
Chapter 5

The K Semantic Framework

This chapter introduces K, a rewriting-based executable semantic framework which will be used
in the remainder of this book. K was first introduced by the author in the lecture notes of a
programming language design course at the University of Illinois at Urbana-Champaign (UIUC) in
Fall 2003 [43], as a means to define concurrent languages in rewriting logic using Maude. Since 2003,
K has been used continuously in teaching programming languages, in seminars, and in research.

Programming languages, calculi, as well as type systems or formal analysis tools can be defined
in K by making use of configurations, computations and rules. Configurations organize the sys-
tem/program state in units called cells, which are labeled and can be nested. Computations are
special structures which carry “computational meaning”. More precisely, computations are nested
list terms which sequentialize computational tasks, such as fragments of program; in particular,
computations extend the original programming language or calculus syntax. K (rewrite) rules
generalize conventional rewrite rules by making it explicit which parts of the term they read-only,
write-only, or do not care about. This distinction makes K a suitable framework for defining truly
concurrent languages or calculi even in the presence of sharing. Since computations can be handled
like any other terms in a rewriting environment, that is, they can be matched, moved from one place
to another in the original term, modified, or even deleted, K is particularly suitable for defining
control-intensive language features such as abrupt termination, exceptions or call/cc.

The K framework consists of two components:

1. The K concurrent rewrite abstract machine, abbreviated Kram and discussed in Section 5.4;

2. The K technique, discussed in Section 5.5.

Like conventional rewrite systems, a K-system consists of a signature for building terms and of a set
of rules for iteratively rewriting terms. Like in rewriting logic (Section 2.7), K rules can be applied
concurrently and unrestricted by context. The novelty of the Kram (Section 5.4) is that its rules
contain, besides expected information saying how the original term is modified (the write data),
also information about what parts of the term are shared with other rules (the read-only data).
This additional information provided as part of the rules allows K to be a suitable rewrite-based
framework for semantically defining truly concurrent programming languages and calculi whose
threads or processes may be desired to share data. The K concurrent rewrites associated to a
K system may require several interleaved rewrites in the rewrite logic theory straightforwardly
associated to the K-system (i.e., by forgetting the sharing information).

273



Even though the Kram aims at maximizing the amount of concurrency that can be achieved in
a rewriting setting, it does not tell how one can define a programming language or a calculus as a
K-system. In particular, a bad K definition may partially or totally inhibit Kram’s potential for
concurrency. The K technique discussed in Section 5.5 proposes a definitional methodology that
makes the use of the Kram convenient when formally defining programming languages and calculi.
Moreover, the K technique can also be and actually has already been intensively used as a technique
to define languages and calculi as conventional term rewrite systems or as rewrite logic theories.
There is one important thing lost in the translation of K into rewriting logic though, namely the
degree of true concurrency of the original K-system. Ignoring this true concurrency aspect, the
relationship between K and rewriting logic in general and Maude in particular is the same as that
between any of the conventional semantic styles discussed in Chapter 3 and rewriting logic and
Maude: the latter can be used to execute and analyze K-systems.

This chapter is structured as follows:

� Section 5.1 discusses informally the requirements that have led to the design and development
of the K framework, and hereby, it highlights the objectives that K attempts to achieve.
These requirements are derived from what we believe the characteristics of an ideal semantic
framework should be, and the motivation for the K framework comes from the observation
that the existing semantic frameworks fail to satisfy these requirements.

� Section 5.2 gives a quick overview of the K framework by using it to define the IMP language
(Section 3.1) and its extension IMP++ (Section 3.8). This section should give the reader
quite a clear feel for what K is about and how it operates.

� Section 5.4 describes the K concurrent rewrite abstract machine (Kram) and is the most
technical part of this chapter. However, it formalizes a relatively intuitive process of concurrent
rewriting with sharing, so the reader interested more in using K then in the technical details
of its core concurrent rewriting machinery may safely skip this section.

� Section 5.5 presents the K technique, explaining essentially how the Kram or other rewrite
infrastructures can be used to define programming language semantics by means of nested-cell
configurations, computations anf rewrite rules.

� Section 5.7 shows K at work: it introduces and at the same time shows how to give a K
semantics to Challenge, a programming language containing varied features known to be
problematic to define in other frameworks. Challenge was conceived as a means to challenge
the various language definitional frameworks and to expose their limitations.

5.1 Quest for an Ideal Language Definitional Framework

Chapter 3 showed that any conventional language definitional style can be faithfully, step-for-step,
captured by a rewriting logic theory. It may then seem “obvious” to the hasty reader that rewriting
logic is perhaps the ideal language definitional framework and thus naturally ask the following:

What is the need for yet another language definitional framework that can be embedded
in rewriting logic, K in this case, if rewriting logic is already so powerful?

274



Unfortunately, in spite of its definitional strength as a computational logic framework, rewriting
logic does not give, and does not intend to give, the programming language designer any recipe on
how to define a language. It essentially only suggests the following: however one wants to formally
define a programming language or calculus, one can probably also do it in rewriting logic following
the same intuitions and style. Therefore, rewriting logic can be regarded as a meta-framework that
supports definitions of programming languages and calculi among many other things, providing the
language designer with a means to execute and formally analyze languages in a generic way, but
only after the language is already defined. Additionally, as discussed in Section 2.7 and in more
depth in Section 5.2, the natural rewriting logic definition of a concurrent programming language
may enforce interleaving in situations where true concurrency is meant.

The introduction and development of K was largely motivated by the observation that after more
than 40 years of systematic research in programming language semantics, the following important
(multi-)question remains largely open to the working programming language designer, and not only:

Is there any language definitional framework that, at the same time,

1. Gives a strong intuition, even precise recipes, on how to define a language?

2. Same for language-related definitions, such as type checkers, type inferencers,
abstract interpreters, safety policy or domain-specific checkers, etc.?

3. Can define arbitrarily complex language features, including, obviously, all those
found in existing languages, capturing also their intended computational granularity?

4. Is modular, that is, adding new language features does not require to modify existing
definitions of unrelated features? Modularity is crucial for scalability and reuse.

5. Supports non-determinism and concurrency, at any desired granularity?

6. Is generic, that is, not tied to any particular programming language or paradigm?

7. Is executable, so one can “test” language or formal analyzer definitions, as if one
already had an interpreter or a compiler for one’s language? Efficient executability
of language definitions may even eliminate the need for interpreters or compilers.

8. Has state-exploration capabilities, including exhaustive behavior analysis (e.g., finite-
state model-checking), when one’s language is non-deterministic or/and concurrent?

9. Has a corresponding initial-model (to allow inductive proofs) or axiomatic semantics
(to allow Hoare-style proofs), so that one can formally reason about programs?

The list above contains a minimal set of desirable features that an ideal language definitional
framework should have. Unfortunately, the current practice is to take the above features one at a
time, temporarily or permanently declaring the others as “something else”. We next describe how
current practices and language definitional styles fail to satisfy the above-mentioned requirements.

1. Gives a strong intuition, even precise recipes, on how to define a language?

To formalize one’s intuition about a language feature, it is common practice to use a big-step or
a small-step SOS definition, with or without evaluation contexts, typically on paper, without
any machine support. Sometimes this so-called “formal” process is pushed to extreme in what
regards its informality, in the sense that one can see definitions of some language features
using one definitional style and of other features using another definitional style, without ever

275



proving that the two definitional styles can co-exist in the claimed form for the particular
language under consideration. For example, one may use a big-step SOS to give semantics to a
code-self-generation extension of Java, while using a small-step SOS to define the concurrency
semantics of Java. However, common sense tells that once one has concurrency and shared
memory, one cannot have a big-step SOS definition. An ideal language definitional framework
should provide a uniform, compact and rigorous way to modularly define various language
features, avoiding the need to define different language features following different styles.

2. Same for language-related definitions, such as type checkers, type inferences, abstract inter-
preters, safety policy or domain-specific checkers, etc.?

To define a type system or a (domain-specific or not) safety policy for a language, one may
follow a big-step-like definitional style, or even simply provide an algorithm to serve as a
formal definition. While this appears to be, and in many cases indeed is acceptable, there can
be a significant “formal gap” between the actual language semantic definition and its type
system or safety policy regarded as mathematical objects, because in order to carry out proofs
relating the two one needs one common formal ground. In practice, one typically ends up
“encoding” the two in yet another framework, claimed to be “richer”, and then carry out the
proofs within that framework. But how can one make sure that the encodings are correct?
Do they serve as alternative definitions for that sole purpose?

An ideal language definitional framework should have all the benefits of the “richer” framework,
at no additional notational or logical complexity, yet naturally capturing the complete meaning
of the defined constructs. In other words, in an ideal framework one should define a language
as a mathematical object, say L, and a type system or other abstract interpretation of it
as another mathematical object over the same formalism, say L′, and then carry out proofs
relating L and L′ using the provided proof system of the definitional framework. L, L′, as
well as other related definitions, should be human readable and easy to understand enough so
that one does not feel the drive to give alternative, more intuitive definitions using a more
informal notation or framework.

3. Can define arbitrarily complex language features, including, obviously, all those found in
existing languages, capturing also their intended computational granularity?

Some popular language definitional frameworks are incapable of defining even existing language
features. The fact that a particular language feature is supported in some existing language
serves as the strongest argument that that feature may be desirable, so an ideal language
definitional framework must simply support it; in other words, one cannot argue against
the usefulness of that feature just because one’s favorite definitional framework does not
support it. For example, since in standard SOS definitions (not including reduction semantics
with evaluation contexts) the “control flow” information of a program is captured within
the structure of the “proof”, and since proof derivations are not first class objects in these
formalisms, it makes it very hard, virtually impossible in these formalisms to define complex
control intensive language constructs like, e.g., call-with-current-continuation (callcc).

Another important example showing that conventional definitional frameworks (e.g., SOS)
fail to properly support existing common language features, is concurrency. Most frameworks
enforce an interleaving semantics, which may not necessarily always be the desired approach
to concurrency. In particular, an implementation of a multi-threaded system in which two

276



threads can concurrently read a shared variable would be dissallowed, because it disobeys the
“formal” interleaving-based language definition. Concurrency is further discussed in item 5.

Some frameworks provide a “well-chosen” set of constructs, shown to be theoretically sufficient
to define any computable function or algorithm, and then propose encodings of other language
features into the set of basic ones; examples in this category are Turing machines or the
plethora of (typed or untyped) λ-calculi, or π-calculi, etc. While these basic constructs
yield interesting and meaningful idealized programming languages, using them to encode
other language features is, in our view, inappropriate. Indeed, encodings hide the intended
computational granularity of the defined language constructs; for example, a variable lookup
intended to be a one-step operation in one’s language should take precisely one step in an
ideal framework (not hundreds/thousands of steps as in a Turing machine or lambda calculus
encoding, not even two steps: first get location, then get value).

4. Is modular, that is, adding new language features does not require to modify existing definitions
of unrelated features? Modularity is crucial for scalability and reuse.

As Mosses pointed out in [38] and as shown in Chapter 3 and discussed in Section 3.9, big-step
and small-step SOS are non-modular; Plotkin himself had to modify the definition of simple
arithmetic expressions (in the original notes on SOS [42]) three times as his initial language
evolved. As seen in Section 3.8, to add an innocent abrupt termination statement to a language
defined using SOS, say a halt, one needs to more than double the total number of rules: each
language construct needs to be allowed to “propagate” the halting signal potentially generated
by its arguments. Also, as one needs to add more items into configurations to support new
language features, in SOS one needs to change again every rule to include the new items; note
that there are no less than 7+n ∗ 10 configuration items, where n is the number of threads, in
the configuration of SKOOL in Section B.4 (which is a comparatively simple language) as
shown in Figure ??. It can easily become very annoying and error prone to modify a large
portion of unrelated existing definitions when adding a new feature.

A language designer may be unwilling to add a new feature or improve the definition of
an existing one, just because of the large number of required changes. Informal writing
conventions are sometimes adopted to circumvent the non-modularity of SOS. For example, in
the definition of Standard ML [35], Milner and his collaborators propose a “store convention” to
avoid having to mention the store in every rule, and an “exception convention” to avoid having
to double the number of rules for the sole purpose of supporting exceptions. As rightfully
noticed by Mosses [38], such conventions are not only adhoc and language specific, but may
also lead to erroneous definitions. Mosses’ Modular SOS [38] (MSOS) brings modularity to
SOS in a formal and elegant way, by grouping the non-syntactic configuration items into
transition labels, and allowing rules to mention only those items of interest from each label.
As discussed in Section 3.4, MSOS still inherits all the remaining limitations of SOS.

5. Supports non-determinism and concurrency, at any desired granularity?

By inherently enforcing an interleaving semantics for concurrency, existing reduction semantics
definitions (including ones based on evaluation contexts) can only capture a projection of
concurrency (when one’s goal is to define a truly concurrent language), namely its resulting
non-determinism. Proponents of existing reduction semantics approaches may argue that
the resulting non-deterministic behavior of a concurrent system is all what matters, while

277



proponents of true concurrency may argue that a framework which does not support naturally
concurrent actions, i.e., actions that take place at the same time, is not a framework for
concurrency. We do not intend to discuss the (admittedly important but debatable) distinctions
between non-determinism and interleaving vs. true concurrency here. The fact that there
are language designers who desire an interleaving semantics while others who desire a true
concurrency semantics for their language is strong evidence that an ideal language definitional
framework should simply support both, preferably with no additional settings of the framework,
but rather via particular definitional methodologies within the framework.

6. Is generic, that is, not tied to any particular programming language or paradigm?

A non-generic framework, i.e., one building upon a particular programming language or
paradigm, may be hard or impossible to use at its full strength when defining a language that
crosses the boundaries of the underlying language or paradigm. For example, a framework
enforcing object or thread communication via explicit send and receive messages may require
artificial encodings of languages that opt for a different communication approach (e.g., shared
memory), while a framework enforcing static typing of programs in the defined language
may be inconvenient for defining dynamically typed or untyped languages. In general, a
framework providing and enforcing particular ways to define certain types of language features
would lack genericity. Within an ideal framework, one can and should develop and adopt
methodologies for defining certain types of languages or language features, but these should
not be enforced. This genericity requirement is derived from the observation that today’s
programming languages are so diverse and based on orthogonal, sometimes even conflicting
paradigms, that, regardless of how much we believe in the superiority of a particular language
paradigm, be it object-oriented, functional or logical, a commitment to any existing paradigm
would significantly diminish the strengths of a language definitional framework.

7. Is executable, so one can “test” language or formal analyzer definitions, as if one already had
an interpreter or a compiler for one’s language? Efficient executability of language definitions
may even eliminate the need for interpreters or compilers.

Most existing language definitional frameworks are, or until relatively recently were, lacking
tool support for executability. Without the capability to execute language definitions, it is
virtually impossible to debug or develop large and complex language definitions in a reasonable
period of time. The common practice today is still to have a paper definition of a language
using one’s desired formalism, and then to implement an interpreter for the defined language
following in principle the paper definition. This approach, besides the inconvenience of having
to define the language twice, guarantees little to nothing about the appropriateness of the
formal, paper definition. Compare this approach to an approach where there is no gap between
the formal definition and its implementation as an interpreter. While any definition is by
definition correct, one gets significantly more confidence in the appropriateness of a language
definition, and is less reluctant to change it, when one is able to run it as is on tens or hundreds
of programs. Recently, executability engines have been proposed both for MSOS (the MSOS
tool, implemented by Braga and collaborators in Maude [8]) and for reduction semantics with
evaluation contexts (the PLT Redex tool, implemented by Findler and his collaborators in
Scheme [23]). A framework providing efficient support for executability of formal language
definitions may eliminate entirely the need to implement interpreters, or type checkers or type
inferencers, for a language, because one can use directly the formal definition for that purpose.

