
CONCURRENCY

1

Structured Deferral:
Synchronization via Procrastination

We simply do not have a synchronization mechanism that can enforce mutual exclusion.

Paul E. McKenney, IBM

Developers often take a proactive approach to software design, especially those from cultures valuing
industriousness over procrastination. Lazy approaches, however, have proven their value, with
examples including reference counting, garbage collection, and lazy evaluation. This structured
deferral takes the form of synchronization via procrastination, specifically reference counting,
hazard pointers, and RCU (read-copy-update).

Synchronization via procrastination extends back to H. T. Kung and Philip Lehman’s 1980
paper,12 with the general principle articulated by Henry Massalin in 1992.13 Although these ideas
have been used in production for decades,9 they are still unfamiliar to many. This article provides an
introduction to structured deferral by means of a fanciful example described in the next section.

MOTIVATING EXAMPLE
In this example, Schrödinger would like to construct an in-memory database to keep track of the
animals in his zoo. Births would of course result in insertions into this database, while deaths would
result in deletions. The database is also queried by those interested in the health and welfare of
Schrödinger’s animals.

Schrödinger has numerous short-lived animals such as mice, resulting in high update rates.
In addition, there is a surprising level of interest in the health of Schrödinger’s cat,19 so much so
that Schrödinger sometimes wonders whether his mice are responsible for most of these queries.
Regardless of their source, the database must handle the large volume of cat-related queries without
suffering from excessive levels of contention. Both accesses and updates are typically quite short,
involving accessing or mutating an in-memory data structure, and therefore synchronization
overhead cannot be ignored.

Schrödinger also understands, however, that it is impossible to determine exactly when a given
animal is born or dies. For example, suppose that his cat’s passing is to be detected by heartbeat.
Seconds or even minutes will be required to determine that the poor cat’s heart has in fact
stopped. The shorter the measurement interval, the less certain the measurement, so that a pair of
veterinarians examining the cat might disagree on exactly when death occurred. For example, one
might declare death 30 seconds after the last heartbeat, while another might insist on waiting a full
minute, in which case the veterinarians disagree on the state of the cat during the second half of the
minute after the last heartbeat.

Fortunately, Heisenberg8 has taught Schrödinger how to cope with such uncertainty. Furthermore,
the delay in detecting the cat’s passing permits use of synchronization via procrastination. After all,
given that the two veterinarians’ pronouncements of death were separated by a full 30 seconds, a few
additional milliseconds of software procrastination is perfectly acceptable.

The next section illustrates synchronization via procrastination with reference counting, using

CONCURRENCY

2

this well-understood mechanism to demonstrate some of the less-familiar properties of structured
deferral.

REFERENCE COUNTING
A simple solution for Schrödinger’s zoo is to place a reference counter in each animal’s data element
within a hash table, with collisions handled by chaining. Readers atomically increment the reference
before accessing an animal’s data element and atomically decrement it afterwards. This provides
synchronization only between readers and updaters; updaters must synchronize among themselves
using other mechanisms such as locking, nonblocking synchronization, or transactional memory.

The four-state process of removing the data element corresponding to Schrödinger’s poor cat is
shown in figure 1. The initial state (1) shows one chain of the hash table, representing Schrödinger’s
boa, cat, and gnu. As indicated by the red color of each box, any number of readers might be
referencing these data elements; therefore, updates must be carried out carefully to avoid disturbing
these readers. To transition to state 2, the updater stores a pointer to the gnu’s data element in the
->next pointer of the boa’s data element. This store must be atomic in the sense that any concurrent
reader must see either the old value or the new value, not some mashup of the two. Such a store
may be carried out using a C11/C11++ relaxed atomic variable2 or in older C/C++ compilers, a
volatile cast.3 Note that the cat’s ->next pointer continues referencing the gnu’s data element to
accommodate readers still referencing the cat.

From this point forward, there is no path to the cat’s data element (indicated by its yellow color),
so new readers cannot gain access to it. Once the cat’s reference counter reaches zero, transitioning
to state 3, all readers that had a reference to the cat’s data structure have released their references,
indicated by the green color of the cat’s box. Because there is still no path to the cat’s data element,
new readers still cannot gain a reference, so it is now safe to transition to state 4 by freeing the late
cat’s data element.

readers?
2

versions

boa

cat

un
lin

k
ca

t

gnu

state 1

readers?
1

version readers?
1

version

boa

cat

fre
e

()

gnu

state 3

boa

gnu

state 4

1
version

boa

cat

w
ai

t f
or

 re
fs

 to
 d

ra
in

gnu

state 2

Deferred Deletion Via Reference Counting

CONCURRENCY

3

This sequence of state transitions has therefore safely removed the cat’s data element from the
hash table, despite the presence of concurrent readers. There remains, however, the problem of
obsolete references, to say nothing of correctness and performance. These are discussed in the
following sections.

OBSOLETE REFERENCES

While in state 2, old readers can still hold old references to the cat’s data structure, but new readers
cannot gain a reference. These concurrent readers can therefore disagree as to whether the cat is still
alive, just as the veterinarians in the example disagreed. This disagreement is therefore not a bug,
but rather a faithful reflection of external reality.

