
Draft 1

User Mode Memory Page Management
An old idea applied anew to the memory wall problem

Mr. Niall Douglas BSc MA MBS MCollT
ned Productions IT Consulting

http://www.nedproductions.biz/

Abstract
It is often said that one of the biggest limitations on computer per-
formance is memory bandwidth (i.e.“the memory wall problem”).
In this position paper, I argue that if historical trends in computing
evolution (where growth in available capacity is exponential and
reduction in its access latencies is linear) continue as they have,
then this view is wrong – in fact we ought to be concentrating on
reducing whole system memory access latencies wherever possible,
and by “whole system” I mean that we ought to look at how soft-
ware can be unnecessarily wasteful with memory bandwidth due to
legacy design decisions.

To this end I conduct a feasibility study to determine whether
we ought to virtualise the MMU for each application process such
that it has direct access to its own MMU page tables and the mem-
ory allocated to a process is managed exclusively by the process
and not the kernel. I find under typical conditions that nearly scale
invariant performance to memory allocation size is possible such
that hundreds of megabytes of memory can be allocated, relocated,
swapped and deallocated in almost the same time as kilobytes (e.g.
allocating 8Mb is 10x quicker under this experimental allocator
than a conventional allocator, and resizing a 128Kb block to 256Kb
block is 4.5x faster). I find that first time page access latencies are
improved tenfold; moreover, because the kernel page fault handler
is never called, the lack of cache pollution improves whole applica-
tion memory access latencies increasing performance by up to 2x.
Finally, I try binary patching existing applications to use the exper-
imental allocation technique, finding almost universal performance
improvements without having to recompile these applications to
make better use of the new facilities.

As memory capacities continue to grow exponentially, appli-
cations will make ever larger allocations and deallocations which
under present page management techniques will incur ever rising
bandwidth overheads. The proposed technique removes most of
the bandwidth penalties associated with allocating and deallocating
large quantities of memory, especially in a multi-core environment.
The proposed technique is easy to implement, retrofits gracefully
onto existing OS and application designs and I think is worthy of
serious consideration by system vendors, especially if combined
with a parallelised batch allocator API such as N1527 currently be-
fore the ISO C1X programming language committee.

[Copyright notice will appear here once ’preprint’ option is removed.]

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Performance Attributes; D.4.2 [Operating Systems]: Allo-
cation/Deallocation Strategies

General Terms Scale Invariant, Memory Allocation, Memory
Management Unit, Memory Paging, Page Tables, Virtualization,
faster array extension, Bare Metal, Intel VT-x, AMD-V, Nested
Page Tables, Extended Page Tables, Memory Wall

Keywords Performance, System Balance, MMU, mmap, sbrk,
malloc, realloc, free, O(1), virtualization, N1527, C1X, kernel,
memory wall

1. Introduction
There is a lot in the literature about the memory wall problem,
and most of it comes from either the hardware perspective [1–5]
or from the software and quite tangential perspective of the effects
upon performance of memory allocation techniques. As a quick
illustration of the software approaches, the Lea allocator, dlmalloc
[6], aims for a reusable simplicity of implementation, whereas
other allocators have a much more complex implementation which
makes use of per-processor heaps, lock-free, cache-line locality and
transactional techniques [7–9]. Many still believe strongly in the
use of custom application-specific allocators despite that research
has shown many of these implementations to be sub-par [10],
whereas others believe that the enhanced type information and
metadata available to source compilers allow superior allocators to
be implemented at the compilation stage [11–13].

Yet there appears to me to be a lack of joined up thinking going
on here. The problem is not one of either hardware or software
alone, but of whole application performance which looks at the
entire system including the humans and other systems which use it
– a fundamentally non-linear problem. There is some very recent
evidence in the literature that this holistic approach is becoming
realised: for example, Hudson (2006) [9] and Dice (2010) [14, 15]
looked into how a memory allocator’s implementation strategy
non-linearly affects whole application performance via cache set
associativity effects and cache line localisation effects, with a very
wide range of approaches and techniques suggested.

To quote the well known note on hitting the memory wall by
Wulf and McKee (1995) [1]:

“Our prediction of the memory wall is probably wrong too
– but it suggests that we have to start thinking “out of
the box”. All the techniques that the authors are aware of,
including ones we have proposed, provide one-time boosts
to either bandwidth or latency. While these delay the date of
impact, they don’t change the fundamentals.” (p. 22).

