
®

A
 p

u
b
lic

a
ti
o

n
 o

f
O

S
R

 O
p
e
n
 S

y
s
te

m
s
 R

e
s
o
u
rc

e
s
,
In

c
.

//
// ReadNewNtInsider
//
// Read this issue of The NT Insider, based on the reader's
// interests.
//
NTSTATUS
ReadNewNtInsider(PACCESS_TOKEN Token)
{
 NTSTATUS status;
 PTOKEN_GROUPS groups = NULL;

 //
 // Retrieve the groups for this reader
 //
 status = SeQueryInformationToken(Token,
 TokenGroups,
 (PVOID*)&groups);

 if (!NT_SUCCESS(status)) {

 goto leave;
 }

 //
 // Everyone reads Peter Pontificates
 //
 ReadPeterPontificates();

 //
 // All driver devs should read these articles
 //
 if (InsiderIsGroupMember(groups, SECURITY_INSIDER_DRIVER_DEV)) {

 //
 // Best Practices for Windows Driver Developers
 //
 ReadArticle(Page3);

 //
 // Develop and Test Complex Drivers in User Mode
 //
 ReadArticle(Page8);

 }

 //
 // WDF developers should read about device objects and protections
 //
 if (InsiderIsGroupMember(groups, SECURITY_INSIDER_WDF_DEV)) {

 //
 // Making Device Objects Accessible... and SAFE
 //
 ReadArticle(Page6);

 }

 //
 // File system and file system filter devs…
 //
 if (InsiderIsGroupMember(groups, SECURITY_INSIDER_IFS_DEV) ||
 InsiderIsGroupMember(groups, SECURITY_INSIDER_FILTER_DEV)) {

 //
 // What's New in Win10 for File Systems and Filters?
 //
 ReadArticle(Page10);
 }

leave:

 if (groups) {

 ExFreePool(groups);
 }

 return(status);
}

https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 2
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

Published by
OSR Open Systems Resources, Inc.
105 Route 101A, Suite 19
Amherst, New Hampshire USA 03031
(v) +1.603.595.6500
(f) +1.603.595.6503

http://www.osr.com

Consulting Partner
Peter G. Viscarola

Engineering Partner
Scott Noone

Executive Editor
Daniel D. Root

Contributing Editors
OSR Staff

Send Stuff To Us:
NtInsider@osr.com

Single Issue Price: $15.00

The NT Insider is Copyright ©2017 All rights
reserved. No part of this work may be
reproduced or used in any form or by any means
without the written permission of OSR Open
Systems Resources, Inc.

We welcome both comments and unsolicited
manuscripts from our readers. We reserve the
right to edit anything submitted, and publish it at
our exclusive option.

Stuff Our Lawyers Make Us Say
All trademarks mentioned in this publication are
the property of their respective owners. “OSR”,
“OSR Online” and the OSR corporate logo are
trademarks or registered trademarks of OSR
Open Systems Resources, Inc.

We really try very hard to be sure that the
information we publish in The NT Insider is
accurate. Sometimes we may screw up. We’ll
appreciate it if you call this to our attention, if
you do it gently.

OSR expressly disclaims any warranty for the
material presented herein. This material is
presented “as is” without warranty of any kind,
either expressed or implied, including, without
limitation, the implied warranties of
merchantability or fitness for a particular
purpose. The entire risk arising from the use of
this material remains with you. OSR’s entire
liability and your exclusive remedy shall not
exceed the price paid for this material. In no
event shall OSR or its suppliers be liable for any
damages whatsoever.

It is the official policy of OSR Open Systems
Resources, Inc. to safeguard and protect as its
own, the confidential and proprietary
information of its clients, partners, and others.
OSR will not knowingly divulge trade secret or
proprietary information of any party without
prior written permission. All information
contained in The NT Insider has been learned or
deduced from public sources...often using a lot of
sweat and sometimes even a good deal of
ingenuity.

OSR is fortunate to have customer and partner
relations that include many of the world’s leading
high-tech organizations. As a result, OSR may
have a material connection with organizations
whose products or services are discussed,
reviewed, or endorsed in The NT Insider.

Neither OSR nor The NT Insider is in any way
endorsed by Microsoft Corporation. And we like
it that way, thank you very much.

Follow us!

J ust in case you’re not already following us on Twitter, Facebook, LinkedIn, or via our own
“osrhints” distribution list, below are a few of the more recent contributions that are getting

attention in the Windows driver development community:

WDK Problem Fixed, Plus Preview Access For
All
I wanted to update you on the status of a few
issues in the world of the Windows Driver Kit,
and also let you know about new options for
early access to new versions of the WDK.
http://www.osr.com/blog/2016/10/24/wdk-
problem-fixed-plus-early-access/

C Is Not Reasonable
Those of you who’ve read my Pontifications over
the years know that the things that annoy me
are truly countless in number. But most of the things that annoy me do so because I simply cannot
understand why they are the way they are.
http://www.osr.com/blog/2016/09/19/c-reasonable/

Debugging Target RS1? Good Luck!
The hits to driver developers just keep on coming when it comes to RS1.
http://www.osr.com/blog/2016/08/26/debugging-target-rs1-good-luck/

Careful With Your WDK Updates!
I can never help myself when it comes to updating to the latest WDK. It’s always exciting to diff the
old contents with the new and see what’s really going on in the operating system.
http://www.osr.com/blog/2016/08/03/careful-wdk-updates/

Careful With Your VS 2015 Updates!
As welcome as the Windows updates themselves are, they also come with updates to VS, the SDK,
and the WDK. In the past 24 hours we’ve discovered that it pays to be careful in how you apply
these updates.
http://www.osr.com/blog/2016/08/03/careful-vs-2015-updates/

WDK 14393 Code Analysis Enforces POOL_NX_OPTIN, Breaks POOL_NX_OPTIN
In an interesting twist, build 14393 of the WDK now enforces the use of NX non-paged pool.
http://www.osr.com/blog/2016/08/02/wdk-14393-code-analysis-enforces-pool_nx_optin-breaks-
pool_nx_optin/

Fix WDK Doc Issues—Yourself. And Fast!
If you use the WDK doc set all day, every day, you almost certainly have a few pet peeves — things
in the docs that drive you nuts and that you’d like to change. Now, you make those
changes yourself! Well, almost.
http://www.osr.com/blog/2016/08/02/fix-wdk-doc-issues-fast/

Driver Signing—More Details Emerge
Microsoft has just published a new Channel 9 Video that explains many of our long-standing
questions about driver signing.
http://www.osr.com/blog/2016/06/02/driver-signing-details-emerge/

Become More
Knowledgeable… Instantly!

We email our friends when we’ve got some-
thing interesting to say. Join the list!

Send a blank email to
join-osrhints@lists.osr.com and we’ll add you
to the list. We don’t have THAT much to say.
You’ll probably get one or two emails a month.

https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr
http://www.osr.com/blog/2016/10/24/wdk-problem-fixed-plus-early-access/
http://www.osr.com/blog/2016/10/24/wdk-problem-fixed-plus-early-access/
http://www.osr.com/blog/2016/09/19/c-reasonable/
http://www.osr.com/blog/2016/08/26/debugging-target-rs1-good-luck/
http://www.osr.com/blog/2016/08/03/careful-wdk-updates/
http://www.osr.com/blog/2016/08/03/careful-vs-2015-updates/
http://www.osr.com/blog/2016/08/02/wdk-14393-code-analysis-enforces-pool_nx_optin-breaks-pool_nx_optin/
http://www.osr.com/blog/2016/08/02/wdk-14393-code-analysis-enforces-pool_nx_optin-breaks-pool_nx_optin/
http://www.osr.com/blog/2016/08/02/fix-wdk-doc-issues-fast/
http://www.osr.com/blog/2016/06/02/driver-signing-details-emerge/
mailto:join-osrhints@lists.osr.com?subject=SIgn%20me%20up!
mailto:join-osrhints@lists.osr.com?subject=SIgn%20me%20up!

Page 3
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

Best Practice: A procedure that has been shown by research and experience to produce optimal results and that is established
or proposed as a standard suitable for widespread adoption. (Merriam-Webster)

We spend a lot of time here at OSR, both in our offices and in our classes, discussing what we believe to be Best Practices for
Windows driver development. We thought it would be a good idea to try to enumerate these best practices. We hope to return
to this list, updating it frequently, and make it a regular item here in The NT Insider.

We realize it won’t be possible for every project to follow every one of these suggestions. That’s fine. These are meant to be
aspirational guidelines. Sometimes it will make the most sense – and even be a best practice – to not follow some of the listed
practices, depending on the details of your project. Remember, these are guidelines. They’re not meant to substitute for your
good engineering judgement.

Tool Chain

Use the most up-to-date version of the WDK, and of Visual Studio supported by that WDK.
Why: Every version of the WDK brings new features, and includes fixes from previous versions.

Driver Model

When possible, use the most modern driver model that applies to your project. For example, use WDF (KMDF or
UMDF) instead of WDM. Use the file system Mini-Filter model, instead of creating yet another legacy file system filter.
Why: In this case, newer really is better. The newer driver models will help you avoid lots of problems that some of the
older models entail.

Coding/Building

Even if you write in C, use the C++ compiler.
Why: It’s worth it to use the C++ compiler, even if you just use the strong type-checking alone. Later, you may find other
modern features of the C++ language that make sense to use and that are compatible with the C-language interfaces
provided by Windows.

Use the role-type annotations for your drivers, where provided. By these, we mean the declarations such as
EVT_WDF_DRIVER_DEVICE_ADD in WDF, or DRIVER_INITIALIZE in WDM.
Why: These annotations provide additional useful information to both Code Analysis and Static Driver Verifier. They help
those tools better understand your code.

Use SAL Annotations for your internal driver functions – At Least for locking and IRQL checking.
Why: Concurrency problems, and IRQL violations, are some of the most common – and the most difficult to diagnose –
problems that people have in writing Windows drivers. We have found that using annotations for at least these items can
be invaluable in identifying bugs early.

(CONTINUED ON PAGE 35)

FILE ENCRYPTION SOLUTION FRAMEWORK
Develop Per-File Encryption Solutions Almost Exclusively in User Mode!

The OSR File Encryption Solution Framework (FESF) allows Clients to incorporate transparent,
per-file encryption into their products—with the added benefit of development in user mode.

FREE Eval Editions of FESF are now available!

Learn more about FESF here, or contact the OSR Sales team at sales@osr.com.

http://www.osr.com/fesf/
http://www.osr.com/fesf/
mailto:sales@osr.com

Page 4
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

M aybe I’ve just been doing this too long. Or maybe, just
maybe, the topic has become just too confusing for

any reasonable human being to comprehend.

What topic is it that has me so befuddled? Windows version
numbers. And releases.

What gives me hope that I’m not the only one who’s close to
terminally lost is that regularly – like every day – I have
conversations like the following:

Tester: It crashed. Again. Your driver blue screened.
 Me: OK… Which OS version were you running?
Tester: Windows 10.
 Me: Yes, but what version of Windows 10?
Tester: I thought Windows 10 was the version.
 Me: Well, Yes. Er, no. Er… Windows 10 is the… I dunno. The name.
Tester: The system was sitting there and it may have done some updates.
 Me: All the updates? Were you running RS1?
Tester: What’s RS1?
 Me: Redstone. Redstone 1. The latest release. Not counting pre-releases or the fast ring or anything.
Tester: Redstone? You mean, like the arsenal?
 Me: No, ah…
Tester: Like Sumner?

Me: No! More like from Minecraft. Why the fuck are we talking about this!? Which version of Windows were you
running when my driver failed?

Tester: OK, OK… I don’t know what version. If 10 isn’t the version, I don’t know what version. But the properties screen says
build 10586.
 Me: Ah! V1511.
 Tester: So, is that Minecraft?
 Me: No, it’s Threshold. Threshold 2. I think.
Tester: Threshold isn’t Minecraft? Is it Redstone?

Me: Stop with the Minecraft! Please! Threshold is an older release of Windows 10. Before Redstone. It ’s from… ah… I
don’t remember.

Tester: RTM?
 Me: No. Look, either go back to the lab now or I’ll lock you in the engineering bathroom.

Now, to be sure, the above conversation casts me in a heroic role, because in that conversation I can actually associate build
10586 with Version 1511 and the codename Threshold. Which in real life I may or may not be able to do on any given day,
without having to resort to the list on my whiteboard.

Back in the day, it was enough to have honest build numbers and straight forward OS version numbers. I remember NT V4, which
was build 1381. Build numbers were strictly increasing each day (pretty much). Build 1381 got that number because it was the
thirteen hundred and eighty first time the OS was built by the Build Lab. And Build 1381 got RTM’ed as NT V4, because after 1381
builds, the code was “ready to be released.”

