaphore.

A thread’s scheduling priority is not the same as the interrupt request level (IRQL)
at which the processor operates.

Thread Context and Driver Routines

Most Windows drivers do not create threads; instead, a driver consists of a group of
routines that are called in an existing thread that was created by an application or
system component.

Kernel-mode software developers use the term “thread context” in two slightly
different ways. In its narrowest meaning, thread context is the value of the thread’s
CONTEXT structure. The CONTEXT structure contains the values of the hardware
registers, the stacks, and the thread’s private storage areas. The exact contents
and layout of this structure will vary according to the hardware platform. When
Windows schedules a user thread, it loads information from the thread’s CONTEXT
structure into the user-mode address space.

From a driver developer’s perspective, however, “thread context” has a broader
meaning. For a driver, the thread context includes not only the values stored in the
CONTEXT structure, but also the operating environment they define—particularly,
the security rights of the calling application. For example, a driver routine might be
called in the context of a user-mode application, but it can in turn call a ZwXxx
routine to perform an operation in the context of the operating system kernel. This
paper uses “thread context” in this broader meaning.

The thread context in which driver routines are called depends on the type of
device, on the driver’s position in the device stack, and on the other activities
currently in progress on the system. When a driver routine is called to perform an

Understanding Scheduling, Thread Context, and IRQL -- 5

© 2004 Microsoft Corporation. All rights reserved.

I/O operation, the thread context might contain the user-mode address space and
security rights of the process that requested the I/O. However, if the calling process
was performing an operation on behalf of another user or application, the thread
context might contain the user-mode address space and security rights of a
different process. In other words, the user-mode address space might contain
information that pertains to the process that requested the I/O, or it might instead
contain information that pertains to a different process.

The dispatch routines of file system drivers (FSDs), file system (FS) filter drivers,
and other highest-level drivers normally receive I/O requests in the context of the
thread that initiated the request. These routines can access data in the user-mode
address space of the requesting process, provided that they validate pointers and
protect themselves against user-mode errors.

Most other routines in FSDs, FS filters, and highest-level drivers—and most
routines in lower-level drivers—are called in an arbitrary thread context. Although
the highest-level drivers receive I/O requests in the context of the requesting thread,
they often forward those requests to their lower level drivers on different threads.
Consequently, you can make no assumptions about the contents of the user-mode
address space at the time such routines are called.

For example, when a user-mode application requests a synchronous I/O operation,
the highest-level driver’s I/O dispatch routine is called in the context of the thread
that requested the operation. The dispatch routine queues the I/O request for
processing by lower-level drivers. The requesting thread then enters a wait state
until the I/O is complete. A different thread de-queues the request, which is handled
by lower-level drivers that run in the context of whatever thread happens to be
executing at the time they are called.

A few driver routines run in the context of a system thread. System threads have
the address space of the system process and the security rights of the operating
system itself. Work items queued with the IoXxxWorkItem routines run in a system
thread context, and so do all DriverEntry and AddDevice routines. No user-mode
requests arrive in a system thread context.

The section "Standard Driver Routines, IRQL, and Thread Context,” later in this
paper, lists the thread context in which each standard driver routine is called.

Driver Threads

Although a driver can create a new, driver-dedicated thread by calling
PsCreateSystemThread, drivers rarely do so. Switching thread context is a
relatively time-consuming operation that can degrade driver performance if it occurs
often. Therefore, drivers should create dedicated threads only to perform continually
repeated or long-term activities, such as polling a device or managing multiple data
streams, as a network driver might do.

To perform a short-term, finite task, a driver should not create its own thread;
instead, it can temporarily “borrow” a system thread by queuing a work item. The
system maintains a pool of dedicated threads that all drivers share. When a driver
queues a work item, the system dispatches it to one of these threads for execution.
Drivers use work items to run code in the kernel address space and security context
or to call functions that are available only at IRQL PASSIVE_LEVEL. For example,
a driver’s IoCompletion routine (which can run at IRQL DISPATCH_LEVEL) should
use a work item to call a routine that runs at IRQL PASSIVE_LEVEL.

To queue a work item, a driver allocates an object of type IO_WORKITEM and calls
the IoQueueWorkItem routine, specifying the callback routine to perform the task

Understanding Scheduling, Thread Context, and IRQL -- 6

© 2004 Microsoft Corporation. All rights reserved.

and the queue in which to place the work item. The kernel maintains three queues
for work items:

 Delayed work queue. Items in this queue are processed by a system worker
thread that has a variable, dynamic thread priority. Drivers should use this queue.

 Critical work queue. Items in this queue are processed by a system worker thread
at a higher thread priority than the items in the delayed work queue.

 Hypercritical work queue. Items in this queue are processed by a system worker
thread at a higher priority than items in the critical work queue. This work queue is
reserved for use by the operating system and must not be used by drivers.

A system worker thread removes the work item from the queue and runs the driver-
specified callback routine in a system thread context at IRQL PASSIVE_LEVEL.
The operating system ensures that the driver is not unloaded while the callback
routine is running. To synchronize the actions of the callback routine with other
driver routines, the driver can use one of the Windows synchronization
mechanisms. For more information about synchronization, see the companion white
paper, “Locks, Deadlocks, and Synchronization.”

Because the system has a limited supply of dedicated worker threads, the tasks
assigned to them should be completed quickly. For example, a driver should not
have a work item that runs continuously until the driver is unloaded. Instead, the
driver should queue a work item only when it is needed, and the work item routine
should exit when it has completed its work. For the same reasons, drivers should
never include an infinite loop (such as might occur in a file system driver) in a work
item. Drivers should also avoid queuing excessive numbers of work items, because
tying up the system worker threads can deadlock the system. Instead of queuing a
separate work item routine for each individual operation, the driver should have a
single work item routine that performs any outstanding work and then exits when
there is no more immediate work to perform.

