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The Longest Common Extension (LCE) problem considers a string s and computes, for each
pair (i, j), the longest substring of s that starts at both i and j. It appears as a subproblem
in many fundamental string problems and can be solved by linear-time preprocessing
of the string that allows (worst-case) constant-time computation for each pair. The two
known approaches use powerful algorithms: either constant-time computation of the
Lowest Common Ancestor in trees or constant-time computation of Range Minimum
Queries in arrays. We show here that, from practical point of view, such complicated
approaches are not needed. We give two very simple algorithms for this problem that
require no preprocessing. The first is 5 times faster than the best previous algorithms
on the average whereas the second is faster on virtually all inputs. As an application, we
modify the Landau–Vishkin algorithm for approximate matching to use our simplest LCE
algorithm. The obtained algorithm is 13 to 20 times faster than the original. We compare
it with the more widely used Ukkonen’s cutoff algorithm and show that it behaves better
for a significant range of error thresholds.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The longest common extension (LCE) problem takes as input a string s and many pairs (i, j) and computes, for each pair
(i, j), the longest substring of s that occurs both starting at position i and at j in s. That is, the longest common prefix of
the suffixes of s that start at positions i and j, respectively. Sometimes the problem receives two strings as input, s and t ,
and is required to compute, for each pair (i, j), the longest common prefix of the ith suffix of s and jth suffix of t . This
reduces to the previous problem by considering the string s$t , where $ is a letter that does not appear in s and t .

The LCE problem appears as a subproblem in many fundamental string problems, such as k-mismatch problem and
k-difference global alignment [14,20,15], computation of (exact or approximate) tandem repeats [17,7,16], or computing
palindromes and matching with wild cards [6]. Very efficient algorithms are obtained and it is not clear how to solve those
problems without employing LCE solutions.

The LCE problem can be optimally solved by linear-time preprocessing of the string s so that the answer for each
pair (i, j) can be computed in constant time. Two powerful algorithms are employed to achieve this bound. The first is
the constant-time computation of the Lowest Common Ancestor in trees (with linear-time preprocessing) [8,23,2,1]. When
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Fig. 1. The SA and LCP arrays (left) and the suffix tree (right) for the string abbababba. We have LCE(2,3) = RMQLCP(SA−1[3] + 1,SA−1[2]) =
RMQLCP(7,9) = 1; this is also the depth |b| of the node LCA(3,2) in the suffix tree.

applied to the suffix tree [6] of the string s, it easily yields the solution for the LCE problem. The second uses constant-time
computation of Range Minimum Queries (RMQ) in arrays (with linear-time preprocessing) [2,1,4,5]. Applied to the LCP array
of s (that is part of the suffix array data structure of s, see Section 2), this gives again a solution of the LCE problem. The
RMQ-based solution is more efficient in practice [5].

In this paper we look at the LCE problem from a practical point of view. Our aim is to provide simple and efficient
algorithms. As it is often the case, the best worst-case algorithms need not be the fastest in practice. Indeed, already
[5] considered a simplified algorithm that resolves each (i, j) pair in O(log n) time (with linear-time preprocessing). This
algorithm performs the best in practice.

Our starting point is the observation that, on the average, the LCE values are very small. We give the precise limit of this
average, for a given alphabet size, when the string length goes to infinity. An important consequence is that the algorithm
that directly compares the suffixes starting at positions i and j is optimal on the average and significantly faster in practice,
on the average, than all previous ones. It needs only the string s; no preprocessing.

The practically fastest algorithm to date computes RMQ on the longest common prefix array (see Section 2). The LCE
value for two positions i and j is smaller when the distance between the positions corresponding to i and j in the suffix
array is larger. For the vast majority of pairs, our algorithm described above is the fastest. When they are very close, there
is another algorithm — direct computation of range minimum — that is the best. Combining the two and using the superior
speed of the cache memory produces an algorithm that, while still very simple (no preprocessing required; it uses only the
existing LCP array), is the fastest on virtually all inputs.

Next we test the behavior of our algorithm in real applications. The approximate string searching algorithm of Landau–
Vishkin [15] is using heavily LCE computations. When the current best LCE algorithm is replaced by our simplest one, the
obtained algorithm runs 13 to 20 times faster in practice. We compare the obtained algorithm with the more widely used
Ukkonen’s cutoff algorithm [25] and show that it is faster for a significant range of error thresholds.

