
Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Streaming Store Instructions in the
Intel® Xeon Phi™ coprocessor

New “streaming stores” instructions introduced in B0

Si:

Ex: VMOVNRNGOAPS/VMOVNRNGOAPD

• These instructions are intended to speed up

performance in the case of vector-aligned

unmasked stores in streaming kernels where we

want to avoid wasting memory bandwidth by being

forced to read the original content of entire cache

line from memory when we overwrite their whole

content completely

1

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Compiler Behavior

Starting with Composer XE 2013 Update 1

compiler, the compiler default has been

changed to generate VMOVNRNGO instructions

for streaming stores under certain situations

• User can provide hints to the compiler on when to

generate these

• See next slide for details

External option to disable generating these

instructions:

-opt-streaming-stores never

2

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Heuristics for streaming stores
Compiler generates streaming store instructions only when:

• Compiler is able to vectorize the loop and generate an aligned unit-strided vector unmasked store:

– If the store accesses in the loop are aligned properly, user can convey alignment information using pragmas/clauses

– Ex: Use #pragma vector aligned OR !DEC$ vector aligned before loop to convey alignment of all memory refs inside loop
including the stores

– In some cases, even when there is no pragma to align the store-access, the compiler may align the store-access at
runtime using a dynamic peel-loop based on its own heuristics

– Based on alignment analysis, compiler could prove that the store accesses are aligned (at 64 bytes)

– Store has to be aligned and be writing to a full cache line (vstore – 64 bytes, no masks)

– Note that it is the responsibility of the user to align the data appropriately at allocation time using align clauses,
aligned_malloc, “-align array64byte” option on Fortran, etc.

• Vector-stores are classified as nontemporal using one of:

– User has specified a nontemporal pragma on the loop to mark the vector-stores as streaming

– #pragma vector nontemporal (in C/C++) OR !DEC$ vector nontemporal (in F) before loop to mark aligned stores

– Or communicate nontemporal-property of store using “#pragma vector nontemporal A” where “A[i] = …” is the store
inside the loop

– User has specified the compiler option “-opt-streaming-stores always” to force marking ALL aligned vector-stores as
nontemporal

– Has the implicit effect of adding the nontemporal pragma to all loops that are vectorized by the compiler in the
compilation scope

– Using this option on KNC has few negative consequences since the data remains in the L2 cache (just not in the L1
cache) – so this option can be used if most aligned vector-stores are nontemporal

– Using this option on Xeon for cases where some accesses are temporal can cause significant performance losses since
the streaming-store instructions on Xeon bypass the cache altogether

– Fully automatic heuristic that will kick in when the loop has a constant large trip-count (known to the compiler)

– Compiler will also generate a memory-fence after the loop in this case

On KNC, compiler generates streaming stores if conditions listed above are satisfied

Study the output of –vec-report6 to check whether store is aligned and whether streaming stores are generated

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Streaming Stores Code Generation

No compiler-inserted prefetches will be generated for the store cache-line

• Prefetches would cause a read of the cache-line before the store, negating the bandwidth-saving
benefits of streaming stores

Compiler also generates a L2 clevict instruction for the store cache-line immediately after the store

• Use option –opt-streaming-cache-evict=0/1/2/3 to control the clevicts for performance tuning

• The option specifies cache eviction level when streaming loads/stores are used:

 –opt-streaming-cache-evict =0 implies no clevict generated

 –opt-streaming-cache-evict =1 implies L1 clevict generated after streaming store

 –opt-streaming-cache-evict =2 (compiler default) implies L2 clevict generated after streaming
store

 –opt-streaming-cache-evict =3 implies L1 and L2 clevict generated after streaming store

Compiler inserts a memory-fence after the loop when:

• The streaming-store ngo version is generated purely based on compiler heuristics

• If nontemporal pragma or –opt-streaming-stores always option is specified, compiler expects user
to do the appropriate fences

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

KNC Streaming Store Controls
The compiler behavior can be further controlled via internal optimization parameter “knc_stream_store_controls”, which can be

set as follows:

• Use internal option -mGLOB_default_function_attrs="knc_stream_store_controls=value“

– Please note that behavior/semantics of internal options may change in future compilers

• Compiler default is: knc_stream_store_controls=0x42

• To pass the internal option to an offload compilation, use -offload-option,mic,compiler,"-

mGLOB_default_function_attrs=knc_stream_store_controls=0x2"

 Here “value” is a bitmask with the following semantics:

• Bit #0 (value = 1). Generate store.nr for non-temporal stores. The compiler will generate store.nr under the

conditions described in slide 3.