Draft 1 1 2011/5/11

ar
X

iv
:1

10
5.

18
15

v1
 [

cs
.O

S]
 9

 M
ay

 2
01

1

http://www.nedproductions.biz/

Personally I don’t think that the fundamentals are changeable
– the well established holographic principle1 clearly shows that
maximal entropy in any region scales with its radius squared and
not cubed as might be expected [16] i.e. it is the boundary to a
region which determines its maximum information content, not its
volume. Therefore, growth in storage capacity and the speed in
accessing that storage will always diverge exponentially for exactly
the same reason as why mass – or organisations, or anything which
conserves information entropy – face decreasing marginal returns
for additional investment into extra order.

This is not to suggest that we are inevitably doomed in the long
run – rather that, as Wulf and McKee also suggested, we need to
start revisiting previously untouchable assumptions. In particular,
we need to identify the “low hanging fruit” i.e. those parts of
system design which consume or cause the consumption of a lot of
memory bandwidth due to legacy design and algorthmic decisions
and replace them with functionally equivalent solutions which are
more intelligent. This paper suggests one such low hanging fruit –
the use of page faulted virtual memory.

2. How computing systems currently manage
memory

Virtual memory, as originally proposed by Denning in 1970 [17],
has become so ingrained into how we think of memory that it
has become taken for granted. However, back when it was first
introduced, virtual memory was controversial and for good reason,
and I think it worthwhile that we recap exactly why.

Virtual memory has two typical meanings which are often con-
fused: (i) the MMU hardware which maps physical memory pages
to appear at arbitrary (virtual) addresses and (ii) the operating sys-
tem support for using a paging device to store less frequently used
memory pages, thus allowing the maximal use of the available
physical RAM in storing the most used memory pages. As Denning
pointed out in 1970 [17], again with much more empirical detail in
1980 [18] and indeed in a reflection upon his career in 1996 [19],
virtual memory had the particular convenience of letting program-
mers write as if the computer had lots of low latency memory. The
owner of a particular computer could then trade off between cost of
additional physical RAM and execution speed, with the kernel try-
ing its best to configure an optimal working set of most frequently
used memory pages for a given application.

We take this design for granted nowadays. But think about it:
there are several assumptions in this choice of design, and these
are:

1. That lower latency memory capacity (physical RAM) is expen-
sive and therefore scarce compared to other forms of memory.

2. That higher latency memory capacity (magnetic hard drives) is
cheaper and therefore more plentiful.

3. That growth in each will keep pace with the other over time
(explicitly stated for example in Wulf and McKee (1995) [1]).

4. That magnetic storage has a practically infinite write cycle
lifetime (so thrashing the page file due to insufficient RAM
won’t cause self-destruction).

5. And therefore we ought to maximise the utilisation of as much
scarce and expensive RAM as possible by expending CPU cy-
cles on copying memory around in order to allow programmers
to write software for tomorrow’s computers by using magnetic
storage to “fake” tomorrow’s memory capacities.

1 It even has a Wikipedia page which is not bad at http://en.
wikipedia.org/wiki/Holographic_principle.

As a result, we have the standard C malloc API (whose design
is almost unchanged since the 1970s [20] and which is used by
most applications and languages) which takes no account of virtual
memory at all – each application allocates memory as though it
is the sole application in the system. The kernel then overrides
the requested memory usage of each process on the basis of a set of
statistical assumptions about which pages might actually used by
faking an environment for the process where it is alone in the sys-
tem and can have as much memory as it likes – using the page fault
handler to load and save memory page to the page file and polluting
all over the processor caches in doing so. Meanwhile you have pro-
grammers finding pathological performance in some corner cases
in this environment, and writing code which is specifically designed
to fool the kernel into believing that memory is being used when it
is not, despite that such prefaulting hammers the CPU caches and
is fundamentally a waste of CPU time and resources.

This design is stupid, but choosing it was not. There is good
reason why it has become so ubiquitous, and I personally cannot
think of a better least worst solution given the assumptions above.

