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 Task: Given a large number (N in the millions or 
billions) of documents, find “near duplicates” 

 Applications: 
 Mirror websites, or approximate mirrors 
 Don’t want to show both in a single set of search results 

 Problems: 
 Many small pieces of one document can appear  

out of order in another 
 Too many documents to compare all pairs 
 Documents are so large or so many that they cannot  

fit in main memory 
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1. Shingling: Convert docs to sets of items 
 Document is a set of k-shingles 

 

2. Min-Hashing: Convert large sets into short 
signatures, while preserving similarity 
 Want hash func. that Pr[hπ(C1) = hπ(C2)] = sim(C1, C2)  
 For the Jaccard similarity Min-Hash has this property! 

 

3. Locality-sensitive hashing: Focus on pairs of 
signatures likely to be from similar documents 
 Split signatures into bands and hash them 
 Documents with similar signatures get hashed into 

same buckets: Candidate pairs  
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of length k 
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vectors that 
represent the 
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similarity 
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sensitive 
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Candidate 
pairs: 
those pairs 
of signatures 
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to test for 
similarity 
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 A k-shingle (or k-gram) is a sequence of k 
tokens that appears in the document 
 Example: k=2; D1 = abcab 

Set of 2-shingles: C1 = S(D1) = {ab, bc, ca} 
 Represent a doc by a set of hash values of its 

k-shingles 
 A natural document similarity measure is then 

the Jaccard similarity: 
  sim(D1, D2) = |C1∩C2|/|C1∪C2| 

 Similarity of two documents is the Jaccard similarity of 
their shingles 
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 Prob. hπ(C1) = hπ(C2) is the same as sim(D1, D2): 
  Pr[hπ(C1) = hπ(C2)] = sim(D1, D2)  
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Similarities of columns and 
signatures (approx.) match! 
                   1-3      2-4    1-2   3-4 
Col/Col   0.75    0.75    0       0 
Sig/Sig   0.67    1.00    0       0 
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 Hash columns of the signature matrix M:   
Similar columns likely hash to same bucket 
 Divide matrix M into b bands of r rows (M=b·r) 
 Candidate column pairs are those that hash  

to the same bucket for ≥ 1 band 
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 The S-curve is where the “magic” happens 
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Remember: 
Probability of 
equal hash-values 
= similarity 

This is what 1 hash-code gives you 
Pr[hπ(C1) = hπ(C2)] = sim(D1, D2) 

No chance 
if t<s 

Probability=1 
if t>s 

This is what we want! 
How to get a step-function? 

By choosing r and b! 
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 Remember: b bands, r rows/band 
 Let sim(C1 , C2) = t 
 Pick some band (r rows) 
 Prob. that elements in a single row of  

columns C1 and C2 are equal = t 
 Prob. that all rows in a band are equal = tr  
 Prob. that some row in a band is not equal = 1 - tr  

 Prob. that all bands are not equal  = (1 - tr)b 

 Prob. that at least 1 band is equal = 1 - (1 - tr)b 
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P(C1, C2 is a candidate pair) = 1 - (1 - tr)b  
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r = 1, b = 1..10 

r = 5, b = 1..50 
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Given a fixed 
threshold s. 
 
We want choose 
r and b such 
that the 
P(Candidate 
pair) has a 
“step” right 
around s. 
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 We have used LSH to find similar documents 
 More generally, we found similar columns in large 

sparse matrices with high Jaccard similarity 
 For example, customer/item purchase histories 

 

 Can we use LSH for other distance measures? 
 e.g., Euclidean distances, Cosine distance  
 Let’s generalize what we’ve learned! 
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 For Min-Hashing signatures, we got a Min-Hash 
function for each permutation of rows 

 A “hash function” is any function that takes two  
elements and says whether they are “equal” 
 Shorthand: h(x) = h(y) means “h  says x and y are equal” 

 

 A family of hash functions is any set of hash 
functions from which we can pick one at 
random efficiently 
 Example: The set of Min-Hash functions generated 

from permutations of rows 
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 Suppose we have a space S of points with  
a distance measure d(x,y) 

 

 A family H of hash functions is said to be  
(d1, d2, p1, p2)-sensitive if for any x and y in S: 

 

1. If d(x, y) < d1, then the probability over all h∈ H,  
that h(x) = h(y) is at least p1 

 

2. If d(x, y) > d2, then the probability over all h∈ H,  
that h(x) = h(y) is at most p2 

1/14/2015 14 Jure Leskovec, Stanford C246: Mining Massive Datasets 

With a LS Family we can do LSH! 

