

Simple implementation of deletion from
open-address hash table

Maxim A. Kolosovskiy

Altai State Technical University, Russia
maxim.astu@gmail.com

Abstract

Deletion from open-address hash table is not so easy as deletion from chained hash
table, because in open-address table we can’t simply mark a slot containing deleted key
as empty. Search for keys may become incorrect. The classical method to implement
deletion is to mark slots in hash table by three values: “free”, “busy”, “deleted”. That
method is easy to implement, but there are some disadvantages. In this article we
consider alternative method of deletion keys, where we avoid using the mark “deleted”.
The article contains the implementation of the method in Java.

1. Introduction

Hash table is an effective data structure to store dynamic set. Hash tables support

following operations with that set:

 addition new element into the set;

 searching element in the set;

 deletion element from the set.

Under some assumptions, these operations can be executed in O(1).

The simplest implementation of such data structure is an ordinary array, where k-

th element corresponds to key k. Thus, we can execute all operations in O(1). It is

impossible to use this implementation, if the total number of keys is large.

We can reduce the amount of used memory, if instead of used key k as array index

we use value of function h(k). This function is called hash function, the value h(k) is

called hash value of key k. Using of such functions is the main idea of hash tables.

Thus, the size of array equals the number of possible values of hash function. There are

many ways to construct a hash function, but in this article we will use very simple

function: h(k) = |k % m|, where m – size of array.

We’ve reduced the amount of memory, but have obtained the following problem.

If we work with two or more keys, which have the same hash value, these keys map to

the same cell in the array. Such situations are called collisions. There are two basic

ways to implement hash tables to resolve collisions:

 chained hash table;

 open-address hash table.

In chained hash table each cell of the array contains the linked list of elements,

which have corresponding hash value. To add (delete, search) element in the set we add

(delete, search) to corresponding linked list. Thus, time of execution depends on length

of the linked lists.

2. Open-address hash tables

In open-address hash table we store all elements in one array and resolve

collisions by using other cells in this array. To perform insertion we successively

examine some slots in the table, until we find an empty slot or understand that the key is

contained in the table. To perform search we execute similar routine.

The sequence for examining slots depends on added (searched) key and method,

which we use to determine a next slot to be examined. Denote this sequence in the

following way: h(k) = h(k, 0), h(k, 1), h(k, 2) …. It is called probe sequence. There are

several ways to build these sequences:

- linear probing

h(k, i) = (h(k) + C i) % m, where C is constant.

- quadratic probing

h(k, i) = (h(k) + C1 i + C2 i2) % m, where C1, C2 are constants.

- double hashing

h(k, i) = (h(k) + h’(k) i) % m, where h’(k) is second hash function.

In our examples we will use the linear probing with constant C = 1. In our

implementation we must use the linear probing, but may change the value of constant C.

Lets look at the implementation of open-address hash table, which can add and

search keys (a – array for storing keys, ex – array, which signs cells in array a as empty

or busy)
class HashTable {
 final int SIZE = 1000000; // size of the table
 long[] a = new long[SIZE];
 boolean[] ex = new boolean[SIZE];
 // adds new key. Returns false, if key is contained already
 boolean add(long key) {
 int hash = (int) Math.abs(key % SIZE);
 for (; ex[hash]; hash = (hash + 1) % SIZE)
 if (a[hash] == key)
 return false;
 ex[hash] = true;
 a[hash] = key;
 return true;
 }
 // returns true, if key is contained in the table
 boolean contains(long key) {
 int hash = (int) Math.abs(key % SIZE);
 for (; ex[hash]; hash = (hash + 1) % SIZE)
 if (a[hash] == key)
 return true;
 return false;
 }
}

3. Deletion keys from the table

Unlike chained hash table, open-address table doesn’t use any linked lists. But we

can imagine, that there are implicit lists, which can contain keys with different hash

values (unlike lists in chained tables, where each list contains only keys with the same

hash value). Each busy cell in the array is the beginning of the list in open-address table.

Busy cell in the array (in open-address table) can be contained in some lists. It is the

main obstacle to delete elements from these implicit lists, because we cannot mark

deleted slot as empty – it will destroy the lists.

The classical solution for saving these lists in correct state is to mark deleted slot

by special value “deleted”. We can add new key into this cell, but cannot interrupt a

search, if we reach such cell. The disadvantage of this method is too long lists, which

we obtain after many deletions, because such deletion doesn’t reduce sizes of lists. In

the worst case we can have actually empty table (with many slots marked “deleted”),

but search may take a lot of time, because we should examine all “deleted” slots in the

probe sequence.

In this paper we propose another method to delete keys from open-address hash

table. After deletion of key some gaps are appeared in lists, which contain deleted slot.

Therefore, we will compress lists, which contain deleted slot, so these lists remain in

correct state. Deleting routine divides into two parts:

- search deleted key and mark a slot as empty;

- compress all lists, which include deleted key.

The first part isn’t difficult, it is very similar to searching routine (see code for

clarifications). Let’s consider second part.

After marking deleted slot as empty we continue to pass the probe sequence until

reach a free slot. We are keeping index of empty slot, originally it equals index of

deleted slot (the variable free in our implementation). If the current element in the

sequence can be moved to a free cell, we move it and change the variable free, because

the current slot becomes free.

When we can move the current element to the free cell? We can move the current

element, if the free cell and the current element can be in the same list, i.e. when we

were adding the current element, we could add it in this free cell, but this cell was busy

and we continued searching for a free cell.

To make this decision we use the array ex and the variable off. off is keeping offset

from the free cell to the current element. (ex[i]-1) equals the amount of busy slots,

which we skipped, while were adding key a[i] (see the code of method add). So the

condition to determine to move or not the key a[i] is ex[i] > off.

Let’s look at the final implementation of hash table.
class HashTable {
 final int SIZE = 1000000; // size of the table
 long[] a = new long[SIZE];
 int[] ex = new int[SIZE];
 // adds new key
 boolean add(long key) {
 int i = h(key), j = 1;
 for (; ex[i] != 0; i = (i + 1) % SIZE, j++)
 if (a[i] == key)
 return false;
 ex[i] = j;
 a[i] = key;
 return true;
 }
 // returns true, if key is contained in the table
 boolean contains(long key) {
 for (int i = h(key); ex[i] != 0; i = (i + 1) % SIZE)
 if (a[i] == key)
 return true;
 return false;
 }
 // removes key from the table
 boolean remove(long key) {
 for (int i = h(key); ex[i] != 0; i = (i + 1) % SIZE)
 if (a[i] == key) {
 ex[i] = 0;
 compress(i);
 return true;
 }
 return false;
 }
 // compresses lists

 void compress(int free) {
 int i = (free + 1) % SIZE, off = 1;
 for (; ex[i] != 0; i = (i + 1) % SIZE, off++)
 if (ex[i] > off) {
 // move current element
 a[free] = a[i];
 ex[free] = ex[i] - off;
 // mark current slot as free
 ex[i] = 0;
 off = 0;
 free = i;
 }

 }
 int h(long key) {
 return (int) Math.abs(key % SIZE);
 }
}

4. Conclusion

In this paper we obtain implementation of data structure, which stores dynamic

set. It is possible to add, search and remove elements in O(1). We can see, that the

number of iterations for deletion equals the number of iterations for addition and

searching, because in all these routines we should find a free slot.

The disadvantage of this implementation is obligation to use the linear probing,

which can produce primary clustering. So we should choose hash function more

attentive.

References

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein.

Introduction to algorithms, 2nd Edition. The MIT Press, 2001, 1180 p.