Interrupt Request Levels

An interrupt request level (IRQL) defines the hardware priority at which a processor
operates at any given time. In the Windows Driver Model, a thread running at a low
IRQL can be interrupted to run code at a higher IRQL.

The number of IRQLs and their specific values are processor-dependent. The IA64
and AMD64 architectures have 16 IRQLs and the x86-based processors have 32.
(The difference is due primarily to the types of interrupt controllers that are used
with each architecture.) Table 1 is a list of the IRQLs for x86, IA64, and AMD64
processors.

Table 1. Interrupt Request Levels

IRQL IRQL value Description

x86 IA64 AMD64

PASSIVE_LEVEL 0 0 0 User threads and most kernel-
mode operations

APC_LEVEL 1 1 1 Asynchronous procedure calls and
page faults

DISPATCH_LEVEL 2 2 2 Thread scheduler and deferred
procedure calls (DPCs)

CMC_LEVEL N/A 3 N/A Correctable machine-check level
(IA64 platforms only)

Understanding Scheduling, Thread Context, and IRQL -- 7

© 2004 Microsoft Corporation. All rights reserved.

IRQL IRQL value Description

Device interrupt
levels (DIRQL)

3-26 4-11 3-11 Device interrupts

PC_LEVEL N/A 12 N/A Performance counter (IA64
platforms only)

PROFILE_LEVEL 27 15 15 Profiling timer for releases earlier
than Windows 2000

SYNCH_LEVEL 27 13 13 Synchronization of code and
instruction streams across
processors

CLOCK_LEVEL N/A 13 13 Clock timer

CLOCK2_LEVEL 28 N/A N/A Clock timer for x86 hardware

IPI_LEVEL 29 14 14 Interprocessor interrupt for
enforcing cache consistency

POWER_LEVEL 30 15 14 Power failure

HIGH_LEVEL 31 15 15 Machine checks and catastrophic
errors; profiling timer for
Windows XP and later releases

When a processor is running at a given IRQL, interrupts at that IRQL and lower are
masked off (blocked) on the processor. For example, a processor that is running at
IRQL=DISPATCH_LEVEL can be interrupted only by a request at an IRQL greater
than DISPATCH_LEVEL.

The system schedules all threads to run at IRQLs below DISPATCH_LEVEL, and
the system’s thread scheduler itself (also called “the dispatcher”) runs at
IRQL=DISPATCH_LEVEL. Consequently, a thread that is running at or above
DISPATCH_LEVEL has, in effect, exclusive use of the current processor. Because
DISPATCH_LEVEL interrupts are masked off on the processor, the thread
scheduler cannot run on that processor and thus cannot schedule any other thread.

On a multiprocessor system, each processor can be running at a different IRQL.
Therefore, one processor could run a driver’s InterruptService routine at DIRQL
while a second processor runs driver code in a worker thread at PASSIVE_LEVEL.
Because more than one thread could thus attempt to access shared data
simultaneously, drivers must protect shared data by using an appropriate
synchronization method. Drivers should use a lock that raises the IRQL to the
highest level at which any code that accesses the data can run. For example, a
driver uses a spin lock to protect data that can be accessed at
IRQL=DISPATCH_LEVEL. For more information about synchronization
mechanisms, see the companion white paper, “Locks, Deadlocks, and
Synchronization.”

On a single-processor system, raising the IRQL to DISPATCH_LEVEL or higher
has the same effect as using a spin lock because raising the IRQL can prevent the
pre-emption or interruption of the currently executing code. For example, when a
driver’s StartIo routine is running at DISPATCH_LEVEL on a single-processor
system, other driver code that runs at APC_LEVEL or PASSIVE_LEVEL cannot run
until the IRQL drops. Similarly, when a driver’s InterruptService routine is running at
DIRQL, the DPC queued by that routine cannot run until the InterruptService routine
exits. In fact, the operating system’s spin lock acquisition and release routines raise
the IRQL on single-processor systems; they do not actually manipulate a lock

Understanding Scheduling, Thread Context, and IRQL -- 8

© 2004 Microsoft Corporation. All rights reserved.

object. On multiprocessor machines, however, spin lock acquisition routines raise
the IRQL on the current processor while other processors spin on the lock.

For detailed information about locking, see the companion white paper, “Locks,
Deadlocks, and Synchronization.”

Processor-specific and Thread-specific IRQLs

As previously mentioned, the system’s thread scheduler runs at
IRQL=DISPATCH_LEVEL. IRQLs at or above DISPATCH_LEVEL are processor
specific. Hardware and software interrupts at these levels are targeted at individual
processors. The following processor-specific IRQLs are commonly used by drivers:

 DISPATCH_LEVEL

 DIRQL

 HIGHEST_LEVEL

IRQLs below DISPATCH_LEVEL are thread specific. Software interrupts at these
levels are targeted at individual threads. Drivers use the following thread-specific
IRQLs:

 PASSIVE_LEVEL

 APC_LEVEL

The thread scheduler considers only thread priority, and not IRQL, when
preempting a thread. If a thread running at IRQL=APC_LEVEL blocks, the
scheduler might select a new thread for the processor that was previously running
at PASSIVE_LEVEL.

Although only two thread-specific IRQL values are defined, the system actually
implements three levels. The system implements an intermediate level between
PASSIVE_LEVEL and APC_LEVEL. Code running at this level is said to be in a
critical region. Code that is running at IRQL=PASSIVE_LEVEL calls
KeEnterCriticalRegion to raise the IRQL to this level and calls
KeLeaveCriticalRegion to return the IRQL to PASSIVE_LEVEL.

