
The Query-flow Graph: Model and Applications

Paolo Boldi1∗
boldi@dsi.unimi.it

Francesco Bonchi2
bonchi@yahoo-inc.com

Carlos Castillo2

chato@yahoo-inc.com
Debora Donato2

debora@yahoo-inc.com
Aristides Gionis2

gionis@yahoo-inc.com
Sebastiano Vigna1∗

vigna@dsi.unimi.it
1DSI, Università degli 2Yahoo! Research Labs
Studi di Milano, Italy Barcelona, Spain

ABSTRACT
Query logs record the queries and the actions of the users of
search engines, and as such they contain valuable informa-
tion about the interests, the preferences, and the behavior of
the users, as well as their implicit feedback to search-engine
results. Mining the wealth of information available in the
query logs has many important applications including query-
log analysis, user profiling and personalization, advertising,
query recommendation, and more.

In this paper we introduce the query-flow graph, a graph
representation of the interesting knowledge about latent query-
ing behavior. Intuitively, in the query-flow graph a directed
edge from query qi to query qj means that the two queries
are likely to be part of the same “search mission”. Any path
over the query-flow graph may be seen as a searching behav-
ior, whose likelihood is given by the strength of the edges
along the path.

The query-flow graph is an outcome of query-log mining
and, at the same time, a useful tool for it. We propose a
methodology that builds such a graph by mining time and
textual information as well as aggregating queries from differ-
ent users. Using this approach we build a real-world query-
flow graph from a large-scale query log and we demonstrate
its utility in concrete applications, namely, finding logical ses-
sions, and query recommendation. We believe, however, that
the usefulness of the query-flow graph goes beyond these two
applications.

Categories and Subject Descriptors H.2.8 [Database
Management]: Database Applications - Data Mining
H.4.3 [Information Systems Applications]: Communications
Applications

General Terms Algorithms

Keywords Query Flow Graph, Query Recommendation, Ses-
sion Segmentation.

1. INTRODUCTION
The huge volume of information recorded daily in query

logs contains a wealth of valuable knowledge about how web
users interact with search engines as well as information

∗Part of this work was done while the authors were visiting
Yahoo! Research Labs, Barcelona

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

about the interests and the preferences of those users. Ex-
tracting behavioral patterns from this wealth of informa-
tion is a key step towards improving the service provided
by search engines and towards developing innovative web-
search paradigms. Unfortunately, mining query logs poses
many technical challenges that arise due to the very large
volume of data, the high level of noise, poorly formulated
queries, ambiguity, and sparsity, among others.

In this paper we introduce the concept of the query-flow
graph, which is a graph modeling user behavioral patterns
and query dependencies. The query-flow graph is an action-
able, aggregated representation of the interesting informa-
tion contained in a large query-log. In particular, the phe-
nomenon of interest is the sequentiality of similar queries:
the fundamental two dimensions that drive the construction
of the query-flow graph are the temporal order of queries and
their similarity.

Given a query log, the nodes of the query-flow graph are
all the queries contained in the log, and a directed edge be-
tween two queries qi, qj has a weight w(qi, qj). We propose
two weighting schemes, one that represents the probability
that the two queries are part of the same search mission given
that they appear in the same session, and another that repre-
sents the probability that query qj follows query qi. In both
cases, when w(qi, qj) is high, we may think of qj as a typical
reformulation of qi, thus a step ahead towards the successful
completion of a possible search mission.

The main contribution of this paper is introducing the
query-flow graph and providing a methodology for construct-
ing such a graph based on mining query logs. Besides this,
we demonstrate the usefulness of the query-flow graph in two
applications: finding logical sessions and query recommenda-
tion.

With respect to finding logical sessions, we allow them
to be intertwined, thus modeling the behavior of users who
have a number of interests/goals and submit queries related
to the information needs of those interests/goals but in an
interleaved fashion. We also address this problem starting
from the entire query history of users and not from timeout-
driven sessions. To our knowledge, this is the first time that
the modeling of the problem of finding query chains allows
for such a complexity. We formulate the problem of finding
intertwined query chains as an asymmetric traveling sales-
man problem (ATSP), which we approximate with a greedy
heuristic.

For the problem of query recommendation we propose an
algorithm that builds on the concept of query-flow graph and
allows leveraging not only similarity between queries but the
overall complex structure in a neighborhood of the graph.
Our recommendation algorithm is based on performing a
random walk with restart to the original query of the user
or to a small set of queries representing the recent querying
history.

This paper is summarized as follows. Section 2 is an
overview of the related work. In Section 3 we define our nota-
tion and concepts and in Section 4 we discuss our algorithm
for constructing the query-flow graph. Then we describe two
applications: finding query chains in Section 5, and query
recommendations in Section 6. Finally, Section 7 includes a
few concluding remarks.

2. RELATED WORK
Query logs are widely considered as a very rich source of

knowledge on user behavior. The main challenge in analyzing
query logs lies in extracting interesting relations from the raw
lists of user actions. Many different approaches have been
proposed in order to discover essential features or hidden
relations in query logs.

Query graphs. One main research line attempts to infer
the hidden semantics of user interactions with search en-
gines by projecting the data over different types of graphs.
Baeza-Yates [1] identifies five different types of graphs. In
all cases, the nodes are queries; a link is introduced between
two nodes respectively if: (i) the queries contain the same
word(s) (word graph), (ii) the queries belong to the same ses-
sion (session graph), (iii) users clicked on the same urls in
the list of their results (url cover graph), (iv) there is a link
between the two clicked urls (url link graph) (v) there are l
common terms in the content of the two urls (link graph).
In [1], it is suggested that one application of these graphs
is session segmentation which is one of the applications we
study in this paper.

