
© 2003 Microsoft Corporation. All rights reserved.1

Ian Service

Software Design Engineer

Reliability

Ianserv@microsoft.com

Interactive Session:
Software Tracing

mailto:Ianserv@microsoft.com

© 2003 Microsoft Corporation. All rights reserved.2

Contents

Overview

Recap on what Software Tracing is

How Software Tracing works

Build Environment

Using your driver with Tracing

Customizing Tracing

▪ Formatting

▪ Trace Macros

Debugging Tracing

Tracing and the Kernel Debugger

Questions and hands on exercises with the demo driver or own
code if preferred

© 2003 Microsoft Corporation. All rights reserved.3

Overview

This session/lab will provide an overview of software tracing, how it works, and
an introduction to some of its advanced features; The session will also cover
how you can use tracing as a problem-solving tool on production systems, the
advantages of common levels and standards for tracing, and guidelines on
writing effective trace messages

▪ Using the standard DDK examples to show the use of the different tools

▪ Demonstrating the differences in trace capability on different versions of Windows

▪ Converting an existing driver with debug calls to tracing when on the free build

▪ Mixing different trace sources, multiple drivers, and mixed user mode
and driver traces

▪ Making use of different trace log options

▪ Debugging tracing problems

▪ Using the kernel debugger tracing extension for live and crash dump access to traces

▪ Controlling tracing by using different parameters, for example, levels instead of
bit flags

▪ Adding new types to tracing

▪ Making use of hex dumps and other special formats in tracing

▪ Mixing software tracing with other tracing

© 2003 Microsoft Corporation. All rights reserved.4

Recap On “What Is Software Tracing?”

Assumption is everyone knows about “Software Tracing”

Software Tracing is

▪ An alternative to using a “checked build” by including “debug prints” I in the
released version of the code

▪ Efficient when generating traces, and minimal overhead when not enabled

▪ Minimal HeisenBug effect

▪ Selective, in that it may be enabled on a component basis and may be
enabled at different levels

▪ Dynamic in that it can be enabled or disabled without stopping/restarting a
component, and especially without rebooting the OS

▪ Flexible, as it can adapt and take advantage of existing instrumentation

▪ Easy to implement, as automated as possible on the ground that “it has to
be as simple as printf, or developers won’t use it”

© 2003 Microsoft Corporation. All rights reserved.5

Recap On “What Is Software Tracing”

Software Tracing Comprises

▪ A preprocessor which extracts trace entries from source files and creates
macro’s to perform tracing

▪ These Macros generate code that

▪ Store trace decoding information in the PDB

▪ controls tracing with your driver

▪ Marshal’s your trace arguments and sends them to a logger

▪ A system concept known as a logger which accepts your trace information
and “logs it” appropriately

▪ Key point is that the “where” is not in the callers code. Trace output can be
redirected to different destinations without a code change

▪ Viewer programs which accept the logged output and combine it with the
decode information, and display it

▪ Key point is that all the formatting is done after the fact, not in the
execution path

© 2003 Microsoft Corporation. All rights reserved.6

Demonstration

TraceDrv is a simple example that’s inside the DDK

We will use this as an example at several points

▪ To save demonstration time we will also use the simple application
“DocExample”

▪ It is user mode but the features of user mode tracing are identical

TraceDrv can be built to be Windows XP and later or Windows 2000
and later compatible

▪ Sources file is a good example of this

▪ However for best Windows 2000 operation I strongly recommend the use
of WDF

We will build TraceDrv and execute it

▪ Let's go through the whole process with TraceDrv

▪ Build

▪ Execute

▪ Trace

© 2003 Microsoft Corporation. All rights reserved.7

Build Environment

Next few slides will give an explanation of what is going on in the build
environment as regards tracing

A view of the individual files online with examples to show the
significant parts

▪ Sources file

▪ This is how we make sure that tracing is invoked for the project

▪ Makefile rules for tracing

▪ TraceWPP – the Trace PreProcessor

▪ What it does and how it can be controlled

▪ Build tool changes

▪ Binplace and how placefil.txt is used

© 2003 Microsoft Corporation. All rights reserved.8

Tracing And The Build Environment – Sources File

The Sources file is the key file for defining how to build your project

RUN_WPP is the function used in generating software tracing

▪ Simplest form is

▪ RUN_WPP=$(SOURCES)

