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ABSTRACT 

This technical report introduces Trill – a new query processor for 

analytics. Trill fulfills a combination of three requirements for a 

query processor to serve the diverse big data analytics space: (1) 

Query Model: Trill is based on a tempo-relational model that 

enables it to handle streaming and relational queries with early 

results, across the latency spectrum from real-time to offline; (2) 

Fabric and Language Integration: Trill is architected as a high-

level language library that supports rich data-types and user 

libraries, and integrates well with existing distribution fabrics and 

applications; and (3) Performance: Trill’s throughput is high across 

the latency spectrum. For streaming data, Trill’s throughput is 2-4 

orders of magnitude higher than today’s comparable streaming 

engines. For offline relational queries, Trill’s throughput is 
comparable to a major modern commercial columnar DBMS. 

Trill uses a streaming batched-columnar data representation with a 

new dynamic compilation-based system architecture that addresses 

all these requirements. In this technical report, we describe Trill’s 

new design and architecture, and report experimental results that 

demonstrate Trill’s high performance across diverse analytics 

scenarios. We also describe how Trill’s ability to support diverse 

analytics has resulted in its adoption across many usage scenarios 

at Microsoft.  

1. INTRODUCTION 
Modern businesses accumulate large amounts of data from various 

sources such as sensors, devices, machine logs, and user activity 

logs. As a consequence, there is a growing focus on deriving value 

from the data by enabling timely analytics. In practice, big data 

analytics requires a diverse range of types of analytics, with a 

variety of latency settings over which the analytics is applied:  

1) Real-time streaming queries: These include queries on real-time 

data, which may reference slow-changing data such as social 

network graphs or data from data markets [14]. For example, notify 

a smartphone user if any of their Facebook friends are nearby.  

2) Temporal queries on historical logs: This includes back-testing 

streaming queries on historical logs; e.g., compute the average 

click-through-rate of ads in a 10-minute window, on a 30-day log. 

3) Progressive relational queries on collected data: Data scientists 

perform a series of interactive exploratory queries over logs to 

better understand the data. Computing progressively, i.e., providing 

immediate early results on partial data and refining as more data is 

streamed in, allows productive and cost-effective exploration. 

These analytics are interconnected: for instance, queries may 

correlate real-time with historical logs, or real-time data may be 

                                                                 

1 Microsoft Research Technical Report MSR-TR-2014-54, April 2014. 

logged for progressive analysis using an interactive tool. The 

diverse and interconnected nature of analytics has resulted in an 

ecosystem of disparate tools, data formats, and techniques [13]. 

Combining these tools with application-specific glue logic in order 

to execute end-to-end workflows is a tedious and error-prone 

process, with poor performance and the need for translation at each 

step. Further, the lack of a unified data model and semantics 

precludes reusing logic across tools, developing queries on 

historical data and then deploying them directly to live streams.  

1.1 Requirements for Diverse Analytics 
We identify three key requirements for an analytics engine to 

successfully serve this diverse environment (here, we focus on the 

above-mentioned analytics types and settings; other requirements 

such as graph analytics are interesting areas for future work): 

1) Query Model: Existing analytics engines either target a specific 

point in the diverse analytics space (e.g., DBMS for offline 

relational) or expose low-level APIs (such as an incremental key-

value abstraction [29][38]) that place the burden of specifying non-

declarative logic on the application developer. 

The tempo-relational (temporal) query model [31][1] conceptually 

unifies the diverse analytics space. Briefly, this model represents 

datasets as a time-versioned database, where each tuple is 

associated with a validity time interval. Temporal datasets are 

presented as an incremental stream to a temporal stream processing 

engine (SPE) that processes a query incrementally to produce a 

result temporal dataset. We can use an SPE to: (1) deploy 

continuous queries across real-time streams and historical data; (2) 

back-test real-time queries over historical logs; and (3) run 

relational or temporal queries over log data. Recently, we have also 

shown how a temporal SPE can handle progressive relational 

queries, by using time to denote query progress [2]. 

Some SPEs such as NiagaraST [9] and StreamInsight [8] support a 

full tempo-relational algebra, whereas other SPEs such as Spark 

Streaming [34] and Naiad [35] support limited variants of the 

model. But today’s SPEs fall short as unified analytics engines, 

because they lack fabric integration and high performance across 

the diverse analytics space. 

2) Fabric & Language Integration: Analytics workflows today are 

driven by an application, which uses the engine either directly or 

via a combination of distribution fabrics (such as Storm [29], 

YARN [17], and Orleans [16]) for different parts of the pipeline. 

To enable integrated execution, an analytics engine must be usable 

as a library from a hosting high-level language (HLL). HLLs such 

as Java and C# provide a rich universe of data-types, libraries, and 

custom logic that needs to integrate seamlessly with the engine. 



DBMSs provide very high performance, but use a server model 

over a restricted universe of SQL data-types (e.g., int and bigint) 

and expressions (e.g., a filter predicate A < 10), with limited 

support for richer logic via integration mechanisms such as SQL 

CLR [36]. Spark [28] integrates with Scala, but exposes a multi-

node server model. StreamInsight uses language-integrated 

queries (LINQ) [32] for seamless query specification from a HLL, 

but follows a server model and restricts data-types. Naiad [35] uses 

LINQ and processes arbitrary HLL data-types and expressions, 

while incremental key-value engines such as Storm expose a low-

level key-value-based API with rich data-type support. But these 

systems lack performance and a declarative query model. One 

could build a declarative operator layer over such systems, but this 

layered approach further impacts performance. 

3) Performance: High performance is a critical requirement for 

analytics. Specifically, we need an engine to automatically and 

seamlessly adapt performance in terms of latency and throughput, 

across the analytics spectrum from offline to real-time. 

Figure 1 depicts single-machine throughput on today’s engines, for 

a simple filter query on an in-memory dataset (see §7 for workload 

details). SPE-X and DB-X represent a modern commercial SPE and 

columnar DBMS respectively. We see that today’s SPEs have 

lower throughput (by 500X or more) than modern columnar 

DBMSs such as Vertica [14], SQL Server [6], and Shark [28] that 

push the limits of relational performance, approaching memory-

bandwidth speeds for common operations. However, these DBMSs 

lack rich HLL data-type, expression and efficient HLL library 

support. Further, they use the non-incremental model, which targets 

a specific (offline relational) point in the analytics space. 

To summarize, these capabilities – rich query model, fabric and 

language integration, and high performance – appear to 

fundamentally be at odds in today’s systems, as seen in Table 1. 

1.2 Today’s Engine Architectures 
To understand why these requirements are not simultaneously 

addressed by today’s systems, we start by classifying existing 

engine architectures into three categories: event-at-a-time, batch-

at-a-time, and offline. These are shown in Figure 2(a)-(c); their 

throughputs are shown in Figure 1. Low latency motivated the 

traditional event-at-a-time architecture of SPEs such as SPE-X, but 

this limits throughput to very low levels. Naiad [35] processes 

events one batch at a time, which provides better throughput. 

However, we notice that offline DBMSs still provide significantly 

higher throughput (by ~500X) than batch-at-a-time SPEs. 

The reason for this vast performance difference is that language 

integration in systems such as Naiad precludes the use of efficient 

DB-style data organizations such as columnar, i.e., user expressions 

are evaluated as black-boxes over individual rows. Further, the end 

user has to manually navigate the latency spectrum by selecting 

individual batch sizes. Finally, temporal operators have to be 

written as a layer outside the engine, and thus cannot be optimized 

for performance. On the other hand, relational engines support only 

the SQL model over offline data with high latency, and do not 

provide deep fabric or language integration. 

1.3 A New Hybrid System Architecture 
We introduce Trill (for a trillion events per day), a new analytics 

engine that addresses all these requirements: 

1) Query Model: Trill is based on the temporal logical data model, 

which enables the diverse spectrum of analytics described earlier: 

real-time, offline, temporal, relational, and progressive. 

2) Fabric & Language Integration: Trill is written as a library in 

an HLL (C#), and thus benefits from arbitrary HLL data-types, a 

rich library ecosystem, integration with arbitrary program logic, 

ingesting data without “handing off” to a server or copying to native 

memory, and easily embedding within scale-out fabrics and as part 

of a Cloud application workflow. 

3) Performance: Trill handles the entire space of analytics 

described earlier, at best-of-breed or better levels of performance 

(see Figure 1). With temporal queries over streaming data, Trill 

processes events at rates that are 2-4 orders-of-magnitude higher 

than existing commercial streaming engines. Further, for the case 

of offline relational (non-temporal) queries over logs, Trill’s query 

performance is comparable to a modern columnar DBMS, while 

supporting a richer query model and language integration. Trill is 

very fast for simple payload types (common for early parts of a 

pipeline), and degrades gracefully as payloads become complex, 

such as machine learning models (common on reduced data). 

Trill achieves all these requirements using a hybrid system 

architecture – see Figure 2(d) – that combines novel ideas and key 

prior ideas from specific points in the analytics spectrum: 

1) Support for Latency Spectrum (§3): Trill queries consist of a 

DAG of operators that process a stream of data-batch messages. 