Somewhere along the way, build numbers got corrupted by rounding them up to arbitrary values at RTM. And about that same
time, we stopped getting ordinary OS version numbers and started getting OS release names. That’s how we got Windows XP,
which was build 2600 (nice, round, fictitious, build number), and which was also V5.1.

(CONTINUED ON PAGE 5)

https://en.wikipedia.org/wiki/Redstone_Arsenal
https://en.wikipedia.org/wiki/Sumner_Redstone
http://minecraft.gamepedia.com/Redstone

Page 5
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

Of course, there have always been internal code names as well. NT V4 was SUR (Shell Update Release -- I had to Google to
remember that). And Windows XP was Whistler. In Windows 10 times we’ve had Threshold and Redstone.

And for the past few releases, version numbers have become pretty much honest again. It’s not unreasonable to think that build
10586 (Win10, TH2) is 346 builds newer than 10240 (TH1, Win10 RTM) that preceded it. It’s a bit more complicated than that in
reality, but… you know.. close enough.

But while build numbers have gotten more honest, the version numbers themselves have gotten out of control. For example, let ’s
take the most recently released version of Windows:

Name: Windows 10 Anniversary Update
Codename: Redstone 1 (RS1).
Build: 14393
Version: Can’t say … It depends on what you mean

Yup. Defining the version number just isn’t that straight forward.

You would think that Windows 10 would be easy. Because in the name “Windows 10” “10” is the version number, right? Well, not
necessarily. Remember Windows 7? That wasn’t Windows V7.0, it was Windows V6.1. But is Windows 10 actually Windows
V10.0? Well, yes! At least, it is sometimes. It actually depends on who asks, and how they ask. If an application running on
Windows 10 checks the version of the OS by calling GetVersionEx, it will either get back 10.0 or 6.2, depending on how the
application is manifested. Or something.

Not to mention, there are actually multiple versions of Windows 10, that (for properly manifested applications) all return V10.0 –
There’s Windows 10 RTM (AKA TH1, build 10240), there’s Windows 10 November Update, which is V1511 (AKA TH2, build 10586),
and there is Windows 10 Anniversary Update (AKA Redstone 1, build 14393).

And don’t even get me started on which KMDF and UMDF versions are available on each version of Windows. Or fast ring and

slow ring. My head hurts enough already.

Peter Pontificates is a regular column by OSR Consulting Partner, Peter Viscarola. Peter doesn’t care if you agree or disagree with
him, but there’s always the chance that your comments or rebuttal could find its way into a future issue. Send your own comments,
rants or distortions of fact to: PeterPont@osr.com.

(CONTINUED FROM PAGE 4)

KERNEL DEBUGGING & CRASH ANALYSIS SEMINAR
I Tried !analyze-v...Now What?

You’ve seen our articles where we delve into analyses of various crash dumps or system hangs
to determine root cause. Want to learn the tools and techniques yourself?

“The instructor exhibited a very comprehensive knowledge of the material, added
with an incredible ease in explaining a very complex subject. I highly recommend
this course.”
 - Feedback from an attendee of THIS seminar

Upcoming presentation: Amherst, NH (OSR)
 26-30 June

Follow us!

mailto:PeterPont@osr.com?subject=Peter%20Pontificates
http://www.osr.com/seminars/kernel-debugging/
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 6
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

O ver the years, much has been written – both in the MSDN documentation and here in The NT Insider – about how the Device
Objects a driver creates can be accessed. And since Windows 2000 changed the world by introducing the concept of PDOs

and FDOs, much has also been written about Device Object security. Alas, much of what’s been written has been wrong,
misleading, outdated, confusing, confused, or some combination of all of these.

When we started writing this article, we figured it would be straight-forward. You know, crank something out for The NT Insider
about a topic that is helpful and about which we have a lot of experience. Making Device Objects secure and accessible: How hard
can that be? Well, surprise! Once we started a careful analysis of each possible option, and the interaction of those options, we
discovered the proverbial “can of worms.” It turns out to be shockingly easy to screw things up. And it’s scary simple to end up
with a different protection on the Device Objects in your device stack than you expected.

In this article, we’ll try to address some of the most basic questions about how a WDF function driver can securely make its devices
accessible. Our goal is to define and describe what we believe to be best practices for WDF (specifically, KMDF) drivers. We’re
going to ignore WDM drivers because, well, you probably shouldn’t be writing WDM drivers these days. And if you are, you should
already know how to deal with security.

Quick Review: PDOs and FDOs
Let’s start at the beginning, with PDOs and FDOs, because this is actually where most of the trouble starts.

As a rule, every device in Windows is discovered through the Plug-and-Play (PnP) process. The only exceptions to this rule are (a)
software-only drivers that we refer to as “kernel services”, and (b) super-ancient hardware drivers that use the original Windows
NT model. “Kernel services” are sometimes also referred to as “legacy style software drivers” or “NT V4 style software drivers.”
The drivers in these exception categories create their Device Objects within their DriverEntry entry point. Lots of folks (including
us) write kernel services to do things like monitor process creation, watch for registry changes, or provide other sorts of services
from kernel mode. For the purposes of this article, we’re going to ignore all drivers that aren’t started by PnP.

So… as we said… as a rule, every device in Windows is discovered through the PnP process. This is true regardless of whether the
device lives on a dynamically enumerable bus (such as PCIe or USB) or on a bus where the attached devices can ’t be discovered at
run time (such as I2C or SPI). When a bus driver enumerates a device on its bus, it creates a Device Object that represents the
physical instance of the discovered device on its bus. In WDF, the bus driver creates this Device Object using the function
WdfDeviceCreate. This Device Object, created by the bus driver, is referred to as a Physical Device Object, or PDO for short.

As part of the overall PnP process, the PnP Manager queries the bus driver for a list of its “child devices.” If the bus driver has
discovered any devices on its bus, it replies with a list of pointers to the PDOs that is has previously created to represent those
devices.

For each PDO returned from a bus driver (with some limited, special-case, exceptions), Windows attempts to
find and start a driver that will be responsible for the functional aspects of the device. This is the function
driver. It’s at this point that WDF function drivers are called at their EvtDriverDeviceAdd Event Processing
Callback. Within this Callback, a WDF function driver creates the Device Object (using WdfDeviceCreate) that
represents the functional aspect of the device. This Device Object, created by the function driver, is referred
to as the Functional Device Object or FDO for short.

After the FDO has been created, it is attached to the underlying PDO that was previously created by the bus
driver. The result is a pair of Device Objects that together represent (a) the physical presence of a device on a
given bus (PDO), and (b) the functional aspect of that device (the FDO). This pair forms the basis of the Device
Stack, and is shown in Figure 1. For the sake of simplicity, we’re ignoring filter drivers and their Device Objects
in this discussion.

It’s important to note that, regardless of how a device is accessed, any I/O operations that are sent to a device
will always enter at the top of the Device Stack in which the device appears. In other words, I/O requests will
always go to the FDO first. This makes sense, because it’s the function driver (the one that created the FDO)

(CONTINUED ON PAGE 7)

Figure 1—Basic
Device Stack

https://msdn.microsoft.com/en-us/library/windows/hardware/ff545926(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff541693(v=vs.85).aspx

Page 7
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

that is responsible for the functional aspects of the device. And it’s most typically only the function driver (and not the bus driver)
that knows how to process I/O requests for the device. In fact, the bus driver is rarely involved in processing typical I/O
operations.

The fact that in Windows we have two Device Objects that together represent one single device is the root cause of many of the
problems and much of the confusion about how devices are accessed and protected. When you add to this the fact that there are
multiple ways that you can access the device associated with these Device Objects, things can get tricky, fast.

Device Object Attributes
Whenever a Device Object is created, the creator can optionally specify a wide variety of characteristics and attributes. For the
purposes of this article, the most interesting among these are device name, Device Setup Class, and default Device Object security.

Device Naming
Specifying a device name provides an “internal” name, otherwise known as a “native” name, for the Device Object. This name is
not easily accessible from user mode, but rather is typically used by other kernel mode entities to find or identify the device by
name.

Naming an FDO is strictly optional, and best practice dictates that you should not name your FDO unless you absolutely need to.
We’ll have more to say about this later in this article, when we examine the implications of naming your Device Objects in more
detail.

Due to some dubious architectural choices in Windows 2000, PDOs must always be named. However, because the bus driver
rarely intends this name to be used to access the device, the name can be, and almost always is, arbitrary and meaningless (such
as “\Device\NTPNP_0005”). There’s even a commonly used option to have the I/O Manager automatically generate the device
name for a PDO.

In KMDF, if you want to provide a name for the Device Object you’re creating (regardless of whether that Device Object is a PDO or
an FDO), you use a method on the WDFDEVICE_INIT structure. This method is WdfDeviceInitAssignName, as shown in the
following example:

DECLARE_CONST_UNICODE_STRING(InternalName, L"\\Device\\MissileLauncher1") ;

status = WdfDeviceInitAssignName(DeviceInit,
 &InternalName);

The code above assigns the internal (native) name “MissileLauncher1” to the Device Object that will be created with the
WDFDEVICE_INIT pointed to by DeviceInit. Note that, by convention, the name is placed in the Object Manager ’s \Device\
directory.

(CONTINUED FROM PAGE 6)

(CONTINUED ON PAGE 24)

OSR CUSTOM SOFTWARE DEVELOPMENT
I Dunno...These Other Guys are Cheaper...Why Don’t We Use Them?

Why? We’ll tell you why. Because you can’t afford to hire an inexperienced consultant or contract
programming house, that’s why. The money you think you’ll save in hiring inexpensive help by-the-hour
will disappear once you realize this trial and error method of development has turned your time and
materials project into a lengthy “mopping up” exercise...long after your “inexpensive” programming team
is gone.

You deserve (and should demand) definitive expertise. You shouldn't pay for attempts to develop your
solution. What you need is a fixed-price solution with guaranteed results. Contact the OSR Sales team
at sales@osr.com to discuss your next project.

https://msdn.microsoft.com/en-us/library/windows/hardware/ff546029(v=vs.85).aspx
http://www.osr.com/custom-development/
mailto:sales@osr.com

Page 8
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

Y ou can think of just about any driver performing three separate types of processing:

1. Receiving and managing Requests from the OS.
2. Creating and managing internal state and data structures.
3. Interacting with other components in the system – hardware, other drivers, or other random

pieces of the OS – to complete the processing of Requests that have been received.

For certain classes of drivers, item number 2 – the creation and management of the driver’s internal state and data structures –
represents the majority of the code and complexity in the project. Developing and testing such drivers can pose unique challenges
due to the amount of code and the complexity of the algorithms involved.

Over the past few years, a new and effective strategy has evolved for more easily and efficiently developing and testing these
types of drivers. That strategy is to develop and test the code in user mode first. Then, after the code is proven to be solid, move
it to kernel mode.

Here at OSR, we’ve used this approach in our own development projects, and we’re aware of it being used for complex driver
projects at Microsoft as well. Universally, people start out being uber-skeptical of the value of this approach: Won’t it be a yuuuge
PITA to create the infrastructure necessary to write and test my driver code in user mode? Will I really save enough time by doing
this to make it worthwhile? Won’t I wind-up re-writing a lot of code when I eventually move to kernel mode? Can’t I just get on
with writing my kernel mode code and get my project done?

In every case I’ve heard of or been involved with, the effort required to develop and test in user mode has been well worthwhile.
Developing and testing complex code in user mode has actually saved tons of time, not cost time as you might guess. And, more
importantly, the quality that’s resulted has been much better than would likely have been possible in the same amount of time if
development and testing had taken place strictly in kernel mode.

Not convinced? I don’t blame you. I was skeptical at first as well. In this article, based on experiences in a few recent projects
we’ve done, I’ll provide a number of hints and tips that should help you succeed if you decide to give this technique a try.

Some Recent Experience
As a real-life example where the user mode development and testing strategy was helpful, we’ll use a driver we wrote recently
here at OSR. This driver required a caching package that temporarily stored disk writes in memory. We initially wrote and tested
this caching package entirely in user mode.

The caching package allocates an appropriately sized memory buffer, stores the data being written disk into that buffer, keeps
track of the disk sector range to which that (now cached) data was to have been written, and then completes the write operation
without ever sending it to disk. When a disk read occurs, the caching package checks to see if it data for all or part of the sought
range is in cache. If any of the sought sectors are in cache, the cache package satisfies the disk read using the cached data (plus
any data that was not cached, read directly from disk). While there were a few other wrinkles in the real project, those are the
functional requirements at their most basic.

(CONTINUED ON PAGE 9)

DESIGN AND CODE REVIEWS
You’ve Written Code — Did You Miss Anything??

Whether you’re a new Windows driver dev or you’ve written dozens of drivers before, it’s always
hard to be sure you haven’t missed something. Windows changes, WDF changes, security
issues emerge. Best practices are a moving target.