In other cases, disagreements can be detected and rejected. For example, if accesses and updates
to a given data element were protected by mutual exclusion, a “deleted” field would allow readers to
reject deleted data by acting as if the search had failed.1

Finally, suppose that an algorithm uses the common idiom that makes a decision while holding
a lock, and then relies on that decision after releasing the lock. This algorithm is in fact relying on
obsolete information because some other CPU might acquire the lock and change the data on which
the decision was based—while the first CPU is still relying on its now-obsolete decision.

To see how this idiom works, consider a networking stack that acquires a lock, makes a routing
decision, transmits a packet, releases the lock, and then updates statistics. Because the statistics
need to reflect where you actually sent the packet, as opposed to where you might have sent it
had you waited, using “obsolete” data is in fact correct. Furthermore, in most cases, the software
does not actually transmit the packet but instead causes the hardware to queue the packet for later
transmission. By the time the hardware actually transmits the packet, the routing decision might
well have changed. Worse yet, it can take hundreds of milliseconds for a packet to travel from its
source to a distant destination, providing even more opportunity for the routing decision to change.
Therefore, it is reasonable to make the routing decision while holding the lock, and then release the
lock before transmitting the packet—or to use synchronization via procrastination.

In addition, detecting hardware failure often takes significant time, resulting in a period during
which it is uncertain whether or not the hardware has failed. Furthermore, many updates have a
wide timing window—for example, a regulatory change might require a security-configuration
update within a 90-day period. In both cases and in many similar situations, a few extra
milliseconds of software procrastination during the update are quite acceptable. In fact, software
procrastination can enable readers to become aware of external changes sooner16 (figure 17 in
citation #16), thus reducing response time.

In short, synchronization via procrastination is especially useful when interacting with external
state.

CORRECTNESS AND PERFORMANCE

Unfortunately, naïve use of reference counters results in several problems. The first problem is a
race between deletion and read-side reference acquisition. To illustrate, suppose a reader fetches the
boa’s ->next pointer while in the first state of figure 1 and is then preempted. Before this reader
resumes, an updater sequences through the rest of the states in the figure. When the reader resumes,
it will atomically increment what used to be the cat’s reference counter, but which might now be

CONCURRENCY

4

something else entirely, corrupting the application’s state. This problem can be avoided via complex
schemes based on compare-and-swap21 (corrected by Maged Michael and Michael Scott18), but this
results in abysmal performance.7 Another way of avoiding this problem is to use a garbage collector
so that the cat’s data structure persists for as long as it is referenced.

If there is no garbage collector, another approach is to reference-count the entire hash chain
rather than the individual data elements. This works for a fixed-size hash table but falls prey to a
similar race condition if the hash table can be resized. In theory, resizing can be handled using a
global reference counter covering the entire hash table, but in practice this increases the probability
that a continuous stream of concurrent readers would prevent the counter from ever reaching zero.
If the counter never reaches zero, data elements removed from the hash table cannot be freed,
eventually resulting in failure caused by memory exhaustion.

Furthermore, as shown in figure 2, the atomic increment of a single variable simply does not
scale: cross-thread references can be extremely expensive, because electrons are not infinitely fast. If
a single thread attempts to increment a variable atomically, the cost on an Intel Xeon Westmere-EX
system is about 10 nanoseconds for a single thread, rising to about 2,500 nanoseconds for 64 threads
(the change in slope of the line is caused by hardware multithreading). This means that the number
of accesses drops from about 100 million for a single thread to about 400,000 on 64 threads. This is
not the sort of scalability that Schrödinger requires.

0

500

1000

1500

2000

2500

3000

tim
e

pe
r i

nc
re

m
en

t (
na

no
se

co
nd

s)

60 700 10 20 30
number of CPUs/threads

40 50

Atomic Increment Does Not Scale

CONCURRENCY

5

Two methods for addressing these issues are hazard pointers and RCU, which are discussed in the
next two sections. Another approach, called proxy collectors (http://atomic-ptr-plus.sourceforge.net/),
amortizes the reference-count overhead but falls outside the scope of this article.

HAZARD POINTERS
The key insight behind hazard pointers is that reference counters can be implemented inside-out.
Rather than incrementing an integer associated with a given data element, you instead record a
pointer to that data element in a per-thread list of hazard pointers. The number of times a given
data element’s pointer occurs in the concatenation of these lists is that element’s reference count.
When a data element is to be freed, the free operation is deferred until there are no hazard pointers
referencing it. Free operations are batched to minimize the number of expensive cross-thread
references to the hazard pointers17 (independently invented by others10 and available from a number
of sources, including http://concurrencykit.org/).

Because hazard pointers are thread-local, they avoid the performance and scalability problems
faced by many reference-counter implementations.7 They also avoid the race condition just
described, as can be seen in hp_acquire() on lines 1-14 of figure 3. The key points here are the need
to allocate a hazard pointer (line 3), the need to avoid the race condition (the reload and check
on line 9), and the need to defeat compiler code-motion optimizations. Compiler code motion
is addressed by ACCESS_ONCE() on lines 6, 7, and 9, which may be implemented either as volatile
casts or as C11/C++11 volatile relaxed atomic loads and stores. Compiler and CPU code motion is
addressed by the memory barrier on line 8, which prevents reordering the prior store on line 7 with
the subsequent load on line 9 and is thus required even on relatively strongly ordered systems such
as x86. The NULL return on line 11 signals the caller that it must restart the hazard-pointer traversal
from the beginning. All of this taken together ensures that the updater will have a correct view of
the state of the hazard pointers.