Baeza-Yates and Tiberi [2] study a weighted version of the
cover graph. Their analysis provides information not only
about how people query but also about how they behave
after a query and the content distribution of what they look
at. Moreover the authors study several characteristics of
click graphs, i.e., bipartite graphs of queries and urls, where
a query and a url are connected if a user clicked on a url that
was an answer for a query. This framework is used to infer
semantic relations among queries and to detect multitopical
urls, i.e., urls that cover either several topics or a single very
general topic.

A concept similar to our query flow graph is introduced by
Levene and Loizou [17]: ”Hypertext Probabilistic Automatat’t’
are automata where the arcs of the reachability relations are
labelled with probabilities that are computed from statistical
information related to the frequency that users choose to
navigate trough two states. The work however is focussed
on browsing behavior inside a Web site and not on querying
behavior. Borges and Levene later introduced an improved
method for measuring the ability of a variable-length Markov
model to summarize user Web navigation sessions up to a
given lenght [6].

Query recommendation. Query recommendation is a
core task for large industrial search engines. Most of the
work on query recommendation is focused on measures of
query similarity [23, 11] that can be used for query expan-
sion [3] or query clustering [3, 22]. A first attempt to model
the users’ sequential search behavior is presented by Zhang
and Nasraoui [23]: the arcs between consecutive queries in
the same session are weighted by a dumping factor d, mean-
while the similarity values for non consecutive queries are
calculated by multiplying the values of arcs that join them.
Instead, Fonseca et al. [11] discover related queries with a
method based on association rules. Each transaction in the
query log is seen as a session in which a single user submits
a sequence of related queries in a time interval. Their notion
of session is similar to the one we use in this paper.

Reference [3] studies the problem of suggesting related
queries issued by other users and query expansion meth-
ods to construct artificial queries. Their method is used
to recommend queries that are related to the input query
but may search for different issues. The clustering is based
on a term-weight vector representation of queries, obtained
from the aggregation of the term-weight vectors of the urls
clicked after the query. Wen et al. [22] also present a clus-
tering method for query recommendation that is centered
around four notions of query distance: the first notion is
based on keywords or phrases of the query; the second on
string matching of keywords; the third on common clicked
urls; and the fourth on the distance of the clicked documents
in some pre-defined hierarchy.

Jones et al. introduced the notion of query substitution.
Similar queries can be obtained by replacing the query as a
whole, or by substituting constituent phrases [16]. Similar
queries and phrases are derived from user query sessions,
and they proposed models for query re-ranking based on the
similarity of the new query to the original query.

Query Segmentation. Segmenting the query stream into
sets of related information-seeking queries, i.e., logical ses-
sions, has many applications: apart for query recommenda-
tion, since logical session can help in understanding the rela-
tionship between queries given the user intent, they are valu-
able for user profiling and personalization. He and Göker [12]
studied different timeouts to segment user sessions, and later
extended their work [13] to consider other features such as
the overlap between terms in two consecutive queries. Radlin-
ski and Joachims [19] observe that users often perform a se-
quence, or chain, of queries with a similar information need;
they refer to this sequence of reformulated queries as query
chains. Their paper presents a simple method for automat-
ically detecting query chains in query and clickthrough logs
and show how to learn better retrieval functions using evi-
dence of query chains. Recently the problem of query ses-
sion detection was also considered by Jones and Klinkner [15]
where a method for automated segmentation is proposed and
evaluated.

Temporal classification. Considering time features might
have other applications beyond segmenting query stream.
Jones and Diaz [14] introduce a model to measure the distri-
bution of documents retrieved in response to a query over the
time domain in order to create a temporal profile for a query.
They show that such a temporal profile can provide valuable
information about the likely quality of query results.

Random walk models. Craswell and Szummer [9] de-
scribe a Markov random walk model for ranking documents.
A backward random walk is performed over the click graph,
leading to a method for retrieving relevant documents that
have not yet been clicked for a predefined query and rank
those effectively. The random walk we introduce is per-
formed over a completely different graph and with the ob-
jective of ranking queries instead of documents. Collins-
Thompson and Callan [8] use a Markov random model for
query expansion. Their setting is also different from ours:
the stationary distribution of the model is used to obtain
probability estimates that a potential expansion term reflects
aspects of the original query.

3. BASIC CONCEPTS
In this section we provide the basic idea behind the query-

flow graph. In summary the query-flow graph is an usage-
oriented, actionable, compact representation of the informa-
tion contained in a query log, and it is aimed at facilitating
the analysis of user behavior.

Query log. A query log records information about the
search actions of the users of a search engine. Such infor-
mation includes the queries submitted by the users, doc-
uments viewed as a result to each query, and documents
clicked by the users. A typical query log L is a set of records
〈qi, ui, ti, Vi, Ci〉, where: qi is the submitted query, ui is an
anonymized identifier for the user who submitted the query,
ti is a timestamp, Vi is the set of documents returned as re-
sults to the query, and Ci is the set of documents clicked by
the user.

In the above representation, we assume that if U is the set
of users to the search engine and D is the set of documents
indexed by the search engine, then ui ∈ U and Ci ⊆ Vi ⊆ D .
For the purposes of this paper, we do not use any information
from the results of the queries (Ci and Vi)—we are only men-
tioning them above for completeness. Thus, subsequently we
denote query logs by L = { 〈qi, ui, ti〉 }.
Sessions. A user query session, or session, is defined as the
sequence of queries of one particular user within a specific
time limit. More formally, if tθ is a timeout threshold, a user
query session S is a maximal ordered sequence

S =
˙
〈qi1 , ui1 , ti1〉, . . . , 〈qik , uik , tik 〉

¸
,

where ui1 = · · · = uik = u ∈ U , ti1 ≤ · · · ≤ tik , and
tij+1 − tij ≤ tθ, for all j = 1, 2, . . . , k − 1.