Critical assumption 



Pr
[h

(x
) =

 h
(y

)] 

d(x,y) 

d1 d2 

p2 

p1 

Small distance, 
high probability 

Large distance, 
low probability 
of hashing to  
the same value 
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 Let:  
 S = space of all sets,  
 d = Jaccard distance,  
 H is family of Min-Hash functions for all 

permutations of rows 
 Then for any hash function h∈ H: 

  Pr[h(x) = h(y)]  =  1 - d(x, y) 
 

 Simply restates theorem about Min-Hashing  
in terms of distances rather than similarities 
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 Claim: Min-hash H is a (1/3, 2/3, 2/3, 1/3)-
sensitive family for S and d. 

 
 
 
 

 For Jaccard similarity, Min-Hashing gives a 
(d1,d2,(1-d1),(1-d2))-sensitive family for any d1<d2 

 Theory leaves unknown what happens to  
pairs that are at distance between d1 and d2 
 Consequence: No guarantees about fraction of  

false positives in that range 

If distance < 1/3 
(so similarity ≥ 2/3) 

Then probability 
that Min-Hash values 
agree is > 2/3 

1/14/2015 17 Jure Leskovec, Stanford C246: Mining Massive Datasets 



 Can we reproduce the  
“S-curve” effect we saw  
before for any LS family? 

 

 The “bands” technique we learned for signature 
matrices carries over to this more general setting 
 So we can do LSH with any  

(d1, d2, p1, p2)-sensitive family 
 

 Two constructions: 
 AND construction like “rows in a band” 
 OR construction like “many bands” 

1/14/2015 18 Jure Leskovec, Stanford C246: Mining Massive Datasets 

Similarity t 

P
ro

b.
 o

f s
ha

rin
g 

a 
bu

ck
et

 





 Given family H, construct family H’ consisting 
of r functions from H 

 

 For h = [h1,…,hr] in H’, we say 
h(x) = h(y) if and only if hi(x) = hi(y) for all i 
 Note this corresponds to creating a band of size r 

 

 Theorem: If H is (d1, d2, p1, p2)-sensitive,  
then H’ is (d1,d2, (p1)r, (p2)r)-sensitive 

 

 Proof: Use the fact that hi ’s are independent 
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1 ≤ i ≤ r 



 Independence of hash functions (HFs) really 
means that the prob. of two HFs saying “yes” 
is the product of each saying “yes” 
 But two hash functions could be highly correlated 
 For example, in Min-Hash if their permutations agree in 

the first one million entries 

 However, the probabilities in definition of a  
LSH-family are over all possible members of H, H’ 
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 Given family H, construct family H’ consisting  
of b functions from H 

 

 For h = [h1,…,hb] in H’,  
h(x) = h(y) if and only if hi(x) = hi(y) for at least 1  i 

 

 Theorem: If H is (d1, d2, p1, p2)-sensitive,  
then H’ is (d1, d2, 1-(1-p1)b, 1-(1-p2)b)-sensitive 
 

 Proof: Use the fact that hi’s are independent 
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 AND makes all probs. shrink, but by choosing r 
correctly, we can make the lower prob. approach 0 
while the higher does not 

 

 OR makes all probs. grow, but by choosing b correctly, 
we can make the upper prob. approach 1 while the 
lower does not 
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OR 
r=1, b=1..10 

Similarity of a pair of items Similarity of a pair of items 



 r-way AND followed by b-way OR construction 
 Exactly what we did with Min-Hashing 
 If bands match in all r values hash to same bucket 
 Cols that are hashed into ≥ 1 common bucket  Candidate 

 

 Take points x and y  s.t.  Pr[h(x) = h(y)] = p 
 H will make (x,y) a candidate pair with prob. p 

 Construction makes (x,y) a candidate pair with 
probability 1-(1-pr)b                The S-Curve! 
 Example: Take H and construct H’ by the AND 

construction with r = 4.  Then, from H’, construct H’’ 
by the OR construction with b = 4 
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p 1-(1-p4)4 

.2 .0064 

.3 .0320 

.4 .0985 

.5 .2275 

.6 .4260 

.7 .6666 

.8 .8785 

.9 .9860 
r = 4, b = 4  transforms a 
(.2,.8,.8,.2)-sensitive family into a 
(.2,.8,.8785,.0064)-sensitive family. 
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 Picking r and b to get desired performance 
 50 hash-functions (r = 5, b = 10) 

1/14/2015 Jure Leskovec, Stanford C246: Mining Massive Datasets 27 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Blue area X: False Negative rate 
These are pairs with sim > s but the X 
fraction won’t share a band and then 
will never become candidates. This 
means we will never consider these 
pairs for (slow/exact) similarity 
calculation! 
Green area Y: False Positive rate 
These are pairs with sim < s but 
we will consider them as candidates. 
This is not too bad, we will consider 
them for (slow/exact) similarity 
computation and discard them. 