• Bit #1 (value = 2). Generate store.nr.ngo for non-temporal stores. The compiler will generate store.nr.ngo under the

conditions described in slide 3.

• Bit #2 (value = 4). Generate store.nr for all aligned vector unit-strided unmasked stores.

• Bit #3 (value = 8). Generate store.nr.ngo for all aligned vector unit-strided unmasked stores.

• Bit #4. Reserved for future.

• Bit #5. (value =0x20) If this bit is unset, compiler will skip generating ngo stores any-time there is a dependence

between the store and a load inside the loop. If bit is 1, vectorizer goes ahead and marks the streaming-stores even

if there are dependences involving the store.

• Bit #6. (value=0x40) If this bit is set, compiler will insert a memory-fence after the loop for the cases where

store.nr.ngo stores are generated purely based on completely automatic compiler heuristics. If the user has specified

the nontemporal pragma/directive OR the “-opt-streaming-stores always” option, compiler does NOT generate the

fence even when this bit is set.

Option is available for both C and Fortran and behaves similarly

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

scellrb5% cat t5.c

void simple_triad(double *restrict a,

 double *b, double *c, double *d, int N)

{

 int i;

#pragma vector aligned nontemporal

 for (i=0; i<N; i++)

 a[i] = b[i] + c[i]*d[i];

}

scellrb5% icc -O2 -mmic -vec-report6 t5.c -

c –restrict -S

t5.c(7): (col. 2) remark: vectorization

support: reference a has aligned access.

t5.c(7): (col. 2) remark: vectorization

support: reference b has aligned access.

t5.c(7): (col. 2) remark: vectorization

support: reference c has aligned access.

t5.c(7): (col. 2) remark: vectorization

support: reference d has aligned access.

t5.c(7): (col. 2) remark: vectorization

support: streaming store was generated for

a.

t5.c(6): (col. 5) remark: LOOP WAS

VECTORIZED.

..B1.4: # Preds ..B1.4

..B1.3 Latency 45

 vmovapd (%rdx,%r11,8), %zmm1

 vmovapd (%rcx,%r11,8), %zmm0

 vfmadd213pd (%rsi,%r11,8), %zmm0, %zmm1

 vmovnrngoaps %zmm1, (%rdi,%r11,8)

 clevict1 (%rdi,%r11,8)

 vprefetch1 512(%rsi,%r11,8)

 movb %al, %al

 vprefetch0 256(%rsi,%r11,8)

 movb %al, %al

 vprefetch1 512(%rdx,%r11,8)

 movb %al, %al

 vprefetch0 256(%rdx,%r11,8)

 movb %al, %al

 vprefetch1 512(%rcx,%r11,8)

 movb %al, %al

 vprefetch0 256(%rcx,%r11,8)

 addq $8, %r11

 cmpq %r10, %r11

 jb ..B1.4 # Prob 82%

Source code
Generated asm for

core-loop

• No fence after the loop, no

prefetch for a

• nrngo and clevict1 for a[i] store

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

scellrb5% cat t5.c

#define SIZE 500000

void simple_triad(double * restrict a,

double *b, double *c, double *d)

{

 int i;

#pragma vector aligned

 for (i=0; i<SIZE; i++)

 a[i] = b[i] + c[i]*d[i];

}

scellrb5% icc –S -mmic -vec-report6 t5.c

–c -restrict -opt-streaming-cache-evict=0

t5.c(7): (col. 2) remark: vectorization

support: reference a has aligned access.

t5.c(7): (col. 2) remark: vectorization

support: reference b has aligned access.

t5.c(7): (col. 2) remark: vectorization

support: reference c has aligned access.

t5.c(7): (col. 2) remark: vectorization

support: reference d has aligned access.

t5.c(7): (col. 2) remark: vectorization

support: streaming store was generated for

a.

t5.c(6): (col. 5) remark: LOOP WAS

VECTORIZED.