Let OSR help! Our engineering team is 100% dedicated to Windows internals and driver
development. Let us be the expert, second pair of eyes on your project… ensure it’s done
right!

http://www.osr.com/code-reviews/

Page 9
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

This project was a perfect choice for user mode development and testing, because the major complexity in the driver was the
caching code. The algorithms to track which blocks were stored in cache, locate the buffers associated with the blocks, allocate
new cache storage buffers and their associated tracking structures if necessary, and to allow blocks of stored data to be read and
written comprised almost all of the driver’s complexity. Both data structures and locking strategies had to be designed to ensure
as many things as possible could happen in parallel (for performance reasons) while also ensuring the integrity of data structures
and data.

Any good design would surely isolate the caching code from the Request processing code. And, of course, that’s how this driver
was designed. This design made developing and testing the caching code in user mode a pretty easy task. The task was made
easier still by the fact that Request processing code had dependencies on the caching code, but there were no dependencies from
the caching code on the Request processing code. Thus, it was easy to treat the caching code as a stand-alone entity. By the way,
there is a moral to this story: A good design, with good isolation of functional components, can go a long way toward facilitating
user mode development and testing.

With that background, let’s look at a few hints and tips that might help you adopt this strategy for your own use.

Write a Regular Program, Not a User-Mode Driver
When I say, “develop and test your driver code in user mode”, I’m not suggesting that you should try writing your driver using
UMDF. Now, let me hasten to add that UMDF is definitely a good thing. And it is certainly true that writing and testing a driver
using UMDF for certain classes of devices can definitely be quicker and easier than writing the same driver using KMDF. But for
the class of driver we’re focusing on here – drivers with lots of complex internal processing and data structures – I’m not
suggesting you start with UMDF. I’m actually suggesting you code-up and test all the complex processing and data structure
management as an ordinary user mode program from within Visual Studio.

The primary thing that writing your code as an ordinary user mode program achieves is dramatically faster “cycle time.” Think
about it. When you want to make a change to the code in your kernel mode driver, you need to edit the code, stop the device,
copy the executable, and restart the device. If there was a crash involved (or your driver needs to start at boot time) you ’ll need to
reboot the system. You need to fight with WinDbg when it doesn’t handle your breakpoints properly or when your client and
target don’t sync-up properly. This all takes a lot longer than making a change and restarting your program under the Visual Studio
debugger. In my experience, the time you save really adds up. You simply have to experience it to realize how dramatic the
difference is.

It’s important to understand that the code you want to focus on in your user mode development and testing is not the code that
directly performs device initialization, or directly receives Requests and processes them. Rather, the code you want to focus on
testing is your algorithmically complex code. So, in the case of the example disk caching driver we described previously, the only
code we wrote and tested in user mode was the disk caching code. Code to get Requests and process them, and code to deal with
things like power state changes, was left for standard kernel mode development and testing.

Throw-Away or Sustainable Infrastructure?
When you decide to code and test parts of your driver in user mode, perhaps the biggest decision you’ll face is whether you want
the user-mode infrastructure that you create to be sustainable after your initial development and testing process has ended.
Creating a “throw away” infrastructure in user mode is easy. Creating a sustainable infrastructure that you can use for modifying
and testing later versions of your driver code is harder, but brings additional advantages.

Restricting the use of user mode to only the initial design and development of your driver is the simpler alternative. Because the
infrastructure you’re creating isn’t permanent, you’re pretty much free to hack and whack whatever you need. No need to be tidy.
No need to write comments that are comprehensible by third parties. No need to be embarrassed by writing ugly code. All you
need to do is to make something work temporarily, while your algorithms and data structures are being developed and validated.

(CONTINUED FROM PAGE 8)

(CONTINUED ON PAGE 20)

Page 10
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

I n July 2016, Microsoft released the latest major update to Windows 10. There are various names for this release, but Redstone
1 or RS1 for short, seems to be the one that most of the technical community uses. The release is more officially called

Anniversary Edition, and has been designated version 1607. The changes in RS1 are also present in Windows Server 2016 (S16) as
in many cases the binaries are identical between the systems.

To keep you up to speed, we’ll highlight a selected a set of changes that are likely to be of interest to people working with
Windows file systems, including those developing file system mini-filter drivers.

The process we used to identify these changes was a systematic comparison of the header files (ntifs.h, ntddk.h, wdm.h, and
fltkd.h), followed by some select careful observation of a running RS1 system. While many of these changes will impact file system
related drivers including mini-filters, some may impact other drivers as well. If you still have a legacy file system filter driver, you’ll
almost certainly want to be aware of these changes so you can accommodate them as you migrate to the mini-filter model.

Direct Access Memory Device Support

Windows 10 (and Server 2016) now include
support for persistent memory storage devices.
These NVRAM based devices use normal
memory slots, but provide persistent storage,
which can be used by a file system in order to
obviate the need to do any RAM-based caching,
due to the performance of the device itself.

Support for these new persistent memory
devices has been present in Linux for various file
systems and is now supported in Windows 10.
For those interested in the device driver aspects
of this new technology, there are two new
drivers:

 A Storage Class Memory bus driver
(scmbus.sys)

 An SCM disk driver (scmdisk0101.sys)

SCM devices operate in one of two modes: Block
Mode, or Direct Access Storage (DAS) Mode. In

Windows, the mode is chosen when the SCM device is formatted. In Block Mode, SCM devices appear as “ordinary” storage
volumes and thus maintain all existing storage semantics. This provides perfect application compatibility, but requires I/O
operations to traverse (a slightly optimized path through) the Windows storage stack.

(CONTINUED ON PAGE 11)

THE NT INSIDER - Hey...Get Your Own!

Just send a blank email to join-ntinsider@lists.osr.com
— and you’ll get an email whenever we release a new
issue of The NT Insider.

Figure 1 –Persistent Memory
(courtesy Viking Technologies, used with permission)

http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2016/20160811_S301B_Christiansen.pdf
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://msdn.microsoft.com/en-us/library/windows/hardware/mt604739%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
http://www.osronline.com/custom.cfm?name=login_joinok.cfm
mailto:join-ntinsider@lists.osr.com

Page 11
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

DAS Mode is much more interesting. It is supported in RS1 by the NTFS and ReFS file systems. The key benefit for applications
using file systems that support the DAS Mode interface is it provides zero copy access. Memory mapping of the file directly maps
the SCM memory into the address space, whether it is an application or the Cache Manager.

There are some behavior changes with the introduction of SCM in SAS Mode as well:

 Potentially different types of storage failure

 NTFS: no encryption, compression or TxF (transaction) support

 ReFS: no integrity streams, no cluster bands, no block cloning

 No Bitlocker support

 No volume snapshots

 No mirrored or parity support (Storage Spaces or Dynamic Volumes)

 Modification Time and USN Journal semantics are altered slightly (“last update” is the date of memory mapping)

 Directory Change Notification occurs at memory mapping time

Some file system filter drivers, notably data transformation filters (encryption/compression/HSM), may be impacted by these
changes. Filters must explicitly indicate if they support direct access storage (by setting the
FLTFL_REGISTRATION_SUPPORT_DAX_VOLUME bit in their registration structure Flags field). Otherwise, the filter cannot attach
to SCM volumes.

Driver Level Changes

The DO_DAX_VOLUME bit is set in the device object of an SCM device (this is defined in wdm.h, ntddk.h and ntifs.h):

// DO_DAX_VOLUME - If set, this is a DAX volume i.e. the volume supports mapping a file directly
// on the persistent memory device. The cached and memory mapped IO to user files wouldn't
// generate paging IO.
//
#define DO_DAX_VOLUME 0x10000000

Filesystems that support DAX, should indicate this in their file system attributes (defined in ntifs.h):

//
// When enabled this attribute implies that the volume supports byte addressable
// mode. A mode where reads / writes on mapped files happen directly on the
// storage device, without going through the file system and the storage stack.
//
// NOTE: This attribute only mean that the file system supports. It doesn't
// imply that the storage hardware is capable. The storage hardware should be
// a byte addressable persistent memory device, to let one map files directly
// on the storage device.
//
#define FILE_DAX_VOLUME 0x20000000 // winnt

A file system (and filter driver) can test to see if a volume is a DAX volume by using the new FsRtl routine for this purpose (ntifs.h):

BOOLEAN
FsRtlIsDaxVolume (

 In PFILE_OBJECT FileObject

);

(CONTINUED FROM PAGE 10)

(CONTINUED ON PAGE 12)

DID YOU KNOW?

Most of our attendees have tried learning on the job in a variety of ways. Why go it
alone? Attend an OSR Seminar and you can learn from our 20+ years of Windows
internals and kernel driver development experience. Hear what others say about our
seminars at www.osr.com/testimonials

http://www.osr.com/seminars/
http://www.osr.com/testimonials/

Page 12
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

Because SCM type devices are memory, and memory is typically addressable in units smaller than the size of a sector, using SCM
can introduce new failure modes to applications. For example, in some SCM type devices a write operation could be interrupted
mid-sector due to a system crash or power failure. There is a new I/O stack location bit (defined in wdm.h) to deal with this
problem:

#define SL_PERSISTENT_MEMORY_FIXED_MAPPING 0x20 // valid only with persistent memory device and IRP_MJ_WRITE

This bit is optional, but when set indicates the SCM device is using Intel’s block translation table mechanism (defined in the
NVDIMM Namespace Specification) that guarantees sector level atomic writes. This feature provides more compatibility with the
way traditional disks fail and thus minimizes the impact of unexpected types of failures when using SCM type devices.

In order to accommodate this new feature for NTFS and ReFS, there is a new Cache Manager routine for initializing the cache for
persistent memory devices (defined in ntifs.h):

NTKERNELAPI

VOID

CcInitializeCacheMapEx (

 In PFILE_OBJECT FileObject,

 In PCC_FILE_SIZES FileSizes,

 In BOOLEAN PinAccess,

 In PCACHE_MANAGER_CALLBACKS Callbacks,

 In PVOID LazyWriteContext,

 In ULONG Flags

);

Naturally, if your file system will support this feature, you will need to use this routine to support direct access storage as well.

The relevant new Cache Manager flag (defined in ntifs.h):

//
// The following flags are valid Flags parameter that CcInitializeCacheMapEx accepts
//

#define CACHE_USE_DIRECT_ACCESS_MAPPING (0x00000001)

(CONTINUED FROM PAGE 11)

(CONTINUED ON PAGE 13)

WE KNOW WHAT WE KNOW

We are not experts in everything. We’re not even experts in everything to do with Windows.
But we think there are a few things that we do pretty darn well. We understand how the
Windows OS works. We understand devices, drivers, and file systems on Windows. We’re
pretty proud of what we know about the Windows storage subsystem.

What makes OSR unique is that we can explain these things to your team, provide you new
insight, and if you’re undertaking a Windows system software project, help you understand the
full range of your options. AND we also write kick-ass kernel-mode Windows code. Really. We
do.

Why not fire-off an email and find out how OSR can help. If we can’t help you, we’ll tell you that,
too.

Contact: sales@osr.com

mailto:sales@osr.com

Page 13
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

File system filter drivers attached to such devices need to understand that these do not behave like normal file systems. For
example, the normal pattern of Paging I/O is different than your filter might be familiar handling: specifically, persistent memory
devices are directly accessed for cached I/O and thus do not cause any paging I/O activity.

Of course, this is just a brief overview of SCM devices on Windows. There’s lots more to know about these new devices, that
promise the possibility of a major shift in how certain data is stored on Windows systems. We’ll write more about SCM devices in
a future issue of The NT Insider.

Reparse Point Changes

In the past, NTFS has required that directories be empty prior to applying a reparse point. Redstone now introduces support for
reparse points on non-empty directories. Note that not all reparse points support this feature: it is a characteristic of the specific
reparse point value.