The following sections provide more information about the operating environment
for driver code at each of these levels.

IRQL PASSIVE_LEVEL

While the processor is operating at PASSIVE_LEVEL, the operating system uses
the scheduling priorities of the current threads to determine which thread to run.
PASSIVE_LEVEL is the processor’s normal operating state, at which any interrupt
can occur. Any thread that is running at PASSIVE_LEVEL is considered
pre-emptible because it can be replaced by a thread that has a higher scheduling
priority. A thread that is running at PASSIVE_LEVEL is also considered interruptible
because it can be interrupted by a request at a higher IRQL.

Occasionally, driver code that is running at IRQL PASSIVE_LEVEL must call a
system service routine or perform some other action that requires running at a
higher IRQL (usually DISPATCH_LEVEL). Before making the call or performing the
action, the driver must raise its IRQL to the required level; immediately after
completing the action, the driver must lower the IRQL.

Code that is running at PASSIVE_LEVEL is considered to be working on behalf of
the current thread. An application that creates a thread can suspend that thread
while the thread is running kernel-mode code at PASSIVE_LEVEL. Therefore,

Understanding Scheduling, Thread Context, and IRQL -- 9

© 2004 Microsoft Corporation. All rights reserved.

driver code that acquires a lock at IRQL=PASSIVE_LEVEL must ensure that the
thread in which it is running cannot be suspended while it holds the lock; thread
suspension would disable access the to driver’s device. This problem is usually
resolved by using locks that raise the IRQL. Another solution is to enter a critical
region whenever it tries to acquire such a lock. This issue is covered in greater
detail in the companion paper, “Locks, Deadlocks, and Synchronization.”

IRQL PASSIVE_LEVEL in a critical region

Code that is running at PASSIVE_LEVEL in a critical region is effectively running at
an intermediate level between PASSIVE_LEVEL and APC_LEVEL. Calls to
KeGetCurrentIrql return PASSIVE_LEVEL. Driver code can determine whether it is
operating in a critical region by calling the function KeAreApcsDisabled (available
in Windows XP and later releases).

Driver code that is running above PASSIVE_LEVEL (either at PASSIVE_LEVEL in
a critical region or at APC_LEVEL or higher) cannot be suspended. Almost every
operation that a driver can perform at PASSIVE_LEVEL can also be performed in a
critical region. Two notable exceptions are raising hard errors and opening a file on
storage media.

IRQL APC_LEVEL

APC_LEVEL is a thread-specific IRQL that is most commonly associated with
paging I/O. Applications cannot suspend code that is running at
IRQL=APC_LEVEL. The system implements fast mutexes (a type of
synchronization mechanism) at APC_LEVEL. The KeAcquireFastMutex routine
raises the IRQL to APC_LEVEL, and KeReleaseFastMutex returns the IRQL to its
original value.

The only difference between a thread that is running at PASSIVE_LEVEL with
APCs disabled and a thread that is running at APC_LEVEL is that while running at
APC_LEVEL, the thread cannot be interrupted to deliver a special kernel-mode
APC.

Asynchronous Procedure Calls (APCs)

Asynchronous procedure calls (APCs) are software interrupts that are targeted at a
specific thread. The system uses APCs to perform work in the context of a
particular thread, such as writing back the status of an I/O operation to the
requesting application.

How a target thread responds to APCs depends on the thread’s state and the type
of APC. The following briefly summarizes the actions; for a complete description,
see “Do Waiting Threads Receive Alerts and APCs” under “Synchronization” in the
“Kernel-Mode Drivers Architecture Design Guide” of the Windows Driver
Development Kit (DDK).

Every thread has two kernel-mode APC queues, one for APC_LEVEL callbacks and
another for critical region callbacks. Each time the system adds an APC to a queue,
it checks to see whether the target thread is currently running. If so, the system
requests an interrupt on the appropriate processor. If the thread is still running when
the system services the interrupt, the APC runs immediately, if appropriate. If the
target thread is not running, the APC is added to the queue and runs the next time
the thread is scheduled; the interrupt does not cause the target thread to run
immediately. If the current IRQL is too high to run the APC, the APC runs the next
time the IRQL is lowered below the level of the APC. If the thread is waiting at a
lower IRQL, the system wakes the thread temporarily to deliver the APC, and then
the thread resumes waiting.

Understanding Scheduling, Thread Context, and IRQL -- 10

© 2004 Microsoft Corporation. All rights reserved.

Both user-mode code and kernel-mode code can issue APCs. The system defines
three types of APCs:

 User-mode APCs

 Normal kernel-mode APCs

 Special kernel-mode APCs

User-mode APCs are primarily used in completing I/O operations. Win32® APIs
such as ReadFileEx and WriteFileEx allow the caller to specify an I/O completion
callback routine. To run the callback routine, the system queues a user-mode APC
to the thread that requested the I/O. A user-mode application can queue a user-
mode APC directly by calling the Win32 API QueueUserAPC. User-mode APCs
are beyond the scope of this document.

Normal kernel-mode APCs are delivered at the intermediate level that corresponds
to PASSIVE_LEVEL in a critical region. The system delivers a normal kernel-mode
APC when the target thread is already running at PASSIVE_LEVEL or when the
thread is returning to PASSIVE_LEVEL after exiting from a critical region or after
lowering the IRQL. Normal kernel-mode APCs have two routines, a Special Routine
that runs at APC_LEVEL, and a Normal Routine that subsequently runs at
PASSIVE_LEVEL in a critical region. The special routine typically frees the APC
structure.

