
Software and Services Group Optimization Notice

The significance of SIMD, SSE and
AVX

Stephen Blair-Chappell
Intel Compiler Labs

For Robust HPC Development

Software and Services Group Optimization Notice

Agenda

• 1. Auto-Vectorisation

• 2. CPU Dispatch

• 3. Manual Processor Dispatch

• 4. A Case Study

2

Software and Services Group Optimization Notice

“I must have the Intel compiler, it
has sped up our application by

two.”

A customer when moving from version 9.1 to version 10 of the Intel compilerA customer when moving from version 9.1 to version 10 of the Intel compilerA customer when moving from version 9.1 to version 10 of the Intel compilerA customer when moving from version 9.1 to version 10 of the Intel compiler

3

Software and Services Group Optimization Notice

Auto-Vectorisation

4

Software and Services Group Optimization Notice

Vector Processing

– A specific case of data level parallelism (DLP)

– Same operation simultaneously executed on N >1
elements of a vector.

+

r1 r2

r3

add.d r3, r1, r2

v1 v2

v3

+

VL =
vector
lengthaddvec.d v3, v1, v2

Scalar

Processing

Vector

Processing

Software and Services Group

SIMD: Continuous Evolution

70 instr

Single-
Precision
Vectors

Streaming
operations

144 instr

Double-
precision
Vectors

8/16/32

64/128-bit
vector
integer

13 instr

Complex
Data

32 instr

Decode

47 instr

Video

Graphics
building
blocks

Advanced
vector instr

SSE

1999

SSE2

2000

SSE3

2004

SSSE3

2006

SSE4.1

2007

SSE4.2

2008

8 instr

String/XML
processing

POP-Count

CRC

AES-NI

2009

7 instr

Encryption
and
Decryption

Key
Generation

AVX

2010\11

~100 new
instr.

~300 legacy
sse instr
updated

256-bit
vector

3 and 4-
operand
instructions

Software and Services Group Optimization Notice

SIMD Types in Processors from Intel [1]

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

064

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

0128

MMX™

Vector size: 64bit

Data types: 8, 16 and 32 bit integers

VL: 2,4,8

For sample on the left: Xi, Yi 16 bit

integers

Intel® SSE

Vector size: 128bit

Data types:

8,16,32,64 bit integers

32 and 64bit floats

VL: 2,4,8,16

Sample: Xi, Yi bit 32 int / float

Software and Services Group Optimization Notice

SIMD Types in Processors from Intel [2]

Intel® AVX

Vector size: 256bit

Data types: 32 and 64 bit floats

VL: 4, 8, 16

Sample: Xi, Yi 32 bit int or float

Intel® MIC

Vector size: 512bit

Data types:

32 and 64 bit integers

32 and 64bit floats

(some support for

16 bits floats)

VL: 8,16

Sample: 32 bit float

X4

Y4

X4opY4

X3

Y3

X3opY3

X2

Y2

X2opY2

X1

Y1

X1opY1

0127

X8

Y8

X8opY8

X7

Y7

X7opY7

X6

Y6

X6opY6

X5

Y5

X5opY5

128255

X4

Y4

…

X3

Y3

…

X2

Y2

…

X1

Y1

X1opY1

0

X8

Y8

X7

Y7

X6

Y6

...

X5

Y5

…

255

…

…

…

…

…

…

…

…

…

X9

Y9

X16

Y16

X16opY16

…

…

…

...