Microsoft has introduced a bit in the reparse point tag that will be used moving forward (from ntifs.h):

//
// The reparse tags are a ULONG. The 32 bits are laid out as follows:
//
// 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
// +-+-+-+-+-----------------------+-------------------------------+
// |M|R|N|D| Reserved bits | Reparse Tag Value |
// +-+-+-+-+-----------------------+-------------------------------+
//
// M is the Microsoft bit. When set to 1, it denotes a tag owned by Microsoft.
// All ISVs must use a tag with a 0 in this position.
// Note: If a Microsoft tag is used by non-Microsoft software, the
// behavior is not defined.
//
// R is reserved. Must be zero for non-Microsoft tags.
//
// N is name surrogate. When set to 1, the file represents another named
// entity in the system.
//
// D is the directory bit. When set to 1, indicates that any directory
// with this reparse tag can have children. Has no special meaning when used
// on a non-directory file. Not compatible with the name surrogate bit.
//
// The M and N bits are OR-able.
// The following macros check for the M and N bit values:
//

There are reparse point tags for which the D bit is not set that may still be used on non-empty directories (they existed prior to this
change). Thus, in order to test for this situation a driver should use the new routine (defined in ntifs.h):

NTKERNELAPI

BOOLEAN

FsRtlIsNonEmptyDirectoryReparsePointAllowed(

 In ULONG ReparseTag

);

In addition, there are new options to control the behavior of opening a directory with such a reparse point (defined in ntifs.h):

// The following flags control behavior when a reparse point is encountered
// on a directory that may be non-empty (one whose reparse tag is
// recognized by FsRtlIsNonEmptyDirectoryReparsePointAllowed):
//
// OPEN_REPARSE_POINT_REPARSE_IF_CHILD_EXISTS -
// If the reparse point is on a directory that is not the final path
// component and the next path component exists, reparse on the directory.
//
// OPEN_REPARSE_POINT_REPARSE_IF_CHILD_NOT_EXISTS -

(CONTINUED FROM PAGE 12)

(CONTINUED ON PAGE 14)

Page 14
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

// If the reparse point is on a directory that is not the final path
// component and the next path component does not exist, reparse on the
// directory.
//
// OPEN_REPARSE_POINT_REPARSE_IF_DIRECTORY_FINAL_COMPONENT -
// If the reparse point is on a directory that is the final path
// component, reparse on the directory unless FILE_OPEN_REPARSE_POINT
// is specified.
//
// Specifying all three of the above flags is legal and simply means always
// reparse on any directory reparse point.
//

#define OPEN_REPARSE_POINT_REPARSE_IF_CHILD_EXISTS (0x00000002)

#define OPEN_REPARSE_POINT_REPARSE_IF_CHILD_NOT_EXISTS (0x00000004)

#define OPEN_REPARSE_POINT_REPARSE_IF_DIRECTORY_FINAL_COMPONENT (0x00000008)

#define OPEN_REPARSE_POINT_VERSION_EX (0x80000000)

This is one of the more interesting and potentially significant change to impact file system mini-filter drivers in RS1 and S16, since it
is a change in behavior. Previous releases did not permit attaching reparse points to directories. This release now does. This
mechanism can then be used to detect directories where functionality or content is layered, such as in the new container support.
Filter drivers that have assumed directories with reparse points are empty must change to accommodate this new model if it
impacts their functionality.

Buffer Flushing

NtFlushBuffersFileEx (defined in ntifs.h) now supports a new flush flag (defined in ntddk.h, ntifs.h and wdm.h, and even
winnt.h) which is implemented by NTFS:

//
// If set, this operation will write the data for the given file from the
// Windows in-memory cache. It will also try to skip updating the timestamp
// as much as possible. This will send a SYNC to the storage device to flush its
// cache. Not supported on volume or directory handles. Only supported by the NTFS
// filesystem.
//

#define FLUSH_FLAGS_FILE_DATA_SYNC_ONLY 0x00000004

(CONTINUED FROM PAGE 13)

(CONTINUED ON PAGE 15)

OSR USB FX2 LEARNING KIT

Don’t forget, the popular OSR USB FX2 Learning
Kit is available in the Store at: http://store.osr.com.

The board design is based on the well-known
Cypress Semiconductor USB FX2 chipset and is
ideal for learning how to write Windows drivers in
general (and USB specifically of course!). Even
better, grab the sample WDF driver for this board,
available in the Windows Driver Kit.

http://store.osr.com/
http://store.osr.com
http://store.osr.com/product/osr-usb-fx2-learning-kit-v2/

Page 15
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

Thus, this ensures that the data is flushed both from the disk cache and from the CPU cache and persistently stored on disk, ideally
using the underlying disk primitives (e.g., force unit access, FUA, when available) to optimally ensure that the blocks for this file are
stored persistently on disk.

There is a corresponding bit in the minor function code for IRP_MJ_FLUSH_BUFFERS for this (defined in ntddk.h):

#define IRP_MN_FLUSH_DATA_SYNC_ONLY 0x04 //see FLUSH_FLAGS_FILE_DATA_SYNC_ONLY for definition of how
this works

There is also a new I/O stack location bit for requesting asynchronous flush behavior (wdm.h):

//
// IRP_MJ_FLUSH_BUFFERS
//

#define SL_FORCE_ASYNCHRONOUS 0x01

//
// SL_FORCE_ASYNCHRONOUS - a flush IRP specific flag in IrpStack to specify that the flush operation needs
// to be async. This behavior is needed by Spaces as Spaces issues flushes to disks in a pool serially and
// does not want to be blocked by disks whose flush operation is slow.
//

This impacts both file systems, which may choose to implement this new operation, as well as file system mini-filters, which should
ensure they respect the behavior expected by any component using this interface.

This type of interface, permitting applications to control the caching behavior of their files, is important in high reliability systems
such as databases where it is important for correctness to ensure that the data has been committed to storage. General purpose
applications should not use this because of the potential performance impact.

Correlation IDs

Correlation IDs are GUIDs that are used to uniquely identify a device across the volume stack, permitting event correlation. There
is a new routine for obtaining a volume’s correlation ID:

//
// Routine to get a correlation ID (currently a GUID) that is common across
// the volume stack and can be used to correlate events.
//

NTSTATUS
FsRtlVolumeDeviceToCorrelationId (

 In PDEVICE_OBJECT VolumeDeviceObject,

 Out GUID *Guid

);

While there is no documentation about this routine yet, there is a code sample in the CDFS source code:

 //
 // Initialize the correlation ID.
 //

 if (NT_SUCCESS(FsRtlVolumeDeviceToCorrelationId(Vcb->TargetDeviceObject, &VolumeCorrelationId))) {

 //
 // Stash a copy away in the VCB.
 //

 RtlCopyMemory(&Vcb->VolumeCorrelationId, &VolumeCorrelationId, sizeof(GUID));
 }

(CONTINUED FROM PAGE 14)

(CONTINUED ON PAGE 16)

https://github.com/Microsoft/Windows-driver-samples/blob/master/filesys/cdfs/fsctrl.c

Page 16
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

Its use is for telemetry. There is no matching code in the FastFat example, so it is not clear how widespread its usage is. This is
useful for drivers that need to associate specific information with a given volume in a persistent way, even if the file system
instance on top of the volume might change, or if a single volume might be presented to the operating system multiple times.

Maximum Path Length Behavior

Note that as of RS1, Windows 10 now has a new registry parameter that lifts the Win32 260-character file name length limitation
(MAX_PATH). While this is not directly a kernel level change, it does indicate that file system components need to be carefully
scrutinized to ensure they can handle long paths.

The new registry key (a DWORD) is:

HKLM\SYSTEM\CurrentControlSet\Control\FileSystem LongPathsEnabled

There’s also a Group Policy that can be used to lift the 260 character limit. Look under:

Computer Configuration > Administrative Templates > System > Filesystem

The value to enable is Enable Win32 Long Paths.

The long paths setting is loaded during execution of the first Win32 file system API and is cached by Win32 for the lifetime of the
process.

Prior to RS1, you could enable long paths for NTFS for UWP apps and specifically manifested Win32 apps.

How much change this means for file systems and mini-filters is subject to debate. It’s always been possible to use paths longer
than MAX_PATH, as long as the path specified in UNC syntax (that is, the path started with \\?\). So, while file systems and mini-
filters have always technically needed to be able to handle long path names, many probably never saw long paths “in the wild.”

File Deletion (Disposition)

Microsoft has introduced three new FILE_INFORMATION_CLASS types in Windows (defined in wdm.h):

 FileDispositionInformationEx, // 64

This involves introducing a new data structure, which is just a union of flags values (defined in ntddk.h):

#define FILE_DISPOSITION_DO_NOT_DELETE 0x00000000

#define FILE_DISPOSITION_DELETE 0x00000001

#define FILE_DISPOSITION_POSIX_SEMANTICS 0x00000002

#define FILE_DISPOSITION_FORCE_IMAGE_SECTION_CHECK 0x00000004

#define FILE_DISPOSITION_ON_CLOSE 0x00000008

typedef struct _FILE_DISPOSITION_INFORMATION_EX {

 ULONG Flags;

} FILE_DISPOSITION_INFORMATION_EX, *PFILE_DISPOSITION_INFORMATION_EX;

Some Windows mini-filter samples have been updated to include support for this new type of disposition, including the delete
filter and name change filter. Unfortunately, the FastFat sample has not been updated to support this new feature.

This change is introduced to allow managing more complex delete behavior that is apparent with the Linux subsystem on
Windows.

(CONTINUED FROM PAGE 15)

(CONTINUED ON PAGE 17)

https://github.com/Microsoft/Windows-driver-samples/blob/master/filesys/miniFilter/delete/delete.c
https://github.com/Microsoft/Windows-driver-samples/blob/master/filesys/miniFilter/delete/delete.c
https://github.com/Microsoft/Windows-driver-samples/blob/master/filesys/miniFilter/NameChanger/ncfileinfo.c

Page 17
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

I TRIED !ANALYZE-V...NOW WHAT?

You’ve seen our articles where we delve into analyses of various crash dumps or system hangs
to determine root cause. Want to learn the tools and techniques yourself? Consider
attendance at OSR’s Kernel Debugging & Crash Analysis seminar.

Specifically, in Linux a file is deleted using unlink. Once deleted, any open handles to the file remain valid and continue to work.
There is, however, no longer an entry within the directory for that file and thus the name may be reused.

Traditionally in Windows, file deletion is an intention that is not acted upon until the last open handle to the file is closed. Indeed,
in some scenarios, it is actually possible for an application to undo the intention, in which case the deletion does not occur. Until
the last handle is closed, there remains an entry in the directory and the file name cannot be reused.

These semantics do not mesh particularly well with one another. Thus, Windows has changed to provide more nuanced behavior
to bridge between them. With this new behavior, the directory entry is deleted as soon as the handle where the file was deleted is
closed.

As it turns out, however, due to a compatibility issue this functionality was disabled prior to RS1 release. The Microsoft team have
fixed the compatibility issue so it is once again enabled in current test builds of Windows, and is expected to be enabled in the next
major Windows 10 update (“Redstone 2” AKA RS2).

Rename

RS1 includes two new rename options (defined in wdm.h):

 FileDispositionInformationEx, // 65
 FileRenameInformationExBypassAccessCheck, // 66

The new information class FileRenameInformationExBypassAccessCheck is comparable to FileRenameInformationBypassAccess
Check. This is consumed by the I/O Manager and has the effect of disabling the security check associated with the rename
operation, which can cause a deletion of the target file. Note that there is no new data structure, as it utilizes previously unused
pad space within the rename structure (defined in ntifs.h):

typedef struct _FILE_RENAME_INFORMATION {
#if (_WIN32_WINNT >= _WIN32_WINNT_WIN10_RS1)
 union {
 BOOLEAN ReplaceIfExists; // FileRenameInformation
 ULONG Flags; // FileRenameInformationEx
 } DUMMYUNIONNAME;
#else

 BOOLEAN ReplaceIfExists;
#endif

 HANDLE RootDirectory;
 ULONG FileNameLength;
 WCHAR FileName[1];
} FILE_RENAME_INFORMATION, *PFILE_RENAME_INFORMATION;

And the corresponding new flags (defined in ntifs.h):

#define FILE_RENAME_REPLACE_IF_EXISTS 0x00000001
#define FILE_RENAME_POSIX_SEMANTICS 0x00000002

This preserves the previous semantics and adds the new POSIX semantics. Much like the changes in delete, these are introduced
to deal with the variation in behavior between Linux and Windows subsystems. In Windows, a destructive rename will fail if the

(CONTINUED FROM PAGE 16)

(CONTINUED ON PAGE 18)

http://www.osr.com/seminars/kernel-debugging/
http://www.osr.com/seminars/kernel-debugging/

Page 18
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

file is currently opened. In Linux, it will succeed. The open handle is still valid and continues to work, even though there is no
longer an entry in the directory pointing to it.

For POSIX semantics to work, the application that has it open must have specified FILE_SHARE_DELETE when the file was opened.
Otherwise the rename will fail.

Microsoft has updated some of the mini-filter examples to demonstrate how to handle the new rename type, including the context
filter, and name changer filter. Fortunately, the impact for mini-filters is likely to be minimal, unless your filter needs to
understand the new semantic behavior differences. In such a case, you would need to adjust your mini-filter accordingly.

Filter Manager

There were a number of small changes in Filter Manager in Redstone. These changes were all in fltKernel.h.