278



8. Has state-exploration capabilities, including exhaustive behavior analysis (e.g., finite-state
model-checking), when one’s language is non-deterministic or/and concurrent?

While executability of language definitions is indispensable when designing non-trivial lan-
guages, one needs richer tool support when the language is concurrent or non-deterministic.
Indeed, it may be that one’s definition is appropriate for particular thread or process inter-
leavings (e.g., when blocks are executed atomically), but that it has unexpected behaviors for
other interleavings. Moreover, somewhat related to the desired computational granularity of
language constructs mentioned in item 3 above, one may wish to exhaustively investigate all
possible interleavings or executions of a particular concurrent program, to make sure that no
undesired behaviors are present and no desired behaviors are excluded. When the state space
of the analyzed program is large, manual analysis of behaviors may not be feasible; therefore,
model-checking and/or safety property analysis (through systematic state-space exploration)
are also desirable as intrinsic components of an ideal language definitional framework.

9. Has a corresponding initial-model (to allow inductive proofs) or axiomatic semantics (to allow
Hoare-style proofs), so that one can formally reason about programs?

To prove properties about programs in a defined programming language, or properties about
the programming language itself, as also mentioned in item 2 above, the current practice
is to encode/redefine the language semantics in a “richer” framework, such as a theorem
prover, and then carry out the desired proofs there. Redefining the semantics of a fully fledged
programming language in a different formalism is a highly nontrivial, error prone and tedious
task, possibly taking months; automated translations may be possible when the original
definition of the language is itself formal, though one would need to validate the translator.
In addition to the “formal gap” mentioned in item 2 due to the translation itself, this process
of redefining the language is simply inconvenient. An ideal language definitional framework
should allow one to have, for each language, “one definition serving all purposes”, including
all those mentioned above.

Current program verification approaches are based on axiomatic semantics (in the style of
Hoare logic) of the language under consideration and on implementations of it in program
verifiers. In fact, implementing program verifiers is still an art, one that few master. Existing
program verifiers are based “in principle” on some implicit axiomatic semantics which is
hand-crafted in the prover; a formal semantics is in fact not required and typically not given
at all, thus creating an obvious gap between the implementation of a program verifier and
the language semantics. Moreover, since axiomatic semantics are not executable and thus
not testable, the underlying axiomatic semantics can be itself untrustable; at minimum, an
alternative executable semantics of the language is needed and a proof that the axiomatic
semantics is sound for it. Thus there is a double gap between a language definition and a
program verifier for it. The very fact that one needs various semantics of a language for
various purposes shows that none of these semantics is “ideal”: as already stated above, an
ideal language semantic definition should serve all the purposes.

There are additional desirable, yet of a more subjective nature and thus harder to quantify,
requirements of an ideal language definitional framework. For example, it should be simple and
easy to understand, teach and use by mainstream enthusiastic language designers, not only by
language experts —in particular, an ideal framework should not require its users to have advanced

279



concepts of category theory, logics, or type theory, in order to use it. Also, it should have good
data representation capabilities and should allow proofs of theorems about programming languages
that are easy to comprehend. Additionally, a framework providing support for parsing programs
directly in the desired language syntax may be desirable to one requiring the implementation of an
additional, external to the definitional setting, parser.

The nine requirements above are nevertheless ambitious. Some proponents of existing language
definitional frameworks may argue that their favorite framework has these properties; however,
a careful analysis of existing language definitional frameworks reveals that they actually fail to
satisfy some of these ideal features (we discussed several such frameworks and their limitations in
Chapter 3). Others may argue that their favorite framework has some of the properties above, the
“important ones”, declaring the other properties either “not interesting” or “something else”. For
example, one may say that what is important in one’s framework is to get a dynamic semantics of a
language, but its (model-theoretical) algebraic denotational semantics, proving properties about
programs, model checking, etc., are “something else” and therefore are allowed to need a different
“encoding” of the language. Our position is that an ideal language definitional framework should not
compromise any of the nine requirements above.

Whether K satisfies all the requirements above or not is, and probably will always be, open.
What we can mention with regards to this aspect, though, is that K was motivated and stimulated
by the observation that the existing language definitional frameworks fail to fully satisfy these
minimal requirements; consequently, K’s design and development were conducted aiming explicitly
to fulfill all nine requirements discussed above, promoting none of them at the expense of others.

5.2 K Overview by Example

Here we briefly describe the K framework, what it offers and how it can be used. We use as concrete
examples the IMP language (Section 3.1) and its extension IMP++ (Section 3.8), discussed in
Chapter 3 in the context of the various existing language definitional frameworks. We define both
an executable semantics and a type system for these languages. The type system is included mainly
for demonstration purposes, to show that one can use the same definitional framework, K, to define
both formal language semantics and language abstractions. The role of this section is threefold:
first, it gives the reader a better understanding of the K framework before we proceed to define it
rigorously in the remainder of this chapter; second, it shows how K avoids the limitations of the
various more conventional semantic approaches discussed in Chapter 3; and third, it shows that
K is actually easy to use, in spite of the intricate K concurrent abstract machine technicalities
discussed in Section 5.4 — indeed, users of the K framework need not be familiar with all those
intricate details, the same way users of a concurrent programming language need not be aware
of the underlying details of the concurrent computing architecture on which their programs are
executed. In fact, in this section we make no distinction between the K rewrite abstract machine
and the K technique, refering to these collectively as “the K framework”, or more simply just “K”.

Programming languages, calculi, as well as type systems or formal analyzers can be defined in K
by making use of special, potentially nested (K) cell structures, and (K) (rewrite) rules. There are
two types of K rules: computational rules, which count as computational steps, and structural rules,
which do not count as computational steps. The role of the structural rules is to rearrange the term
so that the computational rules can apply. K rules are unconditional (they can be thought of as
rule schemata and may have ordinary side conditions, though), and they are context-insensitive, so

280



K rules apply concurrently as soon as they match, without any contextual delay or restrictions.

One sort has a special meaning in K, namely the sort K of computations. The intuition for terms
of sort K is that they have computational contents, such as programs or fragments of programs have;
indeed, computations extend the syntax of the original language. Computations have a list structure
with “↷” (read “followed by”) concatenating two computations and “⋅” the empty computation; the
list structure captures the intuition of computation sequentialization. Computations give an elegant
and uniform means to define and handle evaluation contexts (Section 3.8.1) and/or continuations
[52]. Indeed, a computation “v ↷ c” can be thought of as “c[v], that is, evaluation context c applied
to v” or as “passing v to continuation c”. Computations can be handled like any other terms in
a rewriting environment, that is, they can be matched, moved from one place to another in the
original term, modified, or even deleted. A term may contain an arbitrary number of computations,
which can evolve concurrently; they can be thought of as execution threads. Rules corresponding to
inherently sequential operations (such as lookup/assignment of variables in the same thread) must
be designed with care, to ensure that they are applied only at the top of computations.

The distinctive feature of K compared to other term rewriting approaches in general and to
rewriting logic (Section 2.7) in particular, is that K allows rewrite rules to apply concurrently even
in cases when they overlap, provided that they do not change the overlapped portion of the term.
This allows for truly concurrent semantics to programming languages and calculi. For example,
two threads that read the same location of memory can do that concurrently, even though the
corresponding rules overlap on the store location being read. The distinctive feature of K compared
to other frameworks for true concurrency, like chemical abstract machines (Section 3.6) or membrane
systems (Section 9.7), is that rewrite rules can match across and inside multiple cells and thus
perform changes many places at the same time, in one concurrent step.

K achieves, in one uniform framework, the benefits of both the chemical abstract machines
(CHAMs; Section 3.6) and reduction semantics with evaluation contexts (RSEC; Section 3.8.1),
at the same time avoiding what might be called the “rigidity to chemistry” of the former and the
“rigidity to syntax” of the latter. Any CHAM and any RSEC definition can be captured in K with
minimal (in our view zero) representational distance. K can support concurrent language definitions
with either an interleaving or a true concurrency semantics.

Like the other semantic approaches that can be represented in rewriting logic (Chapter 3),
K can also be represented in rewriting logic and thus K definitions can be executed on existing
rewrite engines, thus providing “interpreters for free” directly from formal language definitions;
additionally, general-purpose formal analysis techniques and tools developed for rewriting logic, such
as state space exploration for safety violations or model-checking, give us corresponding techniques
and tools for the defined languages, at no additional development cost. Unlike the other semantic
approaches whose representations in rewriting logic are faithful, in that the resulting rewriting logic
theories are step-for-step equivalent with the original definitions, K cannot be captured faithfully
by rewriting logic in any natural way. On the one hand, there is no clear way to represent the K
structural rules in rewriting logic in a general way that properly captures the intuition that the K
computational rules take place “modulo” the structural ones; this results in the rewrite logic theory
to potentially miss some of the non-deterministic behaviors of the original K definition. On the
other hand, the corresponding rewrite logic theory may need more interleaved steps in order to
capture one concurrent step in the original K definition; this results in the rewrite logic theory to
potentially miss some of the concurrent behaviors of the original K definition.

281



Original language syntax K Strictness K Semantics

AExp ∶∶= Int∣ VarId ⟨x
i

⋯⟩k ⟨⋯ x↦ i ⋯⟩state
∣ AExp +AExp [strict] i1 + i2 → i1 +Int i2∣ AExp /AExp [strict] i1 / i2 → i1 /Int i2 where i1 ≠ 0

BExp ∶∶= Bool∣ AExp <=AExp [seqstrict] i1 <= i2 → i1 ≤Int i2∣ notBExp [strict] not t→ ¬Bool t∣ BExp andBExp [strict(1)] true and b→ b
false and b→ false

Stmt ∶∶= skip skip → ⋅∣ VarId :=AExp [strict(2)] ⟨x := i⋅ ⋯⟩k ⟨⋯ x↦
i

⋯⟩state
∣ Stmt;Stmt s1 ; s2 ⇀ s1 ↷ s2∣ if BExp then Stmt else Stmt [strict(1)] if true then s1 else s2 → s1

if false then s1 else s2 → s2∣ while BExp do Stmt ⟨ while b do s

if b then (s; while b do s)else ⋅ ⋯⟩k
Pgm ∶∶= vars List{VarId};Stmt ⟨vars xl ; s

s

⟩k ⟨ ⋅
xl ↦ 0

⟩state
Figure 5.1: K definition of IMP: syntax (left), annotations (middle) and semantics (right); x ∈ VarId,
xl ∈ List{VarId}, i, i1, i2 ∈ Int, t ∈ Bool, b ∈ BExp, s, s1, s2 ∈ Stmt (b, s, s1, s2 can also be in K)

5.2.1 K Semantics of IMP

Figure 5.1 shows the complete K definition of IMP, except for the configuration; the IMP configu-
ration is explained separately below. The left column in Figure 5.1 gives the IMP syntax (identical
to the one in Section 3.1.1), which uses the algebraic CFG notation introduced in Section 2.5.
The middle column contains special syntax K annotations, called strictness attributes, stating the
evaluation strategy of some language constructs. Finally, the right column gives the semantic rules.

K makes intensive use of the algebraic CFG notation (Section 2.5) to define configurations, in
particular of list, set, multiset and map structures. Like in the CHAM or P-systems, program or
system configurations in K are organized as potentially nested structures of cells (we call them
cells instead of molecules like in CHAM or membranes like in P-systems to avoid confusion with
terminology in CHAM/P-systems as well as confusion with terminology in chemistry or biology

— note that “cell” has a more wide-spread use, e.g., “memory cell”, etc.). However, unlike in
CHAM/P-systems which only provide multisets (or bags), K also provides list, set and map cells in
addition to multiset (called bag) cells; K’s cells may be labelled to distinguish them from each other.
We use angle brackets as cell wrappers. The K configuration of IMP can be defined as follows:

ConfigurationIMP ≡ ⟨⟨K⟩k ⟨Map{VarId ↦ Int}⟩state⟩⊺
In words, IMP configurations consist of a top cell ⟨...⟩⊺ containing two other cells inside: a cell ⟨...⟩k
which holds a term of sort K (terms of sort K are called computations and extend the original

282



language syntax as explained in the next paragraph) and and a cell ⟨...⟩state which holds a map
from variables to integers. In Chapter 3, we used the sort State as an alias (introduced in Section
3.1.2) for the map sort from variables to integers; since in this chapter we are going to have many
maps, lists and bags, we prefer to avoid using aliases. As examples of IMP K configurations,⟨⟨x := 1; y := x+1⟩k ⟨⋅⟩state⟩⊺ is a configuration holding program “x := 1; y := x+1” and empty state,
and ⟨⟨x := 1; y := x+1⟩k ⟨x↦ 0,y↦ 1⟩state⟩⊺ is a configuration holding the same program and a
state mapping x to 0 and y to 1. When we add threads (in IMP++), the configurations can hold
multiple ⟨...⟩k cells (its bag structure allows that).

K provides special notational support for computational structures, or simply computations.
Computations have the sort K, which is therefore builtin in the K framework; the intuition for terms
of sort K is that they have computational contents, such as, for example, a program or a fragment
of program has. Computations extend the original language/calculus/system syntax with special
“↷”-separated lists “T1 ↷ T2 ↷ ⋯↷ Tn” comprising (computational) tasks, thought of as having to
be “processed” sequentially (“↷” reads “followed by”). The identity of the “↷” associative operator
is “⋅”. Like in reduction semantics with evaluation contexts (RSEC, see Section 3.5), K allows one
to define evaluation contexts over the language syntax. However, unlike in RSEC, parsing does not
play any crucial role in K, because K replaces the hard-to-implement split/plug operations of RSEC
by plain, context-insensitive rewriting. Therefore, instead of defining evaluation contexts using
grammars and relying on splitting syntactic terms (via parsing) into evaluation contexts and redexes,
in K we define evaluation contexts using special rewrite rules. For example, the evaluation contexts
of sum, comparison and conditional in IMP can be defined as follows, by means of structural rules
(recall that the sum “ + ” was non-deterministic and the comparison “ <= ” was sequential):

a1 + a2 ⇌ a1 ↷ ◻ + a2

a1 + a2 ⇌ a2 ↷ a1 + ◻
a1 <= a2 ⇌ a1 ↷ ◻ <= a2

i1 <= a2 ⇌ a2 ↷ i1 <= ◻
if b then s1 else s2 ⇌ b ↷ if ◻ then s1 else s2

The symbol ⇌ stands for two structural rules, one left-to-right and another right-to-left.