Releasing a hazard pointer is straightforward: simply set it to NULL, either preceded by a memory
barrier or using a C11/C++11 store-release operation; then free it so that it can be reused, as shown
in hp_release() on lines 16-21 of figure 3. The hp_release() function’s sole argument is the pointer
returned by hp_acquire().

Most programs written using explicit reference counters can be easily converted to use hp_
acquire() and hp_release(). However, algorithms that require only a fixed number of hazard
pointers can allocate them statically, thus avoiding the overhead of hp_alloc()’s and hp_free’s
dynamic allocation, as shown in hp_record() on lines 23-35 of figure 3. Note that this approach
does not release a given hazard pointer until that pointer is reused. In the worst case, this approach
prevents a small fixed amount of memory from being freed, which is normally harmless. Although
there are algorithms that require unbounded numbers of hazard pointers, simple searches and
traversals of many data structures require at most two hazard pointers.

Hazard pointers work extremely well in many situations, but they do have some shortcomings.
• Retries and memory barriers result in degraded performance.
• If hazard-pointer protection is required for a large group of data elements in a linked structure,
then a separate hazard pointer must be acquired for each and every data element.
• Acquiring a hazard pointer requires memory, which must be managed. Although the static-
allocation strategy used by Michael17 works well in small programs for some types of data structures,

CONCURRENCY

6

in general allocation and freeing are required.
• Hazard pointers provide no provision for taking additional action when freeing memory—for
example, shutting down threads or hardware associated with a given data element.
• Finally, in the general case, the code must keep track of the hazard pointers and explicitly release
them when they are no longer needed.

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

1 void **hp_acquire(void **p)
2 {
3 void **hp = hp_alloc();
4 void *tmp;
5
6 tmp = ACCESS_ONCE(*p);
7 ACCESS_ONCE(*hp) = tmp;
8 smp_mb();
9 if (tmp != ACCESS_ONCE(*p)) {
10 hp_free(hp);
11 return NULL;
12 }
13 return hp;
14 }
15
16 void hp_release(void **hp)
17 {
18 smp_mb();
19 ACCESS_ONCE(*hp) = NULL;
20 hp_free(hp);
21 }
22
23 int hp_record(void **p, void **hp)
24 {
25 void *tmp;
26
27 tmp = ACCESS_ONCE(*p);
28 ACCESS_ONCE(*hp) = tmp;
29 smp_mb();
30 if (tmp != ACCESS_ONCE(*p)) {
31 ACCESS_ONCE(*hp) = NULL;
32 return 0;
33 }
34 return 1;
35 }

Hazard-pointer Acquisition and Release

CONCURRENCY

7

Some of these shortcomings are inherent in hazard pointers’ strengths, which include
nonblocking updates, strong ordering properties, and reduced memory overhead.7 Nevertheless, in
operating system kernels and large applications, hazard pointers’ shortcomings can outweigh their
strengths. The next section presents an alternative design that addresses these shortcomings—albeit
by sacrificing some of hazard pointers’ strengths. The lesson is, use the right tool for the job!

READ-COPY-UPDATE
The goal is to produce a reference-counting scheme that (1) has low (and preferably zero) overhead;
(2) needs no memory allocation when acquiring references; (3) can protect arbitrary numbers of data
elements with a single operation; (4) permits additional actions to be taken prior to freeing a given
data element. One mechanism that meets these goals is RCU (read-copy-update).16

To ensure that the goal of low overhead is met, let’s define acquiring a reference (rcu_read_
lock()) and releasing it (rcu_read_unlock()) as no-ops that generate no code, thus achieving the
best conceivable performance, scalability, realtime response, wait freedom, and energy efficiency.
This admittedly unconventional approach has the additional benefit of dispensing with memory
allocations. Given that rcu_read_lock() and rcu_read_unlock() take no arguments, there is no way
for them to specify a particular data element, so they also meet the third goal of protecting all data
elements.

Skeptics might argue that if rcu_read_lock() and rcu_read_unlock() generate no code, they
cannot affect machine state and therefore cannot possibly act as synchronization primitives. Let us
press on nonetheless: after all, only those who have gone too far can possibly know how far they can
go.

Figure 1 shows how an element can be removed from a linked list despite the presence of
concurrent readers, which indicates that Schrödinger does not need mutual exclusion. The transition
from state 2 to state 3, however, requires waiting for all preexisting readers to complete. Therefore,
the challenge is to implement an operation that waits for preexisting readers, even though rcu_
read_lock() and rcu_read_unlock() generate no code.

To surmount this challenge, let’s first consider the nonpreemptive software environment,
where a given thread continues to execute until it voluntarily relinquishes the CPU. Examples of
nonpreemptive software environments include the Linux kernel when built with CONFIG_PREEMPT=n,
DYNIX/ptx, and numerous embedded systems. This type of environment can impose the
convention that a thread is forbidden from relinquishing its CPU if it has executed rcu_read_lock()
but has not yet reached the matching rcu_read_unlock(). (This same convention is required when
holding pure spinlocks to avoid deadlock.) Such a thread is said to be in an RCU read-side critical
section. Just as with reference counting and locking, if a reference to a given data element is obtained
within a given RCU read-side critical section, that reference must be dropped before exiting that
section, unless the data element has been handed off to some other synchronization mechanism.