Each data-batch consists of multiple events carefully laid out in 

timestamp order in main memory. We find that batching is useful 

in an SPE to improve throughput, particularly when combined with 

engineering practices we report here, such as a very careful 

organization of inner per-batch loops in operators. Critically, unlike 

other batched streaming systems such as Spark Streaming [34], our 

temporal model allows batching to be purely physical (not 

commingled with application time) and therefore easily variable: 

query results are always identical to the case of per-event 

processing, regardless of batch sizes or data arrival rates.  

While batching provides high throughput, it may result in low and 

unpredictable latency which can be unacceptable in a streaming 

setting. To solve this, Trill supports a new form of punctuations, 

which allow users to control desired latency. Punctuations work 

alongside batching to transparently tradeoff throughput for latency. 

In Trill, for a user-specified latency, higher input loads result in 

larger batches that provide better throughput, which in turn allows 

the system to better handle the increased load. 

Table 1: Desirable features in existing systems and Trill. 

 
Require-

ment 

Feature 
Stream Processing 

Engines 
Columnar 
Databases 

Trill 
Examples 

 

Stream-
Insight, 
STREAM 

Storm 
Naiad, 
Spark 

Streams 

Vertica, 
Shark, SQL 

Server 

Query 
Model 

Temporal Yes Yes Yes No Yes 
Incremental Yes Yes Yes No Yes 

Fabric & 
Language 
Integration  

HLL 
Integration 

Some No Yes No Yes 

Library on 
Fabrics 

No No No No Yes 

Perfor-
mance 

Throughput Low Low Mid High High 
Batched 

Ops 
No No Yes Yes Yes 

Latency 
Spectrum 

Yes No No No Yes 

Columnar No No No Yes Yes 

 



2) Columnar Processing in a High-Level Language (§4): Systems 

like Naiad and Spark Streaming batch data, but in order to reach the 

performance of modern DBMSs, Trill uses a columnar data 

organization within batches. We adopt and extend columnar 

techniques [14][12][6] and apply them over temporal data. Our 

control fields (e.g., timestamps) are also columnar, so we pay the 

cost of temporality only when necessary. 

Critically, in order to benefit from columnar processing (proven by 

DBMSs) in an HLL, we use a novel dynamic HLL code generation 

technique that constructs and compiles on-the-fly batches and 

operators in the HLL, all of which operate over columnar batched 

data. Both columnarization and batching are transparent to users, 

who program over the usual row-oriented view of data streams. To 

achieve this, we leverage the abstract syntax trees of lambda 

expressions [21] (available in today’s HLLs) to interpret and 

rewrite user queries (such as select expressions) into inlined 

columnar accesses inside tight per-batch loops, with few sequential 

memory accesses and no method calls inside the loop. 

Dynamic HLL code generation also enables us to (1) handle strings 

more efficiently by storing them as character arrays within batches, 

and rewriting user expressions to operate directly over these arrays; 

and (2) enable fast serialization by sending columns over the wire 

without any fine-grained encoding or decoding, which provides a 

10X benefit over standard HLL serialization schemes such as Avro. 

3) Fast Streaming Operators (§5): Trill exploits the coarse-grained 

columnar nature of data-batches and the timestamp-order of data 

via a set of new algorithms for streaming operators. We propose a 

powerful grouped user-defined aggregation framework; it uses an 

expression-based user API that lets user-defined extensions achieve 

performance similar to hand-written custom logic. In fact, our built-

in aggregates in Trill are written using the user-defined framework. 

Trill uses a new stream property derivation framework (§5.3) that 

leverages data characteristics to select from a small set of generated 

physical operators at compile-time. For instance, operators over 

progressive queries do not need to handle event removal at input. 

4) Library Mode & Multi-core (§6): By default, Trill queries run 

only on the thread that feeds data to it. This “pure library” mode 

makes Trill ideal for embedding within frameworks such as 

Orleans [16] and YARN [17]. For higher performance on multi-

core, Trill supports a new two-level streaming temporal map-

reduce operation, executed using a lightweight optional scheduler. 

Detailed experiments (§7) comparing Trill to a commercial DBMS 

engine and a commercial SPE over real and synthetic data 

demonstrate Trill’s high performance across various settings and its 

utility for in-memory interactive analytics. Trill is being used 

extensively within Microsoft – §7.6 overviews the broad range of 

usage scenarios we have encountered in practice. Finally, we note 

that while Trill is written in C#, its architecture applies to other 

HLLs such as Java, which have rich libraries that need to be usable 

in a big data analytics setting. 

2. SYSTEM OVERVIEW WITH EXAMPLE 
Consider a stream of user activity in terms of ad clicks, where each 

event is a HLL data-type: 

  struct UserData { 
     long ClickTime; // Time of click on advertisement 
     long UserId;    // ID of user who clicked on ad 
     long AdId;      // ID of the advertisement 
  } 
The application wishes to compute, for each ad, a 5-minute 

windowed count of clicks on that ad, across a 5% sample of users, 

with a tolerable latency of 10 seconds. 

2.1 User Experience 
Users can ingress data into Trill from a variety of sources: real-time 

push-based sources; datasets cached in main memory; or data 

streamed from a file or network. As part of ingress, the user 

specifies a desired latency requirement (time) as an ingress policy. 

Further, they need to identify the application time field in the data 

for their query logic. For example, the user may create a stream 

endpoint as: 

var str = Network.ToStream(e => e.ClickTime, Latency(10secs)); 

Next, the query logic is written in Trill’s temporal LINQ language: 

var query = str.Where(e => e.UserId % 100 < 5) 
.Select(e => { e.AdId }) 
.GroupApply(e => e.AdId, s => s.Window(5min).Aggregate(w => w.Count())); 

This query first runs a filter (Where) to sample users. The argument 

to Where in parentheses is called a lambda expression [21]; it 

represents an abstract syntax tree of the logical operation to be 

performed for each row (event) of type UserData in the stream to 

determine if it is dropped. Here, events with UserId % 100 < 5 are 

retained by the filter. Filter is followed by a projection (Select) to 

drop all columns except AdId, and a grouped operation (GroupApply) 

whose first argument is the grouping key (AdId) and the second is 

the per-group operation (windowed count aggregate). Note that the 

window argument is in application time, i.e., query semantics and 

results are unaffected by the latency specification. 

Finally, the result can be “subscribed” to by any listener as follows: 

query.Subscribe(e => Console.Write(e)); // write results to console 

A full description of the Trill programming surface is outside the 

scope of this technical report, but we note that it supports all the 

Figure 2: System architectures: (a) Traditional SPE; (b) Naiad; (c) Columnar DB; 

(d) Trill’s hybrid architecture. 
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well-known streaming operators, special operations to manipulate 

time, as well as a high-performance extensibility framework (see 

Section 5). 

2.2 System Overview and Challenges 
We compile the user query using standard techniques [4] into a 

DAG of streaming query operators. Each operator processes and 

produces a stream of messages, the unit of granularity that flows 

through Trill. Data is pushed to Trill from external sources, either 

as fine-grained events or directly as batches of events. Trill batches 

the data at ingress into messages, if needed, and pushes them 

through the operators. The output may be consumed directly as 

messages (for example, to serialize and write to disk or send over 

the network) or parsed into fine-grained events for human 

consumption. The key challenges and resulting design decisions are 

summarized below and discussed in the rest of the technical report. 

2.2.1 Support for Latency Spectrum (Sec. 3) 
Trill uses an adaptive physical batching model to support the 

latency spectrum from real-time to offline. We support two kinds 

of messages: data-batch and punctuation. A data-batch is simply a 

variable-sized batch of events, whereas a punctuation is a control 

message that forces Trill to produce output, terminating batches if 

necessary. Batching and punctuations help Trill provide high 

performance across the entire latency spectrum. In our example, the 

user specification of 10secs latency results in Trill batching events 

for at most 10secs, at which point a punctuation is inserted into the 

stream to force batches through the system and generate output. We 

discuss adaptive batching with punctuations in Section 3. 

2.2.2 Enabling Columnar with a HLL (Sec. 4) 
As we saw in Section 1, batching alone does not bridge the gap 

between databases and streaming engines. We need to organize the 

data within batches in a columnar format, so that only the relevant 

data is accessed during query processing. In our running example, 

the first Where should read only the column corresponding to 

UserId from main memory and write out a bit-vector per batch to 

indicate tuples that pass the filter. Similarly, the Select should be a 

constant-time operation per batch that simply drops all payload 

columns in the batch other than AdId. 

The challenge is to leverage a columnar organization in operators, 

while providing a row-oriented user view of data in a HLL. Section 

4 introduces our solution: dynamic HLL code generation. This 

technique speeds up operators by rewriting users’ row-oriented 

lambda expressions into columnar accesses inside tight per-batch 

loops. The loops usually have few sequential memory accesses and 

no method calls. Section 4 also presents several other ways in 

which we exploit code generation for performance within the HLL. 

2.2.3 Fast Grouped Streaming Operators (Sec. 5) 
Our running example next needs to compute a windowed count per 

AdId. Trill supports a GroupApply operator [1], which can execute 

any sub-query for each logical grouping key. We need to support 

efficient grouping and design new efficient algorithms for temporal 

operators that fully exploit the batched nature of input and output 

streams and can be used across temporal and progressive relational 

operations. We also introduce new stream properties for exploiting 

data characteristics to select from a small set of generated physical 

operators at compile-time. For instance, the Count operator in our 

example can exploit the fact that window sizes are constant, and 

can therefore expire windows in the order that data is received. 

