Theory of Locality Sensitive Hashing

CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu

Recap: Finding similar documents

- Task: Given a large number (*N* in the millions or billions) of documents, find "near duplicates"
- Applications:
 - Mirror websites, or approximate mirrors
 - Don't want to show both in a single set of search results

Problems:

- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main memory

Recap: 3 Essential Steps

- 1. Shingling: Convert docs to sets of items
 - Document is a set of k-shingles
- 2. *Min-Hashing*: Convert large sets into short signatures, while preserving similarity
 - Want hash func. that Pr[h_π(C₁) = h_π(C₂)] = sim(C₁, C₂)
 For the Jaccard similarity Min-Hash has this property!
- 3. Locality-sensitive hashing: Focus on pairs of signatures likely to be from similar documents
 - Split signatures into bands and hash them
 - Documents with similar signatures get hashed into same buckets: Candidate pairs

Recap: The Big Picture

Recap: Shingles

- A k-shingle (or k-gram) is a sequence of k tokens that appears in the document
 - Example: k=2; D₁ = abcab Set of 2-shingles: C₁ = S(D₁) = {ab, bc, ca}
- Represent a doc by a set of hash values of its k-shingles
- A natural document similarity measure is then the Jaccard similarity:

$$sim(D_1, D_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$$

 Similarity of two documents is the Jaccard similarity of their shingles

Recap: Minhashing

• Prob. $h_{\pi}(C_1) = h_{\pi}(C_2)$ is the same as $sim(D_1, D_2)$: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(D_1, D_2)$

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities of columns and signatures (approx.) match!

1/14/2015

Jure Leskovec, Stanford C246: Mining Massive Datasets

Recap: LSH

- Hash columns of the signature matrix *M*:
 Similar columns likely hash to same bucket
 - Divide matrix M into b bands of r rows (M=b·r)
 - Candidate column pairs are those that hash to the same bucket for ≥ 1 band

Recap: The S-Curve

The S-curve is where the "magic" happens

Similarity t of two sets

This is what 1 hash-code gives you $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(D_1, D_2)$ Similarity t of two sets

This is what we want! How to get a step-function? By choosing *r* and *b*!

How Do We Make the S-curve?

- is a pair) Remember: b bands, r rows/band P(C₁, C₂ candidate
- Let sim(C₁, C₂) = t
- Pick some band (r rows)
 - Prob. that elements in a single row of columns C₁ and C₂ are equal = t
 - Prob. that all rows in a band are equal = t'
 - Prob. that some row in a band is not equal = 1 t'
- Prob. that all bands are not equal = (1 t')^b
- Prob. that at least 1 band is equal = 1 (1 t^r)^b

$P(C_1, C_2 \text{ is a candidate pair}) = 1 - (1 - t^r)^b$

Similarity t

S-curves as a func. of b and r

Given a fixed threshold **s**.

We want choose *r* and *b* such that the *P(Candidate pair)* has a "step" right around *s*.

The set of strings of length *k* that appear in the document

Signatures:

short vectors that represent the sets, and reflect their similarity Candidate pairs: those pairs of signatures that we need to test for similarity

Theory of LSH

Theory of LSH

We have used LSH to find similar documents

- More generally, we found similar columns in large sparse matrices with high Jaccard similarity
 - For example, customer/item purchase histories

Can we use LSH for other distance measures?

- e.g., Euclidean distances, Cosine distance
- Let's generalize what we've learned!

Families of Hash Functions

- For Min-Hashing signatures, we got a Min-Hash function for each permutation of rows
- A "hash function" is any function that takes *two* elements and says whether they are "equal"

Shorthand: h(x) = h(y) means "h says x and y are equal"

- A *family* of hash functions is any set of hash functions from which we can *pick one at random efficiently*
 - Example: The set of Min-Hash functions generated from permutations of rows

Locality-Sensitive (LS) Families

Suppose we have a space S of points with a distance measure d(x,y)

Critical assumption

- A family *H* of hash functions is said to be (d_1, d_2, p_1, p_2) -sensitive if for any *x* and *y* in *S*:
- 1. If $d(x, y) \le d_1$, then the probability over all $h \in H$, that h(x) = h(y) is at least p_1
- If d(x, y) ≥ d₂, then the probability over all h∈ H, that h(x) = h(y) is at most p₂

With a LS Family we can do LSH!

A (d_1, d_2, p_1, p_2) -sensitive function

1/14/2015

15

Example of LS Family: Min-Hash

Let:

- S = space of all sets,
- d = Jaccard distance,
- *H* is family of Min-Hash functions for all permutations of rows
- Then for any hash function h
 H:
 Pr[h(x) = h(y)] = 1 d(x, y)
 - Simply restates theorem about Min-Hashing in terms of distances rather than similarities

Example: LS Family – (2)

Claim: Min-hash H is a (1/3, 2/3, 2/3, 1/3)sensitive family for S and d.