The right-hand sides of the structural rules above contain, besides the task sequentialization
operator “↷”, freezer operators containing “◻” in their names, such as “◻+ ”, “ +◻”, etc. The first
rule above says that in any expression of the form a1 +a2, a1 can be scheduled for processing while
a2 is being held for future processing. Since the rules above are bi-directional, they can be used
at will to structurally re-arrange the computations for processing. Thus, when iteratively applied
left-to-right they fulfill the role of splitting syntax into an evaluation context (the tail of the resulting
sequence of computational tasks) and a redex (the head of the resulting sequence), and when
applied right-to-left they fulfill the role of plugging syntax into context. Such structural rules are
often called heating/cooling rules in K, because they are reminiscent of the CHAM heating/cooling
rules; for example, a1 +a2 is “heated” into a1 ↷ ◻ + a2, while a1 ↷ ◻ + a2 is “cooled” into a1 +a2.
Heating/cooling rules can be used to define any evaluation context, not only strictness of operations.
A language definition can use structural rules not only for heating/cooling but also to give the
semantics of some language constructs; this will be discussed later in this section.

To avoid writing obvious heating/cooling structural rules like the above, we prefer to use the
strictness attribute syntax annotations in K, as shown in the middle column in Figures 5.1 and 5.2:
“strict” means non-deterministically strict in all enlisted arguments (given by their positions) or by

283



default in all arguments if none enlisted, and “seqstrict” is like strict but each argument is fully
processed before moving to the next one (see the second structural rule of “<=” above).

The structural rules corresponding to strictness attributes (or the heating/cooling rules) de-
compose and eventually push the tasks that are ready for processing to the top (or the left) of the
computation. Semantic rules then tell how to process the atomic tasks. The right column in Figure
5.1 shows the semantic K rules of IMP. To understand them, let us first discuss the important
notion of a K rule, which is a strict generalization of the usual notion of a rewrite rule. To take full
advantage of K’s support for concurrency, K rules explicitly mention the parts of the term that they
read, write, or don’t care about. The underlined parts are those which are written by the rule; the
term underneath the line is the new subterm replacing the one above the line.

All writes in a K rule are applied in one parallel step, and, with some reasonable restrictions
discussed in Section 5.4 (that avoid read/write and write/write conflicts), writes in multiple K rule
instances can also apply in parallel. The elipses “...” represent the volatile part of the term, that is,
that part that the current rule does not care about and, consequently, can be concurrently modified
by other rules. The operations which are not underlined represent the read-only part of the term:
they need to stay unchanged during the application of the rule. For example, the lookup rule in
Figure 5.1 (first one) says that once program variable x reaches the top of the computation, it is
replaced by the value to which it is mapped in the state, regardless of the remaining computation
or the other mappings in the state. Similarly, the assignment rule says that once the assignment
statement “x:= i” reaches the top of the computation, the value of x in the store is replaced by
i and the statement dissolves; in K, “ ” is a nameless variable of any sort and “⋅” is the unit (or
empty) computation (in practice, “⋅” tends to be a polymorphic unit of most if not all list, set
and multiset structures). The rule for variable declarations in Figure 5.1 (last one) expects an
empty state and allocates and initializes with 0 all the declared variables; the dotted or dashed lines
signifies that the rule is structural, which is discussed next.

K rules are split in two categories: computational rules and structural rules. Computational
rules capture the intuition of computational steps in the execution of the defined system or language,
while structural rules capture the intuition of structural rearrangement, rather than computational
evolution, of the system. We use dashed or dotted lines in the structural rules to convey the idea that
they are lighter-weight than the computational rules. Ordinary rewrite rules are a special case of K
rules, when the entire term is replaced; in this case, we prefer to use the standard notation “l → r”
as syntactic sugar for computational rules and the notation “l ⇁ r” or “l ⇀ r” as syntactic sugar
for structural rules. We have seen several structural rules at the beginning of this section, namely
the heating/cooling rules corresponding to the strictness attributes. Figure 5.1 shows three more:
“s1 ; s2” is rearranged as “s1 ↷ s2”, loops are unrolled when they reach the top of the computation
(unconstrained unrolling would lead to undesirable non-termination), and declared variables are
allocated in the state. There are no rigid requirements when rules should be computational versus
structural and, in the latter case, when one should use “l ⇁ r” or “l ⇀ r” as syntactic sugar. We
(subjectively) prefer to use structural rules for desugaring (like for sequential composition), loop
unrolling and declarations, and we prefer to use “⇀” when syntax is split into computational tasks
and “⇁” when computational tasks are put back into the original syntax.

Each K rule can be “desugared” into a standard term rewrite rule by combining all its changes
into one top-level change. The relationship between K rules and conventional term rewriting and
rewriting logic is discussed in Section 5.4. The main point is that the resulting rewrite system/theory
associated to a K system lacks the potential for concurrency of the original K system.

284



Original language syntax K Strictness K Semantics

AExp ∶∶= . . . ∣ ++VarId ⟨ ++x

i +Int 1

⋯⟩k ⟨⋯ x↦ i

i +Int 1

⋯⟩state
Stmt ∶∶= . . .∣ output (AExp) [strict] ⟨output (i)⋅ ⋯⟩k ⟨⋯ ⋅

i

⟩output
∣ halt ⟨halt⋯⋅ ⟩k
∣ spawn (Stmt) ⟨spawn (s)⋅ ⋯⟩k ⋅⟨s⟩k⟨⋅⟩k ⇁ ⋅

Figure 5.2: K definition of IMP++ (extends that of IMP in Figure 5.1, without changing anything)

5.2.2 K Semantics of IMP++

In spite of its simplicity, IMP++ revealed limitations in each of the conventional semantic approaches
(see Section 3.9); for example, big-step and small-step SOS as well as denotational semantics were
heavily non-modular, modular SOS required artificial syntactic extensions of the language in order
to attain modularity, reduction semantics with evaluation contexts lacked modularity in some cases,
the CHAM relied on a heavy airlock operation to match information in solution molecules, and
all these approaches have limited or no support for true concurrency (the CHAM provides more
support for true concurrency than the others, but it still unnecessarily enforces interleaving in some
cases). In this section we show that K avoids these limitations, at least in the case of IMP++.

Figure 5.2 shows how the K semantics of IMP can be seamlesly extended into a semantics for
IMP++. To accomodate the output, a new cell needs to be added to the configuration:

ConfigurationIMP++ ≡ ⟨⟨K⟩k ⟨Map{VarId ↦ Int}⟩state ⟨List{Int}⟩output ⟩⊺
However, note that none of the existing IMP rules needs to change, because each of them only
matches what it needs from the configuration. The construct output is strict and its rule adds the
value of its argument to the end of the output buffer (matches and replaces the unit “⋅” at the end
of the buffer). The rule for halt disolves the entire computation, and the rule for spawn creates
a new ⟨...⟩k cell wrapping the spawned statement. The code in this new cell will be processsed
concurrently with the other threads. The last rule “cools” down a terminated thread by simply
disolving it; it is a structural rule because, again, we do not want it to count as a computation.

We conclude this section with a discusion on the concurrency of the K definition of IMP++.
Since in K rule instances can share read-only data, various (actually all matching) instances of the
look up rule can apply concurrently, in spite of the fact that they overlap on the state subterm.
Similarly, since the rules for variable assignment and increment declare volatile everything else in
the state except the mapping corresponding to the variable, mutiple assignments, increments and
reads of distinct variables can happen concurrently. However, if two threads want to write the same
variable, or if one wants to write it while another wants to read it, then the two corresponding rules
need to interleave, because the two rule instances are in a concurrency conflict. Note also that the
rule for output matches and changes the end of the output cell; that means, in particular, that
multiple outputs by various threads need to be interleaved for the same reason as above. On the

285



Original language syntax K Strictness K Semantics

AExp ∶∶= Int i→ int∣ VarId ⟨ x
int

⋯⟩k ⟨⋯ x ⋯⟩vars
∣ AExp +AExp [strict] int + int→ int∣ AExp /AExp [strict] int / int→ int∣ ++VarId ⟨++x

int

⋯⟩k ⟨⋯ x ⋯⟩vars
BExp ∶∶= AExp <=AExp [strict] int <= int→ bool∣ notBExp [strict] not bool→ bool∣ BExp andBExp [strict] bool and bool→ bool
Stmt ∶∶= skip skip → stmt∣ VarId :=AExp [strict(2)] ⟨x:= int

stmt

⋯⟩k ⟨⋯ x ⋯⟩vars
∣ Stmt;Stmt [strict] stmt; stmt→ stmt∣ if BExp then Stmt else Stmt [strict] if bool then stmt else stmt → stmt∣ while BExp do Stmt [strict] while bool do stmt → stmt∣ output (AExp) [strict] output int→ stmt∣ halt halt → stmt∣ spawn (Stmt) [strict] spawn (stmt)→ stmt

Pgm ∶∶= vars List{VarId};Stmt ⟨vars xl ; s

s↷ pgm

⟩k ⟨ ⋅
xl

⟩vars
stmt↷ pgm→ pgm

Figure 5.3: K type system for IMP++ (and IMP)

other hand, the rule for spawn matches any empty top-level position and replaces it by the new
thread, so threads can spawn threads concurrently. Similarly, multiple threads can be dissolved
concurrently when they are done (last “cooling” structural rule). These concurrency aspects of
IMP++ are possible to define formally thanks to the specific nature of the K rules. If instead we
used standard rewrite rules instead of K rules, than many of the concurrent steps above would need
to be interleaved because rewrite rule instances which overlap cannot be applied concurrently.

5.2.3 K Type System for IMP/IMP++

The K semantics of IMP/IMP++ discussed above can be used to execute even ill-typed IMP/IMP++
programs, which may be considered undesirable by some language designers. Indeed, one may want
to define a type checker for a desired typing policy, and then use it to discard as inappropriate
programs that do not obey the desired typing policy. In this section we show how to define a type
system for IMP/IMP++ using the very same K framework. The type system is defined like an
(executable) semantics of the language, but one in the more abstract domain of types rather than in
the concrete domain of integer and boolean values. The technique is general and has been used to
define more complex type systems, such as higher-order polymorphic ones (see Section 7.15).

The typing policy that we want to enforce on IMP/IMP++ programs is easy: all variables
in a program have by default integer type and must be declared, arithmetic/boolean operations
are applied only on expressions of corresponding types, etc. Since programs and fragments of
programs are now going to be rewritten into their types, we need to add to computations some

286



basic types. Also, in addition to the computation to be typed, configurations must also hold the
declared variables. Thus, we define the following (the “...” in the definition of K includes all the
default syntax of computations, such as the original language syntax, “↷”, freezers, etc.):

K ∶∶= ... ∣ int ∣ bool ∣ stmt ∣ pgm

ConfigurationType
IMP++ ≡ ⟨⟨K⟩k ⟨List{VarId}⟩vars⟩⊺

Figure 5.3 shows the IMP/IMP++ type system as a K system over such configurations.
Constants reduce to their types, and types are straightforwardly propagated through each language
construct. Note that almost each language construct is strict now, because we want to type all its
arguments in almost all cases in order to apply the typing policy of the construct. Two constructs
make exception, namely the increment and the assignment. The typing policy of these constructs is
that they take precisely a variable and not something that types to an integer. If we defined, e.g.,
the assignment strict and with rule “int:= int→ stmt”, then our type system would allow ill-formed
programs like “x+y := 0”. Note how we defined the typing policy of programs “vars xl ; s”: the
declared variables xl are stored into the ⟨...⟩vars cell (which is expected to initially be empty) and the
statement is scheduled for typing (using a structural rule), placing a “reminder” in the computation
that the pgm type is expected; once/if the statement is correctly typed, the type pgm is generated.

287



5.3 K in Rewrite Logic

In this section we discuss easy and intuitive ways to encode K systems as rewrite systems. Even
though we have not defined the K rewrite abstract machine (Section 5.4) or the K technique (Section
5.5) in depth yet, the informal presentation of the K framework in Section 5.2 suffices to give our
reader a reasonably good idea of what K is and how it works. The role of this section is to extend
that informal understanding of K and give the reader a reasonably good idea of how she can write
K definitions in rewrite logic and then use rewrite engines to execute and formally analyze such
definitions. To a large extent, this section is equivalent in style and purpose to similar sections
in Chapter 3 explaining how each of the conventional semantic approaches can be represented in
rewrite logic and then executed using rewrite engines (e.g., Section 3.2.3, 3.3.3, 3.4.2, etc.).

Since K is a rewrite-based framework, it is conceptually closer to rewrite logic than any of the
other semantic frameworks in Chapter 3. In spite of this closeness, however, there appears to be no
immediate faithful embedding of K into rewrite logic. This is mainly because of two reasons:

1. Rewrite logic does not provide direct semantic concurrency support for subterm sharing, which
has the effect that rewrite logic rules associated to K rules need to interleave even in situations
where their original K rules could proceed truly concurrently in the K framework. As an
example, suppose that a, a′ and b are terms of sort S, that “a, a, b” is a term of sort Bag{S},
and that we have the following K rule

a

a′
, b

which rewrites a to a′ in the presence of a (possibly shared) b. Then in K we can rewrite
the term “a, a, b” in one concurrent step to “a′, a′, b” (see Section 5.4). This example pushes
to its essence the practical situation where two threads (here simulated by each of the two
a’s) proceed concurrently when they only read (but do not change) the shared memory (here
simulated by b). We are going to translate such a K rule into a rewrite rule

a, b→ a′, b
which applies modulo the associativity and commutativity of the binary comma operation that
implicitly constructs Bag{S}. This rewrite rule lacks the concurrency of the original K rule:
no rule instances can overlap in rewrite logic, so two rule instances of the rule above matching
the same b cannot proceed concurrently, they need to interleave. All our embeddings of K into
rewrite logic share this limitation, the effect of which is that truly concurrent operations in
the original K semantics become interleaved operations in the resulting rewrite logic theories.
Therefore, we cannot obtain a practical concurrent-step-for-concurrent-step faithful embedding
of K into rewrite logic (theoretically, one could eliminate subterm sharing by subterm copying
via equations and multiset rewriting, as discussed in Section 5.4 and in [26], but that is
impractical: hard or impossible to execute and to analyze formally, hard to read).

2. Rewrite logic does not provide support for structural rules (i.e., rules whose application does
not count as computational). In K, computational rules apply “modulo” the structural ones.
In other words, given a term t to rewrite using a K system, the structural rules can be used
to derive a set of terms from t, each of those terms being thought of as a “computational
representation” of t; then a computational rule can non-deterministically “pick” any term
from the set and irreversibly rewrite it to another term. Then the process continues, i.e., the

288



structural rules generate a new set of terms, and so on. Even though this process is reminiscent
of how rewrite rules apply in rewrite logic modulo equations, in K the equations are replaced
by structural rules. Metaphorically, one can regard K’s structural rules as “half-equations”:
they are used like the equations to compute classes of terms on which computational rules
apply, but they are not necessarily reversible as the equations are. Indeed, one may have
good reasons to not want the structural rules for sequential composition, while loops, vars

declarations in the K semantics of IMP in Figure 5.1 to be reversible. In some sense, K’s
structural rules are more general than rewrite logic’s equations, because one can achieve the
same effect of an equation t = t′ by replacing it with a pair of structural rules t⇌ t′. It appears
impossible to achieve the desired “modulo” meaning of the structural K rules in rewrite logic.

