UNMIXED d-UNIFORM r-PARTITE HYPERGRAPHS

REZA JAFARPOUR-GOLZARI AND RASHID ZAARE-NAHANDI

ABSTRACT. In this paper, we characterize all unmixed d-uniform r-partite hypergraphs under a certain condition. Also we give a necessary condition for unmixedness in d-uniform hypergraphs with a perfect matching of size n. Finally we give a sufficient condition for unmixedness in d-uniform hypergraphs with a perfect matching.

1. Introduction

Unmixedness is one of the most important concepts in theory of graphs and hypergraphs with nice and interesting algebraic and geometric interpretations (for instance see [4], [6], [7], [9], [10], [13]). According to this, characterization of special classes of unmixed graphs has been noteworthy in recent years. G. Ravindra in [8] and R. H. Villarreal in [11] have characterized all unmixed bipartite graphs independently. H. Haghighi in [2] has given a characterization for unmixed tripartite graphs under a certain condition, and recently R. Jafarpour-Golzari and R. Zaare-Nahandi in [5] have generalized Haghighi's result for unmixed r-partite graphs. On characterization of unmixed r-partite hypergraphs, almost no study has been done. Only in [6] a classification of a very special class of unmixed multipartite hypergraphs has been provided.

In this paper we give a characterization of all unmixed d-uniform r-partite hypergraphs under a certain condition which we name it (**). Also we give necessary or sufficient conditions for unmixedness in more general classes of d-uniform hypergraphs (Propositions 3.6, 3.8).

1

MSC(2010): Primary: 5E40; Secondary: 5C65.

Keywords: r-partite hypergraph, d-uniform hypergraph, minimal vertex cover, independent set, unmixed, perfect matching.

2. Preliminaries

In the sequel, we use [12] and [1] for terminology and notations on graphs and hypergraphs respectively.

Let G = (V, E) be a simple finite graph. For $x, y \in V$, $x \sim y$ means that x and y are adjacent. A subset M of V is said to be independent if for every $x, y \in M$, $x \nsim y$. A vertex cover for G is a subset C of V such that every edge of G, intersects C. A vertex cover C is minimal whenever there is no any pure subset of C which is a vertex cover. G is called is called unmixed if all minimal vertex cover of G have the same number of elements. A subset Q of V is said to be a clique if for every two distinct vertices $x, y \in Q, x \sim y$.

A hypergraph \mathcal{H} on a finite nonempty set V is a set of nonempty subsets of V such that $\bigcup_{e \in \mathcal{H}} e = V$. The elements of V are called vertices and each element of \mathcal{H} is said a hyperedge. We denote by $V(\mathcal{H})$ and $E(\mathcal{H})$, the sets of vertices and hyperedges of \mathcal{H} respectively. A hypergraph is said to be simple hypergraph or clutter if non of its two distinct hyperedges contains another. The hypergraph \mathcal{H} is called *d*-uniform (or *d*-graph), if all its hyperedges have the same cardinality *d*.

Definition 2.1. An r-partite $(r \ge 2)$ hypergraph \mathcal{H} , is a hypergraph which $V(\mathcal{H})$ can be partitioned to r subsets such that for every two vertices x, y in one part, x, y do not lie in any hyperedge. Such a partition of $V(\mathcal{H})$ is called an r-partition of \mathcal{H} . If r = 2, 3, the r-partite hypergraph is said to be bipartite and tripartite respectively.

In the hypergraph \mathcal{H} , two vertices x, y are said to be adjacent if there is a hyperedge containing x and y. We say that a hyperedge e is adjacent with a vertex x if $x \in e$. For a vertex x of \mathcal{H} , the neighborhood of x, denoted by N(x), is the set of all vertices which are adjacent to x.

A subset M of $V(\mathcal{H})$ is called independent if it dose not contain any hyperedge. An independent set M of \mathcal{H} is said to be maximal whenever it is not strictly contained in any other independent set. A subset C of $V(\mathcal{H})$ is called a vertex cover, if every hyperedge of \mathcal{H} intersects it. A vertex cover is said to be minimal if there is no any pure subset of it which is also a vertex cover. It is clear that every maximal independent set is complement of a minimal vertex cover and vice versa.

Definition 2.2. The hypergraph \mathcal{H} is said to be unmixed if all minimal vertex covers of \mathcal{H} have the same cardinality.

A matching in a hypergraph \mathcal{H} is a set of hyperedges which are disjoint pairwise. A perfect matching is a matching such that every vertex of \mathcal{H} lies in at least one of its elements.