The paper is organized as follows. Section 2 contains the basic definitions including the LCE problem with its current
solutions. The average LCE is precisely computed in Section 3 and a linear-time algorithm computing the average LCE
for a given file is given in Section 4. Our fastest-on-average algorithm is given in Section 5 where extensive comparison
with previous fastest algorithms is provided. The approach on the (practical) worst case starts in Section 6 with several
approximations on the maximum LCE. The combined algorithm that is the fastest in practice is given in Section 7, together
with the corresponding experiments. Section 8 contains the application to approximate string searching. We briefly recall the
idea of Landau and Vishkin and then present experimental comparison results. The comparison with Ukkonen’s algorithm
is presented in Section 9. We summarize our achievements in the Conclusions section.

2. Basic definitions

Let A be an alphabet with card(A) = � � 2. Let s ∈ A∗ be a string of length |s| = n. For any 1 � i � n, the ith letter
of s is s[i] and s[i . . j] = s[i]s[i + 1] · · · s[ j]. In this notation s = s[1 . .n]. Let also sufi denote the suffix s[i . .n] of s. For
1 � i �= j � n, the length of the longest common prefix of the strings sufi and suf j is called the longest common extension of
the two suffixes, denoted by LCEs[i, j]. When s is understood, it will be omitted.

Assuming a total order on the alphabet A, the suffix array of s [18], denoted SA, gives the suffixes of s sorted increasingly
in lexicographical order, that is, sufSA[1] < sufSA[2] < · · · < sufSA[n] . The suffix array of the string abbababba is shown in the
second column of Fig. 1. The suffix array is often used in combination with another array, the longest common prefix
(LCP) array that gives the length of the longest common prefix between consecutive suffixes of SA, that is, LCP[i] =
LCE[SA[i − 1],SA[i]]; see the fourth column of Fig. 1 for an example. By definition, LCP[1] = 0.

The suffix array of a string of length n over an integer alphabet can be computed in O(n) time by any of the algorithms
in [10,12,13,22]. The longest common prefix array can be computed also in O(n) time by the algorithm of [11].
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The LCE problem is: given a string s and a set of pairs (i, j), compute LCE(i, j) for each pair. It can be solved by prepro-
cessing the string s in linear time so that each LCE(i, j) is computed in constant time. The first solution uses constant-time
computation of the Lowest Common Ancestor [8,23,2,1] applied to the suffix tree; see an example in Fig. 1. The second,
more efficient, uses constant-time computation of Range Minimum Queries (RMQ) in arrays [2,1,4,5] applied to the LCP
array. In general, we have LCE(i, j) = RMQLCP(SA−1[i] + 1,SA−1[ j]). Note the need for the inverse suffix array SA−1; an
example is shown in Fig. 1.

We shall denote the LCE algorithm of [5] based on constant-time RMQ computation by RMQconst. The practically most
efficient algorithm of [5] computes each LCE(i, j) in (suboptimal) O(log n) time; it will be denoted by RMQlog.

3. Average LCE

We shall assume throughout the paper that the letters of the alphabet A are independent and identically distributed.
The starting point of our approach is the observation that most LCE values are very small. The main result of this section
estimates the average value of the LCE over all strings of a given length n, that is,

Avg_LCE(n, �) = 1

�n

∑
s∈An

(
1(n
2

) ∑
1�i< j�n

LCEs(i, j)

)
.

Theorem 1.

(i) For any � � 2, limn→∞ Avg_LCE(n, �) = 1
�−1 .

(ii) For any n � 2 and � � 2, Avg_LCE(n, �) < 1
�−1 .

Proof. Reorganizing the formula for Avg_LCE(n, �) gives

Avg_LCE(n, �) = 2

n(n − 1)�n
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k=1

k
∑
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card
({

s
∣∣ LCEs(i, j) = k

})
.

(i) For fixed k, i, j, denote Kk,i, j = {s | LCEs(i, j) = k}. We compute the cardinality of Kk,i, j . Recall that, in any string
s ∈ Kk,i, j , we have s[i . . i + k − 1] = s[ j . . j + k − 1].

(i.1) Assume first that j � n − k. If also j − i � k, then there are �k possibilities for the strings letters contained in the
substrings s[i . . i + k − 1] and s[ j . . j + k − 1]. The letters right after those, s[i + k] and s[ j + k], can be chosen in �(� − 1)

different ways as they must be different. There are �n−2(k+1) possibilities to choose the remaining letters of s. In total we
obtain card(Kk,i, j) = �n−k−1(� − 1).