Special kernel-mode APCs are delivered at APC_LEVEL. The system delivers them
if the target thread is running at an IRQL below APC_LEVEL or if the target thread
is returning to an IRQL below APC_LEVEL.

Normal kernel-mode APCs and special kernel-mode APCs are queued when
kernel-mode operating system code calls an undocumented internal routine; drivers
cannot queue kernel-mode APCs directly.

The I/O manager queues the special kernel-mode APC for I/O completion whenever
an I/O request completes. When a device's drivers complete a buffered I/O request,
the I/O Manager queues this APC to the user-mode thread that originated the I/O
request. When the APC runs, the operating system restores the thread’s context
and the I/O manager copies data from the driver’s kernel-space output buffer to the
requesting thread’s user-space buffer.

IRQL DISPATCH_LEVEL

DISPATCH_LEVEL is the highest software interrupt level and the first processor-
specific level. The Windows thread scheduling and dispatching components
(collectively called “the dispatcher”) run at IRQL DISPATCH_LEVEL. Some other
kernel-mode support routines, some driver routines, and all deferred procedure
calls (DPCs) also run at IRQL DISPATCH_LEVEL. While the processor operates at
this level, one thread cannot pre-empt another; only a hardware interrupt can
interrupt the running thread. To maximize overall system throughput, driver code
that runs at DISPATCH_LEVEL should perform only the minimum amount of
required processing.

Because code that is running at DISPATCH_LEVEL cannot be pre-empted, the
operations that a driver can perform at DISPATCH_LEVEL are restricted. Any code
that must wait for an object that another thread sets or signals asynchronously—
such as an event, semaphore, mutex, or timer—cannot run at DISPATCH_LEVEL
because the waiting thread cannot block while waiting for the other thread to
perform the action. Waiting for a nonzero period on such an object while at
DISPATCH_LEVEL causes the system to deadlock and eventually to crash.

Understanding Scheduling, Thread Context, and IRQL -- 11

© 2004 Microsoft Corporation. All rights reserved.

Deferred procedure calls (DPCs) are, in effect, software interrupts targeted at
processors. DPCs (including DpcForIsr, CustomDpc, and CustomTimerDpc
routines) are always called at IRQL DISPATCH_LEVEL in an arbitrary thread
context. Drivers usually use DPCs for the following:

 To perform additional processing after a device interrupts. Such DPCs are either
DpcForIsr or CustomDpc routines that are queued by the driver’s InterruptService

routine.

 To handle device time-outs. Such a DPC is a CustomTimerDpc routine that is
queued when the timer expires by the KeSetTimer or KeSetTimerEx routine.

The kernel maintains a queue of DPCs for each processor and runs DPCs from this
queue just before the processor’s IRQL drops below DISPATCH_LEVEL.

Each DPC is assigned to the queue for the same processor on which the code that
queues it is running. The kernel removes DPC objects from the head of the queue
and adds them to its tail. A driver can change the processor for which a DPC object
is queued by calling KeSetTargetProcessorDpc. A driver can also change the
DPC’s relative location in the queue by calling KeSetImportanceDpc. However,
drivers rarely need to change either of these characteristics.

If a device interrupts while either its DpcForIsr or CustomDpc routine is running, its
InterruptService routine pre-empts the DPC and queues a DPC object as it normally
would. In a single-processor system, the DPC object is placed at the end of the
single DPC queue, where it runs in sequence with any other DPCs in the queue
after the InterruptService routine and the current DPC complete. In a multi-
processor system, however, the second interrupt could occur on a different
processor.

For example, assume a device interrupts on Processor 1 while its DpcForIsr routine
is running on Processor 0. The system runs the InterruptService routine on
Processor 1 to handle the interrupt. When the InterruptService routine queues its
DpcForIsr routine, the system places the DPC object into the DPC queue of
Processor 1. Thus, a driver’s InterruptService routine can run at the same time as
its DPC routine, and the same DPC routine can run on two or more processors at
the same time. If both routines attempt to access the same data simultaneously,
serious errors can occur. Drivers must use spin locks to protect shared data in
these scenarios.

IRQL DIRQL

DIRQL describes the range of IRQLs that physical devices can generate. Each
processor architecture has a range of DIRQLs, as shown in Table 1, “Interrupt
Request Levels.” The DIRQL for each device instance is available to its driver in the
CM_RESOURCE_LIST structure passed by the PnP manager as part of the
IRP_MN_START_DEVICE request. The driver, in turn, passes this IRQL to the I/O
manager when it calls IoConnectInterrupt to connect its interrupt object. Multiple
devices can interrupt at the same DIRQL.

Note

Microsoft has made several enhancements to the interrupt architecture in the next
release of Windows, codenamed “Longhorn.” For information about these pending
changes, see the white paper “Interrupt Architecture Enhancements in Microsoft
Windows, Codenamed Longhorn,” which is available at
http://www.microsoft.com/whdc/hwdev/bus/pci/MSI.mspx.

Two types of driver routines run at DIRQL:

Understanding Scheduling, Thread Context, and IRQL -- 12

© 2004 Microsoft Corporation. All rights reserved.

 InterruptService routines

 SynchCritSection routines

Function drivers for physical devices usually include these routines; filter and file
system drivers never do.

InterruptService routines must run at DIRQL so that they can handle the current
interrupt without receiving further interrupts from the interrupt controller. A driver’s
InterruptService routine should first determine whether its device is the source of
the interrupt. If so, the routine stops the device from generating further interrupts,
saves any necessary context information, and queues a deferred procedure call
(DPC) to run later at DISPATCH_LEVEL. If the interrupt was generated by some
other device, the routine should simply return FALSE.

A driver’s InterruptService routine runs on the same processor on which its device
interrupted; in turn, its DpcForIsr (or CustomDpc) routine runs on the same
processor as the InterruptService routine that queued it.

