
Understanding and Improving Bloom Filter Configuration

for Lazy Address-Set Disambiguation

by

Mark C. Jeffrey

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Science

Graduate Department of Electrical and Computer Engineering
University of Toronto

Copyright c© 2011 by Mark C. Jeffrey

Abstract

Understanding and Improving Bloom Filter Configuration for Lazy Address-Set

Disambiguation

Mark C. Jeffrey

Master of Applied Science

Graduate Department of Electrical and Computer Engineering

University of Toronto

2011

Many parallelization systems detect memory access conflicts across concurrent threads

by disambiguating address-sets using bit-vector-based Bloom filters, which are efficient,

but can report false conflicts that do not exist. Systems with lazy conflict detection often

use Bloom filters unconventionally by testing sets for null-intersection via Bloom filter

intersection, contrasting with the conventional approach of issuing membership queries

into the Bloom filter. In this dissertation we develop much-needed theory for probability

of false conflicts in Bloom filter null-intersection tests, notably demonstrating that Bloom

filter intersection requires substantially larger bit-vectors to provide equivalent statistical

behavior to querying. Furthermore, we recognize that our theoretical implications counter

practical intuition, and thus use RingSTM to evaluate theory in practice by implementing

and comparing the Bloom filter configurations. We find that despite its overheads,

the queue-of-queries approach reduces execution time and is thus the most compelling

alternative to Bloom filter intersection for lazy address-set disambiguation.

ii

Acknowledgements

A great deal of thanks goes to my supervisor, Professor Greg Steffan, for accepting

and encouraging my blend of interests in theory and systems implementation. Through

our frequent discussions, he convinced me of the merit of this study to the parallel

programming community, and helped me to improve the communication of my research

ideas. Professor Bruce Francis was of great help through his tutorial, Elements of

Mathematical Style, and his general feedback on our analytical work. Thanks go to

Hratch Mangassarian for our discussion on asymptotic notation, and Professor James

Tuck for initial discussion on the need for better theoretical understanding of Bloom

filters in address-set disambiguation. I acknowledge the NSERC Alexander Graham Bell

Canada Graduate Scholarship (CGS-M) for its financial support.

Thank you to my fellow graduate students for much advice and support (proof-

reading, slide-reading, and code-optimizing), and for being a great fan club at concerts.

Thanks to the students of CARG for (unintentionally) leading me to related work,

building the case for a study of null-intersection tests. Many thanks to Skule Music

for the perfect break from research. Finally, thank you to friends and family for their

understanding and support when I would disappear for weeks at a time, and greeting me

cheerfully at the finish line.

iii

Contents

1 Introduction 1

1.1 Breaking Convention: Bloom filters forLazy Conflict Detection 2

1.2 Theory and Practice of Bloom filterNull-Intersection Tests 4

1.3 Research Goals . 5

1.4 Organization . 6

2 Background on Bloom Filters 7

2.1 Fundamentals . 7

2.1.1 False Positives . 9

2.1.2 Approximate Set Intersection . 10

2.1.3 Accuracy of the False Positive Probability 11

2.2 Related Work . 11

2.3 Parallelization Tools and Runtime Systems 14

2.4 Summary . 15

3 A Theory of Bloom Filters for Null-Intersection Tests 16

3.1 Methods of Testing for Null-Intersection 16

3.1.1 Queue-of-Queries . 17

3.1.2 Intersection: Partitioned and Unpartitioned 18

3.2 Probability of False Set-Overlap . 20

3.3 Analytical Comparisons of Null-Intersection Tests 23

iv

3.3.1 Preliminary Inequalities . 23

3.3.2 Partitioned vs Unpartitioned Bloom Filter Intersection 24

3.3.3 Space Requirements of Intersection and Queue-of-Queries 25

3.4 Empirical Validation . 31

3.4.1 Methodology . 31

3.4.2 Analysis . 32

3.5 Implications . 33

3.6 Summary . 34

4 The Batch-of-Bloom-Filters (BoB) Approach 35

4.1 BoB Structure and Operation . 36

4.2 Alternate Construction . 37

4.3 Toward a Theoretical Analysis . 38

4.4 Rates of False Set-Overlap . 38

4.4.1 Methodology . 39

4.4.2 Single Partition . 40

4.4.3 Queue-of-Queries . 41

4.4.4 BoB Intersection . 41

4.5 Summary . 42

5 Software Implementation of Null-Intersection Tests 43

5.1 Unpartitioned Intersection . 43

5.2 Partitioned Intersection . 44

5.3 Queue-of-Queries . 45

5.4 Batch-of-Bloom-Filters . 45

5.5 SIMD Optimizations . 46

5.5.1 Bitwise Intersection . 46

5.5.2 Queue-of-Queries . 46

v

5.5.3 Insertion . 47

5.5.4 Bit-Vector Reset and Copy . 47

5.6 Implementation in RingSTM . 48

5.7 Summary . 49

6 Performance Evaluation 50

6.1 Methodology . 51

6.2 Evaluation of all Null-Intersection Tests 52

6.2.1 Results for Bitwise Intersections 53

6.2.2 Results for Queue-of-Queries . 54

6.2.3 Summary . 58

6.3 Configuring Null-Intersection Tests . 59

6.3.1 BoB Prefilter Hash Function . 59

6.3.2 Number of Bins . 61

6.3.3 SIMD Bitwise Intersection . 62

6.3.4 Queue of SIMD Queries . 62

6.4 Summary . 64

7 Conclusions and Future Work 65

7.1 Contributions . 66

7.2 Future Work . 67

7.2.1 Theory . 67

7.2.2 Implementation . 68

Bibliography 69

vi

List of Acronyms

BoB Batch-of-Bloom-filters

FSO False Set-Overlap

HTM Hardware Transactional Memory

QoQ Queue-of-Queries

SIMD Single Instruction Multiple Data

SSE Streaming SIMD Extensions

STM Software Transactional Memory

TLS Thread-Level Speculation

TM Transactional Memory

vii

List of Symbols and Abbreviations

[N] Set of integers {1, 2, . . . , N}

FP∈ False positive predicate for a Bloom filter query

FSO∩ Predicate for false set-overlap by Bloom filter intersection

FSO∈ Predicate for false set-overlap by a queue-of-queries into a Bloom filter

Hm
k

Set of all hash function tuples mapping U to the m
k
-bit subfields of a partitioned

Bloom filter

hpre Prefiltering hash function for a batch-of-Bloom-filters

Hm Set of all hash function tuples mapping U to the full m-bit range of an unparti-

tioned Bloom filter

b Number of Bloom filters internal to a batch-of-Bloom-filters

BF (S) Set of asserted bits in a Bloom filter that represents set S

k Number of hash functions that index a Bloom filter

m Length of the Bloom filter bit vector (in bits)

U Universe (or address space for TM)

viii

List of Tables

6.1 STAMP benchmark input parameters. 51

ix

List of Figures

2.1 Bloom filter insertion and query . 8

3.1 Structure and operations of existing null-intersection tests 19

3.2 Empirical validation of probabilities of false set-overlap 32

4.1 Structure and operations of BoB intersection 36

4.2 BoB compromise: rates of false set-overlap 40

6.1 STAMP execution time and aborts for all null-intersection tests 55

6.2 Evaluation of BoB configuration options 60

6.3 Impact of SIMD instructions . 63

x

Chapter 1

Introduction

Chip-multiprocessors demonstrate the scalability required to exploit Moore’s Law tran-

sistor counts, but require parallel programs to achieve their full performance potential.

Unfortunately, creating bug-free high-performance parallel programs is extremely diffi-

cult, with synchronizing concurrent accesses to shared memory as the most arduous task.

A number of tools and runtime systems have been developed to help programmers detect,

tolerate, or avoid memory access conflicts and bugs—for example, Transactional Memory

(TM) [22] allows the programmer to simply label regions of code as transactions that

are then executed atomically and in isolation. The foundation of such parallelization

systems and tools is a mechanism for detecting conflicts, i.e., unsafe interleavings of

memory accesses across execution epochs, including transactions, critical sections, race-

free episodes, or “chunks” of sequentially-consistent instructions [12].

For any conflict detection strategy, memory reads and writes are accumulated into

per-thread read- and write-sets, respectively, over the course of an epoch. Conflicts

generally manifest when a memory address appears in the write-set of one thread, and

the read- or write-set of another concurrent thread, and are detected according to one

of two schedules: eagerly, at the time of memory access, or lazily at the end of an epoch

1

Chapter 1. Introduction 2

or some validation step. In the case of TM, to repair a conflict, one of the transactions

must be aborted and its global effects rolled back.

Bloom Filters Given a need for fast runtime address-set comparisons, the bit-vector-

based Bloom filter [7] has emerged as the address-set representation of choice for many

systems in hardware TM (HTM) [13,30,55,63,67], software TM (STM) [17,35,47,48,58],

hybrid TM [11, 38, 65], Thread-Level Speculation (TLS) [13, 20], transaction contention

management [5,6,57], loop-parallelizers [4], and even concurrency debugging tools [3,23,

24,28,32,33,42,44,45,49,69]. A Bloom filter is conventionally used to provide a constant-

time set membership query via hash-indexing a bit-vector, at the cost of a potential

false positive where an address is incorrectly identified as a member of a read/write-

set to which it does not belong. False positives can lead to unnecessary transactional

aborts, false bug reports, and other mispredictions [5], and the probability of a false

positive increases as bit-vector length decreases—hence Bloom filter size and access-

timing constraints must be carefully balanced. Despite this trade-off, the Bloom filter

does not threaten program correctness, and has made numerous appearances in both

hardware systems for its unbounded set representation, and in software systems for its

fast set operations.

1.1 Breaking Convention: Bloom filters for

Lazy Conflict Detection

The main concern for designers of parallelization systems is to configure the Bloom

filters appropriately to achieve an acceptable false conflict rate. An accurate model

for probability of false conflicts would thus be extremely helpful for system designers,

enabling a fast theoretical design space exploration, rather than time-consuming empirical

explorations. Bloom filters are apparently well-suited to eager conflict detection, by

Chapter 1. Introduction 3

offering fast set membership queries with a tunable accuracy that can be guided by

the well-understood false positive probability distribution [7–9, 16]. Configuration in

such scenarios includes choice of bit-vector length and number of hash functions. In

this dissertation, we bring attention to the unconventional use of Bloom filters in

lazy parallelization systems, where instead of supporting periodic membership queries,

Bloom filters are often used unconventionally to compare entire address sets for any

access overlap, via bit-vector intersection. With delayed conflict detection, lazy systems

typically compare sets of two or more addresses, affording new creativity in Bloom filter

use, but this alternate method of intersection has not been formally studied or modeled,

further expanding the Bloom filter configuration space.

These Bloom-filter-based null-intersection tests can be implemented in three ways:

(i) queue-of-queries, (ii) unpartitioned intersection, and (iii) partitioned intersection. The

first approach uses Bloom filters most intuitively, by issuing a queue-of-queries (QoQ)—

i.e., by maintaining one complete set of accessed addresses, and issuing a query of each

address into the Bloom filter representation of the other set (e.g. SigTM [38]). The second

and third approaches avoid this linear time complexity by intersecting two Bloom filters

using bitwise AND, and analyzing the remaining bits to determine whether the resulting

intersection is empty [1, 4, 5, 12, 13, 17, 33, 35, 42, 45, 47, 48, 50, 57, 58, 69]. For the second

approach, an unpartitioned Bloom filter, the hash functions map to the entire bit-vector

range, and following intersection, any bits set to one imply that the intersection cannot

be empty. In contrast, for the third approach, partitioned Bloom filters designate disjoint

bit-fields of the bit-vectors, and these partitions are pairwise intersected—a result of all-

zero for any partition indicates a null intersection.1 When two input address sets are in

fact disjoint, each null-intersection test might return a false set-overlap (FSO), the lazy

analogue to a false positive, which falsely indicates that the two sets shared some common

1Partitioned and unpartitioned bit-vectors are asymptotically equivalent [9,60] for membership query
false positives, but the distinction is important for implementation [53].

Chapter 1. Introduction 4

elements. Although the three null-intersection tests are in wide use, to the best of our

knowledge, their respective probabilities of false set-overlap have neither been studied

analytically nor conclusively compared in prior work.

1.2 Theory and Practice of Bloom filter

Null-Intersection Tests

In this dissertation we provide system designers with a new analytical model for the

probability of false set-overlap for Bloom filter null-intersection tests. We conclusively

show which bit-vector configuration admits fewer false conflicts, and prove that to achieve

equivalent probability of false set-overlap, intersection-based usage requires Bloom filters

that are at least a factor of the square root of set cardinality larger than query-based

usage. Our models suggest that a change from unpartitioned Bloom filters to 2- or 4-

way partitioning of the bit-vector will yield considerable reduction of false conflicts in a

number of existing parallelization systems [47, 58], and even further reductions can be

observed when using the QoQ approach.

Competing with the reduced false conflicts, our theoretical recommendations un-

fortunately contradict practical intuition by introducing complexities: additional hash

functions add overhead to Bloom filter insertions in software, and dynamically maintain-

ing a set in hardware for QoQ adds considerable complexity relative to the fixed-sized

Bloom filter bit-vector. To demonstrate the utility of this work, we thus experimentally

validate our theoretical recommendations on commodity hardware using the STAMP

benchmarks [37] and RingSTM [58]—a write-buffered software TM that detects conflicts

with single-partitioned Bloom filter intersection. We focus on program execution time

using efficient implementations, to demonstrate whether reductions in false abort rates

outweigh the additional overheads of more refined Bloom filter null-intersection tests. In

particular, we implement and compare the following configurations.

Chapter 1. Introduction 5

Unpartitioned Intersection This is the baseline, single-partitioned Bloom filter

implementation provided in RingSTM.

Partitioned Intersection We extend RingSTM to support two- and four-way par-

titioned Bloom filters. While our models suggests that properly-configured partitioned

intersection reduces false conflicts, it does require the computation of additional hash

functions and hence increases per-access overheads.

Queue-of-Queries (QoQ) We implement QoQ by exploiting the existing associative

write-buffers in RingSTM, avoiding the overheads of maintaining additional queue

structures. The challenge with this approach is that the evaluation of many queries at

validation-time could be prohibitively expensive for applications with large write-sets.

Batch-of-Bloom-Filters (BoB) We introduce a new null-intersection test called

intersecting a Batch-of-Bloom-filters (BoB), that is intuitively a hybrid between the

partitioned and QoQ approaches, designed to capture the benefits of each—i.e., to reduce

false conflicts while continuing to exploit the speed of bitwise AND operations. The basic

idea of BoB is, rather than a queue-of-individual-queries, to instead maintain a queue-

of-Bloom-filters that we call a batch. We use a “prefilter” hash function to map each

address to a certain filter in the batch, this way distributing addresses across the batch

such that each filter in the batch represents a disjoint subset of addresses.

SIMD Optimization Recognizing that the bit-vector operations offer much parallelism,

we evaluate the impact of exploiting Intel SSE2 and SSE4.1 vector instructions.

1.3 Research Goals

The focus of this dissertation is to develop a better understanding and improved

implementation of Bloom filter configurations when used in null-set-intersection testing,

considering both theory (for its ease of approximately exploring the design space) and

Chapter 1. Introduction 6

practice (to compel the community to heed our controversial recommendations). To this

end, we have the following goals:

1. to provide a theory for Bloom-filter-based null-intersection testing, including the

derivations of probability of false set-overlap between two disjoint (address) sets for

each of the three existing Bloom filter configurations, and an analytical comparison

of these distributions;

2. to pursue a new Bloom filter configuration for performing null-intersection tests that

offers a compromise between the accuracy of querying, and the implementation-

simplicity of bitwise intersection;

3. to implement and evaluate the performance of the four null-intersection tests in a

real STM using queue-of-queries (QoQ), and partitioned, unpartitioned, and BoB

intersection.

1.4 Organization

The rest of the dissertation is organized as follows. Chapter 2 provides a background

on the Bloom filter data structure, including fundamental operations and theory, related

work, and more details on its application in parallelization tools. Chapter 3 introduces

and develops a formal theory for Bloom filter use in null-intersection testing, including

comparisons among the three approaches. Chapter 4 describes our proposed batch-of-

Bloom-filters intersection, demonstrating its statistical compromise between querying and

bitwise intersection. Chapter 5 shifts the focus to practical considerations, describing

the efficient software implementation of null-intersection tests. Chapter 6 presents a

performance evaluation of the four null-intersection tests. In Chapter 7, we summarize

this work, including contributions, conclusions, and future directions.