Now, if j − i < k, then s[i . . i + k − 1] = xp x′ , with |x| = j − i, x′ a prefix of x, and p � 1. The letters contained in the
substrings s[i . . i +k−1] and s[ j . . j +k−1] are completely determined by x which can be any string out of � j−i possibilities.
The letter in position j + k can be chosen in � − 1 ways, since it has to be different from s[i + k]. The remaining letters can
be chosen in �n−(k+ j−i+1) ways. In total, card(Kk,i, j) = �n−k−1(� − 1).

(i.2) Assume next j = n − k + 1. We no longer need the condition that s[i + k] �= s[ j + k], as above, since s[ j + k] is
undefined. Therefore, by a reasoning similar to the one above, card(Kk,i, j) = �n−k .

There are
(n−k

2

)
pairs (i, j) verifying (i.1) above and n − k that verify (i.2). Consequently, we obtain (i) as follows:
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Fig. 2. (i) The LCE matrix corresponding to the string abbababba and (ii) the same matrix where the rows and columns are permuted according to the
array SA = (9,4,6,1,8,3,5,7,2). The longest diagonal is the array (1,2,4,0,2,3,1,3), that is, LCP without the first element. Each shaded block contains
elements of the same value as the one on the LCP diagonal.

(ii) Using the second last line of the above calculation, we obtain:

Avg_LCE(n, �) <
n

n − 1

1

� − 1
− 1

n − 1

� + 1
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4. Average LCE for a fixed text in linear time

Due to the size of � for usual texts, the expected value for the average LCE is quite low. However, we assumed a uniform
distribution of letters which does not happen in practice. We compute in this section the average LCE for the text files in
the Canterbury,3 Manzini,4 and Pizza&Chili5 corpora, as well as for some random files we generated.

For a file of length n, naively computing the average LCE would require the computation of quadratically many LCE
values. We give an algorithm that computes it in linear time. For a string of length n, there are n(n−1)

2 LCE values, since
LCE[i, i] is undefined and LCE[i, j] = LCE[ j, i]. Fig. 2(i) gives the LCE matrix for the string abbababba. In order to be able
to compute the average in linear time, we reorder first the rows and columns according to the permutation given by the
SA array; see Fig. 2(ii). The matrix is symmetric before the permutation and remains so after, therefore we consider only
the top half (in black). The main diagonal is undefined but the one immediately above it is the LCP array (without the
first, useless, position). The element in position (i, j) in the permuted matrix contains the minimum value of LCP[i . . j].
Therefore, the upper half of the matrix can be partitioned into rectangles containing elements of the same value and which
have a corner on the LCP diagonal. The sides of the rectangle containing the ith element of the LCP diagonal are equal to
the distances from the ith element of LCP to the closest previous (next, resp.) smaller element (or to the end of the array,
if such an element does not exist); two such rectangles are shaded in Fig. 2(ii).

Therefore, the sum of all LCE values can be computed by a single pass through the LCP array with an additional stack
that enables computation of the rectangle sizes. The algorithm is shown in Fig. 3. The stack contains pairs of the form
(LCP[i + 1], i). In order to treat all elements in the same way, we push at the beginning the pair (0,0) and at the end the
pair (LCP[n + 1] = 0,n). The algorithm runs in linear time because each element is pushed onto the stack and popped out
of the stack only once.

We used the ComputeAvgLCE algorithm for the files in Table 1. For small files our LCE algorithms are far better than any
other ones, so we discuss only the five largest files in Canterbury corpus. (The other corpora contain only large files.) The
results are shown in the fifth column of Table 1. While the LCE averages are higher than expected according to Theorem 1,
they are still small (at most 1).

5. An average-case optimal algorithm for LCE

This result in Theorem 1 has an important implication for our purpose, that is, no sophisticated algorithms are neces-
sary for computing LCEs. By Theorem 1, direct comparison of the two suffixes requires, on the average, �

�−1 comparisons.
Therefore our DirectComp algorithm (see Fig. 4) is optimal on the average.