3. Historical trends in growths of capacities and
speeds

3.1 The increasing non-substitutability of RAM

R² = 0.9944

R² = 0.994

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1980 1985 1990 1995 2000 2005 2010 2015

LO
G

(b
yt

e
s

p
e

r
re

al
 U

S$
)

Magnetic Hard Drives Solid State Drives

Predicted Poly. (Magnetic Hard Drives)

Power (Solid State Drives)

Figure 1. A log plot of bytes available per inflation adjusted US$
from 1980 to 2010 for conventional magnetic hard drives and
flash based solid state disk drives. Magnetic hard drives are clearly
coming to the end of their logistic growth curve trajectory, whereas
flash drives are still to date undergoing the exponential growth part
of their logistic growth curve. Sources: [21–23].

Unknowable until early 2000’s2, Figure 1 proves the fact that
magnetic non-volatile storage is due to become replaced with flash
based storage. Unlike magnetic storage whose average random ac-
cess latency may vary between 8-30ms [24] and which has a vari-
ance strongly dependent on the distance between the most recently
accessed location and the next location, flash based storage has
a flat and uniform random access latency just like RAM. Where
DDR3 RAM may have a 10-35ns read/write latency, current flash
storage has a read/write latencies of 10-20µs and 200-250µs respec-
tively [25] which is only three orders slower than reading and
four orders slower than writing RAM respectively, versus the six

2 It is unknowable because one cannot know when logistic growth will end
until well past its point of inflection i.e. when the second derivative goes
negative.

Draft 1 2 2011/5/11

http://en.wikipedia.org/wiki/Holographic_principle
http://en.wikipedia.org/wiki/Holographic_principle

orders of difference against magnetic storage. What this means
is that the relative overhead of page faulted virtual memory
on flash based storage becomes much larger – several thousand
fold larger – against overall performance than when based on
magnetic storage based swap files.

Furthermore flash based storage has a limited write cycle life-
time which makes it inherently unsuitable for use as temporary
volatile storage. This has a particular consequence, and let me make
this clear: there is no longer any valid substitute for RAM.

3.2 How growth in RAM capacity is going to far outstrip our
ability to access it

y = 2E-204x44.789

R² = 0.9851

y = 0.006x - 215.79
R² = 0.9601

0

5

10

15

20

25

30

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

0

50

100

150

200

250

300

"V
al

u
e

 S
w

e
e

ts
p

o
t"

 M
e

m
o

ry
 S

p
e

e
d

 In
cr

e
as

e
(1

9
9

7
 =

 1
.0

)

"V
al

u
e

 S
w

e
e

ts
p

o
t"

 M
e

m
o

ry
 S

iz
e

 I
n

cr
e

as
e

(1
9

9
7

 =
 1

.0
)

Figure 2. A plot of the relative growths since 1997 of random
access memory (RAM) speeds and sizes for the best value (in terms
of Mb/US$) memory sticks then available on the US consumer
market from 1997 - 2009, with speed depicted by squares on the
left hand axis and with size depicted by diamonds on the right
hand axis. The dotted line shows the best fit regression for speed
which is linear, and the dashed line shows the best fit for size which
is a power regression. Note how that during this period memory
capacity outgrew memory speed by a factor of ten. Sources: [26]
[27].

As Figure 2 shows, growth in capacity for the “value sweetspot”
in RAM (i.e. those RAM sticks with the most memory for the least
price at that time) has outstripped growth in the access speed of the
same RAM by a factor of ten in the period 1997-2009, so while we
have witnessed an impressive 25x growth in RAM speed we have
also witnessed a 250x growth in RAM capacity during the same
time period. Moreover, growth in capacity is exponential versus a
linear growth in access speed, so the differential is only going to
dramatically increase still further in the next decade. Put another
way, assuming that trends continue and all other things being equal,
if it takes a 2009 computer 160ms to access all of its memory at
least once, it will take a 2021 computer 5,070 years to do the same
thing3.

3.3 Conclusions
So let’s be really clear:

1. Non-volatile storage will soon be unsubstitutable for RAM.

2. RAM capacity is no longer scarce.

3. What is scarce, and going to become a LOT more scarce is
memory access speed.

3 No one is claiming that this will actually be the case as the exponential
phase of logistic growth will surely have ended before 2021.