Chapter 2

Background on Bloom Filters

Since the introduction of Bloom filter signatures [13] to hardware TM, a flurry of research

followed, studying both their use in new parallelization tools, and improvement upon

initial Bloom filter implementations. In this chapter we introduce the fundamentals of

Bloom filter operations and theory, survey the Bloom filter literature related to our work,

and briefly review the applications in parallelization tools.

2.1 Fundamentals

This section gives a brief background on the relevant aspects of Bloom filters [7]. For

preliminary notation, let [N] denote the set {1, . . . , N}. A Bloom filter is a data structure

that compactly represents a set S = {x1, x2, . . . , xn} of n elements from some universe

U . The filter is a bit-vector of m bits indexed by a hash function tuple of k (ideally)

mutually-independent hash functions h(x) = (h1(x), . . . , hk(x)), supporting operations

such as element insertion, membership queries, set union, and set intersection. We refer to

the collection as the hash function tuple, and otherwise refer to individual hash functions.

Two configurations of bit indexing are widely used, called unpartitioned and partitioned.

The k-tuple hash function of an unpartitioned Bloom filter maps to the entirem-bit range

7

Chapter 2. Background on Bloom Filters 8

(a) Unpartitioned

a

h
1

h
2

h
k

…

insert query

m

bits

k hash

functions

…

(b) Partitioned

a

h
1

h
2

h
k

…

…

insert query

m/k

bits

k hash

functions

Figure 2.1: Bloom filter insertion and querying of address a for (a) an unpartitioned and
(b) partitioned Bloom filter. In both cases, the filter has length m bits, and a tuple of
k truly random hash functions. Addresses are inserted by asserting the bits indexed by
the k hash values (dark boxes). A query accepts an address as a member of the set iff
all k indexed bits are set to 1. Inspiration for figures is from [51]

of the bit-vector,1 h : U → [m]k. In contrast, a partitioned Bloom filter distinguishes k

disjoint subfields of the filter, with each hash function of the tuple mapping to an integer

m
k
-bit partitioned range, h : U →

[

m
k

]k
[41]. In the context of address disambiguation,

S is a set of memory addresses from a v-bit address space (or universe): S ⊂ U =

{0, 1, . . . , 2v − 1}.

Figure 2.1 illustrates the individual element operations on a Bloom filter. To initialize

an empty set, all bits of the vector are set to 0. Each element x ∈ S is subsequently

inserted in the filter by asserting the k bits indexed by each hash of x; the hi(x)’th bit is

set to 1 for 1 ≤ i ≤ k. We denote the Bloom filter representation of S as BF (S), which

corresponds to the set of asserted bits after inserting all x ∈ S [18, 51]. With a fully-

constructed Bloom filter for S, an address y ∈ U can be quickly tested for membership

in S. The membership query accepts y ∈ S if all of the hi(y)’th bits of the bit-vector are

1, and otherwise indicates that y /∈ S.

1The hash function output is ideally uniform.

Chapter 2. Background on Bloom Filters 9

For the remainder of this paper, we assume that the bit-vector length, m, and number

of hash functions, k, are constant. Let Hm = {h|h : U → [m]k} be the set of all hash

function tuples mapping from the address space to the fullm-bit range of an unpartitioned

Bloom filter. Similarly, let Hm
k
= {h|h : U → [m

k
]k} represent the set of all hash function

tuples from the address space to the m
k
-bit subfields of a partitioned Bloom filter.

2.1.1 False Positives

By encoding elements of a large universe into a compact bit-vector, there is a small

probability that an element y (that is not in S) has collisions on each of its k hashes with

some elements in the set S. Both hash aliasing and filter density (fraction of asserted

bits) can lead to membership queries being falsely accepted, and so the Bloom filter

actually represents a superset of the original address set: S ⊆ BF (S). In essence, the

membership query “is y in S?” is not answered by no or yes, but rather no or maybe.

The following definition formalizes this notion.

Definition 1. Let S = {x1, . . . , xn} ⊂ U be represented by an m-bit Bloom filter, BF (S),

using the k-tuple hash function h ∈ (Hm ∪ Hm
k
). When testing some element y /∈ S for

membership in S, we define the false positive predicate FP∈(S, y, h) to be true when

the query accepts y as a member of BF (S)—i.e., when y /∈ S, but ∀i ∈ [k], hi(y) =

hi(xj) for some xj ∈ S.

This definition describes the false positive event for both unpartitioned and parti-

tioned Bloom filters, as h ∈ (Hm ∪ Hm
k
); however, throughout the paper we will specify

the particular Bloom filter indexing via conditioning on h from one of the two hash

function sets. The probability of false positives for a Bloom filter is well understood and

estimated in a straightforward fashion [7, 9, 51]—the reader is directed to prior work for

a formal proof. Assuming the partitioned Bloom filter indexing scheme, the distribution

is as follows:

Chapter 2. Background on Bloom Filters 10

Lemma 1. [7, 9, 41, 60] Let h ∈ Hm
k
be a truly random k-tuple hash function. For any

fixed set S ⊂ U and element y /∈ S, the probability that y is accepted in a membership

query of partitioned BF (S) is

Pr
[

FP∈(S, y, h) | h ∈ Hm
k

]

=

(

1−
(

1− k

m

)|S|
)k

. (2.1)

For unpartitioned Bloom filters, Pr[FP∈(S, y, h) | h ∈ Hm] is less than the result

above, since a partitioned filter typically has more asserted bits. Notably, the two

distributions asymptotically approach
(

1− e−
k|S|
m

)k

[9],2 and the latter approximation is

minimized when k = m
|S|

ln 2 [9, 60].

2.1.2 Approximate Set Intersection

Beyond individual element operations, Bloom filters can be used to perform set union

and intersection. In this work we focus on set intersection and its application in testing

two sets for an empty (null) intersection. Let S1, S2 ⊂ U be two sets that are represented

by Bloom filters, BF (S1) and BF (S2), that use the same m and hash functions. The

filter BF (S1 ∩ S2) is computed by hash-encoding elements of the actual intersection of

these sets. The Bloom filter representations of S1 and S2 are insufficient to accurately

compute BF (S1 ∩ S2), but their Bloom filter intersection, BF (S1) ∩ BF (S2), is quickly

computed by the bitwise AND of their bit-vectors. Note that the set of bits asserted in

BF (S1∩S2) are certainly set to one in the Bloom filter intersection, but it is possible that

additional bits could unnecessarily persist to be one following the AND operation. Bloom

filter intersection thus provides an approximation to set intersection that maintains the

original querying property of never returning false negatives [9, 18, 46].

Guo et al. [18] quantify the uncertainty in approximating set intersection with Bloom

filter intersection. Assuming the unpartitioned Bloom filter configuration, the theorem

2 Since (1− k/m)n ≈ e−
kn

m , provided m > nk [9].

Chapter 2. Background on Bloom Filters 11

by Guo is stated as a lemma toward our own contributions; readers are directed to the

original work for a proof.

Lemma 2. [18] Assuming the same m and random hash function h ∈ Hm are used in

the Bloom filters of S1, S2, and S1 ∩ S2, then BF (S1 ∩ S2) = BF (S1) ∩ BF (S2) with

probability

(1− 1/m)k
2×|S1−S1∩S2|×|S2−S1∩S2|.

Apparently, the asserted Bloom filter bits of a set intersection are not necessarily

equivalent to the bits asserted by Bloom filter intersection of the sets; they are equivalent

with non-negligible probability.

2.1.3 Accuracy of the False Positive Probability

Recent work [8,16] indicates that the “classic” analysis of the Bloom filter that proves the

above Lemmas 1 and 2 is optimistic. The result attributed to Bloom (and republished in

decades of subsequent work) is in fact a strict lower bound to the correct false positive

probability. The new insight by Bose et al. [8] and Christensen et al. [16] has only focused

on unpartitioned Bloom filters; applying their methods to the partitioned configuration,

and subsequently repairing Lemma 2 is left as future work, beyond the scope of this

dissertation. Regardless, the approximation provided by these lemmas is sufficient for

this work, as Christensen et al. [16] demonstrated that the relative error diminishes with

the larger m (≥ 1024 bits) typically used in parallelization systems [12, 13, 17, 23, 32, 38,

45,51,53,58,67,68].

2.2 Related Work

Given a foundation in Bloom filter operations, in this section we discuss related work

in Bloom filter design, application, and optimization. Specifically, we list prior Bloom

Chapter 2. Background on Bloom Filters 12

filter optimizations for parallelization systems, the Bloom filter descendants that inspired

our proposed Batch-of-Bloom-filters, and other existing applications of Bloom filter

intersection, namely in databases.

Bloom filters have been studied and highly optimized for tracking addresses in

parallelization tools and TM systems, but no work has yet focused on enhancing their

operation for null-intersection tests. LogTM-SE [67] has been augmented to demonstrate

that: (i) partitioned Bloom filters are hardware-amenable for queries and insertions, with

minimal impact to false abort rates [53]; (ii) simple bit-selection induces more false aborts

than H3 [10, 53] or PBX hashing [68]; (iii) the spatial locality of an address stream can

be exploited to avoid false aborts [51], or to retain those false positives that stall or abort

a transaction that would have later shown a true abort [15]; and (iv) that read- and

write-sets should share the same Bloom filter as a general solution to the asymmetry in

read- and write-set cardinalities [52]. Application-specific address hashing [30] has also

been proposed.

All of these proposals optimize the false abort rate of an eager system that employs

Bloom filter membership queries, and all except the multiset signature [52] optimize the

Bloom filter hash functions. In contrast, we optimize the false abort rate of a lazy

system by considering Bloom filter configuration for null-intersection tests (querying

vs. intersection and partitioned vs. batch). Many of the previous proposals are orthogonal

to null-intersection tests, and would be excellent additions to our own experiments in

hardware. Our case study is in software TM, thus we are limited in our selection of hash

functions; we seek to demonstrate that these configuration decisions are robust in lieu of

non-ideal (but fast) hash functions.

Many high-level changes have been proposed for new Bloom filter designs, including

the use of a collection of filters, and using one hash function as a prefilter to sub-Bloom

filters or other hash functions [60]. Our BoB proposal is the first to combine these

two ideas for null-intersection tests. Muzahid et al. [44] represent the most closely

Chapter 2. Background on Bloom Filters 13

related work, with a brief mention to a similar design in their atomicity violation

tracker. They maintain four “physical” filters for each “logical” Bloom filter, and each

address is hash encoded into one of the four filters depending on its value. Their

implementation was used solely for querying, not for intersection. Furthermore, they

do not explain the implemented mapping of addresses to physical filters, nor do they

empirically demonstrate the improvement over regular querying.

Outside of parallelization tools, Tarkoma et al. [60] survey collection-of-Bloom-filter

and multiple-choice prefilter hash function designs. The collection-based designs include

Hierarchical Bloom Filters [54], Filter Banks [14, 31], Dynamic Bloom Filters [18], Split

Bloom Filters [66], and Scalable Bloom Filters [2]. Papapetrou et al. proposed Dynamic

Block-Partitioned Bloom filters [46] that use a dynamic matrix of Bloom filters to increase

or decrease the total space used, to match dynamic cardinality requirements. Hao et

al. [21] introduce partitioned hashing, which selects a group of hash functions that will

minimize the number of bits set in the filter based on the prefilter hash of the input

element. The design reduces the false positive probability in applications where the set

of keys changes slowly relative to incoming membership queries.

Prior to parallelization systems, the bitwise intersection of Bloom filters was applied

in the database community to accelerate relational join operations: approximating set

intersection, and subsequently performing membership queries to the remaining bits [36].

Estimation of join cardinality has also benefited from this fast intersection [9, 43, 46].

However, unlike address-set disambiguation, database applications generally do not strive

for the intersection result to be an empty set. Our work builds on these studies of

Bloom filter intersection, with a focus on address-set disambiguation, and hence targeting

intersections that return empty sets in the ideal case.

Chapter 2. Background on Bloom Filters 14

2.3 Parallelization Tools and Runtime Systems

The over-arching challenge for parallel programming stems from detecting and managing

data access conflicts between parallel threads, since they can lead to invalid data and

incorrect execution when improperly handled. A variety of programming models and

debug tools have hence been proposed to augment locking, a conventional form of

managing potential conflicts. We summarize those systems that apply Bloom filters

for conflict detection.

Progress has been made in tools for finding, replaying, and avoiding concurrency

bugs [32] that may result when a programmer: (i) fails to synchronize accesses to

a mutable shared variable (i.e., a data race) [45]; or (ii) incorrectly reasons about

atomicity, failing to enclose a set of memory accesses in a critical section (i.e., an atomicity

violation) [32,33]. Debugging in a concurrent environment is made even more challenging

as the manifestation of these bugs depends on the non-deterministic interleavings of

threads. Several debugging systems thus focus on deterministically replaying concurrency

bugs to find their source [23,42,61]. Despite thorough testing, some bugs still make it to

deployment, motivating dynamic avoidance of concurrency bugs [33].

Beyond debugging, Transactional Memory (TM) [22] and Thread-Level Speculation

(TLS) [19,29,59] have emerged as methods of more automatically managing data access

conflicts for the programmer. TM allows programmers to wrap critical sections in

transactions, which the underlying system speculatively executes in parallel. The runtime

system tracks accesses to shared memory, and upon discovering a conflict, rolls back

memory to a previously consistent state, otherwise committing the results of conflict-free

transactions. TM ideally provides the illusion of fine-grained atomicity and isolation,

with the programming effort of coarse-grained locks. TLS divides a legacy sequential

program into ordered speculative threads that are executed optimistically in parallel,

also via an underlying system of detecting and recovering from data access conflicts.

Chapter 2. Background on Bloom Filters 15

2.4 Summary

In this chapter we provided a foundation in Bloom filter fundamentals, related work

in the literature, and details on Bloom filter applications in parallelization tools. The

insertion and query operations of a Bloom filter were described and illustrated, including

the conditions for and probability of a false positive. The use and statistical properties of

Bloom filters for approximating set intersection were also explained. We briefly surveyed

the literature on (i) improving Bloom filters for eager parallelization tools, (ii) using

collection-of-filters data structures or prefiltered Bloom filters, and (iii) prior applications

of Bloom filter intersection.

In the next chapter we build upon the existing theory of query false positives and

approximate set intersection (provided in Lemmas 1 and 2), and modify these ideas

to study the Bloom filter configurations used, in the field, for testing null-intersection

between address-sets. In Chapter 4 we propose a new compromise null-intersection test,

inspired by earlier prefiltering or collection-of-filters designs.

Chapter 3

A Theory of Bloom Filters for

Null-Intersection Tests

Despite the popularity of Bloom filters in research architectures and tools, no probability

distributions have previously been proposed to model their use in testing sets for pairwise

null-intersection (a.k.a., set disambiguation or disjointness [26]). Additionally, no prior

work has conclusively compared the statistical behaviors of the three null-intersection

tests, precisely demonstrating the degradation of space-efficiency when replacing querying

with bitwise intersection. In this chapter we provide the missing theory: we (i) describe

how Bloom filters are used to test for null-intersection between address-sets, and when

they flag false conflicts among execution epochs; (ii) state and derive the probability

distributions representing these unfortunate events; (iii) compare the probability distri-

butions through proven inequalities of probability and space; (iv) empirically validate

the distributions; and (v) identify the implications of these findings.

3.1 Methods of Testing for Null-Intersection

This section details the intersection operations and conditions for false set-overlap for each

of the three existing Bloom filter null-intersection tests: queue-of-queries, unpartitioned

16

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 17

intersection, and partitioned intersection. We begin by motivating a definition of false

set-overlap, when two disjoint sets appear to share some overlap due to Bloom filter

operations. In line with Bloom’s original motivation, systems implementing eager conflict

detection use Bloom filter membership queries for runtime address-set comparison. At

the time of accessing address y, the address is tested for membership in the read- or

write-filters (BF (R) or BF (W)) of other epochs (e.g., by querying incoming coherence

requests). There is a probability of a false positive on each query (unnecessarily indicating

an address conflict), which is modeled by Lemma 1. However, since address conflicts

impact execution at the granularity of epochs, it becomes apparent that the probability

of individual false conflicts is not of interest in parallel programming tools. Instead we

wish to know the probability that entire epochs will falsely conflict, such as for lazy

conflict detection schemes where the read- and write-sets are nontrivial. In the following

subsections, we define two predicates which relate system epoch failures to false set-

overlaps, and illustrate the operations of the three null-intersection tests.