We tested the DirectComp algorithm on the files in Table 1, and compared it with RMQconst and RMQlog; the results
are shown in the last three columns. All tests were done on a Sun Fire V440 Server, using one UltraSPARC IIIi processor at

3 http://corpus.canterbury.ac.nz/.
4 http://web.unipmn.it/~manzini/lightweight/corpus/.
5 http://pizzachili.dcc.uchile.cl/.

http://corpus.canterbury.ac.nz/
http://web.unipmn.it/~manzini/lightweight/corpus/
http://pizzachili.dcc.uchile.cl/
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Fig. 3. Computing the average LCE for a given text in linear time; top(S )i , i ∈ {1,2}, refers to the ith element of the pair top(S ).

Table 1
Files from Canterbury (five largest ones), Manzini, and Pizza&Chili corpora and some randomly generated with various sizes and number of letters. The first
six columns contain, in order: file source, file name, size (in megabytes), alphabet size, average LCE, maximum LCE. The last three contain the average
running times for solving the LCE problem using RMQconst , RMQlog , and DirectComp, resp., given in microseconds per input pair. DirectComp is roughly 6
times faster. Also, the first two algorithms require the SA−1 and LCP arrays and further preprocessing, whereas our algorithm uses only the text without
any preprocessing. The first two algorithms ran out of memory for files larger than 160 MB.

File Size Alph. Avg_LCE max_LCE RMQconst RMQlog DirectComp

Canterbury
book1 0.7 82 0.0736 104 1.34 1.11 0.07
kennedy.xls 1 256 0.3946 18 1.37 1.17 0.11
E.coli 4.4 4 0.3371 2815 1.43 1.12 0.21
bible.txt 3.9 63 0.0915 551 1.28 1.00 0.21
world192.txt 2.3 93 0.0693 543 1.41 1.21 0.20

Manzini
chr22.dna* 33 4 0.3419 1777 1.46 1.17 0.20
etext99 100 146 0.0732 286 352 1.53 1.20 0.21
howto 38 197 0.0909 70 720 1.51 1.20 0.21
jdk13c 66 113 0.0444 37 334 1.44 1.16 0.22
rctail96 109 93 0.0692 26 597 1.50 1.21 0.22
rfc 111 120 0.2140 3445 1.50 1.21 0.21
sprot34.dat 105 66 0.0860 7373 1.49 1.20 0.22
w3c2 99 256 0.0341 990 053 1.50 1.22 0.21

Pizza&Chili
sources 201 230 0.0497 307 871 – – 0.20
pitches 53 133 0.0420 25 178 1.63 1.28 0.20
proteins 1129 27 0.0625 647 051 – – 0.20
DNA 385 16 0.3500 1 378 596 – – 0.21
English 2108 239 0.0753 4 735 603 – – 0.22
XML 282 96 0.0538 1084 – – 0.20

Random
rand_100_2 100 2 1.0000 52 1.51 1.23 0.29
rand_100_4 100 4 0.3333 26 1.52 1.22 0.27
rand_100_20 100 20 0.0526 11 1.48 1.23 0.28
rand_1000_2 1000 2 1.0000 55 – – 0.31
rand_1000_4 1000 4 0.3333 29 – – 0.30
rand_1000_20 1000 20 0.0526 13 – – 0.30

* For the file chr22.dna the stretches of unknown bases, NN...N, were not considered in all LCE computations, consistent with any use of this file.

1593 MHz, 1 MB L2 Cache, 4 GB RAM, running SunOS 5.10. The programs were compiled using gcc 3.4.3 with options
-O3 -fomit-frame-pointer. One million random (i, j) pairs were generated and all three algorithms were run on
those. Each experiment was repeated three times and the average times are shown. The preprocessing times for RMQconst
and RMQlog were not counted.

Our algorithm is roughly 5 times faster than RMQlog, the previous fastest algorithm. Recall here that the preprocessing
times of RMQconst and RMQlog have not been considered. (Our comparison between RMQconst and RMQlog gives results
similar to [5].) Due to the additional space needed (for a file of size n, more than 16n bytes are needed, in addition to 8n
bytes for the LCP and SA−1 arrays), the RMQ-based algorithms could not handle files large than 160 MB (see also Table 2).
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Fig. 4. Computing LCE by direct comparison.

6. Maximum LCE

As seen in the previous section, our DirectComp algorithm performs significantly better than the best ones to date on the
average. However, when counting the expected number of operations performed by each algorithm, the difference should
be even bigger. That is due to the lower speed of RAM compared to cache memory. Most of the time is spent on accessing
the large arrays. We turn this property into our advantage by trying to do better not only on the average but also in the
worst case.