InterruptService routines must follow these important rules:

 The InterruptService routine must not return FALSE if its device generated the
interrupt. Such “unclaimed” interrupts can eventually hang or crash the system.

 The InterruptService routine must not access the device hardware when the
device is in a low power state that does not support such access. To prevent such
problems, drivers should disconnect interrupts when transitioning their devices
out of the D0 power state.

InterruptService routines should perform only the tasks that cannot be deferred until
the processor is at a lower IRQL. InterruptService routines that run for longer than a
minimal time can reduce performance across the operating system.

SynchCritSection routines also run at DIRQL. A driver uses a SynchCritSection
routine to access data that is shared with an InterruptService routine. Like
InterruptService routines, SynchCritSection routines should perform only the
minimum set of required tasks: accessing hardware registers, writing data that is
shared with the InterruptService routine, and so forth. For example, a driver might
need a SynchCritSection routine to re-enable device interrupts from its DpcForIsr
routine.

A driver cannot call a SynchCritSection routine directly. Instead, the driver calls
KeSynchronizeExecution, passing a pointer to the SynchCritSection routine.
KeSynchronizeExecution raises the IRQL on the processor to DIRQL for the
device, acquires the device’s interrupt spin lock, and then starts the routine. Before
returning to the caller, KeSynchronizeExecution releases the interrupt spin lock
and lowers the IRQL on the current processor to its previous value.

While running at DIRQL, driver code must conform to the guidelines described in
the section “Guidelines for Running at IRQL DISPATCH_LEVEL or Higher.”

IRQL HIGH_LEVEL

Certain bug-check and non-maskable interrupt (NMI) callback routines run at IRQL
HIGH_LEVEL. Because no interrupts can occur at IRQL HIGH_LEVEL, these
routines are guaranteed to run without interruption.

The lack of interrupts, however, means that actions of the callback routines are
severely restricted. In addition to the restrictions listed in the section “Guidelines for
Running at IRQL DISPATCH_LEVEL or Higher,” the following rules apply to code
that runs at HIGH_LEVEL:

Understanding Scheduling, Thread Context, and IRQL -- 13

© 2004 Microsoft Corporation. All rights reserved.

 The code must not allocate memory.

 The code must not use any synchronization mechanisms.

 The code must not call any routines that run at IRQL<= DISPATCH_LEVEL.

Guidelines for Running at IRQL DISPATCH_LEVEL or Higher

Driver code that runs at IRQL DISPATCH_LEVEL or above must conform to the
following guidelines:

 Use only nonpageable data and code; do not perform any actions that require
paging. The operating system must wait for paging I/O operations to complete,
and such waits cannot be performed at DISPATCH_LEVEL or higher. (For the
same reason, any driver routine that obtains a spin lock must not be pageable.) A
driver can store data that it will access at IRQL>=DISPATCH_LEVEL in the
following locations:

 The device object, usually in the device extension.

 The kernel stack, for small amounts of data that do not need to persist
beyond the lifetime of the function.

 Nonpaged memory allocated by the driver. For large amounts of data, such
as that required for I/O buffers, drivers should use the ExAllocateXxx or
MmAllocateXxx routines, as appropriate.

 Never wait for a nonzero period on a kernel dispatcher object (an event,
semaphore, timer, kernel mutex, thread, process, or file object).

 Do not call routines that convert strings from ANSI to UNICODE, or vice versa.
These routines are in pageable code. Furthermore, most of the RtlXxxString
routines can be called only from PASSIVE_LEVEL. Check the Windows DDK
documentation before calling such routines at or above DISPATCH_LEVEL.

 Never call KeReleaseSpinLock unless you have previously called
KeAcquireSpinLock. Similarly, never call KeReleaseSpinLockFromDpcLevel
unless you have previously called KeAcquireSpinLockAtDpcLevel. You cannot

mix these two types of spin lock calls.

 Never call KeAcquireSpinLock from code that is running at IRQL =
DISPATCH_LEVEL because KeAcquireSpinLock raises the current IRQL to
DISPATCH_LEVEL. Instead, use KeAcquireSpinLockAtDpcLevel, which does

not change the current IRQL.

Changing the IRQL at which Driver Code Runs

In general, the IRQL at which the operating system calls a driver routine is
appropriate for the tasks that such a routine must perform. For example, a
DpcForIsr routine usually must call IoStartNextPacket, which in turn calls the
driver’s StartIo routine. The DpcForIsr, IoStartNextPacket, and StartIo routines
must all be called at DISPATCH_LEVEL to ensure that the I/O operations they
perform complete without pre-emption by other user threads.

In some situations, however, driver code must raise the IRQL so that the driver can
call a routine at DISPATCH_LEVEL. For example, if a driver calls
KeGetCurrentProcessorNumber at IRQL< DISPATCH_LEVEL, a processor
switch could occur between instructions, thus returning the incorrect value to the
caller. Therefore, drivers sometimes must call KeRaiseIrql before calling
KeGetCurrentProcessorNumber.

Although a driver can safely raise the IRQL when necessary, a driver must NEVER
lower the IRQL without first raising it. Furthermore, a driver routine must never

Understanding Scheduling, Thread Context, and IRQL -- 14

© 2004 Microsoft Corporation. All rights reserved.

lower the IRQL below the setting at which it was called. Doing so can disrupt
operations that the caller of the driver routine was relying on to complete atomically;
such a disruption usually causes the system to crash.