3.1.1 Queue-of-Queries

Consider the lazy conflict detection scheme of SigTM [38], which maintains a write buffer

(W) and read and write Bloom filters (BF (R) and BF (W)) for each thread. These sets

are finalized at the end of an epoch and otherwise grow monotonically. To detect conflicts

at the end of a transaction, the system verifies that every member of the write-set W is

not a member of all other threads’ read-sets by performing membership queries into the

read filters via coherence broadcasts. If any address in the write-set conflicts with the

read filter of a remote transaction, the latter transaction is aborted. We use SigTM as a

sample model of what we denote as the conventional approach to lazy null-intersection

tests—executing a queue-of-queries into a Bloom filter. Figure 3.1a illustrates this idea,

where the queue of elements is the aforementioned write buffer. Each element of the write

buffer (queue) is queried into the Bloom filter of some other epoch, until a conflict is found;

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 18

otherwise the sets are disjoint. Supposing the two epochs did in fact access independent

memory, we say that a false set-overlap occurred if one of the epochs unnecessarily

aborted. The following definition formalizes false set-overlap by a queue-of-queries.

Definition 2. Let S1, S2 ⊂ U be two fixed, disjoint sets, and choose S1 to be represented

by a Bloom filter of m bits and hash k-tuple h ∈ (Hm ∪ Hm
k
). We define the false set-

overlap by queries predicate FSO∈(S1, S2, h) to be true if, for some x ∈ S2, FP∈(S1, x, h)

is true.

This definition describes when two sets would be incorrectly reported as overlapping

by the conventional method of using Bloom filters for membership queries. The predicate

is defined for either type of bit-indexing by hash functions, since FP∈ of Section 2.1 is

defined for both. In later sections, we will condition on the bit-indexing scheme as

necessary.

3.1.2 Intersection: Partitioned and Unpartitioned

Lazy conflict detection must determine whether particular address-sets are disjoint—i.e.,

to ask “is their intersection empty?” Some researchers have astutely avoided the linear

time required for a queue-of-queries by applying Bloom filter intersection to approximate

this underlying set intersection task. Independent of the bit-indexing scheme, the bitwise

AND of two bit-vectors is performed—the time-complexity of which is determined by the

amount of available hardware (some researchers [58] reasonably argue that it is constant

time).

On the other hand, determining set emptiness depends on the bit-indexing scheme.

An unpartitioned Bloom filter represents an empty set if and only if all m bits of the bit-

vector are set to zero. Consider that if a single bit is set, it is possible (though unlikely)

that some element is mapped to that same bit by all k hash values, making the filter

non-empty. In contrast, partitioned Bloom filters represent an empty set if and only if

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 19

(a) Queue-of-Queries

S

… x2x3x4x5

S2 BF(S1)

x1

 ?

(b) Unpartitioned Intersection

BF(S1)
BF(S2)

(c) Partitioned Intersection

…

…

… BF(S1)
BF(S2)

Figure 3.1: Three methods of testing for null-intersection between sets S1 and S2: (a) by
a queue-of-queries into the Bloom filter of S1, such that if any element of S2 matches in
BF (S1), the sets are reported to share some overlap; (b) by intersecting two unpartitioned
Bloom filters by bitwise AND, where any resulting asserted bits indicate a set-overlap; (c)
by intersecting two partitioned Bloom filters, where an intersection-result consisting of
at least one empty partition indicates that the input sets are disjoint.

at least one partition is empty, with all m/k bits set to zero [13]. For sufficiency, note

that an empty set asserts no bits, such that all k partitions remain zero. For necessity,

since inserting one element requires asserting one bit in all partitions, then if at least one

partition is empty, it must be that no combination of elements can be represented by

that filter—i.e., the filter is empty. Figures 3.1b and 3.1c use logic gates to illustrate the

use of Bloom filter intersection for null-intersection tests.

The following definition introduces a predicate that identifies false set-overlap via

Bloom filter intersection. Due to the difference in empty-set representation, partitioned

and unpartitioned filters have differing statistical properties; we condition on the choice

of hash indexing scheme in the next section.

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 20

Definition 3. Let S1, S2 ⊂ U be two fixed, disjoint sets, each represented by Bloom filters

of m bits and hash k-tuple h ∈ (Hm ∪ Hm
k
). We define the false set-overlap by Bloom

intersection predicate FSO∩(S1, S2, h) to be true, if BF (S1) ∩ BF (S2) 6= ∅, even though

S1 ∩ S2 = ∅.

3.2 Probability of False Set-Overlap

Having defined the conditions for three types of Bloom filter false set-overlap events, we

now model their probability distributions. We begin with the probability of false set-

overlap by queue-of-queries—using filters as Bloom “intended.” Concerning the following

theorem, fix two disjoint sets S1, S2 ⊂ U . The filter BF (S1) is m bits long using a truly

random hash tuple of the partitioned bit-indexing scheme: h ∈ Hm
k
.

Theorem 1. A false set-overlap by queries of S2 into partitioned BF (S1) is reported

with probability1

Pr
[

FSO∈(S1, S2, h) | h ∈ Hm
k

]

= 1−

1−
(

1−
(

1− k

m

)|S1|
)k

|S2|

. (3.1)

Proof. Consider the contrary, between the two disjoint sets S1 and S2, when will a false

set-overlap be avoided? Using the Bloom filter representation, the sets are correctly

reported disjoint iff (∀x ∈ S2)(x /∈ BF (S1)), when every one of the |S2| unique queries into

BF (S1) does not return a false positive. Model these unique queries as a sequence of up to

|S2| Bernoulli trials, where a trial “success” implies a false positive on an individual query.

Let random variable N be the number of unique membership queries from S2 before

one is reported a false positive. Thus N follows a geometric distribution, the number of

Bernoulli failures before the first success, with probability of success p = Pr[FP∈(S1, x, h)]

1Building on Lemma 1, this distribution can also be approximated by 1−
(

1−
(

1− e−
k|S1|

m

)k
)|S2|

.

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 21

for any x ∈ S2. The two sets are deemed disjoint by Bloom filter queries if all |S2| trials

fail, or if N ≥ |S2|. A false set-overlap results if the latter is not true. Thus,

Pr[FSO∈(S1, S2, h)] = Pr[N < |S2|] (3.2)

= Pr[N ≤ |S2| − 1] (3.3)

= 1− (1− p)|S2|−1+1 (3.4)

= 1− (1− Pr[FP∈ (S1, x, h)])
|S2| , x ∈ S2 (3.5)

where Eq. (3.4) substitutes the geometric cumulative distribution function. Conditioning

Eq. (3.5) on h ∈ Hm
k
and substituting Eq. (2.1) gives (3.1).

We now state and prove the probability that Bloom filter intersection will flag a

false set-overlap,2 for both unpartitioned and partitioned bit-indexing. Let S1, S2 ⊂ U

be disjoint sets. Both are represented by Bloom filters with length m bits, using the

same truly random hash function tuple h. The bit-indexing scheme is conditioned in the

theorem.

Theorem 2. A false set-overlap by Bloom filter intersection of unpartitioned BF (S1)

and BF (S2) is reported with probability

Pr [FSO∩ | h ∈ Hm] = 1−
(

1− 1

m

)k2|S1||S2|

. (3.6)

For partitioned Bloom filters, a false set-overlap is reported with probability

Pr
[

FSO∩ | h ∈ Hm
k

]

=

(

1−
(

1− k

m

)|S1||S2|
)k

. (3.7)

2Some readers may note that a membership query of y into a Bloom filter BF (S) is akin to creating
a new filter from y, BF (y), and determining whether BF (S) ∩ BF (y) is empty. It is straightforward
to show that Theorem 2 represents this idea, as Eq. (3.7) reduces to the false positive probability of
Lemma 1 for |S2| = 1.

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 22

Proof. Concerning Eq. (3.6), Section 3.1.2 argues that intersection of unpartitioned

Bloom filters induces a false set-overlap when any bit in the resulting bit-vector is

non-zero. An all-zero Bloom filter can only be created from an empty set (i.e.,

BF (S) = ∅ ⇐⇒ S = ∅). Therefore,

Pr [FSO∩ | h ∈ Hm] = Pr [¬(BF (S1) ∩ BF (S2) = ∅) | S1 ∩ S2 = ∅, h ∈ Hm]

= 1− Pr [BF (S1) ∩BF (S2) = ∅ | S1 ∩ S2 = ∅, h ∈ Hm] (3.8)

We use Lemma 2 by Guo et al. [18],

Pr [BF (S1) ∩ BF (S2) = BF (S1 ∩ S2) | h ∈ Hm] = (1− 1/m)k
2×|S1−S1∩S2|×|S2−S1∩S2|

but assume that the sets are disjoint, S1 ∩ S2 = ∅:

Pr [BF (S1) ∩BF (S2) = ∅ | S1 ∩ S2 = ∅, h ∈ Hm] = (1− 1/m)k
2|S1||S2|. (3.9)

Substituting (3.9) into (3.8) shows (3.6).

Regarding Eq. (3.7), to avoid a false set-overlap, the intersect partitioned Bloom

filter requires at least one partition to be empty, with all m/k bits set to zero. Thus the

negation of this statement, a false set-overlap, results when all k partitions are non-empty.

Consider the intersection of any one single partition: note that it operates identically to

an unpartitioned Bloom filter with length m/k bits and a single hash function indexing

the sub-vector. Eq. (3.6) of this theorem therefore suggests that a single Bloom filter

partition of length m/k bits with one hash function is non-empty with probability

1−
(

1− 1

m/k

)(1)2|S1||S2|

. (3.10)

Looking at the entire partitioned Bloom filter, we assume that the “emptiness” of all

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 23

k partitions is mutually independent. Then the probability that all k partitions are

non-empty is the product of (3.10) k times,

(

1−
(

1− k

m

)|S1||S2|
)k

,

completing the proof of Eq. (3.7).

3.3 Analytical Comparisons of Null-Intersection Tests

We wish to establish a better understanding of the three Bloom filter configurations for

null-intersection tests—particularly how they compare in generating false conflicts. It

is difficult to compare the probability distributions derived in the previous section by

inspection, hence we apply them to analytically compare the statistical properties and

space requirements of Bloom filter intersection and querying in this context. Specifi-

cally, we demonstrate (i) that partitioned intersection always outperforms unpartitioned

intersection for the same k; and (ii) that for equivalent probability of false set-overlap

(FSO), partitioned Bloom filter intersection requires a factor Ω(
√

|S2|) more space than

performing a queue-of-queries (of set S2) into a Bloom filter.

3.3.1 Preliminary Inequalities

We state elementary inequalities from Mitrinović et al. [39, 40] used to prove the main

results of the section.

Lemma 3. [40] Bernoulli’s Inequality. If −1 < x < 1
n−1

, x 6= 0, and integer n = 2, 3, . . .,

then

1 + nx < (1 + x)n < 1 +
nx

1 + (1− n)x
.

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 24

Lemma 4. [39] Generalization of Bernoulli’s Inequality.

If 0 < q < p and −q < x < 0, then

(

1 +
x

q

)q

≥
(

1 +
x

p

)p

.

Lemma 5. If real x is such that 0 < x < 1 and integer n > 1, then

1− xn > 1− x > (1− x)n.

Proof. x ∈ (0, 1) ⇒ xn < x, so evidently 1− xn > 1− x.

Also, (1− x) ∈ (0, 1) ⇒ 1− x > (1− x)n.

3.3.2 Partitioned vs Unpartitioned Bloom Filter Intersection

The following theorem asserts that partitioned Bloom filter intersection has a lower prob-

ability of false set-overlap than unpartitioned. It concerns two disjoint sets S1, S2 ⊂ U ,

that are represented by Bloom filters of the same length m, with the same hash function

tuple. In each case, the k hash functions are truly random and independent, and we

consider m > k > 1, since for a single hash function, partitioned Bloom filters are

effectively unpartitioned.

Theorem 3. Concerning false set-overlap by Bloom filter intersection, the partitioned

bit-indexing scheme follows a probability distribution that is strictly less than that of an

unpartitioned Bloom filter. That is, (∀hm/k ∈ Hm
k
)(∀hm ∈ Hm),

Pr
[

FSO∩(S1, S2, hm/k)
]

< Pr [FSO∩(S1, S2, hm)] .

Proof. We begin by using Lemma 4, substituting x = −1/m, q = 1/k, and p = 1, which

satisfies 0 < q < p and −q < x < 0, to see that
(

1− k
m

)
1

k ≥
(

1− 1
m

)

. Additionally, since

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 25

m > k > 1, then by Lemma 5,
(

1− 1
m

)

>
(

1− 1
m

)k
. Combining these observations,

(

1− k

m

) 1

k

>

(

1− 1

m

)k

⇒
(

1− k

m

)|S1||S2|

>

(

1− 1

m

)k2|S1||S2|

, (3.11)

where the implication follows since m > k > 1, and we raise each side to the power of

(k|S1||S2|) > 0. Using (3.11), we show the main result,

Pr [FSO∩(S1, S2, hm)] = 1−
(

1− 1

m

)k2|S1||S2|

> 1−
(

1− k

m

)|S1||S2|

(3.12)

>

(

1−
(

1− k

m

)|S1||S2|
)k

(3.13)

= Pr
[

FSO∩(S1, S2, hm/k)
]

, (3.14)

where Eq. (3.13) follows from Lemma 5.

3.3.3 Space Requirements of Intersection and Queue-of-Queries

Given that partitioned intersection outperforms unpartitioned intersection, the following

theorem thus compares the methods queue-of-queries and partitioned Bloom filter

intersection for testing null-intersection. The metric of consideration is more concrete

than that in the previous theorem: for equivalent level of imprecision, we will compare

the space requirements of QoQ and intersection. Specifically, we will show that the bit-

vector space savings of QoQ is at least a factor of the square root of set cardinality,

relative to partitioned Bloom filter intersection, when the respective probabilities of FSO

are equal, under reasonable conditions.

Consider the disjoint sets S1, S2 ⊂ U . Let BFq(S1) be a partitioned Bloom filter

of length mq bits with a truly random k-tuple hash function hq ∈ Hmq

k
, for use in a

queue-of-queries. Let partitioned Bloom filters BFi(S1), BFi(S2) have length mi bits and

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 26

be indexed by the truly random k-tuple hash function hi ∈ Hmi
k
, for use in Bloom filter

intersection. Assume more than one hash tuple value, k > 1, nontrivial sets, |S1|, |S2| > 1,

and assume bit-vector lengths mq > k and mi > d|S1||S2| > k, for some constant d ≥ 1.

For the following theorem, we will equate the FSO probability distributions of QoQ

and partitioned intersection (i.e., assign them the same level of imprecision), and then

compare the bit-vector lengths mq and mi. The constant d ≥ 1 forces us to consider

“reasonable” bit-vector lengths.3

Theorem 4. Assuming the preceding system and conditions, the bit-vector space re-

quirement of partitioned Bloom filter intersection is a factor Ω(
√

|S2|) larger than the

queue-of-queries method, for equivalent probability of FSO. Specifically, if k > 1 and

Pr[FSO∩(S1, S2, hi)] = Pr[FSO∈(S1, S2, hq)], (3.15)

then

mi > mq
|S2|(1−

1

k)

1 + k
d

. (3.16)

Proof. Using the theorems of Section 3.2, we first equate the stated probabilities, then

show the inequality between mi and mq using the lemmas of Section 3.3.1. When

inequality (3.16) is proven, we prove the use of big omega notation. The following

equality restates Eq. (3.15):

(

1−
(

1− k

mi

)|S1||S2|
)k

= 1−

1−
(

1−
(

1− k

mq

)|S1|
)k

|S2|

.

For clarity, let a = |S1|, b = |S2|, and ci =
(

1− k
mi

)a

, and likewise for cq. Applying these

3 The probability of false set-overlap (for both QoQ and intersection) is prohibitively high until the
Bloom filter length exceeds some inflection point (e.g., see Figure 3.2 of the following section). Without
proof, the condition mi > d|S1||S2| captures the “useful” convex behavior of the probability distribution
following the inflection point; it is indeed simpler, and more interesting, to compare bit-vector space
requirements under this condition.