Now suppose that the updater thread wishing to transition from state 2 to state 3 in figure 1 sees
CPU 0 execute a context-switch operation. Given that RCU readers must refrain from relinquishing
their CPUs, this context switch implies all of CPU 0’s prior RCU read-side critical sections have
completed—in other words, that CPU 0 is in a quiescent state. In addition, subsequent readers
running on CPU 0 cannot acquire a reference to Schrödinger’s cat because there is no longer a path
to the cat. Therefore, once the updater has observed a context switch on each CPU, there can no

CONCURRENCY

8

longer be any readers referencing the cat—in other words, a grace period will have elapsed.
This procrastination procedure is encapsulated in the RCU primitive synchronize_rcu(), the

simplest implementation of which simply runs in turn on each CPU, thus ensuring that each CPU
has executed at least one context switch. The operation of synchronize_rcu() is shown in figure 4,
where each horizontal double-ended arrow represents an RCU read-side critical section beginning
with rcu_read_lock() and ending with rcu_read_unlock(), and where each circle represents a
context switch. The updater, running on CPU 3, first removes the cat’s element using rcu_assign_
pointer() and then invokes synchronize_rcu() in order to wait for each CPU to execute a context
switch, thereby guaranteeing the completion of all preexisting readers that might have held a
reference to the cat. Once synchronize_rcu() completes, the updater is free to execute any additional
actions required (for example, shutting down associated threads or hardware) and then free the
element. Production-quality implementations also provide an asynchronous counterpart, call_
rcu(), that invokes a specified function at the end of a grace period. During the early part of the
grace period, the CPUs might well disagree on the cat’s state, which is only fitting for Schrödinger’s
cat.

In short, rcu_read_lock() and rcu_read_unlock() do not affect machine state, but they
do not need to. Instead, they act on the developer, who is required to follow the convention
that RCU readers must not release their CPUs. This form of RCU can therefore be thought of as
synchronization via social engineering. (Other synchronization mechanisms also rely on social
engineering; examples include prohibiting data races and a specific lock protecting all uses of a given
object.)

A “textbook” RCU implementation is quite simple, as can be seen from the 20 lines of code
in figure 5. Furthermore, in an SC (sequentially consistent) environment, only rcu_read_lock(),

CPU 0

CPU 1

CPU 2

CPU 3

rcu_ read_ lock() rcu_ read_unlock()

synchronize_ rcu()

rcu_assign_pointer()
grace period

context
switch

Nonpreemptible Grace Period

CONCURRENCY

9

rcu_read_unlock(), and synchronize_rcu() are required, consisting of only nine lines of code.
Production-quality implementations are larger to meet severe performance, scalability, response
time, and energy efficiency requirements. User-mode RCU implementations are also available,4 as
are preemptible-kernel implementations.5 (The full Linux-kernel RCU implementation is beyond the
scope of this article.14)

Because no mainstream computing system is SC, however, rcu_dereference() must be used
when fetching an RCU-protected pointer, and rcu_assign_pointer() must be used when mutating
an RCU-protected pointer. In SC systems, rcu_dereference() and rcu_assign_pointer() reduce
to a simple load and store, respectively. In C11/C++11, rcu_dereference() is a load consume, and
rcu_assign pointer() is a store release. Figure 6 shows the deletion process in terms of the RCU
primitives.

RCU therefore meets its goals of low overhead, read-side memory-allocation avoidance, arbitrarily
large scope of protection, and support of cleanup actions. Of course, there is no free lunch: the price
of these goals is giving up hazard pointers’ nonblocking, bounded-memory, and ordering properties.
As can be seen in figure 7, however, RCU is nonetheless heavily used within the Linux kernel. That
said, RCU is specialized, so that locking is used roughly an order of magnitude more heavily than is
RCU.

E R U G I F
E R U G I F

E R U G I F

E R U G I F

E R U G I F

E R U G I F

1 #define rcu_read_lock()
2 #define rcu_read_unlock()
3 void synchronize_rcu(void)
4 {
5 int cpu;
6
7 for_each_online_cpu(cpu)
8 run_on(cpu);
9 }
10 #define rcu_dereference(p) \
11 ({ \
12 typeof(p) _p1 = ACCESS_ONCE(p)); \
13 smp_read_barrier_depends(); \
14 _p1; \
15 })
16 #define rcu_assign_pointer(p, v) \
17 ({ \
18 smp_wmb(); \
19 ACCESS_ONCE(p) = (v); \
20 })

Textbook Implementation of RCU

CONCURRENCY

10

boa

cat

rc
u_

as
si

gn
_p

oi
nt

er
/(

)

gnu

state 1

boa

cat

kf
re

e
()

gnu

state 3

boa

gnu

state 4

boa

cat

sy
nc

hr
on

iz
e_

rc
u(

)
gnu

state 2

readers?
2

versionsreaders?
1

version readers?
1

version
1

version

Deferred Deletion Via RCU

ERUGIF

0

1000

2000

3000

4000

5000

6000

7000

8000

RC

U
AP

I u
se

s

2012 2013 20142002 2003 2004 2005 2006 2007 2008 2009
year

2010 2011

RCU Applicability to the Linux Kernel

ERUGIF

CONCURRENCY

11

COMPARISON
This section gives a brief overview of the performance of hazard pointers and RCU for Schrödinger’s
zoo, providing qualitative and quantitative comparisons based on the example. This is followed by
some rules of thumb that help determine when to use synchronization via procrastination.