▪ Usually that’s all that is needed, but there many options

▪ See the TRACEWPP slide for detailed options

Under the covers

▪ Makefile.def has some rules that cause TraceWPP to be executed before
anything else

▪ Sets up to use the default templates (TPL files) as input

▪ Defines the compile variable RUN_WPP

▪ Generates TMH files

© 2003 Microsoft Corporation. All rights reserved.9

Tracing And The Build Environment – TraceWPP Options

Tracewpp is the simple preprocessor that
runs as part of the build environment

▪ Input: Source file(s) plus
template files

▪ Output: Trace Message File(s)

Table shows all of the significant options

▪ Mostly the defaults are fine, for driver
writers “–km” is always required

Option Description Build
Default

Default

-odir:path Path for TMH
files

$(O) Current dir

-km Tracing for a
kernel
component

User
Mode

User
Mode

-dll Tracing for a
DLL

Not a DLL Not a DLL

-cfgdir:path Path for the
config and
template files

DDK
template
path

Current dir

-ini:path Specify a extra
config file

None None

-ext:.ext1.ext2 Types of files to
scan

.c.c++.cpp

.cxx
.c.c++.cpp
.cxx

-scan:file Scans the file
for config. info

None None

-func:desc Specifies the
trace function

See
localwpp

See
Localwpp

-defwpp:path Override for
localwpp.ini

Config
path

Config
Path

© 2003 Microsoft Corporation. All rights reserved.10

Tracing And The Build Environment – More Tracewpp Options

Some extra options

▪ Just for completeness

Option Description Build
Default

Default

-v4 Outputs trace
operation

None none

© 2003 Microsoft Corporation. All rights reserved.11

Tracing And The Build – Templates (TPL files)

Template files are the key to generating the Trace Message Headers
(TMH) files

▪ TPL file + your trace statements → TraceWPP → TMH file

▪ TPL files simply define the c/c++ macros to be created

Defaultwpp.ini – this defines all the basic types that tracing supports

▪ We will come back to this later to show how to add types

Km-default.tpl

▪ Is the first template that is scanned when you build a driver

▪ Invoked by the –km switch

▪ If u use Windows 2000 mode its actually km-w2k.tpl that is called first

▪ These “includes” all the other templates

© 2003 Microsoft Corporation. All rights reserved.12

Tracing And The Build – Trace Header Files (.TMH Files)

Trace Message Header (.TMH) files

▪ Each source which includes tracing has a #include “file.tmh”

▪ Where file is the same file as the source, without the extension replaced

▪ This defines all the macros for this particular source module

▪ For example every trace statement in the source file will have a line in the trace
macro defined within “file.tmh”

▪ Each identified by line number inside a large macro

Let's look a simple Trace statement

▪ DoTraceMessage(Unusual, "Hello, %s %d", "World", i);

What does it expand into logically

▪ If (“Unusual” is enabled) {

Add format information to the PDB

Call WmiTraceMessage(and pass in the arguments)

}

And let’s look at the same statement in the TMH file

© 2003 Microsoft Corporation. All rights reserved.13

Tracing And The Build – Trace Message Files (.TMF Files)

Trace Message Files (.TMF files)

▪ These are the the decoder files for trace logs

▪ This is actually the information that is contained in the PDB, but extracted so it
can be used directly

▪ There is one (or more) TMF file per source

▪ There is also a TMC file which reflects the control Guid information

▪ At the end of a Build command the tool binplace runs

▪ Looks for your driver in placefil.txt

▪ If it finds it, it

▪ Places your driver executable in the designated directory

▪ Places your full symbols in Symbols.Pri

▪ Places your stripped symbols in Symbols

▪ Places your TMF files in Symbols.Pri\TraceFormat

▪ This is ONLY if its in placefil.txt

▪ As an alternative tracepdb –f driver.pdb will create the TMF files

▪ Let’s take a look at the TraceDrv TMF files

© 2003 Microsoft Corporation. All rights reserved.14

How Tracing Works – Internals

Explain Event Tracing for windows (ETW)