4. Therefore, if the growth in RAM capacity over its access speed
continues, we are increasingly going to see applications con-
strained not by insufficient storage, but by insufficiently fast ac-
cess to storage.

The implications of this change are profound for all users
of computing technology, but especially for those responsible for
the implementations of system memory management. What these
trends mean is that historical performance bottlenecks are meta-
morphising into something new. And that implies, especially
given today’s relative abundance and lack of substitutability of
memory capacity, that page faulted virtual memory needs to be
eliminated and replaced with something less latency creating.

4. Replacing page faulted virtual memory
4.1 How much latency does page faulted virtual memory

actually introduce into application execution?
Sadly, I don’t have the resources available to me to find out a full
and proper answer to this, but I was able to run some feasibility
testing. Proper research funding would be most welcome.

-100.00%

-50.00%

0.00%

50.00%

100.00%

150.00%

P
ag

e
d

 v
s.

 n
o

n
-p

ag
e

d
 o

p
e

ra
ti

o
n

 o
ve

rh
e

ad

Microsoft Windows 7 x64 Linux 2.6.32 x64

Figure 3. A log-log plot of how much overhead paged virtual
memory allocation introduces over non-paged memory allocation
according to block size.

Figure 3 shows how much overhead is introduced in a best case
scenario by fault driven page allocation versus non-paged alloca-
tion for Microsoft Windows 7 x64 and Linux 2.6.32 x64 running on
a 2.67Ghz Intel Core 2 Quad processor. The test allocates a block of
a given size and writes a single byte in each page constituting that
block, then frees the block. On Windows the Address Windowing
Extension (AWE) functions AllocateUserPhysicalPages() et
al. were used to allocate non-paged memory versus the paged mem-
ory returned by VirtualAlloc(), whereas on Linux the special
flag MAP POPULATE was used to ask the kernel to prefault all pages
before returning the newly allocated memory from mmap(). As the
API used to perform the allocation and free is completely different
on Windows, one would expect partially incommensurate results.

As one can see, the overhead introduced by fault driven page
allocation is substantial with the overhead reaching 125% on Win-
dows and 36% on Linux. The overhead rises linearly with the num-
ber of pages involved up until approximately 1-2Mb after which it
drops dramatically. This makes sense: for each page fault the ker-
nel must perform a series of lookups in order to figure what page
should be placed where, so the overhead from the kernel per page
fault as shown in Figure 4 ought to be approximately constant at
2800 cycles per page for Microsoft Windows 7. There is something
wrong with the Linux kernel page fault handler here: it costs 3100

Draft 1 3 2011/5/11

cycles per page up to 2Mb which seems reasonable, however after
that it rapidly becomes 6500 cycles per page which suggests a TLB
entry size dependency or a lack of easily available free pages and
which is made clear in Table 1. However that isn’t the whole story
– obviously enough, each time the kernel executes the page fault
handler it must traverse several thousand cycles worth of code and
data, thus kicking whatever the application is currently doing out of
the CPU’s instruction and data caches and therefore necessitating a
reload of those caches (i.e. a memory stall) when execution returns.

In other words, fault driven page allocation introduces a certain
amount of ongoing CPU cache pollution and therefore raises by
several orders not just the latency of first access to a memory page
not currently in RAM, but also memory latency in general.

Table 1. Selected page fault allocation latencies for a run of pages
on Microsoft Windows and Linux.

Microsoft Windows Linux
Paged Non-paged Paged Non-paged

Size cycles/page cycles/page cycles/page cycles/page
16Kb 2367 14.51 2847 15.83
1Mb 2286 81.37 3275 14.53

16Mb 2994 216.2 6353 113.4
512Mb 2841 229.9 6597 115.9

0

1000

2000

3000

4000

5000

6000

7000

In
it

ia
l P

ag
e

d
 M

e
m

o
ry

 L
at

e
n

cy
 in

 C
P

U
 c

yc
le

s

Windows 7 x64 Linux 2.6.32 x64

Figure 4. A log-linear plot of how many CPU cycles is consumed
per page by the kernel page fault handler when allocating a run of
pages according to block size.