QUALITATIVE COMPARISON

Table 1 compares the properties of hazard pointers and RCU, demonstrating that these two
synchronization mechanisms represent different design points:
• Each advantage is inherently intertwined with a corresponding disadvantage. Hazard pointers’
bounded memory overhead advantage over RCU requires that developers carefully acquire a hazard
pointer for each data element that readers traverse. This constitutes the corresponding disadvantage
versus RCU’s ability to protect all data elements with a single rcu_read_lock().
• Similarly, hazard pointers’ nonblocking advantage (coupled with bounded memory) requires that
updaters force concurrent hazard-pointer readers to retry their hazard-pointer acquisitions. This
retrying constitutes the corresponding disadvantage versus RCU.
• Finally, hazard pointers’ linearizability advantage requires read-side memory barriers during
hazard-pointer acquisition. The resulting reduced read-side performance constitutes the
corresponding disadvantage versus RCU. (There is some debate as to whether linearizability is
universally useful.6,22)

Other differences appear to be implementation choices rather than inherent properties of the
underlying mechanisms. For example, hazard pointers offer no way to invoke cleanup actions when
a given data element is finally reclaimed. This precludes shutting down hardware, threads, or other
active components that might be associated with that data element. However, the hazard-pointer’s

Hazard Pointers RCU

Memory
+ Bounded memory overhead. – Blocked readers can exhaust memory

(avoid via RCU priority boosting).
– Individual hazard-pointer acquisition

required for each data element.
+ Single rcu read lock() protects

all data elements.

Blocking
+ Completely nonblocking. – Updaters can block (but can use

non-blocking subset of RCU API [4]).
– Updates can force concurrent

readers to retry.
+ Readers and updaters make unconditional concurrent

forward progress, deterministic wait-free readers.

Linearizability
+ Linearizable. – Non-linearizable

(but often not observable).
– Readers require heavy-weight mem-

ory barriers, but still low overhead.
+ Lower read-side overhead:

no readside memory barriers.

TABLE 1: Comparison of hazard pointers and RCU

+ = advantage – = disadvantage

CONCURRENCY

12

mechanism could be augmented to provide the possibility of RCU-like cleanup actions if desired.
Of course, providing cleanup actions would have other consequences, including prohibiting the
common usage pattern where hazard pointers are not cleaned up immediately after a traversal.
This usage pattern is harmless if no cleanup actions are in place, as it simply retains a small amount
of memory that could otherwise be freed. In the presence of cleanup actions, however, this usage
pattern could indefinitely defer cleanup, which would have the possibly unacceptable side effect of
preventing reuse of the corresponding hardware or thread data.

Current implementations of hazard pointers record only the beginning of a structure when
freeing it, causing difficulties when pointers reference structures nested within other structures.
This nesting is quite common in some environments, including the Linux kernel. Extending hazard
pointers to handle internal pointers is quite straightforward, however: when freeing a structure, you
should pass its size, as well as its address, allowing hazard pointers to that structure’s interior to be
properly handled.

Because hazard pointers reference only specific structures, races with updates must be handled
by restarting the read-side traversal from the beginning. This need to restart stems from the fact
that once a structure has been removed, updates no longer change pointers emanating from that
structure, so those pointers can no longer be trusted.

Restarting traversals is straightforward for simple data structures but can pose a significant
software engineering challenge for large multilinked structures with deeply nested access functions
or methods. Because this article focuses on simple hash tables with chaining, it does not explore
these issues. Perhaps traversals can be conveniently restarted using exceptions in languages
supporting them.

In short, the choice between hazard pointers and RCU depends on the workload’s requirements,
including the other synchronization mechanisms used in the program. For example, if the program
were memory-constrained, then hazard pointers would likely be the right choice. In contrast, if the
program used large multilinked structures with deeply nested access functions or methods, then
RCU might be the right choice.

QUANTITATIVE COMPARISON

This section presents the results of benchmarks that were run on fixed-size hash tables protected by
a single global lock, per-bucket locks, hazard pointers, and RCU. The tests were run on a Westmere-
EX x86 system with 32 cores (64 hardware threads) running at 2 GHz. To ease comparisons, hazard-
pointer updates were protected using per-bucket locking. Blocking was avoided by providing each
thread with its own CPU.

The tests used a signal-based RCU variant from liburcu4 (available on a number of recent Linux
distributions, including Debian, Fedora, OpenSUSE, and Ubuntu). This is slower than the zero-cost
(QSBR) implementation described earlier, but the zero-cost implementation requires that every
thread periodically reside in a quiescent state. Because not all applications are structured to meet
this requirement, and because hazard pointers do not require any particular application structure,
fairness dictates that the RCU implementation used in these tests also not require any particular
structure. For purposes of comparison, the QSBR RCU implementation offers roughly 10 percent
better performance than does signal-based RCU.