2.2.4 Library Mode and Multi-Core Support (Sec. 6) 
We often need Trill to work as a pure library that does not own its 

own threads; for instance, when Trill is used inside fabrics that 

manage their own threads. We provide a no-scheduler library mode 

where processing occurs only on a thread that pushes data to Trill. 

Other situations require Trill to provide high performance by using 

all cores – here we use a novel temporal map-reduce operation that 

is executed on multiple cores using a lightweight scheduler that is 

configured by the application. In our running example, this facility 

allows us to scale out both the stateless operations (where and filter) 

and the grouped windowed count to use all the cores on a machine. 

3. SUPPORT FOR LATENCY SPECTRUM 
As described earlier, Trill’s operators process a stream of messages, 

which can either be data-batches or punctuations. 

Data-batches     A data-batch represents a batch of events in Trill. 

Each event in the data-batch consists of a payload and two 

timestamps: (1) sync-time, the logical time at which the event 

occurs; (2) other-time, an additional timestamp, discussed in 

Section 5 that indicates the extent of the data window. Sync-time is 

an important concept in Trill; it denotes the logical instant when a 

fact about the stream content becomes known. Events in a batch 

occur in strictly non-decreasing sync-time order. 

Data-batches allow Trill to tailor throughput based on desired 

latencies, exploiting the fact that larger batches lead to better 

throughputs. Thus, offline relational queries over offline data use 

larger batches, up to a maximum batch size; whereas, progressive 

and real-time queries select batch sizes based on the desired 

interactivity or acceptable result latency (delay), specified by users. 

Punctuations   A punctuation is a control message with a 

timestamp T, based on the user-provided latency specification. A 

punctuation serves two purposes: (1) it denotes the passage of 

application time until T, in the absence of data, in order to clean up 

system state; and (2) it enforces a flushing of data-batch messages 

through Trill, to force processing and output generation until T. 

Each operator internally batches events (up to the maximum batch 

size) before sending the batch to the next operator. Punctuations 

“kick” the system into producing output, which may involve 

pushing out partially-filled data batches. 

Trill injects punctuations based on the user-specified latency (10 

seconds in our running example), which allows us to dynamically 

adapt batch sizes to latency requirements. There is a maximum 

batch size, and the stream may contain multiple batches between 

two punctuations. Interestingly, for a given latency specification, a 

higher input event rate (e.g., during periods of heavy load) results 

in larger batches, which in turn increases system throughput to 

better handle the higher load. This form of adaptive batching 

enables us to use the same engine across a wide range of latency 

requirements, from real-time to offline. 

Finally, we note that our temporal semantics ensure that batching 

is purely physical: it affects only the physical observed latency and 

not the logical query results, which depend only on the data (with 

timestamps) and the query. 

4. ENABLING COLUMNAR WITH A HLL 
While the end-user view of data is row-based, our data-batches 

internally store both control fields and payload fields as columns. 

Specifically, each data-batch contains the following arrays: 

1. SyncTime: This is an array of all the sync-times in the batch. 

2. OtherTime: This is an array of other-time values in the batch. 



3. Bitvector: This is the “event absence” vector – an array with 

one bit per event. A bit value of 0 (or 1) indicates whether the 

corresponding data event exists (or is absent). Our micro-

benchmarks showed that one can perform more than 1 billion 

bitvector tests or sets per second per core. The bitvector allows 

efficient operator algorithms in many cases by avoiding the 

unnecessary movement of data to/from main memory. For 

example, a Where operator can apply the predicate and if the 

predicate fails can set the corresponding bitvector entry to 1. 

These fields are organized into a base class as follows: 

  class DataBatch { 
        long[] SyncTime; 
        long[] OtherTime; 
        Bitvector BV; 
  } 

The payload in Trill is also organized in columnar format, by 

generating (and compiling on-the-fly) a new HLL class that extends 

DataBatch and adds one array field for each field in the payload. 

For example, in case of the UserData payload in our running 

example, we generate a class that looks like: 

  class UserData_Gen : DataBatch { 
        long[] col_ClickTime; 
        long[] col_UserId; 
        long[] col_AdId; 
  } 

Trill supports arbitrary HLL types as payloads. If we cannot 

generate a columnar representation for a given payload type, we 

revert to a non-generated data-batch with a generic payload field 

(TPayload[] Payload), where TPayload is the payload type. 

4.1 Generating Operators 
In order to process generated data-batches, the operators 

themselves need to be generated since they compute over columns. 

The query compiler inspects each operator’s input and output types 

and its user-provided lambda expressions  to generate a carefully 

tailored batch-oriented operator. These generated operators are 

chained together to form the query DAG to which user data is 

pushed. 

Our transformation, in general, is to replace all references to a field 

f with references to col_f[i], the ith row in the column corresponding 

to field f. We describe this process for the initial Where and Select 

operators in our example, where we exploit the semantics of the 

operation and the input lambda expressions to achieve very high 

performance. The subsequent operations are covered in Section 5. 

4.1.1 Where (Filtering) 
Consider the first operation in our example query: Where(e => 

e.UserId % 100 < 5). This filtering operation is compiled into a custom 

operator, a code module that is compiled and loaded  dynamically. 

The argument to Where is a lambda expression as discussed earlier. 

We convert the body of the function so that it operates over the 

column-oriented view of the data and construct a Where operator 

with the resulting code inlined inside a tight loop that iterates over 

the entire data-batch. For each entry in the data-batch, we check if 

the bitvector is 0 – if yes, we apply the filter (inlined into the loop) 

and if the filter does not pass, we set the bitvector entry to 1. A final 

On() call sends the result batch to a downstream operator. The 

pseudo-code for Where for our example is shown below: 

 

Note that it is not always possible to generate a columnar operator. 

For example, a filter might invoke a black-box method on each 

instance of UserData. In this case, we transform the data to its row-

oriented form using a ColumnToRow() operation, and use the non-

generated static (generic) definition of the operator that executes 

the black-box filter expression directly over elements of the 

UserData[] column in non-generated input data-batches. 

4.1.2 Select (Projection) 
The argument to Select is an expression that transforms a value of 

type TPayload into a value of a new return type TResult. Apart 

from converting the expression into inlined accesses on input and 

output columns, we optimize the handling of selection predicates 

that select a subset of input fields, so that they are constant-time 

operations at the batch level instead of having to iterate over each 

row. We do this by just assigning the pointer to the column for each 

input field to the pointer in the output batch. We call this a pointer-

swing. In our running example, the projection Select(e => { 

e.AdId }) is converted into the following generated operator: 

 
We create a new result data-batch of payload type long and pointer-

swing the control fields. We then pointer-swing the array for AdId 

from the source batch to the destination batch. We finally free the 

relevant columns in the input batch and output the result data-batch. 

Notice that since Where and Select are not temporal, we did not have 

to access the timestamp columns in our operators; they were simply 

pointer-swung to output batches in constant time. Thus, we do not 

pay a runtime cost for temporality for these operations. 

4.2 Exploiting Columnar Batches 
Our columnar batch organization with dynamic code generation of 

operators enables us to support several common use-cases where 

traditional HLL engines lose significant performance. 

4.2.1 Serialization and Deserialization 
Serialization of objects in a high-level language is inefficient due 

to the need for fine-grained encoding and decoding of rows. Trill 

data is stored as columnar data-batches, which introduces the 

potential for transporting arrays directly over the wire. However, 

traditional serializers encode arrays on a per-element basis. We 

created a serializer for Trill – called Trillium – that can serialize 

columnar Trill streams 15X to 20X faster than standard row-based 

serializers such as Avro [19] (see Section 7.5). Trillium uses three 

techniques for performance: (1) the serializer and deserializer are 

code-generated to avoid runtime interpretation; (2) generated data-

batches are handled by transferring arrays directly without any fine-

grained encoding or tests, and using the actual used count of the 

data-batch to limit how much data is transferred; (3) memory pools 

void On(UserData_Gen batch) { 
  batch.BV.MakeWritable(); // bitvector copy on write   
  for (int i=0;i<batch.Count; i++) 
     if ((batch.BV[i]==0) &&  
            !(batch.col_UserId[i] % 100 < 5)) 
       batch.BitVector[i] = 1; 
  nextOperator.On(batch); 
} 

void On(UserData_Gen batch) { 
  var r = new AdId_Gen(); // generated result batch 
  r.CloneControlFieldsFrom(batch); 
  // constant time pointer swing of AdId column 
  r.col_AdId = batch.col_AdId.AddReference(); 
  batch.Free(); 
  nextOperator.On(r); 
} 



help reuse the memory into which data-batches are deserialized 

(this is useful when we execute a streaming query over a de-

serialized stream). 