The point being made here is that when an application makes
frequent changes to its virtual address space layout (i.e. the more
memory allocation and deallocation it does), page faulted virtual
memory introduces a lot of additional and often hard to predict
application execution latency through the entire application as a
whole. The overheads shown in Figures 3 and 4 represent a best-
case scenario where there isn’t a lot of code and data being tra-
versed by the application – in real world code, the additional over-
head introduced by pollution of CPU caches by the page fault han-
dler can become sufficiently pathological that some applications
deliberately prefault newly allocated memory before usage.

4.2 What to use instead of page faulted virtual memory
I propose a very simple replacement of page faulted virtual mem-
ory: a user mode page allocator. This idea is hardly new: Mach
has an external pager mechanism [28], V++ employed an external
page cache management system [29], Nemesis had self-paging [30]

and Azul implements a pauseless GC algorithm [31] which uses a
special Linux kernel module to implement user mode page man-
agement [32]. However something major has changed just recently
– the fact that we can now use nested page table suppor in com-
modity PCs to hardware assist user mode page management. As a
result, the cost of this proposal is perhaps just a 33-50% increase in
page table walk costs.

The design is simple: one virtualises the MMU tables for each
process which requests it (i.e. has a sufficiently new version of its
C library). When you call malloc, mmap et al. and new memory
is needed, a kernel upcall is used to asynchronously release and
request physical memory page frame numbers of the various sizes
supported by the hardware and those page frames are mapped by
the C library to wherever needed via direct manipulation of its
virtualised MMU page tables. When you call free, munmap et al.
and free space coalescing determines that a set of pages is no longer
needed, these are placed into a free page cache. The kernel may
occasionally send a signal to the process asking for pages from this
cache to be asynchronously or synchronously freed according to a
certain severity.

There are three key benefits to this design. The first is that under
paged virtual memory when applications request new memory from
the kernel, it is not actually allocated right there and then: instead it
is allocated and its contents zeroed on first access which introduces
cache pollution as well as using up lots of memory bandwidth. The
user mode page allocator avoids unnecessary pages clears, or when
necessary avoids them being performed when the CPU is busy by
keeping a cache of free pages around which can be almost instantly
mapped to requirements without having to wait for the kernel or
for the page to be cleared. Because dirtied pages are still cleaned
when they move between processes, data security is retained and no
security holes are introduced, but pages are not cleared when they
are relocated within the same process thus avoiding unnecessary
page clearing or copying.

If this sounds very wasteful of memory pages, remember that
capacities are increasing exponentially. Even for “big-iron” appli-
cations soon access latencies will be far more important than ca-
pacities. One can therefore afford to ‘throw’ memory pages at prob-
lems.

The second benefit is that a whole load of improved memory
management algorithms become available. For example, right now
when extending a std::vector<> in C++ one must allocate new
storage and move construct each object from the old storage into
the new storage, then destruct the old storage. Under this design
one simply keeps some extra address space around after the vec-
tor’s storage and maps in new pages as necessary – thus avoiding
the over-allocation typical in existing std::vector<> implemen-
tations. Another example is that memory can be relocated from or
swapped between A and B at a speed invariant to the amount of data
by simply remapping the data in question. The list of potential algo-
rithmic improvements goes on for some time, but the final and most
important one that I will mention here is that memory management
operations can be much more effectively batched across multiple
cores, thus easily allowing large numbers of sequential allocations
and deallocations to be performed concurrently – something not
easily possible with current kernel based designs. As an example of
the benefits of batching, consider the creation of a four million item
list in C++ which right now requires four million separate malloc
calls each of identical size. With a batch malloc API such as N1527
proposed by myself and currently before the ISO C1X standards
committee [33], one maps as many free pages as are available for
all four million members in one go (asynchronously requesting the
shortfall/reloading the free page cache from the kernel) and simply
demarcates any headers and footers required which is much more
memory bandwidth and cache friendly. While the demarcation is

Draft 1 4 2011/5/11

taking place, the kernel can be busy asynchronously returning ex-
tra free pages to the process, thus greatly parallelising the whole
operation and therefore substantially reducing total memory allo-
cation latency by removing waits on memory.

