
CS246: Mining Massive Datasets
Jure Leskovec, Stanford University

http://cs246.stanford.edu

 Task: Given a large number (N in the millions or
billions) of documents, find “near duplicates”

 Applications:
 Mirror websites, or approximate mirrors
 Don’t want to show both in a single set of search results

 Problems:
 Many small pieces of one document can appear

out of order in another
 Too many documents to compare all pairs
 Documents are so large or so many that they cannot

fit in main memory

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 2

1. Shingling: Convert docs to sets of items
 Document is a set of k-shingles

2. Min-Hashing: Convert large sets into short
signatures, while preserving similarity
 Want hash func. that Pr[hπ(C1) = hπ(C2)] = sim(C1, C2)
 For the Jaccard similarity Min-Hash has this property!

3. Locality-sensitive hashing: Focus on pairs of
signatures likely to be from similar documents
 Split signatures into bands and hash them
 Documents with similar signatures get hashed into

same buckets: Candidate pairs
1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 3

4

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets

 A k-shingle (or k-gram) is a sequence of k
tokens that appears in the document
 Example: k=2; D1 = abcab

Set of 2-shingles: C1 = S(D1) = {ab, bc, ca}
 Represent a doc by a set of hash values of its

k-shingles
 A natural document similarity measure is then

the Jaccard similarity:
 sim(D1, D2) = |C1∩C2|/|C1∪C2|

 Similarity of two documents is the Jaccard similarity of
their shingles

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 5

 Prob. hπ(C1) = hπ(C2) is the same as sim(D1, D2):
 Pr[hπ(C1) = hπ(C2)] = sim(D1, D2)

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 6

Similarities of columns and
signatures (approx.) match!
 1-3 2-4 1-2 3-4
Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

Signature matrix M

1 2 1 2

5

7

6

3

1

2

4

1 4 1 2

4

5

1

6

7

3

2

2 1 2 1

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

1 0 1 0

1 0 0 1

0 1 0 1
Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation π

 Hash columns of the signature matrix M:
Similar columns likely hash to same bucket
 Divide matrix M into b bands of r rows (M=b·r)
 Candidate column pairs are those that hash

to the same bucket for ≥ 1 band

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 7

r rows

b bands

Buckets

Matrix M
Similarity

P
ro

b.
 o

f s
ha

rin
g

≥
1

bu
ck

et

Th
re

sh
ol

d
s

 The S-curve is where the “magic” happens

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 8

Similarity t of two sets

P
ro

ba
bi

lit
y

of
 s

ha
rin

g
 ≥

 1
 b

uc
ke

t

Remember:
Probability of
equal hash-values
= similarity

This is what 1 hash-code gives you
Pr[hπ(C1) = hπ(C2)] = sim(D1, D2)

No chance
if t<s

Probability=1
if t>s

This is what we want!
How to get a step-function?

By choosing r and b!

Th
re

sh
ol

d
s

Similarity t of two sets

 Remember: b bands, r rows/band
 Let sim(C1 , C2) = t
 Pick some band (r rows)
 Prob. that elements in a single row of

columns C1 and C2 are equal = t
 Prob. that all rows in a band are equal = tr
 Prob. that some row in a band is not equal = 1 - tr

 Prob. that all bands are not equal = (1 - tr)b

 Prob. that at least 1 band is equal = 1 - (1 - tr)b

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 9

Similarity t

P
(C

1,
C

2 i
s

a
ca

nd
id

at
e

pa
ir)

P(C1, C2 is a candidate pair) = 1 - (1 - tr)b

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Similarity

r = 1..10, b = 1

P
ro

b(
C

an
di

da
te

 p
ai

r)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b(
C

an
di

da
te

 p
ai

r)

r = 1, b = 1..10

r = 5, b = 1..50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r = 10, b = 1..50

Similarity
prob = 1 - (1 - t r)b

Given a fixed
threshold s.

We want choose
r and b such
that the
P(Candidate
pair) has a
“step” right
around s.