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 27

substitutions, we have

(

1− ci
b
)k

= 1−
(

1− (1− cq)
k
)b

which is rearranged into

1−
(

1− ci
b
)k

=
(

1− (1− cq)
k
)b

. (3.17)

Observe that ci, cq ∈ (0, 1) since mi,mq > k and a > 1. Therefore (1 − cq)
k ∈ (0, 1), so

with integer b > 1, we may apply the left side of Bernoulli’s inequality (Lemma 3) to the

right hand side of Eq. (3.17) and have

1−
(

1− ci
b
)k

=
(

1− (1− cq)
k
)b

> 1− b (1− cq)
k .

Rearranging and simplifying terms,

b (1− cq)
k >

(

1− ci
b
)k

.

Isolate b on the left hand side, take the k’th root, then expand ci and cq:

b
1

k >
1− ci

b

1− cq

=
1−

(

1− k
mi

)ab

1−
(

1− k
mq

)a . (3.18)

These steps are valid as ci, cq ∈ (0, 1). Now consider the denominator of (3.18). Apply

the left side of Bernoulli’s inequality (Lemma 3), since integer a > 1, and mq > k. Then

1−
(

1− k

mq

)a

<
ak

mq

⇒ 1
(

1−
(

1− k
mq

)a) >
mq

ak
. (3.19)

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 28

Now focus on the numerator of (3.18), 1−
(

1− k
mi

)ab

. Using the right side of Lemma 3,

we let x = − k
mi
, and n = ab, which satisfies −1 < x < 1

n−1
since mi > k. Thus,

(

1− k

mi

)ab

< 1 +
ab
(

− k
mi

)

1 + (1− ab)
(

− k
mi

)

Rearranging, 1−
(

1− k

mi

)ab

>
kab
mi

1 + kab
mi

− k
mi

>
kab
mi

1 + kab
mi

=
kab

mi + kab
. (3.20)

Combining inequalities (3.19) and (3.20) into (3.18), we have

b
1

k >
1−

(

1− k
mi

)ab

1−
(

1− k
mq

)a >
kab

mi+kab

ka
mq

= b
mq

mi + kab
.

Rearranging, we have shown thus far that

mi + abk > mqb
1− 1

k .

For some constant d ≥ 1, if designers choose mi > abd, then mi
k
d

> abk, thus
(

1 + k
d

)

mi > mi + abk. Therefore, returning b = |S2|,

mi > mq
|S2|1−

1

k

1 + k
d

,

as desired.

Big Omega Notation Regarding asymptotic notation for the space comparison, we

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 29

claim that, ∀k ≥ 2, and a fixed d ≥ 1, mi

mq
= Ω(

√

|S2|), or formally, ∀k ≥ 2, ∃d ≥ 1,

(∃c, n0 > 0)(∀|S2| ≥ n0)
mi

mq

≥ c
√

|S2|. (3.21)

We must prove this statement to be true. Since mi

mq
> |S2|

1− 1

k

1+ k
d

from (3.16), we can

simplify the statement; we substitute n = |S2|, and observe that to prove (3.21), we can

equivalently prove that ∀k ≥ 2, and fixed d ≥ 1,

(∃c, n0 > 0)(∀|S2| ≥ n0)
n1− 1

k

1 + k
d

≥ c
√
n. (3.22)

Before proving this statement, we further transform the right hand side inequality to an

equivalent one that is easier to work with, taking the logarithm of both sides; specifically

the right hand side inequality in (3.22) is equivalent to the following statements:

n1− 1

k

1 + k
d

≥ c
√
n ⇔ n1− 1

k

d+ k
≥ c

d

√
n

⇔
(

1− 1

k

)

lg n− lg(d+ k) ≥ lg c− lg d+
lg n

2

⇔ lg c ≤ lg n

2
− lg(d+ k)− lg n

k
+ lg d.

We choose to work with the latter inequality, which was achieved by multiplying both

sides by 1
d
, taking the logarithm, and rearranging.

Now to prove the correct use of asymptotic notation above, i.e., (3.21), we will prove

by induction on k that ∀k ≥ 2, and a fixed d ≥ 1,

(∃c, n0 > 0)(∀n ≥ n0) lg c ≤ lg n

2
− lg(d+ k)− lg n

k
. (3.23)

We dropped the term lg d, as it simply scales the parameter c that we are free to choose.

For the base case, k = 2, we actually show (3.21) above. For fixed d ≥ 1, we have

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 30

from inequality (3.16),

mi

mq

>
|S2|1−

1

k

1 + k
d

=

√

|S2|
1 + 2

d

which satisfies (3.21) by choosing c = 1
1+ 2

d

and n0 > 0.

For the inductive step we assume (3.23) to be true for k, and we show that it holds

for k+1. We make the substitution A = lgn
2
− lg(d+ k+1)− lgn

k+1
, and thus seek to show

(∃c, n0 > 0)(∀n ≥ n0) lg c ≤ lg n

2
− lg(d+ k + 1)− lg n

k + 1
,

or equivalently

(∃c, n0 > 0)(∀n ≥ n0) lg c ≤ A. (3.24)

We begin from the inductive hypothesis (3.23), and manipulate to show that lg c ≤ A.

We assume (∃c, n0 > 0)(∀n ≥ n0)

lg c ≤ lg n

2
− lg(d+ k)− lg n

k
(from the inductive hypothesis)

=
lg n

2
− lg(d+ k)− lg n

k
+ lg(d+ k + 1)− lg(d+ k + 1) +

lg n

k + 1
− lg n

k + 1

=
lg n

2
− lg(d+ k + 1)− lg n

k + 1
− lg(d+ k)− lg n

k
+ lg(d+ k + 1) +

lg n

k + 1

= A+ lg

(

d+ k + 1

d+ k

)

+

(

1

k + 1
− 1

k

)

lg n.

Since
(

1
k+1

− 1
k

)

< 0, then indeed we can find some n0 > 0, such that for n ≥ n0,

lg c ≤ A, satisfying the statement (3.24). Thus we have proven (3.23) by induction on

k, and (recalling that n = |S2|) have equivalently shown that ∀k ≥ 2 and fixed d ≥ 1,

(∃c, n0 > 0)(∀|S2| ≥ n0)
mi

mq
≥ c
√

|S2|, or mi

mq
= Ω(

√

|S2|).

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 31

3.4 Empirical Validation

In this section we empirically validate the probability distributions derived in Section 3.2.

Empirical rates of false set-overlap are gathered for each of the three null-intersection

tests, in four discrete hash function tuple configurations. A simple experiment tests two

disjoint address-sets for overlap, using the three methods discussed: queue-of-queries,

and partitioned and unpartitioned Bloom filter intersection. Each method returns two

possible outcomes: either a false set-overlap, or disjoint sets. The experiment is repeated

over one million trials, and the relative frequency of false set-overlap is recorded as the

empirical rate.

3.4.1 Methodology

For a single experiment, two disjoint sets are generated, S1 and S2, containing unique

pseudorandom 32-bit integers (addresses), using the C standard library rand function.

For a given bit-vector length, m, and hash function tuple size, k, partitioned and unparti-

tioned Bloom filters are constructed for each of the sets, BFp(S1), BFp(S2), BFu(S1), BFu(S2).

Random hash functions are selected from the H3 family [10] that approximately match

the performance of ideal hash functions, for an address stream with sufficient entropy [41].

To test the queue-of-queries outcome, each x ∈ S2 is tested for membership in BFp(S1).

If at least one query returns true, the false set-overlap is recorded. Likewise, to test

the Bloom filter intersection outcome, we separately intersect BFp(S1) ∩ BFp(S2) and

BFu(S1) ∩ BFu(S2), and determine whether the remaining bits represent an empty set

as described in Section 3.1; otherwise a false set-overlap is recorded.

3.4.2 Analysis

Figure 3.2 visualizes the false set-overlap rate as a function of Bloom filter length, m.

The four plots differ only in the size of the hash function tuple: k = 1, 2, 4, 8. The

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 32

BF queries Part. BF ∩ Unpart. BF ∩ BF queries emp. Part. BF ∩ emp. True BF ∩ emp.

P
r[
fa
ls
e
se
t-
ov
er
la
p
]

64 512 4096 32768 262144

0

0.2

0.4

0.6

0.8

1

k = 1

64 512 4096 32768 262144

0

0.2

0.4

0.6

0.8

1

k = 2

P
r[
fa
ls
e
se
t-
ov
er
la
p
]

Bloom filter length (bits)
64 512 4096 32768 262144

0

0.2

0.4

0.6

0.8

1

k = 4

64 512 4096 32768 262144

0

0.2

0.4

0.6

0.8

1

k = 8

Figure 3.2: Probability and empirical rate of false set-overlap on the y-axis as they vary
with increasing Bloom filter length on the x-axis (in log scale). Each plot represents a
size k of the hash function tuple. The three curves plot the probabilistic models of false
set-overlap, and are overlaid by sample points of the experimentally measured rate.

cardinalities of the address sets were fixed to |S1| = |S2| = 64 unique elements4 for

all trials. Each set of one million trials is represented by a point on the plot, having

been assigned a fixed filter length. Filter lengths are shown in a log scale on the x-axis,

and each length was sampled at a power-of-two to effectively show the trend of this

roughly exponential decay. The derived theoretical distributions underlay the empirical

sample points, visualizing the relationship between Bloom filter length and false set-

4Address-set cardinality is certainly application-specific; a number of earlier studies exhibited average
read-set sizes of 26 to 67 addresses [12, 13, 51, 53, 68], but as few as 2 addresses [32, 67] and as many as
2000 addresses [51,68]. Write set sizes are typically smaller but still vary from 1 address [12,33,53,67,68]
to over 1500 [51, 68]—we choose 64-element sets as a compromise within this large space. Varying the
set cardinalities will not change the general trends observed in Figure 3.2.

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 33

overlap probability. It is apparent that the empirical sample points follow the theoretical

distributions, validating the accuracy of our work.

3.5 Implications

Figure 3.2 illustrates that varying k has a different effect on each null-intersection test.

For nontrivial hash function tuples (i.e., k > 1), the queue-of-queries method benefits

from increasing k (up to a point), while the probability distribution for unpartitioned

Bloom filter intersection only becomes worse. Upon close inspection of the distribution

for partitioned Bloom filters, increasing k is beneficial only for filter lengths of at least 16k

bits. These three patterns can also be shown analytically, by minimizing the probability

distributions with respect to k. The reader is directed to Broder and Mitzenmacher [9]

for an example of this process. Without proof, the optimal number of hash functions for

partitioned intersection is k∗ = m
|S1||S2|

ln 2, minimizing the false conflict probability to

2−k∗ .

Implication 1. Issuing a series of Bloom filter membership queries permits testing null-

set-intersection with significantly lower space overhead than Bloom filter intersection,

for larger than one-tuple hash functions.

Implication 2. When intersection is unavoidable for null-intersection testing, parti-

tioned intersection is preferable to unpartitioned as it provides the same service, with the

same time-complexity, with lower (or equal) probability of false set-overlap.

Surprisingly, for a single hash function, k = 1, all three methods share the same prob-

ability distribution (and empirical sample points)—this can be verified by substituting

k = 1 for the theorems of Section 3, and the probability of FSO is 1 − (1 − 1
m
)|S1||S2|.

This fact may run counter to intuition, so consider the following explanation. Testing

a single bit in a single-partitioned query of an element is also equivalent to intersecting

Chapter 3. A Theory of Bloom Filters for Null-Intersection Tests 34

(AND) the Bloom filter of that element with the Bloom filter of a set. When issuing

a queue-of-queries, a set-overlap is returned if any element of the queue matches in

the filter; this is in turn equivalent to ORing all of the latter bitwise intersections, i.e.,

∨

x∈S1
(BF (x)∧BF (S2)). The BF (S2) can be factored out of the logical formula to give

BF (S2) ∧ (
∨

x∈S1
BF (x)), and with a single partition, (

∨

x∈S1
BF (x)) = BF (S1), thus

single-partitioned QoQ and intersection are equivalent. Given this equivalence, a time-

complexity comparison would be helpful; unfortunately the many hardware-dependent

considerations make such a study beyond the scope of this dissertation.

Implication 3. Remarkably, when restricted to encoding addresses using a single hash

function, Bloom filter querying and intersection share equivalent probability of false set-

overlap.

3.6 Summary

In this chapter we developed a theory to model and compare Bloom filter null-intersection

test configurations. The data structure operations were described, including the con-

ditions necessary to induce false set-overlaps. The probability of false set-overlap

was derived for queue-of-queries and partitioned/unpartitioned intersection. These

probability distributions were then analytically compared and empirically validated.

We concluded by summarizing the design implications of the developed theory, noting

that in terms of probability of false set-overlap, the queue-of-queries approach is better

than intersection (providing a factor Ω(
√

|S2|) space savings, i.e., the square root of set

cardinality), and partitioned intersection is better than unpartitioned.

Chapter 4

The Batch-of-Bloom-Filters (BoB)

Approach

Existing null-intersection tests present a difficult choice between time-consuming but

accurate queues-of-queries, or fast but inaccurate Bloom filter intersection—hence we

are motivated to develop a compromise between the two approaches. We do this by

essentially maintaining a fixed-size queue of Bloom filters, and distributing addresses

across these Bloom filters. This way we continue to exploit the fast bitwise AND operation

of intersection, but also approach some of the accuracy benefit of making queries for

individual elements—but in this case by maintaining a group or batch-of-Bloom-filters

(BoB). Notice in Eq. (3.7) of Theorem 2 that the false conflict probability of partitioned

intersection increases with the product of the set cardinalities; the basic idea of BoB is

to reduce this product term by distributing the set elements over the batch of Bloom

filters, with each filter representing a subset of the original address set.

This chapter introduces the structure and operations of a BoB, contributes an

intuitive alternate design, and describes the obstacles to deriving a probability of false

set-overlap. Lacking an analytical comparison, we thus empirically demonstrate the

statistical compromise of BoB relative to the other null-intersection tests.

35

Chapter 4. The Batch-of-Bloom-Filters (BoB) Approach 36

BoB(S1)

…

…

…

…

…

…

…

…

…
BoB(S2)

insert(a)

m/bk

bits

k hash

functions

h1 hk h1 hk h1 hk

hpre

…

a

map to bin

null-intersect?
Figure 4.1: Structure and operations of a batch-of-Bloom-filters. The first two rows of
boxes represent the BoB bit-vectors of sets S1 and S2. Address a is inserted into the
BoB of S1, with its hpre mapping to the last bin shown in red. The dotted grey frames
distinguish the internal partitioned Bloom filters (bins) of the batch, complete with k
hash functions on top and the typical partitioned null-intersection test on the bottom.
The sets S1 and S2 are tested for null-intersection, by pairwise partitioned intersection
of the internal Bloom filters.

4.1 BoB Structure and Operation

To build a BoB, the m bits normally allotted to a single Bloom filter are segmented

across a batch of b regular filters, each with k partitions of integer length m
bk

bits and

k (ideally independent) hash functions.1 An individual Bloom filter of the batch will

be referred to as a bin, and b as the batch bin count. A “prefilter” hash function maps

addresses to one bin, hpre : U → {0, . . . , b− 1}. Hao et al. [21] similarly prehash the set

elements in their query-based Bloom filter, and visualize hpre as partitioning the keys of

the address space, U , into b disjoint subsets, U = U1 ∪ U2 ∪ · · · ∪ Ub. Therefore, each

1The set of hash functions does not have to be the same across filters, but we are so far not motivated
to vary them and hence they are the same across filters for our implementations.

Chapter 4. The Batch-of-Bloom-Filters (BoB) Approach 37

Bloom filter (or bin) in the batch can only represent elements from one of these address

subsets, and null-intersection tests thus require the pairwise intersecting of equivalent

subset bins. Partitioned Bloom filters (k = 1, 2, . . .) are used exclusively for the bins,

as they outperform unpartitioned for bitwise intersection (see Theorem 3). Figure 4.1

illustrates the operations of the batch. We denote the bit-vector of the batch as B.

Insertion Given an address a, the hpre(a)’th Bloom filter of the batch is selected, and

a is inserted as usual. If the bit-vectors in the batch are instead thought of as a single

bit-vector B, then the bits B[hi(a) +
(i−1)m

bk
+ m

b
hpre(a)] are set to one for 1 ≤ i ≤ k.

Null-Intersection Test The Bloom filters of equivalent address subsets are pairwise

intersected by bitwise AND. If every one of the b intersected filters has at least one all-zero

partition, then the intersection is reported empty, otherwise an overlap is reported.