The first involves the FLT_VOLUME_PROPERTIES where a previously reserved field has been converted to a flags field:

 USHORT Flags;

One flag is currently defined:

//
// FLT_VOLUME_PROPERTIES Flags
//
// VOL_PROP_FL_DAX_VOLUME - If set, this is a DAX volume i.e. the volume supports
// mapping a file directly on the persistent memory device. The cached and memory
// mapped IO to user files wouldn't generate paging IO.
//

#define VOL_PROP_FL_DAX_VOLUME 0x0001

A new operation for obtaining the attribution handle from the callback data was introduced:

_IRQL_requires_max_(DISPATCH_LEVEL)

PVOID
FLTAPI
FltGetIoAttributionHandleFromCallbackData (

 In PFLT_CALLBACK_DATA Data

);

And a mechanism for “propagating” IRP extension data between two callback data structures:

_IRQL_requires_max_(DISPATCH_LEVEL)
NTSTATUS
FLTAPI
FltPropagateIrpExtension (
 In PFLT_CALLBACK_DATA SourceData,
 Inout PFLT_CALLBACK_DATA TargetData,
 In ULONG Flags
);

Note that IRP extensions were first added in Windows 10 (1511). Neither of these two calls are documented yet. Attribution was
added for Windows 10 (1607) and is used as part of I/O rate management for containers.

As previously mentioned, Filter Manager now has a new flag that a mini-filter uses to indicate that it wishes to be notified about
direct access storage volumes:

FLTFL_REGISTRATION_SUPPORT_DAX_VOLUME

Note that a filter which does not set this flag will not be asked to attach to such volumes.

(CONTINUED FROM PAGE 17)

(CONTINUED ON PAGE 19)

https://github.com/Microsoft/Windows-driver-samples/tree/master/filesys/miniFilter/ctx
https://github.com/Microsoft/Windows-driver-samples/tree/master/filesys/miniFilter/ctx
https://github.com/Microsoft/Windows-driver-samples/tree/master/filesys/miniFilter/NameChanger

Page 19
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

WINDOWS FILE ENCRYPTION? WE CAN HELP!
OSR’S FILE ENCRYPTION SOLUTION FRAMEWORK (FESF)

We know that implementing per-file encryption solutions for Windows is challenging—and we’ve
been doing it for more than 20 years!

Of course, it’s also a challenge to convince devs and their managers of the difficulties they face.
Many are new to the Windows kernel development space. They see sample mini-filters in the
WDK or may have even written one themselves. It’s an easy jump (in their minds) to, “Hey...how
hard can it be to deal with encrypting the data I’m filtering?” Even worse, with some help in
NTFSD, they may spend only a few months getting a solution up and running - solving “one
more bug” or dealing with “one more crash” - without realizing that they are just beginning to
scratch the surface of the difficulties in getting from a prototype to a real file encryption product.

Please don’t let this be you. OSR can help save you a great deal of time and money and help
make your Windows file encryption solution successful.
OSR’s latest toolkit—the File Encryption Solution
Framework (FESF) builds on a time-tested infrastructure,
but moves all the core development for a Windows file
encryption solution to USER mode. You don’t need to be
an expert in Windows file system or kernel programming,
and your time is better spent defining “policy” of your
solution (what you want to encrypt, when, and with what
algorithm and key management) instead of wrestling with
the subtle and painful nuances in filtering file systems.

Want to try a fully-functional evaluation of FESF for
FREE? Just contact the OSR sales team and they’ll get
you started.

Contact: sales@osr.com

Filters that perform secondary operations will need to keep this new mechanism in mind so that the attribution handle can be
properly reflected between otherwise distinct calls. A failure to do this will interfere with the I/O Rate Control Driver (iorate.sys) ,
which uses this information. Thus, if your filter driver will be running on Windows Server 2016 systems, it is important to ensure
you are properly passing along this information.

Summary

The Windows RS1 and S16 releases introduce a number of interesting new changes and while some are clearly described and
documented, some also remain unclear to us at the present time. Rest assured that as we expand our understanding of them, we
will be sure to let you know as well!

Special thanks to Microsoft’s Shoily Rahman for assistance in completing our understanding of the Delete/Rename changes.

(CONTINUED FROM PAGE 18)

Follow us!

TRY A FULLY
FUNCTIONAL
EVALUATION
EDITION OF
FESF FOR

FREE!

http://www.osr.com/fesf
http://www.osr.com/fesf
mailto:sales@osr.com
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 20
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

Building a sustainable development and testing infrastructure in user mode tends to be much more work. But it can also yield
much bigger returns on your invested time and effort. As needs change or bugs are found, you can return to your quick and
convenient user mode infrastructure to rapidly code and/or test those changes.

The biggest problem that we’ve seen in maintaining a sustainable user mode infrastructure is that it’s very easy for code paths to
diverge and “rot.” That is, once the initial user mode portion of your project has been completed and you’ve moved on to kernel
mode development and testing, you’ll certainly be making changes to your driver’s code modules. It can be pretty easy for these
changes to unintentionally break – in small or large ways – the user mode infrastructure that you previously created. If you don’t
build and exercise the user mode infrastructure regularly, resurrecting it after a significant series of kernel mode changes can be
quite a challenge. Worse yet, while you’re in the midst of your development cycle driving to a release, maintaining the user mode
infrastructure can feel like an unnecessarily burdensome task.

For the projects that I’ve done, I almost always favor the “use once and throw away” approach. I find if I don’t take that approach,

I spend way too much time thinking about my user mode
infrastructure. If it’s going to be a persistent part of the
project, I feel like I have to “design” it; I feel like I have to
do a professional job of it. If it’s something that’s going to
be used once and thrown away, I feel more at ease with
just “making it work.” Hand me that chainsaw, please.

First Practical Steps
Whether you decide to create a one-time or a lasting
infrastructure, there are some simple, practical, hints that
we can provide that’ll make your project easier.

First, unless processor architecture (x64, x86, or ARM)
plays a crucial role in the algorithms you’ll be developing
and testing in user mode, decide on one processor
architecture for your user-mode infrastructure and just
stick to that. You ever look at the code in NTDDK.H that’s
conditionalized based on processor architecture? Yeah…
you don’t want to try to recreate that and keep it
maintained unless absolutely necessary.

Next, we recommend that you create a dedicated header
file that will contain most of the definitions for your
project that are specific to user mode. Conditionalize this
header on the code not being built in kernel mode. Our
user-mode specific headers usually start somewhat as
shown in Figure 1.

Looking at Figure 1, you’ll notice that we qualify the entire
include file by the symbol _KERNEL_MODE not being
defined. To get the NTSTATUS values defined, we include
NTSTATUS.H, but only after defining
UMDF_USING_NTSTATUS to 1. We don’t recommend you
try to #include any of the other WDK header files. What
we’ve found works best is including WINDOWS.H and then
just copying the definitions you need from NTDDK.H or

(CONTINUED FROM PAGE 9)

(CONTINUED ON PAGE 21)

#ifndef _KERNEL_MODE

#pragma once

#ifdef _DEBUG

#define DBG 1

#endif

#ifdef __cplusplus
extern "C" {
#endif

#define CLONG ULONG

#ifndef _AMD64_ // UM supports x64 only
#define _AMD64_ 1
#endif

#define UMDF_USING_NTSTATUS 1
#include <stdio.h>
#include <Windows.h>
#include <ntstatus.h>

#define DbgPrint printf

//
// Interrupt Request Level (IRQL)
//

typedef UCHAR KIRQL;

typedef KIRQL *PKIRQL;

//
// AMD64 Specific portions of Mm component.
//
// Define the page size for the AMD64 as 4096 (0x1000).
//

#define PAGE_SIZE 0x1000

//
// Define the number of trailing zeroes in a page aligned
// virtual address. This is used as the shift count when
// shifting virtual addresses to virtual page numbers.
//

#define PAGE_SHIFT 12L

#define NT_SUCCESS(Status) (((NTSTATUS)(Status)) >= 0)

… File continues…

Figure 1—Header File for User Mode Code

Page 21
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

WDM.H into your dedicated user mode header file. Sure it’s ugly, but you won’t lose any points for including stuff your code
doesn’t really need. So, copy and paste some stuff when you start, and then as you find you need things defined – be they
function prototypes, macros, or typedefs – just add them to your user mode header file and you’re good to go.

There’s one set of macros that’s used by almost every driver that’s been written: The list manipulation macros. These include
InsertTailList, RemoveHeadList, and all their friends. These are defined in WDM.H. A quick hint is that it’ll be simpler to copy
the definitions if you copy the versions from WDM.H that are defined when the NO_KERNEL_LIST_ENTRY _CHECKS is defined. This
leaves out the dynamic checks for list consistency, which you probably won’t need.

Once you get the basics defined, I think you’ll be surprised at how little you need to cut/paste from the WDK headers. If your code
is focused on algorithms and data structure manipulation, most of that type of code doesn’t tend to use a lot of kernel mode
specific functions.

Allocating Memory, Locks, and Stuff
The most common question that we encounter in building a user-mode driver testing infrastructure is how to handle basic
functions that are different in kernel mode and in user mode. For example, when the code that you’re writing, and that you’ll
eventually be moving to kernel mode, needs to allocate memory or perform locking functions. Calls to these functions tend to be
spread all through your driver code. How do you handle the fact that the names of the routines that you need to call in user mode
are different from the names in kernel mode?

There are two possible approaches, and both have been used by teams here at OSR. The easiest approach is to use macros to
define the kernel mode function name as some reasonable user mode equivalent. So, in terms of allocating memory, you might
put the following definition in your dedicated user mode header file:

#define ExAllocatePoolWithTag(size, tag) malloc(size)

You then write your code to use the kernel mode function name, and your dedicated user mode header “does the right thing” by
defining it for user mode use.

(CONTINUED FROM PAGE 20)

(CONTINUED ON PAGE 22)

WINDOWS INTERNALS & SOFTWARE DRIVERS
For SW Engineers, Security Researchers, & Threat Analysts

Next Presentations:

“The instructor is extremely knowledgeable regarding Windows
internals. He has the communications skills to provide an
informative, in-depth seminar with just the right amount of
entertainment value.”

 - Feedback from an attendee of THIS seminar

Dulles/Sterling, VA
27-31 March

Amherst/Nashua, NH
24-28 July

http://www.osr.com/seminars/software-drivers/

Page 22
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

Alternatively, you might choose to create private functions that perform the necessary operation(s), and “do the right thing”
within those functions based on the mode for which the code is being compiled. For memory allocation, you might define a
function like the following (see Figure 2).

Personally, I tend to favor the pattern of defining private functions for things like memory allocation even when I’m developing and
testing my code strictly in kernel mode. There’s something about isolating the underlying mechanism from the need for that
mechanism that just appeals to me. Of course, if you just want to get something running so you can test in user mode, it ’s hard to
argue with the simplicity of just writing your code to reference the familiar kernel mode function names you already know and
love, and then redefining those names as their chosen user mode equivalents. The choice is really up to you, and is mostly related
to the coding practice you prefer.

The same alternatives apply to locking. You could choose to simply #define the kernel mode function names as some appropriate
user mode equivalent. But, once again, I often choose to define private locking functions in my driver code that ’s particular to
specific structures. Whichever method you choose, it’s usually pretty simple to find user mode locks that have similar semantics to
the type of lock you choose in kernel mode. In Figure 3, you can see how we’ve handled a shared reader/writer lock that would be
usable at elevated IRQL in kernel mode.

(CONTINUED FROM PAGE 21)

(CONTINUED ON PAGE 23)

_Requires_lock_not_held_(GCLock->Lock)
_Acquires_shared_lock_(GCLock->Lock)
__forceinline
VOID
OSRCachePackageAcquireLockShared(_In_ PGC_LOCK GCLock, _Out_ PKIRQL OldIrql)
{
#ifdef _KERNEL_MODE

 *OldIrql = ExAcquireSpinLockShared(Lock);

#else
 AcquireSRWLockShared(&GCLock->Lock);
 *OldIrql = 0;
#endif
}

_Requires_shared_lock_held_(GCLock->Lock)
_Releases_shared_lock_(GCLock->Lock)
__forceinline
VOID
OSRCachePackageReleaseLockShared(_In_ PGC_LOCK GCLock, _In_ KIRQL OldIrql)
{
#ifdef _KERNEL_MODE

 ExReleaseSpinLockShared(Lock, OldIrql);

#else
 UNREFERENCED_PARAMETER(OldIrql);
 ReleaseSRWLockShared(&GCLock->Lock);
#endif
}

Figure 3—Use of Equivalent Locking in User Mode

__forceinline
PVOID
CachePackageAllocateMemory(_In_ SIZE_T NumberofBytes, _In_ ULONG Tag)
{

#ifdef _KERNEL_MODE

 return(ExAllocatePoolWithTag(NonPagedPoolNx, NumberofBytes, Tag));

#else

 UNREFERENCED_PARAMETER(Tag);

 return(VirtualAlloc(NULL, NumberofBytes, MEM_COMMIT, PAGE_READWRITE));

#endif
}

Figure 2—Use of a Private Function (e.g., for memory allocation)

Page 23
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

Follow us!