Because the hash tables are simple linked structures, hazard pointers are statically allocated and

CONCURRENCY

13

1,000

10,000

100,000

1e+06

RCU
hazptr
bkt
global

1e+07

lo
ok

up
s

pe
r m

ill
is

ec
on

d

1001 10
number of CPUs/threads

Read-Only Performance on Simple Hash Table

ERUGIF

0

400,000

200,000

600,000

800,000

1e+06

RCU
hazptr
bkt

1.2e+06

lo
ok

up
s

pe
r m

ill
is

ec
on

d

600 10 20 30 5040
number of CPUs/threads

Read-Only Performance on Simple Hash Table (Linear)

ERUGIF

CONCURRENCY

14

are not explicitly released, thus eliminating the overhead of allocation, free, and release operations.
Schrödinger recognizes that other algorithms and data structures may require dynamically allocated
hazard pointers, which would reduce their performance.

Figure 8 shows the results of a lookup-only test of a hash table with simple integers for keys. This
hash table has 1,024 buckets with chaining, and it contains 1,024 elements out of a total population
of 2,048. Lookup keys were randomly selected so that half of the lookups succeeded. As expected,
global locking performs quite poorly. Per-bucket locking (bkt) scales linearly up to about eight CPUs,
then drops off as a result of increasing lock and memory contention as the number of CPUs increases
relative to the number of hash buckets. Increasing the number of buckets results in better scalability
and performance, as expected. Both hazard pointers (hazptr) and RCU scale very nearly linearly with
excellent performance.

Figure 9 plots the same data on a linear scale, which more clearly shows RCU’s and hazard
pointers’ performance and scalability advantages compared with per-bucket locking. Note also RCU’s
inflection at 32 CPUs: hazard pointers take better advantage of this particular system’s dual-threaded
hardware than does RCU. (The runs using 32 or fewer CPUs run each thread on its own core,
while the runs with more CPUs run two threads per core.) Nevertheless, RCU enjoys a 14 percent
performance advantage at 60 CPUs and a 23 percent performance advantage at 32 CPUs.

Figure 10 shows read-only performance of a prototype of Schrödinger’s in-memory database,
which is a 1,024-bucket hash table with chaining that uses ASCII strings of up to 31 characters as

1,000

10,000

100,000

RCU
hazptr
bkt
global

1e+6

lo
ok

up
s

pe
r m

ill
is

ec
on

d

1001 10
number of CPUs/threads

Read-Only Performance on Schrödinger’s Hash Table

ERUGIF

CONCURRENCY

15

keys. The results are similar to those for the integer-keyed hash table, except that RCU’s advantage
over hazard pointers decreases to about 8 percent at 32 CPUs and to nil at 60 CPUs because of the
heavier-weight key operations.

Figure 11 shows the effect of increasing fractions of the queries accessing Schrödinger’s cat for 60
CPUs. Global locking performs poorly throughout, as expected. Per-bucket locking’s effectiveness is
decreased by the increasing level of contention on the hash bucket containing the cat. The decrease
becomes catastrophic when more than about 50 CPUs execute cat-related queries. RCU’s throughput
is unaffected by the fraction of cat-related queries, but hazard pointers’ throughput decreases with
increasing fractions of cat-related queries, ranging from parity with RCU down to about a 25 percent
performance penalty. This decrease comes as a result of the memory barriers required by hazard
pointers. Removing these memory barriers restores performance parity with RCU, but also results
in an unsafe hazard-pointer implementation. This behavior suggests the hypothesis that memory
barriers are more expensive when multiple CPUs access the same memory locations, which seems
plausible given that CPUs accessing disjoint memory locations cannot detect each others’ memory-
access order.

Figure 12 shows data taken from the same runs as for figure 11, but shows only the throughput of
cat-related queries. The global-lock, hazard pointer, and RCU results scale as expected: the more cat-
related queries attempted, the more that get done. Per-bucket locking does not fare as well because

1,000

10,000

100,000

RCU
hazptr
bkt
global

1e+6

to
ta

l l
oo

ku
ps

 p
er

 m
ill

is
ec

on
d

number of CPUs/threads looking up the cat
600 10 20 30 5040

Read-Only Cat-Heavy Performance on Schrödinger’s Hash Table

E
R

UGIF

CONCURRENCY

16

the contention on the cat’s hash bucket increases as the number of attempted cat-related queries
increases. Therefore, beyond about 20 CPUs, per-bucket locking performance is similar to global
locking.

Of course, Schrödinger needs to do updates. Table 2 shows the results of a test with 15 threads
doing updates, 15 threads querying the cat, and 30 threads querying random animals. All numbers
are events per millisecond, consistent with the earlier figures. Although the cat was always present
during this test, the other animals were randomly added and deleted, so there was a 50 percent
probability of any given animal being present at any given time. Therefore, 50 percent of the non-cat
queries could be expected to fail, which was the case here.

Global locking performed poorly, as expected. Per-bucket locking was outperformed by hazard
pointers by a factor of three, and hazard pointers were in turn outperformed by RCU by an
additional factor of two. In contrast, updates (adds and deletes) slowed by 10 percent from per-bucket
locking to hazard pointers and in turn slowed by an additional 50 percent from hazard pointers to
RCU. This is not unexpected, given that both hazard pointers and RCU intentionally sacrifice update
performance in favor of read-side performance. The increase in read-side performance is much larger
than the decrease in update-side performance, compared with per-bucket locking.