4.2 Alternate Construction

The reader may recognize an increased risk of false set-overlap if the prefilter hash

function introduces load imbalance across the batch.2 To reduce the impact of poor

prefilter hashing, one might instead consider time-multiplexing the addresses across the

batch, for example by adding addresses to filters in a round-robin fashion. This strategy

has two clear limitations, stemming from the fact that addresses can be mapped to any

filter (depending on time). The first limitation is a lack of redundancy elimination (an

address could simultaneously appear in multiple filters). In this case the filter density

(the ratio of bits set to one) will be higher than for the BoB we previously described,

and therefore false set-overlaps will be more frequent. The second limitation is that, for

correctness, null-intersection tests must cross-intersect each filter with every other filter

2 Choice of prefilter hash function is discussed in Chapter 5.

Chapter 4. The Batch-of-Bloom-Filters (BoB) Approach 38

to prevent false negatives, increasing execution time immensely. Hence we dismiss this

alternative construction.

4.3 Toward a Theoretical Analysis

Selecting the new parameter of BoB bin count, b, expands the already large Bloom filter

intersection design space, thus an accurate model for probability of false set-overlap by

BoB intersection would be extremely helpful for system designers. Such a derivation was

pursued for this dissertation, depending in part on our developed theory of partitioned

intersection, i.e., Eq. (3.7) of Theorem 2. Unfortunately, our closed-form probability

distributions extend the “classic” analysis of Bloom filter false positives, which, as noted

in Section 2.1.3, are good approximations for relatively large Bloom filters, but are

overly optimistic for smaller filter lengths [16]. Since a modest-sized BoB contains a

batch of distinct filters that are themselves each segmented into partitions, the resulting

partitions are typically not large enough for the “classic” analysis or the closed form

Eq. (3.7) to apply. An accurate model of BoB intersection must instead transform the

false positive model proposed by Christensen et al. [16] to model bitwise intersections

(similar to Lemma 2 by Guo et al. [18]), while accounting for address-to-bin mappings

using a multinomial probability distribution. Such a derivation is beyond the scope of

this work.

4.4 Rates of False Set-Overlap

Without an analytical model, we instead demonstrate that the BoB strategy is a

good compromise between queue-of-queries and partitioned intersection by comparing

synthetic rates of false set-overlap in Figure 4.2. Sensitivity to bit-vector length is

observed along the horizontal axes. Each curve represents the FSO rate for a particular

null-intersection test, and BoB intersection is evaluated with six curves representing

Chapter 4. The Batch-of-Bloom-Filters (BoB) Approach 39

different bin counts. The experiments closely resemble the empirical validation in

Section 3.4, but we omit unpartitioned intersection due to its inaccuracy, and study BoB

intersection instead. The bit-vector length is the total allocated space used to represent

one of the two sets—so a BoB of length 2048 bits with 2 bins and k = 2 has two internal

Bloom filters with partition lengths 2048
2×2

= 512 bits, and is intersected with a BoB of

identical configuration. The four plots differ in the number of Bloom filter partitions and

hash functions, k = 1 to 8.

4.4.1 Methodology

The empirical FSO rates are measured by recording the result of many synthetic null-

intersection tests between two disjoint sets using one of QoQ, partitioned intersection,

or BoB intersection. Each data point in the figure represents the relative frequency

of observed false set-overlaps over 10 million trials. For a particular null-intersection

trial, two disjoint sets of random 32-bit integers are generated, S1 and S2, using the C

standard library rand function. For all trials, the sets have cardinalities of |S1| = 64 and

|S2| = 32 unique integers, chosen to approximate the size disparity in typical read- and

write-sets [52].

For this evaluation, Bloom filters are constructed from the integer sets using random

hash functions from the H3 [10] family, to approximately model uniform hash functions.

With appropriately constructed Bloom filters, the null-intersection tests are executed as

described in Sections 3.1 and 4.1. The QoQ is configured in two ways: querying integers

of S1 into BF (S2) (labeled QoQ 1 ∈ 2), and vice versa (QoQ 2 ∈ 1), to empirically

demonstrate the difference between querying fewer elements into a denser filter, and

querying more elements into a filter of lower occupancy.

Chapter 4. The Batch-of-Bloom-Filters (BoB) Approach 40

F
al
se

se
t-
ov
er
la
p
R
at
e

256 512 1k 2k 4k 8k 16k
0

0.2

0.4

0.6

0.8

1

k = 1

256 512 1k 2k 4k 8k 16k
0

0.2

0.4

0.6

0.8

1

k = 2

F
al
se

se
t-
ov
er
la
p
R
at
e

256 512 1k 2k 4k 8k 16k
0

0.2

0.4

0.6

0.8

1

k = 4

256 512 1k 2k 4k 8k 16k
0

0.2

0.4

0.6

0.8

1

k = 8

 Part. Int.
BoB 2
BoB 4
BoB 8
BoB 16
BoB 32
BoB 64
QoQ 2∈ 1
QoQ 1∈ 2

Bit-vector length (bits)
Figure 4.2: Rates of false set-overlap, varied with increasing bit-vector length on the
horizontal axis. Each curve represents a particular null-intersection test design, where
BoB is represented with several bin counts, b. A bin count of one is equivalent to
partitioned intersection. Lower rate of FSO with smaller bit-vector length is better.

4.4.2 Single Partition

For the single-partitioned case of k = 1, all null-intersection tests appear to share

equivalent probability of false set-overlap. With QoQ and partitioned intersection this

fact was highlighted in Section 3.5, but remarkably, for BoB intersection every batch bin

count appears to fit the same curve. Note that in a batch of single-partitioned Bloom

filters, the prefilter function effectively perturbs the mapping of an address to the single

bit set to one. In this case a BoB intersection closely resembles a regular unpartitioned

intersection. All following subsections analyze the plots for k = 2, 4, 8.

Chapter 4. The Batch-of-Bloom-Filters (BoB) Approach 41

4.4.3 Queue-of-Queries

Both configurations of QoQ outperform all other null-intersection tests when the filter

uses more than one partition. It is apparent that querying elements of the larger set, S1,

into the Bloom filter of the smaller set (the ’x’ marker) is the better strategy of the two.

However, it is insightful to see that the alternative query method still outperforms all BoB

configurations; the importance of this observation is revealed in Section 5. Increasing k

further reduces the false set-overlap rate for both configurations, up to an optimum value

that depends on the bit-vector length [60]. For example, for a Bloom filter length of 512

bits, querying elements of the larger set benefits from increasing k from four to eight,

but the other configuration produces a slightly worse false set-overlap rate.

4.4.4 BoB Intersection

As intended by design, the BoB intersection curves lie between those of QoQ and

partitioned intersection. Our proposed null-intersection test can indeed exploit the

simplicity of AND-based intersection, while improving upon the accuracy of regular

partitioned intersection. For the case k = 2, the false set-overlap rate is reduced with

every increase in the number of filters in the batch (b) up to 32 (32 is the cardinality of

the smaller of the two integer sets). We observe diminishing returns with every increase

of b up to 32, and note that increasing b to 64 produces an equivalent or worse FSO rate.3

As with typical Bloom filter configurations, the effect of increasing the number of

partitions depends on the bit-vector length. In these experiments, four-way partitioning

is beneficial for BoBs of 8, 16, and 32 bins, at total length of 2k bits. At 4k bits, BoBs

with bin count of 4 and 64 begin to benefit from four-way partitioning. Comparing eight

to four partitions, all configurations of BoB intersection deteriorate at 2k and 4k bits,

but show reduced false set-overlap rates at 8k bits and beyond.

3One data point of BoB b = 64 is even worse than partitioned intersection at bit-vector length of 1k
bits. It would appear that too many bins can severely increase the rate of FSO.

Chapter 4. The Batch-of-Bloom-Filters (BoB) Approach 42

From this empirical study, it seems that the batch bin count should not exceed the

cardinality of the smaller of the two sets to be intersected. A bin count of half this

cardinality performs nearly as well, and is at lower risk of very poor performance for small

bit-vector lengths. Increased partitioning is beneficial depending on selected bit-vector

length, and number of filters in the batch. Unfortunately, the ideal design parameters,

bit length, number of partitions, and bin count, all depend on the cardinalities of the

sets, which are rarely known or fixed for transactional memory systems. The designer

must then choose the configuration that is most likely to degrade gracefully.

4.5 Summary

In this chapter, we introduced a new null-intersection test called batch-of-Bloom-filter

intersection, that seeks to offer a compromise between the accuracy of QoQ and the

simplicity of bitwise intersection. The structure and operations of a BoB were described

and illustrated, followed by the dismissal of an intuitive alternate design. We explained

the barriers to deriving a probability of false set-overlap for this test, and suggested

the future steps to pursue such a model. We concluded by comparing the rates of

false set-overlap of all null-intersection tests, synthetically demonstrating the statistical

compromise of BoB intersection.

Chapter 5

Software Implementation of

Null-Intersection Tests

We have described the motivation for and theoretical behavior of three conventional

methods of using Bloom filters for testing null-intersection: unpartitioned intersection,

partitioned intersection, and queue-of-queries. We have also introduced a compromise

method, the batch-of-Bloom-filters. In this chapter, the focus is shifted from theory

to practical considerations, as we discuss the generic software implementation of these

four methods, including the use of SIMD optimization. In the next chapter we test the

practical relevance of the theoretical implications with a performance evaluation; we thus

conclude this chapter by describing and comparing the specific implementation of these

techniques in RingSTM [58].

5.1 Unpartitioned Intersection

Single-partition (hereafter called unpartitioned) Bloom filter intersection has been im-

plemented in recent systems [4, 47, 58] and is likely also present in other systems with

unspecified Bloom filter configurations [5, 48]. It is also referred to as the baseline

configuration, where those in the later sections are alternates. The Bloom filter hash

43

Chapter 5. Software Implementation of Null-Intersection Tests 44

function ought to be of high quality with a near-uniform output distribution (e.g.

H3 [10]), however such implementations have high overheads. By default we use a simple

least-significant contiguous bit-select hash function of 8-byte aligned words, requiring

only bit-shift and AND instructions. A Bloom filter typically contains hundreds of bytes

or more, and so set-overlap is computed via a series of bitwise AND operations in a loop.

One very low-level implementation choice for implementing such an intersection is to

short-circuit the loop at the first non-empty intersection result, saving the computation

of further intersections but at the cost of an extra branch in the loop to check for this

condition.

5.2 Partitioned Intersection

In a partitioned scheme, the partitions are sequentially tested for null-intersection. If at

least one partition is found empty, a null-intersection is returned. To avoid redundant

work, the remainder of the testing for a partition is skipped once the intersection of any

of its words is found to be non-null.

In theory, the multiple hash functions of a Bloom filter are independent, otherwise

correlation among bit indexes could reduce the efficacy of partitioning. As we are

interested in low overhead operations, we resort to bit-select hash functions of disjoint bit-

fields of the address (of length log2 (
m
k
) bits). Unfortunately, this constraint can impede

the goal of independence as there are a finite number of address bits, and potentially more

bits are required for indexing large filters. The sequentially-executed multiple hashes add

overhead for every Bloom filter insertion (at every shared memory read and write).

Kirsch and Mitzenmacher [27] proposed a double-hashing optimization which simu-

lates a large number of independent hash functions by linearly combining only two. This

strategy was attempted with two H3 functions, and it permitted the effective use of four

or more partitions, but the overheads were still high relative to simple bit-select—hence

Chapter 5. Software Implementation of Null-Intersection Tests 45

we do not discuss this method further. It would be most beneficial when high-quality

hash functions can be parallelized, particularly in hardware.

5.3 Queue-of-Queries

We assume a TM that intersects only read- and write-sets (not write-write), so the first

design decision is which of the sets will form the queue and which the Bloom filter. From

the previous section, Figure 4.2 indicates that in a QoQ, the rate of false set-overlap is

lower when issuing queries of the larger set into a Bloom filter of the smaller set.

Since transactions are typically composed of more reads than writes, a read-set queue

would incur fewer false aborts, but the linear-time null-intersection test would take longer.

Furthermore, every read would be inserted (at prohibitive total cost) into an associative

data structure to avoid redundant queries during intersection. Assuming a write-buffered

TM implementation, we can exploit the necessary existence of an associative write-set,

and opt to double the write-buffer’s use as the queue-of-queries. This also eliminates the

need for all write filter operations (clears and insertions).

5.4 Batch-of-Bloom-Filters

The batch is a collection of conventional partitioned Bloom filters, so the remaining

implementation details concern the intersection operation itself, as well as the design

of the prefilter hash function. The filters of the two batches are sequentially tested for

pairwise null-intersection; if any pair is found to be non-null, the routine is terminated

and a set-overlap returned. Regarding the prefilter function, a non-uniform mapping

of addresses to filters can have very detrimental effects on the rate of false-set overlap.

Indeed, since the partitioned Bloom filters use simple bit-select hash functions, we find

that the prefilter function must be of better quality. Several fast hash functions were

Chapter 5. Software Implementation of Null-Intersection Tests 46

tested for this role: H3, CRC, multiplicative, and XOR [62]; of these, H3 and an XOR were

the most promising, and hence are evaluated in Section 6.3.

5.5 SIMD Optimizations

Bloom filter operations are easily parallelized when implemented in hardware [53], so

we are motivated to study the operations that are amenable to vector instructions in

software. In this section we consider the parallelization of bit-vector operations by

exploiting Intel ISA SSE4.1 and SSE2 instructions.

5.5.1 Bitwise Intersection

The obvious target for vectorization is the data-parallel bitwise AND intersection, with

granularities of 128-bit vectors, rather than 32-bit words. As indicated in Section 5.1,

null-intersection can be tested in two ways (and both are applicable to unpartitioned,

partitioned, and BoB intersection). The first method accumulates intersections into a

register, then tests for emptiness at the end of the loop. This is implemented with the

SSE2 PAND and POR instructions, with a vector-to-word conversion at the end for the null

test. Alternatively, SSE4.1 offers the PTEST instruction to intersect two 128-bit vectors,

and it returns whether the result was zero. This instruction enables a vector version

of the second intersection method, avoiding unnecessary work when a partition is found

non-empty, but it requires a branch after each test. The baseline TM system optionally

offers the first accumulator method for SSE2-enabled processors, and we compare it to

the second branch-after-intersection method in the evaluation.

5.5.2 Queue-of-Queries

Querying each address of the queue is a data-parallel operation that applies the same

(read-only) hashing and bit-testing operations on all addresses. SSE4.1 instructions

Chapter 5. Software Implementation of Null-Intersection Tests 47

enable four 32-bit addresses to be queried in parallel, particularly parallelizing the hash

function operations at the address granularity. The k hash functions of partitioned

filters are evaluated sequentially, but for four addresses simultaneously. Unfortunately,

the indexing and testing of bits present significant barriers to vectorization, as they

require memory-gather and bit-shift instructions that do not yet exist.1 Thus following

the vectorized hashing, bits are tested sequentially, which incurs additional overhead to

extract the 32-bit indexes from 128-bit vectors. The evaluation chapter compares this

vectorized query with the sequential counterpart.

5.5.3 Insertion

Bloom filter insertions (unpartitioned, partitioned, and BoB) are not amenable to current

Intel SSE instructions. Addresses are inserted individually at the time of access, so

data-parallelism is not available, as it is for a queue-of-queries. Task-level parallelism

would be the next target, particularly exploiting the use of multiple independent, data-

partitioned hash functions and bit-setting. However, in addition to the currently non-

existent memory-gather and vector-vector shift instructions required by QoQ, insertion

also requires a memory-scatter instruction that does not even appear to be scheduled for

release. Unfortunately, Bloom filter insertions cannot be vectorized.

5.5.4 Bit-Vector Reset and Copy

Bloom filters are reset and copied using vector move instructions. This functionality is

provided in the baseline TM system.

1Memory-gather and vector-shift-by-vector-value instructions will be released in the Intel ISA
AVX2 [25].

Chapter 5. Software Implementation of Null-Intersection Tests 48

5.6 Implementation in RingSTM

In this dissertation we use RingSTM [58] to evaluate the performance impact of the

various null-intersection tests. RingSTM is a lazy write-buffered STM that performs

conflict detection by single-partitioned Bloom filter null-intersection tests—and hence an

excellent candidate to validate alternate Bloom filter implementations. The algorithm

replaces the linear-time read and commit validation stages of earlier STMs with a constant

number of Bloom filter intersections, requiring a single atomic operation to commit. The

authors introduce a global ring of Bloom filters to represent the logically-committed

write-sets, with which concurrent transactions intersect their read-sets (filters) during

read and commit validation.