Docu-
ment

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short vectors
that represent
the sets, and
reflect their
similarity

Locality-
sensitive
Hashing

Candidate
pairs:
those pairs
of signatures
that we need
to test for
similarity

 We have used LSH to find similar documents
 More generally, we found similar columns in large

sparse matrices with high Jaccard similarity
 For example, customer/item purchase histories

 Can we use LSH for other distance measures?
 e.g., Euclidean distances, Cosine distance
 Let’s generalize what we’ve learned!

1/14/2015 12 Jure Leskovec, Stanford C246: Mining Massive Datasets

 For Min-Hashing signatures, we got a Min-Hash
function for each permutation of rows

 A “hash function” is any function that takes two
elements and says whether they are “equal”
 Shorthand: h(x) = h(y) means “h says x and y are equal”

 A family of hash functions is any set of hash
functions from which we can pick one at
random efficiently
 Example: The set of Min-Hash functions generated

from permutations of rows

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 13

 Suppose we have a space S of points with
a distance measure d(x,y)

 A family H of hash functions is said to be
(d1, d2, p1, p2)-sensitive if for any x and y in S:

1. If d(x, y) < d1, then the probability over all h∈ H,
that h(x) = h(y) is at least p1

2. If d(x, y) > d2, then the probability over all h∈ H,
that h(x) = h(y) is at most p2

1/14/2015 14 Jure Leskovec, Stanford C246: Mining Massive Datasets

With a LS Family we can do LSH!

Critical assumption

Pr
[h

(x
) =

 h
(y

)]

d(x,y)

d1 d2

p2

p1

Small distance,
high probability

Large distance,
low probability
of hashing to
the same value

1/14/2015 15 Jure Leskovec, Stanford C246: Mining Massive Datasets

 Let:
 S = space of all sets,
 d = Jaccard distance,
 H is family of Min-Hash functions for all

permutations of rows
 Then for any hash function h∈ H:

 Pr[h(x) = h(y)] = 1 - d(x, y)

 Simply restates theorem about Min-Hashing
in terms of distances rather than similarities

1/14/2015 16 Jure Leskovec, Stanford C246: Mining Massive Datasets

 Claim: Min-hash H is a (1/3, 2/3, 2/3, 1/3)-
sensitive family for S and d.

 For Jaccard similarity, Min-Hashing gives a
(d1,d2,(1-d1),(1-d2))-sensitive family for any d1<d2

 Theory leaves unknown what happens to
pairs that are at distance between d1 and d2
 Consequence: No guarantees about fraction of

false positives in that range

If distance < 1/3
(so similarity ≥ 2/3)

Then probability
that Min-Hash values
agree is > 2/3

1/14/2015 17 Jure Leskovec, Stanford C246: Mining Massive Datasets

 Can we reproduce the
“S-curve” effect we saw
before for any LS family?

 The “bands” technique we learned for signature
matrices carries over to this more general setting
 So we can do LSH with any

(d1, d2, p1, p2)-sensitive family

 Two constructions:
 AND construction like “rows in a band”
 OR construction like “many bands”

1/14/2015 18 Jure Leskovec, Stanford C246: Mining Massive Datasets

Similarity t

P
ro

b.
 o

f s
ha

rin
g

a
bu

ck
et

 Given family H, construct family H’ consisting
of r functions from H

 For h = [h1,…,hr] in H’, we say
h(x) = h(y) if and only if hi(x) = hi(y) for all i
 Note this corresponds to creating a band of size r

 Theorem: If H is (d1, d2, p1, p2)-sensitive,
then H’ is (d1,d2, (p1)r, (p2)r)-sensitive

 Proof: Use the fact that hi ’s are independent
1/14/2015 20 Jure Leskovec, Stanford C246: Mining Massive Datasets

1 ≤ i ≤ r

 Independence of hash functions (HFs) really
means that the prob. of two HFs saying “yes”
is the product of each saying “yes”
 But two hash functions could be highly correlated
 For example, in Min-Hash if their permutations agree in

the first one million entries

 However, the probabilities in definition of a
LSH-family are over all possible members of H, H’

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 21

 Given family H, construct family H’ consisting
of b functions from H

 For h = [h1,…,hb] in H’,
h(x) = h(y) if and only if hi(x) = hi(y) for at least 1 i

 Theorem: If H is (d1, d2, p1, p2)-sensitive,
then H’ is (d1, d2, 1-(1-p1)b, 1-(1-p2)b)-sensitive