▪ Introduced in Windows 2000

▪ Win32 APIs and Driver APIs

▪ Uses

▪ ETW core concepts

▪ Loggers

▪ Explain how logger abstraction works

▪ Limits, and types of loggers

▪ Explain relationship of tracing to loggers

▪ Loggers for drivers

▪ Loggers for drivers and applications

Online use the simple commands to see the system operation

© 2003 Microsoft Corporation. All rights reserved.15

How Tracing Works – Win32 APIs

Just for completeness the relevant user mode APIs are

Collection Control APIs

▪ StartTrace(), StopTrace(), QueryTrace(), EnableTrace(), UpdateTrace(),
QueryAllTraces()

Trace Consumer API’s

▪ OpenTrace(), CloseTrace(), ProcessTrace(), SetTRaceCallback(),
RemoveTraceCallBack()

TraceProviderApi’s

▪ TraceEvent(), TraceEventInstance(), RegisterTraceGuids(),
UnRegisterTraceGuids(), TraceMessage(), TraceMessageVa()

© 2003 Microsoft Corporation. All rights reserved.16

How Tracing Works – Driver Functions

Functions which are relevant to tracing, that driver may use

Collection Control APIs

▪ WmiQueryTraceInformation()

Trace Provider APIs

▪ IoWmiRegistrationControl(), IoWMIWriteEvent*(), WMiTraceMessage**(),
WmiTraceMessageVa** ()

* Used with the WNODE_FLAG_TRACED_GUID to distinguish it from other
WMI usage

** Windows XP and later only

© 2003 Microsoft Corporation. All rights reserved.17

How Tracing Works – Standard Kernel Logger

The operating system has some built in logging

▪ Started in Windows 2000 has been extended in every release.

▪ Process Start/Stop, Thread Start/Stop, Registry, File operations, disk
operations, network operations, etc.

This by itself can sometimes be useful to you as a developer

▪ Combined with your tracing it can be even more useful

The decoder file (system.tmf) is in the tools\tracing directory in the DDK

▪ Take a look inside, it’s a special case TMF files but the format is the same

Demo/Hands on trial

Run Traceview -> Add Provider –> Kernel Logger

© 2003 Microsoft Corporation. All rights reserved.18

How Tracing Works – Tools

Logman

▪ Standard control tool, starts stops traces, etc.

▪ Runs on Windows XP and later, ships “in the box” in Windows XP Pro and onward

▪ In SP2 will be added to Home edition

Tracelog

▪ Original prototype control tool

▪ Runs on Windows 2000 and later (But recommend logman for
non-Windows 2000 systems)

▪ Available in the support CD, DDK and SDK

▪ Source of the original version In the SDK

▪ Good information on how to control traces

TraceFmt

▪ Command line trace formatting tool

▪ Relies on traceprt.dll

▪ Available in the support CD, DDK and SDK

Tracepdb

▪ Extracts Trace Message Information from PDBs, creates TMF files

▪ Available in the support CD, DDK, and SDK

© 2003 Microsoft Corporation. All rights reserved.19

How Tracing Works – Tools Continued

Traceview

▪ GUI based trace viewer

▪ Includes functionality for control and for extracting TMF information

▪ “One stop shopping” for developers

▪ Uses Traceprt.DLL

▪ Ships in the DDK

WmiTrace KD extension

▪ Works with the debugger to display traces from the system memory

▪ Live, or from crash dumps.

▪ Uses traceprt.dll

▪ Ships with the debugger

© 2003 Microsoft Corporation. All rights reserved.20

Using Your Driver With Tracing

Thinking about when/where to add trace points

When to release your trace decode files

Levels of tracing

▪ Tracing adapts to different styles

▪ But a common model can be helpful

Combining tracing from different components

▪ Drivers and user components for example

Online Exercise

▪ Run Tracedrv and the Trace Control Program to the same log file

© 2003 Microsoft Corporation. All rights reserved.21

Using Tracing – Standard levels

The definitions from SDK\inc\evntrace.h

//

// Predefined Event Tracing Levels for Software/Debug Tracing

//

//

// Trace Level is UCHAR and passed in through the EnableLevel parameter

// in EnableTrace API. It is retrieved by the provider using the

// GetTraceEnableLevel macro. It should be interpreted as an integer value

// to mean everything at or below that level will be traced.

//

// Here are the possible Levels.