Given a query log L , the corresponding set of sessions can
be constructed by sorting all records of the query log first
by userid ui, and then by timestamp ti, and by performing
one additional pass to split sessions of the same user when-
ever the time difference of two queries exceeds the timeout
threshold. Whenever we used a timeout threshold for split-
ting sessions, we set tθ = 30 minutes, as this is the typical
timeout that is often used in web log analysis [7, 21, 18].

Supersessions. The sequence of all the queries of a user in
the querylog, ordered by timestamp, is called a supersession.
Thus, a supersession is a sequence of sessions in which con-
secutive sessions have time difference larger than tθ.

Chains. A chain is a topically coherent sequence of queries
of one user. Radlinski and Joachims [19] defined a chain
as “a sequence of queries with a similar information need”.
For instance, a query chain may contain the following se-
quence of queries [15]: “brake pads”; “auto repair”; “auto
body shop”; “batteries”; “car batteries”; “buy car bat-

tery online”. The concept of chain is also referred to in the
literature with the terms mission [15] and logical session [1].
Unlike the concept of session, chains involve relating queries
based on the user information need, which is an extremely
hard problem, so we do not try to formally define chains
here.

We note that for chains we do not impose any timeout
constraint. Therefore, as an example, all the queries of a user
who is interested in planning a trip to a far-away destination
and searches for tickets, hotels, and other tourist information
over a period of several weeks should be grouped in the same
chain. Additionally, for the queries composing a chain we do
not require them to be consecutive. Following the previous
example, the user who is planning the far-away trip may
search for tickets in one day, then make some other queries
related to a newly released movie, and then return to trip
planning the next day by searching for a hotel. Thus, a
session may contain queries from many chains, and inversely,
a chain may contain queries from many sessions.

The query-flow graph. The final concept we define is
the query-flow graph, which is a central contribution in our
paper. The query-flow graph Gqf is a directed graph Gqf =
(V, E, w) where:

• the set of nodes is V = Q ∪ {s, t}, i.e., the distinct set
of queries Q submitted to the search engine and two
special nodes s and t, representing a starting state and
a terminal state which can be seen as the begin and the
end of a chain;

• E ⊆ V × V is the set of directed edges;

• w : E → (0 . . 1] is a weighting function that assigns to
every pair of queries (q, q′) ∈ E a weight w(q, q′) .

In our setting, even if a query has been submitted multiple
times to the search engine, possibly by many different users,
it is anyway represented by a single node in the query-flow
graph. The two special nodes s and t are used to capture the
begin and the end of query chains. In other words, the exis-
tence of an edge (s, qi) represents that qi may be potentially
a starting query in a chain, and an edge (qi, t) indicates that
qi may be a terminal query in a chain.

Different applications may lead to different weighting sche-
mes; the algorithms for two weighting schemes are described
in the following section.

4. BUILDING THE QUERY-FLOW GRAPH
In this section we describe our approach for building the

query-flow graph Gqf = (V, E, w). Our algorithm takes as
input a set of sessions S (L) = {S1, . . . , Sm}, which in our
case are extracted from a query log L from the Yahoo! UK
search engine in early 2008. As we already mentioned, the set
of sessions can be easily constructed by sorting the queries
by userid and by timestamp, and splitting them using the
timeout threshold.

As stated in the previous section, the set of nodes V in the
query-flow graph is the set of distinct queries Q in L plus the
two special nodes s and t. For the moment we leave apart the
two special nodes s and t: we will discuss later about how to
connect them with the other nodes of the graph. Given two
queries q, q′ ∈ Q we tentatively connect them with an edge
if there is at least one session in S (L) in which q and q′

are consecutive. In other words, we form the set of tentative
edges T as:

T = {(q, q′) | ∃Sj ∈ S (L) s.t. q = qi ∈ Sj∧q′ = qi+1 ∈ Sj}.

The key aspect of the construction of the query-flow graph
is to define the weighting function w : E → (0 . . 1]. We study
two weighting schemes. The first one is based on the chaining
probability: the probability that q and q′ belong to the same
chain (or search mission) given that they belong to the same
session. The second one is based on the relative frequencies
of the pair (q, q′) and the query q.

4.1 Weights based on chaining probabilities
We compute chaining probabilities using a machine learn-

ing method. The first step is to extract for each edge (q, q′) ∈
T a set of features associated with the edge. Those features
are computed over all sessions in S (L) that contain the
queries q and q′ appearing in this order and consecutively.
The features we use aggregate, among other, information
about the time difference in which the queries are submit-
ted [12], textual similarity of the queries [13, 15], and the
number of sessions in which they appear. We shortly de-
scribe the features in more detail.

For learning the weighting function from these features, we
use training data. This training data is created by picking at
random a set of edges (q, q′) (excluding the edges where q = s
or q′ = t) and manually assigning them a label same_chain.
This label, or target variable, is assigned by human editors
and is 0 if q and q′ are not part of the same chain, and it is 1
if they are part of the same chain. The probability of having

1 2 5 10 20 50 100 200

1e
−

05
1e

−
03

1e
−

01

Count

F
re

qu
en

cy

Figure 1: The distribution of counts (number of
times a given pair of query appears consecutively in
that order in S (L)); it is a power law with a spike
at 1 (most pairs being hapax).

an edge included in the training set is proportional to the
number of times the queries forming that edge occur in that
order and consecutively in the query log. We then use this
training data to learn the function w(−,−), given the set of
features and the label for each edge in T .

