Theory of Locality Sensitive Hashing

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University http://cs246.stanford.edu

Recap: Finding similar documents

- Task: Given a large number (\boldsymbol{N} in the millions or billions) of documents, find "near duplicates"
- Applications:
- Mirror websites, or approximate mirrors
- Don't want to show both in a single set of search results
- Problems:
- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many that they cannot fit in main memory

Recap: 3 Essential Steps

1. Shingling: Convert docs to sets of items

- Document is a set of k-shingles

2. Min-Hashing: Convert large sets into short signatures, while preserving similarity

- Want hash func. that $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
- For the Jaccard similarity Min-Hash has this property!

3. Locality-sensitive hashing: Focus on pairs of signatures likely to be from similar documents

- Split signatures into bands and hash them
- Documents with similar signatures get hashed into same buckets: Candidate pairs

Recap: The Big Picture

Recap: Shingles

- A k-shingle (or k-gram) is a sequence of k tokens that appears in the document
- Example: $\mathbf{k}=\mathbf{2}$; $\mathbf{D}_{\mathbf{1}}$ = abcab

Set of 2-shingles: $C_{1}=S\left(D_{1}\right)=\{a b, b c, c a\}$

- Represent a doc by a set of hash values of its k-shingles
- A natural document similarity measure is then the Jaccard similarity: $\operatorname{sim}\left(D_{1}, D_{2}\right)=\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|$
- Similarity of two documents is the Jaccard similarity of their shingles

Recap: Minhashing

- Prob. $h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)$ is the same as $\operatorname{sim}\left(D_{1}, D_{2}\right):$ $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{D}_{1}, \mathrm{D}_{2}\right)$
Permutation π Input matrix (Shingles x Documents)
Signature matrix M

| 2 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| 3 | 2 | 4 |
| 7 | 1 | 7 |
| 6 | 3 | 2 |
| 1 | 6 | 6 |
| 5 | 7 | 1 |
| 4 | 5 | 5 |

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

\square| 2 | 1 | 2 | 1 |
| :--- | :--- | :--- | :--- |
| 2 | 1 | 4 | 1 |
| 1 | 2 | 1 | 2 |

Similarities of columns and signatures (approx.) match!

	$1-3$	$2-4$	$1-2$	$3-4$
Col/Col	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0

$1 / 14 / 2015$
Jure Leskovec, Stanford C246: Mining Massive Datasets

Recap: LSH

- Hash columns of the signature matrix M: Similar columns likely hash to same bucket
- Divide matrix M into \boldsymbol{b} bands of \boldsymbol{r} rows ($M=b \cdot r$)
- Candidate column pairs are those that hash to the same bucket for ≥ 1 band

Recap: The S-Curve

- The S-curve is where the "magic" happens

Similarity t of two sets
This is what 1 hash-code gives you

$$
\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{D}_{1}, \mathrm{D}_{2}\right)
$$

Similarity t of two sets
This is what we want!
How to get a step-function?
By choosing r and b !

How Do We Make the S-curve?

- Remember: \boldsymbol{b} bands, \boldsymbol{r} rows/band
- Let $\operatorname{sim}\left(\boldsymbol{C}_{1}, \boldsymbol{C}_{\mathbf{2}}\right)=\boldsymbol{t}$
- Pick some band (r rows)
- Prob. that elements in a single row of

Similarity t columns \mathbf{C}_{1} and $\mathbf{C}_{\mathbf{2}}$ are equal $=\boldsymbol{t}$

- Prob. that all rows in a band are equal $=t^{r}$
- Prob. that some row in a band is not equal =1-tr
- Prob. that all bands are not equal $=\left(1-t^{r}\right)^{b}$
- Prob. that at least 1 band is equal $=1-\left(1-t^{r}\right)^{b}$
$P\left(C_{1}, C_{2}\right.$ is a candidate pair $)=1-\left(1-t^{r}\right)^{b}$

S-curves as a func. of b and r

Given a fixed threshold s.