//

#define TRACE_LEVEL_NONE 0 // Tracing is not on

#define TRACE_LEVEL_CRITICAL 1 // Abnormal exit or termination

#define TRACE_LEVEL_FATAL 1 // Deprecated name for Abnormal exit

#define TRACE_LEVEL_ERROR 2 // Severe errors that need logging

#define TRACE_LEVEL_WARNING 3 // Warnings such as allocation failure

#define TRACE_LEVEL_INFORMATION 4 // Includes non-error cases(e.g.Entry-Exit)

#define TRACE_LEVEL_VERBOSE 5 // Detailed traces from intermediate steps

#define TRACE_LEVEL_RESERVED6 6

#define TRACE_LEVEL_RESERVED7 7

#define TRACE_LEVEL_RESERVED8 8

#define TRACE_LEVEL_RESERVED9 9

© 2003 Microsoft Corporation. All rights reserved.22

Debugging Tracing

What to do when your tracing doesn’t do what you expect

▪ Is it your code

▪ Well that would be the last thing to suspect

▪ Or is it Tracing

▪ None of us fully trust code that is generated by anyone else do we?

We often get asked the same thing and so we have a few techniques
that help us to resolve issues

© 2003 Microsoft Corporation. All rights reserved.23

Debugging Tracing – Using Internal Debugging Features

Use of internal Tracing debug features

▪ Trace state changes

▪ This is the most convenient to figure out if your tracing is being enabled or
the flags you expect are being set

▪ Incorrect GUID’s or wrong levels/flags are very common

▪ #define WppDebug(a,b) DbgPrint b

▪ Or any other flavor of print you prefer

▪ This causes the tracing subsystem to output some status messages on
control transitions

▪ Debug Prints

▪ This is a convenient way to tell if your trace statements are malformed

▪ #define WPP_DEBUG(a,b) DbgPrint b

▪ Or again any flavor of print you prefer

▪ This causes all your trace statements to be output using the debug prints
selected

▪ NB if you use custom trace formats this does not work well

© 2003 Microsoft Corporation. All rights reserved.24

Debugging Tracing – Other Techniques

Well was the code that Tracing generated correct?

▪ Two good ways to check

▪ Viewing the actual code in a pre-processor file file

▪ Use nmake file.pp to generate it

▪ Viewing TMH files

▪ We looked at these earlier but if you are really puzzled well, all the
information is here

Let’s take a quick look at these files online

© 2003 Microsoft Corporation. All rights reserved.25

Customizing Tracing – Formatting The Trace Output

Tracing has a standard format, and usually we recommend
that it be used

▪ Allows different traces to be viewed together

Sometimes it is convenient to modify it, and there are
several mechanisms

Build time

▪ Redefine the prefix, or add a suffix

Format time

▪ Override the prefix, or suppress it entirely

© 2003 Microsoft Corporation. All rights reserved.26

Customizing The trace Output – Using A Prefix/Suffix

By default all trace statement have a

▪ Standard Prefix, known as “%0” which stands for

[CPU#]ProcessID.ThreadID::Timestamp [FileName_line]

▪ A null Suffix

A good example of all of these is the Function Entry/Exit tracing

Here is an example of the code you might write

#include "mytrace.h"

#include "example2.tmh"

examplesub(int x)

{

FuncEntry();

// do some real work

FuncExit();

}

© 2003 Microsoft Corporation. All rights reserved.27

Customizing The Trace Output – Using A Prefix/Suffix

Mytrace.h is the example file
#define WPP_CONTROL_GUIDS \

WPP_DEFINE_CONTROL_GUID(CtlGuid,(a044090f,3d9d,48cf,b7ee,9fb114702dc1), \

WPP_DEFINE_BIT(FuncTrace))

// begin_wpp config

// FuncEntry();

// FuncExit();

// USESUFFIX(FuncEntry, " Entry to %!FUNC!");

// USESUFFIX(FuncExit, " Exit from %!FUNC!");

// end_wpp

// Map the null level used by Entry/Exit to TRACE_LEVEL_VERBOSE

#define WPP__ENABLED() WPP_LEVEL_ENABLED(FuncTrace) WPP_CONTROL(WPP_BIT_ ## FuncTrace).Level >=
TRACE_LEVEL_VERBOSE