Let $\{1, \ldots, n\}$ is denoted by [n]. A simplicial complex on [n] is a set Δ of subsets of [n] such that (a) $\{x\} \in \Delta$, for every $x \in [n]$, (b) if $F \in \Delta$ and $G \subseteq F$, then $G \in \Delta$. Each element of Δ is said to be a face. Dimension of the face F, denoted by dim F, is defined as |F| - 1 and dimension of Δ is the maximum of dimensions of its faces.

Let Δ be a simplicial complex on [n] and S be a nonempty set of subsets of [n] such that $\bigcup_{N \in S} N = [n]$. The simplicial complex generated by S is the set of all subsets of elements of S.

For a simplicial complex Δ or a hypergraph \mathcal{H} on [n], and for $r \geq 0$, the *r*-skeleton of Δ or \mathcal{H} , is the set of all faces of Δ whose dimension is at most *r* or all subsets of hyperedges of \mathcal{H} with cardinality not exceeding r + 1, respectively.

Definition 2.3. Let \mathcal{H} be a d-uniform $(d \geq 2)$ hypergraph. A (d-1)-subset of a hyperedge is called a submaximal edge, and the set of all submaximal edges is denoted by $SE(\mathcal{H})$.

For $\mathfrak{e} \in SE(\mathcal{H})$, the set $\{v \in V(\mathcal{H}) \mid \mathfrak{e} \cup \{v\} \in E(\mathcal{H})\}$, is denoted by $N(\mathfrak{e})$. If $v \in N(\mathfrak{e})$, we write $\mathfrak{e} \sim v$.

In a *d*-uniform hypergraph \mathcal{H} , a clique is a subset W of $V(\mathcal{H})$ such that every its subset of size d, is a hyperedge in \mathcal{H} .

3. Unmixed hypergraphs

Let \mathcal{H} is a *d*-uniform *r*-partite hypergraph with $2 \leq d \leq r$. We say that \mathcal{H} satisfies the condition (**) for $r \geq 2$, if \mathcal{H} can be partitioned to r parts $V_i = \{x_{1i}, \dots, x_{ni}\}, 1 \leq i \leq r$, such that $\{x_{j1}, x_{j2}, \dots, x_{jr}\}$ is a clique for every $1 \leq j \leq n$.

The authors in [5] have presented a necessary and sufficient condition for unmixedness of an *r*-partite graph which satisfies the following condition (*) for $r \ge 2$.

We say a graph G satisfies the condition (*) for an integer $r \ge 2$, if G can be partitioned to r parts $V_i = \{x_{1i}, \ldots, x_{ni}\}, 1 \le i \le r$, such that for all $1 \le j \le n, \{x_{j1}, \ldots, x_{jr}\}$ is a clique.

Let \mathcal{H} be a *d*-uniform *r*-partite hypergraph $(2 \leq d \leq r)$ on [n] which satisfies the condition (**) for $r \geq 2$. Then the 1-skeleton of \mathcal{H} is an rpartite graph which satisfies the condition (*) for *r*. But in general, the unmixedness of a hypergraph and its 1-skeleton, are two independent facts, as the following example exhibits.

Example 3.1. The following clutter is not unmixed while its 1-skeleton is unmixed as a graph.

Note that the sets $\{2, 4, 3\}$ and $\{1, 4\}$ are two minimal vertex covers with different sizes for the hypergraph.

Conversely, the following clutter is unmixed but its 1-skeleton is not.

Note that the sets $\{1,3\}$ and $\{2,3,4\}$ are two minimal vertex covers with different sizes for the 1-skeleton.

This gives us a motivation for finding a necessary and sufficient condition under which a *d*-uniform *r*-partite $(2 \le d \le r)$ hypergraph satisfying the condition (**) for *r*, is unmixed.

First we prove a lemma.

Lemma 3.2. Let \mathcal{H} be a d-uniform r-partite $(2 \leq d \leq r)$ hypergraph which satisfies the condition (**) for r. If \mathcal{H} is unmixed, then every minimal vertex cover of \mathcal{H} contains exactly r - d + 1 elements of each clique $\{x_{j1}, x_{j2}, \ldots, x_{jr}\}$.