…

…

…

…

…

511

X9opY9 X8opY8 …

Software and Services Group Optimization Notice

Scalar and Packed SSE Instructions

The “vector” form of SSE instructions operating on multiple data
elements simultaneously are called packed – thus vectorized SSE
code means use of packed instructions

• Most of these instructions have a scalar version too operating only one
element only

X4 X3 X2 X1addY1

X4 X3 X2 X1

Y4 Y3 Y2 Y1

X4opY4 X3opY3 X2opY2 X1addY1

X4 X3 X2 X1

Y4 Y3 Y2 Y1

addss Scalar Single-FP Add

single precision FP data

scalar execution mode

addps Packed Single-FP Add

single precision FP data

packed execution mode

Software and Services Group Optimization Notice

10

Intel® AVX - Setting the Pace for Intel®

Instruction Set

Core

Now:

Improved upcoming Intel®

microarchitectures:

~15% gain/year

Next:

Leapfrog with wide vectorization, ISA

extensions:

scalable performance & excellent

power efficiency

Nehalem
• Intel® SSE4

• Memory latency, BW

• Fast Unaligned support

Westmere
AES-NI

• Cryptographic

Acceleration

Sandy Bridge

Intel® AVX

• 2X FP Throughput

• 2X Load Throughput

• 3-Operand instructions

Future Extensions
• Hardware FMA

• Memory Latency/BW

• Many Other Features

P
e

rf
o

rm
a

n
ce

 /
 c

o
re

Software and Services Group Optimization Notice

Key Intel® Advanced Vector Extensions
(Intel® AVX) Features

• Wider Vectors

– Increased from 128 to 256 bit

– Two 128-bit load ports

KEY FEATURES BENEFITS

• Up to 2x peak FLOPs (floating point

operations per second) output with good

power efficiency

• Enhanced Data Rearrangement
– Use the new 256 bit primitives to

broadcast, mask loads and permute data

• Organize, access and pull only necessary

data more quickly and efficiently

• Three and four Operands: Non
Destructive Syntax for both AVX 128 and
AVX 256

• Fewer register copies, better register use for

both vector and scalar code

• Flexible unaligned memory access
support

• More opportunities to fuse load and

compute operations

• Extensible new opcode (VEX) • Code size reduction

Intel® AVX is a general purpose architecture,

expected to supplant SSE in all applications used today

Software and Services Group Optimization Notice

A New 3- and 4- Operand Instruction Format

xmm10 = xmm9 + xmm1

movaps xmm10, xmm9

addpd xmm10, xmm1
vaddpd xmm10, xmm9, xmm1

xmm10 = xmm9 + m128

movups xmm10, m128

addpd xmm10, xmm9
vaddpd xmm10, xmm9, m128

• Intel® Advanced Vector Extensions (Intel® AVX) has a distinct destination argument

that results in fewer register copies, better register use, more load/op macro-fusion

opportunities, and smaller code size

• New 4- operand Blends example, implicit xmm0 not longer needed

1 less copy,

3 bytes smaller code size

1 more load/op

fusion opportunity,

4+ bytes smaller

code size

movaps xmm0, xmm4

movaps xmm1, xmm2

blendvps xmm1, m128

vblendvps xmm1, xmm2, m128, xmm4

Software and Services Group Optimization Notice

Intel® Microarchitecture (Sandy Bridge)
Highlights

Instruction Fetch & Decode

Scheduler (Port names as used by IACA)

Load

Memory Control

•1-per-cycle 256-bit multiply, add, and shuffle

•Load double the data

with Intel microarchitecture (Sandy Bridge) !!!

Port 0 Port 1 Port 5 Port 2 Port 3 Port 4

Load

Store Address Store Address STD

ALUALU ALU

JMP

L1 Data Cache

48 bytes/cycle

Allocate/Rename/Retire

Zeroing Idioms

AVX/FP Shuf

AVX/FP Bool

VI ADDVI MUL

SSE MUL

DIV *

SSE ADD

AVX FP ADD

Imm Blend Imm Blend

* Not fully pipelined

AVX FP MUL

0 63 127 255

New!