4.2.2 String Handling using MultiString 
Trill supports all HLL types including strings. However, strings in 

a high-level language such as C# or Java are not optimized for 

performance. For example, each string in C# is stored as a separate 

object with a 24-byte overhead per string. Simply using an array of 

strings causes the creation of a large number of small heap objects, 

which results in memory and GC overheads. We instead create a 

MultiString data structure per string column in a data-batch that 

internally stores the individual (true) strings end-to-end in a single 

large string that is accessible as a character array (as with the 

columnar data format, users are unaffected by this transformation). 

The array is augmented with an array of offsets and lengths for the 

true strings. MultiStrings reduce memory and processing costs for 

queries over string data: the string split and substring operations 

can be done by simply creating a new offset/length array, which is 

50X faster than a usual per-string split or substring. Note that a split 

can generate more rows than its input; we ref-count the character 

array across these output batches, creating new offset/length arrays 

for each batch. 

Regular expression matching work as follows: we first compile the 

pattern once for the query, and then execute a standard regular 

expression matcher directly over the large string. Whenever there 

is a match that spans true-string boundaries, we re-execute the 

matching algorithm starting at the specific true string at that 

location, in order to weed out false positives. This technique allows 

us to execute the regular expression logic without fine-grained 

interruptions, which provides very high throughput optimized for 

cases where matches are infrequent. Upper/lower case conversion 

also works similarly. Substring matching (contains) applies the 

Knuth-Morris-Pratt [22] algorithm directly on the MultiString. We 

find that these techniques are up to 6X faster than the usual fine-

grained string operations. 

Arbitrary string operations that cannot be applied directly on the 

MultiString are executed by copying over each string to a 

temporary cached string and executing operations on this string; 

interestingly, we find that even this back-off technique is around 

30% more performant than using fine-grained strings directly, since 

it avoids main memory accesses to randomly located objects. This 

solution for strings extends to other fine-grained heap object types 

such as lists. 

4.2.3 Columnar Memory Pooling 

A critical performance issue in SPEs is the problem of fine-grained 

memory allocation and release, also called garbage collection or 

GC. Automatic GC can be expensive and introduce latency in a 

high level language such as C# or Java. We follow a novel approach 

to memory management that retains the advantages of the high-

level world and yet provides the benefits of unmanaged page-level 

memory management. The advantage of not using unmanaged 

memory is that we completely sidestep the problems associated 

with supporting complex data types. 

Trill employs the notion of a memory pool, which represents a 

reusable set of data structures. One may allocate a new instance of 

a structure by taking it from the pool instead of allocating a new 

object (which can be very expensive). Likewise, when you no 

longer need an object, you return it to the pool instead of letting the 

GC reclaim the memory. 

Trill has two forms of pools: a data structure pool allows you to 

hold arbitrary data structures such as Dictionary objects. They are 

used by operators that may need to frequently allocate and 

deallocate such structures. The data-batch instances (shells) are 

stored in pools and reused. The second type is a data pool for 

payload and control data inside data-batches. The data pool is 

generated, and contains a ColumnPool<T> or each column type T. 

Each ColumnPool<T> contains a latch-free queue of free 

ColumnBatch<T> entries. 

A ColumnBatch<T> type is a wrapper for a column (array) of type 

T, and includes a ref-count for the column. ColumnBatch<T> 

instances are ref-counted, and each ColumnBatch<T> instance 

knows what pool it belongs to. When the RefCount for a 

ColumnBatch<T> instance goes to zero, it is returned to the 

ColumnPool. When an operator needs a new ColumnBatch<T>, it 

requests the ColumnPool for one. The ColumnPool either returns a 

pre-existing ColumnBatch from the pool if any, or allocates a new 

ColumnBatch. Operators use copy-on-write semantics: an operator 

that needs to update a column with a ref-count more than 1 makes 

a copy of the ColumnBatch. 

We use a single shared set of memory pools for each NUMA 

socket. In a streaming system, we expect to reach a “steady state” 

where all the necessary allocations have been performed. After this 

point, there should be very few allocations occurring, as most of the 

time batches would be freed and reused from the pools.  

5. GROUPING & STATEFUL OPERATORS 
We next describe Trill’s grouped temporal operators using our 

running example, which computes a per-ad windowed count. The 

key challenge is to build stateful (e.g., maintaining per-ad counter 

state) operators that operate on batched data and which work well 

across real-time, offline temporal, and progressive scenarios. 

Section 5.3 describes our compile-time stream property framework 

that helps us choose from a small set of such physical operators.  

5.1 GroupApply 
The GroupApply operation accepts a grouping key selector and a 

sub-query, and logically executes the sub-query on each sub-stream 

corresponding to each distinct grouping key. We consider single-

threaded query execution for now; multi-core execution is covered 

in Section 6. GroupApply first creates a stateless Group operator 

that computes grouping keys and adds them to the batches. It adds 
two columns to each data-batch: 

1. Key: An array of all the grouping key values. 

2. Hash: An array of hash values (4-byte) of the keys. 

These columns are materialized so that each (grouped) operator 

does not need to re-compute them. The sub-query (windowed count 

in our running example) is executed on the resulting grouped 

stream. In order to benefit from batched columnar execution within 

the GroupApply, all our operators are designed to accept and 

produce grouped streams. For example, an aggregate operator that 

receives data-batches with <group-key, payload> outputs a stream 

of data-batches with per-group aggregates <group-key, aggregate>. 

We then add an Ungroup operator to remove the grouping key, and 

the ungrouped stream is returned to the user. GroupApply can also 

be nested; Group creates a nested key, consisting of the original and 

the new grouping keys, which gets un-nested at the Ungroup. 



5.2 Temporal Operator Algorithms 
Logically, we view a stream as a temporal database (TDB) [31] that 

is presented incrementally, as in CEDR [3], Nile [11], NiagaraST 

[9], etc. Each event is associated with a data window (or interval) 

that denotes its period of validity. This creates snapshots, a 

sequence of TDB versions across time. The user query is logically 
executed against these snapshots in an incremental manner. 

Events may either arrive directly as an interval, or get broken up 

into a separate insert into (called start-edge) and delete from (called 

end-edge) the TDB. Internally, events have two timestamps (sync-
time and other-time) that are interpreted as follows: 

 When other-time is greater than sync-time, it represents an 

interval with a data window of [sync-time, other-time). 

 When other-time is ∞, it is a start-edge that denotes the 

insertion of an item at sync-time. 

 When other-time is less than sync-time, it is an end-edge that 

occurs at sync-time and deletes an earlier start-edge that 

occurred at the previous timestamp (other-time). 
Consider the stateless Window operator in our running example. It 

simply sets other-time to sync-time + 5mins in order to make the 

data have a 5-minute window duration. Further, it drops end-edges 

by setting their bitvector entry to 1 (since start-edges get converted 

into intervals when we set other-time as shown above). 

5.2.1 User-Defined Snapshot Aggregation 
Grouped aggregation in Trill is done using an operator framework 

called user-defined snapshot, which enables the integration of 

custom incremental HLL logic into stream processing without 

sacrificing performance. It handles the class of operations that 

incrementally compute a result per time snapshot. In fact, all our 

built-in aggregates (including complex multi-valued aggregates 
such as top-k) are implemented using this general framework. 

User Specification    A user implements the following functions: 

  

Here, Func<A, B, ..., X> denotes a function that takes A, B, … 

as input parameter types and outputs a value of type X. All these 

methods are provided as lambda expressions so that Trill can inline 

them into the generated columnar operator code for performance. 

InitialState is a function that takes no input parameters and 

produces an initial state of type TState. Accumulate takes a 

TState, a long timestamp, and an input tuple with payload type 

TInput, and produces a new state of the same type (TState). 

Deaccumulate works similarly. Finally, Difference allows users to 

define the notion of subtracting one state from another; this allows 

users to perform this more efficiently than deaccumulating state 

one event at a time. Our implementation for Count is shown below: 

 
In our running example, the user can compute a streaming count 

using the Aggregate method, as shown below:  
var result0 = inp0.Aggregate(w => w.Count()); 

We also support simultaneous application of multiple aggregates in 

a single snapshot operator, with the ability to combine results on a 

per-snapshot basis. For example, one could write Average as: 

inp0.Aggregate(w => w.Sum(), w => w.Count(), (s, c) => s / c); 

Operator Implementation    Given the above specifications, Trill 

generates a grouped per-snapshot aggregate operator with inlined 

expressions. Our operator uses three data structures: 

1) AggregateByKey: This is a hash table that stores, for every 

distinct key associated with non-empty aggregate state (TState) at 

the current sync-time, an entry with that key and the aggregate state. 

2) HeldAggregates: This uses a hash table called FastDictionary, 

that stores – for the current sync-time T – the aggregated state 

corresponding to keys for which events arrive with sync-time equal 

to T. This hash table does not support the deletion of individual 

keys, but handles fast iteration through all the entries, and supports 

a fast “clear” of  the hash table when time moves forward. We 

describe FastDictionary in Section 5.2.2. 

3) Endpoint Compensation Queue (ECQ): The ECQ contains, for 

each future endpoint (due to an interval event), partially aggregated 

state (HeldAggregates) for that endpoint. In general, the ECQ is a 

priority queue. However, we can often exploit stream properties (cf. 

Section 5.3) to use a FIFO queue or eliminate the ECQ altogether. 