Because of the reasons above, in this section we present our embeddings of K into rewrite logic
at a rather conceptual level, discussing for each of them its advantages and disadvantages. The
true concurrency and computational granularity aspects tend to be ignored by or unavailable in
most conventional semantic frameworks. For example, all the approaches in Chapter 3 except for
the chemical abstract machine (CHAM) assume an interleaving semantics, which means that the
limitation of the true concurrency of K rewriting to that of rewrite logic is basically meaningless for
those approaches, because they lack true concurrency by their very nature. The true concurrency
limitation above is also meaningless for the CHAM, because, even though it advocates true
concurrency, the CHAM rewriting does not allow for sharing (or, in other words, sharing yields
interleaving for the involved rule instances). Therefore, most of the language designers using our
embeddings of K into rewrite logic discussed in this section may not be affected much by the
limitations above of the resulting rewrite logic theories. To avoid repetitively mentioning that the
resulting rewrite logic theories lack the true concurrency of their original K definitions, in this
section we temporarily restrict K’s concurrency to the one of rewrite logic, that is, the explicit
sharing specified in K rules plays no semantic role in this section.

5.3.1 (Almost Faithful) Embeddings of K into Rewrite Logic

As briefly discussed in Section 5.2 and in detail discussed in Section 5.4, there are two types of K rules:
structural, whose role is to only rearrange the term without modifying its computational contents,
and computational, whose role is to capture the irreversible computational steps. Notationally, the
structural rules use dotted lines when written in two-dimensional form and ⇀ or ⇁ when written in
unidimensional form, and the computational rules use full lines when written two-dimensionally and
the usual rewrite relation notation → when written in unidimensional form. The unidimensional
form is syntactic sugar for the particular case when the entire term is underlined (or rewritten), so
we only discuss the more general, two-dimensional representations of the K rules.

All four embeddings discussed in this section, as well as all the other embeddings that we have
experimented with but do not discuss here, translate K computational rules of the form

p[l1
r1

, l2
r2

, ..., ln
rn

]
(p is called the local context, or pattern of the K rule) into corresponding rewrite rules of the form

p[l1, l2, ..., ln]→ p[r1, r2, ..., rn]
289



In order for the above to work, we need to make explicit the anonymous variables (“ ”) and to
desugar the cell comprehension notation ( “...”). For example, the assignment K rule in Figure 5.1

⟨x := i⋅ ⋯⟩k ⟨⋯ x↦
i

⋯⟩state
is translated into a rewrite rule like the one below

⟨X := I ↷ Rest⟩k ⟨X ↦ J & σ⟩state → ⟨Rest⟩k ⟨X ↦ I & σ⟩state
where the variables have the following sorts: X has sort VarId; I, J have sort Int; Rest has sort K;
and σ has sort State. To respect the well-established convention of rewrite logic, we used capital
letters for variables; in K we prefer to use lower case letters for variables.

All four embeddings translate structural rules which are not reversible (i.e., structural rules
which are not heating/cooling rules) precisely the same way, making therefore no distinction between
such structural rules and computational rules in the translation. The only thing which is lost in
this translation is the computational granularity of the original K definition (in addition to the true
concurrency of the original K definition, which we decided to temporarily drop in this section).

What distinguishes the various embeddings of K into rewrite logic is how they represent the
reversible structural rules (the heating/cooling rules). None of the embeddings below is perfect.
The first two have a more theoretical relevance than practical, in that the resulting rewrite logic
theories are not executable but they capture all the behaviors of the original K definition (albeit
with a different computational granularity than that of the original K system). The third and
fourth embeddings yield executable rewrite logic theories, but their executability comes at a loss of
non-deterministic behaviors when executed on current rewrite logic engines. The reason for which
we call our embeddings of K into rewrite logic “almost faithful” is twofold: first, they all miss some
of the behaviors of the original K definition because of the reasons discussed in the preamble of
Section 5.3; second, even though our third and fourth embeddings yield executable rewrite logic
theories, they actually lose even more of the behaviors of the original K definition when executed.

First Impractical Embedding of K into Rewrite Logic

As mentioned, all our embeddings of K into rewrite logic translate both computational and non-
reversible (i.e., non-heating/cooling) structural rules into rewrite rules. Our first embedding takes
the simplest and most uniform approach to deal with the remaining reversible structural rules,
namely to consider no difference between them and the other K rules, translating them all into
rewrite rules as above. This way, each rewrite sequence in the original K system can be mirrored
into a corresponding sequence in the corresponding rewrite theory and viceversa, except for the
structural versus computational aspect. Therefore, one can use reachability analysis on the resulting
rewrite system, e.g., the search capabilities of Maude, to find all the rewrite sequences that the
original K system can yield. This reachability analysis can be very expensive and impractical, but
it is theoretically important to understand that it is possible and that, indeed, the resulting rewrite
system does not miss any of the behaviors of the original K system (assuming the temporarily
accepted restrictions and limitations discussed in the preamble of Section 5.3).

There is a big practical problem, though, with this embedding, namely its execution capability.
Consider for example a pair of structural (heating/cooling) rules

a1 +a2 ⇌ a1 ↷ ◻+a2

290



which, by this embedding, result into the following rewrite rules:

a1 +a2 → a1 ↷ ◻+a2

a1 ↷ ◻+a2 → a1 +a2

These two rules are inverse to each other so they most likely yield infinite rewriting when executed
on rewrite engines. Therefore, the rewrite theories resulting from this embedding are not executable.

One could argue that the non-termination problem above is inherent in the original K definition
as well, because there is nothing to stop one from applying the two structural (heating/cooling)
rules above indefinitely. While this is true in principle, recall that in K computational rules apply
modulo the structural rules; in particular, one would expect that practical implementations of K
recognize such structural rules and handle them in a special manner. As an analogy, many practical
implementations of conventional rewriting provide special support for rewriting modulo certain
equational properties such as associativity or commutativity; indeed, like our heating/cooling rules
above, commutativity would yield infinite rewriting if applied blindly as two rules inverse to each
other. Also, like associativity and commutativity, the heating/cooling rules can only yield a finite
number of computational representations of a given term, so an implementation can, again in
principle, enumerate all of them in order to pick one on which a computational rule can apply.

Second Impractical Embedding of K into Rewrite Logic

As seen above, simply replacing each structural K rule by a rewrite logic rule yields non-termination
whenever the original K definition includes any heating/cooling pair of structural rules. Since as
discussed above each structural rule can be regarded as a “half-equation” in rewrite logic, it means
that each pair of heating/cooling rules l ⇌ r can be regarded as an equation l = r in rewrite logic.
Let us here assume an embedding transformation of K into rewrite logic which translates each pair
of heating/cooling rules l ⇌ r into an equation l = r and each remaining structural K rule into a
rewrite logic rewrite rule as if it was a computational K rule. Since in rewrite logic the rewrite rules
apply modulo the equations, in theory none of the behaviors of the original K definition is lost.

Like the first embedding above, this embedding is also impractical: its resulting rewrite logic
theories are not executable. Indeed, consider the equations

a1 +a2 = a1 ↷ ◻+a2

a1 +a2 = a2 ↷ a1 +◻
corresponding to the heating/cooling rules for IMP addition in Section 5.2.1, and consider an
expression 7+x. In order to evaluate it one needs to first lookup x, and in order to do so one needs to
heat the expression to x↷ 7+◻ applying the second equation above. However, if the first equation
is picked by a rewrite engine instead of the second, then the expression is heated to 7↷ ◻+x and
now the rewrite process is stuck. Reachability analysis, e.g., using Maude’s search command, does
not work either, because only the rules are expected to generate new state-space, not the equations,
so if the first equation is picked, then the second one will never be tried. The above is enough
evidence that this embedding yields non-executable rewrite theories, so it is also impractical. It is
interesting to note, as a side point, that the equations corresponding to the heating/cooling rules
for non-deterministic constructs like the + above make the resulting rewrite theory non-coherent
(see Section 2.7), thus also violating a basic theoretical executability requirement in rewrite logic.

291



First Practical Embedding of K into Rewrite Logic

One way to avoid the non-termination problem of the first embedding above is to restrict the
applications of the rewrite rules corresponding to the heating/cooling K rules so that they can
only apply in complementary situations. For example, it makes sense to apply the rewrite rule
“a1 +a2 → a1 ↷ ◻+a2” (corresponding to a heating rule) whenever a1 is not a result, so it needs
to be pulled out from its addition context to be further processed, and to apply the rewrite rule
“a1 ↷ ◻+a2 → a1 +a2” (corresponding to a cooling structural rule) whenever a1 is a result, so it
needs no further processing, meaning that it can be plugged back into its original addition context.

No matter how we decide to break the reversibility of the heating/cooling rules by splitting the
cases in which only the first rule above applies from the cases in which only the second rule above
applies, losing behaviors may be unavoidable. For example, suppose that we split the two cases as
above, depending upon whether a1 is a result or not, and suppose that a1 is a not a result. Then the
first rule applies and a2 gets frozen until a1 eventually reduces to an integer, when the second rule
plugs it back into the addition context. Now, assuming that the original K definition also included
a heating/cooling structural rule “a1 +a2 ⇌ a2 ↷ a1 +◻” like the IMP language does (see Section
5.2.1), which is also translated into a pair of rewrite rules like the one for a1, then the resulting
rewrite theory loses those interleaved behaviors in which a1 is reduced one step, then a2 is reduced
one step, then a1 is again reduced one step, and so on; the remaining behaviors for + are then only
those corresponding to non-deterministic choice: one of its arguments is non-deterministically chosen
and evaluated completely, and then the other argument is evaluated completely (these behaviors
are the same as those supported by the big-step semantics —Section 3.2).

In many practical situations, the loss of behaviors incurred when switching from fully non-
deterministic to non-deterministic choice semantics is acceptable. As already mentioned in Section
3.1, one of the main reasons for which arithmetic language constructs like + are allowed to be
non-deterministic is because one wants to allow flexibility in how the language is implemented,
and not because these constructs are indeed intended to have fully non-deterministic behaviors.
In other words, such constructs are in fact deliberately underspecified and one should not rely on
their non-deterministic behavior when writing programs. If one is interested in a faithful rewrite
logic semantics that captures even those rare and subtle behaviors that are visible under full non-
deterministic but not under non-deterministic choice semantics of arithmetic language constructs,
then one is referred to the other three rewrite logic embedding of K in this section. An alternative
is to attempt to statically reject programs containing expressions that can yield such behaviors, the
same way a type checker statically rejects programs that do not obey the intended typing policy.

Exercise⋆ 175. Define a special safety policy for IMP++ in K, following the type system style
in Figure 5.3, which rejects as inappropriate programs containing expressions whose value depends
upon the particular evaluation strategies of + , / and <= . The K definition of this safety policy
should be executable, so that it results into a static analysis tool for this property when executed.
For simplicity, the typing policy can be local, that is, should not take into account what other threads
can do. Can one define a global policy, where other threads are allowed to potentially interfere, that
rejects precisely those programs that violate the desired property and no other programs?

Once we agree to ignore the loss of behaviors discussed above, we can define an embedding of K
into rewrite logic that takes each pair of heating/cooling structural rules of the form

a1 +a2 ⇌ a2 ↷ a1 +◻
292



into a pair of potentially conditional1 rewrite rules

a1 +a2 → a1 ↷ ◻+a2 when a1 is not a result
a1 ↷ ◻+a2 → a1 +a2 when a1 is a result

The embedding above is easy, mechanical and efficient. Indeed, the rewrite logic definition of
IMP obtained by applying the transformation above to the K definition of IMP in Figure 5.1, when
executed in Maude (see Section 5.3.2), yields an interpreter which is faster than any of the Maude
interpreters of IMP corresponding to the conventional semantic approaches in Chapter 3 (an even
faster interpreter is given by our second practical embedding of K into rewrite logic discussed next).
However, our embedding transformation discussed above still has two limitations:

1. It modifies the computational granularity of the original K definition, because structural
rules that do not count as computational steps in the original K definition now count as
computational rewrite logic steps; and

2. It is rather inefficient when used for exhaustive analysis, e.g., for search or model checking,
because one ends up having more rewrite rules like above corresponding to heating/cooling
structural K rules than actual semantic rules (like those in the right columns of the K definitions
of IMP and IMP++ in Figures 5.1 and 5.2), which blow the complexity of the exhaustive
analysis tool. Recall from Section 2.7 that rewrite rules are assumed to potentially generate
new behaviors, so their application generates the state-space analyzed by such tools, while
equations are assumed to not generate new behaviors, so tools apply equations to canonize
existing states but not to generate new states.

Second Practical Embedding of K into Rewrite Logic

We next describe our fourth and in our view best embedding of K into rewrite logic. It is a
combination of the second impractical and the first practical embeddings above. More precisely,
instead of transforming the heating/cooling structural rules into pairs of conditional rules as the
first practical embedding above does, it transforms them into pairs of equations. For example, the
heating/cooling pair “a1 +a2 ⇌ a1 ↷ ◻+a2” for + above yields the following two equations:

a1 +a2 = a1 ↷ ◻+a2 when a1 is not a result
a1 ↷ ◻+a2 = a1 +a2 when a1 is a result

From a (model- or proof-)theoretical point of view, since the two equations “l = r when ...” and “r = l
when ...” associated to a heating/cooling pair of rules “l ⇌ r” have complementary conditions, they
are completely equivalent to only one equation, namely “l = r”. Therefore, from the same theoretical
point of view, the embedding discussed here yields rewrite logic theories that are equivalent to the
ones yielded by the second impractical embedding above, which means, in particular, that none of
the behaviors of the original K definition is lost.

Like for the other three embeddings of K into rewriting logic discussed above, the problem with
this transformation is also more of a practical rather than theoretical nature. Since the equations
are expected to be confluent and to terminate when regarded as rewrite rules and since rewrite
rules apply modulo equations, they are not considered as possible sources of non-determinism in

1One may be able to use subsorting of result and non-result computations into K and thus avoid the conditions.

293



current rewrite engines or formal analysis tools. That means that the rewrite theories generated by
this new embedding, when executed, lose even more behaviors due to non-deterministic evaluation
strategies than the previous embedding. Indeed, instead of non-deterministic choice semantics we
now have an “arbitrary but fixed order” semantics: an arbitrary evaluation order is chosen, but one
cannot explore any other evaluation order. Note that, in theory, the equations of a rewrite theory
need not be confluent (nor terminate) when regarded as rewrite rules, but that in practice they are
assumed so by the rewrite logic systems, in that their non-determinism is not explored. Current
rewrite logic systems apply the equations as rewrite rules anyway when executing them (so from an
executability point of view they are “half-equations”, same as the K structural rules are intended
to be), but, since they are not expected to generate new behaviors, less bookkeeping is needed for
them, so they are more efficiently executable than the rewrite rules. Equations should therefore be
preferred whenever possible (i.e., whenever they are sound) if efficiency is a concern.

5.3.2 K Semantics and Type System of IMP in Rewrite Logic

We next exemplify the second practical embedding above by completely defining both the K
semantics and the type system of IMP (see Sections 5.2.1 and 5.2.3) in rewrite logic. Although the
rewrite logic embeddings of K discussed above are conceptually straightforward, there are, however,
several technical details that need to be addressed in order to make them work. We only focus on
the last embedding above here, because, as mentioned, that is the most practical one.