We use 18 features to compute the function w(−,−) for
each edge in T . Several of these features were shown to
be effective for query segmentation [12, 13, 15] and can be
summarized as follows:

• Textual features. We compute the textual similarity
of queries q and q′ using various similarity measures,
including cosine similarity, Jaccard coefficient, and size
of intersection. Those measures are computed on sets
of stemmed words and on character-level 3-grams.

• Session features. We compute the number of ses-
sions in which the pair (q, q′) appears. We also com-
pute other statistics of those sessions, such as, average
session length, average number of clicks in the sessions,
average position of the queries in the sessions, etc.

• Time-related features. We compute average time
difference between q and q′ in the sessions in which
(q, q′) appears, and the sum of reciprocals of time dif-
ference over all appearances of the pair (q, q′).

The next step for constructing the query-flow graph is to
train a machine learning model to predict the label same_chain.
The training dataset consists of approximately 5, 000 labeled
examples; the labels were assigned by the authors of this pa-
per.

We tested and compared many different machine learning
approaches. As shown in Figure 1, the frequency of query
pairs follows a power-law with a spike at 1. After exper-
imenting with different settings, we decided to divide the
classification problem into two subproblems, and thus the
data were also partitioned into two training sets T1 and T2,
by distinguishing between pairs of queries appearing together
only once (we name this set T1, which contain approximately
50% of the cases), and pairs appearing together more than
once (we name this T2). The distribution of the target vari-
able same_chain is 66% positive and 34% negative in T1, and
70% positive and 30% negative in T2.

After various comparisons we selected the best models for
T1 and T2 with respect to classification accuracy and sim-

plicity of the model. For T1 we adopted a very simple yet
accurate logistic regression model using only 3 of the fea-
tures available, namely (a) the Jaccard coefficient between
sets of stemmed words, (b) the number of n-grams in com-
mon between the two queries, and (c) the time between the
two queries in seconds. For T2 instead we adopted a rule-
based model consisting of a total of 8 simple rules (4 for each
class).

We use the model we selected to assign the weight w(q, q′)
to each edge (q, q′). In particular, we label each edge which
has been classified as being in class 1 same_chain, with the
conviction with which the model makes the prediction. All
the edges that are classified in class 0, are labelled by 0, that
corresponds to removing the edge from the query-flow graph
Gqf .

The edges starting from s or ending in t can be given
an arbitrary weight w(s, q) = w(q, t) = 1 for all q, or left
undefined.

4.2 Weights based on relative frequencies
The second weighting scheme we consider turns the query

flow graph into a Markov chain. Let f(q) be the number
of times query q appears in the query log, and f(q, q′) the
number of times query q′ follows immediately q in a session.
Let f(s, q) and f(q, t) indicate the number of times query q
is the first and last query of a session, respectively.

The weight we use is:

w′(q, q′) =

(
f(q,q′)

f(q)
if (w(q, q′) > θ) ∨ (q = s) ∨ (q = t)

0 otherwise,

which uses the chaining probabilities w(q, q′) basically to dis-
card pairs that have a probability of less than θ to be part
of the same chain.

By construction, the sum of the weights of the edges go-
ing out from each node is equal to 1. The result of such a
normalization can be viewed as the transition matrix P of a
Markov chain.

In Figure 2 we show a small snapshot of the query flow
graph we produce with this weighting scheme. This contains
the query“barcelona”and some of its followers up to a depth
of 2, selected in decreasing order of count. Also the terminal
node t is present in the figure. Note that the sum of outgoing
edges from each node does not reach 1 just because not all
outgoing edges (and relative destination nodes) are reported.

5. FINDING CHAINS
In this section we describe our first application of the

query-flow graph: finding chains of queries in user sessions.
As we have already mentioned, finding chains is a very impor-
tant problem as it allows improving query-log analysis, user
profiling, mining user behavior, and more. For this applica-
tion we use the first weighing scheme described in Section 4
based on chaining probabilities.

The problem we consider is the following. We are given a
supersession S = 〈q1, q2, . . . , qk〉 of one particular user. We
are also given the query-flow graph, which has been com-
puted with the sessions of S as part of its input. The chain-
finding problem can also be defined in the case that the ses-
sions of S have not participated in the construction of the
query-flow graph. However, in this paper we focus on the
former case and we leave the latter for future work.

One of the challenges of the problem we consider arises
from our definition of chains: we allow chains not to be con-
secutive in the supersession S; in other words, the super-
session S may contain many intertwined chains such as the
ones shown in the Table 1. Previous work has mostly focused
on the case where all chains are consecutive.

barcelona fc

<T>

0.506

barcelona fc
website

0.043
barcelona fc

fixtures

0.031

real
madrid

0.017

barcelona
weather

0.523

barcelona
hotels

0.018

barcelona
weather
online

0.100

barcelona

0.018

0.011

0.439

cheap
barcelona

hotels

0.072

luxury
barcelona

hotels

0.029

0.080

0.416

0.043

0.023

Figure 2: A portion of the query flow graph using
the weighting scheme based on relative frequencies,
described on Section 4.

Chain #1 Chain #2

.
football results january 2nd pointui forum
royal carribean cruises audi ipswich
holidays golfers elbow
motherwell football club cox ipswich
... ...

Table 1: Two fragments from actual sessions con-
taining non-consecutive chains.