We want choose \boldsymbol{r} and \boldsymbol{b} such that the P(Candidate pair) has a "step" right around s.

Similarity

prob $=1-(1-t)^{b}$

Theory of LSH

general hashing

locality-sensitive hashing

Theory of LSH

- We have used LSH to find similar documents
- More generally, we found similar columns in large sparse matrices with high Jaccard similarity
- For example, customer/item purchase histories
- Can we use LSH for other distance measures?
- e.g., Euclidean distances, Cosine distance
- Let's generalize what we've learned!

Families of Hash Functions

- For Min-Hashing signatures, we got a Min-Hash function for each permutation of rows
- A "hash function" is any function that takes two elements and says whether they are "equal"
- Shorthand: $h(x)=h(y)$ means " h says x and y are equal"
- A family of hash functions is any set of hash functions from which we can pick one at random efficiently
- Example: The set of Min-Hash functions generated from permutations of rows

Locality-Sensitive (LS) Families

- Suppose we have a space S of points with a distance measure $d(x, y)$

Critical assumption
A family \boldsymbol{H} of hash functions is said to be ($d_{1}, d_{2}, p_{1}, p_{2}$)-sensitive if for any \boldsymbol{x} and \boldsymbol{y} in S :

1. If $\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y}) \leq \boldsymbol{d}_{1}$, then the probability over all $\boldsymbol{h} \in \boldsymbol{H}$, that $\boldsymbol{h}(x)=\boldsymbol{h}(\boldsymbol{y})$ is at least \boldsymbol{p}_{1}
2. If $d(x, y) \geq \boldsymbol{d}_{2}$, then the probability over all $\boldsymbol{h} \in \boldsymbol{H}$, that $h(x)=h(y)$ is at most p_{2}

With a LS Family we can do LSH!

$\mathrm{A}\left(d_{11}, d_{2 \mu} p_{11} p_{2}\right)$-sensitive function

Large distance, low probability of hashing to the same value

$$
d(x, y)
$$

Example of LS Family: Min-Hash

- Let:
- S = space of all sets,
- d = Jaccard distance,
- \boldsymbol{H} is family of Min-Hash functions for all permutations of rows
- Then for any hash function $h \in H$:

$$
\operatorname{Pr}[h(x)=h(y)]=1-d(x, y)
$$

- Simply restates theorem about Min-Hashing in terms of distances rather than similarities

Example: LS Family - (2)

- Claim: Min-hash H is a $(1 / 3,2 / 3,2 / 3,1 / 3)$ sensitive family for S and d.

If distance $\leq 1 / 3$
(so similarity $\geq 2 / 3$)

Then probability that Min-Hash values agree is $\geq 2 / 3$

- For Jaccard similarity, Min-Hashing gives a $\left(d_{1}, d_{2},\left(1-d_{1}\right),\left(1-d_{2}\right)\right)$-sensitive family for any $d_{1}<d_{2}$
- Theory leaves unknown what happens to pairs that are at distance between d_{1} and d_{2}
- Consequence: No guarantees about fraction of false positives in that range

Amplifying a LS-Family

- Can we reproduce the "S-curve" effect we saw before for any LS family?

- The "bands" technique we learned for signature matrices carries over to this more general setting
- So we can do LSH with any ($d_{1}, d_{2}, p_{1}, p_{2}$)-sensitive family
- Two constructions:
- AND construction like "rows in a band"
" OR construction like "many bands"

Amplifying Hash Functions: AND and OR

AND of Hash Functions

- Given family \boldsymbol{H}, construct family \boldsymbol{H}^{\prime} consisting of r functions from \boldsymbol{H}
- For $h=\left[h_{1}, \ldots, h_{r}\right]$ in \mathbf{H}^{\prime}, we say $\mathbf{h}(\mathbf{x})=\mathbf{h}(\mathbf{y})$ if and only if $\mathbf{h}_{\mathbf{i}}(\mathbf{x})=\mathbf{h}_{\mathbf{i}}(\mathbf{y})$ for all \boldsymbol{i}

$$
1 \leq i \leq r
$$

- Note this corresponds to creating a band of size r
- Theorem: If \boldsymbol{H} is $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive, then \mathbf{H}^{\prime} is $\left(d_{1}, d_{2},\left(p_{1}\right)^{r},\left(p_{2}\right)^{r}\right)$-sensitive
- Proof: Use the fact that $\boldsymbol{h}_{\boldsymbol{i}}$'s are independent