The experiments in the following chapter build upon the optimized single-writer

algorithm, released in the open source RSTMv6 (the most current version available

at the start of this work). The new AND-based intersections (partitioned and BoB)

are straightforward to swap into RingSTM with the implementations described in this

chapter, but additional low-level details about the queue-of-queries method are insightful.

Using QoQ, the write filters of the Ring are replaced with write buffers, so the buffer

data must be quickly copied from thread-local to global memory. To avoid traversing

the entire buffer to copy the data, we instead swap the 32 bytes of meta-data (including

buffer length, pointer to data, pointer to tables, etc.) of the thread’s write buffer with

that of an unused write buffer in the ring. This memory swap is accelerated with the

Intel SSE2 MOVDQA instruction, which moves 128-bit vectors to and from memory. The

optimization performs best when the meta-data do not cross cache line boundaries, thus

the thread class becomes 32-byte aligned.

Chapter 5. Software Implementation of Null-Intersection Tests 49

5.7 Summary

This chapter marked the departure from a theoretical study of Bloom filter configu-

rations to building practical implementations for the performance evaluation to follow.

We described the generic software implementation for each of the four studied null-

intersection tests: queue-of-queries, and unpartitioned, partitioned, and BoB intersection.

Recognizing that Bloom filter operations are amenable to vectorization, we described

the Intel SSE instructions used to vectorize bitwise intersection and issue queries in

parallel. We concluded by summarizing RingSTM, the vehicle by which we evaluate the

performance impact of the null-intersection tests in the next chapter.

Chapter 6

Performance Evaluation

Having described the motivation, theory, and implementation for the three alternate

Bloom filter null-intersection tests, in this chapter we evaluate their utility in practice. We

determine whether the predicted reduction in false conflicts for QoQ, BoB and partitioned

intersection can overcome the overhead of increased implementation complexity. Each

null-intersection test is implemented in the conflict detection unit of RingSTM, and these

are evaluated based on their reduction of total execution time of the STAMP benchmarks

relative to the original baseline unpartitioned intersection.

The experimental methodology is first explained, detailing the configuration of the

STAMP benchmarks, and the two underlying system configurations. Performance results

are then presented for the best implementations of the four null-intersection tests,

including benchmark execution time and transaction abort rate; the performance impact

of using more refined Bloom filter configurations is demonstrated. In the following

section, we validate the choices of “best implementation,” including use of SIMD, and

BoB prefilter and bin count.

50

Chapter 6. Performance Evaluation 51

Table 6.1: STAMP benchmark input parameters.

Bench Input
genome g32768 s128 n16777216

intruder a10 l128 n262144 s1
kmeansh m15 n15 t0.00001 random-n65536-d32-c16
kmeansl m40 n40 t0.00001 random-n65536-d32-c16

labyrinth random-x512-y512-z7-n512
ssca2 s20 i1.0 u1.0 l3 p3

vacationh n2 q90 u98 r1048576 t16777216
vacationl n4 q60 u90 r1048576 t16777216

6.1 Methodology

Total execution time is measured for each benchmark of the Stanford Transactional

Applications for Multi-Processing (STAMP) suite [37], stressing the null-intersection

tests under a variety of transaction sizes, data set sizes, and memory access patterns.1

Table 6.1 lists the input parameters to each benchmark; we distinguish both low- and

high-contention inputs to kmeans and vacation, and exclude bayes and yada from

study. Yada has known bugs [56] and would often run into segmentation faults or infinite

loops, whereas bayes exhibits wildly varying execution times as the convergence to a

solution is highly sensitive to transaction schedules [34]—no conclusions could be drawn

from the results. The labyrinth benchmark suffices to represent the long transactions

and mid to high contention of these two benchmarks.

Benchmarks are run on two system configurations: Section 6.2 and Figure 6.2 use

eight threads on an 8-core Intel Xeon E5345,2 [56] running 32-bit Linux 2.6.32-5-686, and

benchmarks compiled with gcc 4.5.3. This hardware supports up to SSE2, so to compare

the SIMD optimizations in Figure 6.3, including SSE4.1 instructions, benchmarks are

run with four threads on an Intel Core2 quad Q9450 running 32-bit Linux 2.6.32-5-686-

1We use the version of STAMP that shipped with RSTMv6 source code.
2The RSTMv6 source code unfortunately causes some benchmarks to crash occasionally with

segmentation faults on the 8-core Xeon. We discard all runs that crash or return invalid solutions.

Chapter 6. Performance Evaluation 52

bigmem, compiled with gcc 4.4.5. Both system configurations use compiler flags -O3,

-mtune=native, and -fvariable-expansion-in-unroller.

All null-intersection tests are evaluated with bit-vector lengths of 256 to 16k bits

to observe sensitivity to size. The reported performance measurements for a particular

bit-vector length represent the arithmetic mean of ten repeated trials.

6.2 Evaluation of all Null-Intersection Tests

We present performance results for five null-intersection tests. These include the baseline

unpartitioned (single-partition) intersection, partitioned intersection, BoB intersection,

and two configurations for QoQ using both a partitioned and unpartitioned Bloom filter.

The latter QoQ configuration is interesting because, as observed in Section 3.5, it will

exhibit the same false abort rate as an unpartitioned intersection, and the operations

for filter insertion are the same; this configuration thus isolates the empirical effects of

issuing queries as opposed to intersecting a large bit-vector. Partitioned QoQ will share

similar filter insertion overhead as partitioned intersection (adding one hash function),

and exhibits twice the querying overhead.

The eight pairs of graphs in Figure 6.1 present results for the eight benchmarks, with

increasing bit-vector length on the horizontal axis. For each benchmark there is a pair

of graphs, with performance on top and aborts on the bottom. For performance we

plot execution time, normalized to the best-performing unpartitioned intersection result

(k=1) across all bit-vector lengths. Any normalized execution time of less than 1.0 thus

indicates the speedup of an alternate null-intersection test relative to the best possible

unpartitioned intersection configuration for that benchmark. For aborts we plot the

percentage of started transactions that were aborted (or restarted). We would prefer to

report the reduction of false aborts, but these cannot be measured directly in software

without slowing the runtime system and affecting the level of contention and thus realism.

Chapter 6. Performance Evaluation 53

We compromise by noting that as Bloom filter resolution increases, the abort rate should

ideally diminish into the true abort rate.

These results include the best configuration for each null-intersection test: SIMD

optimization, numbers of hash functions and partitions, and BoB bin count and prefilter

hash function type. We validate these choices in the next Section 6.3. SSE2 accumulator-

based intersection is used for bitwise AND-based intersections, when Bloom filter partitions

are at least 128-bits long—otherwise word-level intersection is used.3 Serial word-level

queries are used for QoQ configurations instead of the data-parallel SSE4.1 method.

Filters for partitioned intersection, QoQ, and BoB do not exceed two partitions (k = 2),

as we found that the overheads of additional hash functions are prohibitively high.

We choose a BoB configuration with 8 bins that uses an XOR-based prefilter hash

function. Note that BoB thus requires one more hash function than partitioned QoQ

and intersection configurations.

6.2.1 Results for Bitwise Intersections

The bitwise AND-based intersections, including the baseline, show two general trends in

execution time. In the first trend, for larger bit-vector lengths, execution time increases

almost linearly for genome, intruder, kmeansh, kmeansl, and ssca2 as the bitwise

intersection increasingly dominates execution time—likely due to frequent read and

commit validations. For genome, the alternate null-intersection tests fail to outperform

the baseline in execution time, despite increasingly-large reductions in the abort rate as

size increases. Partitioned intersection introduces only slight overhead over the baseline

(from 2% to 10%). The ssca2 benchmark spends very little time in transactions, and

has very small read- and write-sets, and thus is insensitive to Bloom filter configuration.

The alternate configurations reduce the abort rate below 1%, but show similar time

3Word-level intersection mainly applies to BoB intersection which can contain partitions smaller than
128-bits.

Chapter 6. Performance Evaluation 54

behavior to the baseline, although partitioned intersection performs slightly better. For

intruder, kmeansh, and kmeansl: (i) either of BoB or partitioned intersection are

able to reduce the execution time below the best baseline configuration; (ii) curiously,

the abort rate moderately increases with increasing bit-vector length for all AND-based

intersections. Note that in intruder, BoB intersection reduces the abort rate by up to

10% below the baseline, permitting a time reduction of about 5% under the best baseline

configuration.

The second trend is seen for the remaining benchmarks, labyrinth, vacationh,

and vacationl: execution time generally decreases or stabilizes with increased bit-vector

length, as the time saved in reducing false aborts exceeds the overhead of longer bitwise

intersection. The labyrinth benchmark contains long transactions with large address-

sets under high contention. Under these conditions, the greatly-reduced abort rates of

BoB and partitioned intersection lead to reduced execution time at nearly all bit-vector

lengths; e.g., at 512 bits, BoB intersection provides a 25% speedup relative to the baseline

of same length. The best configurations of BoB and partitioned intersection reduce

execution time by 15% relative to the best baseline. In contrast, for the vacationh

and vacationl benchmarks, the hashing overheads of BoB and partitioned intersection

outweigh the moderate reductions in their abort rates.4 BoB intersection shows a

consistently reduced abort rate, whereas partitioned intersection actually increases the

abort rate for large filters.

6.2.2 Results for Queue-of-Queries

We focus particularly on the partitioned QoQ configuration, as we would expect it to

reduce the abort rate to be lower than that of even BoB intersection; the unpartitioned

configuration is included only to bring attention to other empirical effects. At a high

4The vacationl and vacationh abort rates are considerably higher in the original unmodified
STAMP suite, but are not available for RSTMv6.

Chapter 6. Performance Evaluation 55

(a) genome time

256 512 1k 2k 4k 8k 16k
0.8

1

1.2

1.4

1.6

1.8

2

Bit−vector length (bits)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

k=1
k=2
k=2 BoB 8
k=1 QoQ
k=2 QoQ

(b) intruder time

256 512 1k 2k 4k 8k 16k
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Bit−vector length (bits)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

k=1
k=2
k=2 BoB 8
k=1 QoQ
k=2 QoQ

(c) kmeansh time

256 512 1k 2k 4k 8k 16k
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Bit−vector length (bits)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

k=1
k=2
k=2 BoB 8
k=1 QoQ
k=2 QoQ

(d) genome aborts

256 512 1k 2k 4k 8k 16k
0

10

20

30

40

50

60

70

Bit−vector length (bits)

%
 o

f T
xn

s
A

bo
rt

ed

k=1
k=2
k=2 BoB 8
k=1 QoQ
k=2 QoQ

(e) intruder aborts

256 512 1k 2k 4k 8k 16k
0

10

20

30

40

50

60

70

Bit−vector length (bits)

%
 o

f T
xn

s
A

bo
rt

ed

k=1
k=2
k=2 BoB 8
k=1 QoQ
k=2 QoQ

(f) kmeansh aborts

256 512 1k 2k 4k 8k 16k
0

10

20

30

40

Bit−vector length (bits)

%
 o

f T
xn

s
A

bo
rt

ed

k=1
k=2
k=2 BoB 8
k=1 QoQ
k=2 QoQ

Figure 6.1: Eight pairs of graphs present STAMP execution time and transaction aborts
for all null-intersection tests, with increasing bit-vector length on the horizontal axis. The
top of each pair shows execution time, normalized to the baseline (k = 1) intersection
data point with lowest execution time of all bit-vector lengths; the bottom shows the
percentage of started transactions that were aborted or restarted. In both cases, a lower
value is better.

level, we notice that the execution time when using either of the QoQ configurations

scales better with increasing bit-vector length than any of the bitwise intersections—the

intersection time is linear in the relatively small write-set cardinalities, rather than linear

in the potentially large bit-vector lengths. In many benchmarks, this good scaling leads

to partitioned QoQ outperforming even the best configuration of the baseline with up to

a 21% speedup.

For genome, at small filter lengths (below 2k bits) both QoQ approaches show

significant slowdown (up to 20%) relative to the baseline, but at 16k bits, partitioned

QoQ yields a 10% speedup relative to the 256 bit baseline. At the small lengths, abort

Chapter 6. Performance Evaluation 56

(g) kmeansl time

256 512 1k 2k 4k 8k 16k
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Bit−vector length (bits)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

k=1
k=2
k=2 BoB 8
k=1 QoQ
k=2 QoQ

(h) labyrinth time

256 512 1k 2k 4k 8k 16k
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Bit−vector length (bits)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

k=1
k=2
k=2 BoB 8
k=1 QoQ
k=2 QoQ

(i) ssca2 time

256 512 1k 2k 4k 8k 16k
1

1.2

1.4

1.6

1.8

2

2.2

Bit−vector length (bits)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

k=1
k=2
k=2 BoB 8
k=1 QoQ
k=2 QoQ

(j) kmeansl aborts

256 512 1k 2k 4k 8k 16k
0

10

20

30

40

Bit−vector length (bits)

%
 o

f T
xn

s
A

bo
rt

ed

k=1
k=2
k=2 BoB 8
k=1 QoQ
k=2 QoQ

(k) labyrinth aborts

256 512 1k 2k 4k 8k 16k
0

10

20

30

40

50

Bit−vector length (bits)

%
 o

f T
xn

s
A

bo
rt

ed

k=1
k=2
k=2 BoB 8
k=1 QoQ
k=2 QoQ

(l) ssca2 aborts

256 512 1k 2k 4k 8k 16k
0

1

2

3

4

5

6

Bit−vector length (bits)

%
 o

f T
xn

s
A

bo
rt

ed

k=1
k=2
k=2 BoB 8
k=1 QoQ
k=2 QoQ

Figure 6.1: Eight pairs of graphs present STAMP execution time and transaction aborts
for all null-intersection tests, with increasing bit-vector length on the horizontal axis. The
top of each pair shows execution time, normalized to the baseline (k = 1) intersection
data point with lowest execution time of all bit-vector lengths; the bottom shows the
percentage of started transactions that were aborted or restarted. In both cases, a lower
value is better.

rates are very high as read-sets are very large;5 since unpartitioned QoQ performs nearly

as badly as partitioned, the slowdown must indicate that the overhead of issuing multiple

queries is higher than intersecting small filters. As the filter length increases to 4k and

beyond, all abort rates drop, but partitioned QoQ shows the most reduction, down to

less than 10%, and this strategy thus overcomes the overhead of issuing queries.

For intruder, both configurations of QoQ exhibit speedup relative to the best base-

line point for filter lengths of 1k bits or longer. Curiously, the two configurations equally

reduce the abort rate relative to the bitwise intersections. Recall that unpartitioned

QoQ and intersection should theoretically induce equivalent abort rates. It appears that

5Recall that QoQ would show fewer false aborts if the larger read-set were queried into the Bloom
filter of the smaller write-set.

Chapter 6. Performance Evaluation 57

(m) vacationh time

256 512 1k 2k 4k 8k 16k
0.8

1

1.2

1.4

1.6

1.8

2

2.2

Bit−vector length (bits)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

k=1
k=2
k=2 BoB 8
k=1 QoQ
k=2 QoQ

(n) vacationl time

256 512 1k 2k 4k 8k 16k
0.8

1

1.2

1.4

1.6

1.8

2

Bit−vector length (bits)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

k=1
k=2
k=2 BoB 8
k=1 QoQ
k=2 QoQ

(o) vacationh aborts

256 512 1k 2k 4k 8k 16k
0

5

10

15

20

Bit−vector length (bits)

%
 o

f T
xn

s
A

bo
rt

ed

k=1
k=2
k=2 BoB 8
k=1 QoQ
k=2 QoQ

(p) vacationl aborts

256 512 1k 2k 4k 8k 16k
0

0.5

1

1.5

2

2.5

3

Bit−vector length (bits)

%
 o

f T
xn

s
A

bo
rt

ed

k=1
k=2
k=2 BoB 8
k=1 QoQ
k=2 QoQ

Figure 6.1: Eight pairs of graphs present STAMP execution time and transaction aborts
for all null-intersection tests, with increasing bit-vector length on the horizontal axis. The
top of each pair shows execution time, normalized to the baseline (k = 1) intersection
data point with lowest execution time of all bit-vector lengths; the bottom shows the
percentage of started transactions that were aborted or restarted. In both cases, a lower
value is better.

partitioning does not have a positive effect on reducing aborts in this benchmark, and

some other application/system characteristics must be forcing more aborts in the bitwise

intersection schemes.