Similarity 

P
ro

b(
C

an
di

da
te

 p
ai

r)
 

Th
re

sh
ol

d 
s 



 Picking r and b to get desired performance 
 50 hash-functions (r * b = 50) 
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 Apply a b-way OR construction followed by  
an r-way AND construction 

 Transforms probability p into (1-(1-p)b)r 
 The same S-curve, mirrored horizontally and 

vertically 
 

 Example: Take H and construct H’ by the OR 
construction with b = 4.  Then, from H’, 
construct H’’ by the AND construction  
with r = 4 
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p (1-(1-p)4)4 

.1 .0140 

.2 .1215 

.3 .3334 

.4 .5740 

.5 .7725 

.6 .9015 

.7 .9680 

.8 .9936 

The example transforms a 
(.2,.8,.8,.2)-sensitive family into a 
(.2,.8,.9936,.1215)-sensitive family 
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 Example: Apply the (4,4) OR-AND construction 
followed by the (4,4) AND-OR construction 

 

 Transforms a (.2, .8, .8, .2)-sensitive family into 
a (.2, .8, .9999996, .0008715)-sensitive family 

 

 Note this family uses 256 (=4*4*4*4) of the  
original hash functions 
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 Pick any two distances d1 < d2 
 

 Start with a (d1, d2, (1- d1), (1- d2))-sensitive 
family 

 

 Apply constructions to amplify 
(d1, d2, p1, p2)-sensitive family,  
where p1 is almost 1 and p2 is almost 0 

 

 The closer to 0 and 1 we get, the more  
hash functions must be used! 
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 LSH methods for other distance metrics: 
 Cosine distance: Random hyperplanes 
 Euclidean distance: Project on lines 
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Points 

Signatures: short 
integer signatures that 
reflect their similarity Locality- 

sensitive 
Hashing 

Candidate pairs: 
those pairs of 
signatures that 
we need to test 
for similarity 

Design a (d1, d2, p1, p2)-sensitive 
family of hash functions (for that 

particular distance metric) 

Amplify the family 
using AND and OR 

constructions 

Depends on the 
distance function used 
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Data 

Signatures: short 
integer signatures that 
reflect their similarity Locality- 

sensitive 
Hashing 

Candidate pairs: 
those pairs of 
signatures that 
we need to test 
for similarity 

MinHash 1 5 1 5 
2 3 1 3 
6 4 6 4 

0 1 0 0 
1 1 1 0 
0 0 0 1 
0 1 0 1 
0 0 1 0 
1 0 0 1 

“Bands” technique 

Random 
Hyperplanes -1 +1 -1 -1 

+1 +1 +1 -1 
-1 -1 -1 -1 

0 1 0 0 
1 1 1 0 
0 0 0 1 
0 1 0 1 
0 0 1 0 

    

“Bands” technique 
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Candidate pairs 

Candidate pairs 



 Cosine distance = angle between vectors  
from the origin to the points in question 
d(A, B) = θ = arccos(A⋅B / ǁAǁ·ǁBǁ) 
 Has range 𝟎𝟎…𝝅𝝅  (equivalently 0...180°) 
 Can divide θ by 𝝅𝝅 to have distance in range 0…1 

 Cosine similarity = 1-d(A,B) 
 But often defined as cosine sim: cos(𝜃𝜃) = 𝐴𝐴⋅𝐵𝐵

𝐴𝐴 𝐵𝐵
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A 

B 

A⋅B 
‖A‖ 

- Has range -1…1 for  
general vectors 
- Range 0..1 for  
non-negative vectors 
(angles up to 90°) 
 



 For cosine distance, there is a technique 
called Random Hyperplanes 
 Technique similar to Min-Hashing  

 

 Random Hyperplanes method is a  
(d1, d2, (1-d1/𝝅𝝅), (1-d2/𝝅𝝅))-sensitive family for 
any d1 and d2 

 

 Reminder: (d1, d2, p1, p2)-sensitive 
1. If d(x,y) < d1, then prob. that h(x) = h(y) is at least p1 
2. If d(x,y) > d2, then prob. that h(x) = h(y) is at most p2 

1/14/2015 38 Jure Leskovec, Stanford C246: Mining Massive Datasets 



 Pick a random vector v, which determines a 
hash function hv with two buckets 

 

 hv(x) = +1 if v⋅x ≥ 0;  = -1 if v⋅x < 0 
 

 LS-family H = set of all functions derived  
from any vector 

 

 Claim: For points x and y,  
 Pr[h(x) = h(y)]  =  1 – d(x,y) / 𝝅𝝅 
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x 

y 

Look in the 
plane of x 
and y. 