For each data-batch, we iterate through the events in the batch. We 

first look up each event in HeldAggregates. If not found, we look 

in AggregateByKey, and if it contains the key, we ref-copy the state 

into HeldAggregates (and output an end-edge for the old aggregate 

state). We then update the current state for that key by inlining the 

appropriate expression: Accumulate for start-edge and interval, and 

Deaccumulate for end-edge. In case of intervals, we also 

accumulate state for the (future) end timestamp into the ECQ. 

When sync-time moves forward, we inline ComputeResult and 

output start-edges for the non-empty aggregates in HeldAggregates 

and clear it. Empty entries are removed from AggregateByKey. We 

then process the endpoints in ECQ between now and the new sync-

time, using the inlined Difference expression to update and output 

state for each endpoint. Similar processing is performed on 

receiving a punctuation that moves the current sync-time forward. 

Our implementation caches the state associated with the current 

key, so that the common case where many events have the same 
key can be executed very efficiently without frequent hash lookups. 

5.2.2 FastDictionary 
The FastDictionary is a lightweight hash table optimized for 

frequent lookups, small sets of keys, frequent clearing of the entire 

data structure, no deletes, and frequent iteration over all keys in the 

table. Briefly, FastDictionary uses open addressing with sequential 

linear probing. The basic data structure is a prime-number sized 

array A of <key, value> pairs. An entry to be lookup up or inserted 

is hashed to an index in A. If that entry is occupied we scan entries 

in A sequentially until we find the element (or an open slot which 

indicates lookup failure). The sequential probing is well suited to 

CPU caching behavior, and with a low load factor (1/16 to 1/8) we 

get a high likelihood of finding an element very quickly. We resize 

the hash table when necessary to maintain the load factor – 

streaming workloads typically reach a stable size quickly, after 

which hash table resizes become very rare. 

The array A is augmented with a bitvector B, which has one bit per 

array element to indicate whether that entry is used. B allows 

iteration to be performed very efficiently, and insertion can find an 

empty slot index without having to access A. Further, clearing the 

Expression<Func<TState>> InitialState(); 
Expression<Func<TState, long, TInput, TState>> Accumulate(); 
Expression<Func<TState,long, TInput, TState>> Deaccumulate(); 
Expression<Func<TState, TState, TState>> Difference(); 
Expression<Func<TState, TResult>> ComputeResult(); 
 

InitialState: () => 0L 
Accumulate: (oldCount, timestamp, input) => oldCount + 1 
Deaccumulate: (oldCount, timestamp, input) => oldCount - 1 
Difference: (leftCount, rightCount) => leftCount - rightCount 
ComputeResult: count => count 
 



dictionary is straightforward: we simply zero out the bitvector. 

Accesses to the bitvector are very fast due to cache locality. 

We find that the FastDictionary performs up to 40% better than a 

carefully designed general hash table, when used to maintain per-

key state for the current sync-time in the snapshot operator. 

5.2.3 Temporal Join 
Trill includes a temporal symmetric hash join (SHJ) operator which 

performs a temporal equi-join by the current grouping key of the 

stream. SHJ processes input data in sync-time order across its two 

inputs. When a payload from the two inputs has the same key and 

overlaps temporally, the join executes a result selector expression 

to generate output for the pair of payloads. SHJ maintains two hash-

tables (also called synopses) – one for the left and one for the right 

side. We optimize the implementation for two special cases: 

1) The input has only start-edge atoms: In this case, we know that 

events will never be removed from the synopsis. All input events 

are processed, in sync-time order, and inserted into the 

corresponding hash-table (if the other side has not reached its end-

of-stream), with the key and value equal to the grouping key and 

payload, respectively, of the input event. Additionally, the hash-

table for the other side is searched to identify matching active 

events, apply the (inlined) result selector and add to the current 

output data-batch. The data-batch is output when it is full, or a 

punctuation is received. 

2) The input has arbitrary data atoms: When the input events can 

include intervals and end edges, then the operator must handle the 

case of events being removed. The operator still employs two hash-

tables as before, but also employs an endpoint compensation queue 

(ECQ) to store away active intervals that need to be removed in the 

future (i.e., when the current processing time reaches the end time 

of the interval). A start-edge works as before, while an end-edge 

outputs a result end-edge for all matching join results. In addition, 

an end edge results in the entry being removed from the hash-table. 

When time moves forward, we process the expiring endpoints from 

the ECQ in a similar manner as end-edges in the stream. More 

precisely, when events are removed from the hash-table, either by 

end-edges or the reaching of an interval's ending timestamp from 

the ECQ, we search the hash-table on the other side to identify 

payloads which joined previously. For each of those payloads, we 

outputs a corresponding end edge. 

Additionally, within a timestamp, we need to process the end-edges 

on one side before executing a join with incoming data from the 

other side. This is because these end-edges may completely remove 

active events at the current timestamp. Note that this delay in output 

generation within the current timestamp is only for the case of an 

event joining against a start-edge, because intervals have known 

end timestamps. The case of an interval joining with an interval is 

handled as a special case, because the exact duration of the join is 

known beforehand, so the operator can directly output an interval 

for the intersecting duration. 

Interestingly, we can use the temporal SHJ operator to perform an 

asymmetric relational hash join (build followed by probe), by 

simply time-stamping the right input as [0, ∞) and the left input as 

sync-time values beyond 0. This causes SHJ to first fully process 

the right input until end-of-stream, which means that we do not 

need to add atoms from the left side to a hash-table – resulting in a 

read-only probe phase. We also support a relational merge join 

(Section 7) to handle cases where inputs are sorted by the join key. 

5.2.4 WhereNotExists and Clip 
WhereNotExists and Clip are anti-joins that output only those 

events received on their left input that do not join with an event 

received on the right. Similar to join, the user provides delegates to 

determine a mapping key for each payload. Clip is a restricted form 

of WhereNotExists optimized for the common case of permanently 

clipping an event received on the left when a future right event 

successfully joins with it. We optimize the implementations for the 

two operators differently: 

1) WhereNotExists: All input events received on the left input are 

processed, in sync-time order, and inserted into a map data structure 

with the key and value equal to the mapping key and payload, 

respectively, of the input event. Similarly, input events received on 

the right input are processed in sync-time order and inserted into a 

data structure that counts the number of occurrences of a mapping 

key on the right input. Any start edge events received on the right 

input, for which it is the first occurrence of that key, results in a 

scan for any joining left inputs which require the output of an end 

edge. Similarly, any end edge events received on the right input, for 

which the resulting occurrence count drops to zero, results in a scan 

for any joining left inputs which now require the output of a start 

edge. Only when time progresses on the right input is a scan 

performed to search for any newly inserted left events that do not 

join with any event on the right to output an initial start edge. 

2) Clip: Clip is similar but a much more optimized version of 

WhereNotExists. In Clip, only events received on the right at a later 

timestamp can join to events received on the left. As a result, no 

right state must be maintained. Instead, only a map of events 

received on the left input is required. As events are received on the 

left, the operator outputs a corresponding start edge and inserts the 

event into a map. As events are received on the right, the operators 

performs a scan in the map to locate any joining left events. All 

joining left events will be removed from the map and output an end 

edge. 

Join, WhereNotExists, and Clip are scaled out by writing them as a 

GroupApply. The GroupApply operation sets the key of the stream 

to the join key. The above operators assume that the key of the 

stream is the equijoin attribute, thus join works efficiently and 

interoperates correctly in the context of GroupApply. 

5.2.5 Alter-Lifetime 
Trill supports the notion of altering event lifetimes to support 

windowed operations and correlating data across time (this is a 

generalization of the Window operator described earlier). This is 

accomplished using the alter-lifetime operation. Alter-lifetime 

accepts two expressions as input: a start-time selector which maps 

a start-time to a new start-time, and a duration selector, which maps 

a start-time and end-time to a new duration. An overload allows the 

duration to be a constant, in which case the IsConstantDuration 

property gets set with the specified duration. Alter-lifetime limits 

timestamp modifications to those that preserve output sync-time 

order. Trill also provides macros that allow users to easily create 

hopping, tumbling, and sliding windows using alter-lifetime. 

The generated alter-lifetime operator inlines the time-manipulation 

expressions inside a per-data-batch loop in order to produce new 

sync-time and other-time values for each output data-batch. The 

remaining data-batch fields (including payloads) are unaffected and 

can be added to the output data-batch using pointer swings (i.e., no 

memory copy). If a duration selector is specified, end-edges need 

to be removed from the output, since the corresponding start-edge 

would directly be converted into an interval with the correct 



duration (using the duration selector). We support this by simply 

using the bit-vector to mask out the end-edges. 

5.3 Compile-Time Stream Properties 
In order to support temporal and progressive queries efficiently and 

to optimize performance for common stream characteristics, we use 

a compile-time stream property derivation framework to help us 

create customized physical operators. Stream properties define 

restrictions on the content we expect to see in a given stream. They 

are specified at stream inputs, and are also inferred at compile-time 

from query logic at each point in the query plan. Some properties 

that we support include: 

1. IsIntervalFree(bool): This property indicates that the stream 

contains no intervals; only start- and end-edges. As an example, this 

property allows us elide the ECQ from our aggregate operator. 