Software and Services Group Optimization Notice

Auto-Vectorization

128-bit Registers

A[3] A[2]

B[3] B[2]

C[3] C[2]

+ +

A[1] A[0]

B[1] B[0]

C[1] C[0]

+ +

for (i=0;i<MAX;i++)

c[i]=a[i]+b[i];

Transforming sequential code to exploit the vector (SIMD, SSE)

processing capabilities

Software and Services Group

Many Ways to introduce SSE Vectorization

Assembler code (addps)

Vector intrinsic (mm_add_ps())

SIMD intrinsic class (F32vec4 add)

Compiler: Auto vectorization hints (#pragma ivdep, …)

Programmer control

Ease of use

Compiler: Fully automatic vectorization

Cilk Plus Array Notation

User Mandated Vectorization

(SIMD Directive)

Manual CPU Dispatch (__declspec(cpu_dispatch …))

Use Performance Libraries

(e.g. IPP and MKL)

Software and Services Group Optimization Notice

How do I know if a loop is vectorised?

• -vec-report

> icl /Qvec-report MultArray.c

MultArray.c(92): (col. 5) remark:

LOOP WAS VECTORIZED.

Software and Services Group

static double A[1000], B[1000],

C[1000];

void add() {

int i;

for (i=0; i<1000; i++)

if (A[i]>0)

A[i] += B[i];

else

A[i] += C[i];

}

Examples of Code Generation
.B1.2::

movaps xmm2, A[rdx*8]

xorps xmm0, xmm0

cmpltpd xmm0, xmm2

movaps xmm1, B[rdx*8]

andps xmm1, xmm0

andnps xmm0, C[rdx*8]

orps xmm1, xmm0

addpd xmm2, xmm1

movaps A[rdx*8], xmm2

add rdx, 2

cmp rdx, 1000

jl .B1.2

.B1.2::

movaps xmm2, A[rdx*8]

xorps xmm0, xmm0

cmpltpd xmm0, xmm2

movaps xmm1, C[rdx*8]

blendvpd xmm1, B[rdx*8], xmm0

addpd xmm2, xmm1

movaps A[rdx*8], xmm2

add rdx, 2

cmp rdx, 1000

jl .B1.2

.B1.2::

vmovaps ymm3, A[rdx*8]

vmovaps ymm1, C[rdx*8]

vcmpgtpd ymm2, ymm3, ymm0

vblendvpd ymm4, ymm1,B[rdx*8], ymm2

vaddpd ymm5, ymm3, ymm4

vmovaps A[rdx*8], ymm5

add rdx, 4

cmp rdx, 1000

jl .B1.2 AVX SSE4.1

SSE2

Software and Services Group Optimization Notice

Vectorization Report

– “Existence of vector
dependence”

– “Non-unit stride used”

– “Mixed Data Types”

– “Condition too Complex”

– “Condition may protect
exception”

– “Low trip count”

– “Subscript too complex”

– ‘Unsupported Loop
Structure”

– “Contains unvectorizable
statement at line XX”

– “Not Inner Loop”

– "vectorization possible but
seems inefficient"

– “Operator unsuited for
vectorization”

“Loop was not vectorized” because:

Software and Services Group

Elemental Functions

• Use scalar syntax to describe an operation on a single element
• Apply operation to arrays in parallel

• Utilize both vector parallelism and core parallelism

_declspec(vector)

double option_price_call_black_scholes

(double S,double K,double r,double sigma,double time)

{

double time_sqrt = sqrt(time);

double d1 =

(log(S/K)+r*time)/(sigma*time_sqrt)+0.5*sigma*time_sqrt;

double d2 = d1-(sigma*time_sqrt);

return S*N(d1) - K*exp(-r*time)*N(d2);

}

cilk_for (int i=0; i < NUM_OPTIONS; i++) {

call_serial[i] = option_price_call_black_scholes(S[i], K[i], r, sigma, time[i]);

}

Software and Services Group Optimization Notice

CPU-Dispatch

Adding Portability

20

Software and Services Group Optimization Notice

“I’ve stopped using the Intel
compiler. Each time I ship the
product to a customer, they
complain that applications

crashes”!”

A games developer at a recent networking event.A games developer at a recent networking event.A games developer at a recent networking event.A games developer at a recent networking event.