This does raise the question of whether the low read-side performance of per-bucket locking and
hazard pointers was in fact caused by their faster update rates. Additional testing therefore throttled
per-bucket locking and hazard pointer update rates to that of RCU. Per-bucket locking read-side

10

10,000

100

1,000

100,000

1e+06

RCU
hazptr
bkt
global

ca
t l

oo
ku

ps
 p

er
 m

ill
is

ec
on

d

number of CPUs/threads looking up the cat
1001 10

Read-Only Cat-Heavy Performance on Schrödinger’s Hash Table: Cat Queries

ERUGIF

CONCURRENCY

17

throughput did increase in response to the decrease in update-side lock contention, but only to about
17,000 updates per millisecond, which is nowhere near hazard pointers’ 41,011 reads per millisecond,
let alone RCU’s 85,906 reads per millisecond (zero-cost RCU achieves roughly 100,000 reads per
millisecond). Hazard pointer read-side throughput did not change significantly in response to the
throttled update rates.

The throughput of both hazard pointers and RCU is quite a bit lower than in the read-only
workload shown in figure 10. This is because the updates result in read-side cache misses, reducing
throughput.

An additional question remains: namely, why RCU’s throughput is double that of hazard pointers
in this benchmark, given that there was at most a 25 percent difference in the read-only tests.
Removing hazard pointers’ read-side memory barriers increased throughput to about 80,000 reads
per millisecond, demonstrating that memory barriers were the culprit. This in turn suggests that
memory barrier overhead is an increasing function of cache-miss rate, so the presence of updates
increases the cost of the hazard pointer mechanism.

The data in this section clearly demonstrates the substantial read-side performance benefits of
synchronization via procrastination mechanisms such as hazard pointers and RCU. RCU’s update-
side performance benefits have been demonstrated elsewhere.4

WHEN TO PROCRASTINATE?

Although the read-side performance benefits of both hazard pointers and RCU can be sizable, these
are specialized mechanisms that are typically used in conjunction with other mechanisms. This
raises the question as to when they should be used. Extensive use of RCU in the Linux kernel15 has
led to the following rules of thumb, which may also apply to hazard pointers:
1. Procrastination works extremely well in read-mostly situations where disagreement among readers

is acceptable. What constitutes “read-mostly” depends on the workload, but 90 percent reads to 10
percent updates is a good rule of thumb.

2. Procrastination works reasonably well in read-mostly situations where readers must always agree.
3. Procrastination sometimes works well in cases where the numbers of reads and updates are

roughly equal and where readers must agree.
4. Procrastination rarely works well in update-mostly situations where readers must agree. There

are currently two known exceptions to this rule: (1) providing existence guarantees for update-
friendly mechanisms, and (2) providing low-overhead wait-free read-side access for realtime use.
Note that the traditional definition of read may be generalized to include writes. An example

within Schrödinger’s application would be if each animal’s data structure included an array of

TABLE 2: Schrödinger’s zoo with updates (operations per millisecond)

Mechanism Reads Failed Reads Cat Reads Adds Deletes
Global Locking 799 80 639 77 77
Per-Bucket Locking 13,555 6,177 1,197 5,370 5,370
Hazard Pointers 41,011 6,982 27,059 4,860 4,860
RCU 85,906 13,022 59,873 2,440 2,440

CONCURRENCY

18

per-thread cache-aligned variables that count accesses to that animal, thus allowing Schrödinger
to evaluate his cat’s popularity. This works because these read-side writes do not conflict. Further
generalization is not only possible, but also heavily used in practice—for example, permitting
conflicting writes that are protected by some other synchronization mechanism.1 This is permissible
because reference counters, hazard pointers, and RCU all permit a wide range of code in their read-
side critical sections, including atomic operations, transactions, and locking.

Schrödinger’s application permits the traditional definition of read and thus falls into the first rule
of thumb. It is therefore eminently suitable for synchronization via procrastination. These rules will
continue to be refined as experience accumulates. In particular, better mechanisms are needed for
update-heavy situations, and there is some promising work in progress in this area.11,20 Finally, table 1
might be a first step toward rules of thumb for choosing between hazard pointers and RCU.

CONCLUSION
This article has presented an overview of synchronization via procrastination, discussing some of
the consequences, such as read-side disagreements on current state, and how these consequences are
actually a faithful reflection of the reality external to the computer. This is to be expected: there is
simply no synchronization mechanism that can enforce mutual exclusion on any significant fraction
of the physical universe. Use of the two popular procrastination mechanisms described here, hazard
pointers and RCU, has increased over the past few decades and can be expected to increase further as
the use of multicore systems increases.

ACKNOWLEDGMENTS

I owe thanks to Steven Rostedt for the analogy between RCU and Schrödinger’s cat (https://lkml.
org/lkml/2013/3/29/248); to Maged Michael for many fruitful discussions of hazard pointers and
RCU; and to Arjan van de Ven, Peter Sewell, and Susmit Sarkar for discussions on concurrency and
memory ordering. I am indebted to Samy Al Bahra, Eduardo Bacchi Kienetz, Seth Jennings, Wade
Cline, Mathieu Desnoyers, Ram Pai, Kent Yoder, and Phil Estes for helping render this article human-
readable. I am grateful to Jim Wasko for his support of this effort.

LEGAL STATEMENT

This work represents the views of the author and does not necessarily represent the views of IBM.
Linux is a registered trademark of Linus Torvalds. Intel and Xeon are registered trademarks of Intel
Corporation.

Other company, product, and service names may be trademarks or service marks of such companies.