In case you think a batch malloc API unnecessary, consider
that a batched four million item list construction is around 100,000
times faster that at present. And consider that compilers can easily
aggregate allocation and frees to single points, thus giving a free
speed-up such that C++’s allocation speeds might start approaching
that of Java’s. And finally consider that most third party memory
allocators have provided batch APIs for some time, and that the
Perl language found a 18% reduction in start-up time by adopting
a batch malloc API [34].

The third benefit is implied from the first two, but may be non-
obvious: memory allocation becomes invariant to the amount
allocated. As mentioned earlier, as capacity usage continues to be
exchanged for lower latencies, the amounts of memory allocated
and deallocation are going to rise – a lot. A user mode page alloca-
tor removes the overhead associated with larger capacity allocation
and deallocation as well as its first time access – witness the mas-
sive drop in latencies shown by Table 1.

4.2.1 Testing the feasibility of a user mode page allocator

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

C
P

U
 c

yc
le

s

Windows 7 page allocator (adj. Notraverse)

Linux 2.6.32 page allocator (adj. Notraverse)

User mode page allocator (notraverse)

Figure 5. A log-linear plot of how the system and user mode page
allocators scale to block sizes between 4Kb and 1Mb. Adjusted no
traverse means that single byte write traversal costs were removed
to make the results commensurate.

To test the effects of a user mode page allocator, a prototype
user mode page allocator4 was developed which abuses the Address
Windowing Extensions (AWE) API of Microsoft Windows men-
tioned earlier in order to effectively provide direct user mode access
to the hardware MMU. The use of the verb ‘abuses’ is the proper
one: the AWE functions are intended for 32-bit applications to
make use of more than 4Gb of RAM, and they were never intended
to be used by 64 bit applications in arbitrarily remapping pages
around the virtual address space. Hence due API workarounds the
prototype user mode page allocator runs (according to my testing)
at least 10x slower than it ought to were the API more suitable,
and probably more like 40x slower when compared to a memory
copy directly into the MMU page tables – however, its dependency
or lack thereof on allocation size in real world applications should
remain clear. The results shown by Figure 5 speak for themselves.

Looking at the performance of malloc et al. as provided by the
Lea allocator [6] under the user mode page allocator (where 1.0

4 It is open source and can be found at http://github.com/ned14/
nedmalloc.

0

2

4

6

8

10

12

Ti
m

e
s

Im
p

ro
ve

m
e

n
t

umpa improvement umpa dlmalloc improvement

Figure 6. A summary of the performance improvements in the Lea
allocator provided by the user mode page allocator (umpa) where
1.0 equals the performance of the system page allocator.

equals the performance of the Lea allocator under the Windows
kernel page allocator), Figure 6 illuminates an interesting 2x per-
formance gain for very small allocations when running under the
user mode page allocator with a slow decline in improvement as
one approaches the 128Kb–256Kb range. This is particularly inter-
esting given that the test randomly mixes up very small allocations
with very big ones, so why there should be a LOG(allocation size)
related speed-up is surprising. I would suggest that the lack of cache
pollution introduced by the lack of a page fault handler being called
for every previously unaccessed page is most likely to be the cause.

Table 2. Effects of the user mode page allocator on the perfor-
mance of selected real world applications.

Peak Memory
Test Usage Improvement

Test 1a (G++): 198Mb +2.99%
Test 1b (G++): 217Mb +1.19%
Test 1c (G++): 250Mb +5.68%
Test 1d (G++): 320Mb +4.44%
Test 2a (G++): 410Mb +3.04%
Test 2b (G++): 405Mb +1.20%
Test 2c (G++): 590Mb +5.25%
Test 2d (G++): 623Mb +3.98%

Test 3a (MS Word): 119Mb -4.05%
Test 3b (MS Word): 108Mb +0.67%

[-0.25% - +1.27%],
Test 4a (Python): 6 - 114Mb avrg. +0.47%

[-0.41% - +1.73%],
Test 4b (Python): 92 - 870Mb avrg. +0.35%
Test 5a (Solver): – +1.41%
Test 5b (Solver): – +1.07%
Test 5c (Solver): – +0.58%

Mean = +1.88%
Median = +1.20%

Chi-squared probability of independence p = 1.0

Table 2 shows the effect of the user mode page allocator in vari-
ous real world applications binary patched to use the Lea allocator.
Clearly the more an application allocates a lot of memory during its

Draft 1 5 2011/5/11

http://github.com/ned14/nedmalloc
http://github.com/ned14/nedmalloc

execution (G++) rather than working on existing memory (Python),
the better the effect.