Proof. Let C be a minimal vertex cover of \mathcal{H} . For every $1 \leq q \leq n$, C contains at least r - d + 1 vertices of the clique $\{x_{q1}, x_{q2}, \ldots, x_{qr}\}$,

because if C contains at most r-d vertices of that clique, it dose not cover hyperedges on remaining vertices. Therefore a vertex cover must contain at least n(r-d+1) vertices. On the other hand, the set $\bigcup_{i=1}^{r-d+1} V_i$ is a minimal vertex cover of \mathcal{H} with n(r-d+1) vertices. This completes the proof.

Now we present the main theorem of this paper.

Theorem 3.3. Let \mathcal{H} be a d-uniform r-partite $(2 \leq d \leq r)$ hypergraph which satisfies the condition (**) for r. Then \mathcal{H} is unmixed if and only if the following condition holds.

For every $1 \leq q \leq n$, if $\mathfrak{e}_1, \mathfrak{e}_2, \ldots, \mathfrak{e}_{r-d+2}$ are submaximal edges such that

 $\mathfrak{e}_1 \sim x_{qi_1}, \mathfrak{e}_2 \sim x_{qi_2}, \dots, \mathfrak{e}_{r-d+2} \sim x_{qi_{r-d+2}}$

where $i_1, i_2, \ldots, i_{r-d+2}$ are distinct, then the set

$$\mathfrak{e}_1 \cup \mathfrak{e}_2 \cup \ldots \cup \mathfrak{e}_{r-d+2}$$

is not independent.

Proof. Let \mathcal{H} be unmixed. We show that the mentioned condition holds. Suppose in contrary

$$\mathfrak{e}_1 \sim x_{qi_1}, \mathfrak{e}_2 \sim x_{qi_2}, \dots, \mathfrak{e}_{r-d+2} \sim x_{qi_{r-d+2}}$$

where $i_1, i_2 \ldots, i_{r-d+2}$ are distinct but the set

$$F = \mathfrak{e}_1 \cup \mathfrak{e}_2 \cup \ldots \cup \mathfrak{e}_{r-d+2}$$

is independent. Therefore there is a maximal independent set M containing F. Since M is a maximal independent set, $C := V(\mathcal{H}) \setminus M$ is a minimal vertex cover of \mathcal{H} which contains no any element of F. Since C is a vertex cover of \mathcal{H} , C contains the vertices $x_{qi_1}, x_{qi_2}, \ldots, x_{qi_{r-d+2}}$. But by Lemma 3.2, C contains exactly r - d + 1 vertices of every clique, a contradiction.

Conversely, let the mentioned condition holds. We show that \mathcal{H} is unmixed. It is enough to show that every minimal vertex cover of \mathcal{H} contains exactly r-d+1 vertices of each clique $\{x_{q1}, x_{q2} \dots, x_{qr}\}$. Let Cbe an arbitrary minimal vertex cover and $1 \leq q \leq n$. Then C intersects the set $\{x_{q1}, x_{q2} \dots, x_{qr}\}$ in at least r-d+1 elements. Let C intersects the mentioned clique in at least r-d+2 elements. Without loss of generality, we assume that this elements are $x_{q1}, x_{q2} \dots, x_{q(r-d+2)}$. For each $i, 1 \leq i \leq r-d+2$, x_{qi} is in the minimal vertex cover C. Then there is a hyperedge e_i covered only by x_{qi} . That is, $e_i \cap C = \{x_{qi}\}$. Suppose that $\mathbf{e}_i = e_i \setminus \{x_{qi}\}$. Then the sets \mathbf{e}_i are submaximal edges such that

$$\mathfrak{e}_1 \sim x_{qi_1}, \mathfrak{e}_2 \sim x_{qi_2}, \dots, \mathfrak{e}_{r-d+2} \sim x_{qi_{r-d+2}}$$

and $\mathfrak{e}_1 \cup \mathfrak{e}_2 \cup \ldots \cup \mathfrak{e}_{r-d+2}$ dose not intersects C. But by hypothesis

$$\mathfrak{e}_1 \cup \mathfrak{e}_2 \cup \ldots \cup \mathfrak{e}_{r-d+2}$$

is not independent. That is, it contains a hypergraph e which is not covered by C, a contradiction.

The following theorem of Villarreal on unmixedness of bipartite graphs can be concluded from the Theorem 3.3, where r = 2, d = 2.

Corollary 3.4. [11, Theorem 1.1] Let G be a bipartite graph without isolated vertices. Then G is unmixed if and only if there is a bipartition $V_1 = \{x_1, \ldots, x_g\}, V_2 = \{y_1, \ldots, y_g\}$ of G such that: (a) $\{x_i, y_i\} \in E(G)$, for all i, and (b) if $\{x_i, y_j\}$ and $\{x_j, y_k\}$ are in E(G), and i, j, k are distinct, then $\{x_i, y_k\} \in E(G)$.