 Proof: Use the fact that hi’s are independent

1/14/2015 22 Jure Leskovec, Stanford C246: Mining Massive Datasets

 AND makes all probs. shrink, but by choosing r
correctly, we can make the lower prob. approach 0
while the higher does not

 OR makes all probs. grow, but by choosing b correctly,
we can make the upper prob. approach 1 while the
lower does not

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AND
r=1..10, b=1

P
ro

b.
 s

ha
rin

g
a

bu
ck

et

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b.
 s

ha
rin

g
a

bu
ck

et

OR
r=1, b=1..10

Similarity of a pair of items Similarity of a pair of items

 r-way AND followed by b-way OR construction
 Exactly what we did with Min-Hashing
 If bands match in all r values hash to same bucket
 Cols that are hashed into ≥ 1 common bucket Candidate

 Take points x and y s.t. Pr[h(x) = h(y)] = p
 H will make (x,y) a candidate pair with prob. p

 Construction makes (x,y) a candidate pair with
probability 1-(1-pr)b The S-Curve!
 Example: Take H and construct H’ by the AND

construction with r = 4. Then, from H’, construct H’’
by the OR construction with b = 4

1/14/2015 24 Jure Leskovec, Stanford C246: Mining Massive Datasets

p 1-(1-p4)4

.2 .0064

.3 .0320

.4 .0985

.5 .2275

.6 .4260

.7 .6666

.8 .8785

.9 .9860
r = 4, b = 4 transforms a
(.2,.8,.8,.2)-sensitive family into a
(.2,.8,.8785,.0064)-sensitive family.

1/14/2015 25 Jure Leskovec, Stanford C246: Mining Massive Datasets

 Picking r and b to get desired performance
 50 hash-functions (r = 5, b = 10)

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 27

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Blue area X: False Negative rate
These are pairs with sim > s but the X
fraction won’t share a band and then
will never become candidates. This
means we will never consider these
pairs for (slow/exact) similarity
calculation!
Green area Y: False Positive rate
These are pairs with sim < s but
we will consider them as candidates.
This is not too bad, we will consider
them for (slow/exact) similarity
computation and discard them.

Similarity

P
ro

b(
C

an
di

da
te

 p
ai

r)

Th
re

sh
ol

d
s

 Picking r and b to get desired performance
 50 hash-functions (r * b = 50)

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 28

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r=2, b=25
r=5, b=10
r=10, b=5

Th
re

sh
ol

d
s

 Apply a b-way OR construction followed by
an r-way AND construction

 Transforms probability p into (1-(1-p)b)r
 The same S-curve, mirrored horizontally and

vertically

 Example: Take H and construct H’ by the OR
construction with b = 4. Then, from H’,
construct H’’ by the AND construction
with r = 4

1/14/2015 29 Jure Leskovec, Stanford C246: Mining Massive Datasets

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 30

p (1-(1-p)4)4

.1 .0140

.2 .1215

.3 .3334

.4 .5740

.5 .7725

.6 .9015

.7 .9680

.8 .9936

The example transforms a
(.2,.8,.8,.2)-sensitive family into a
(.2,.8,.9936,.1215)-sensitive family

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

 Example: Apply the (4,4) OR-AND construction
followed by the (4,4) AND-OR construction

 Transforms a (.2, .8, .8, .2)-sensitive family into
a (.2, .8, .9999996, .0008715)-sensitive family

 Note this family uses 256 (=4*4*4*4) of the
original hash functions

1/14/2015 31 Jure Leskovec, Stanford C246: Mining Massive Datasets

 Pick any two distances d1 < d2

 Start with a (d1, d2, (1- d1), (1- d2))-sensitive
family

 Apply constructions to amplify
(d1, d2, p1, p2)-sensitive family,
where p1 is almost 1 and p2 is almost 0

 The closer to 0 and 1 we get, the more
hash functions must be used!