2. IsConstantDuration(bool, long): This property is used to 

indicate that all events in the stream have the same fixed (optionally 

specified) duration. This property allows us to maintain the future 

endpoints as a FIFO queue (linear lookup and update) instead of an 

expensive priority queue. The special case of constant duration=∞ 

indicates a start-edge-only stream. This is common when we 

execute progressive queries or non-windowed aggregates. For 

example, a MAX operator can maintain just a single piece of state 

– the maximum value seen up to now. A related IsConstantHop 

property allows us to optimize for tumbling windows. 

3. IsColumnar: This property indicates whether we are in columnar 

or row-oriented mode, and is used to choose between code-gen and 

normal operators. Operators may need to work in row-oriented 

mode because (a) some property of the user type prevents it from 

being used in columnar processing; or (b) an expression in the 

query is too complex or opaque to allow its transformation. We 
allow conversions from row to columnar and vice versa.  

Trill also includes properties to capture and exploit sort ordering 

and data-batch packing in the input data; see Section 6.2 for details. 

We use stream properties to select from a small set of physical 

operators, as shown in Table 2. We find that these operator variants 

are sufficient to provide high performance for most queries across 

the spectrum of analytics that Trill targets. 

6. LIBRARY MODE & MULTI-CORE 
Trill supports two modes of execution. In the default no-scheduler 

mode, Trill works as a pure library that does not itself own any 

threads but performs work on the thread that pushes messages to it. 

For efficient multi-core processing, we built a pluggable scheduler 

framework that allows Trill to parallelize execution on specific 

application-provided threads or cores. The basic idea is that we take 

the physical plan and partition it into query fragments (described 

next). The scheduler is given n threads; each thread picks up data-

batches to push to operators. For progressive queries, we process 

batches in timestamp order for fair progress across queries. Real-

time queries use stimulus-time scheduling [15]. We hold a priority 

queue of query fragments; each scheduler thread picks the fragment 

with highest priority to execute next. Note that each query fragment 

itself may consist of multiple operators, but is executed on the same 

thread (similar to the no-scheduler mode). Our scheduler works at 

the batch granularity, which allows its overhead to be amortized. 

6.1 Streaming Temporal Map-Reduce 
The key building block for multi-core processing in Trill is what 

we call Temporal Map-Reduce – streaming generalizations of the 

well-known Map and Reduce operations, with temporal support. 

Users can either use Map and Reduce explicitly to indicate 

opportunities for parallelism, or use GroupApply which gets 
transparently rewritten by our compiler into Map and Reduce. 

Map takes a query fragment as input, for the purpose of scaling out 

in a stateless manner by spraying input batches to each instance of 

the query fragment. Further, it takes a grouping key argument that 

identifies the key for the subsequent Reduce operation. Reduce 

takes as parameter a query fragment that is logically executed for 

each distinct value of the specified grouping key. For example, our 
running example is rewritten as: 

inp0.Map(str => str.Where(...).Select(...), e => e.UserId) 
.Reduce(str => str.Window(...).Aggregate(...), (g, c) => new { g, c }); 

Here, the first argument to Map specifies the stateless Where and 

Select operations to be performed in parallel on the input stream, 

while the second argument specifies the grouping key (UserId) to 

shuffle the result streams by. The first argument to Reduce 

computes per-user windowed Count, and the second argument 

allows us to add the grouping key (UserId) back to the result count 
stream at the end of the query. 

Such a specification is mapped by Trill into a physical operator 

graph (shown in Figure 3; left) with multiple query fragments – one 

for each map and reduce sub-query instance – that can be executed 

using our scheduler. Let n denote the degree of parallelism 
available to us (e.g., number of cores on the machine). 

1) Spray: We first take a stream of batches and perform a stateless 

spray of the batches to n downstream endpoints. Spray performs 

constant work per batch and introduces negligible overhead. 

2) Map, Group, Shuffle: On each of the n endpoints, we apply the 

map sub-query. The result stream enters a generated shuffle 

operator that computes (inline) the new grouping key and its 

associated hash on each event. Based on the hash value, we add the 

event to one of n output data-batches (one per hash bucket). There 

are n downstream merge operators in the physical plan. As output 
batches fill up, they are sent to the corresponding merge. 
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Table 2: Physical operators in Trill. 

Physical Operator Supported Variants 

Filter, Project, SelectMany, 
AlterLifetime 

No variants (supports arbitrary 
HLL expressions) 

Temporal Symmetric Hash 
Join 

General, Start-edge, Start-edge 
+ Order-aware 

WhereNotExists, 
WhereExists, Clip 

No variants 

Snapshot Operator (with 
custom incremental logic) 

General, Start-edge, Constant-
duration, Constant-hop 

Spray & multicast  General, Order-aware 
Group, Shuffle, Ungroup No variants 
Temporal Union No variants (optimized for 

batches with same sync-time) 

 
Figure 3: Two-stage streaming temporal map-reduce (one and two inputs). 



3) Merge, Reduce, Ungroup: Merge performs a temporal union 

(described next) and feeds the resulting stream (one per reduce 

bucket) to the reduce sub-query. We then execute Ungroup to un-

nest the grouping key. A final merge operator temporally merges 
the results from each reduce bucket into a single output stream. 

Note that our batched data-flow architecture implies that 

synchronization occurs only at coarse-grained batch boundaries, 

where data is handed off from one query fragment to another.  

Temporal Cascading Binary Merge   The temporal merge in Trill 

is implemented using a tree of streaming binary merges for 

performance [26]. Each binary merge reads sync-time values from 

the left and right input batches, and merges the data in sync-time 

order into a destination batch. We also check for the special case 

(common after the map phase and with progressive queries) where 

one input batch lies ahead of the other in time, in which case we 

can forward the input batches without doing a fine-grained merge. 

Two-Input Reduce   Trill also supports two-input reduce. The 

architecture (see Figure 3; right) is similar, except that there are two 

separate map phases for each of the inputs, and these map outputs 

are shuffled and brought together to a single set of n two-input 

reducers. Trill rewrites binary operators such as temporal joins into 

a two-input reduce so that they can execute on multiple cores.  

6.2 Performance Optimizations 
Since the shuffle (repacking data-batches by key) in temporal map-

reduce is very memory-intensive, we try to avoid it when possible. 

Exploiting Sort-Order and Packing   Trill supports a compile-

time property to identify whether input snapshots are sorted by a 

payload field. In addition, it supports a property where a sorted 

stream is packed according to the following rule: for a given batch 

B, data with a given sort key value K cannot spill to the next batch 

B+1 unless all the data in batch B has the same sort key value K. 

Further, two streams may be packed in a compatible manner, i.e., 

keys in two different batches in stream 1 do not map to the same 

batch in stream 2. Sort-order is used, for example, to replace a SHJ 
by a more efficient merge-join. 

If a stream is packed as described above, temporal map-reduce can 

retain the sort order during spray. Basically, it retains the last key 

in the current batch B before spraying it to branch i. In case the first 

event in the next batch B+1 has the same key value, that batch is 

also sprayed to the same branch i. Otherwise, the batch B+1 is 

sprayed round-robin to the next branch i+1. Likewise, a two-input 

map-reduce can retain sort order during spray if the streams are 

packed in a compatible manner. We can then move the grouped 

sub-query to the map phase, avoiding the shuffle. 

Exploiting Skew in Input Streams    Another case where we can 

avoid a shuffle is when a 2-input reduce is skewed, i.e., the right 

side is much smaller than the left. We simply broadcast the smaller 

side to all branches, and spray the larger side round-robin. In this 

case, we can perform the 2-input operation without a shuffle. A 

common use of this facility is when doing a temporal join across a 

high- and a low-rate input stream. 

7. EVALUATION & USAGE SCENARIOS 
The goal of evaluation is to examine how Trill’s hybrid architecture 

allows it to perform favorably against state-of-the-art specialized 

engines at different points in the analytics spectrum. We then 

discuss how our features have enabled a range of usage scenarios. 

7.1 Setup and Workloads 
All experiments are conducted on a 2-processor 8-core (16 hyper-

thread) Intel Xeon CPU E5-2660 machine running at 2.2GHz, with 

192GB RAM, and running 64-bit Windows Server 2008 R2. 

Workloads    We use the following datasets in our experiments: 

1. GenData(𝒏, 𝒅, 𝒎): This is a set of two synthetic tables (T1 and 

T2). Each table has two 8-byte columns (C1 and C2) and both tables 

are ordered by C1. T1 has 𝑛 rows, with 𝑑 distinct values in C1. 

Column C2 in T1 has the same 𝑑 values in random order. T2 has 

𝑚 (≥ 𝑑) rows whose C1 includes the 𝑑 distinct values of T2; the 

remaining values are random. C2 in T2 is random as well. 

2. UserSearch: This is a dataset of user search phrases from a 

commercial search engine log. It has two columns: for each 8-byte 

UserId (ordered by UserId), we store a string (search term). Some 

experiments use a hash-tokenized version of this dataset, where 

phrases are pre-split into tokens (words) and hashed into 8-byte 

values. These datasets have two fields: UserId and QueryId. Our 

temporal experiments use a similar dataset over a 15-day time 

period, with an additional 8-byte timestamp field (the data is 

ordered by timestamp in this case). We use real queries over these 

datasets, with sizes varying from 10M to 600M rows. 