First, we need to introduce the sort K for computations as a list sort with constructors “↷” for
concatenation of computations and “⋅” for the empty computation, that is, with the notation for
algebraic context-free grammars in Section 2.5, “K ∶∶= List⋅↷{K}”. Further, as already mentioned
in Section 5.2, K is a supersort for all the syntactic categories; in our case that means that we
need to define the subsorts “AExp,BExp,Stmt,Pgm,List{VarId} < K”. Also, we need to define
all the necessary computation freezers, e.g., “◻+ ∶ K → K”, “ +◻ ∶ K → K”, etc., so that the
heating/cooling equations parse. To state the conditions of the heating/cooling equations, we also
need to define our result computations, namely the elements of sort KResult, where KResult <K.
In the case of the K semantics of IMP, the results are the integer and the boolean values, so we
add the subsortings “Int,Bool < KResult”. In the case of the K type system of IMP, the results are
the actual types, namely int, bool, stmt,pgm, which we define as constants of sort KResult.

All these are shown in Figures 5.4 and 5.5. The type system needs more freezers and more
heating/cooling equations than the semantics, because the language constructs are strict in more
arguments in the type system than in the semantics. Also, note that we took advantage of two rewrite-
logic-specific features in the heating/cooling equations, namely: we used membership assertions
in the conditions of the “heating” equations , e.g., “K1 ∶ KResult”, and we used unconditional
“cooling” equations but ones using variables of sort KResult. In rewriting logic we can assume that
all the sorts of all the terms are dynamically computed and known at any moment (a term can have
more than one sort, because of subsorting and operator overloading). The membership assertions
allow one to dynamically check whether a term has a desired sort. If one does not want to rely on
membership assertions and subsorting, e.g., if one’s target engine does not support these, then one
can alternatively define one’s own membership predicate and make both equations conditional.

The next step is to define the cell-based configurations. Both the K semantics and the type
system of IMP admit very simple configurations, consisting of a top cell that contains two subcells,
the computation and either the state (in the semantics) or the list of variables (in the type system).
These are defined by means of three operations, listed in the first raw of operations in Figures 5.4

294



sorts:
K = List⋅↷{K}, KResult, Cell

subsorts:
AExp,BExp,Stmt,Pgm,List{VarId} < K Int,Bool < KResult < K

operations:⟨ ⟩⊺ ∶ Bag{Cell}→ Cell ⟨ ⟩k ∶ K → Cell ⟨ ⟩state ∶ State→ Cell◻+ ∶ K →K +◻ ∶ K →K◻/ ∶ K →K /◻ ∶ K →K◻<= ∶ K →K <=◻ ∶ K →K◻and ∶ K →K
not◻ ∶ →K
:=◻ ∶ K →K
if ◻ then else ∶ K ×K →K

strictness equations: // mechanically derived
K1 +K2 =K1 ↷ ◻+K2 if ¬Bool(K1 ∶ KResult) R1 ↷ ◻+K2 = R1 +K2

K1 +K2 =K2 ↷K1 + ◻ if ¬Bool(K2 ∶ KResult) R2 ↷K1 +◻ =K1 +R2

K1 /K2 =K1 ↷ ◻/K2 if ¬Bool(K1 ∶ KResult) R1 ↷ ◻/K2 = R1 /K2

K1 /K2 =K2 ↷K1 / ◻ if ¬Bool(K2 ∶ KResult) R2 ↷K1 /◻ =K1 /R2

K1 <=K2 =K1 ↷ ◻<=K2 if ¬Bool(K1 ∶ KResult) R1 ↷ ◻<=K2 = R1 <=K2

R1 <=K2 =K2 ↷ R1 <= ◻ if ¬Bool(K2 ∶ KResult) R2 ↷ R1 <=◻ = R1 <=R2

K1 andK2 =K1 ↷ ◻andK2 if ¬Bool(K1 ∶ KResult) R1 ↷ ◻andK2 = R1 andK2

notK =K ↷ not ◻ if ¬Bool(K ∶ KResult) R ↷ not◻ = notR
K1 :=K2 =K2 ↷K1 := ◻ if ¬Bool(K2 ∶ KResult) R2 ↷K1 :=◻ =K1 :=R2

ifK thenK1 elseK2 =K ↷ if ◻ thenK1 elseK2 if ¬Bool(K ∶ KResult)
R ↷ if ◻ thenK1 elseK2 = ifK thenK1 elseK2

semanitc rules:⟨X ↷ Rest⟩k ⟨X ↦ I & σ⟩state → ⟨I ↷ Rest⟩k ⟨X ↦ I & σ⟩state
I1 + I2 → I1 +Int I2

I1 / I2 → I1/IntI2 if I2 ≠ 0
I1 <= I2 → I1 ≤Int I2

true andB2 → B2

false andB2 → false

not true → false

not false → true

skip → ⋅⟨X := I ↷ Rest⟩k ⟨X ↦ J & σ⟩state → ⟨Rest⟩k ⟨X ↦ I & σ⟩state
S1 ;S2 → S1 ↷ S2

if true thenS1 elseS2 → S1

if false thenS1 elseS2 → S2⟨whileB doS ↷ Rest⟩k → ⟨ifB then (S ; whileB doS)else skip ↷ Rest⟩k⟨varsXl ;S⟩k ⟨⋅⟩state → ⟨S⟩k ⟨Xl ↦ 0⟩state
Figure 5.4: Complete K semantics of IMP in rewrite logic (variables K, K1, K2 B, B2, S, S1, S2,
Rest have kind [K], variables R, R1 and R2 have sort KResult, variable X has sort VarId, variable
Xl has sort List{VarId}, variable σ has sort State, and variables I, I1, I2, J have sort Int)

295



sorts:
K = List⋅↷{K}, KResult, Cell

subsorts:
AExp,BExp,Stmt,Pgm,List{VarId} < K

operations:
int, bool, stmt,pgm ∶ → KResult // result constants, corresponding to the types⟨ ⟩⊺ ∶ Bag{Cell}→ Cell ⟨ ⟩k ∶ K → Cell ⟨ ⟩vars ∶ List{VarId}→ Cell
// all operations whose names contain ◻ are mechanically derived from strictness attributes◻+ ∶ K →K +◻ ∶ K →K◻/ ∶ K →K /◻ ∶ K →K◻<= ∶ K →K <=◻ ∶ K →K◻and ∶ K →K and◻ ∶ K →K
not◻ ∶ →K
:=◻ ∶ K →K if ◻ then else ∶ K ×K →K
if then ◻ else ∶ K ×K →K if then else◻ ∶ K ×K →K
while ◻ do ∶ K →K while do◻ ∶ K →K

strictness equations:
// all equations below are mechanically derived from the strictness attributes
K1 +K2 =K1 ↷ ◻+K2 if ¬Bool(K1 ∶ KResult) R1 ↷ ◻+K2 = R1 +K2

K1 +K2 =K2 ↷K1 + ◻ if ¬Bool(K2 ∶ KResult) R2 ↷K1 +◻ =K1 +R2

K1 /K2 =K1 ↷ ◻/K2 if ¬Bool(K1 ∶ KResult) R1 ↷ ◻/K2 = R1 /K2

K1 /K2 =K2 ↷K1 / ◻ if ¬Bool(K2 ∶ KResult) R2 ↷K1 /◻ =K1 /R2

K1 <=K2 =K1 ↷ ◻<=K2 if ¬Bool(K1 ∶ KResult) R1 ↷ ◻<=K2 = R1 <=K2

K1 <=K2 =K2 ↷K1 <= ◻ if ¬Bool(K2 ∶ KResult) R2 ↷K1 <=◻ =K1 <=R2

K1 andK2 =K1 ↷ ◻andK2 if ¬Bool(K1 ∶ KResult) R1 ↷ ◻andK2 = R1 andK2

K1 andK2 =K2 ↷K1 and ◻ if ¬Bool(K2 ∶ KResult) R2 ↷K1 and◻ =K1 andR2

notK =K ↷ not ◻ if ¬Bool(K ∶ KResult) R ↷ not◻ = notR
K1 :=K2 =K2 ↷K1 := ◻ if ¬Bool(K2 ∶ KResult) R2 ↷K1 :=◻ =K1 :=R2

K1 ;K2 =K1 ↷ ◻;K2 if ¬Bool(K1 ∶ KResult) R1 ↷ ◻;K2 = R1 ;K2

K1 ;K2 =K2 ↷K1 ; ◻ if ¬Bool(K2 ∶ KResult) R2 ↷K1 ;◻ =K1 ;R2

ifK thenK1 elseK2 =K ↷ if ◻ thenK1 elseK2 if ¬Bool(K ∶ KResult)
R ↷ if ◻ thenK1 elseK2 = ifK thenK1 elseK2

ifK thenK1 elseK2 =K1 ↷ ifK then ◻ elseK2 if ¬Bool(K1 ∶ KResult)
R1 ↷ ifK then ◻ elseK2 = ifK thenR1 elseK2

ifK thenK1 elseK2 =K2 ↷ ifK thenK1 else ◻ if ¬Bool(K2 ∶ KResult)
R2 ↷ ifK thenK1 else◻ = ifK thenK1 elseR2

whileK1 doK2 =K1 ↷ while ◻ doK2 if ¬Bool(K1 ∶ KResult)
R1 ↷ while ◻ doK2 = whileR1 doK2

whileK1 doK2 =K2 ↷ whileK1 do ◻ if ¬Bool(K2 ∶ KResult)
R2 ↷ whileK1 do◻ = whileK1 doR2

Figure 5.5: K computations, configurations, and strictness attributes for the definition of IMP’s
type system in rewrite logic; the remaining semantic rules and equations are given in Figure 5.6
(variables K, K1, K2 have kind [K], and variables R, R1 and R2 have sort KResult)

296



semanitc rules:⟨X ↷ Rest⟩k ⟨Xl ,X,Xl ′⟩vars → ⟨int↷ Rest⟩k ⟨Xl ,X,Xl ′⟩vars
int + int→ int
int / int→ int
int <= int→ int
bool and bool→ bool
not bool→ bool
skip → stmt⟨X:= int↷ Rest⟩k ⟨Xl ,X,Xl ′⟩vars → ⟨stmt↷ Rest⟩k ⟨Xl ,X,Xl ′⟩vars
stmt; stmt→ stmt
if bool then stmt else stmt→ stmt
while bool do stmt→ stmt⟨varsXl ;S⟩k ⟨⋅⟩vars → ⟨S ↷ pgm⟩k ⟨Xl⟩vars
stmt↷ pgm→ pgm

Figure 5.6: The semantic rules of the K definition of IMP’s type system in rewrite logic (variable
X has sort VarId, variables Xl and Xl ′ have sort List{VarId}, variable I has sort Int, and variables
S and Rest have kind [K])
and 5.5. The semantic rules in Figures 5.4 and 5.6 are straightforward: they are obtained by blindly
applying the transformation discussed in the preamble of Section 5.3.1 to the corresponding K rules
in Figures 5.1 and 5.3. Note that both the K computational rules and the non-reversible structural
rules were translated into rewrite rules. The distinction between the two categories of K rules is
therefore “lost in translation”; the resulting rewrite theories have finer-grained computational steps.

Note that the non-result K variables in Figures 5.4, 5.5, and 5.6 actually were assumed to have
the kind [K] and not the sort K. The reason is that the strictness equations corresponding to the
heating structural rules can apply anywhere, including inside arguments of language constructs.
When that happens, the respective arguments change their sort from their original language syntactic
sort into K. Since the respective language construct expected the original syntactic sort which is
subsorted to K and not K, the resulting term will therefore end up having the kind [K]. For more
on the relationship between sorts, subsorts and kinds, the reader is referred to Section 2.7.

☆ K Semantics and Type System of IMP in Maude

Here we discuss the Maude representations of the rewrite theories above. The only notable difference
between the next Maude modules and the rewrite theories above is that the various list and
bag sorts, which were simply assumed above, need to be explicitly defined as associative and
associative/commutative operations in Maude.

Figure 5.7 shows the Maude definition of the K computations, configurations and strictness
attributes corresponding to the K rewrite logic definition of IMP in Figure 5.4. To distinguish the
unit or empty computation “⋅” from other empty or unit constants, we follow our general convention
in this book and write it “.K” (a dot followed by its sort). We follow the same convention for
the empty cell, namely we write it “.Bag{Cell}”. Note that, for the reason explained above, the
variables K, K1 and K2 are declared to have the kind [K]. The Maude modules in Figure 5.7 are
admittedly low level and boring to define. Indeed, the user of K-Maude (see Section 5.6) will never

297



mod IMP-K-COMPUTATIONS is including IMP-SYNTAX .

sorts K KResult . subsorts AExp BExp Stmt Pgm KResult List{VarId} < K .

subsorts Int Bool < KResult .

op .K : -> K .

op _~>_ : K K -> K [assoc id: .K] .

endm

mod IMP-CONFIGURATION-K is including IMP-K-COMPUTATIONS + STATE .

sorts Cell Bag{Cell} . subsort Cell < Bag{Cell} .

op .Bag{Cell} : -> Bag{Cell} .

op __ : Bag{Cell} Bag{Cell} -> Bag{Cell} [assoc comm id: .Bag{Cell}] .

op <T>_</T> : Bag{Cell} -> Cell .

op <k>_</k> : K -> Cell .

op <state>_</state> : State -> Cell .

endm

mod IMP-K-STRICTNESS is including IMP-K-COMPUTATIONS .

var K K1 K2 : [K] . var R R1 R2 : KResult .

ops ([]+_) (_+[]) : K -> K .

ceq K1 + K2 = K1 ~> [] + K2 if notBool(K1 :: KResult) .

eq R1 ~> [] + K2 = R1 + K2 .

ceq K1 + K2 = K2 ~> K1 + [] if notBool(K2 :: KResult) .

eq R2 ~> K1 + [] = K1 + R2 .

ops ([]/_) (_/[]) : K -> K .

ceq K1 / K2 = K1 ~> [] / K2 if notBool(K1 :: KResult) .

eq R1 ~> [] / K2 = R1 / K2 .

ceq K1 / K2 = K2 ~> K1 / [] if notBool(K2 :: KResult) .

eq R2 ~> K1 / [] = K1 / R2 .

ops ([]<=_) (_<=[]) : K -> K .

ceq K1 <= K2 = K1 ~> [] <= K2 if notBool(K1 :: KResult) .

eq R1 ~> [] <= K2 = R1 <= K2 .

ceq R1 <= K2 = K2 ~> R1 <= [] if notBool(K2 :: KResult) .

eq R2 ~> R1 <= [] = R1 <= R2 .

op []and_ : K -> K .

ceq K1 and K2 = K1 ~> [] and K2 if notBool(K1 :: KResult) .

eq R1 ~> [] and K2 = R1 and K2 .

op not[] : -> K .

ceq not K = K ~> not [] if notBool(K :: KResult) .

eq R ~> not [] = not R .

op _:=[] : K -> K .

ceq K1 := K2 = K2 ~> K1 :=[] if notBool(K2 :: KResult) .

eq R2 ~> K1 :=[] = K1 := R2 .

op if[]then_else_ : K K -> K .

ceq if K then K1 else K2 = K ~> if[]then K1 else K2 if notBool(K :: KResult) .

eq R ~> if[]then K1 else K2 = if R then K1 else K2 .

endm

Figure 5.7: K computations, configurations and strictness attributes of IMP in Maude

298



define them; instead, she only adds strictness attributes to syntactic language constructs, like we
did in Figure 5.1. Nevertheless, if one wants to write language definitions using the K semantic
technique in plain Maude, without relying on any other tools (the same way we wrote Maude
language definitions using various semantic techniques in Chapter 3), then, unfortunately, one has to
manually define such low level operations and equations (similarly, recall that one had to manually
define the infrastructure for splitting/plugging in RSEC in Section 3.5). When defining the strictness
equations, one will most likely use cut-and-paste; one should be careful to replace all the symbols
appropriately (e.g., the + into /, etc.), otherwise one’s language may have hard to debug errors,
such as performing an operation instead of another one (e.g., addition instead of division, etc.).