REFERENCES

1. Arcangeli, A., Cao, M., McKenney, P. E., Sarma, D. 2003. Using read-copy update techniques
for System V IPC in the Linux 2.5 kernel. In Proceedings of the 2003 Usenix Annual Technical
Conference: 297-310.

2. Becker, P. 2011. Working draft, standard for programming language C++; http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf.

3. Corbet, J. 2012. ACCESS_ONCE(); http://lwn.net/Articles/508991/.

https://lkml.org/lkml/2013/3/29/248
https://lkml.org/lkml/2013/3/29/248
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf

CONCURRENCY

19

4. Desnoyers, M., McKenney, P. E., Stern, A., Dagenais, M. R., Walpole, J. 2012. User-level
implementations of read-copy-update. IEEE Transactions on Parallel and Distributed Systems 23: 375-
382.

5. Guniguntala, D., McKenney, P. E., Triplett, J., Walpole, J. 2008. The read-copy-update mechanism
for supporting realtime applications on shared-memory multiprocessor systems with Linux. IBM
Systems Journal 47(2): 221-236.

6. Haas, A., Kirsch, C. M., Lippautz, M., Payer, H. 2012. How FIFO is your concurrent FIFO queue?
In Proceedings of the 2012 ACM Workshop on Relaxing Synchronization for Multicore and Manycore
Scalability.

7. Hart, T. E., McKenney, P. E., Brown, A. D., Walpole, J. 2007. Performance of memory reclamation
for lockless synchronization. Journal of Parallel and Distributed Computing 67(12): 1270-1285.

8. Heisenberg, W. 1927. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und
Mechanik. Zeitschrift für Physik 43(3-4): 172-198. English translation in Quantum Theory and
Measurement. Eds. J. A. Wheeler and W. H. Zurek, Princeton University Press, 1984.

9. Hennessy, J. P., Osisek, D. L., Seigh II, J. W. 1989. Passive serialization in a multitasking
environment. U.S. Patent 4,809,168 (lapsed).

10. Herlihy, M., Luchangco, V., Moir, M. 2002. The repeat offender problem: a mechanism for
supporting dynamic-sized, lock-free data structures. In Proceedings of the 16th International
Conference on Distributed Computing: 339-353.

11. Jacobi, C., Slegel, T., Greiner, D. 2012. Transactional memory: architecture and implementation
for IBM System z. The 45th Annual IEEE/ACM International Symposium on MicroArchitecture;
http://www.microsymposia.org/micro45/talks-posters/3-jacobi-presentation.pdf.

12. Kung, H. T., Lehman, Q. 1980. Concurrent manipulation of binary search trees. ACM Transactions
on Database Systems 5(3): 354-382.

13. Massalin, H. 1992. Synthesis: an efficient implementation of fundamental operating system
services. Ph.D. thesis, Columbia University, New York, NY.

14. McKenney, P. E. 2010. The RCU API; http://lwn.net/Articles/418853/.
15. McKenney, P. E., Boyd-Wickizer, S., Walpole, J. 2013. RCU usage in the Linux kernel: one decade

later; http://rdrop.com/users/paulmck/techreports/RCUUsage.2013.02.24a.pdf.
16. McKenney, P. E., Slingwine, J. D. 1998. Read-copy-update: using execution history to solve

concurrency problems. In Parallel and Distributed Computing and Systems: 509-518.
17. Michael, M. M. 2004. Hazard pointers: safe memory reclamation for lock-free objects. IEEE

Transactions on Parallel and Distributed Systems 15(6): 491-504.
18. Michael, M. M., Scott, M. L. 1995. Correction of a memory management method for lockfree data

structures. Technical Report TR599, University of Rochester, Rochester, NY.
19. Schrödinger, E. 1935. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften

23: 807-812; 823-828; 844-949. English translation: http://www.tuhh.de/rzt/rzt/it/QM/cat.html.
20. Sutton, A. 2013. Concurrent programming with the Disruptor; http://lca2013.linux.org.au/

schedule/30168/view_talk.
21. Valois, J. D. 1995. Lock-free linked lists using compare-and-swap. In Proceedings of the Fourteenth

Annual ACM Symposium on Principles of Distributed Computing: 165-172.
22. Vogels, W. 2009. Eventually consistent. Communications of the ACM 52: 40-44.

http://lca2013.linux.org.au/schedule/30168/view_talk
http://lca2013.linux.org.au/schedule/30168/view_talk

CONCURRENCY

20

LOVE IT, HATE IT? LET US KNOW
feedback@queue.acm.org

PAUL E. MCKENNEY is a Distinguished Engineer in IBM’s Linux Technology Center, where he maintains
the Linux kernel’s RCU implementation and contributes to userspace RCU. Prior to that, he worked on
Sequent’s DYNIX/ptx kernel. He received his Ph.D. in 2004 from Oregon Health and Sciences University
in computer science and engineering. He received his master’s in 1988 from Oregon State University in
computer science and a pair of bachelor’s degrees from Oregon State University in computer science and
mechanical engineering. He blogs at http://paulmck.livejournal.com/ and works on the book entitled “Is
Parallel Programming Hard, and, If So, What Can You Do About It?” at http://kernel.org/pub/linux/kernel/
people/paulmck/perfbook/perfbook.html.
© 2013 ACM 1542-7730/13/0500 $10.00

http://paulmck.livejournal.com/
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