θ 
Hyperplane 
normal to v’. 
Here h(x) ≠ h(y) 

v’ 

Hyperplane 
normal to v. 
Here h(x) = h(y) 

v 
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So: Prob[Red case] = θ / 𝝅𝝅 
So: P[h(x)=h(y)] = 1- θ/𝜋𝜋 = 1-d(x,y) 



 Pick some number of random vectors, and 
hash your data for each vector 

 

 The result is a signature (sketch) of  
+1’s and –1’s for each data point 

 

 Can be used for LSH like we used the  
Min-Hash signatures for Jaccard distance 

 

 Amplify using AND/OR constructions 
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 Expensive to pick a random vector in M 
dimensions for large M 
 Would have to generate M random numbers 

 

 A more efficient approach 
 It suffices to consider only vectors v 

consisting of +1 and –1 components 
 Why is this more efficient? 
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 Simple idea: Hash functions correspond to lines 
 

 Partition the line into buckets of size a 
 

 Hash each point to the bucket containing its 
projection onto the line 

 

 Nearby points are always close;  
distant points are rarely in same bucket 
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 “Lucky” case: 
 Points that are close 

hash in the same bucket 
 Distant points end up in 

different buckets 

 Two “unlucky” cases: 
 Top: unlucky 

quantization 
 Bottom: unlucky 

projection 
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Bucket 
width a 

Randomly 
chosen line 

Points at 
distance d If d  << a, then 

the chance the 
points are in the 
same bucket is 
at least 1 – d/a. 
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Bucket 
width a 

Points at 
distance d 

θ 

d cos θ 

If d  >> a, θ must 
be close to 90o 

for there to be 
any chance points 
go to the same 
bucket. 
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Randomly 
chosen line 



 If points are distance  d < a/2, prob.  
they are in same bucket  ≥ 1- d/a = ½ 

 If points are distance d > 2a apart, then they 
can be in the same bucket only if  d cos θ ≤ a  
 cos θ ≤ ½  
 60 < θ < 90, i.e., at most 1/3 probability 

 

 Yields a (a/2, 2a, 1/2, 1/3)-sensitive family of  
hash functions for any a 

 Amplify using AND-OR cascades 
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50 

 Projection method yields a (a/2, 2a, 1/2, 
1/3)-sensitive family of hash functions 

 

 For previous distance measures, we could 
start with an (d1, d2, p1, p2)-sensitive family 
for any d1 < d2, and drive p1 and p2  to 1 and 0 
by AND/OR constructions 

 

 Note: Here, we seem to need d1 ≤  4 d2 
 In the calculation on the previous slide we only 

considered cases d < a/2 and d > 2a  
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51 

 But as long as d1 < d2, the probability of points 
at distance d1  falling in the same bucket is 
greater than the probability of points at 
distance d2 doing so 

 

 Thus, the hash family formed by projecting 
onto lines is an (d1, d2, p1, p2)-sensitive family  
for some p1 > p2 
 Then, amplify by AND/OR constructions 
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Data 

Signatures: short 
integer signatures that 
reflect their similarity Locality- 

sensitive 
Hashing 

Candidate pairs: 
those pairs of 
signatures that 
we need to test 
for similarity 

Design a (d1, d2, p1, p2)-sensitive 
family of hash functions (for that 

particular distance metric) 

Amplify the family 
using AND and OR 

constructions 

MinHash 1 5 1 5 
2 3 1 3 
6 4 6 4 

0 1 0 0 
1 1 1 0 
0 0 0 1 
0 1 0 1 
0 0 1 0 
1 0 0 1 

“Bands” technique 

Random 
Hyperplanes -1 +1 -1 -1 

+1 +1 +1 -1 
-1 -1 -1 -1 

0 1 0 0 
1 1 1 0 
0 0 0 1 
0 1 0 1 
0 0 1 0 

    

“Bands” technique 
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en

ts
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Candidate pairs 

Candidate pairs 



 Property P(h(C1)=h(C2))=sim(C1,C2) of 
hash function h is the essential part of 
LSH, without it we can’t do anything 
 

 LS-hash functions transform data to 
signatures so that the bands technique 
(AND, OR constructions) can then be 
applied 
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