21

Software and Services Group Optimization Notice

Imagine this scenario:

1. Your IT dept have just bought you the latest and
greatest Intel based workstation.

2. You’ve heard auto-vectorisation can make a real
difference to performance

3. You enable auto-vectorisation using -xhost

4. You boast to your colleagues, “my application runs
faster than anything you can write…”

5. You send the application to a colleague – it refuses to
run.

Software and Services Group Optimization Notice

What might be the issue?

How can it be overcome?

23

Software and Services Group Optimization Notice

Two Key Decisions to be Made :

1. How do we introduce the vector code ?

2. How do we deal with the multiple SIMD

instruction set extensions like SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2, AVX …?

Software and Services Group Optimization Notice

Out-of-the-box behaviour – Intel Compiler

• Automatic-vectorisation is enabled by default

• (turn it off with –no-vec)

• The option –msse2 is used by default (as long
as no x, ax or –m option has been used)

-msse2: “May generate Intel® SSE2 and SSE
instructions. This value is only available on
Linux systems”.

25

Software and Services Group Optimization Notice

Building for non-intel processors (-m)
Option Description

sse4.1 May generate Intel® SSE4.1, SSSE3, SSE3, SSE2, and SSE instructions.

ssse3 May generate Intel® SSSE3, SSE3, SSE2, and SSE instructions.

sse2 May generate Intel® SSE2 and SSE instructions.

sse This option has been deprecated; it is now the same as specifying

ia32.

ia32 Generates x86/x87 generic code that is compatible with IA-32

architecture.

26

This option tells the compiler to generate code specialized for the processor that

executes your program.

Code generated with these options should execute on any compatible, non-Intel

processor with support for the corresponding instruction set.

Software and Services Group Optimization Notice

Building for Intel processors (-x)

27

Option Description

AVX AVX, SSE4.2, SSE4.1, SSSE3, SSE3, SSE2, and SSE instructions .

SSE4.2 SSE4 Efficient Accelerated String and Text Processing instructions supported by Intel® Core™ i7

processors. SSE4 .1, SSSE3, SSE3, SSE2, and SSE. May optimize for the Intel® Core™ processor

family.

SSE4.1 SSE4 Vectorizing Compiler and Media Accelerator, SSSE3, SSE3, SSE2, and SSE . May optimize

for Intel® 45nm Hi-k next generation Intel® Core™ microarchitecture.

SSE3_ATOM MOVBE , (depending on -minstruction), SSSE3, SSE3, SSE2, and SSE . Optimizes for the Intel®

Atom™ processor and Intel® Centrino® Atom™ Processor Technology

SSSE3 SSSE3, SSE3, SSE2, and SSE. Optimizes for the Intel® Core™ microarchitecture.

SSE3 SSE3, SSE2, and SSE. Optimizes for the enhanced Pentium® M processor microarchitecture

and Intel NetBurst® microarchitecture.

SSE2 SSE2 and SSE . Optimizes for the Intel NetBurst® microarchitecture.

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Auto-Vectorization –Running on Sandy
Bridge

28

for(i=0;i<NUM;i++)
{

j[i] = h[i] + i + 3
}

–xAVX

AVX

CPU ID

Running on a CPU
supporting AVX

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Auto-Vectorization

29

for(i=0;i<NUM;i++)
{

j[i] = h[i] + i + 3
}

AVX

CPU ID

Fatal Error: This program

was not built to run in your

system.

Please verify that both the

operating system and the

processor support Intel(R)

AVX.
Running on a CPU not
supporting AVX

–xAVX

Software and Services Group Optimization Notice

Using –ax compiler option …

• Generates multiple paths if there is a
performance benefit

• Generates a base line path

• Other options (e.g. -O3) control the base line
path

• At runtime path chosen based on what
processor code is running on

30

Software and Services Group Optimization Notice

The Base line

• Use -m or –x to set base line

• -m for non-intel processors

• -x for intel processors

• If no ––––mmmm or ––––xxxx, compiler defaults to –mSSE2

• -m and –x are mutually exclusive

31

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

CPU Dispatching

32

for(i=0;i<NUM;i++)
{

j[i] = h[i] + i + 3
}

Base line
(set with –m or –x option)
SSE2

AVX

SSE2

CPU ID

–axAVX

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Generic low-spec CPU (no support of AVX)