Figure 3 only shows one pair of lock/unlock functions, but that should be enough to illustrate the overall idea without making
things too boring. Note that we define our own, private, data type for the lock (GC_LOCK in the example). The definition of this
data type will vary, based on whether the code is compiled for user mode or kernel mode. This allows us to allocate storage for
the lock in our data structures without having to hand-code changes in those structures. In the example, you can see that we use
reader/writer spin locks in kernel mode, and in user mode we’ve chosen Slim Reader/Writer locks as a reasonable analogue. Note
again that, we conditionalize the code in the private function (which typically lives in a component-specific header file, along with
the mode-specific definition of the lock data type itself).

Whatever type of kernel mode lock you need, you’ll be able to easily find a user mode analogue. And, again, whether you choose
to acquire and release those locks using appropriately conditionalized private functions that you define or just #define the kernel
function names to their user mode equivalents, is probably more to do with your engineering style than whether one method can
be considered objectively superior.

Support Routines
One major advantage of building your test infrastructure in user mode is that you have access to all the “stuff” that coding in user-
mode provides. Need random numbers, some type of collection to store test data, or the ability to sort your results? You have
everything that the C++ Standard Library (std::) has to offer available to you. Need to allocate enormous data structures? Just
malloc/new to your heart’s content. Need to read or record test data? Easy access to file I/O is a good thing. Need six million local
variables, including an array with a zillion entries? Just declare it all and let the user mode stack grow to accommodate it. I’m not
saying it’s impossible to handle these things in kernel mode. I’m just saying things such as these are a lot easier in user mode.

But wait, there’s more! Not only do you have the benefit of access to all the support routines that user mode has to offer, you can
still use your familiar friends from kernel mode, the Run Time Library (RTL) functions. Most of the RTL functions are available for
use in your user mode test harness by linking with NTDLL.LIB. So, for example, if you decide to use the RTL’s Generic Table
Package there’s no problem with calling those functions. Love the RTL-defined bit map routines? They’re there for you to call. Of
course, you will have to copy the prototypes for these functions from the appropriate WDK header file to your dedicated user
mode definition file.

Other Miscellaneous Advantages
I hate to say it, but programming and debugging in user mode using Visual Studio brings with it a lot of life-simplifying features.
The user-mode debugger knows a few tricks that the kernel mode debugger hasn’t learned yet. When running in user mode, you
can also use the lovely little “performance profiler” that’s integrated into Visual Studio to evaluate both CPU and memory usage. I
actually found a bug using the memory profiler recently, so it has demonstrated its worth to me (at least once).

It’s a Win!
For the right driver project, developing and testing algorithm and data structure intensive routines in user mode can save time
while increasing the thoroughness of your testing. By writing a bit of “bridge logic” to ensure your favorite functions and data
structure are available in user mode, you can avail yourself of all the features that coding in user mode provides: Richer support
routines, a slightly nicer debugging experience, and – perhaps most importantly of all – a much faster time for each iteration
through the “build/test/find-bug/fix-bug” cycle.

Who would think that one of the newest things in the world of kernel mode driver development is… user mode development and

testing!

(CONTINUED FROM PAGE 22)

DID YOU KNOW?

You can receive an additional $100 off OSR public seminar registration fees when
you purchase an OSR USB FX2 Learning Kit

https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr
http://www.osr.com/seminars/

Page 24
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

Device Setup Class
In addition to device name, a driver can also specify the Device Setup Class that is associated with the Device Object that is being
created. The Device Setup Class is, among other things, the category under which the device is shown in Windows Device
Manager. Note that the Device Setup Class is also specified in the INF file that is used to install the driver. Specifying a Device
Setup Class from your driver allows Windows to locate class-specific default settings for the Device Object that is being created.
Such settings can include device type, device characteristics, and most importantly the security descriptor to be applied to the
newly created Device Object within the class.

Specifying the Device Setup Class when you create an FDO is both simple and a best practice. As in specifying an internal name,
the method uses the WDFDEVICE_INIT structure, and can be invoked as follows:

WdfDeviceInitSetDeviceClass(DeviceInit,
 &GUID_DEVCLASS_OSR_MISSILE);

In this example, the caller calls WdfDeviceInitSetDeviceClass to set the Device Setup Class to GUID_DEVCLASS_OSR_MISSILE. Note
that because this is a properties method (the verb used is “set”) it cannot fail. Thus, there is no status returned from the call.

Specifying the Device Setup Class in your driver gives you the best chance of Windows taking the device type, device
characteristics, exclusive access, and – most importantly – the security descriptor that is applied to your FDO and “harmonizing”
them throughout your device stack. By “harmonize” we mean that it takes the settings from your FDO and copies them to the
PDO (and, presumably, any other Device Objects in your device stack). We’ll explain more about this later.

Device Object Security
The final characteristic of interest that can be specified when creating a Device Object is the security descriptor. This allows you to
define the access rights that specific users and groups will have to the Device Object you’re creating. Again, this operation is
performed using a method on the WDFDEVICE_INIT structure, like the following:

status = WdfDeviceInitAssignSDDLString(DeviceInit,
 &SDDL_DEVOBJ_SYS_ALL_ADM_ALL);

The method is WdfDeviceInitAssignSDDLString. Note that the verb used in this method is “assign” so the call can fail, a status
value is returned, and that status must be checked. The security descriptor is specified using a limited form of Security Descriptor
Definition Language (SDDL). SDDL is a short-hand method of specifying standard Windows access control specifications. The sub-
set of SDDL that is used for Device Objects allows most of the common options, but also provides a few pre-defined values for
commonly used security profiles. For example, the option shown in the example is SDDL_DEVOBJ_SYS_ALL_ADM_ALL. This
provides System and Administrators all access to the device, but no access to any other class of user. There are numerous other
shorthand specifications that allow a wide variety of access combinations.

While specifying an SDDL string to apply a specific security descriptor to your Device Object probably sounds like a good way to
ensure security, it turns out that specifying this option is almost never a good idea. In fact, best practices call for not specifying an
SDDL string using WdfDeviceInitAssignSDDLString (we’ll explain why a bit later). If you want to change the default protection
applied to the Device Object’s in your device stack, the best way to do that is to specify a security descriptor during device/driver
installation. You do this in your INF either as part of the DDInstall.HW section (where the security descriptor is applied to your
specific device) or in the ClassInstall32 section (where the security descriptor is applied to all the devices in your Device Setup
Class). In either case, when you specify a security descriptor in your INF file, it is stored in the Registry and later used for your
device, as appropriate. See the sidebar Specifying Security in the INF File.

There are two important, and probably unexpected, things to keep in mind about using WdfDeviceInitAssignSDDLString:

 To create a Device Object successfully after having called WdfDeviceInitAssignSDDLString, you must also specify an
internal name for your device. So, if you call WdfDeviceInitAssignSDDLString you must also call
WdfDeviceInitAssignName (or request that Windows autogenerate a device name for the Device Object you ’re
creating).

(CONTINUED FROM PAGE 7)

(CONTINUED ON PAGE 25)

https://msdn.microsoft.com/en-us/library/windows/hardware/ff546084(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff546035(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379567(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379567(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff563667(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff563667(v=vs.85).aspx

Page 25
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

OSR’S CORPORATE, ON-SITE TRAINING
Save Money, Travel Hassles; Gain Customized Expert Instruction

We can:

 Prepare and present a one-off, private, on-site seminar for your team to address a
specific area of deficiency or to prepare them for an upcoming project.

 Design and deliver a series of offerings with a roadmap catered to a new group of
recent hires or within an existing group.

 Work with your internal training organization/HR department to offer monthly or
quarterly seminars to your division or engineering departments company-wide.

 The protection you specify when you call WdfDeviceInitAssignSDDLString is the last-chance default protection. It will
only be used if a security descriptor for your device or Device Setup Class has not been previously stored in the
Registry. In the case that there is no security descriptor already stored in the Registry, the security descriptor you
specify will be stored in the registry and become the new default security descriptor for Device Objects subsequently
created in the Device Setup Class (assuming you have specified a Device Setup Class using
WdfDeviceInitSetDeviceClass).

The reason it is best practice to not call WdfDeviceInitAssignSDDLString is because the specified security descriptor is only used
when there is no default security descriptor setting already known for the device or the Device Setup Class. This is true, even if the
security descriptor specified by the driver is less permissive than the one that has been previously stored in the Registry. So, even
when you specify a security descriptor in your driver, there’s no guarantee that it will define the security that is actually used on
your Device Object. And if that is the case, why specify it at all?

If you do not specify a security descriptor for your Device Object by calling WdfDeviceInitAssignSDDLString, and if there’s no
default stored in the Registry for your device or your Device Setup Class, the system will assign a security descriptor. For FDOs, the
Framework assigns SDDL_DEVOBJ_SYS_ALL_ADM_ALL, which provides access only to system and administrators as described
above. For PDOs, Windows provides the default based on Device Type. In general, this protection allows all users read and write
access to the device.

Making Devices Accessible
After characteristics and properties are established and a Device Object is created, how do user-mode applications access the
device?
A user-mode application opens and sends I/O operations to a Device Stack by opening a Device Object in the stack that is been
explicitly made accessible to user-mode by a kernel-mode module. Drivers can make either the FDO or the PDO accessible, or
both. There are three different ways that drivers can make Device Objects accessible to user-mode applications:

 Create a symbolic link to the PDO in the Device Stack

 Create a symbolic link to the FDO in the Device Stack

 Create a Device Interface GUID that points to the PDO in the Device Stack

All of these mechanisms result in the user-mode application eventually calling the Win32 function CreateFile to access a Device
Object.

To make either the PDO or FDO easily accessible by name to user-mode applications, the driver explicitly creates a symbolic link for
the device by calling WdfDeviceCreateSymbolicLink:

DECLARE_CONST_UNICODE_STRING(userDeviceName, L"\\DosDevices\\ML1");

 status = WdfDeviceCreateSymbolicLink(device, &userDeviceName);

(CONTINUED FROM PAGE 24)

(CONTINUED ON PAGE 26)

http://www.osr.com/private-on-site-training/
https://msdn.microsoft.com/en-us/library/windows/hardware/ff545939(v=vs.85).aspx

Page 26
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

The method WdfDeviceCreateSymbolicLink is, obviously, a method on a WDFDEVICE, and thus must be called after the Device
Object has been created. In the example above, the driver creates a symbolic link in the Object Manager’s \DosDevices\
namespace, which will allow a user-mode application to access the device using code similar to the following:

hFile = CreateFile("\\\\.\\ML1",
 GENERIC_READ|GENERIC_WRITE, // requested access
 0, // share mode
 NULL, // security attributes
 OPEN_EXISTING, // create disposition
 0, // flags
 NULL); // template file

Note all the ugly doubled backslash characters, as required by C syntax. The “\\.\” syntax represents a UNC path and is required.
Note that it is possible for user-mode applications to access Device Objects even without such a symbolic link being created. But
it’s ugly and/or arbitrary. In any case, it’s certainly not convenient for the app developer, and convenience is the primary reason
for creating the symbolic link in the first place.

The tricky thing for driver devs about WdfDeviceCreateSymbolicLink is that what it does varies depending on whether you’ve
named your FDO or not. Yes, seriously.

If you have not named your FDO, that is you did not call WdfDeviceInitAssignName prior to creating your Device Object, the
symbolic link that is created will point to the PDO.

If your driver chose to provide an internal name for your FDO by calling WdfDeviceInitAssignName prior to creating your Device
Object, the symbolic link that is created will point to the FDO.

The third way a driver can make a device accessible is through the use of a Device Interface GUID. After the Device Object has
been created, the function driver tells the Framework that the Device Object that was created supports a given Device Interface
GUID. It does this via the function WdfDeviceCreateDeviceInterface. Supporting a given Device Interface implies the services
provided by the driver on behalf of the device and even the I/O function codes (including IOCTLs) the device supports. There are
numerous system-defined Device Interface Classes (search C:\Program Files (x86)\Windows Kits\10\include\ to get an idea of just
how many there are!). So, for example, if a device supports GUID_DEVINTERFACE_COMPORT, you know that it is associated with
a traditional PC serial port, and will support all the IOCTL_SERIAL_Xxxx requests.

For custom drivers, the GUID that represents the Device Interface will be one that is been uniquely assigned to a given class of
devices. So, in our example of the OSR Missile Launcher device, I would probably define a new Device Interface that exclusively
represents that type of device. I’d do this by defining something like GUID_DEVINTERFACE_OSR_MISSILE in a header file that can
be shared between my driver and any applications that need to use my device.

Device Interfaces are cool, because they make a number of interesting things possible, including:

 Providing a mechanism for a driver to categorize a device as supporting a particular interface and thus providing a
particular type of service. User programs can enumerate which devices in the system support a particular interface
without regard to device name.