The following theorem can be concluded from theorem 3.3, where d=2.

Corollary 3.5. [5, Theorem 2.3] Let G be an r-partite graph which satisfies the condition (*) for r. Then G is unmixed if and only if the following condition hold:

For every $1 \leq q \leq n$, if there is a set $\{x_{k_1s_1}, \ldots, x_{k_rs_r}\}$ such that

$$x_{k_1s_1} \sim x_{q1}, \ldots, x_{k_rs_r} \sim x_{qr},$$

then the set $\{x_{k_1s_1}, \ldots, x_{k_rs_r}\}$ is not independent.

Now we prove two propositions about *d*-uniform $(d \ge 2)$ hypergraphs by methods used in the proof of Theorem 3.3.

Proposition 3.6. Let \mathcal{H} be a d-uniform $(d \ge 2)$ hypergraph on vertex set $\{x_{ji} | 1 \le j \le n, 1 \le i \le d\}$ with perfect matching

$$\{\{x_{j1}, x_{j2}, \dots, x_{jd}\} | 1 \le j \le n\}.$$

If \mathcal{H} is unmixed and has a minimal vertex cover of size n, then for every $1 \leq q \leq n$, if $\mathfrak{e}_1, \mathfrak{e}_2$ be two submaximal edges such that

$$\mathfrak{e}_1 \sim x_{qi_1}, \mathfrak{e}_2 \sim x_{qi_2}$$

where i_1, i_2 are distinct, then the set $\mathfrak{e}_1 \cup \mathfrak{e}_2$ is not independent.

Proof. Let $1 \leq q \leq n$ be arbitrary. Let in contrary the set $\mathfrak{e}_1 \cup \mathfrak{e}_2$ is independent. Therefore $\mathfrak{e}_1 \cup \mathfrak{e}_2$ is contained in a maximal independent set M. Set $T = V(G) \setminus M$. T is a minimal vertex cover and since it dose not contain any element of $\mathfrak{e}_1 \cup \mathfrak{e}_2$, then T contains x_{qi_1}, x_{qi_2} and then T is at least of size n + 1, a contradiction.

Example 3.7. In 3-uniform hypergraph

 $\mathcal{H} = \{\{a, b, c\}, \{d, e, f\}, \{g, h, i\}, \{b, g, e\}, \{c, f, h\}\},\$

we have the perfect matching $\{\{a,b,c\},\{d,e,f\},\{g,h,i\}\}$ of size 3.

We show by proposition 3.7 that \mathcal{H} is not unmixed.

Let \mathcal{H} be unmixed (by contrary). \mathcal{H} has the minimal vertex cover $\{b, e, h\}$ of size 3. Now we have 2 hyperedges $\{a, b, c\}$ and $\{b, g, e\}$ in relevence with the hyperedge $\{a, b, c\}$ of perfect matching, but $\{g, e, h, f\}$ is independent, a contradiction.

Proposition 3.8. Let \mathcal{H} is a d-uniform $(d \ge 2)$ hypergraph on the vertex set $\{x_{ji} | 1 \le j \le n, 1 \le i \le d\}$ with perfect matching

$$\{\{x_{j1}, x_{j2}, \dots, x_{jd}\} \mid 1 \le j \le n\}.$$

Then a sufficient condition for unmixedness of \mathcal{H} is that for every $1 \leq q \leq n$, if $\mathfrak{e}_1, \mathfrak{e}_2$ be two submaximal edges such that

$$\mathfrak{e}_1 \sim x_{qi_1}, \mathfrak{e}_2 \sim x_{qi_2}$$

where i_1, i_2 are distinct, then $\mathfrak{e}_1 \cup \mathfrak{e}_2$ is not independent.