The chain-finding problem can be formalized as follows:
let us define a chain cover of S = 〈q1, q2, . . . qk〉 as a par-
tition of the set {1, . . . , k} into subsets C1, . . . , Ch. Each
set Cu = {iu1 < · · · < iu`u

} is thought of as a chain Cu =
〈s, qiu

1
, . . . , qiu

`u
, t〉, that is associated the probability

P (Cu) = P (s, qiu
1
)P (qiu

1
, qiu

2
) . . . P (qiu

`u−1
, qiu

`u
)P (qiu

`u
, t)

and we want to find a chain cover maximizing P (C1) . . . P (Ch).
When a query appears more than once, “duplicate” nodes

for that query are added to the formulation, which makes the
description of the algorithm slightly more complicated than
what is presented here. For simplicity of the presentation we
omit the details related to queries appearing more than once
below, which are not fundamental to the understanding of
the algorithm.

We separate this problem into two subproblems: session
reordering and session breaking. The session reordering prob-
lem is to ensure that all the queries belonging to the same
search mission are consecutive. Then, the session breaking
problem is much easier as it only needs to deal with non-
intertwined chains.

5.1 Session re-ordering by ATSP
We formulate the session re-ordering problem as an in-

stance of the Assymmetric Traveler Salesman Problem (ATSP).
Let w(q, q′) be a weight defined as a chaining probability
from Section 4. Given the session S = 〈q1, q2, . . . qk〉, con-
sider a directed weighted graph GS = (V, E, h) with nodes
V = {s, q1, . . . , qk, t}, edges E and edge weights h defined
as h(qi, qj) = − log w(qi, qj) . An edge (qi, qj) exists in E if
w(qi, qj) > 0.

An optimal ordering is a permutation π of 〈1, 2, . . . k〉 that
maximizes

k−1Y
i=1

w(qπ(i), qπ(i+1)).

This is equivalent to finding a Hamiltonian path of minimum
weight in this graph.

It is well known that min-TSP is NP-hard even when
weights are symmetric; exact branch-and-bound solutions
exist, but are anyway rather slow and work reasonably only
for few tens of nodes. Instead of trying to produce exact
solutions, we content ourselves of a greedy heuristics that
simply chooses every time the arc with minimum weight go-
ing out of the current node: in the following, we shall refer
to this heuristic algorithm simply as the ATSP algorithm.
The ATSP algorithm works in time O(k2), where k is the
size of the supersession. It would be interesting to know how
far the solution produced by this algorithm is from the exact
solution on real data; on a more theoretical side, it would be
nice to determine if our problem is still NP-hard, or if it is
actually simpler, maybe polynomial. Both questions are left
for future work.

5.2 Session breaking
Session breaking is an easier task once the session has

been re-ordered. It correspond to the determination of a
series of cut-off points in the re-ordered session. It can be
done, for example, by determining a threshold η in a valida-
tion dataset, and then deciding to break a reordered session
whenever w(qπ(i), qπ(i+1)) < η . Other strategies are pos-
sible and can be studied as future work, including using a
different threshold for different parts of the session, e.g. by
finding local minima in the chaining probabilities along the
re-ordered session.

5.3 Experimental evaluation
In this section we describe our experiments for evaluating

the chain-finding algorithm we propose, and compare it with
a simple timeout-based method.

The query-flow graph is created as described in Section 4.
For creating a training set for evaluating the session-breaking
task, we sampled uniformly at random a set of 586 superses-
sions containing 2 queries or more—if there is only one query
the task is trivial. Each of these 586 supersessions is classified
by human editors using the following methodology: (i) first
duplicate queries are eliminated, (ii) each query is assigned
by the human editors to one chain (possibly nonconsecutive),
(iii) some queries remained unassigned in this process (due
to the impossibility, by the human editor, to clearly map a
query to one chain). The chains obtained in the above pro-
cess constitute the“golden standard”with which we compare
our algorithm.

We then apply the ATSP algorithm to re-order followed by
the session breaking by threshold that we described above,
for splitting the 586 supersessions into chains. For com-
parison we also implemented a “baseline” algorithm, which
splits each supersession into sessions (using only the timeout
threshold tθ) and considers each resulting session as a chain.

Given a supersession S, the chains produced for S by the
human evaluation or by the algorithms we test define a par-
tition of S. We evaluate our algorithm and the baseline by
comparing the chains they produce with the chains produced
by the human evaluation using the Rand index [20], a com-
monly employed measure of similarity between partitions.

Notice that the chains produced by the human evaluation
do not contain duplicate queries, while the chains produced
by these methods mat contain duplicates, so before comput-
ing the Rand index we remove duplicate queries.

We can also evaluate the performance of the ATSP re-
ordering part of our algorithm separatedly. For that, we can
compute the optimal Rand index of the re-ordered sequence
with respect to the golden standard. The optimal Rand in-
dex of a sequence with respect to a particion is the maximum
Rand index among the given partition and a partition that
respect the sequence (i.e., whose equivalence classes are con-
vex sets with respect to the sequence).

Results. The results are summarized in Table 2.

Table 2: Rand index distributions for ATSP and
Baseline.
Session re-ordering Optimal Rand Index

Original sequence 0.97
ATSP re-ordering 0.99
Shuffled sequence 0.93
Session breaking Rand Index

ATSP re-ordering + thresh. break 0.90
Baseline 0.85

Taking a closer look at the results reveals that the seem-
ingly similar performance is caused by many easy superses-
sions, e.g., supersessions consisting of one or two queries that
the Baseline is able of handling correctly. A more detailed
analysis reveals that the ATSP algorithm followed by the
threshold-based breaking is able of handling better than the
baseline the more difficult supersessions.