 Allowing both kernel-mode and user-mode entities to register callbacks that are invoked whenever a Device Interface
changes state -- Such as when a new instance of an interface is enabled or an existing interface is disabled.

Another nice thing about Device Interfaces is that when they are used in place of device names, any potential for naming conflicts
is avoided. Not that I’ve ever really had a problem with Device Object naming conflicts. But, whatever.

One of the primary things that driver devs need to keep in mind about Device Interfaces is that Device Interfaces always point to a
PDO.

(CONTINUED FROM PAGE 25)

(CONTINUED ON PAGE 27)

https://msdn.microsoft.com/en-us/library/windows/hardware/ff545935(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff547473(v=vs.85).aspx

Page 27
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

When a driver creates a Device Interface, a user-mode application accesses the device by first finding the set of devices that
support a given Device Interface GUID. This is done using interfaces provided by the SetupDiXxxx family of functions. Once a
particular device supporting a given Device Interface is chosen, the user-mode app opens that device using CreateFile with an
opaque name that the application retrieves from the details of Device Interface instance. Basic code to open the first device found
that is associated with a given Device interface is shown in Figure 2.

(CONTINUED FROM PAGE 26)

(CONTINUED ON PAGE 28)

HANDLE
OpenMissileDeviceViaInterface(VOID)
{
 HDEVINFO devInfo;
 SP_DEVICE_INTERFACE_DATA devInterfaceData;
 PSP_DEVICE_INTERFACE_DETAIL_DATA devInterfaceDetailData = NULL;
 ULONG devIndex;
 ULONG requiredSize;
 ULONG code;
 HANDLE handle;

 devInfo = SetupDiGetClassDevs(&GUID_DEVINTERFACE_OSR_MISSILE,
 NULL,
 NULL,
 DIGCF_PRESENT | DIGCF_DEVICEINTERFACE);

 if (devInfo == INVALID_HANDLE_VALUE) {

 printf("SetupDiGetClassDevs failed with error 0x%x\n", GetLastError());

 return INVALID_HANDLE_VALUE;
 }

 devInterfaceData.cbSize = sizeof(SP_DEVICE_INTERFACE_DATA);

 devIndex = 0;

 if (!SetupDiEnumDeviceInterfaces(devInfo,
 NULL,
 &GUID_DEVINTERFACE_OSR_MISSILE,
 devIndex++,
 &devInterfaceData)) {

 code = GetLastError();

 if (code != ERROR_INSUFFICIENT_BUFFER) {

 printf("SetupDiGetDeviceInterfaceDetail failed with error 0x%x\n", code);

 SetupDiDestroyDeviceInfoList(devInfo);

 return INVALID_HANDLE_VALUE;
 }
 }

 if (!SetupDiGetDeviceInterfaceDetail(devInfo,
 &devInterfaceData,
 NULL,
 0,
 &requiredSize,
 NULL)) {

 code = GetLastError();

 if (code != ERROR_INSUFFICIENT_BUFFER) {

 printf("SetupDiGetDeviceInterfaceDetail failed with error 0x%x\n", code);

 SetupDiDestroyDeviceInfoList(devInfo);

 return INVALID_HANDLE_VALUE;
 }
 }

 devInterfaceDetailData =
 (PSP_DEVICE_INTERFACE_DETAIL_DATA)malloc(requiredSize);

Figure 2—Opening a Device
Interface (continued next page)

Page 28
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

Kernel-mode modules can also access your Device Object in various ways using the Device Interface GUID you’ve established. That
means if you follow best practices and do not name your FDO, there are still ways other kernel-mode modules can find and access
your device.

Security on Open – But on WHICH Device Object?
You’ll note that we’ve been very specific in this article about which Device Object (the PDO or the FDO) a given access option
points to. The reason we’ve done this is because it matters. Not understanding which Device Object a given access point is
referring to is the basis for most problems in terms of Device Object protection.

When an application calls CreateFile, the only security descriptor that is checked to determine if the CreateFile will succeed is the
security descriptor on the Device Object that is being directly opened. This means, for example, that if the user attempts to access a
Device Object via a link that points to the FDO, the access check that will take place will be based on the user’s security credentials
and the security descriptor on the FDO. Similarly, if the user calls CreateFile to access a device via its PDO, the user’s credentials
are checked against the security descriptor on the PDO.

(CONTINUED FROM PAGE 27)

(CONTINUED ON PAGE 29)

 if (!devInterfaceDetailData) {

 printf("Unable to allocate resources...Exiting\n");

 SetupDiDestroyDeviceInfoList(devInfo);

 return INVALID_HANDLE_VALUE;
 }

 devInterfaceDetailData->cbSize =
 sizeof(SP_DEVICE_INTERFACE_DETAIL_DATA);

 if (!SetupDiGetDeviceInterfaceDetail(devInfo,
 &devInterfaceData,
 devInterfaceDetailData,
 requiredSize,
 &requiredSize,
 NULL)) {

 printf("SetupDiGetDeviceInterfaceDetail failed with error 0x%x\n",
 GetLastError());

 SetupDiDestroyDeviceInfoList(devInfo);

 free(devInterfaceDetailData);

 return INVALID_HANDLE_VALUE;
 }

 printf("Device found! %ls\n", devInterfaceDetailData->DevicePath);

 SetupDiDestroyDeviceInfoList(devInfo);

 if (devInterfaceDetailData == NULL) {

 printf("Unable to find any matching devices!\n");

 return INVALID_HANDLE_VALUE;
 }

 handle = CreateFile(devInterfaceDetailData->DevicePath,
 GENERIC_READ | GENERIC_WRITE,
 0,
 0,
 OPEN_EXISTING,
 0,
 0);

 free(devInterfaceDetailData);

 return handle;
}

Figure 2—Opening a Device Interface

Page 29
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

And remember earlier we said that regardless of whether I/O is sent to the PDO or to the FDO, the I/O operations always are
routed first to the top of the Device Stack. So, as far as the user-mode application’s ability to send I/O requests to a driver is
concerned, it doesn’t matter whether it opens the PDO or the FDO. All I/O operations will go to the FDO (all other things being
equal).

Where Are We?
Let’s see if we can summarize some of the rules and best practices we’ve discussed so far. Let’s assume you’re writing a function
driver. As part of creating your FDO:

 We suggest, as a best practice, you specify a Device Setup Class for your FDO by calling
WdfDeviceInitSetDeviceClass. This isn’t a big deal, really, but it does help to ensure the Device Object
protections are “harmonized” across all the Device Objects in your device stack in certain instances. There are
no downsides to specifying it, and if you just always do it, you’ll find a few edge cases dealing with protection
in your device stack are properly handled.

 You may optionally specify an internal name for your FDO, however doing so it not recommended unless
absolutely necessary (and is not a best practice).

 If you do choose to name your FDO, you can optionally specify a last-chance default security descriptor for the
FDO… but, again, it is best practice to not do this.

 If you choose to not specify a last-chance default security descriptor for your FDO, the protection applied to
your FDO will be depend:

 If there is a default security descriptor stored in the Registry for your device or your Device Setup Class,

then that security descriptor will be applied to all Device Objects in your device stack (including the FDO
you are creating).

 If there is no default security descriptor stored in the Registry for your device’s Device Setup Class, then:

 If you have not specified a Device Setup Class, then your FDO will receive the default protection

provided by the Framework (all access for system and administrators but no access for any other
groups) and your PDO will receive the default protection provided by Windows (system and admin all
access, everyone else read and write access).

 If you have specified a Device Setup Class (by calling WdfDeviceInitSetDeviceClass) the default

protection provided by the Framework will be applied to your FDO and the other Device Objects in
your device stack (including the PDO).

Once your FDO has been created, you can make it accessible to user-mode applications by:

 Creating a symbolic link in the Object Manager’s \DosDevices\ name space. User mode applications can open
the device via the symbolic link name you provide. If your FDO is named, the symbolic link will point to the
FDO. If you did not name your FDO, the symbolic link will point to the PDO.

 Associating your FDO with a Device Interface. This approach has a number of advantages, but requires user-
mode applications to use the SetupDiXxx functions with your Device Interface GUID to retrieve the opaque
name associated with a specific instance of the Device Interface to open your device. The opaque name used
to open a device by Device Interface GUID always points to the PDO.

(CONTINUED FROM PAGE 28)

(CONTINUED ON PAGE 30)

Page 30
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

You can make your device accessible using either of the above
two methods, or both of them. Here at OSR, we typically use
both methods (as do many Windows in-box drivers).

Some Examples
Let’s look at a couple of examples as a way to more fully
understand the options available to us, and to help us
understand the impact of those options.

First, let’s say we do not provide an internal name our FDO. We
create a symbolic link to allow applications to open our device
by name, and we also associate our FDO with a unique Device
Interface GUID. We do not specify a last-chance security
descriptor for our FDO, nor do we specify a Device Setup Class.
The security descriptors on both our PDO and FDO will default
to whatever is provided by the system. In this case, we wind up
with a device stack like that shown in Figure 3.

Looking at Figure 3, you can see that both our Device Interface
and our symbolic link name point to the PDO. The symbolic link
name we provide by calling WdfDeviceCreateSymbolicLink
points to the PDO because we did not specify an internal name

for our FDO. Recall that regardless of whether the names point to the FDO or PDO, all I/O operations from the application will go
to the top of the device stack. So all I/O requests (such as read, write, and DeviceIoControl) sent by the application will always to
go the FDO first.

Now, let’s see what happens when we choose to provide an internal name for our FDO, by calling WdfDeviceInitAssignName. This
name will allow other kernel-mode modules to access our device. In this case, we’ll do everything the same as we did in Figure 3:
We create a symbolic link to allow our device to be opened by name from user-mode applications, and we associate our device
with a Device Interface GUID. And, once again, we do not specify a last-chance security descriptor and we do not specify a Device
Setup Class. Again, the security descriptors on both our PDO
and FDO will default to those provided by the system. In this
case, we wind up with a device stack like that shown in Figure 4.

There are several important changes from Figure 3 to notice in
Figure 4. First, notice that the symbolic link name (ML1) now
points to the FDO instead of to the PDO. This is because we
chose to provide an internal name for our FDO. The Device
Interface still points to the PDO (as it always will).

Next, notice the security descriptors for the FDO and PDO are
different. If we name our FDO, and there’s no Device Setup
Class security descriptor available, the Framework provides an
“administrator only” security descriptor for our FDO by default.

As a result of the above two decisions, which security descriptor
applies when an application issues a CreateFile will depend on
whether the application attempts to open our device by
symbolic link name or by the opaque name obtained via the
Device Interface GUID. To be able to successfully open our

(CONTINUED FROM PAGE 29)

(CONTINUED ON PAGE 31)

Figure 4—Named FDO, Device Interface Specified, Default
Protections

Figure 3—Unnamed FDO, Device Interface Specified,
Default Protections

Page 31
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

device by symbolic link name, an application will require
administrator privileges (that is, the app will need to be run
elevated, “as administrator”). This is because the symbolic link
name points to the FDO, and the security descriptor on the FDO
requires administrator access.

However, that same application would not need administrator
privileges to be able to open the device using the Device
Interface. Because the Device Interface points to the PDO, and
the security descriptor on the PDO allows all applications read
and write access.

Once again recall that – once the application has successfully
opened some Device Object in the device stack -- all I/O
operations from the application will always go to the top of the
device stack. So, once again, requests are sent to the FDO
regardless of whether the PDO or FDO was used.

Another example? In this case, we’ll do exactly what we did in
the example shown in Figure 4 (named FDO, symbolic link
created to FDO, device interface specified, no last-chance security descriptor provided) but this time we will specify a Device Setup
Class by calling WdfDeviceInitSetDeviceClass. The results are shown in Figure 5.

Note that in Figure 5, the security descriptor that the Framework provided for the FDO is now harmonized across the device stack,
and has been applied to the PDO. This ensures that applications encounter the same security descriptor when accessing the
device, regardless of whether they access the device via the provided symbolic link name or the device interface.

Let’s look at one more example. In this case, we’ll do exactly what we did in the example shown in Figure 5, but we’ll assume a
security descriptor for the Device Setup Class has been stored in the registry. This security descriptor could have been specified
during device installation via the INF file, or subsequently by the system administrator. The security descriptor happens to specify

all access to administrators, and read access to everyone else.

The resulting device stack is shown in Figure 6.

The key thing to notice in Figure 6 is that the security descriptor
is the same on both the FDO and PDO. This is because Windows
ensures that any security descriptor that is associated with a
Device Setup Class is applied uniformly across the device stack.
Note that, when there is a security descriptor present in the
registry for your device or for your device’s Device Setup Class,
this harmonization happens even if your driver hasn’t called
WdfDeviceInitSetDeviceClass. It doesn’t hurt to specify your
Device Setup Class, but Windows already knows it and applies
the Device Object protection consistently across the device
stack.