3. SearchURL: This is another real search dataset (100M rows, 

11.6GB) that contains five columns: search phrase, its hash value, 

number of times issued, URL clicked after search, number of clicks 

on URL (for that search), and the total URL clicks for that query. 

4. TPC-H: We experiment with grouped multi-aggregation using 

the LINEITEM table of TPC-H at a scale factor of 100GB. 

Baseline Query Engines    For relational queries, we compare 

Trill’s performance against DB-X, a modern commercial database 

system that incorporates a compressed columnar store and supports 

batched operators. Trill uses a default maximum batch size of 80K 

tuples whereas DB-X uses a larger fixed batch size (by more than 

10X). DB-X does not support progressive, incremental, or real-time 

temporal processing. We discard the first two runs to warm both 

engines, and report average performance over the next 5 runs. We 

ensure that DB-X is operating in columnar mode and running from 

memory, i.e., not accessing disk or writing to temp DB. Our 

experiments vary the degree of parallelism (DOP) for both engines 

from 2 to 32 (DB-X did not support a DOP of 1 in columnar mode). 

For temporal streaming and progressive queries, we compare Trill 

against SPE-X, a commercial SPE that is based on the event-at-a-

time architecture and a temporal data model. While SPE-X can also 

be used for relational queries, its performance is lower than both 

Trill and DB-X by 2-4 orders of magnitude; hence we do not 

include it in relational experiments. We compare Trill to SPE-X in 

terms of throughput, memory, and latency for temporal queries. 

Unless otherwise indicated, all systems use all the available cores 

on our machine in the experimental results. 

7.2 Temporal Stream Processing 

7.2.1 Data Ingress 
We measure the time it takes to load streaming data into the SPE 

by executing a pass-through query that drops all tuples (to avoid 

incurring an egress cost). We use the tokenized search log as input. 

Loading is performed on a single thread to model real-time ingress. 

We find that SPE-X can load data at 450K events/sec when the 

events are pre-created in memory and loaded from an array. In Trill, 

when the data is pre-loaded into memory in a columnar format, the 

pass-through query takes trivial time (>1 billion events/sec); no 

memory copies occur because only pointers to data-batch messages 



flow through the query plan with no fine-grained work. When the 

data is ingressed as individual in-memory row events from an array, 

a conversion to our batched columnar data format is performed in 

tight loops on-the-fly; here, a pass-through query runs in Trill at 

140M events/sec when we ingress data using a single core. 

7.2.2 Throughput Comparisons 
We compare Trill’s throughput to SPE-X (on all cores) for several 

stateless and stateful streaming operations: (1) filter (no matches); 

(2) filter (all match); (3) project; (4) alter-lifetime (windowing); (5) 

windowed count (W-Count) with a window size of 1 hour and hop 

size of 10 minutes; (6) grouped windowed sum (G-W-Sum) with 

QueryId as grouping key and the same window/hop size as before; 

and (7) temporal join, where we find – for each user (join key) – 

sequences where a user searches for a search term from set A 

followed by a search term from set B within one hour (A and B are 

non-overlapping sets of 25% of all terms in the dataset). We use the 

time-ordered hash-tokenized pre-loaded search log (100M rows) 

for these experiments, and fix query latency at 80K events per 

punctuation. Figure 4(a) shows the results. We see that Trill is 

between 2-4 orders of magnitude faster than SPE-X across the 

range of queries, due to Trill’s superior architecture with features 

such as columnar batching, generated operators with tight loops, 

and fast memory-bandwidth-optimized algorithms. 

7.2.3 Latency (varying punctuation frequency) 
In Figure 4(b), we vary the latency (number of events between 

punctuations) and measure its impact on throughput. As expected, 

Trill is able to take advantage of higher latency by using larger data-

batch sizes, and performance increases significantly. Interestingly, 

throughput drops for very large batch sizes because of the need to 

make large memory allocations and the lower probability of batch 

reuse with memory pools. We also show the throughput of SPE-X 

for W-Count. SPE-X is mostly unaffected by latency since it does 

not take advantage of batched data; in fact, for W-Count, 

performance degrades due to the inability to clean up internal state 

and data structures as frequently. Notably, even with a small 

latency of 100 events per punctuation, Trill benefits significantly 

from careful columnar batching, providing more than two orders-

of-magnitude performance gains over SPE-X for W-Count. 

7.2.4 Window Size 
We next experiment with Trill’s no-scheduler mode in Figure 4(c). 

For fair comparison, we use SPE-X with only one scheduler thread. 

We execute a windowed temporal join that correlates searches per 

user, similar to the query from the previous experiment but looking 

for searches within a window W. Figure 4(c) shows that the 

performance falls as W increases because more items need to be 

retained and joined within the window. Further, while SPE-X has 

slightly lower memory utilization than Trill for very small W (since 

it processes one event at a time), Trill uses lower memory when W 

increases, as it benefits from batched data and sync-time ordering. 

7.3 Relational Query Processing 

7.3.1 Data Ingress 
We compare loading costs for relational data stored in a row-

oriented CSV file. DB-X incurs higher loading costs since the data 

needs to be loaded in a compressed columnar format. To measure 

this, we use 100M rows of the SearchURL CSV log (11.6GB) and 

load it into DB-X and Trill. The DB-X data loader is single-

threaded and takes 592.8secs of CPU time to load the data in 

compressed form. Trill takes 179.6secs on a single thread for this 

data. Trill also supports multi-threaded loading, which takes only 

44.6secs. For a generated dataset with 600M rows (each with two 

4-byte int columns) and size 12.8GB, DB-X takes 688secs whereas 

Trill takes 356secs (single-thread) and 33secs (multi-threaded).  

7.3.2 Relational Query Performance 
Figure 5(a) shows the performance (using all cores) of Trill and 

DB-X for simple operations such as filter, sum, count, and select 

over GenData(600M, 20M, 150M). The Filter2 predicate is 

identical to Filter1, except that Filter2 is pushed to the DB-X 

storage layer, which explains why DB-X performance improves 

significantly on Filter2. Overall, Trill performs comparably to DB-
X for these operations, faring up to 8X better in case of Filter1. 
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Figure 5(b) summarizes throughput for Trill and DB-X for 

increasing DOP. The key take-away from this figure is that 

performance is comparable, and both systems scale well (note that 

both axes are log scale). We analyze performance in greater detail 
in the next set of charts, described next. 

Figure 5(c) shows Trill’s throughput normalized to DB-X, with 

varying DOP. A value of 1 indicates that throughput of the two 

engines is identical. We see that Trill has higher performance in all 

cases (except Filter2, where DB-X is slightly better at low DOP). 

We also notice that performance tends to converge at higher DOP 

as both systems hit memory bandwidth limits. 

Figure 5(d) shows Trill’s throughput normalized to DB-X for two 

grouped aggregate queries (by C1 and C2) and an equi-join query 

(on C1). When we aggregate over column C1, Trill leverages the 

fact that it is sorted and avoids the shuffle, leading to better 

performance. DB-X is better when we aggregate by C2, since Trill 

needs to shuffle the data whereas DB-X uses a shared hash table to 

perform the aggregation. Trill’s performance for equi-join is better 

than DB-X, converging to 1 at DOP=32. Here, Trill leverages the 

sort-order of C1 to avoid the shuffle and use a merge join (DB-X is 

superior when Trill uses a shuffle with hash-join). As future work, 

we plan to investigate improving Trill’s shuffle performance and 

leveraging shared data structures. We note that while shared data 

structures are superior to shuffle, a shuffle would need to be 

performed anyway when we need to process data across more than 

one machine. Further, our techniques to avoid shuffle using sort 

orders or input skew are applicable even in a multi-node setting.  

7.3.3 Query Search, URL Logs, TPC-H LineItem 
TermComparison   We execute a real query (obtained from a data 

scientist at Microsoft) that analyzes entities that users compare in 

searches. We take the SearchURL log, look for searches that 

contain “versus” or “vs” and use the left and right side substrings 

as entities. We look up (join) each search phrase against the distinct 

entities, and sum the total query clicks per entity. 

Figure 6(a) shows the results. In DB-X, we use the substring 

operation to compute a temp table for the entities (which is very 

slow), whereas Trill’s support for HLL strings and SelectMany 

(where one row is converted into zero or more rows by a user-

defined function) makes this 10X faster. Trill’s join (we use an 

asymmetric hash join) was slightly faster than DB-X in this case. 

TopCorrelated  We execute another real query: given a parameter 

P (“vegas”), compute for each word W in the search log, the ratio 

of (a) number of distinct users who searched for both W and P; and 

(b) total number of distinct users who searched for W. This query 

allows analysts to determine the search terms closely correlated to 

P, and helps in ad selection/pricing. 

The first step is to create a table of (user, word) pairs by splitting 

search phrases from the log by the space delimiter. Unfortunately, 

databases are inefficient at split (by more than 10X) since it has to 

be implemented as a UDF (SQL does not natively support Split or 

SelectMany). Trill performs the split in 2.6secs (we do not use 

MultiStrings in this query; they are evaluated in Section 7.5), 

producing ~31M tokenized results. Figure 6(a) shows performance 

for the rest of the query pipeline not including split, where we see 

that Trill is slightly faster (up to 2X at DOP=2). 