Given a supersession S, let RA(S) be the Rand index of
comparing the chains produced for S by our algorithm with
the “golden standard” chains for S, and let RB(S) be the
Rand index of comparing the chains produced for S by the
Baseline algorithm with the “golden standard” chains for S.
We observe that in the 92% of the cases in which RB(S) = 1
we also have RA(S) = 1. In the cases in which RB(S) < 1
(supersession difficult for the Baseline) the average RB score
is 0.71, while the average RA score is 0.85.

In other words, we can say that simple cases are treated
comparatively well by our algorithm and the Baseline, while
in difficult cases our algorithm clearly outperforms the Base-
line; in Figure 3 we show the situation for the case RB(S) < 1
through a scatter plot.

We note again that the our algorithm has the ability to find
intertwined chains, which, to our knowledge, is a significant
novelty with respect to the current state of the art. We
also note that given a supersession, our algorithm does not
utilize at all the timestamp information of the queries in
the particular session being analyzed, which, in fact, is the
information exploited by the Baseline algorithm.

6. QUERY RECOMMENDATIONS
Most modern search engines include some form of auto-

matic query recommendation, to suggest new queries that
may be relevant to the current user’s mission. Using query-
log massive information to this purpose was suggested in [23].
Here we obtain query recommendations as an application of
the query flow graph.

0.4 0.6 0.8 1.0

0.
4

0.
6

0.
8

1.
0

Figure 3: Every point in this plot corresponds to
a supersession S with RB(S) < 1; its coordinates are
(RB(S), RA(S)). The fact that the points in the upper-
left corner are denser than in the lower-right corner
supports further the evidence that the ATSP algo-
rithm outperforms the Baseline when RB(S) < 1.

The query recommendation task is different from the ses-
sion breaking task described in Section 5; while we can use
the same query flow graph, we find that for the algorithm
we propose it is better to use the weighting scheme based on
relative frequencies described in Section 4.

For the query recommendation task we use weights w′(q, q′)
defined as

w′(q, q′) =

(
f(q,q′)

f(q)
if (w(q, q′) > θ) ∨ (q = s) ∨ (q = t)

0 otherwise,

where f(q, q′) is the number of times query q is followed by
query q′, the factor f(q) =

P
q′ f(q, q′) is used for normal-

ization, w(q, q′) is the chaining probability of pair (q, q′) and
θ a threshold uses to discard pairs unlikely to be part of the
same session.

It is worth noting here, that intuitively the problem of
query recommendation may benefit for handling query sim-
ilarities in an non-symmetric way, and indeed, the query
flow graph is strongly non-symmetric. Excluding the s and
t nodes whose arcs are obviously not symmetric, 93% of
the arcs in the graph do not have a reciprocal arc. More-
over, even for the few arcs that possess a reciprocal, the
weights in both directions w(q, q′) and w(q′, q) are uncorre-
lated (Kendall’s τ is about 0.26), and the same is true of w′

(Kendall’s τ is 0.16).

6.1 Recommendation by maximum weight
A simple recommendation scheme that uses the query flow

graph is to pick, for an input query q, the node having the
largest w′(q, q′). An example output from this scheme is
shown on the first column of Table 3 for the queries “apple”
and “jeep”.

An issue with this method, that we observed for several
test queries, is that it tends to “drift” towards those queries
that are popular in the query log, but unrelated with the
query at hand.

6.2 Recommendation by random walk

Max. weight sq ŝq s̄q

t t apple apple
apple ipod apple apple fruit apple ipod
apple store apple ipod apple ipod apple trailers
apple trailers apple store apple belgium apple store
amazon apple trailers eating apple apple mac
apple mac google apple.nl apple fruit
itunes amazon apple monitor apple usa
pc world argos apple usa apple ipod nano
argos itunes apple jobs apple.com/ipod...
currys pc world apple movie ... t

t t jeep jeep
jeep cherokee jeep jeep trails jeep cherokee
jeep grand ... jeep cherokee jeep kinderk... jeep trails
jeep wrangler jeep grand ... jeep compass jeep compass
land rover bmw jeep cherokee jeep kinderkled...
landrover jeep wrangler swain and jon... jeep grand ...
ebay land rover jeep bag jeep wrangler
chrysler landrover country living ... chryslar
bmw chrysler buy range rov... jeepcj7
nissan google craviotto snare buses to Knowl...

Table 3: Top 10 recommendation for the queries
q =“apple”, and q =“jeep” according to the baseline,
and to the various random-walk scores proposed.

A recommendation algorithm can be built upon a measure
of relative importance: when a user submits a query q to the
engine, the recommendation that the engine provides should
be the most important query q′ relatively to q.

If we look at the problem under this point of view, we are
naturally led to apply a form of personalized PageRank [10],
where the preference vector is concentrated in a single node.
Alternatively, this can be described as a random walk with
restart to a single node [5]: a random surfer starts at the
initial query q; then, at each step, with probability α < 1
the surfer follows one of the outlinks from the current node
chosen proportionally to the weights present on the arcs, and
with probability 1− α (s)he instead jumps back to q.

This process describes the transition matrix A of a Markov
chain that can be more formally defined as:

A = αP + (1− α)1eT
q

where P is the row-normalized weight matrix of the query
flow graph, and ej is the vector whose entries are all zeroes,
except for the j-th whose value is 1.

Although A is not ergodic in general, as proven in [5] A is
unichain as long as α ∈ [0 . . 1), so it has a unique station-
ary distribution, namely, a unique distribution vector v such
that vT A = v. Such a distribution (called the random-walk
score relative to q) can be computed using the power itera-
tion method, and then employed to determine the relevance
of all queries with respect to q, as explained below.