The QoQ approach performs poorly for kmeansh and kmeansl, with 25-40%

slowdown relative to the best baseline configuration. Similar to intruder, since

unpartitioned QoQ shows nearly equivalent execution time as partitioned QoQ (with

some variances), this slowdown must be attributed to querying multiple addresses as

opposed to hashing overhead. Notice that partitioned QoQ yields the lowest abort rate

of all methods, but that partitioning has minimal effect, as the unpartitioned flavor

quickly catches up; this benchmark has little room for reducing false aborts.

As stated earlier, ssca2 spends very little time in transactions, and the address-

Chapter 6. Performance Evaluation 58

sets are small, so there is little room for reducing aborts. The QoQ approaches show

equivalent, constant overhead of less than 3% over the best baseline, caused mainly

by querying instead of bitwise intersecting. Unpartitioned QoQ and intersection show

identical abort rate curves, and partitioned QoQ has the lowest abort rate (nearly zero).

The execution time and abort rate of labyrinth perfectly demonstrate the intended

benefit of the partitioned QoQ approach, with a consistent speedup of 14-21% over

the best baseline filter length. The benchmark has long transactions with contentious,

large address-sets. The execution time and abort rate using QoQ are the lowest of all

approaches, and at 256 bits, the abort rate is reduced by nearly 40% relative to the

baseline.

With the vacationh and vacationl benchmarks, QoQ shows excellent execution

time for different reasons than in labyrinth. Notice that the abort rate for partitioned

QoQ is not particularly lower than the other approaches, other than for small filters.

Since both QoQ configurations perform well, the reduction in time must instead be a

function of query-based intersection. In vacationh, both QoQ outperform all bitwise

intersections except at 256 and 4k bits, where caching effects degrade performance. For

vacationl, partitioned and unpartitioned QoQ reduce execution time relative to the

best baseline by 15% and more than 20%, respectively.

6.2.3 Summary

We find that the QoQ approach is generally the best, aligning with theory but contrary to

intuition about implementation overheads. The overheads for QoQ could even be further

reduced when future SIMD instructions (AVX2 [25]) include memory gather and vector

shift by vector values. We observe that partitioned intersection tends to yield execution

times that are slightly worse or slightly better than the baseline, and typically reduces the

number of aborts. Finally, we find that the performance impact of BoB intersection can

be summarized in a similar way, but in many cases provides even lower abort rates, but

Chapter 6. Performance Evaluation 59

at the cost of higher overhead due to the additional hashing. Hence the BoB approach is

likely best suited to hardware, where the hashing overheads can be better parallelized.

6.3 Configuring Null-Intersection Tests

In the previous section, we presented results for the best configuration of each null-

intersection test, including the BoB prefilter hash function and number of bins, and

choice of SIMD instructions. In this section we empirically validate these decisions.

For all figures in this section, speedups are calculated in the same way as follows. To

summarize the behavior of a single configuration option across bit-vector lengths for one

benchmark, the bar height is the harmonic mean of average speedups over all bit-vector

lengths, from 256 to 4k bits. Each of these average speedups is the ratio (between two

competing configurations) of arithmetic means of execution times at one particular bit-

vector length. Results for 8k and 16k bits are excluded as those sizes are less common,

and also typically slow down execution as seen in Section 6.2.6

6.3.1 BoB Prefilter Hash Function

Figure 6.2a shows the speedup for each benchmark, of an XOR prefilter relative to H3

prefilters.7 Each bar represents the percent speedup for a particular batch bin count

(2, 4, or 8 bins). The SSE2 accumulator method of Section 5.5 intersects vectors when

individual Bloom filter partitions have length at least 128 bits, otherwise short-circuit

word-level comparisons are performed. This SIMD operation is validated later with

Figure 6.3.

The H3 function tends to be cache-bound, with irregularly-indexed table lookups,

but is more likely to yield a uniform output mapping. In contrast, the XOR function is

6Additionally, for small bit-vector lengths and higher BoB bin counts, partitions are less than 32-bits
long—hence these bit-vector lengths are also excluded from the mean.

7A different H3 matrix was randomly selected from the family of hash functions for each trial.

Chapter 6. Performance Evaluation 60

(a) Prefilter Hash Functions: XOR relative to H3

−8

−6

−4

−2

0

2

4

6

8

10

12

A
ve

ra
ge

 S
pe

ed
up

 (
%

)

genome

kmeansh
kmeansl

intruder

labyrinth
ssca2

vacationh
vacationl

harmean

b=2
b=4
b=8

(b) Number of Bins in Batch, relative to two

−6

−4

−2

0

2

4

6

8

10

12

A
ve

ra
ge

 S
pe

ed
up

 (
%

)

genome

kmeansh
kmeansl

intruder

labyrinth
ssca2

vacationh
vacationl

harmean

b=4
b=8
b=16
b=32

Figure 6.2: Evaluation of BoB configuration options. (a) Average speedup of XOR-based
relative to H3-based prefilter hash functions across the STAMP benchmarks. Each bar
indicates the average percent speedup for a particular BoB bin count. The harmonic
mean (harmean) speedup is computed across all benchmarks. (b) Performance impact of
increasing the bin count for BoB intersection, only using the XOR prefilter hash function.
Each bar represents a different bin count b, from 4 to 32. The vertical axis shows average
percent speedup of the BoB bin count, relative to a BoB containing two filters.

Chapter 6. Performance Evaluation 61

CPU-bound, consisting of bit manipulations, but does not include as many address bits

in the computation.

The suitability of the XOR function varies by benchmark, from over 6% slowdowns

relative to H3, for kmeansh and ssca2, to a speedup of at least 6% for the best bin

counts in genome, intruder, and labyrinth. For the vacations, the choice of XOR vs

H3 is less significant, with speedups under 4%. We choose the XOR function as the better

of the two options due to its slight harmonic mean speedup (far right), and noting that

it performs worse for only those benchmarks with little room for reducing false aborts

anyway. Hence the XOR prefilter is used in the remaining experiments that measure BoB.

6.3.2 Number of Bins

In Figure 6.2b the number of bins (filters) in a batch are varied from 2 to 32. The

average execution speedup with each bin count is shown relative to a BoB containing

just two filters. Looking at the harmonic mean speedup of all benchmarks (harmean),

BoB intersection appears to benefit when batches contain more than two filters, up to and

including sixteen filters. There is no ideal number of bins for all benchmarks: two bins

is best for genome, kmeansh, and ssca2, eight bins for intruder and labyrinth,

16 bins for both vacations, and 32 bins for kmeansl. As with all alternate null-

intersection tests, two aspects of execution are competing: reducing the rate of false

aborts (which shows diminishing returns with increases in the BoB bin count), and

implementation inefficiencies—which for increasing bin count involves increased control

flow during intersection. We selected the eight-filter BoB as the best configuration as it

exhibits the best overall speedup, performs best for labyrinth, and is a good runner-up

to b=16 in vacationh.

Chapter 6. Performance Evaluation 62

6.3.3 SIMD Bitwise Intersection

Figure 6.3a presents a performance comparison of the three implementations of AND-based

intersections that are described in Section 5: (i) the basic 32-bit word comparison, (ii) the

SSE2 accumulator method, or (iii) the SSE4.1 short-circuit method. The three strategies

are each evaluated using unpartitioned, partitioned, and BoB intersection, labeled k=1,

k=2, and BoB, respectively.

Looking at the harmonic mean speedup across benchmarks, it seems that use of

SIMD instructions does not consistently reduce execution time: less than 2% speedup, or

even 0.5% slowdown relative to word-level comparison. For unpartitioned intersection,

SSE4.1 is marginally the best intersection approach, with over 3% speedup in ssca2,

down to 1.5% slowdown in intruder. The SSE2 method typically has a positive effect

for partitioned intersection. With BoB intersection, SSE4.1 is typically beneficial, with

a harmonic mean speedup of 1.5%, up to over 5% speedup for ssca2. The short-

circuit SSE4.1 method avoids unnecessary work, but is accompanied by repeated branch

instructions. It shows the most promise with BoB intersection, likely because this null-

intersection test is already burdened with more control flow, so there is relatively less

additional overhead.

6.3.4 Queue of SIMD Queries

Figure 6.3b shows the speedup of using SSE4.1 instructions to parallelize queries for

unpartitioned (k = 1) and partitioned (k = 2) approaches, relative to querying

sequentially. The ssca2 benchmark is excluded as the write-set never accumulates

four addresses, and we do not parallelize any fewer. For unpartitioned filters (only a

single hash function), the SIMD instructions introduce overhead, except in the case of

kmeansl, which exhibits a 5% speedup. With two hash functions, the overheads begin to

disappear, and some benefit to parallelization is seen, but on average the SIMD operations

Chapter 6. Performance Evaluation 63

(a) SIMD Bitwise Intersection: word-level, SSE2, or SSE4.1

−4
−3
−2
−1

0
1
2
3
4
5

A
ve

ra
ge

 S
pe

ed
up

 (
%

)

genome

kmeansh
kmeansl

intruder

labyrinth
ssca2

vacationh
vacationl

harmean

k=1 SSE2
k=1 SSE4.1
k=2 SSE2
k=2 SSE4.1
BoB SSE2
BoB SSE4.1

(b) SIMD Queries: word-level or SSE4.1

−5
−4
−3
−2
−1

0
1
2
3
4
5

A
ve

ra
ge

 S
pe

ed
up

 (
%

)

genome

kmeansh
kmeansl

intruder

labyrinth

vacationh
vacationl

harmean

k=1 SSE
k=2 SSE

Figure 6.3: Impact of SIMD instructions. (a) Speedup when intersecting 128-bit vectors
relative to 32-bit words, for bitwise intersections using SSE2 or SSE4.1. (b) Speedup
when issuing four queries in parallel using SSE4.1 instructions, relative to sequential
queries.

Chapter 6. Performance Evaluation 64

do not improve performance significantly. This strategy falls victim to Amdahl’s law, as

the bit-indexing and testing instructions must be serialized. Furthermore, additional

overhead is imposed to move 32-bit words into and out of the 128-bit vectors. Bloom

filter querying is an application that will certainly benefit from the future Intel AVX2

gather and vector-vector shift instructions.

6.4 Summary

This chapter evaluated the performance impact of our theoretical recommendations, mak-

ing a compelling case for replacing bitwise intersection approaches in software, with the

complex but accurate queue-of-queries approach. We implemented all null-intersection

tests in the conflict detection unit of RingSTM, and evaluated performance based on

execution time of STAMP benchmarks, augmenting the analysis with transaction abort

rates. The best implementation of each null-intersection test was empirically determined,

including the use of SIMD instructions, and BoB prefilter and bin count.

Except for the kmeans and ssca2 benchmarks, some bit-vector length of the QoQ

approach generally improves execution time relative to the baseline. Our proposed

BoB intersection successfully reduced execution time for some benchmarks, and always

reduced or maintained the abort rate relative to unpartitioned intersection. Although

Bloom filter configuration (and bit-vector length) appear to be application-specific, these

results suggest that dynamically-configured Bloom filters will be of great importance in

adaptive STM systems [56,64]. The software overhead of the BoB prefilter function often

outweighed the elimination of some false aborts, but with its increased accuracy relative

to partitioned intersection, our new approach will likely be well-suited to hardware

parallelization systems that can better hide the time complexity of additional hash

functions.

Chapter 7

Conclusions and Future Work

In many lazy parallelization tools and runtime systems, Bloom filters have gained

popularity for the unconventional task of comparing entire address-sets for access overlap,

or testing for null-intersection. We identify the three Bloom filter configurations that are

in wide use, queue-of-queries (QoQ), and partitioned and unpartitioned intersection, but

observe that they have never been theoretically modeled nor conclusively compared.

This lack of theory forces designers to perform time-consuming empirical design-space

explorations, or to use Bloom filters less efficiently. In this dissertation we thus introduced

and analytically compared probabilistic models of false set-overlaps (FSOs) for Bloom

filter null-intersection tests. We proved that partitioned intersection is better than

unpartitioned intersection, and that QoQ provides a constant factor space savings,

relative to partitioned intersection, that is of order square root of set cardinality. To

compromise between the accuracy of QoQ and the simplicity of bitwise intersection,

we proposed a new null-intersection test that we called batch-of-Bloom-filter (BoB)

intersection.

The proven theoretical implications run contrary to practical intuition that refined

Bloom filter operations will incur more overhead. We thus implemented the null-

intersection tests in RingSTM and evaluated the impact on performance of the accurate

65

Chapter 7. Conclusions and Future Work 66

QoQ and BoB approaches relative to the bitwise intersections, showing that in fact, theory

and practice can combine successfully to improve performance relative to a baseline single-

partitioned intersection. We conclude that designers of future STMs should strongly

consider implementing QoQ-based partitioned Bloom filter implementations, and for

HTMs, they should consider and compare the BoB approach with alternatives, as it

may prove to be superior.

7.1 Contributions

This dissertation makes the following contributions:

1. the probability distributions of false set-overlaps between two address-sets, for

each of the three prior Bloom filter null-intersection tests, queue-of-queries (QoQ),

partitioned intersection, and unpartitioned intersection;

2. a proof that the partitioned Bloom filter configuration statistically induces fewer

false set-overlaps than the unpartitioned configuration;

3. a proof that, for equivalent probability of false set-overlap, partitioned intersection

requires a bit-vector length that is larger than that of QoQ by at least a factor of

the square root of set cardinality;

4. the design and theory-sketch of Batch-of-Bloom-filters (BoB) intersection, a new

Bloom filter configuration for performing null-intersection tests;

5. an empirical demonstration that the BoB strategy is a good statistical compromise

between queue-of-queries and partitioned intersection;

6. an observation that, for the special case of single-partitioned Bloom filters, querying

and intersection remarkably share an equivalent probability of false set-overlap, and

BoB intersection exhibits an equivalent rate of false set-overlap;

Chapter 7. Conclusions and Future Work 67

7. a performance evaluation using RingSTM of the three alternate Bloom-filter-

based null-intersection tests: queue-of-queries (QoQ), and partitioned and BoB

intersection;

8. an evaluation of the benefits of accelerating Bloom filter operations with SIMD

instructions from SSE2 and SSE4.1.

7.2 Future Work

This work can be extended through a number of avenues, with directions in both theory

and implementation.

7.2.1 Theory

The theory of Bloom filters for null-intersection tests can certainly be expanded. Ar-

guably the simplest future contribution is a theorem proving what was observed in the

rates of FSO in Section 4.4: that for two sets of differing cardinalities, querying elements

from a larger set into the Bloom filter of a smaller set exhibits a lower probability of

false set-overlap than vice versa. This fact was shown empirically for a set of fixed

parameters (hash functions, set cardinalities), but should be proven generally for all

input parameters.

Further contributions are significantly more challenging. In Section 2.1.3, we noted

that our probability distributions are derived from the inaccurate “classic” analysis

of Bloom filter false positives. The work of Christensen et al. [16] should be ported

to accurately model the accuracy of Bloom filter intersection (as in Lemma 2), and

subsequently substituted into our own probability distributions for null-intersection tests.

Building on this idea, a probability of false set-overlap can then be pursued for BoB

intersection, as we outlined in Section 4.3, since it typically exhibits far smaller Bloom

filter partitions where the classic analysis does not hold. Throughout this dissertation, we

Chapter 7. Conclusions and Future Work 68

did not consider the effect of more than two in-flight epochs (e.g. one transaction/core).

Our proposed models of false set-overlap suffice to provide a comparison of the three null-

intersection tests, but for both eager and lazy systems, an accurate system-level epoch

conflict rate would be very beneficial, considering the effects of many (> 2) interacting

epochs.

7.2.2 Implementation

The merits of QoQ and BoB intersection were demonstrated in a single STM system,

but future work should study whether our performance conclusions hold in other STMs

or HTMs. Considering software, our work could be ported to the most current RSTMv7

source code to investigate the impact of null-intersection tests in InvalSTM [17]. More

interestingly, we would like to see how BoB intersection would perform in the hardware

Bulk [61] architecture, and whether QoQ could be ported to this hardware system as

it was for SigTM [38]. Alternatively, it would be interesting to convert the QoQ-based

conflict detection of SigTM to use BoB intersection, and whether this would permit an

unbounded conflict detection strategy in hardware.

Bibliography

[1] Rishi Agarwal and Josep Torrellas. Flexbulk: intelligently forming atomic blocks in

blocked-execution multiprocessors to minimize squashes. In Proceeding of the 38th

annual International Symposium on Computer Architecture, pages 33–44, 2011.

