Tokutek®

Fractal Tree[®] Technology Overview The Art of Indexing

Martín Farach-Colton Co-founder & Chief Technology Officer

Not all indexing is the same

B-tree is the basis for almost all DB systems

- Data structure invented in 1972
- Has not kept up with hardware trends
 - Works poorly on modern rotational disks
 - Works poorly on SSD

Fractal Tree Indexes is the basis of TokuDB

- Scales with hardware
- Fast Indexing → More Indexing → Faster Queries
- Great Compression
- No Fragmentation
- Reduced wear on SSDs

How do Fractal Tree Indexes outperform B-trees?

How do Fractal Tree Indexes outperform B-trees?

First, some facts about storage systems

Storage is quirky

Difference causes problems like fragmentation, ...

Storage is quirky

The Art of Indexing

Data is big, RAM is Small

Caching is great

- But you can't cache all your data
- For stuff not in memory, you have to go to disk

Goal: Do the best we can for the stuff on disk

Now, What's a B-tree? & a Fractal Tree Index

The Art of Indexing

The Art of Indexing

B-tree Delivery Service

If fast memory is like walking across a room

- Each update in a B-tree is a walking trip from
 - New York

B-tree Delivery Service

If fast memory is like walking across a room

- Each update in a B-tree is a walking trip from
 - New York to St Louis

B-tree Delivery Service

If fast memory is like walking across a room

- Each update in a B-tree is a walking trip from
 - New York to St Louis

Real-world delivery

Keep regional warehouses

• Only move stuff when you can move a lot

Real-world delivery

Keep regional warehouses

• Only move stuff when you can move a lot

Real-world delivery

Keep regional warehouses

• Only move stuff when you can move a lot

The Art of Indexing

Analysis

Delivery system gives goodies:

- Messages get moved, but each I/O pays for a lot of movement
- You get very fast inserts
- You get Hot Schema Changes

Each flush carries lots of useful information

- So it's worth it to make nodes big
- No fragmentation, Better Compression
- Much better wear on SSDs