33

for(i=0;i<NUM;i++)
{

j[i] = h[i] + i + 3
}

Base line
(set with –m or –x option)
SSE2

AVX

SSE2

CPU ID

–axAVX

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Sandy Bridge (supports AVX)

34

for(i=0;i<NUM;i++)
{

j[i] = h[i] + i + 3
}

Base line
(set with –m or –x option)
SSE2

AVX

SSE2

CPU ID

Software and Services Group Optimization Notice

Running on Intel Processors

• If –ax and –x are used together

• Base line will execute on Intel compatible
processors specified by the -x

35

Software and Services Group Optimization Notice

Running on Intel and non-Intel processors

• If –ax and –m are used together

• Base line will execute on non-Intel processors
compatible with the processor type specified by
-m

36

Software and Services Group Optimization Notice

What option do AMD recommend?

37

http://developer.amd.com/Assets/CompilerOptQuickRef-61004100.pdf

Software and Services Group Optimization Notice

Quiz – what option is best?

1. You application will only ever run on the same
CPU as you development machine

2. Your application will run on a farm of AMD
Opterons (4100) and Intel i7s

3. Your application will run on Sandy Bridge
Machines and Core 2.

4. Your have no clue what machine the code will
run on.

Software and Services Group Optimization Notice

Benefit of CPU Dispatch

Code

• still works on older processors

• Works properly on non-intel CPUs
– Non-intel processors will ALWAYS take the base-line

• Code can take advantage of latest generation
of CPUs

39

Software and Services Group Optimization Notice

Manual Processor Dispatch

40

Software and Services Group Optimization Notice

Manual processor Dispatch

• Allows you to write processor-specific code

• Provide more than one version of code

• Use __declespec(cpu_dispatch(cpuid,cpuid…)

41

Software and Services Group Optimization Notice

CPUID Arguments

42

Argument for cpuid Processors

future_cpu_16

(subject to change)

2nd generation Intel® CoreTM processor family with support for Intel® Advanced

Vector Extensions (Intel® AVX).

core_aes_pclmulqdq Intel® CoreTM processors with support for Advanced Encryption Standard (AES)

instructions and carry-less multiplication instruction

core_i7_sse4_2 Intel® CoreTM processor family with support for Intel® SSE4 Efficient Accelerated

String and Text Processing instructions (SSE4.2)

atom Intel® AtomTM processors

core_2_duo_sse4_1 Intel® 45nm Hi-k next generation Intel® CoreTM microarchitecture processors with

support for Intel® SSE4 Vectorizing Compiler and Media Accelerators instructions

(SSE4.1)

core_2_duo_ssse3 Intel® CoreTM2 Duo processors and Intel® Xeon® processors with Intel®

Supplemental Streaming SIMD Extensions 3 (SSSE3)

pentium_4_sse3 Intel® Pentium 4 processor with Intel® Streaming SIMD Extensions 3 (Intel® SSE3),

Intel® CoreTM Duo processors, Intel® CoreTM Solo processors

pentium_4 Intel® Intel Pentium 4 processors

pentium_m Intel® Pentium M processors

pentium_iii Intel® Pentium III processors

generic Other IA-32 or Intel 64 processors or compatible processors not provided by Intel

Corporation

Software and Services Group Optimization Notice

Manual Dispatch Example

43

#include <stdio.h>

// need to create specific function versions

__declspec(cpu_dispatch(generic, future_cpu_16))

void dispatch_func() {};

__declspec(cpu_specific(generic))

void dispatch_func() {

printf("Code for non-Intel processors\and generic Intel\n");

}

__declspec(cpu_specific(future_cpu_16))

void dispatch_func() {

printf("Code for 2nd generation Intel Core processors goes here\n");

}

int main() {

dispatch_func();

printf("Return from dispatch_func\n");

return 0;

}

Software and Services Group Optimization Notice

Questions to Ask

• Is my application going to run on a different CPU to

my development platform?