To test the strictness equations, one can ask Maude to rewrite various programs or fragments of
program. For example, the rewrite command

Maude> rewrite if 3 <= (2 + x) / 7 then x := 3 / x else x := x / 7 ; y := x .

yields the following result:

rewrites: 45 in 0ms cpu (0ms real) (0 rewrites/second)

result [K]: x ~> 2 +[] ~> []/ 7 ~> 3 <=[]

~> if[]then x ~> 3 /[] ~> x :=[] else x ~> []/ 7 ~> x :=[] ;

x ~> y :=[]

Note that the strictness (heating) equations were applied everywhere they matched. As a result,
the heated term does not have the sort Stmt anymore, not even the sort K, but the kind [K]. The
reason is that the sequential composition construct, “;”, now takes two terms of sort K instead
of two terms of sort Stmt, so it cannot yield a well-sorted term. This is also the reason for which
all the variables ranging over computations were and will continue to be defined to have kind [K]

(as opposed to sort K), to accommodate the fact that the strictness equations can eagerly apply
anywhere transforming syntactic terms into computations.

Once the low-level, mechanical and tedious K infrastructure and strictness equations are defined,
the interesting Maude rules corresponding to the semantic K rules are natural and elegant. The
module in Figure 5.8 contains all the Maude rewrite rules corresponding to actual K semantic rules
in the definition of IMP. Like for all the semantic approaches in Chapter 3, Maude, through its
rewriting capabilities, gives us an IMP interpreter by simply executing the semantics discussed
above. For example, the Maude rewrite command

Maude> rewrite <T> <k> sumPgm </k> <state> .State </state> </T> .

where sumPgm is the first program defined in the module IMP-PROGRAMS in Figure 3.4, produces a
result of the form (the exact statistics are also irrelevant, so they were replaced by “...”):

rewrites: 6566 in ... cpu (... real) (... rewrites/second)

result Cell: <T> <k> .K </k> <state> n |-> 0 & s |-> 5050 </state> </T>

The resulting Maude interpreter is faster than any of the similar interpreters discussed in Chapter 3.
We believe that the reason for the increased performance stays in the fact that the resulting rewrite
logic rules are mostly unconditional, and unconditional rules generally outperform the conditional
ones (to apply a conditional rule, the rewrite engine needs to stack the current rewrite context, start
a new rewrite session to evaluate the condition, then pop the previous context, etc.). The reason
for which the reduction semantics with evaluation contexts interpreters obtained in Section 3.5 are

299



mod IMP-SEMANTICS-K is including IMP-K-STRICTNESS + IMP-CONFIGURATION-K .

var X : VarId . var Xl : List{VarId} . var Sigma : State .

var I I1 I2 J : Int . var B B2 S S1 S2 K Rest : [K] .

rl <k> X ~> Rest </k> <state> X |-> I & Sigma </state>

=> <k> I ~> Rest </k> <state> X |-> I & Sigma </state> .

rl I1 + I2 => I1 +Int I2 .

crl I1 / I2 => I1 /Int I2 if I2 =/= 0 .

rl I1 <= I2 => I1 <=Int I2 .

rl true and B2 => B2 .

rl false and B2 => false .

rl not true => false .

rl not false => true .

rl skip => .K .

rl <k> X := I ~> Rest </k> <state> X |-> J & Sigma </state>

=> <k> Rest </k> <state> X |-> I & Sigma </state> .

eq S1 ; S2 = S1 ~> S2 .

rl if true then S1 else S2 => S1 .

rl if false then S1 else S2 => S2 .

eq <k> (while B do S) ~> Rest </k>

= <k> (if B then S ; while B do S else skip) ~> Rest </k> .

eq <k> vars Xl ; S </k> <state> .State </state> = <k> S </k> <state> Xl |-> 0 </state> .

endm

Figure 5.8: K semantics of IMP in Maude

much slower, in spite of the fact that the third of them also had mostly unconditional semantic rules,
is because their splitting/plugging mechanism had to be defined using conditional rules (actually
very expensive ones, which enable full search in their conditions).

One can use any of the general-purpose tools provided by Maude on the K semantic definition
above. For example, one can exhaustively search for all possible behaviors of a program:

Maude> search <T> <k> sumPgm </k> <state> .State </state> </T> =>! Cfg:Cell .

As expected, only one behavior will be discovered because our IMP language so far is deterministic.

Exercise 176. Modify the Maude code in Figures 5.7 and 5.8 so that / short-circuits when its
numerator evaluates to 0 (see also Exercises 54, 58, 60, 65, 70, and 75).

Exercise 177. Modify the Maude code in Figures 5.7 and 5.8 so that conjunction is not short-
circuited anymore but, instead, is non-deterministically strict in both its arguments (see also Exercises
55, 59, 61, 66, 71, and 76).

Figures 5.9 and 5.10 are the Maude versions of the rewrite logic theories in Figures 5.5 and
5.6 corresponding to the K type system of IMP. The module including the strictness equations in
Figure 5.9 is larger than shown, because it also includes the strictness equations for the constructs
+, /, and, not, which are identical to the ones in the similar module in Figure 5.7. The typing rules
in Figure 5.10 are a blind Maude representation of those in Figure 5.6 and are self-explanatory.

300



mod IMP-K-COMPUTATIONS is including IMP-SYNTAX .

sorts K KResult . subsorts AExp BExp Stmt Pgm KResult List{VarId} < K .

ops int bool stmt pgm : -> KResult .

op .K : -> K .

op _~>_ : K K -> K [assoc id: .K] .

endm

mod IMP-CONFIGURATION-K is including IMP-K-COMPUTATIONS + STATE .

sorts Cell Bag{Cell} . subsort Cell < Bag{Cell} .

op .Bag{Cell} : -> Bag{Cell} .

op __ : Bag{Cell} Bag{Cell} -> Bag{Cell} [assoc comm id: .Bag{Cell}] .

op <T>_</T> : Bag{Cell} -> Cell .

op <k>_</k> : K -> Cell .

op <vars>_</vars> : List{VarId} -> Cell .

endm

mod IMP-K-STRICTNESS is including IMP-K-COMPUTATIONS .

var K K1 K2 : [K] . var R R1 R2 : KResult .

---

--- strictness equations for +, /, and, not are the same as for the semantics

---

ops ([]<=_) (_<=[]) : K -> K .

ceq K1 <= K2 = K1 ~> [] <= K2 if notBool(K1 :: KResult) .

eq R1 ~> [] <= K2 = R1 <= K2 .

ceq K1 <= K2 = K2 ~> K1 <= [] if notBool(K2 :: KResult) .

eq R2 ~> K1 <= [] = K1 <= R2 .

ops ([];_) (_;[]) : K -> K .

ceq K1 ; K2 = K1 ~> [] ; K2 if notBool(K1 :: KResult) .

eq R1 ~> [] ; K2 = R1 ; K2 .

ceq K1 ; K2 = K2 ~> K1 ; [] if notBool(K2 :: KResult) .

eq R2 ~> K1 ; [] = K1 ; R2 .

ops (if[]then_else_) (if_then[]else_) (if_then_else[]) : K K -> K .

ceq if K then K1 else K2 = K ~> if[]then K1 else K2 if notBool(K :: KResult) .

eq R ~> if[]then K1 else K2 = if R then K1 else K2 .

ceq if K then K1 else K2 = K1 ~> if K then [] else K2 if notBool(K1 :: KResult) .

eq R1 ~> if K then [] else K2 = if K then R1 else K2 .

ceq if K then K1 else K2 = K2 ~> if K then K1 else [] if notBool(K2 :: KResult) .

eq R2 ~> if K then K1 else [] = if K then K1 else R2 .

ops (while[]do_) (while_do[]) : K -> K .

ceq while K1 do K2 = K1 ~> while [] do K2 if notBool(K1 :: KResult) .

eq R1 ~> while [] do K2 = while R1 do K2 .

ceq while K1 do K2 = K2 ~> while K1 do [] if notBool(K2 :: KResult) .

eq R2 ~> while K1 do [] = while K1 do R2 .

endm

Figure 5.9: K computations, configurations and strictness attributes for the definition of the type
system of IMP in Maude; strictness equations for + , / , and , not same as in Figure 5.7

301



mod IMP-TYPE-SYSTEM-K is including IMP-K-STRICTNESS + IMP-CONFIGURATION-K .

var X : VarId . var Xl Xl’ : List{VarId} . var I : Int . var S Rest : [K] .

rl I => int .

rl <k> X ~> Rest </k> <vars> Xl, X, Xl’ </vars>

=> <k> int ~> Rest </k> <vars> Xl, X, Xl’ </vars> .

rl int + int => int .

rl int / int => int .

rl int <= int => bool .

rl bool and bool => bool .

rl not bool => bool .

rl skip => stmt .

rl <k> X := int ~> Rest </k> <vars> Xl, X, Xl’ </vars>

=> <k> stmt ~> Rest </k> <vars> Xl, X, Xl’ </vars> .

rl stmt ; stmt => stmt .

rl if bool then stmt else stmt => stmt .

rl while bool do stmt => stmt .

eq <k> vars Xl ; S </k> <vars> .List{VarId} </vars>

= <k> S ~> pgm </k> <vars> Xl </vars> .

rl stmt ~> pgm => pgm .

endm

Figure 5.10: K type system of IMP in Maude

302



5.5 The K Technique

Q: What are these Question/Answer boxes in this section?
A: Each subsection in this section introduces an important component of the K
technique, such as its configurations, computations, or semantic rules. Each Q/A
box captures the essence of the corresponding subsection from a user perspective.
They will ease the understanding of how the various components fit together.

Q/A

Like term rewriting and rewriting logic, the K concurrent rewrite abstract machine (Kram)
discussed in Section 5.4 can be used in various ways in various applications; in other words, the
Kram itself does not tell us how to define a programming language or calculus as a K system. In
this section we present the K technique, which consists of a series of guidelines and notations that
turn the Kram or even plain term rewriting into an effective framework for defining programming
languages or calculi. The development of the K technique has been driven by practical needs, and
it is the result of our efforts to define various programming languages, paradigms, and calculi as
rewrite or K systems. We would like to make two important observations before we proceed:

1. The K technique is flexible and open-ended. Our current guidelines and notations are convenient
enough to define the range of languages, features and calculi that we considered so far. Some
readers may, however, prefer different or new notations. As an analogy, recall that there are
no rigid rules for how to write a configuration in SOS (see Sections 3.2 and 3.3): one may use
the angle-bracket notation ⟨code, state, ...⟩, or the square bracket notation [code, state, ...], or
even the simple tuple notation (code, state, ...); also, one may use a different (from comma)
symbol to separate the various configuration ingredients and, even further, one could use
writing conventions (such as the “state” or “exception” conventions in [35]) to simplify the
writing of SOS definitions. Even though we believe that our notational conventions discussed
in this section should be sufficient for any definitional task, we still encourage our reader to
feel free to change our notations or propose new ones if needed to better fit one’s needs or
style. Nevertheless, our current prototype implementations of K rely on our current notation
as described in this section; therefore, to use our tools one needs to obey our notation.

2. The K technique yields a semantic definitional style. As an analogy, no matter what notations
one uses for configurations and other ingredients in SOS definitions (see item above), or
even whether one uses rewriting logic (as we did in Chapter 3) or any other computational
framework to represent and execute SOS definitions or not, SOS still remains SOS, with all its
advantages and limitations. The same holds true for all the other definitional styles discussed
in Chapter 3. Similarly, we expect that the K technique can be represented or implemented
in various back-end computational frameworks. We prefer Kram because we believe that
it gives us the maximum of concurrency one can hope for in K definitions. However, if one
is not sensitive to this true concurrency aspect or if one prefers a certain computational
framework over anything else, then one can very well use the K technique in that framework.
Indeed, the same way the various conventional language definitional styles become definitional
methodologies or styles within rewriting logic as shown in Chapter 3, the K technique can also

308



be cast as a definitional methodology or style within other computational frameworks. In
Section 5.3 we show how this can be done for rewriting logic and Maude, for example.

5.5.1 K Configurations: Nested Cell Structures

Q: Do I need to define a configuration for my language?
A: No, but it is strongly recommended to define one whenever your language is
non-trivial. Even if you define no configuration, you still need to define the cells
used later on in the semantic rules; otherwise the rules will not parse.
Q: How can I define a configuration?
A: All you need is to define a potentially nested-cell structure like in Figure 5.14,
which is a cell term over the simple cell grammar described below. By defining the
configuration you shoot three rabbits with one stone:

� You implicitly define all the needed cells, which is required anyway;

� You have a better understanding of all the semantic ingredients that you need
for your subsequent semantics as well as their role; and

� You have the possibility to reuse existing semantic rules that were conceived
for more abstract configurations, via a process named context transforming.

Q/A

In K definitions, the programming language, calculus or system configuration is represented as a
potentially nested cell structure. This is similar is spirit to how configurations are represented in
chemical abstract machines (CHAMs; Section 3.6) or in membrane systems (P-systems; Section
9.7), except that K’s cells can hold more varied data and are not restricted to certain means to
communicate with their environment. The various cells in a K configuration hold the infrastructure
needed to process the remaining computation, including the computation itself; cells can hold, for
example, computations (these are discussed in depth in Section 5.5.2), environments, heaps or stores,
remaining input, output, analysis results, resources held, bookkeeping information, and so on. The
number and type of cells that appear in a configuration is not fixed and is typically different from
definition to definition. K assumes and makes intensive use of the entire range of structures allowed
by algebraic CFGs (see Section 2.5), such as lists, sets, multisets and maps.

Formally, the K configurations have the following simple, nested-cell structure:

Cell ∶∶= ⟨CellContents⟩CellLabel

CellContents ∶∶= Sort ∣ Bag {Cell}
CellLabel ∶∶= CellName ∣ CellName∗

CellName ∶∶= ⊺ ∣ k ∣ ∣ env ∣ store ∣ ... (language specific cell names; first two are common)

where Sort can be any sort name, including arbitrary list (List{Sort}), set (Set{Sort}), bag
(Bag{Sort}) or map (Map{Sort1 ↦Sort2}) sorts. Many K definitions share the cell labels ⊺ (which
stays for “top”) and k (which stays for “computation”). They are built-in in our implementation of K
in Maude (Section 5.6), so one needs not declare them in each language definition. The white-space
or “invisible” label ” may be preferred as an alternative to ⊺ and/or k, particularly when there is

309



a need for only one cell type, like in the definitions of CCS and Pi calculi in Sections 7.8 and 7.9.
The cells with starred labels say that there could be multiple instances, or clones, of that cell. This
multiplicity information is optional2, but can be useful for context transforming (Section 5.5.4).