Occasionally, however, driver code that runs at IRQL>=DISPATCH_LEVEL must
communicate with code at a lower IRQL. For example, a driver might need to issue
a synchronous device control request to its device after completion of an I/O
operation. IoCompletion routines can be called at IRQL = DISPATCH_LEVEL, but
IoBuildDeviceIoControlRequest must be called at PASSIVE_LEVEL. In this
situation, the driver should use the IoAllocateWorkItem and IoQueueWorkItem
routines (which can be called at IRQL = DISPATCH_LEVEL) to allocate and queue
a work item routine that builds and sends the device control request. The work item
routine will be called in the context of a system thread at IRQL = PASSIVE_LEVEL.

The following are guidelines for changing IRQL:

 Never call KeRaiseIrql with an IRQL that is lower than the current IRQL.

 Never call KeLowerIrql unless you have previously called KeRaiseIrql. The two
calls must occur within the same function. A function must always return at the
same IRQL at which it was called.

 Never call KeLowerIrql with an IRQL lower than the IRQL at which you called
KeRaiseIrql.

Standard Driver Routines, IRQL, and Thread Context

Table 2 is a list of the standard driver routines, the IRQL at which each routine is
called, and the thread context in which the routine runs. In addition to the routines
that are listed here, there are many device-type-specific driver routines that are
called at DISPATCH_LEVEL. For details, see the device-specific documentation in
the Windows DDK.

Table 2. IRQL and Thread Context for Standard Driver Routines

Routine Caller’s IRQL Thread context

AdapterControl DISPATCH_LEVEL Arbitrary

AdapterListControl DISPATCH_LEVEL Arbitrary

AddDevice PASSIVE_LEVEL System

BugCheckCallback HIGH_LEVEL Arbitrary: depends on
state of operating
system when the bug
check occurred

BugCheckDumpIoCallback HIGH_LEVEL Arbitrary: depends on
state of operating
system when the bug
check occurred

BugCheckSecondaryDumpDataCallback HIGH_LEVEL Arbitrary: depends on
state of operating
system when the bug
check occurred

Cancel DISPATCH_LEVEL Arbitrary

ControllerControl DISPATCH_LEVEL Arbitrary

CsqAcquireLock IRQL of the routine that
called IoCsqXxx.
Usually <=
DISPATCH_LEVEL

Arbitrary

CsqCompleteCanceledIrp <= DISPATCH_LEVEL Arbitrary

Understanding Scheduling, Thread Context, and IRQL -- 15

© 2004 Microsoft Corporation. All rights reserved.

Routine Caller’s IRQL Thread context

CsqInsertIrp IRQL of the lock
acquired by
CsqAcquireLock.
Usually <=
DISPATCH_LEVEL

Arbitrary

CsqInsertIrpEx IRQL of the lock
acquired by
CsqAcquireLock.
Usually <=
DISPATCH_LEVEL

Arbitrary

CsqPeekNextIrp IRQL of the lock
acquired by
CsqAcquireLock.
Usually <=
DISPATCH_LEVEL

Arbitrary

CsqReleaseLock IRQL of the lock
acquired by
CsqAcquireLock.
Usually <=
DISPATCH_LEVEL

Arbitrary

CsqRemoveIrp IRQL of the lock
acquired by
CsqAcquireLock.
Usually <=
DISPATCH_LEVEL

Arbitrary

CustomDpc DISPATCH_LEVEL Arbitrary

CustomTimerDpc DISPATCH_LEVEL Arbitrary

DispatchCleanup PASSIVE_LEVEL Non-arbitrary for
FSD, FS filter, and
other highest-level
drivers; arbitrary for
other drivers

DispatchClose (for FSD, FS filters, and
other highest-level drivers)

APC_LEVEL Arbitrary

DispatchClose (for all other drivers) PASSIVE_LEVEL Arbitrary

DispatchCreate PASSIVE_LEVEL Non-arbitrary for
FSD, FS filter, and
other highest-level
drivers; arbitrary for
other drivers

DispatchCreateClose PASSIVE_LEVEL Non-arbitrary for
FSD, FS filter, and
other highest-level
drivers; arbitrary for
other drivers

DispatchDeviceControl (for devices not in
paging path)

PASSIVE_LEVEL Non-arbitrary for FSD
and FS filters;
arbitrary for other
drivers

DispatchDeviceControl (for devices in
paging path)

<= DISPATCH_LEVEL Arbitrary

DispatchFlushBuffers PASSIVE_LEVEL Non-arbitrary for
FSD, FS filter, and
other highest-level
drivers; arbitrary for
other drivers

Understanding Scheduling, Thread Context, and IRQL -- 16

© 2004 Microsoft Corporation. All rights reserved.

Routine Caller’s IRQL Thread context

DispatchInternalDeviceControl Depends on the device
type, but always <=
DISPATCH_LEVEL

Arbitrary

DispatchPnp PASSIVE_LEVEL Arbitrary

DispatchPower (if the
DO_POWER_PAGABLE flag is not set in
the device object)

<= DISPATCH_LEVEL Arbitrary

DispatchPower (if the
DO_POWER_PAGABLE flag is set in the
device object)

PASSIVE_LEVEL Arbitrary

DispatchQueryInformation PASSIVE_LEVEL Non-arbitrary for
FSD, FS filter, and
other highest-level
drivers; arbitrary for
other drivers

DispatchRead PASSIVE_LEVEL Non-arbitrary for
FSD, FS filter, and
other highest-level
drivers; arbitrary for
other drivers

DispatchRead (for devices in paging
path)

APC_LEVEL Arbitrary

DispatchRead and DispatchWrite
routines of drivers in the storage stack

<= DISPATCH_LEVEL Arbitrary

DispatchReadWrite (for devices not in

paging path)

PASSIVE_LEVEL Non-arbitrary for
FSD, FS filter, and
other highest-level
drivers; arbitrary for
other drivers