> If distance $\leq 1/3$ (so similarity $\geq 2/3$)

Then probability that Min-Hash values agree is $\geq 2/3$

- For Jaccard similarity, Min-Hashing gives a
 (d₁, d₂, (1-d₁), (1-d₂))-sensitive family for any d₁<d₂
- Theory leaves unknown what happens to pairs that are at distance between d₁ and d₂
 - Consequence: No guarantees about fraction of false positives in that range

Amplifying a LS-Family

Can we reproduce the "S-curve" effect we saw before for any LS family?

Similarity t

- The "bands" technique we learned for signature matrices carries over to this more general setting
 - So we can do LSH with any (d₁, d₂, p₁, p₂)-sensitive family
- Two constructions:
 - AND construction like "rows in a band"
 - OR construction like "many bands"

Amplifying Hash Functions: AND and OR

AND of Hash Functions

- Given family *H*, construct family *H*' consisting of *r* functions from *H*
- For $h = [h_1, ..., h_r]$ in H', we say h(x) = h(y) if and only if $h_i(x) = h_i(y)$ for all $i_{1 \le i \le r}$

Note this corresponds to creating a band of size r

- Theorem: If *H* is (*d*₁, *d*₂, *p*₁, *p*₂)-sensitive, then *H*' is (*d*₁, *d*₂, (*p*₁)^r, (*p*₂)^r)-sensitive
- Proof: Use the fact that h_i's are independent

Subtlety Regarding Independence

- Independence of hash functions (HFs) really means that the prob. of two HFs saying "yes" is the product of each saying "yes"
 - But two hash functions could be highly correlated
 - For example, in Min-Hash if their permutations agree in the first one million entries
 - However, the probabilities in definition of a LSH-family are over all possible members of *H*, *H*'

OR of Hash Functions

- Given family *H*, construct family *H*' consisting of *b* functions from *H*
- For *h* = [*h*₁,...,*h*_b] in *H*',
 h(x) = h(y) if and only if h_i(x) = h_i(y) for at least 1 *i*
- Theorem: If H is (d₁, d₂, p₁, p₂)-sensitive, then H' is (d₁, d₂, 1-(1-p₁)^b, 1-(1-p₂)^b)-sensitive
- Proof: Use the fact that h_i's are independent

Effect of AND and OR Constructions

- AND makes all probs. shrink, but by choosing r correctly, we can make the lower prob. approach 0 while the higher does not
- OR makes all probs. grow, but by choosing b correctly, we can make the upper prob. approach 1 while the lower does not

Composing Constructions

- *r*-way AND followed by *b*-way OR construction
 - Exactly what we did with Min-Hashing
 - If bands match in all r values hash to same bucket
 - Cols that are hashed into \geq 1 common bucket \rightarrow Candidate
- Take points x and y s.t. Pr[h(x) = h(y)] = p
 - H will make (x,y) a candidate pair with prob. p
- Construction makes (x,y) a candidate pair with probability 1-(1-p^r)^b
 The S-Curve!
 - Example: Take H and construct H' by the AND construction with r = 4. Then, from H', construct H'' by the OR construction with b = 4

Table for Function 1-(1-p4)4

р	1-(1-p ⁴) ⁴
.2	.0064
.3	.0320
.4	.0985
.5	.2275
.6	.4260
.7	.6666
.8	.8785
.9	.9860

r = **4**, **b** = **4** transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.8785,.0064)-sensitive family.

How to choose *r* and *b*

Picking r and b: The S-curve

Picking r and b to get desired performance
 50 hash-functions (r = 5, b = 10)

Blue area X: False Negative rate These are pairs with *sim* > *s* but the X fraction won't share a band and then will never become candidates. This means we will never consider these pairs for (slow/exact) similarity calculation! Green area Y: False Positive rate

These are pairs with *sim* < *s* but we will consider them as candidates. This is not too bad, we will consider them for (slow/exact) similarity computation and discard them.

