
Understanding the Overheads of Launching CUDA Kernels

Motivation
I Nvidia GPUs can run 10,000s of threads on independent SMs

(Streaming Multi-processors)
• Not ideal for device-wide barriers

I Method for device-wide barriers in GPUs
• So�ware barriers (example in [1])
• Implicit barriers: launching separate kernels (impacts performance)

I Alternative ways to achieve the same goal
• Grid synchronization or multi-grid synchronization [2]
• Higher performance might come from lower occupancy [3]

I Implicit barrier (additional kernels) vs. single kernel
I �estion:

• When not to launch an additional kernel?
• What is the penalty of using di�erent kinds of barriers in CUDA?

Background
I Di�erent kinds of kernel launch methods.

• Traditional Launch
• Cooperative Launch (CUDA 9)

Introduced to support grid synchronization
• Cooperative Multi-Device Launch (CUDA 9)

Introduced to support multi-grid synchronization

I Sleep instruction: wait specific nanosecond in GPU kernel.

Micro-benchmark
I Definition

• Kernel Latency: Total latency to run kernels, start from CPU thread launching a
thread, end at CPU thread noticing that the kernel is finished.

• Kernel Overhead: Latency that is not related to kernel execution.
• Additional Latency: Considering that CPU thread have just called a kernel

launch function, additional latency is the additional latency to launch an
additional kernel.

• CPU Launch Overhead: Latency of CPU calling a launch function.
• Small Kernel: Kernel execution time is not the main reason for additional

latency.
• Larger Kernel: Kernel execution time is the main reason for additional latency.

Figure 1: Sample code of micro-benchmark that call launch function 5 times, and
repeats a wait unit (sleep 1000 ns) 10 times.

I Additional wait unit (sleep 1000 ns) do not increase any kernel
overhead (Considering System Error)

Figure 2: Gradient of latency per wait unit (sleep 1000 ns) in a single kernel

I Test overhead in small kernels
Method: Using null kernel (no code inside) to represent a Small Kernel

I Test overhead in large kernels
Method: Using kernel fusion to unveil the overhead.

Figure 3: Using kernel fusion to test overhead hidden in kernel execution

Launch Overhead in Small Kernels

Figure 4: Comparison of null kernel overhead using three di�erent launch functions
that employ di�erent types of barriers (le�) , Cooperative Multi-Device Launch among
di�erent devices (right).

I CPU Launch Overhead is the main overhead in Small Kernel.

Launch Overhead in Large Kernels

Figure 5: Comparison of Large Kernel Overhead among di�erent launch functions
(le�), Cooperative Multi-Device Launch among di�erent devices (right).

I CPU launch overhead is recorded to prove that it is not distinctive
here. (the result is not as precise as the one in "Small Kernel" section)

I GPU execution overhead does exist.

Other Overheads
I Empty kernel lasts about 8 us, still longer than the overheads we

reported.

Figure 6: Comparison of di�erent overheads in di�erent launch functions

I Other Overhead is distinctive in single kernel. (Larger than the two
kinds of overhead we reported)

Conclusion
I Main overheads:

• Small Kernels: CPU Launch Overhead
• Large Kernels: GPU Execution Overhead
• Single Kernel: Other Overhead

I Overhead of di�erent launch functions
• Cooperative Multi-Device Launch > Cooperative Launch > Traditional Launch

I Launch a new kernel when the performance improvement surpasses
the overhead of a new kernel.

References
Shucai Xiao and Wu-chun Feng.
Inter-block gpu communication via fast barrier synchronization.
In 2010 IEEE International Symposium on Parallel & Distributed Processing (IPDPS), pages 1–12. IEEE,
2010.

Cuda c programming guide, May 2019.

Vasily Volkov.
Be�er performance at lower occupancy.
In Proceedings of the GPU technology conference, GTC, volume 10, page 16. San Jose, CA, 2010.

Lingqi Zhang1,Mohamed Wahib2, Satoshi Matsuoka1 3

zhang.l.ai@m.titech.ac.jp,mohamed.attia@aist.go.jp,matsu@is.titech.ac.jp
1Tokyo Institute of Technology, Dept. of Mathematical and Computing Science, Tokyo, Japan
2AIST-Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory
3RIKEN Center for Computational Science,Hyogo,Japan