We have seen so far three K configurations, one for IMP (Section 5.2.1), one for IMP++
(Section 5.2.2) and one for their type system (Section 5.2.3); we recall all three of them below:

ConfigurationIMP ≡ ⟨⟨K⟩k ⟨Map{VarId ↦ Int}⟩state⟩⊺
ConfigurationIMP++ ≡ ⟨⟨K⟩k ⟨Map{VarId ↦ Int}⟩state ⟨List{Int}⟩output⟩⊺
ConfigurationType

IMP++ ≡ ⟨⟨K⟩k ⟨List{VarId}⟩vars⟩⊺
Notice that they all obey the general cell grammar above, that is, they are nested cell structures;
the bottom cells only contain a sort and no other cells. As a more complex example, below is the K
configuration of Challenge (Section 5.7), an experimental language conceived to challenge and
expose the limitations the various language definitional frameworks:

ConfigurationChallenge ≡ ⟨AgentsChallenge ⟨List{Int}⟩output MessagesChallenge ⟨Nat⟩nextAgent⟩⊺
AgentsChallenge ≡ ⟨ ⟨ ThreadsChallenge ⟨Map{Nat ↦Val}⟩store⟨Nat⟩nextLoc ⟨K⟩aspect ⟨Set{Val}⟩busy⟨Nat⟩me ⟨Nat⟩parent ⟨Map{Nat ↦Nat}⟩ptr ⟩

agents∗
⟩
agents

ThreadsChallenge ≡ ⟨⟨⟨K⟩k ⟨Map{VarId ↦Nat}⟩env ⟨Map{Val ↦Nat}⟩holds⟩thread∗⟩theread
MessagesChallenge ≡ ⟨⟨⟨Nat⟩sender ⟨Nat⟩receiver ⟨Val⟩val⟩message∗⟩messages

To make it more readable, we introduced some intuitive “macros” above, namely AgentsChallenge,
ThreadsChallenge, and MessagesChallenge. Figure 5.14 shows a graphical representation of this
configuration, which was generated automatically by the K2Latex component of our current
implementation of K in Maude (Section 5.6). Note that the Challenge configurations have six
levels of cell-nesting and several cell labels are starred, meaning that there can be multiple instances
of those cells. For example, the ⟨⟩agents cell may contain multiple ⟨⟩agent cells; each agent may
contain, besides information like a local store, aspect, busy resources (used as locks for thread
synchronization), etc., a ⟨⟩threads cell which can contain an arbitrary number of ⟨⟩thread cells; each
thread contains a local computation, a local environment and a number of resources (resources can
be acquired multiple times by the same thread, so a map is needed). As one may expect, real life
language definitions tend to employ rather complex configurations.

The advantage of representing configurations as nested cell-structures is that, like in MSOS
(Section 3.4), subsequent rules only need to mention those configuration items that are needed for
those particular rules, as opposed to having to mention the entire configuration, whether needed or
not, like in conventional SOS (Section 3.3). We can add or remove items from a configuration as
we like, only impacting the rules that use those particular configuration items. Rules that do not
need the changed configuration items do not need to be touched. This is an important aspect of K,
which significantly contributes to its modularity.

Defining a configuration for a K semantics of a language, calculus or system is an optional step,
in that it suffices to only define the desirable cell syntax so that configurations like the desired
one parse as ordinary cell terms. That indeed provides all the necessary infrastructure to give the
semantic K rules. However, providing a specific configuration term is useful in practice for at least
two reasons. First, the configuration can serve as an intuitive skeleton for writing the subsequent

2Note, in particular, that we omitted it for the k label in the IMP++ configuration (IMP++ is multi-threaded).

310



semantic rules, one which can be consulted to quickly find out, for example, what kind of cells
are available and where they can be found. Second, the configuration structure is the basis for
context transforming (Section 5.5.4), which gives more modularity to K rules by allowing them to
be reusable in language extensions that require changes in the structure of the configuration.

5.5.2 K Computations: ↷-Separated Nested Lists of Tasks

Q: What are K computations?
A: Computations are an intrinsic part of the K framework. They extend abstract
syntax with a special nested-list structure and can be thought of as sequences of
fragments of program that need to be processed sequentially.
Q: Do I need to define computations myself?
A: What is required is to define an abstract syntax of your language (discussed
below) and desired evaluation strategies for the language constructs (discussed in
Section 5.5.3), which need to be defined no matter what semantic framework you
prefer. By doing so, you implicitly define the basic K computational infrastructure.
In many cases you do not need to define any other computation constructs.
Q: Do I need to understand in depth what computations are in order to use K?
A: Not really. If you follow a purely syntactic definitional style mimicking reduction
semantics with evaluation contexts (see Section 3.8.1) in K, then the only computa-
tions that that you will ever see in your rules are abstract syntax terms.
Q: What is the benefit of using more complex (than abstract syntax) computations?
A: K at its full strength. Many complex languages are very hard or impossible to
define purely syntactically, while they admit elegant and natural definitions using
proper K computations. For example, the Challenge language in Section 5.7.

Q/A

K takes a very abstract view of language syntax and, in theory, it is not concerned at all with
parsing aspects3. More precisely, in K there is only one top-level sort4 associated to all the language
syntax, called K and staying for computational structures or computations, and terms t of sort K
have the abstract syntax tree (AST) representation l(t1, ..., tn), where l is some K label and t1,...,tn
are terms of sort K, extended with the list (infix) construct “↷”, read “followed by” or “and then”;
for example, if t1, t2, ..., tn are computations then t1 ↷ t2 ↷ ⋯↷ tn is also a computation, namely
the one sequentializing t1, t2, ..., tn. All the original language constructs, including constants and
program variables, as well as all the freezers (discussed below and also in Section 5.5.3), are regarded
as labels. For notational convenience, we continue to write K-terms using the original syntax instead
of the harder to read AST notation. Formally, computations are defined as follows:

K ∶∶= KLabel List(), {K} ∣ List⋅↷ {K}
KLabel ∶∶= (one per language construct, plus auxiliary ones as needed)

3In practice, like in all other language semantics frameworks, some parser is always assumed or effectively used as
a front-end to K to parse and transform the language syntax into its abstract K syntax.

4Technically, one can define more than one top-level computation sort; however, so far we have not found any
major uses for that, so for simplicity we prefer to keep only one computation sort for now.

311



To make the distinction between the two kinds of lists of K terms clear, we explicitly wrote both
their constructs and units: List(), {K} consists of comma-separated lists with “()” as unit, and
List⋅↷ {K} consists of ↷-separated lists with “⋅” as unit (this algebraic CFG notation is described
in detail in Section 2.5). We call “()” the empty list of computations and “⋅” the empty computation.
Since in algebraic CFG notation we can use parentheses for disambiguation, the following are all
well-formed K computations whenever l is a K label and t, t1, ..., tn well-formed K terms: l() is a
computation consisting of label l applied to an empty list, l(⋅) is a computation consisting of label
l applied to the empty computation “⋅”, l(t) is a computation applying l to computation t, and
l(t1, ..., tn) is a computation consisting of label l applied to computations t1, ..., tn.

The List(), {K} scheme for K abstractly captures any programming language syntax as an AST,
provided that one adds one KLabel for each language construct. For example, in the case of the
IMP language, we add to KLabel all the following labels corresponding to the IMP syntax:

KLabelIMP ∶∶= Int ∣ VarId ∣ + ∣ / ∣ <= ∣ not ∣ and ∣ skip ∣ := ∣ ;∣ if then else ∣ while do ∣ vars ;

We typically use of the mix-fix notation for labels, like in the above labels corresponding to the IMP
language; the mix-fix notation was introduced by the OBJ language [18] and followed by many other
akin languages, where underscores in the name of an operation mark the places of its arguments.
In addition to the language syntax, KLabel may include labels for semantic reasons; e.g., labels
corresponding to semantic domain values which may have not been automatically included in the
language syntax. We may call K constants those computations of the form l(), where l is a label
(e.g., those corresponding to constants in the original syntax: skip(), true(), 1(), 2(), etc.).

It is convenient in many K definitions to distinguish syntactically between proper computations
and computations which are finished. A similar phenomenon is common and well-accepted in the
other definitional styles (see Chapter 3), which distinguish between proper expressions and values,
for example. To make this distinction smooth, we add the KResult syntactic sub-category of K
which is constructed using corresponding labels (all labels in KResultLabel are also in KLabel):

KResultLabel ⊆ KLabel

KResult ∶∶= KResultLabel(List(), {K})
KResultLabel ∶∶= (one per construct of terminated computations, e.g., values, results, etc.)

Among the labels in KResultLabel one may have certain language constants, such as true, 0, 1, etc.,
but also labels that correspond to non-constant terms, for example λ . ; indeed, in some λ-calculi,
λ-abstractions λx.e (or λ . (x, e) in AST form), are values (or finished computations).

We take the liberty to write language or calculus syntax either in AST form, like in “λ . (x, e)”
and “if then else (b, s1, s2)”, or in more readable mixfix form, “λx.e” and “if b then s1 else s2”. In
our Maude implementation of K (see Section 5.6), thanks to Maude’s builtin support for mixfix
notation and corresponding parsing capabilities, we actually write programs using the mixfix notation.
Even though theoretically unnecessary, this is actually very convenient in practice, because it makes
language definitions more readable and, consequently, less error-prone. Additionally, programs in
the defined languages can be regarded as terms the way they are, without any intermediate AST
representation for them. In other implementations of K, one may need to use an explicit parser
or to get used to reading syntax in AST representation. Either way, from here on we assume that
programs, or fragment of programs, parse as computations in K.

The List⋅↷ {K} construct scheme for K allows one to sequentialize computational tasks.
Intuitively, k1 ↷ k2 says “process k1 then k2”. How this is used and what is the exact meaning of

312



“process” is left open and depends upon the particular definition. For example, in a concrete language
semantics it can mean “evaluate k1 then k2”, while in a type inferencer definition it can mean “type
and accumulate type constraints in k1 then do the same for k2”, etc. The following are examples of
computations making use of the List⋅↷ {K} structure of K (parentheses disambiguate):

(if true then ⋅ else ⋅)↷ while false do ⋅
a1 ↷ ◻ + a2

a2 ↷ a1 + ◻
a3 ↷ (a1 + a2) + ◻
a3 ↷ (a1 ↷ ◻ + a2) + ◻
b↷ if ◻ then s1 else s2

b↷ if ◻ then (s↷ while b do s) else ⋅
The “⋅” in the first and last computations above is the empty computation (unit for ↷ ). Note that↷-separated lists of computations can be nested. Most importantly note that, unlike in evaluation
contexts, ◻ is not a “hole” in K, but rather part of a KLabel; the KLabels involving ◻ above are

KLabel ∶∶= ... ∣ + ◻ ∣ ◻ + ∣ if ◻ then else

The ◻ carries the “plug here” intuition; e.g., one may think of “a1 ↷ ◻ + a2” as “process a1, then
plug its result in the hole in ◻ + a2”. The user of K is not expected to declare these special labels.
We assume them whenever needed. In our implementation of K in Maude (Section 5.6), all these are
generated automatically as constants of sort KLabel after a simple analysis of the language syntax.

Freezers. To distinguish the labels containing ◻ in their name from the labels that encode the
syntax of the language under consideration, we call the former freezers. The role of the freezers is
therefore to store the enclosing computations for future processing. One can freeze computations
at will in K, using freezers like the ones above, or even by defining new freezers. In complex K
definitions, one may need many computation freezers, making definitions look heavy and hard to
read if one makes poor choices for freezer names. Therefore, we adopt the following freezer naming
convention, respected by all the freezers above:

If a computation can be seen as c[k, x1, ..., xn] for some multi-context c and a freezer is
introduced to freeze everything except k, then the name of the freezer is “c[◻, , ..., ]”.

Additionally, to increase readability, we take the freedom to generalize the adopted mixfix nota-
tion in K and “plug” the remaining computations in the freezer, that is, we write c[◻, k1, ..., kn]
instead of c[◻, , ..., ](k1, ..., kn). For instance, if @ is some binary operation and if, for some
reason, in contexts of the form (e1@e2)@(e3@e4) one wishes to freeze e1, e3 and e4 (in order
to, e.g., process e2), then, when there is no confusion, one may write (e1@◻)@(e3@e4) instead
of (( @◻)@( @ ))(e1, e3, e4). This convention is particularly useful when one wants to follow a
reduction semantics with evaluation contexts style in K, because one can mechanically associate
such a freezer to each context-defining production. For example, the freezer ( @◻)@( @ ) above
would be associated to a production of the form “Cxt ∶∶= (Exp@Cxt)@(Exp@Exp)”; see Section 9.4
for more details on how reduction semantics with evaluation contexts is faithfully embedded in K.

313



5.5.3 K Rules: Computational and Structural

Q: How are the K rules different from conventional rewrite rules?
A: The K framework builds upon the K concurrent rewrite abstract machine
(Kram); how the Kram rules differ from standard rules is explained in Section 5.4.
Q: What do I lose if I think of K rules as sugared variants of standard rules?
A: Not much if you are not interested in true concurrency.
Q: Does that mean that I can execute K definitions on any rewrite engine?
A: Yes. However, it is desirable to use a rewrite engine with support at least for
associative matching. In fact, our current implementation of K (see Section 5.6)
desugars the K rules into ordinary rules and equations anyway.

Q/A

The K technique aims, among other things, at maximizing the potential for concurrency in the
defined languages. Similarly, as discussed in Section 5.4, the concurrent rewrite abstract machine
(Kram) also aims at maximizing the potential for concurrency, but for rewriting. Therefore, it is
natural that the rewrite-based K framework employs the Kram as a rewriting infrastructure.

Recall from Section 5.4 that Kram provides two kinds of rules, computational and structural:

Computational rules Structural rules

p[l1
r1

, l2
r2

, ..., ln
rn

] p[l1
r1

, l2
r2

, ..., ln
rn

]

They both consist of a local context, or pattern, p, with some of its subterms underlined and
rewritten to corresponding subterms underneath the line. The idea is that the underlined subterms
represent the “write-only” part of the rule, while the operations in p which are not underlined
represent the “read-only” part of the rule and can be shared by concurrent rule instances. The
difference between computational and structural rules is that rewrite steps using the latter do not
count as computational steps, their role being to rearrange the structure of the term to rewrite so
that computational rules can match and apply. In general, there are no rigid requirements on when
a K semantic rule should be computational versus structural. While in most cases the distinction
between the two is quite natural, there are situations where one needs to subjectively choose one or
the other; for example, we chose the rule for variable declarations in the IMP semantics in Figure
5.1 to be structural, but we believe that some language designers may prefer it to be computational.

Recall also from Section 5.4 that we prefer to use the conventional rewrite rule notations “l → r”
and “l ⇁ r” for computational and structural K rules, respectively, when p = ◻ (that is, when there
is only one write-only part, namely the entire pattern, and no read-only part). There is not much
to say about K rules in addition to what has already been said in Sections 5.2 and 5.4. We would
like to only elaborate on the heating/cooling rules and their corresponding strictness attributes.