In all our experiments, we chose α = 0.85, as it is cus-
tomary in the PageRank literature [4], and used the `1-norm
of the difference of two successive iterates to decide when to
stop.

Recommendations can be deduced from the random-walk
score by taking either the single top-scored query, or the best
queries up to a certain lower score threshold. Notice that, in
particular, if the most relevant query for q is t, this means
that it is wise for the engine not to give any suggestion,
because the query flow graph is showing that the chain at
that point is more likely to end than to continue.

Using just the random-walk score, though, can be mislead-
ing, because in many cases a query has a high random-walk
score simply because it is a very common query altogether;
the situation, here, is not dissimilar to what happens in the
classical weighting schemes used for document retrieval, like
tf-idf, where the term frequency within a document needs to

be discounted by the absolute importance of the term (the
idf part of the formula).

Instead of using the pure random-walk score sq(q
′) of the

query q′ with respect to q, we can consider the ratio ŝq(q
′) =

sq(q
′)/r(q′) where r(q′) is the absolute random-walk score of

q′ (i.e., the one computed using a uniform preference vector).
Experiments performed show that indeed in most cases ŝq(q

′)
produces rankings that are more reasonable, but sometimes
tend to boost too much scores having a very low absolute
score r(q′). To use a bigger denominator, we also tried withp

r(q′) as r(q′) < 1; this corresponds also to the geometric
mean between sq(q

′) and ŝq(q
′), that is

s̄q(q
′) =

p
sq(q′) · ŝq(q′) =

sq(q
′)p

r(q′)
.

Table 3 shows the output of the random-walk scoring and
the adjusted variants discussed above: note that, except for
the first few queries, the baseline soon “gets lost” in com-
pletely unrelated queries; sq works well, but as expected
popular queries (like “ebay”) pollute the results; on the other
hand ŝq tends to overpenalize common queries, and tends to
produce exotic recommendations (“apple belgium”), whereas
s̄q gives the most pertinent results.

6.3 Recommendation with history
A further step in the same direction is providing recom-

mendation that depends not only on the last query input
by the user, but on some of the last queries in the user’s
history. This approach may help to alleviate the data spar-
sity problem –the current query may be rare, but among the
previous queries there might be queries for which we have
enough information in the query flow graph. Basing the rec-
ommendation on the user’s query history may also help to
solve ambiguous queries, as we have more informative sug-
gestions based on what the user is doing during the current
session.

Using the same notation as before, suppose that q1, . . . , qk

is the current query chain (ordered starting from the most re-
cent); then, we consider the Markov process whose transition
matrix is defined by

A = αP + (1− α)1eT
q1,...,qk

where v = eq1,...,qk is a vector whose entries are such that
vq1 > vq2 > · · · > vqk > 0. Equivalently, the overall process
may be described using the random surfer metaphor, where
v is the distribution used to choose the teleportation node,
when teleportation is decided. Although other choices are
possible, we always fixed v to be such that vq = 0 for all
q 6∈ {q1, . . . , qk}, and vqi ∝ βi for some β < 1.

Also in this case, we are not going to use the pure random-
walk score sq1,...,qk (q′) of the query q′ with respect to the
sequence q1, . . . , qk, but the adjusted score s̄q1,...,qk (q′) in-
stead.

It is interesting to compare the relevance score s̄q1,...,qk (q′)
that can provide recommendation using the whole history
with the score s̄q1(q

′) that can only exploit the last query.
Table 4 shows the output for two hypothetical chains. In
the first one, the query q′ =“apple”’ is preceded by the
query q =“banana”’, or by the query q =“beatles”’ (“Ap-
ple Records” is a record label founded by The Beatles).
The parameter β is set to 0.8 and the scoring uses s̄q. In
Table 5, two actual query sessions are processed by the al-
gorithm.

7. CONCLUSIONS
The query-flow graph summarizes a query log in a com-

pact representation. This representation can be obtained ef-

Table 4: Recommendations for the query q =“apple”,
considering that the previous query was “banana”
(top) or “beatles”’ (bottom).

banana → apple banana

banana banana
apple eating bugs
usb no banana holiday
banana cs opening a banana
giant chocolate bar banana shoe
where is the seed in anut fruit banana
banana shoe recipe 22 feb 08
fruit banana banana jules oliver
banana cloths banana cs
eating bugs banana cloths

beatles → apple beatles

beatles beatles
apple scarring
apple ipod paul mcartney
scarring yarns from ireland
srg peppers artwork statutory instrument A55
ill get you silver beatles tribute band
bashles beatles mp3
dundee folk songs GHOST’S
the beatles love album ill get you
place lyrics beatles fugees triger finger remix

Table 5: Recommendations for two actual query
chains.
music facebook → gabriella

→ music

music music
yahoo music gabriella
music videos yahoo music
music downloads music videos
free music music downloads
yahoo music videos free music
music yahoo gabriella sweet like me
free music videos lighting bug rotherham
yahoo music launch ccp npa ndf
free music downloads gabriela lighting

evening dress orion → orion dress

orion evening dress →
evening dress

evening dress evening dress
formal evening dress orion evening dress
red evening dress formal evening dress
myevening dress red evening dress
prom 008 dresses long dressess
long dressess myevening dress
evening dress uk fashion women dress
fashion women dress prom 008 dresses
dresses for the evening evening dress uk
1900evening dress 1900evening dress

ficiently from the source data and enables several key search
and mining operations. The query-flow graph is sparse, and
about half of the query pairs appear only once in the query
log. Also, the graph is strongly non-symmetrical, as 93% of
the edges have no reciprocal edge.