Picking r and b: The S-curve

Picking r and b to get desired performance
50 hash-functions (r * b = 50)

OR-AND Composition

- Apply a *b*-way OR construction followed by an *r*-way AND construction
- Transforms probability p into (1-(1-p)^b)^r
 - The same S-curve, mirrored horizontally and vertically
- Example: Take H and construct H' by the OR construction with b = 4. Then, from H', construct H'' by the AND construction with r = 4

Table for Function (1-(1-p)⁴)⁴

р	(1-(1-p) ⁴) ⁴	
.1	.0140	
.2	.1215	
.3	.3334	
.4	.5740	
.5	.7725	
.6	.9015	
.7	.9680	
.8	.9936	

The example transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9936,.1215)-sensitive family

Cascading Constructions

- Example: Apply the (4,4) OR-AND construction followed by the (4,4) AND-OR construction
- Transforms a (.2, .8, .8, .2)-sensitive family into a (.2, .8, .9999996, .0008715)-sensitive family

Note this family uses 256 (=4*4*4*4) of the original hash functions

Summary

- Pick any two distances d₁ < d₂
- Start with a (d₁, d₂, (1- d₁), (1- d₂))-sensitive family
- Apply constructions to amplify

 (d₁, d₂, p₁, p₂)-sensitive family,
 where p₁ is almost 1 and p₂ is almost 0
- The closer to 0 and 1 we get, the more hash functions must be used!

LHS for other distance metrics

LSH for other Distance Metrics

- LSH methods for other distance metrics:
 - Cosine distance: Random hyperplanes
 - Euclidean distance: Project on lines

Summary of what we will learn

Cosine Distance

Cosine distance = angle between vectors from the origin to the points in question d(A, B) = θ = arccos(A·B / ||A||·||B||)
 Has range 0 ... π (equivalently 0...180°) ← A·B / ||A||
 Can divide θ by π to have distance in range 0...1

Cosine similarity = 1-d(A,B)

А

В

LSH for Cosine Distance

- For cosine distance, there is a technique called Random Hyperplanes
 - Technique similar to Min-Hashing
- Random Hyperplanes method is a $(d_1, d_2, (1-d_1/\pi), (1-d_2/\pi))$ -sensitive family for any d_1 and d_2
- Reminder: (d₁, d₂, p₁, p₂)-sensitive
 - 1. If $d(x,y) \le d_1$, then prob. that h(x) = h(y) is at least p_1
 - 2. If $d(x,y) \ge d_2$, then prob. that h(x) = h(y) is at most p_2

Random Hyperplanes

Pick a random vector *v*, which determines a hash function *h_v* with two buckets

•
$$h_v(x) = +1$$
 if $v \cdot x \ge 0$; $= -1$ if $v \cdot x < 0$

- LS-family *H* = set of all functions derived from any vector
- Claim: For points x and y,
 Pr[h(x) = h(y)] = 1 d(x,y) / π

Proof of Claim

Proof of Claim

Signatures for Cosine Distance

- Pick some number of random vectors, and hash your data for each vector
- The result is a signature (sketch) of
 +1's and -1's for each data point
- Can be used for LSH like we used the Min-Hash signatures for Jaccard distance
- Amplify using AND/OR constructions

How to pick random vectors?

- Expensive to pick a random vector in *M* dimensions for large *M*
 - Would have to generate *M* random numbers

A more efficient approach

- It suffices to consider only vectors v consisting of +1 and -1 components
- Why is this more efficient?

LSH for Euclidean Distance

Simple idea: Hash functions correspond to lines

- Partition the line into buckets of size *a*
- Hash each point to the bucket containing its projection onto the line
- Nearby points are always close; distant points are rarely in same bucket

Projection of Points

"Lucky" case:

- Points that are close hash in the same bucket
- Distant points end up in different buckets

- Top: unlucky quantization
- Bottom: unlucky projection

Multiple Projections

Projection of Points

Projection of Points

An LS-Family for Euclidean Distance

- If points are distance d ≤ a/2, prob. they are in same bucket ≥ 1- d/a = ½
- If points are distance $d \ge 2a$ apart, then they can be in the same bucket only if $d \cos \theta \le a$
 - $\cos \theta \leq \frac{1}{2}$
 - 60 ≤ θ ≤ 90, i.e., at most 1/3 probability
- Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of hash functions for any a
- Amplify using AND-OR cascades

Fixup: Euclidean Distance

- Projection method yields a (a/2, 2a, 1/2, 1/3)-sensitive family of hash functions
- For previous distance measures, we could start with an (d₁, d₂, p₁, p₂)-sensitive family for any d₁ < d₂, and drive p₁ and p₂ to 1 and 0 by AND/OR constructions
- Note: Here, we seem to need $d_1 \leq 4 d_2$
 - In the calculation on the previous slide we only considered cases d < a/2 and d > 2a

Fixup – (2)

- But as long as d₁ < d₂, the probability of points at distance d₁ falling in the same bucket is greater than the probability of points at distance d₂ doing so
- Thus, the hash family formed by projecting onto lines is an (d₁, d₂, p₁, p₂)-sensitive family for some p₁ > p₂
 - Then, amplify by AND/OR constructions

Summary

Two important points

- Property P(h(C₁)=h(C₂))=sim(C₁,C₂) of hash function h is the essential part of LSH, without it we can't do anything
- LS-hash functions transform data to signatures so that the bands technique (AND, OR constructions) can then be applied