In this section we prove a number of results that help us get an idea of how large the maximum LCE is expected to
be as well as an estimate on how many “large” LCE values are expected. Denoting max_LCE(s) = maxi, j LCEs(i, j), we have
the following theorem:

Theorem 2. For any n � 2 and � � 2, we have:

(i) For any s ∈ An, max_LCE(s) > log�(n) − 2.
(ii) There exists an s ∈ An such that max_LCE(s) < log�(n).

(iii) The average maximum LCE, Avg_max_LCE(n, �), satisfies

log�(n) − 2 � Avg_max_LCE(n, �) � 2 log�(n).

(iv) The average number of pairs (i, j) with LCE(i, j) � log�(n) is less than n/2.
(v) The average number of pairs (i, j) with LCE(i, j) � 2 log�(n) is less than 1/2.

Proof. (i) Consider a string s ∈ An and put k = max_LCE(s). That means any two substrings of length k +1 of s are different.
Since s has n − k such substrings, it must be that n − k � �k+1. From this (i) follows.

(ii) We use de Bruijn strings [3]. For a given � and k, a de Bruijn string has all strings of length k as substrings and
minimum length n = �k + k − 1. Therefore max_LCE(s) = k − 1 as all substrings of length k are different and (ii) follows.

(iii) The first inequality follows immediately from (i). For the second, consider a string s such that max_LCE(s) � k. This
means there is a position i such that s[i . . i +k −1] appears twice in s. The number of such strings is at most (n −k +1)�n−k

since the factor s[i . . i +k−1] is completely determined by its second occurrence even in the case when the two occurrences
overlap. Therefore, bounding the max_LCE of all these strings by the maximum possible value n − 1 and the remaining ones
by k − 1, we obtain

Avg_max_LCE(n, �) = 1

�n

∑
s∈An

max_LCE(s)

� 1

�n

(
(n − 1)(n − k + 1)�n−k + (k − 1)

(
�n − (n − k + 1)�n−k))

= k − 1 + 1

�k
(n − k)(n − k + 1).

For k = 2 log�(n), this gives the second inequality.
(iv) We make a reasoning similar to the one in the proof of Theorem 1(i). Denoting the average we are looking for by

Avg_LCElog(n, �), we have

Avg_LCElog(n, �) = 1
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∑
s∈An

card
({
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})
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n−�log�(n)	∑ ((
k

2

)
�k−1(� − 1) + k�k

)

k=1
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Fig. 5. Direct computation of the range minimum.

Table 2
Preprocessing and memory requirements for a file of size n; we assume an integer is represented on 4 bytes.

Algorithm RMQconst RMQlog DirectMin DirectComp

Preprocessing RMQ data structures, SA−1, LCP SA−1, LCP –
Memory (bytes) 24n+ 8n n

= 1

2�n

n−�log�(n)	∑
k=1

(
k(k + 1)�k − (k − 1)k�k−1)

= 1

2�n

(
n − �log�(n)	)(n − �log�(n)	 + 1

)
�n−�log�(n)	

<
n2

2��log�(n)	 � n

2
.

(v) The reasoning is the same as the one for (iv) except that �log�(n)	 is replaced by �2 log�(n)	 which gives the bound
1/2. �

The conclusion of this section is that most LCE values are expected to be small and therefore our DirectComp algorithm
performs better for most pairs. For the remaining few, we look for a different solution in the next section. The maximum
LCE can be much larger than expected (see the sixth column of Table 1) but our solution avoids the large LCE values.

7. The worst case

The RMQ-based algorithms are better for a very small fraction of the input (i, j) pairs, namely those for which the
difference between SA−1[i] and SA−1[ j] is very small, as that usually implies large LCE[i, j] value. But, for such cases,
there is another, very simple, algorithm, already considered by [5], that performs the best. It requires no preprocessing.
Instead, it computes directly the minimum of the values LCP[SA−1[i] + 1 . .SA−1[ j]]. This algorithm, called DirectMin, is
described in Fig. 5.

Table 2 contains a summary of the memory and preprocessing requirements for each of the four algorithms: RMQconst,
RMQlog, DirectMin, and DirectComp. The first two require the SA−1 array to compute the corresponding positions in the
LCP array and the data structures necessary for the constant-(logarithmic-, resp.) time computation of the RMQ values.
DirectMin requires SA−1 and LCP for the same reason but no additional space. DirectComps needs only the text.