..B1.2:..B1.1 Latency 45

 vmovapd (%rdx,%rax,8), %zmm1

 vmovapd (%rcx,%rax,8), %zmm0

 vfmadd213pd (%rsi,%rax,8), %zmm0, %zmm1

 vmovnrngoaps %zmm1, (%rdi,%rax,8)

 vprefetch1 512(%rsi,%rax,8)

 movb %dl, %dl

 vprefetch0 256(%rsi,%rax,8)

 movb %cl, %cl

 vprefetch1 512(%rdx,%rax,8)

 movb %cl, %cl

 vprefetch0 256(%rdx,%rax,8)

 movb %bl, %bl

 vprefetch1 512(%rcx,%rax,8)

 movb %dl, %dl

 vprefetch0 256(%rcx,%rax,8)

 addq $8, %rax

 cmpq $500000, %rax

 jb ..B1.2

..B1.3:

 lock

 addl $0, (%rsp)

Source code Generated asm for core-loop

• Fence generated after loop since ngo was generated with no

user-help (no nontemporal)

• No prefetch for a, nrngo store generated

• No clevict1/clevict0 based on evict option

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

scellrb5% cat t7.f90

subroutine sub1(a, b, c, d, len, n1, n2)

 real(8) a(len,len), b(len,len),

c(len,len), d(len,len)

 integer i, j, len

!OMP$ parallel for

 do j = 1,n1

!DEC$ vector aligned nontemporal

 do i = 1,n2

 a(i,j) = 2*b(i,j)

 c(i,j) = d(i,j) * b(i,j)

 enddo

 enddo

 end

scellrb5% ifort -O2 -vec-report6 t7.f90 -mmic

-openmp -S

t7.f90(11): (col. 10) remark: vectorization

support: reference a has aligned access.

t7.f90(11): (col. 10) remark: vectorization

support: reference b has aligned access.

t7.f90(12): (col. 3) remark: vectorization

support: reference c has aligned access.

t7.f90(12): (col. 3) remark: vectorization

support: reference d has aligned access.

t7.f90(12): (col. 3) remark: vectorization

support: reference b has aligned access.

t7.f90(11): (col. 10) remark: vectorization

support: streaming store was generated for a.

t7.f90(12): (col. 3) remark: vectorization

support: streaming store was generated for c.

t7.f90(10): (col. 7) remark: LOOP WAS

VECTORIZED.

..B1.7:

 vmulpd (%rbx,%r12), %zmm0, %zmm1

 addq $8, %r15

 vmovapd (%rbx,%r12), %zmm2

 vmovnrngoaps %zmm1, (%rbx,%r11)

 clevict1 (%rbx,%r11)

 vmulpd (%rbx,%r13), %zmm2, %zmm3

 vmovnrngoaps %zmm3, (%rbx,%r14)

 clevict1 (%rbx,%r14)

 vprefetch1 (%rbx,%r10)

 movb %al, %al

 vprefetch1 (%rbx,%rdi)

 addq $64, %rbx

 cmpq %rsi, %r15

 jb ..B1.7

Fortran Source code Generated asm for core-loop

• No fence after the loop, no

prefetches for a,c

• nrngo and clevict1 for

stores to a,c

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intrinsics for streaming stores

/*
* Store aligned float32/float64 vector with No-Read hint.
*/

extern void __ICL_INTRINCC _mm512_storenr_ps(void*, __m512);
extern void __ICL_INTRINCC _mm512_storenr_pd(void*, __m512d);

/*
* Non-globally ordered store aligned float32/float64 vector with No-Read hint.
*/

extern void __ICL_INTRINCC _mm512_storenrngo_ps(void*, __m512);
extern void __ICL_INTRINCC _mm512_storenrngo_pd(void*, __m512d);

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

10

Intel Confidential

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Optimization Notice

11 Intel Confidential

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that

are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and

other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on

microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended

for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for

Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information

regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Copyright© 2012, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Legal Disclaimer

12

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance.
Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, reference www.intel.com/software/products.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino
Inside, Centrino logo, Cilk, Core Inside, FlashFile, i960, InstantIP, Intel, the Intel logo, Intel386,
Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside,
Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium
Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon
Inside are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2011. Intel Corporation.

http://intel.com/software/products

Intel Confidential

http://www.intel.com/software/products
http://intel.com/software/products