314



Heating/Cooling Structural Rules

Q: What is the role of the heating/cooling rules?
A: These are K’s mechanism to define evaluation strategies of language constructs.
They allow you to decompose fragments of programs into sequences of smaller com-
putations, and to compose smaller computations back into fragments of programs.
Q: Do I need to define such heating/cooling rules myself?
A: Most likely no. It usually suffices to define strictness attributes, as discussed
below; these are equivalent to defining evaluation contexts in reduction semantics
(see Section 3.8.1). Strictness attributes serve as a notational convenience for
defining obvious heating/cooling structural rules.

Q/A

After defining the desired language syntax so that programs or fragments of programs become
terms of sort K, called computations, the very first step towards giving a K semantics is to define
the evaluation strategies or strictness of the various language constructs by means of heating/cooling
rules, or more conveniently, by means of the special attributes described shortly. The heating/cooling
rules allow us to regard computations many different, but completely equivalent ways. For example,
“a1+a2” in IMP may be regarded also as “a1 ↷ ◻+a2”, with the intuition “schedule a1 for processing
and freeze a2 in freezer ◻ + ”, but also as “a2 ↷ a1 + ◻” (recall from Section 5.2.1 that, in IMP,
addition is intended to be non-deterministic). As discussed in Section 5.5.2, freezers are nothing but
special labels whose role is to store computations for future processing.

Heating/cooling structural rules tell how to “pass in front” of the computation fragments of
program that need to be processed, and also how to “plug their results back” once processed. In
most language definitions, all such rules can be extracted automatically from K strictness operator
attributes as explained below; Figure 5.1 shows several examples of strictness attributes. For
example, the strict attribute of + is equivalent to the following two heating/cooling pairs of rules
in K (a1 and a2 range over computations in K):

a1 + a2 ⇌ a1 ↷ ◻ + a2

a1 + a2 ⇌ a2 ↷ a1 + ◻
The symbol “⇌” is borrowed from the CHAM (Section 3.6), as a shorthand for combinations of
a heating rule (“⇀”) and a cooling rule (“↽”). Indeed, one can think of the first rule above as
follows: to process a1 + a2, let us first “heat” a1, applying the rule from left to right; once a1 is
processed (using other rules in the semantics) producing some result, place that result back into
context via a “cooling” step, applying the rule from right to left. However, it is important to realize
that these heating/cooling rules can be applied at any moment and in any direction, because they
are regarded not as computational steps but as structural rearrangements. For example, one can
use the heating/cooling rules for “ + ” above to pick and pass in front either a1 or a2, then rewrite
it one step into a′1 using a computational rule, then plug a′1 back into the sum via cooling, then
pick and pass in front either a′1 or a2 and rewrite it one step only, and so on, thus obtaining the
desired non-deterministic operational semantics of + .

The general idea to define a certain evaluation context, say c[◻,N1, ...,Nn], where N1, ..., Nn are
the various syntactic categories involved (or non-terminals in the CFG of the language), is to define

315



a KLabel freezer c[◻, , ..., ] like discussed in Section 5.5.2 together with a pair of heating/cooling
structural rules “c[k, k1, ..., kn]⇌ k ↷ c[◻, k1, ..., kn]”.

One should be aware that in K “◻” is nothing but a symbol that we prefer to use as part of label
names. In particular, “◻” is not a computation (recall that in reduction semantics with evaluation
contexts “◻” is a special context, called a “hole”). For example, a hasty reader may think that K’s
approach to strictness is unsound, because one can “prove” wrong correspondences as follows:

a1 + a2 ⇀ a1 ↷ ◻ + a2 (by the first rule above applied left-to-right)⇀ a1 ↷ a2 ↷ ◻ + ◻ (by the second rule above applied left-to-right)⇁ a1 ↷ a2 + ◻ (by the first rule above applied right-to-left)⇁ a2 + a1 (by the second rule above applied right-to-left)

What is wrong in the above “proof” is that one cannot apply the second rule in the second step
above, because ◻+a2 is nothing but a convenient way to write the frozen computation ◻+ (a2). One
may say that there is no problem with the above, because + is intended to be commutative anyway;
unfortunately, the same could be proved for any non-deterministic construct, for example for a
division operation, “/”, if that was to be included in our language. Since the heating/cooling rules
are thought of as structural rearrangements, so that computational steps take place modulo them,
then it would certainly be wrong to have both “a1/a2” and “a2/a1” in the same computational class.
One of K’s most subtle technical aspect, which fortunately is invisible to users, is to find the right
(i.e., as weak as possible) restrictions on the applications of heating/cooling equations, so that each
computational class contains no more than one fragment of program. This is called “computation
adequacy” and is discussed in detail in Appendix B.1. The idea is to only allow heating and/or
cooling of operator arguments that are proper syntactic computations (i.e., terms over the original
syntax, i.e., different from “⋅” and containing no “↷”). With that, for example, the computation
class of the expression x ∗ (y + 2) in the context of a language definition with non-deterministically
strict binary + and ∗, consists of the terms:

x ∗ (y + 2)
x↷ (◻ ∗ (y + 2))
x↷ (◻ ∗ (y ↷ (◻ + 2)))
x↷ (◻ ∗ (2↷ (y + ◻)))(y + 2)↷ (x ∗ ◻)
y ↷ (◻ + 2)↷ (x ∗ ◻)
2↷ (y + ◻)↷ (x ∗ ◻)
x ∗ (y ↷ (◻ + 2))
x ∗ (2↷ (y + ◻))

Note that there is only one syntactic computation in the computation class above, namely the
original expression itself. This is a crucial desired property of K.

Strictness Attributes

In K definitions, one typically defines zero, one, or more heating/cooling rules per language construct,
depending on its intended evaluation/processing strategy. These rules tend to be straightforward
and boring to write, so in K we prefer a higher-level and more compact and intuitive approach:
we annotate the language syntax with strictness attributes. A language construct annotated as

316



strict, such as for example the “ + ” in Figure 5.1, is automatically associated a heating/cooling
pair of rules as above for each of its subexpressions. If an operator is intended to be strict in only
some of its arguments, then the positions of the strict arguments are listed as arguments of the
strict attribute. For example, note that the strictness attribute of if then else in Figure 5.1 is
strict(1); that means that a heating/cooling equation is added only for the first subexpression of
the conditional, namely the equation “if b then s1 else s2 ⇌ b↷ if ◻ then s1 else s2”.

The two pairs of heating/cooling rules corresponding to the strictness attribute strict of +
above did not enforce any particular order in which the two subexpressions were processed. It is
often the case that one wants a deterministic order in which the strict arguments of a language
construct are processed, typically from left to right. Such an example is the relational operator <=

in Figure 5.1, which was declared the strictness attribute seqstrict, saying that its subexpressions
are processed deterministically, from left to right. The attribute seqstrict requires the definition of
the syntactic category of result computations KResult, as discussed in Section 5.5.2, and it can be
desugared automatically as follows: generate a heating/cooling pair of rules for each argument like
in the case of strict, but requiring that all its previous arguments are in KResult. For example, the
seqstrict attribute of ≤ desugars into (a1, a2 range over K and r1 over KResult):

a1 ≤ a2 ⇌ a1 ↷ ◻ ≤ a2

r1 ≤ a2 ⇌ a2 ↷ r1 ≤ ◻
Like the strict attribute, seqstrict can also take a list of numbers as argument and then the
heating/cooling rules are generated so that the corresponding arguments are processed in that order.

Our most general strictness declaration in K, also supported by our current implementation
(Section 5.6), is to declare a certain syntactic context (a derived term) strict or sequentially strict
in a certain list of arguments. For example, in the K definition of Challenge in Section 5.7, we
declare the context * e:= e′ to be strict(e), with the meaning that the assignment statement applied
to a pointer needs to first evaluate the pointer expression.

5.5.4 Context Transforming

We next introduce one of the most advanced feature of K, the context transforming, which gives
K an additional degree of modularity. The process of context transforming is concerned with
automatically modifying existing K rules according to the cell structure defined by the desired
configuration of a target language. The benefit of context transforming is that it allows us to define
semantic rules more abstractly, without worrying about the particular details of the concrete final
language configuration. This way, it implicitly enhances the modularity and reuse of language
definitions: existing rules do not need to change as the configuration of the language changes to
accommodate additional language features, and language features defined generically once and for
all can be reused across different languages with different configuration structures.

Defining a configuration (see Section 5.5.1) is therefore a necesary step in order to make use
of K’s context transforming. Assuming that the various cell-labels forming the configuration are
distinct, then one can use the structure of the configuration to automatically transform abstract
rule contexts/patterns, i.e., ones that do not obey the intended cell-structure of the configuration,
into concrete ones that are well-formed within the current configuration structure. This rule context
transforming process can be thought of as being applied statically, before the K-system is executed.

Consider, for example, the K semantic rule for the output statement in IMP++ (Figure 5.2):

317



⟨output (i)⋅ ⋯⟩k ⟨⋯ ⋅
i

⟩output
This rule says exactly what one wants the semantics of the output statement to be and as abstractly
and compactly as possible: if “output (i)” is the next computational task, then append i to the end
of the output buffer and dissolve the output statement. This rule perfectly matched the configuration
structure of IMP++, because the IMP++ configuration structure was very simple: a top level
cell containing all the other cells inside as simple, non-nested cells. Consider now defining a more
complex language, like the Challenge language in Section 5.7 whose configuration is shown in
Figure 5.14. The particular cell arrangement in the Challenge configuration makes the rule above
directly inapplicable; to be precise, even though the rule context still parses as a CellContents-term,
it will never match/apply when used in the context of the Challenge configuration.

Context transforming is about automatic adaptation of K rules like above to new configurations.
Indeed, note that there is only one way to bring the cells ⟨⟩k and ⟨⟩output mentioned in the rule
above together: to wrap the ⟨⟩k cell within the two additional cells declared in the Challenge
configuration, namely to transform the rule above into the following one:

⟨⋯ ⟨⋯ ⟨output (i)⋅ ⋯⟩k ⋯⟩thread ⋯⟩agent ⟨⋯ ⋅
i

⟩output
Thus, context transforming can be defined as the process of customizing the paths to the various cells
used in a rule according to the configuration of the target language. As part of this customization
process, volatile variables are used for the remaining parts of the introduced cells, so that other rule
instances concerned with those parts of the cells can apply concurrently with the transformed rule.

The Locality Principle

The example rule for output above was rather simple, in that there was no confusion on how to
complete the paths to the refered cells. Consider instead an abstract K rule for pointer dereferencing:

⟨* l
v

⋯⟩k ⟨⋯ l ↦ v ⋯⟩store
This says that if dereferencing of location l is the next computational task and if value v is stored
at location l, then * l rewrites to v. The configuration of Challenge has the cells ⟨⟩k and ⟨⟩store
at different levels in the structure, so a context transforming operation is necessary to adapt this
abstract rule to Challenge. However, without care, there are two ways to do it:

⟨⋯ ⟨* l
v

⋯⟩k ⋯⟩thread ⟨⋯ l ↦ v ⋯⟩store
⟨⋯ ⟨⋯ ⟨* l

v

⋯⟩k ⋯⟩thread ⋯⟩agent ⟨⋯ ⟨⋯ l ↦ v ⋯⟩store ⋯⟩agent
The first K rule above says that the thread containing the dereferencing and the store are part of
the same agent, while the second rule says that they are in different agents (why we are allowed to
multiply the agent cells is explained shortly). Even though we obviously meant the first one, both
these rules are in fact valid concrete rules according to the configuration of Challenge.

To avoid such conflicts, context transforming relies on the locality principle: rules are transformed
in a way that makes them as local as possible, or, in other words, in a way that the resulting rule

318



context matches in concrete configuration cells as deeply as possible. The locality principle therefore
rules out the second rule transformation above, because it is less local than the former.

If, for some reason (which makes no sense for Challenge) one means a non-local transformation
of a rule context, then one should add more cell-structure to the abstract rule for disambiguation.
For example, if one really meant the second, non-local context transforming of the dereferencing
rule above, then one should have written the abstract rule, for example, as follows:

⟨⋯ ⟨* l
v

⋯⟩k ⋯⟩agent ⟨⋯ l ↦ v ⋯⟩store
Now there is only one way to context transform this abstract rule to fit the configuration of
Challenge, namely like in the second Challenge-concrete rule above. Indeed, the ⟨⟩store cell can
only by within an ⟨⟩agent cell and the ⟨⟩k cell inside the declared ⟨⟩agent cell can only be inside an
intermediate ⟨⟩thread cell. Therefore, context transforming applies at all levels in the rule context.

Let us next consider one more example showing the locality principle at work, namely the
abstract rule for variable lookup in languages with direct access to variable addresses (thus, variables
are bound to their addresses in the environment and their addresses to their values in the store):

⟨x
v

⋯⟩k ⟨⋯ x↦ l ⋯⟩env ⟨⋯ l ↦ v ⋯⟩store
The locality principle says that there is only one way to transform this rule in the context of the
Challenge configuration, namely into the following rule:

⟨⋯ ⟨x
v

⋯⟩k ⟨⋯ x↦ l ⋯⟩env ⋯⟩thread ⟨⋯ l ↦ v ⋯⟩store
Without locality, the three cells in the abstract rule above could be included in two or even in three
agents; when the first two cells are in the same agent, they could also appear in different threads.

The Cell-Cloning Principle

There are K rules in which one wants to refer to two or more cells having the same label. An
artificial example was shown above, where more than one agent cell was needed. A more natural rule
involving two cells with the same label would be one for thread communication or synchronization,
in which the two threads are directly involved in the said action. For example, consider adding
a rendezvous synchronization mechanism to IMP++ whose intended semantics is the following:
a thread whose next computational task is a rendezvous barrier statement “rv v” blocks until
another thread also reaches an identical “rv v” statement, and, in that case, both threads unblock
and continue their execution. The following K rule captures this desired behavior of rendezvous
synchronization:

⟨rv v⋅ ⋯⟩k ⟨rv v⋅ ⋯⟩k
Since this K rule captures the essence of the intended rendezvous synchronization, we would like

to reuse it unchanged in language definitions which are more complex than IMP++, such as the
Challenge language in 5.7. Unfortunately, this rule will never match/apply as is on Challenge
configurations, because two ⟨⟩k cells can never appear next to each other. A context transforming

319



operation is therefore necessary, but it is not immediately clear how the rule context should be
changed. The cell-cloning principle applies when abstract rules refer to two or more cells with the
same name, and it states that context transforming should be consistent with the cell cloning, or
multiplicity, information provided as part of the configuration definition; this can be done using
starred labels, as explained in Section 5.5.1. Note that, for example, the Challenge configuration
in Figure 5.14 declares both the agent and the thread cells clonable. Thus, using the cell-cloning
principle in combination with the locality principle, the abstract rule above is transformed into the
following Challenge-concrete rule:

⟨⋯ ⟨rv v⋅ ⋯⟩k ⋯⟩thread ⟨⋯ ⟨rv v⋅ ⋯⟩k ⋯⟩thread
The cell-cloning principle can therefore only be applied when one defines a configuration for

one’s language and, moreover, when one also provides the desired cell-cloning information (by means
of starred labels). However, in our experience with defining languages in K, it is actually quite
useful to spend the time and add the cell-cloning information to one’s configuration; one not only
gets the convenience and modularity that comes with context transforming for free, but also a better
insight on how one’s language configurations look when programs are executed and thus, implicitly,
a better understanding of one’s language semantics.

320