We tested the performance of all four algorithms discussed for the files in Table 1. We run them on pairs at a given
distance, step= |SA−1[ j]−SA−1[i]|, in the suffix array, represented on the abscissa in logarithmic scale; the ordinate gives
the time in microseconds. All pairs at a given distance have been considered for each computation. The results are given in
Figs. 6–8. Again, all preprocessing times have been discarded.

8. Landau–Vishkin algorithm

An important application of LCE algorithms is to approximate string search. Landau and Vishkin [15] adapted an idea
of Ukkonen [24] to obtain an algorithm that searches for occurrences that have no more than k differences in a text of
length n in time O(kn). We recall briefly the idea. Consider the pattern p of length m, the text t of length n and build the
well-known dynamic programming matrix for searching for occurrences of p in t . The one for p = codes, t = coincidence is
shown in Fig. 9(i).

A d-path in the DP matrix is a path that starts in row 0 and specifies a total of d mismatches and indels. Diagonal i is
the diagonal containing cells for which the difference between the column and row index is i.

A d-path is farthest reaching in diagonal i if it ends on diagonal i and its end has a higher row index than any other
d-path. Any farthest reaching k-path that reaches row m specifies the end of an occurrence of p with k errors. In Fig. 9(i),
the diagonals 3 and 4 contain end points of 2-paths that reach the last row. They correspond to the occurrences cide and
ciden of the pattern with 2 errors.
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Fig. 6. The files book1 (left) and E.coli (right). The behavior of DirectMin, RMQconst , and RMQlog for the other three files from Canterbury corpus is
similar; the curve of DirectComp (green) is in-between the two cases shown. (For files of size less than 1 MB, DirectComp is the best on all inputs.) (For
interpretation of colors in this figure, the reader is referred to the web version of this article.)

Fig. 7. The files chr22.dna (left) and jdk13c (right). The behavior of DirectMin, RMQconst , and RMQlog for the other files in Manzini corpus (and
pitches from Pizza&Chile) is similar; the curve of DirectComp is in-between the two cases shown. The file jdk13c is the only one where the combina-
tion DirectComp–DirectMin is slightly slower than RMQlog on a very small interval.

Fig. 8. The file rand_100_2 (left; the behavior on the other two random files of the same size is similar) and the three largest files, rand_1000_2,
English and proteins (right); only DirectComp can handle those. The performance is impressive; only at distance 2 some of the times are higher;
such a case would be very easily handled by DirectMin given enough space for the SA−1 and LCP arrays.
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Fig. 9. (i) Dynamic programming matrix for searching for the pattern codes in the text coincidence. The ends of the farthest reaching 2-paths are underlined.
(ii) The rows containing the ends of the farthest reaching d-paths, 0 � d � 2.

Table 3
Preprocessing and memory requirements for a file of size n; we assume an integer is repre-
sented on 4 bytes.

Algorithm LV LVdc

Preprocessing SA, SA−1, LCP, RMQ data structures, –
Memory (bytes) 28n+ 5n

Table 4
Comparison between the original Landau–Vishkin algorithm and ours for the file chr22 from Manzini
corpus. We used the algorithm of Manzini and Ferragina [19] for computing the suffix array, the one of
Kasai et al. [11] for the longest common prefix array, and the algorithm of Fischer and Heun [5] for the
RMQ-based computation of LCE.

File chr22 from Manzini, size 32 MB

Pat. source Pat. length Errors LV LVdc

Rand. pick from text 10 3 206 13
20 6 333 23
50 20 970 74

100 20 959 74
1000 20 946 73

Rand. gen. over alph. 10 3 201 12
20 6 340 23
50 20 952 73

100 20 944 73
1000 20 944 73

Landau–Vishkin algorithm computes the ends of all farthest reaching k-paths. To compute the end of the farthest reach-
ing d-path in diagonal i, one considers the farthest reaching of the following three paths. First, the farthest reaching
(d − 1)-path in diagonal i − 1 (say it ends in row j) is extended by an insertion in t and then an LCE between positions i + j
in t and j in p. Similarly, the farthest reaching (d − 1)-paths in diagonals i and i + 1 are extended by a deletion/mismatch
followed by an LCE. This way, all ends of d-paths are computed from ends of (d − 1)-paths. Since each LCE can be computed
in constant time, the whole algorithm requires time O(kn). These ends are computed in Fig. 9(ii) for 0 � d � 2.