Proof. Let \mathcal{H} satisfies the above condition. We show that \mathcal{H} is unmixed. It is enough to show that every minimal vertex cover of \mathcal{H} contains exactly one element of each hyperedge of the perfect matching. Let T be a minimal vertex cover. T contains at least one element of each hyperedge of perfect matching. Suppose in contrary that T chooses at least two elements from hyperedge $\{x_{q1}, x_{q2}, \ldots, x_{qd}\}$. Without loss of generality, let the elements x_{q1} and x_{q2} are chosen. Since x_{q1} is in minimal vertex cover, then there exist at least d-1 distinct vertices in $N(x_{q1})$, such that they dose not belong to T and form a hyperedge together with x_{q1} . Name the set of these vertices \mathfrak{e}_1 . We have

$$\mathfrak{e}_1 \sim x_{q1}.$$

Similarly, Since x_{q2} is in minimal vertex cover, with a similar argument, there is a submaximal edge \mathfrak{e}_2 consisting of d-1 distinct vertices, no one belonging to T, such that

$$\mathfrak{e}_2 \sim x_{q2}.$$

Now $\mathfrak{e}_1 \cup \mathfrak{e}_2$ dose not intersect T. But according to hypothesis $\mathfrak{e}_1 \cup \mathfrak{e}_2$ is not independent. That is, it contains a hyperedge e which is not covered by T, a contradiction.

4. Edge ideal of unmixed hypergraphs

In this section, we provide an algebraic interpretation for Theorem 3.3.

Definition 4.1. Let \mathcal{H} be a hypergraph with $V(\mathcal{H}) = \{x_1, \ldots, x_m\}$. Let $K[x_1, \ldots, x_m]$ be the polynomial ring with indeterminates x_1, \ldots, x_m and coefficients in a field K. For a subset $D = \{x_{i_1}, \ldots, x_{i_r}\} \subseteq V(\mathcal{H})$, let $X_D = x_{i_1} \ldots x_{i_r}$. We define the edge ideal of \mathcal{H} to be

$$I(\mathcal{H}) := (X_e | e \in E(\mathcal{H})).$$

The quotient ring $K[\mathcal{H}] := \frac{K[x_1, \dots, x_m]}{I(\mathcal{H})}$ is called the edge ring of \mathcal{H} .

Let R be a commutative ring. An element $a \in R$ is called zero divisor if there is $b \neq 0$ in R such that ab = 0.

Theorem 4.2. Let \mathcal{H} be a d-uniform r-partite $(2 \leq d \leq r)$ hypergraph which satisfies the condition (**) for $r \geq 2$. Then \mathcal{H} is unmixed if and only if for every $1 \leq q \leq n$, and every $1 \leq i_1 < i_2 < \ldots < i_{r-d+2} \leq r$, $\overline{x}_{qi_1} + \overline{x}_{qi_2} + \ldots + \overline{x}_{qi_{r-d+2}}$ is not a zero divisor in $K[\mathcal{H}]$. Here \overline{x}_{qi_t} denotes the image of x_{qi_t} in $K[\mathcal{H}]$. *Proof.* Let \mathcal{H} be unmixed. If for some $1 \leq q \leq n$ and some $1 \leq i_1 < i_2 < \ldots < i_{r-d+2} \leq r, \overline{x}_{qi_1} + \overline{x}_{qi_2} + \ldots + \overline{x}_{qi_{r-d+2}}$ is zero divisor in $K[\mathcal{H}]$, then there is a polynomial $f \notin I(\mathcal{H})$ in

$$S = K[x_{11}, \dots, x_{n1}, x_{12}, \dots, x_{n2}, \dots, x_{1r}, \dots, x_{nr}]$$

such that $f.(x_{qi_1} + x_{qi_2} + \ldots + x_{qi_{r-d+2}}) \in I(\mathcal{H})$. The ideal $I(\mathcal{H})$ is a monomial ideal and therefore we may assume that f is a monomial and then each monomial of must belong to $I(\mathcal{H})$ (see [3]). That is, each monomial of the above polynomial must be divided by some generator of $I(\mathcal{H})$ which comes from a hyperedge. Let fx_{qi_t} be such a monomial. Then there is a hyperedge e_t in \mathcal{H} such that $X_{e_t}|fx_{qi_t}$. But $X_{e_t} \nmid f$. Then $x_{qi_t}|X_{e_t}$ and $e_t \setminus \{x_{qi_t}\}$ is a subminimal edge \mathfrak{e}_t and $X_{\mathfrak{e}_t}|f$. Therefore, for $x_{qi_1}, x_{qi_2}, \ldots, x_{qi_{r-d+2}}$, There are r - d + 2 submaximal edges $\mathfrak{e}_1, \mathfrak{e}_2, \ldots, \mathfrak{e}_{r-d+2}$ such that $X_{\mathfrak{e}_t}|f$, for $1 \leq t \leq r - d + 2$, and

$$\mathfrak{e}_1 \sim x_{qi_1}, \mathfrak{e}_2 \sim x_{qi_2}, \dots, \mathfrak{e}_{r-d+2} \sim x_{qi_{r-d+2}}.$$

Now by theorem 3.3, the set

$$\mathfrak{e}_1 \cup \mathfrak{e}_2 \cup \ldots \cup \mathfrak{e}_{r-d+2}$$

contains a hyperedge e. Now $X_{\mathfrak{e}_1 \cup \mathfrak{e}_2 \cup \ldots \cup \mathfrak{e}_{r-d+2}} | f$. Then $X_e | f$. Then $f \in I(\mathcal{H})$, a contradiction.