Subtlety Regarding Independence

- Independence of hash functions (HFs) really means that the prob. of two HFs saying "yes" is the product of each saying "yes"
- But two hash functions could be highly correlated
- For example, in Min-Hash if their permutations agree in the first one million entries
- However, the probabilities in definition of a LSH-family are over all possible members of $\boldsymbol{H}, \boldsymbol{H}^{\prime}$

OR of Hash Functions

- Given family \boldsymbol{H}, construct family \boldsymbol{H}^{\prime} consisting of \boldsymbol{b} functions from \boldsymbol{H}
- For $\boldsymbol{h}=\left[\boldsymbol{h}_{1}, \ldots, \boldsymbol{h}_{b}\right]$ in \boldsymbol{H}^{\prime}, $h(x)=h(y)$ if and only if $h_{i}(x)=h_{i}(y)$ for at least $\mathbf{1} \boldsymbol{i}$
- Theorem: If H is $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive, then H^{\prime} is $\left(d_{1}, d_{\mathbf{2}}, \mathbf{1}-\left(\mathbf{1}-p_{1}\right)^{b}, \mathbf{1}-\left(\mathbf{1}-p_{2}\right)^{b}\right)$-sensitive
- Proof: Use the fact that $\boldsymbol{h}_{\boldsymbol{i}}$'s are independent

Effect of AND and OR Constructions

- AND makes all probs. shrink, but by choosing r correctly, we can make the lower prob. approach 0 while the higher does not
- OR makes all probs. grow, but by choosing b correctly, we can make the upper prob. approach 1 while the lower does not

Similarity of a pair of items

Similarity of a pair of items

Composing Constructions

- r-way AND followed by b-way OR construction
- Exactly what we did with Min-Hashing
- If bands match in all r values hash to same bucket
- Cols that are hashed into ≥ 1 common bucket \rightarrow Candidate
- Take points x and y s.t. $\operatorname{Pr}[h(x)=h(y)]=p$ - \boldsymbol{H} will make (\mathbf{x}, \mathbf{y}) a candidate pair with prob. \mathbf{p}
- Construction makes (\mathbf{x}, \mathbf{y}) a candidate pair with probability 1-(1-pr $)^{b}$

The S-Curve!

- Example: Take \mathbf{H} and construct \mathbf{H}^{\prime} by the AND construction with $r=4$. Then, from \mathbf{H}^{\prime}, construct $\mathbf{H}^{\prime \prime}$ by the OR construction with $b=4$

Table for Function 1-(1-p4) ${ }^{4}$

\mathbf{p}	$\mathbf{1 - (1 - \mathbf { p } ^ { \mathbf { 4 } } \mathbf { 4 } ^ { \mathbf { 4 } }}$
.2	.0064
.3	.0320
.4	.0985
.5	.2275
.6	.4260
.7	.6666
.8	.8785
.9	.9860

$r=4, b=4$ transforms a
(.2, $, 8,8,2$)-sensitive family into a
(.2,.8,.8785,.0064)-sensitive family.

How to choose r and b

Picking r and b : The S-curve

- Picking r and b to get desired performance
- 50 hash-functions ($r=5, b=10$)

Similarity

Blue area X : False Negative rate These are pairs with sim >s but the \boldsymbol{X} fraction won't share a band and then will never become candidates. This means we will never consider these pairs for (slow/exact) similarity calculation!
Green area Y: False Positive rate These are pairs with sim <s but we will consider them as candidates. This is not too bad, we will consider them for (slow/exact) similarity computation and discard them.