In our algorithm the constant-time LCE algorithm is replaced by the newly introduced DirectComp; the original algo-
rithm is denoted by LV whereas ours is LVdc . Here, as opposed to the LCE case, preprocessing for constant-time LCE is part
of the algorithm and is counted. First, Table 3 gives the memory and preprocessing requirements for the two algorithms.

We compared the two algorithms on two files for various pattern and error sizes, on the same machine as in Section 5.
The results are shown in Tables 4–6. For each file, half of the patterns were randomly picked from the text (and the
corresponding number of errors were randomly introduced) whereas the other half were randomly generated over the
alphabet of the text. Our algorithm is 13 to 20 times faster. For a fixed text, the time was affected only by the number of
errors and not the size or type of pattern.

9. Modified Landau–Vishkin versus Ukkonen’s cutoff

We compared experimentally the improved Landau–Vishkin algorithm (LVdc) with the more widely used Ukkonen’s cutoff
algorithm [25]. The latter is O (kn) on average and rather practical among the classical algorithms. The former, instead,
guarantees O (kn) worst-case. The Landau–Vishkin algorithm has always been regarded as an impractical algorithm [21].
With the improved LCE algorithm, a competitive algorithm, LVdc , is obtained. Notice that, due to Theorem 1, LVdc is O (kn)

time on the average.
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Table 5
Comparison between the original Landau–Vishkin algorithm and ours for the prefix of 50 MB of the file
English from Pizza&Chili corpus.

Prefix of file English from Pizza&Chili, size 50 MB

Pat. source Pat. length Errors LV LVdc

Rand. pick from text 10 3 344 18
20 6 572 34
50 20 1557 106

100 20 1536 106
1000 20 1546 104

Rand. gen. over alph. 10 3 353 18
20 6 562 33
50 20 1497 105

100 20 1497 105
1000 20 1481 104

Table 6
The times for running our program on a prefix of 750 MB of the file English from
Pizza&Chili corpus. The original Landau–Vishkin algorithm cannot run on files larger than
140 MB.

Prefix of file English from Pizza&Chili, size 750 MB

Pat. source Pat. length Errors LV LVdc

Text 1000 20 – 1592
Rand. gen. 1000 20 – 1574

Fig. 10. Time comparison between the Landau–Vishkin algorithm with the fast LCE algorithm, LVdc (LV in the figure) and the classical Ukkonen’s cutoff
algorithm (Ukk in the figure).

Our machine is an Intel Core2 Duo, each of the two cores containing a 3 GHz processor with 6 MB cache, and 8 GB
RAM. It runs Gnu Linux 2.6.24-24-server. The compiler is Gnu gcc using full optimization, and the experiments
ran without any other significant process competing for the CPU. We measure user times.

We have used 100 MB of different text types from Pizza&Chili: Proteins, DNA, MIDI pitches, English, C/Java source code,
and XML text. Each data point is the average over 100 searches for a pattern randomly chosen from the text, which yields a
standard deviation for the estimator (usually well) below 2% of the mean. Because the search times turned out to be largely
independent of m, we fix m = 50 and give the results for increasing k values.

Fig. 10 shows the results. As it can be seen, LVdc is faster than Ukkonen’s for low k values, which are usually the most
interesting ones for approximate string matching. At some turnover point (usually around k = 5–15, growing for larger
alphabets) the result reverses and Ukkonen’s becomes faster, yet never for much more than 10%. For low k, instead, LVdc

can be up to twice as fast. This shows that the technique of computing the longest common prefix by brute force is indeed
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practical, and it yields to improving a widely used algorithm for approximate string matching (especially for verification of
short text areas pointed out by a faster filtration algorithm).

10. Conclusions

We gave very simple algorithms for the LCE problem that are the best in practice with respect to both time and space.
When the pairs are randomly distributed, DirectComp should be used as it is approximately 5 times faster on the average
than the current fastest algorithm. If the performance on every single input matters, then the combination DirectComp–
DirectMin should be used. Only DirectComp can handle very large files and the performance on those is very good.

In order to test the efficiency of our new algorithms, we presented an application to approximate string searching.
Landau–Vishkin algorithm uses heavily LCE algorithms. When those were replaced by our DirectComp, the obtained algo-
rithm runs 13 to 20 times faster, is much simpler, and uses much less space.

Our improvement turns Landau–Vishkin’s algorithm from an impractical algorithm to a practical one. We compared it
with Ukkonen’s cutoff algorithm and proved it to be faster for a significant range of error thresholds.
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