1/14/2015 32 Jure Leskovec, Stanford C246: Mining Massive Datasets

 LSH methods for other distance metrics:
 Cosine distance: Random hyperplanes
 Euclidean distance: Project on lines

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 35

Points

Signatures: short
integer signatures that
reflect their similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of
signatures that
we need to test
for similarity

Design a (d1, d2, p1, p2)-sensitive
family of hash functions (for that

particular distance metric)

Amplify the family
using AND and OR

constructions

Depends on the
distance function used

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 36

Data

Signatures: short
integer signatures that
reflect their similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of
signatures that
we need to test
for similarity

MinHash 1 5 1 5
2 3 1 3
6 4 6 4

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1

“Bands” technique

Random
Hyperplanes -1 +1 -1 -1

+1 +1 +1 -1
-1 -1 -1 -1

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0

“Bands” technique

D
oc

um
en

ts

D
at

a
po

in
ts

Candidate pairs

Candidate pairs

 Cosine distance = angle between vectors
from the origin to the points in question
d(A, B) = θ = arccos(A⋅B / ǁAǁ·ǁBǁ)
 Has range 𝟎𝟎…𝝅𝝅 (equivalently 0...180°)
 Can divide θ by 𝝅𝝅 to have distance in range 0…1

 Cosine similarity = 1-d(A,B)
 But often defined as cosine sim: cos(𝜃𝜃) = 𝐴𝐴⋅𝐵𝐵

𝐴𝐴 𝐵𝐵

1/14/2015 37 Jure Leskovec, Stanford C246: Mining Massive Datasets

A

B

A⋅B
‖A‖

- Has range -1…1 for
general vectors
- Range 0..1 for
non-negative vectors
(angles up to 90°)

 For cosine distance, there is a technique
called Random Hyperplanes
 Technique similar to Min-Hashing

 Random Hyperplanes method is a
(d1, d2, (1-d1/𝝅𝝅), (1-d2/𝝅𝝅))-sensitive family for
any d1 and d2

 Reminder: (d1, d2, p1, p2)-sensitive
1. If d(x,y) < d1, then prob. that h(x) = h(y) is at least p1
2. If d(x,y) > d2, then prob. that h(x) = h(y) is at most p2

1/14/2015 38 Jure Leskovec, Stanford C246: Mining Massive Datasets

 Pick a random vector v, which determines a
hash function hv with two buckets

 hv(x) = +1 if v⋅x ≥ 0; = -1 if v⋅x < 0

 LS-family H = set of all functions derived
from any vector

 Claim: For points x and y,
 Pr[h(x) = h(y)] = 1 – d(x,y) / 𝝅𝝅

1/14/2015 39 Jure Leskovec, Stanford C246: Mining Massive Datasets

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 40

x

y

Look in the
plane of x
and y.

θ
Hyperplane
normal to v’.
Here h(x) ≠ h(y)

v’

Hyperplane
normal to v.
Here h(x) = h(y)

v

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 41

So: Prob[Red case] = θ / 𝝅𝝅
So: P[h(x)=h(y)] = 1- θ/𝜋𝜋 = 1-d(x,y)

 Pick some number of random vectors, and
hash your data for each vector

 The result is a signature (sketch) of
+1’s and –1’s for each data point

 Can be used for LSH like we used the
Min-Hash signatures for Jaccard distance

 Amplify using AND/OR constructions

1/14/2015 42 Jure Leskovec, Stanford C246: Mining Massive Datasets

 Expensive to pick a random vector in M
dimensions for large M
 Would have to generate M random numbers

 A more efficient approach
 It suffices to consider only vectors v

consisting of +1 and –1 components
 Why is this more efficient?

1/14/2015 43 Jure Leskovec, Stanford C246: Mining Massive Datasets

 Simple idea: Hash functions correspond to lines

 Partition the line into buckets of size a

 Hash each point to the bucket containing its
projection onto the line

 Nearby points are always close;
distant points are rarely in same bucket

1/14/2015 44 Jure Leskovec, Stanford C246: Mining Massive Datasets

 “Lucky” case:
 Points that are close

hash in the same bucket
 Distant points end up in

different buckets

 Two “unlucky” cases:
 Top: unlucky

quantization
 Bottom: unlucky

projection
1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 45

v
v

Line

Buckets of size a
v v

v
v

v v

v
v

v
v

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 46

v v

v
v

v
v

v v

Bucket
width a

Randomly
chosen line

Points at
distance d If d << a, then

the chance the
points are in the
same bucket is
at least 1 – d/a.