• Is my application going to run on one specific
generation of CPU?

• Is my application just gong to run on just Intel CPUs?

• Will my application be running on non-intel
processors?

44

Software and Services Group Optimization Notice

A Case Study

An Engine Simulator

Software and Services Group Optimization Notice

The Simulation Environment

www.pishurlok.com

Software and Services Group Optimization Notice

The Simulation Frames

T2

T3

T4

a

b

c

Frame 1 Frame 2 Frame 3

Tick

ADC
Complete

Interrupt
Request

Model

Logger

Script

Software and Services Group Optimization Notice

Matlab design of the Engine Simulator

Software and Services Group Optimization Notice

Results on 100k loop simulation

CPU No Auto-

Vectorisation

With Auto-

Vectorisation

Speedup

P4 39.344 21.9 1.80

Core 2 5.546 0.515 10.77

Speedup 7.09 45.52 76

Software and Services Group Optimization Notice

Vtune confirms reason for Speedup

CPU EVENT Without Vect With Vect

CPU_CLK_UNHALTED.CORE 16,641,000,448 1,548,000,000

INST_RETIRED.ANY 3,308,999,936 1,395,000,064

X87_OPS_RETIRED.ANY 250,000,000 0

SIMD_INST_RETIRED 0 763,000,000

Full paper available here: http://edc.intel.com/Link.aspx?id=1045

Software and Services Group Optimization Notice

Summary of Simulation Performance
Improvements

• Performance gains through migrating to
newer silicon

• Performance gains by using Intel compiler.

Software and Services Group Optimization Notice

Closing Remarks

• Try Auto-vectorisation – it can make a
difference!

• Out-of-the-box use does not deliver the best
optimisation

• If you are running on more than one generation
of CPU use –ax (CPU dispatching)

• Use –m option on non-intel CPUs

52

Software and Services Group Optimization Notice

Any Questions

53

Software and Services Group

Optimization Notice

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or
utilize options that optimize for instruction sets that are available in both Intel® and non-
Intel microprocessors (for example SIMD instruction sets), but do not optimize equally for
non-Intel microprocessors. In addition, certain compiler options for Intel compilers,
including some that are not specific to Intel micro-architecture, are reserved for Intel
microprocessors. For a detailed description of Intel compiler options, including the
instruction sets and specific microprocessors they implicate, please refer to the “Intel®
Compiler User and Reference Guides” under “Compiler Options." Many library routines that
are part of Intel® compiler products are more highly optimized for Intel microprocessors
than for other microprocessors. While the compilers and libraries in Intel® compiler
products offer optimizations for both Intel and Intel-compatible microprocessors, depending
on the options you select, your code and other factors, you likely will get extra performance
on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not
optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel microprocessors. These optimizations include Intel® Streaming SIMD
Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and
Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other
optimizations. Intel does not guarantee the availability, functionality, or effectiveness of
any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining
the best performance on Intel® and non-Intel microprocessors, Intel recommends that you
evaluate other compilers and libraries to determine which best meet your requirements. We
hope to win your business by striving to offer the best performance of any compiler or
library; please let us know if you find we do not.

Notice revision #20101101

Software and Services Group Optimization Notice

Legal Disclaimer
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the
approximate performance of Intel products as measured by those tests. Any difference in system hardware or
software design or configuration may affect actual performance. Buyers should consult other sources of information
to evaluate the performance of systems or components they are considering purchasing. For more information on
performance tests and on the performance of Intel products, reference www.intel.com/software/products.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino Inside, Centrino logo,
Cilk, Core Inside, FlashFile, i960, InstantIP, Intel, the Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel
Atom, Intel Atom Inside, Intel Core, Intel Inside, Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel
NetBurst, Intel NetMerge, Intel NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel
vPro, Intel XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium Inside, skoool,
Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon Inside are trademarks of Intel
Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2010. Intel Corporation.

Software and Services Group Optimization Notice

Software and Services Group Optimization Notice

Backup

57