Picking r and b : The S-curve

- Picking r and b to get desired performance
- 50 hash-functions ($\boldsymbol{r}^{*} \boldsymbol{b}=50$)

OR-AND Composition

- Apply a b-way OR construction followed by an r-way AND construction
- Transforms probability p into (1-(1-p) $)^{\mathbf{b}}{ }^{r}$
- The same S-curve, mirrored horizontally and vertically
- Example: Take H and construct H' by the OR construction with $\boldsymbol{b}=4$. Then, from H^{\prime}, construct $\mathbf{H}^{\prime \prime}$ by the AND construction with $r=4$

Table for Function $\left(1-(1-p)^{4}\right)^{4}$

\mathbf{p}	$\left(\mathbf{1 - (1 - p)} \mathbf{4}^{\mathbf{4}}\right.$
.1	.0140
.2	.1215
.3	.3334
.4	.5740
.5	.7725
.6	.9015
.7	.9680
.8	.9936

The example transforms a (.2,.8,.8,.2)-sensitive family into a (.2,.8,.9936, .1215)-sensitive family

Cascading Constructions

- Example: Apply the $(4,4)$ OR-AND construction followed by the $(4,4)$ AND-OR construction
- Transforms a (.2, .8, .8, .2)-sensitive family into a (.2, .8, .9999996, .0008715)-sensitive family
- Note this family uses 256 ($=4 * 4 * 4 * 4$) of the original hash functions

Summary

- Pick any two distances $\boldsymbol{d}_{\mathbf{1}}<\boldsymbol{d}_{\mathbf{2}}$
- Start with a $\left(d_{1}, d_{\mathbf{2}},\left(\mathbf{1}-d_{1}\right),\left(\mathbf{1}-d_{\mathbf{2}}\right)\right)$-sensitive family
- Apply constructions to amplify $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family, where p_{1} is almost 1 and p_{2} is almost 0
- The closer to 0 and 1 we get, the more hash functions must be used!

LHS for other distance metrics

LSH for other Distance Metrics

- LSH methods for other distance metrics:
- Cosine distance: Random hyperplanes
- Euclidean distance: Project on lines

Summary of what we will learn

Candidate pairs: those pairs of \rightarrow signatures that we need to test for similarity

Cosine Distance

- Cosine distance = angle between vectors from the origin to the points in question $d(A, B)=\theta=\arccos (A \cdot B /\|A\| \cdot\|B\|)$
- Has range $\mathbf{0} \ldots \boldsymbol{\pi}$ (equivalently $0 \ldots 180^{\circ}$) $\leftarrow \frac{\text { A.B }}{\|A\| \|} \rightarrow$
- Can divide θ by $\boldsymbol{\pi}$ to have distance in range $0 \ldots 1$
- Has range $\mathbf{0} \ldots \boldsymbol{\pi}$ (equivalently $0 \ldots 180^{\circ}$) $\leftarrow \frac{A \cdot B}{\|A\|}$
- Can divide θ by $\boldsymbol{\pi}$ to have distance in range $0 \ldots 1$ - Cosine similarity = 1-d(A,B)
- But often defined as $\operatorname{cosine~sim:~} \cos (\theta)=\frac{A \cdot B}{\|A\|\|B\|}$

- Has range -1... 1 for general vectors
- Range $0 . .1$ for non-negative vectors (angles up to 90°)

LSH for Cosine Distance

- For cosine distance, there is a technique called Random Hyperplanes
- Technique similar to Min-Hashing
- Random Hyperplanes method is a ($\left.d_{1}, d_{2},\left(1-d_{1} / \pi\right),\left(1-d_{2} / \pi\right)\right)$-sensitive family for any \boldsymbol{d}_{1} and d_{2}
- Reminder: $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive

1. If $d(x, y) \leq d_{1}$, then prob. that $h(x)=h(y)$ is at least p_{1}
2. If $d(x, y) \geq d_{2}$, then prob. that $h(x)=h(y)$ is at most p_{2}

Random Hyperplanes

- Pick a random vector \mathbf{v}, which determines a hash function h_{v} with two buckets
- $h_{v}(x)=+1$ if $v \cdot x \geq 0 ;=-1$ if $v \cdot x<0$
- LS-family $\boldsymbol{H}=$ set of all functions derived from any vector
- Claim: For points \mathbf{x} and \mathbf{y},

$$
\operatorname{Pr}[h(x)=h(y)]=1-d(x, y) / \pi
$$

Proof of Claim

Look in the plane of x and y.