Conversely, let for for every $1 \leq q \leq n$, and every $1 \leq i_1 < i_2 < \ldots < i_{r-d+2} \leq r, \overline{x}_{qi_1} + \overline{x}_{qi_2} + \ldots + \overline{x}_{qi_{r-d+2}}$ is not zero divisor in $K[\mathcal{H}]$. If \mathcal{H} is not unmixed, by theorem 3.3, there is an integer $1 \leq q \leq n$, and submaximal edges $\mathfrak{e}_1, \mathfrak{e}_2, \ldots, \mathfrak{e}_{r-d+2}$, such that

$$\mathfrak{e}_1 \sim x_{qi_1}, \mathfrak{e}_2 \sim x_{qi_2}, \dots, \mathfrak{e}_{r-d+2} \sim x_{qi_{r-d+2}}.$$

where where $i_1, i_2, \ldots, i_{r-d+2}$ are distinct and

$$\mathfrak{e}_1 \cup \mathfrak{e}_2 \cup \ldots \cup \mathfrak{e}_{r-d+2}$$

is an independent set. Set $e_t = \mathbf{e}_t \cup x_{qi_t}$, for $1 \le t \le r - d + 2$. e_t 's are hyperedge. Let $X = X_{\mathbf{e}_1 \cup \mathbf{e}_2 \cup \ldots \cup \mathbf{e}_{r-d+2}}$. X is not in $I(\mathcal{H})$ but $X.(x_{qi_1} + x_{qi_2} + \ldots + x_{qi_{r-d+2}}) \in I(\mathcal{H})$, a contradiction.

References

- [1] C. Berge, Hypergraphs, Elsevier Science Publishers B. V., 1989.
- [2] H. Haghighi, A generalization of Villarreal's result for unmixed tripartite graphs, Bull. Iranian Math. Soc., 40 (2014), no. 6, 1505-1514.
- [3] J. Herzog and T. Hibi, Monomial Ideals. Springer, 2010.
- [4] J. Herzog, T. Hibi, H. Ohsugi, Unmixed bipartite graphs and sublattices of Boolian lattices, J. Algebraic Combin., 30 (2009), no. 4, 415-420.

- [5] R. Jafarpour-Golzari and R. Zaare-Nahandi, Unmixed r-partire graphs, to appear in Bull. Iranian Math. Soc., arXiv: 1511.00228v1 [math. CO].
- [6] D. Kiani and S. Saeedi Madani, The edge ideal of complete multipartite hypergraphs, arXiv: 1402.2469v1 [math. CO].
- [7] S. Morey, E. Reyes and R. H. Villarreal, Cohen-Macaulay, shellable and unmixed clutters with a perfect matching of König type, J. Pure Appl. Algebra, 212 (2008), no. 7, 1770-1786.
- [8] G. Ravindra, Well-covered graphs, J. Combin. Inform., System Sci. 2 (1977), no. 1, 20-21.
- [9] R. Stanly, Combinatorics and Commutative Algebra, 2nd Ed., Progress in Math., Birkhauser, 1996.
- [10] R. H. Villarreal, Monomial Algebras, Marcel Dekker, Inc., New York, 2001.
- [11] R. H. Villarreal, Unmixed bipartite graphs, Rev. Colombiana Mat., 41 (2007), no. 2, 393-395.
- [12] D. West, Introduction to graph theory, 2nd Ed., Prentic Hall, Upper Saddle River, NJ, 2001.
- [13] R. Zaree-Nahandi, Pure simplicial complexes and well-covered graphs, Rocky Mountain Journal of Mathematics, 45 (2015), no. 2, 695-702.

Department of Mathematics, Institute for Advanced Studies in Basic Science (IASBS), P.O.Box 45195-1159, Zanjan, Iran

 $E\text{-}mail\ address: \texttt{r.golzary@iasbs.ac.ir}$

DEPARTMENT OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDIES IN BASIC SCIENCE (IASBS), P.O.BOX 45195-1159, ZANJAN, IRAN

E-mail address: rashidzn@iasbs.ac.ir