#define WPP__LOGGER() WPP_LEVEL_LOGGER(FuncTrace)

Then you make your run_wpp line in sources look like following
RUN_WPP=$(SOURCES) -scan:mytrace.h

© 2003 Microsoft Corporation. All rights reserved.28

Customizing Tracing – Converting Your Debug Prints

Probably everyone already has some sort of debug print
code, likely organized in a way that they regard as perfect

▪ Can we keep that code and use it as debug prints in the checked
build – Yes

▪ Can we convert it to tracing in the free build – Yes

Let’s assume you use KdPrintEx
ULONG KdPrintEx ((

IN ULONG ComponentId,

IN ULONG Level,

IN PCHAR Format,

. . . [arguments]

)) ;

Which is fairly similar to the normal trace macro, with the
addition of that ComponentID

▪ Let’s treat the component ID as NULL

© 2003 Microsoft Corporation. All rights reserved.29

Customizing Tracing – Example Converting KdPrintEx

1. Get a GUID for the component using guidgen or uuidgen (see note b)

2. Define your debug flags and GUID in a convenient header file

3. For each file with a debug print include that header file and a file called
filename.tmh
#ifn DBG

#include “MyTracefile.h”

#include “filename.tmh”

#endif

4. Add a WPP_INIT_TRACING call in your DriverEntry routine
Wrap in a #ifndef DBG conditional so it is not used by checked build

5. Add a WPP_CLEANUP call to your DriverUnload routine
Wrap in a #ifndef DBG conditional so it is not used by checked build

6. In the SOURCES file add

RUN_WPP=$(SOURCES) –km –func:KdPrintEx((NULL,LEVEL,MSG,…))

Wrap in an ! If !(FREEBUILD) so it is not called by the checked build

Note:

a. Component ID is NULL’ed out in the “func” prototype

b. Really we don’t need the Component ID anyway as the Component GUID replaces it

© 2003 Microsoft Corporation. All rights reserved.30

Customizing Tracing – Special Trace Formats

Software Tracing has a number of special formats built in

▪ Downside to these is they DO NOT work if you rebuilt your trace statements
as debug prints

▪ So use carefully

▪ In general they have the form %!name!

▪ STATUS - prints out a value as the NTSTATUS name

DoTraceMessage("NTSTATUS is %!STATUS!\n",ntStatus);

▪ WINERROR - prints out a value as the WinError name

DoTraceMessage(“WINERROR is %!WINERROR!\n",myerror);

▪ HRESULT - prints out a value as the HRESULT name

▪ IPADDR - prints out a value as the IP (v4) style Address

▪ GUID - prints out a value formatted as a GUID format

© 2003 Microsoft Corporation. All rights reserved.31

Customizing Tracing – Macros

Trace macros cannot use the C pre-processor – how to customize

▪ Show how to define prefix/suffix

▪ Show how to define PRE and POST macros

To demonstrate: Modify example to add an ASSERT style trace macro

© 2003 Microsoft Corporation. All rights reserved.32

Tracing And The Kernel Debugger

There are two ways to use the kernel debugger with tracing

▪ Dynamic tracing, similar to DbgPrint

▪ But not the same!

▪ Post Mortem Tracing

Settings

▪ For all of this the kernel debugger used the KD extension wmitrace.dll

▪ Sort of acts like tracefmt/traceview and uses traceprt.dll

▪ Before starting the debugger environment variables should be set

▪ Set TRACE_FORMAT_SEARCH_PATH=path

▪ This can be done inside the extension

▪ Tracelog/Logman settings

▪ “-kd” for direct delivery of trace buffers to the debugger

▪ “-rt B –age -1” for efficient in memory buffering for post mortem use

© 2003 Microsoft Corporation. All rights reserved.33

Tracing And The Kernel Debugger

Limitations

▪ Trace buffers between the target and the debugger host are limited to
3K in dynamic tracing

▪ Dynamic Tracing is buffered so it does not synchronize with real
Debug prints

When to use

▪ When you need to debug without having a debug version

▪ Bugs go away when you use debug prints

▪ Post mortem taces can help

▪ But this is NOT a replacement for dbgprint!

▪ It is just another tool for you

© 2003 Microsoft Corporation. All rights reserved.34

© 2003 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.