And again, whether an application choses to open the device
via its symbolic link name or its Device Interface, the result is
that the security check is consistent. And recall it makes no
difference in terms of processing I/O requests which Device
Object the application opens. In all cases, I/O operations from
the application will be sent to the top of the device stack.

(CONTINUED FROM PAGE 30)

(CONTINUED ON PAGE 32)

Figure 5—Named FDO, Device Interface Specified, Device
Setup Class Specified

Figure 6—Named FDO, Device Interface Specified, pre-
defined security descriptor in the Registry

Page 32
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

So What Have We Learned?
At a very minimum, I hope that you learned that this topic is more complex than it might first appear. There are also some “best
practice” guidelines that I think we can confidently state as a result of our discussion of this topic:

 Don’t provide an internal name for your FDO unless your device needs to be found using that name by another
kernel mode module, and you can’t take the chance the other kernel-mode module will use some other method
(such as finding your device by Device Interface GUID).

 If you want user-mode applications to be able to open your device by name, it’s perfectly fine to create a
symbolic link. Be aware that where that symbolic link points will vary, depending on whether you’ve provided
an internal name for your FDO.

 Creating a Device Interface GUID for your device allows many convenient options for accessing your device, from
both user-mode and kernel-mode. You can both create a symbolic link and provide a Device Interface GUID for
your device to maximize your user’s options. The Device Interface GUID will always point to the PDO.

 Specifying a Device Setup Class when you create your FDO is a best practice, because doing so will cause the
protections applied to your device stack to be harmonized if there is no default security descriptor specified in
the registry for your device or your Device Setup Class.

 Do not specify a security descriptor for your FDO from within your driver. That is, do not call
WdfDeviceInitAssignSDDLString. Where and if this security descriptor is used depends on too many other
factors. If you need specific protection for your Device Object, specify it in your INF file.

 If you need to set a specific protection for your device, absolutely the best place to do that is in your INF file.
You can specify a protection for your specific device or for all devices in your Device Setup Class.

Now you see why what we thought would be a simple article, on a simple topic, became a much more involved examination of

device availability and protection. Follow the guidelines, and you can’t go wrong! [Again, See Specifying Security In The INF File,

next page]

(CONTINUED FROM PAGE 31)

Follow us!

NEED TO KNOW WDF?

Tip: You can read all the articles ever published in The NT Insider and still not come close to
what you will learn in one week in our WDF seminar. So why not join us?

Both Scott and Peter have in-depth knowledge and extensive hands-on
experience writing device drivers. Their discussions about mistakes to
avoid was as valuable as explaining Windows. This was the best
training class that I have ever taken.

 - Feedback from an attendee of THIS seminar

Seminar Outline and Information here: http://www.osr.com/seminars/wdf-drivers/

Upcoming presentation:

 Amherst, NH (OSR) 15-19 May

https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr
http://www.osr.com/seminars/wdf-drivers/
http://www.osr.com/seminars/wdf-drivers/
http://www.osr.com/seminars/wdf-drivers/

Page 33
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

Y our first and best option for specifying protection for the Device Objects in your device stack is using the INF file. Note that an
end-user will not be able to hack the INF file and change the protection you specify, as long as your driver install package is

signed.

When you specify access controls in your INF, the protection that you specify will be propagated throughout the device stack as
described in the larger article. Thus, when you specify protection in your INF, that same protection will be applied to the PDO,
FDO, and all filter driver Device Objects that appear in your device stack.

INF Class-Wide Access Controls
Probably the most common way that a specific security descriptor (SD) is set on a device stack is by specifying a default security
descriptor for all device in your device’s Device Setup Class. This is specified in the INF that defines the device install class via the
Security value in the addreg section pointed to from the ClassInstall32 section. Here’s an extract from an INF file that defines the
OsrExample install class and specifies a default security descriptor for the class:

[Version]
Signature="$WINDOWS NT$"
Class=OsrExample
ClassGuid={cab15040-5cc7-11d3-b194-0060b0efd4fd}
Provider="OSR Open Systems Resources, Inc."
DriverVer=2/13/2017,7.1.2
catalogfile=wdfdio.cat

[ClassInstall32]
Addreg=OsrHwClass

[OsrHwClass]
HKR,,,,%ClassName%
HKR,,Icon,,"-5"
HKR,,Security,,"D:P(A;;GA;;;SY)(A;;GA;;;BA)" ;System and Admin only access

As previously described, the security descriptor supplied in the INF is defined using Security Descriptor Definition Language (SDDL).
When you specify an SD for your Device Setup Class in your INF, the security descriptor is stored in the registry, in the Security
value of the Properties key under the software (A.K.A. driver) key for your driver. Your device's software key will be:

HKLM\SYSTEM\CCS\CONTROL\CLASS\class-guid\instance

Look under this key for the key named "Properties." You will need to change the access to the Properties key to be able to see the
value named Security. Yes, this is true even if you're an administrator on the box.

INF Per-Device Access Controls
If the device for which your driver is being installed requires different access controls from those specified for your installation
class, you can specify a per-device security descriptor in your INF file. A per-device security descriptor is specified in
the addreg section invoked from the ddinstall.HW section of your INF. Following is an extract from an INF file that defines a
security descriptor for a particular device within a larger class. You notice that this security descriptor is also defined using SDDL:

[MfgDeviceSection]
%DeviceDesc% = WdfDio, PCI\VEN_135E&DEV_8008&SUBSYS_8008135E&REV_01
%DeviceDesc% = WdfDio, PCI\VEN_135E&DEV_8018&SUBSYS_8018135E&REV_01

[WdfDio]
CopyFiles=@WdfDio.sys

(CONTINUED ON PAGE 34)

https://msdn.microsoft.com/en-us/library/windows/desktop/aa379570(v=vs.85).aspx

Page 34
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

[WDFDIO.HW]
addreg=DIOSD

[DIOSD]
HKR,,Security,,"D:P(A;;GR;;WD)(A;;GA;;BU)(A;;GA;;;SY)(A;;GR;;;WD)"

When you specify a per-device security descriptor in your INF, it is stored in the Registry, in the Security value of the Properties key
of your device's hardware (A.K.A device) key. Your device's device key will be:

HKLM\SYSTEM\CCS\ENUM\enumerator\device-id

Again, you'll need to change the protection on the Properties key to be able to view this entry.

Note that specifying per-device access controls in your INF overrides for your device stack only any class-wide access controls that

might have been specified when the device class was defined. This is true regardless of whether the security descriptor you supply

is more or less secure than the default protection. Thus, specifying a per-device security descriptor for a device allows you to

specify precisely the protection that your device should have, without affecting the devices created by any other drivers in the

class.

(CONTINUED FROM PAGE 5)

ALREADY KNOW WDF? BOOST YOUR KNOWLEDGE

Read What Our Students Have to Say About
Writing WDF Drivers II: Advanced Implementation Techniques

A very dense and invaluable way for getting introduced to advanced
windows driver development. A must take class for anyone designing
solutions!

 - Feedback attendees of THIS seminar

Amherst, NH (OSR) 23-26 May

Next Presentation:

Follow us!

http://www.osr.com/seminars/advanced-wdf/
https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

Page 35
www.osr.com

The NT Insider Jan - Feb 2017 © OSR Open Systems Resources, Inc.

Build your solution with warning level /W4 /WX
Why: Sure, there are warnings that you might want to globally suppress. But the header files should all build cleanly
with /W4 now, and the more checking your code gets, the less likely you are to have latent errors. And if you’re going to
jump in and build with all warnings, you might as well treat warnings as errors to keep your build clean.

Enable Code Analysis (CA) for every build of your driver project. Enable All Rules.
Why: We like to think of Code Analysis as a super-smart extension of the compiler warnings. Again, anything that helps
file bugs for you is good.

Testing

Enable Windows Driver Verifier for your driver during all testing. Just turn it on and leave it on. On your test machine
in your office, and on your test machine in the lab. Enable everything except the various Low Resource features.
Why: Being able to run your driver successfully under Driver Verifier is the only way to have confidence that your driver is
properly written. Because it never (well, almost never) causes noise or false-positives, it’s the kind of thing you can just
enable and forget about.

Enable Windows Driver Verifier for any wrapper/library modules you use. For example, if you’re writing a KMDF driver,
be sure to enable to enable Driver Verifier on the Framework. If you’re writing a StorPort MiniPort, enable Driver Verifier
on StorPort as well as your own driver.
Why: When you use a “wrapper” or “support library” much of the work your driver does is done on your behalf by that
“wrapper” or “library” – you absolutely need that work monitored by Driver Verifier just as if your driver had done it.
Note that you can also enable Driver Verifier on the kernel itself. This, for example, causes allocations made by the kernel
to be subject to Special Pool.

Test on the checked build of the OS. Test on a fully checked build if you can find it (and you can successfully get it to
install), test on a partially checked build otherwise. Checked kernel and HAL images are provided as part of the WDK.
Why: Checked build asserts are added by the developers of the OS code to validate the assumptions they are making in
their code. The checks find unique problems that you would never find otherwise.

Run the Hardware Lab Kit (HLK) tests on your driver. Even if you don’t currently need logo certification, just get the
environment set up and start running the tests periodically.
Why: The HLK tests can either be very minimal (e.g. for Unclassified devices and drivers) to intensive and sometimes
seemingly arbitrary (e.g. the File System Filter driver tests). The tests attempt to determine if the system behaves
differently with your driver present than without. Better to get a feel for this periodically than to stay blissfully unaware
and get a rude awakening in the future.

Run SDV Periodically Before Release, if your driver model is supported. Enable All Rules.
Why: It took us years to be able to say this but… SDV actually finds bugs. There. It took years, but SDV is actually a damn
useful tool, especially when coupled with SAL.

Test Exactly What You Ship. This should go without saying, but… Before releasing your product to the world, be sure
that you replicate the “real world” scenarios of how your product will be built and installed. For example, before shipping
your driver, you’ll want to test at least once without Windows Driver Verifier enabled and without WinDbg attached to
the system. Test what your customers will use.
Why: If you don’t test what your customers will ultimately use, you run the very real risk for shipping something that does
not work. We learned this the hard way.

(CONTINUED FROM PAGE 3)

Follow us!

https://www.facebook.com/pages/OSR-Open-Systems-Resources-Inc/131083523584516
https://twitter.com/OSRdrivers
http://www.linkedin.com/company/osr

®

A private, on-site seminar format
allows you to:

 Get project-specific questions
answered. OSR instructors have
the expertise to help your group
solve your toughest roadblocks.

 Customize your seminar. We
know Windows drivers and file
systems; take advantage of it.
Customize your seminar to fit
your group's specific needs.

 Focus on specific topics. Spend
extra time on topics you really
need and less time on topics you
already know.

 Provide an ideal experience.
For groups working on a project
or looking to increase their
knowledge of a particular topic,
OSR's customized on-site
seminars are ideal.

 Save money. The quote you
receive from OSR includes
everything you need. There are
never additional charges for
materials, shipping or instructor
travel.

 Save more money. Bringing
OSR on-site to teach a seminar
costs much less then sending
several people to a public class.
And you're not paying for your
valuable developers to travel.

 Save time. Less time out of the
office for developers is a good
thing.

 Save hassles. If you don't have
space or lab equipment available,
no worries. An OSR seminar
consultant can help make
arrangements for you.

W hen we say “we practice what we teach”, this mantra directly translates into the value we
bring to our seminars. But don’t take our word for it...

THE NT INSIDER - You Can Subscribe!

Just send a blank email to join-ntinsider@lists.osr.com
— and you’ll get an email whenever we release a new
issue of The NT Insider.

Seminar Dates Location

Internals & Software Drivers 27-31 March Dulles/Sterling, VA

WDF Drivers I: Core Concepts 15-19 May At OSR! Amherst/Nashua, NH

WDF Drivers II: Advanced 23-26 May At OSR! Amherst/Nashua, NH

Kernel Debugging & Crash Analysis 26-30 June Dulles/Sterling, VA

Internals & Software Drivers 24-28 July At OSR! Amherst/Nashua, NH

Developing File Systems Mini-Filters TBD TBD

Join OSRHINTS

More Dates/Locations Available—See website for details

http://www.osronline.com/custom.cfm?name=login_joinok.cfm
mailto:join-ntinsider@lists.osr.com
http://www.osr.com/seminars/software-drivers/
http://www.osr.com/seminars/wdf-drivers/
http://www.osr.com/seminars/advanced-wdf
http://www.osr.com/seminars/kernel-debugging/
http://www.osr.com/seminars/software-drivers/
http://www.osr.com/seminars/minifilters
mailto:join-osrhints@lists.osr.com
http://www.osr.com/seminars