TPC-H Lineitem   Figure 6(a) compares Trill against DB-X for 

TPC-H Q1 which computes 8 grouped-aggregates (we elide the 

filter on ship-date from Q1). Trill sprays data and uses a hash-table 

per core with a final aggregation, whereas DB-X uses a shared hash 

table; we see that performance is close (within 50% at worst). 

7.4 Progressive Query Processing 
We use the search log query and execute a query that computes the 

popularity of search terms in the dataset. We vary progressiveness 

in terms of number of result sets produced (or report at every X% 

of the dataset), and plot Trill’s total execution time in Figure 6(b), 

as well as time to produce the first result. With one result set, the 

query produces its result only at the end of the query. We see that 

increasing progressiveness for this query has a slight impact 

(~15%) on total execution time, but significantly reduces the time 

(by 10X) to produce the first result set. A study of progressiveness 

using a commercial SPE can be found in our recent work [2]. 

7.5 Code Generation, Strings, Serialization 
Code Generation    We measured the cost of dynamic code 

generation in Trill. Trill generates data-batches, memory pools, and 

operators. We found that on a single core, the average code 

compilation time was 75ms per operator, and the average time for 

the remaining parts of code generation (expression transformation, 

code construction, and assembly loading) was 31ms for memory 

pools, 25ms for data-batches, and 45ms for operators (on TPC-H 

queries). The worst case for a complex operator was less than 

250ms (using unoptimized code that we believe this can be 

significantly improved). We also aggressively cache generated 

types in Trill. Finally, we note that code generation is easily 

parallelizable on multiple cores. 

String Processing    We use the SearchLog dataset with 100M 

rows, containing 4GB of Unicode search phrases, and execute 

string operations in Trill and DB-X (with columnar string field). In 

case of DB-X, we report results for both varchar (one byte per 

character) and nvarchar (Unicode with 2-byte characters). Trill uses 

only Unicode strings. We experiment with (1) string containment 

for “free”; (2) equals for “vegas”; (3) starts with “free”; (4) ends 

with “download”; (5) regular expression “%free%download%”; 

and (6) offset of substring for “vegas”. Trill uses the MultiString 
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format described in Section 4.2.2 to store string columns. We see 

from Figure 6(c) that Trill (Unicode) is up to 5X faster than DB-X 

(non-Unicode) and up to 30X faster than DB-X (Unicode). 

Pavlo et al. [27] report benchmark results that show Vertica and 

DBMS-X performing “grep” at around 60MB/sec on one node 

(Hadoop was 2X slower at 25MB/sec) on a 2.4GHz Core 2 Duo 

processor. Newer results from [28] indicate that Shark (Hive on 

Spark) executes grep at ~833MB/sec per node (machine specs not 

mentioned) on memory-resident data. In contrast, grep in Trill 

operates at 7.2GB/sec on Unicode strings, on our 16-core machine. 

Serialization    Figure 6(d) compares Avro [19] to Trillium (cf. 

Section 4.2.1) for a stream of payloads with two 8-byte fields. To 

avoid the disk bottleneck, we use a memory stream for these 

experiments. We see that Trillium is around 15X faster, due to the 

columnar format of Trill data which allows it to avoid fine-grained 

encoding and decoding. Further, when processing streaming data 

(that is dropped immediately in this experiment), Trillium is 20X 

faster than Avro – the speedup beyond 15X is due to memory 

pooling, which can reuse the streaming data-batch column arrays. 

7.6 Current Usage Scenarios 
We describe how Trill is being used today; these scenarios serve to 

illustrate how performance, fabric and language integration, and 
query model enabled Trill to support a diverse range of use cases. 

1) Orleans-hosted real-time: Orleans [16] is a programming model 

and fabric that enables low-latency (in milliseconds) distributed 

streaming computations with units of work called grains. Orleans 

owns threads and manages distribution. Thus, users use Trill as a 

pure library (using its no-thread mode) to express temporal 
streaming queries as part of their Orleans grain code.  

2) Analytics within SCOPE: SCOPE [20] is a map-reduce platform 

for query processing that allows arbitrary .NET code as custom 

reducers. As with Orleans, SCOPE owns threads and schedules 

reducer code; thus, users embed Trill as a no-thread library within 

their reducers in order to perform temporal analytics [1] over search 

data such as clicks, impressions, and page views. Another such 

fabric used with Trill is REEF [18], which is built on YARN [17]. 

3) Monitoring Server: Trill is used to monitor system logs 

generated by machines in a data center, and visualize real-time 

performance. Here, Trill is used as a server that processes data from 
multiple sources in close to real-time (several seconds of latency). 

4) Trace Log Analysis Tools: A large number of time-oriented 

traces are generated by applications and operating systems. Trill is 

used as part of stand-alone tools and Cloud services, to allow users 
to analyze such traces, for example, to detect anomalies or patterns. 

5) Back-end for Analytics: Tempe (formerly called Stat! [5]) is a 

Web-based interactive analytics environment that allows users to 

author queries and visualize results progressively. It uses Trill as a 
back-end server to run temporal and progressive relational queries. 

8. RELATED WORK 
Streaming Engines   Starting with the seminal work of STREAM 

[30] and Borealis [10], there now exist many SPEs; both from 

research (e.g., NiagaraST [9], Nile [11], Naiad [35]) and industry 

(e.g., StreamInsight [8], Storm [29], Reactive [4], MillWheel [38]). 

A detailed feature and architecture comparison of such systems was 

covered in Table 1 (Section 1). Spark Streaming only targets multi-

second latencies and coarsens time for performance, but ties system 

batching to application time and query semantics: for example, a 1-

sec hopping window aggregate forces 1-sec batches, even when 

executing on an offline log. DataCell [37] follows a different 

architecture of augmenting a DBMS to support incremental stream 

processing, but the resulting system provides significantly lower 

throughputs than Trill and lacks fabric and language integration. In 

contrast, Trill’s library-based hybrid architecture achieves all the 

features outlined in Table 1, and provides very high performance 

across the latency spectrum. 

Traditional Databases   Modern DBMSs leverage techniques such 

as columnar organization, compression, and SIMD processing for 

high performance [6][12][14][25]. As depicted in Table 1, DBMSs 

do not offer rich fabric or language integration, do not handle real-

time or temporal analytics, and make choices that favor their 

particular design point. For example, databases spend significant 

time reordering and compressing data. Further, query processing is 

non-incremental and usually involves multiple passes over the data. 

For example, multiple indexes may be created after data loading. In 

contrast, Trill provides high performance across the analytics 

spectrum by processing a stream of varying-sized columnar batches 

with single-pass algorithms and no compression. Trill also exploits 

pre-existing sort orders (if any). That said, enabling lightweight 

online compression schemes is part of our future work. Trill uses 

temporal operators for relational queries, with timestamps used for 

scheduling. For example, the SHJ operator turns into an 

asymmetric relational join if we set the build side to have lower 

timestamps than the probe side. Finally, unlike most DBMSs, Trill 

is a library that provides deep fabric and language integration. 

Big Data Systems   Multiple big data analytics systems have been 

proposed over the last several years. Map-Reduce was one of the 

first such systems, and is still popular for non-incremental analytics 

on disk-based data. The performance of Hadoop is known to be 

quite low. Phoenix++ [7] is a variant of map-reduce for in-memory 

analytics; unlike Trill, it is neither temporal nor streaming, and 

exposes a low-level key-value API. YARN [17] and REEF [18] 

generalize Hadoop to a distributed resource manager. Storm is a 

streaming analytics framework that can potentially embed Trill 

within its spouts. Spark [28] provides a resilient distributed dataset 

abstraction over which users can write transformations. BlinkDB 

[33] supports interactive queries over Spark. S-STORE [23] 

integrates low-latency streaming with OLTP analytics, which is 

complementary to our goal of high-performance temporal analytics 

across a wide latency spectrum. Trill, in contrast to these platforms, 

is a library-based temporal engine that pushes the envelope of 

performance for a wide range of analytics, and can be embedded 

within scale-out fabrics. Some comparisons with benchmark results 

for these systems are given in Section 7.  

9. CONCLUSIONS 
Trill is a new query processor that fulfills three requirements for an 

engine to serve the diverse big data analytics space: (1) Query 

Model: Trill is based on a tempo-relational model that enables it to 

handle streaming and relational queries with early results across the 

latency spectrum from real-time to offline; (2) Fabric and 

Language Integration: Trill is architected as a high-level language 

library that supports rich data-types and user libraries, and 

integrates well with existing distribution fabrics and applications; 

and (3) Performance: Trill’s throughput is high across the latency 

spectrum. For streaming data, Trill’s throughput is 2-4 orders of 

magnitude higher than today’s comparable SPEs. For relational 

queries, Trill’s throughput is comparable to a modern commercial 

columnar DBMS. This technical report describes and 

experimentally validates Trill’s new hybrid system architecture and 

design that has enabled the above combination of features, and has 



resulted in Trill’s usage as a library within Microsoft, across a 
number of fabrics and scenarios ranging from real-time to offline. 
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