[2] Paulo Srgio Almeida, Carlos Baquero, Nuno Preguia, and David Hutchison. Scalable

Bloom filters. Information Processing Letters, 101(6):255 – 261, 2007.

[3] Arkaprava Basu, Jayaram Bobba, and Mark D. Hill. Karma: scalable deterministic

record-replay. In Proceedings of the international conference on Supercomputing,

pages 359–368, 2011.

[4] Micah J. Best, Shane Mottishaw, Craig Mustard, Mark Roth, Alexandra Fedorova,

and Andrew Brownsword. Synchronization via scheduling: techniques for efficiently

managing shared state. In Proceedings of the 32nd ACM SIGPLAN conference on

Programming language design and implementation, pages 640–652, 2011.

[5] Geoffrey Blake, Ronald G. Dreslinski, and Trevor Mudge. Proactive transaction

scheduling for contention management. In Proceedings of the 42nd Annual

IEEE/ACM International Symposium on Microarchitecture, pages 156–167, 2009.

[6] Geoffrey Blake, Ronald G. Dreslinski, and Trevor Mudge. Bloom filter guided

transaction scheduling. In Proceedings of the 2011 IEEE 17th International

Symposium on High Performance Computer Architecture, pages 75–86, 2011.

69

Bibliography 70

[7] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 13(7):422–426, 1970.

[8] Prosenjit Bose, Hua Guo, Evangelos Kranakis, Anil Maheshwari, Pat Morin, Jason

Morrison, Michiel Smid, and Yihui Tang. On the false-positive rate of Bloom filters.

Information Processing Letters, 108(4):210–213, 2008.

[9] Andrei Broder and Michael Mitzenmacher. Network applications of Bloom filters:

A survey. Internet Mathematics, 1(4):485–509, January 2004.

[10] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions.

Journal of Computer and System Sciences, 18(2):143 – 154, 1979.

[11] Jared Casper, Tayo Oguntebi, Sungpack Hong, Nathan G. Bronson, Christos

Kozyrakis, and Kunle Olukotun. Hardware acceleration of transactional memory

on commodity systems. In Proceedings of the sixteenth international conference on

Architectural support for programming languages and operating systems, pages 27–

38, 2011.

[12] Luis Ceze, James Tuck, Pablo Montesinos, and Josep Torrellas. BulkSC:

Bulk enforcement of sequential consistency. In Proceedings of the 34th annual

international symposium on Computer architecture, pages 278–289, 2007.

[13] Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval. Bulk disambiguation

of speculative threads in multiprocessors. In Proceedings of the 33rd annual

international symposium on Computer Architecture, pages 227–238, 2006.

[14] F. Chang, Wu chang Feng, and Kang Li. Approximate caches for packet

classification. In Joint Conference of the IEEE Computer and Communications

Societies, 2004.

Bibliography 71

[15] Woojin Choi and J. Draper. Locality-aware adaptive grain signatures for

transactional memories. In IEEE International Symposium on Parallel Distributed

Processing, pages 1–10, 2010.

[16] Ken Christensen, Allen Roginsky, and Miguel Jimeno. A new analysis of the false

positive rate of a Bloom filter. Information Processing Letters, 110(21):944 – 949,

2010.

[17] Justin E. Gottschlich, Manish Vachharajani, and Jeremy G. Siek. An efficient

software transactional memory using commit-time invalidation. In Proceedings

of the 8th annual IEEE/ACM international symposium on Code generation and

optimization, 2010.

[18] Deke Guo, Jie Wu, Honghui Chen, Ye Yuan, and Xueshan Luo. The dynamic

Bloom filters. IEEE Transactions on Knowledge and Data Engineering, 22(1):120–

133, 2010.

[19] Lance Hammond, Mark Willey, and Kunle Olukotun. Data speculation support

for a chip multiprocessor. In Proceedings of the eighth international conference on

Architectural support for programming languages and operating systems, October

1998.

[20] Liang Han, Wei Liu, and James M. Tuck. Speculative parallelization of partial

reduction variables. In Proceedings of the 8th annual IEEE/ACM international

symposium on Code generation and optimization, 2010.

[21] Fang Hao, Murali Kodialam, and T. V. Lakshman. Building high accuracy Bloom

filters using partitioned hashing. In Proceedings of the 2007 ACM SIGMETRICS

international conference on Measurement and modeling of computer systems, pages

277–288, 2007.

Bibliography 72

[22] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support

for lock-free data structures. In Proceedings of the 20th annual international

symposium on computer architecture, pages 289–300, 1993.

[23] Derek R. Hower and Mark D. Hill. Rerun: Exploiting episodes for lightweight

memory race recording. In Proceedings of the 35th Annual International Symposium

on Computer Architecture, 2008.

[24] Derek R. Hower, Pablo Montesinos, Luis Ceze, Mark D. Hill, and Josep Torrellas.

Two hardware-based approaches for deterministic multiprocessor replay. Commun.

ACM, 52(6):93–100, June 2009.

[25] Intel Corporation. Intel Advanced Vector Extensions Programming Reference, June

2011.

[26] Mark C. Jeffrey and J. Gregory Steffan. Understanding Bloom filter intersection

for lazy address-set disambiguation. In Proceedings of the 23rd ACM symposium on

Parallelism in algorithms and architectures, 2011.

[27] Adam Kirsch and Michael Mitzenmacher. Less hashing, same performance: Building

a better Bloom filter. Random Struct. Algorithms, 33(2):187–218, September 2008.

[28] Eric Koskinen and Maurice Herlihy. Dreadlocks: efficient deadlock detection. In

Proceedings of the twentieth annual symposium on Parallelism in algorithms and

architectures, pages 297–303, 2008.

[29] Venkata Krishnan and Josep Torrellas. A chip multiprocessor architecture with

speculative multithreading. IEEE Transactions on Computers, Special Issue on

Multithreaded Architecture, September 1999.

Bibliography 73

[30] Martin Labrecque, Mark C. Jeffrey, and J. Gregory Steffan. Application-specific

signatures for transactional memory in soft processors. ACM Trans. Reconfigurable

Technol. Syst., 4(3):21:1–21:14, August 2011.

[31] Y. Lu, B. Prabhakar, and F. Bonomi. Bloom filters: Design innovations and novel

applications. In Proceedings of the Forty-Third Annual Allerton Conference, 2005.

[32] B. Lucia, J. Devietti, L. Ceze, and K. Strauss. Atom-aid: Detecting and surviving

atomicity violations. IEEE Micro, 29(1):73 –83, Jan.-Feb. 2009.

[33] Brandon Lucia, Luis Ceze, and Karin Strauss. Colorsafe: architectural support

for debugging and dynamically avoiding multi-variable atomicity violations. In

Proceedings of the 37th annual international symposium on Computer architecture,

pages 222–233, 2010.

[34] Austen McDonald. Architectures for Transactional Memory. PhD thesis, Stanford

University, June 2009.

[35] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. Parallelizing

sequential applications on commodity hardware using a low-cost software

transactional memory. In Proceedings of the ACM SIGPLAN conference on

Programming language design and implementation, 2009.

[36] Loizos Michael, Wolfgang Nejdl, Odysseas Papapetrou, andWolf Siberski. Improving

distributed join efficiency with extended Bloom filter operations. In Proceedings of

the 21st International Conference on Advanced Networking and Applications.

[37] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun.

STAMP: Stanford transactional applications for multi-processing. In Proceedings

of the IEEE International Symposium on Workload Characterization, 2008.

Bibliography 74

[38] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald, Nathan

Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun. An effective

hybrid transactional memory system with strong isolation guarantees. In Proceedings

of the 34th annual international symposium on Computer architecture, 2007.

[39] Dragoslav S. Mitrinović and Josip E. Pečarić. Bernoulli’s inequality. Rendiconti del

Circolo Matematico di Palermo, 42(3):317–337, 1993.

[40] Dragoslav S. Mitrinović and Petar M. Vasić. Analytic Inequalities. Springer-Verlag,

Berlin, 1970.

[41] Michael Mitzenmacher and Salil Vadhan. Why simple hash functions work:

exploiting the entropy in a data stream. In Proceedings of the nineteenth annual

ACM-SIAM symposium on Discrete algorithms, 2008.

[42] Pablo Montesinos, Luis Ceze, and Josep Torrellas. Delorean: Recording and

deterministically replaying shared-memory multiprocessor execution efficiently. In

Proceedings of the 35th Annual International Symposium on Computer Architecture,

2008.

[43] James K. Mullin. Estimating the size of a relational join. Information Systems,

18(3):189 – 196, 1993.

[44] Abdullah Muzahid, Norimasa Otsuki, and Josep Torrellas. AtomTracker: A

comprehensive approach to atomic region inference and violation detection. In

Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, pages 287–297, 2010.

[45] Abdullah Muzahid, Dario Suárez, Shanxiang Qi, and Josep Torrellas. SigRace:

signature-based data race detection. In Proceedings of the 36th annual international

symposium on Computer architecture, pages 337–348, 2009.

Bibliography 75

[46] Odysseas Papapetrou, Wolf Siberski, and Wolfgang Nejdl. Cardinality estimation

and dynamic length adaptation for Bloom filters. Distributed and Parallel Databases,

28(2):119–156, 2010.

[47] Lin Peng, Lun guo Xie, Xiao qiang Zhang, and Xin yan Xie. Conflict detection

via adaptive signature for software transactional memory. In Proceedings of the 2nd

International Conference on Computer Engineering and Technology, 2010.

[48] Lin Peng, Lun-Guo Xie, Xiao-Qiang Zhang, and Xin-Yan Xie. VectorSTM: Software

transactional memory without atomic instructions. In Proceedings of the third

international Joint Conference on Computational Science and Optimization, pages

278–282, 2010.

[49] Gilles Pokam, Cristiano Pereira, Klaus Danne, Rolf Kassa, and Ali-Reza Adl-

Tabatabai. Architecting a chunk-based memory race recorder in modern cmps.

In Proceedings of the 42nd Annual IEEE/ACM International Symposium on

Microarchitecture, 2009.

[50] Xuehai Qian, Wonsun Ahn, and Josep Torrellas. Scalablebulk: Scalable cache

coherence for atomic blocks in a lazy environment. In Proceedings of the 43rd Annual

IEEE/ACM International Symposium on Microarchitecture, pages 447–458, 2010.

[51] Ricardo Quislant, Eladio Gutierrez, Oscar Plata, and Emilio L. Zapata. Improving

signatures by locality exploitation for transactional memory. In Proceedings

of the 18th International Conference on Parallel Architectures and Compilation

Techniques, 2009.

[52] Ricardo Quislant, Eladio Gutierrez, Oscar Plata, and Emilio L. Zapata. Multiset

signatures for transactional memory. In Proceedings of the International Conference

on Supercomputing, pages 43–52, 2011.

Bibliography 76

[53] Daniel Sanchez, Luke Yen, Mark D. Hill, and Karthikeyan Sankaralingam.

Implementing signatures for transactional memory. In Proceedings of the 34th annual

international symposium on Computer architecture, 2007.

[54] Kulesh Shanmugasundaram, Hervé Brönnimann, and Nasir Memon. Payload

attribution via hierarchical bloom filters. In Proceedings of the 11th ACM conference

on Computer and communications security, pages 31–41, 2004.

[55] Arrvindh Shriraman, Sandhya Dwarkadas, and Michael L. Scott. Implementation

tradeoffs in the design of flexible transactional memory support. J. Parallel Distrib.

Comput., 70(10), October 2010.

[56] Michael F. Spear. Lightweight, robust adaptivity for software transactional memory.

In Proceedings of the 22nd ACM symposium on Parallelism in algorithms and

architectures, pages 273–283, 2010.

[57] Michael F. Spear, Luke Dalessandro, Virendra J. Marathe, and Michael L. Scott.

A comprehensive strategy for contention management in software transactional

memory. In Proceedings of the 14th ACM SIGPLAN symposium on Principles and

practice of parallel programming, pages 141–150, 2009.

[58] Michael F. Spear, Maged M. Michael, and Christoph von Praun. Ringstm: scalable

transactions with a single atomic instruction. In Proceedings of the twentieth annual

symposium on Parallelism in algorithms and architectures, 2008.

[59] J. Gregory Steffan and Todd C. Mowry. The potential for using thread-level

data speculation to facilitate automatic parallelization. In Proceedings of the 4th

International Symposium on High-Performance Computer Architecture, pages 2–13,

1998.

Bibliography 77

[60] Sasu Tarkoma, Christian Esteve Rothenburg, and Eemil Lagerspetz. Theory and

practice of Bloom filters for distributed systems. IEEE Communications Surveys

and Tutorials, 14(2), 2012.

[61] Josep Torrellas, Luis Ceze, James Tuck, Calin Cascaval, Pablo Montesinos,

Wonsun Ahn, and Milos Prvulovic. The Bulk multicore architecture for improved

programmability. Commun. ACM, 52(12):58–65, 2009.

[62] Hans Vandierendonck and Koen De Bosschere. Xor-based hash functions. IEEE

Trans. Comput., 54(7):800–812, July 2005.

[63] M.M. Waliullah and P. Stenstrom. Efficient management of speculative data

in hardware transactional memory systems. In Proceedings of the international

Conference on Embedded Computer Systems: Architectures, Modeling, and

Simulation, July 2008.

[64] Qingping Wang, Sameer Kulkarni, John Cavazos, and Michael Spear. Towards

applying machine learning to adaptive transactional memory. In Workshop on

Transactional Computing, 2011.

[65] Shaogang Wang, Dan Wu, Zhengbin Pang, and Xiaodong Yang. In Proceedings

of the 10th IEEE International Conference on High Performance Computing and

Communications.

[66] M. Xiao, Y. Dai, and X. Li. Split Bloom Filter. Acta Electronica Sinica, 32(2):241–

245, 2004.

[67] Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore, Haris Volos, Mark D.

Hill, Michael M. Swift, and David A. Wood. Logtm-se: Decoupling hardware

transactional memory from caches. In Proceedings of the IEEE 13th International

Symposium on High Performance Computer Architecture, 2007.

Bibliography 78

[68] Luke Yen, Stark C. Draper, and Mark D. Hill. Notary: Hardware techniques to

enhance signatures. In Proceedings of the 41st annual IEEE/ACM International

Symposium on Microarchitecture, 2008.

[69] Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. Hard: Hardware-assisted lockset-

based race detection. In Proceedings of the IEEE 13th International Symposium on

High Performance Computer Architecture.

	Introduction
	Breaking Convention: Bloom filters for Lazy Conflict Detection
	Theory and Practice of Bloom filter Null-Intersection Tests
	Research Goals
	Organization

	Background on Bloom Filters
	Fundamentals
	False Positives
	Approximate Set Intersection
	Accuracy of the False Positive Probability

	Related Work
	Parallelization Tools and Runtime Systems
	Summary

	A Theory of Bloom Filters for Null-Intersection Tests
	Methods of Testing for Null-Intersection
	Queue-of-Queries
	Intersection: Partitioned and Unpartitioned

	Probability of False Set-Overlap
	Analytical Comparisons of Null-Intersection Tests
	Preliminary Inequalities
	Partitioned vs Unpartitioned Bloom Filter Intersection
	Space Requirements of Intersection and Queue-of-Queries

	Empirical Validation
	Methodology
	Analysis

	Implications
	Summary

	The Batch-of-Bloom-Filters (BoB) Approach
	BoB Structure and Operation
	Alternate Construction
	Toward a Theoretical Analysis
	Rates of False Set-Overlap
	Methodology
	Single Partition
	Queue-of-Queries
	BoB Intersection

	Summary

	Software Implementation of Null-Intersection Tests
	Unpartitioned Intersection
	Partitioned Intersection
	Queue-of-Queries
	Batch-of-Bloom-Filters
	SIMD Optimizations
	Bitwise Intersection
	Queue-of-Queries
	Insertion
	Bit-Vector Reset and Copy

	Implementation in RingSTM
	Summary

	Performance Evaluation
	Methodology
	Evaluation of all Null-Intersection Tests
	Results for Bitwise Intersections
	Results for Queue-of-Queries
	Summary

	Configuring Null-Intersection Tests
	BoB Prefilter Hash Function
	Number of Bins
	SIMD Bitwise Intersection
	Queue of SIMD Queries

	Summary

	Conclusions and Future Work
	Contributions
	Future Work
	Theory
	Implementation

	Bibliography