In this paper, we have shown two key applications in usage
mining that are supported by the query-flow graph. We have
shown a method that exploits the information in the query-
flow graph for segmenting the user sessions into logically-

coherent query chains. We have also shown several methods
for generating query suggestions based on random walks in
the query-flow graph.

Extensive evaluation and tuning of these methods is nec-
essary to implement them effectively in practice. So far we
have shown that these tasks can be implemented efficiently
using the abstraction we have developed here. Specific as-
pects to look at in future work include: features for the query
segmentation model, weighting schemes for the recommenda-
tion systems, scoring methods for the output of the random
walks, and better evaluation methods.

8. REFERENCES
[1] R. Baeza-Yates. Graphs from search engine queries. In

Theory and Practice of Computer Science (SOFSEM),
volume 4362 of LNCS, pages 1–8, Harrachov, Czech
Republic, January 2007. Springer.

[2] R. Baeza-Yates and A. Tiberi. Extracting semantic
relations from query logs. In KDD ’07: Proceedings of
the 13th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 76–85,
New York, NY, USA, 2007. ACM Press.

[3] R. A. Baeza-Yates, C. A. Hurtado, and M. Mendoza.
Query recommendation using query logs in search
engines. In EDBT Workshops, volume 3268 of LNCS,
pages 588–596. Springer, 2004.

[4] M. Bianchini, M. Gori, and F. Scarselli. Inside
pagerank. ACM Trans. Interet Technol., 5(1):92–128,
2005.

[5] P. Boldi, V. Lonati, M. Santini, and S. Vigna. Graph
fibrations, graph isomorphism, and PageRank. RAIRO
Inform. Théor., 40:227–253, 2006.

[6] J. Borges and M. Levene. Evaluating variable-length
markov chain models for analysis of user web
navigation sessions. IEEE Trans. Knowl. Data Eng.,
19(4):441–452, 2007.

[7] L. Catledge and J. Pitkow. Characterizing browsing
behaviors on the world wide web. Computer Networks
and ISDN Systems, 6(27), 1995.

[8] K. Collins-Thompson and J. Callan. Query expansion
using random walk models. In CIKM ’05: Proceedings
of the 14th ACM international conference on
Information and knowledge management, pages
704–711, New York, NY, USA, 2005. ACM.

[9] N. Craswell and M. Szummer. Random walks on the
click graph. In SIGIR ’07: Proceedings of the 30th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 239–246, New York, NY, USA, 2007. ACM
Press.

[10] K. Csalogány, D. Fogaras, B. Rácz, and T. Sarlós.
Towards scaling fully personalized pagerank:
Algorithms, lower bounds, and experiments. Internet
Math., 2(3):333–358, 2005.

[11] B. M. Fonseca, P. B. Golgher, E. S. de Moura, and
N. Ziviani. Using association rules to discover search
engines related queries. In LA-WEB ’03: Proceedings
of the First Latin American Web Congress,
Washington, DC, USA, 2003. IEEE Computer Society.

[12] D. He and A. Göker. Detecting session boundaries
from web user logs. In Proceedings of the BCS-IRSG
22nd annual colloquium on information retrieval
research, pages 57–66, Cambridge, UK, 2000.

[13] D. He, A. Göker, and D. J. Harper. Combining
evidence for automatic web session identification. Inf.
Process. Manage., 38(5):727–742, September 2002.

[14] R. Jones and F. Diaz. Temporal profiles of queries.
ACM Trans. Inf. Syst., 25(3), July 2007.

[15] R. Jones and K. L. Klinkner. Beyond the session
timeout: automatic hierarchical segmentation of search
topics in query logs. In Conference on Information and
Knowledge Management (CIKM). ACM Press,
October 2008.

[16] R. Jones, B. Rey, O. Madani, and W. Greiner.
Generating query substitutions. In Proceedings of the
15th international conference on World Wide Web,
WWW 2006, Edinburgh, Scotland, UK, May 23-26,
2006, pages 387–396, 2006.

[17] M. Levene and G. Loizou. A probabilistic approach to
navigation in hypertext. Inf. Sci., 114(1-4):165–186,
1999.

[18] B. Piwowarski and H. Zaragoza. Predictive user click
models based on click-through history. In CIKM ’07:
Proceedings of the sixteenth ACM conference on
Conference on information and knowledge
management, pages 175–182, New York, NY, USA,
2007. ACM.

[19] F. Radlinski and T. Joachims. Query chains: learning
to rank from implicit feedback. In KDD ’05:
Proceeding of the eleventh ACM SIGKDD
international conference on Knowledge discovery in
data mining, pages 239–248, New York, NY, USA,
2005. ACM Press.

[20] W. M. Rand. Objective criteria for the evaluation of
clustering methods. Journal of the American Statistical
Association, 66:622–626, 1971.

[21] J. Teevan, E. Adar, R. Jones, and M. A. S. Potts.
Information re-retrieval: repeat queries in yahoo’s logs.
In SIGIR ’07: Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 151–158,
New York, NY, USA, 2007. ACM.

[22] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang. Clustering user
queries of a search engine. In WWW ’01: Proceedings
of the 10th international conference on World Wide
Web, pages 162–168, New York, NY, USA, 2001. ACM.

[23] Z. Zhang and O. Nasraoui. Mining search engine query
logs for query recommendation. In WWW ’06:
Proceedings of the 15th international conference on
World Wide Web, pages 1039–1040, New York, NY,
USA, 2006. ACM.