1/14/2015 47 Jure Leskovec, Stanford C246: Mining Massive Datasets

Bucket
width a

Points at
distance d

θ

d cos θ

If d >> a, θ must
be close to 90o

for there to be
any chance points
go to the same
bucket.

1/14/2015 48 Jure Leskovec, Stanford C246: Mining Massive Datasets

Randomly
chosen line

 If points are distance d < a/2, prob.
they are in same bucket ≥ 1- d/a = ½

 If points are distance d > 2a apart, then they
can be in the same bucket only if d cos θ ≤ a
 cos θ ≤ ½
 60 < θ < 90, i.e., at most 1/3 probability

 Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of
hash functions for any a

 Amplify using AND-OR cascades

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 49

50

 Projection method yields a (a/2, 2a, 1/2,
1/3)-sensitive family of hash functions

 For previous distance measures, we could
start with an (d1, d2, p1, p2)-sensitive family
for any d1 < d2, and drive p1 and p2 to 1 and 0
by AND/OR constructions

 Note: Here, we seem to need d1 ≤ 4 d2
 In the calculation on the previous slide we only

considered cases d < a/2 and d > 2a
1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets

51

 But as long as d1 < d2, the probability of points
at distance d1 falling in the same bucket is
greater than the probability of points at
distance d2 doing so

 Thus, the hash family formed by projecting
onto lines is an (d1, d2, p1, p2)-sensitive family
for some p1 > p2
 Then, amplify by AND/OR constructions

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 52

Data

Signatures: short
integer signatures that
reflect their similarity Locality-

sensitive
Hashing

Candidate pairs:
those pairs of
signatures that
we need to test
for similarity

Design a (d1, d2, p1, p2)-sensitive
family of hash functions (for that

particular distance metric)

Amplify the family
using AND and OR

constructions

MinHash 1 5 1 5
2 3 1 3
6 4 6 4

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 0 1

“Bands” technique

Random
Hyperplanes -1 +1 -1 -1

+1 +1 +1 -1
-1 -1 -1 -1

0 1 0 0
1 1 1 0
0 0 0 1
0 1 0 1
0 0 1 0

“Bands” technique

D
oc

um
en

ts

D
at

a
po

in
ts

Candidate pairs

Candidate pairs

 Property P(h(C1)=h(C2))=sim(C1,C2) of
hash function h is the essential part of
LSH, without it we can’t do anything

 LS-hash functions transform data to
signatures so that the bands technique
(AND, OR constructions) can then be
applied

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 53

	Theory of �Locality Sensitive Hashing
	Recap: Finding similar documents
	Recap: 3 Essential Steps
	Recap: The Big Picture
	Recap: Shingles
	Recap: Minhashing
	Recap: LSH
	Recap: The S-Curve
	How Do We Make the S-curve?
	S-curves as a func. of b and r
	Theory of LSH
	Theory of LSH
	Families of Hash Functions
	Locality-Sensitive (LS) Families
	A (d1,d2,p1,p2)-sensitive function
	Example of LS Family: Min-Hash
	Example: LS Family – (2)
	Amplifying a LS-Family
	Amplifying Hash Functions:�AND and OR
	AND of Hash Functions
	Subtlety Regarding Independence
	OR of Hash Functions
	Effect of AND and OR Constructions
	Composing Constructions
	Table for Function 1-(1-p4)4
	�How to choose r and b
	Picking r and b: The S-curve
	Picking r and b: The S-curve
	OR-AND Composition
	Table for Function (1-(1-p)4)4
	Cascading Constructions
	Summary
	�LHS for other distance metrics
	LSH for other Distance Metrics
	Summary of what we will learn
	Cosine Distance
	LSH for Cosine Distance
	Random Hyperplanes
	Proof of Claim
	Proof of Claim
	Signatures for Cosine Distance
	How to pick random vectors?
	LSH for Euclidean Distance
	Projection of Points
	Multiple Projections
	Projection of Points
	Projection of Points
	An LS-Family for Euclidean Distance
	Fixup: Euclidean Distance
	Fixup – (2)
	Summary
	Two important points