Hyperplane
Hyperplane normal to v^{\prime}.
Here $h(x) \neq h(y)$
normal to \mathbf{v}.
Here $h(x)=h(y)$

Proof of Claim

Signatures for Cosine Distance

- Pick some number of random vectors, and hash your data for each vector
- The result is a signature (sketch) of +1's and -1's for each data point
- Can be used for LSH like we used the Min-Hash signatures for Jaccard distance
- Amplify using AND/OR constructions

How to pick random vectors?

- Expensive to pick a random vector in \boldsymbol{M} dimensions for large \boldsymbol{M}
- Would have to generate \boldsymbol{M} random numbers
- A more efficient approach
- It suffices to consider only vectors \boldsymbol{v} consisting of +1 and -1 components
- Why is this more efficient?

LSH for Euclidean Distance

- Simple idea: Hash functions correspond to lines
- Partition the line into buckets of size a
- Hash each point to the bucket containing its projection onto the line
- Nearby points are always close; distant points are rarely in same bucket

Projection of Points

Multiple Projections

Projection of Points

Bucket
width a

Projection of Points

An LS-Family for Euclidean Distance

- If points are distance $\boldsymbol{d} \leq a / \mathbf{2}$, prob. they are in same bucket $\geq 1-d / a=1 / 2$
- If points are distance $\boldsymbol{d} \geq \mathbf{2 a}$ apart, then they can be in the same bucket only if $\boldsymbol{d} \cos \theta \leq \boldsymbol{a}$
- $\cos \theta \leq 1 / 2$
- $60 \leq \theta \leq 90$, i.e., at most $1 / 3$ probability
- Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of hash functions for any a
- Amplify using AND-OR cascades

Fixup: Euclidean Distance

- Projection method yields a (a/2, 2a, 1/2, $1 / 3)$-sensitive family of hash functions
- For previous distance measures, we could start with an ($\left.d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family for any $\boldsymbol{d}_{1}<\boldsymbol{d}_{2}$, and drive \boldsymbol{p}_{1} and \boldsymbol{p}_{2} to 1 and 0 by AND/OR constructions
- Note: Here, we seem to need $d_{1} \leq 4 d_{2}$
- In the calculation on the previous slide we only considered cases $d \leq a / \mathbf{2}$ and $d \geq 2 a$

Fixup - (2)

- But as long as $d_{1}<d_{2}$, the probability of points at distance $\boldsymbol{d}_{\mathbf{1}}$ falling in the same bucket is greater than the probability of points at distance $\boldsymbol{d}_{\mathbf{2}}$ doing so
- Thus, the hash family formed by projecting onto lines is an $\left(d_{1}, d_{2}, p_{1}, p_{2}\right)$-sensitive family for some $\boldsymbol{p}_{1}>\boldsymbol{p}_{2}$
- Then, amplify by AND/OR constructions

Summary

Candidate pairs: those pairs of
\rightarrow signatures that we need to test for similarity
Design a $\left(d_{11} d_{21} p_{11} p_{2}\right)$-sensitive family of hash functions (for that particular distance metric)

Amplify the family using AND and OR constructions

Two important points

- Property $\mathrm{P}\left(\mathrm{h}\left(\mathrm{C}_{1}\right)=\mathrm{h}\left(\mathrm{C}_{2}\right)\right)=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$ of hash function h is the essential part of LSH, without it we can't do anything
- LS-hash functions transform data to signatures so that the bands technique (AND, OR constructions) can then be applied