DispatchReadWrite (for devices in paging
path)

APC_LEVEL Arbitrary

DispatchSetInformation PASSIVE_LEVEL Non-arbitrary for
FSD, FS filter, and
other highest-level
drivers; arbitrary for
other drivers

DispatchShutdown PASSIVE_LEVEL Non-arbitrary for
FSD, FS filter, and
other highest-level
drivers; arbitrary for
other drivers

DispatchSystemControl PASSIVE_LEVEL Arbitrary

DispatchWrite (for devices in paging
path)

APC_LEVEL Arbitrary

DispatchWrite (for devices not in paging
path)

PASSIVE_LEVEL Non-arbitrary for
FSD, FS filter, and
other highest-level
drivers; arbitrary for
other drivers

DllInitialize PASSIVE_LEVEL System or arbitrary

DllUnload PASSIVE_LEVEL Arbitrary

DpcForIsr DISPATCH_LEVEL Arbitrary

Understanding Scheduling, Thread Context, and IRQL -- 17

© 2004 Microsoft Corporation. All rights reserved.

Routine Caller’s IRQL Thread context

DriverEntry PASSIVE_LEVEL System

InterruptService DIRQL for the
associated interrupt
object

Arbitrary

IoCompletion <= DISPATCH_LEVEL Arbitrary

IoTimer DISPATCH_LEVEL Arbitrary

Reinitialize PASSIVE_LEVEL System

StartIo DISPATCH_LEVEL Arbitrary

SynchCritSection DIRQL for the
associated interrupt
object

Arbitrary

Unload PASSIVE_LEVEL System

Interrupting a Thread: Examples

Some simple examples can show what happens when a thread is pre-empted or
interrupted. This section presents a single-processor example and a dual-processor
example.

Single-Processor Example

Figure 1 shows a hypothetical example of thread interruption on a single-processor
system. For the sake of simplicity, the example omits the thread scheduler, clock
interrupts, and so forth.

TIME

IRQL

DIRQL

DISPATCH_LEVEL

PASSIVE_LEVEL Thread A

D1 ISR

D1 DpcForISR

Thread A

D1 Interrupts

APC_LEVEL

1 2 3 4

Figure 1. Thread Interruption on a Single-Processor System

The figure shows how thread execution proceeds over time, as follows:

1. Thread A is running at IRQL PASSIVE_LEVEL.

2. Device 1 interrupts at DIRQL. Thread A is interrupted, even though its quantum
has not yet expired. The system suspends Thread A and runs the
InterruptService (ISR) routine for Device 1. The InterruptService routine stops

Understanding Scheduling, Thread Context, and IRQL -- 18

© 2004 Microsoft Corporation. All rights reserved.

Device 1 from interrupting, saves any data it requires for further processing,
queues a DpcForISR routine, and exits.

3. No additional interrupts are pending at DIRQL for any device. Because deferred
procedure calls (DPCs) run at IRQL DISPATCH_LEVEL, any entries in the
system’s queue of DPC routines will run before Thread A can resume.

In this case, the queue contains the DpcForIsr routine that was queued by the
Device 1 InterruptService routine. Because no further interrupts occur at
IRQL>DISPATCH_LEVEL, the DpcForIsr routine runs to completion.

4. After the DpcForIsr routine exits, the DPC queue is empty and no other higher-
priority threads are ready to run. Therefore, the system resumes running
Thread A, which continues until one of the following occurs:

 Its quantum expires.

 It enters a wait state.

 It exits.

 A higher-priority thread becomes ready to run.

 A hardware interrupt occurs.

 The thread queues a DPC or an APC.

There is no guarantee that Thread A will exhaust its quantum. A thread can be
interrupted or pre-empted any number of times during its quantum.

Multiprocessor Example

Figure 2 shows a hypothetical example of thread interruption on a multiprocessor
system. This example omits clock interrupts and so forth, but it shows the system’s
thread scheduler.

Understanding Scheduling, Thread Context, and IRQL -- 19

© 2004 Microsoft Corporation. All rights reserved.

Processor 0

DISPATCH_LEVEL

PASSIVE_LEVEL

IRQL

DIRQL

Thread A

D1 ISR

D1 DpcForISR

Thread A

D1 Interrupts

APC_LEVEL

Processor 1 TIME

DIRQL

PASSIVE_LEVEL Thread B Thread C

APC_LEVEL

DISPATCH_LEVEL

D1 Interrupts

D1 ISR

1

2 3

4 5

6

7

D1 DpcForISR

8

Thread Scheduler

IRQL

TIME

Figure 2. Thread Interruption on a Multiprocessor System

The figure shows thread execution on two processors, starting at the same time, as
follows:

1. Processor 0 is running Thread A, while Processor 1 is running Thread B.
Both threads run at IRQL=PASSIVE_LEVEL.

2. Device 1 interrupts on Processor 0, so the system raises IRQL on
Processor 0 to DIRQL for Device 1 and runs the Device 1 InterruptService
(ISR) routine. The Device 1 InterruptService routine queues a DpcForIsr
routine. By default, the DpcForIsr routine is added to the queue for the
same processor (Processor 0) on which the InterruptService routine is
running.

3. Because the DpcForIsr routine runs on the same processor as the
InterruptService routine, but at a lower IRQL, it does not start until after the
InterruptService routine exits.

4. Device 1 interrupts again—this time on Processor 1—so the system raises
IRQL on Processor 1 to DIRQL for Device 1 and runs the Device 1
InterruptService (ISR) routine on Processor 1. The Device 1
InterruptService routine queues a DpcForIsr routine to Processor 1 (the
default behavior). The DpcForIsr routine starts on Processor 1 after the
InterruptService routine exits.

Understanding Scheduling, Thread Context, and IRQL -- 20

© 2004 Microsoft Corporation. All rights reserved.

5. The same DpcForIsr routine is now running on two processors at the same
time, in response to two different interrupts from the same device. The
driver must use spin locks to protect shared memory that the routines might
access. In this case, the DpcForIsr routine on Processor 0 acquires the lock
first, so Processor 1 spins while waiting for the lock.

6. The DpcForIsr routine on Processor 0 releases the lock, completes its
work, and exits. The system now runs the next ready thread on
Processor 0—in this case, Thread A.

7. After the DpcForIsr routine on Processor 0 releases the lock, the DpcForIsr
routine on Processor 1 acquires the lock and performs its tasks. After it
exits, the system’s thread scheduling code runs to determine which thread
to run next.

8. When the thread scheduler exits, no additional DPCs have been queued,
so the highest-priority ready thread (Thread C) runs on Processor 1.

Testing for IRQL Problems

Errors related to IRQL are common and often result in a system crash with the bug
check code IRQL_ NOT_LESS_OR_EQUAL. The Windows DDK includes several
features that can help you to determine the IRQL at which driver code runs and to
find IRQL-related problems:

 Routines and debugger commands that return the current IRQL

 The PAGED_CODE macro

 Forced IRQL checking in Driver Verifier

Techniques for Finding the Current IRQL

You can get the IRQL at which a processor is currently operating in two ways:

 Call the KeGetCurrentIrql routine.

 Use the !irql kernel-mode debugger extension command.

A driver can call KeGetCurrentIrql to get the IRQL at which the current processor
is operating. This routine can be called from any IRQL. A driver can also determine
whether it is operating in a critical region by calling KeAreApcsDisabled (available
on Windows XP and later releases).

During debugging, you can use the !irql kernel-mode debugger extension command
to find the IRQL at which a processor is operating. This command returns the IRQL
at which the processor was operating immediately before the debugger became
active. By default, the command returns the IRQL for the current processor, but you
can also specify a processor number as a parameter. This command is available on
Windows Server™ 2003 and later releases.

PAGED_CODE Macro

The PAGED_CODE macro can help you find IRQL problems that are related to
page faults. If the processor is running at or above DISPATCH_LEVEL when the
macro is called, the system will ASSERT. By placing the macro at the beginning of
each driver routine that contains or calls pageable code, you can determine whether
the routine performs actions that are invalid at the IRQL at which it is called.

However, the macro cannot help you find IRQL problems in code that subsequently
raises IRQL. For example, if the processor is running at PASSIVE_LEVEL when the
PAGED_CODE macro runs, but the routine later calls KeAcquireSpinLock (which

Understanding Scheduling, Thread Context, and IRQL -- 21

© 2004 Microsoft Corporation. All rights reserved.

raises IRQL to DISPATCH_LEVEL), the macro does not cause the system to
ASSERT. You must use the Windows tool Driver Verifier to find such errors.

Driver Verifier Options

Driver Verifier (verifier.exe) performs numerous checks related to IRQL. By default,
Driver Verifier checks for certain errors in calls to KeRaiseIrql and KeLowerIrql,
memory allocation at an invalid IRQL, and acquiring or releasing spin locks at an
invalid IRQL.

In addition, Driver Verifier also can perform forced IRQL checking. When you
choose this option, Driver Verifier marks all pageable code and data (including the
system’s pageable memory pool, code, and data) whenever the driver requests a
spin lock, calls KeSynchronizeExecution, or raises the IRQL to
DISPATCH_LEVEL or higher. If the driver tries to access any of the pageable
memory, Driver Verifier issues a bug check.

When forced IRQL checking is enabled, Driver Verifier gathers IRQL-related
statistics, including the number of times the driver raised IRQL, acquired a spin
lock, or called KeSynchronizeExecution. It also counts the number of times that
the operating system paged the contents of memory to disk. Driver Verifier stores
these statistics in global counters. You can display their values by using the Driver
Verifier command line or graphical user interface, or by using the !verifier extension
in the debugger. (The Driver Verifier command syntax depends on the version of
Windows that is installed; see the Windows DDK for details.) Forced IRQL checking
is not available for graphics drivers.

If your driver performs DMA, you should also use Driver Verifier’s DMA verification
option. This option checks for calls made to DMA routines at the wrong IRQL.

Best Practices for Drivers

To avoid problems related to thread context and IRQL, adopt these practices:

 Unless you are certain that a driver routine is called in a particular thread context,
never make any assumptions about the contents of the user-mode address
space.

 Know what driver routines can be called at IRQL>=DISPATCH_LEVEL and
understand the restrictions that running at this level places on driver code.

 Store any data that can be accessed at IRQL>=DISPATCH_LEVEL in nonpaged
memory. Possible locations are the device extension, a driver-allocated space in
nonpaged pool memory, or the kernel-mode stack.

 Use Driver Verifier, the PAGED_CODE macro, and debugger extensions to help
find IRQL-related bugs in drivers.

 Test drivers on as many hardware configurations as possible.

Call to Action and Resources

 Follow the best practices outlined in this paper.

 For more information about IRQL issues for drivers, see the companion paper
“Locks, Deadlocks, and Synchronization,” at
http://www.microsoft.com/whdc/hwdev/driver/LOCKS.mspx.

 For additional information about Windows driver development, see Windows
Hardware and Driver Central at
http://www.microsoft.com/whdc.

http://www.microsoft.com/whdc/hwdev/driver/LOCKS.mspx
http://www.microsoft.com/whdc

Understanding Scheduling, Thread Context, and IRQL -- 22

© 2004 Microsoft Corporation. All rights reserved.