5. Conclusion and further work
Even a highly inefficient user mode page allocator implementation
shows impressive scalability and mostly positive effects on exist-
ing applications – even without them being recompiled to take ad-
vantage of the much more efficient algorithms made possible by
virtualising the MMU for each process.

I would suggest that additional research be performed in this
area – put another way, easy to implement efficiency gains in
software could save billions of dollars by delaying development
of additional hardware complexity to manage the memory wall.
And besides, page file backed memory is not just unnecessary but
performance sapping in modern systems.

Acknowledgments
The author would like to thank Craig Black, Kim J. Allen and Eric
Clark from Applied Research Associates Inc. of Niceville, Florida,
USA for their assistance during this research, and to Applied Re-
search Associates Inc. for sponsoring the development of the user
mode page allocator used in the research performed for this paper.
I would also like to thank Doug Lea of the State University of New
York at Oswego, USA; David Dice from Oracle Inc. of California,
USA; and Peter Buhr of the University of Waterloo, Canada for
their most helpful advice, detailed comments and patience.

References
[1] W.A. Wulf and S.A. McKee. Hitting the memory wall: Implications

of the obvious. Computer Architecture News, 23:20–20, 1995. ISSN
0163-5964.

[2] A. Saulsbury, F. Pong, and A. Nowatzyk. Missing the memory wall:
The case for processor/memory integration. In ACM SIGARCH Com-
puter Architecture News, volume 24, pages 90–101. ACM, 1996.
ISBN 0897917863.

[3] S.A. McKee. Reflections on the memory wall. In Proceedings of the
1st conference on Computing frontiers, page 162. ACM, 2004. ISBN
1581137419.

[4] A. Cristal, O.J. Santana, F. Cazorla, M. Galluzzi, T. Ramirez, M. Per-
icas, and M. Valero. Kilo-instruction processors: Overcoming the
memory wall. Micro, IEEE, 25(3):48–57, 2005. ISSN 0272-1732.

[5] P.A. Boncz, M.L. Kersten, and S. Manegold. Breaking the memory
wall in MonetDB. Communications of the ACM, 51(12):77–85, 2008.
ISSN 0001-0782.

[6] D. Lea and W. Gloger. A memory allocator, 2000.
[7] E.D. Berger, K.S. McKinley, R.D. Blumofe, and P.R. Wilson. Hoard:

A scalable memory allocator for multithreaded applications. ACM
SIGPLAN Notices, 35(11):117–128, 2000.

[8] M.M. Michael. Scalable lock-free dynamic memory allocation. In
Proceedings of the ACM SIGPLAN 2004 conference on Programming
language design and implementation, pages 35–46. ACM, 2004.

[9] R.L. Hudson, B. Saha, A.R. Adl-Tabatabai, and B.C. Hertzberg.
McRT-Malloc: A scalable transactional memory allocator. In Pro-
ceedings of the 5th international symposium on Memory management,
page 83. ACM, 2006.

[10] E.D. Berger, B.G. Zorn, and K.S. McKinley. Reconsidering custom
memory allocation. ACM SIGPLAN Notices, 37(11):12, 2002.

[11] E.D. Berger, B.G. Zorn, and K.S. McKinley. Composing high-
performance memory allocators. ACM SIGPLAN Notices, 36(5):114–
124, 2001.

[12] S. Udayakumaran and R. Barua. Compiler-decided dynamic memory
allocation for scratch-pad based embedded systems. In Proceedings
of the 2003 international conference on Compilers, architecture and
synthesis for embedded systems, page 286. ACM, 2003.

[13] The Boost C++ ”Pool” library which can be found at http://www.
boost.org/doc/libs/release/libs/pool/doc/.

[14] D. Dice, Y. Lev, V.J. Marathe, M. Moir, D. Nussbaum, and M. Ol-
szewski. Simplifying Concurrent Algorithms by Exploiting Hardware
Transactional Memory. In Proceedings of the 22nd ACM symposium
on Parallelism in algorithms and architectures, pages 325–334. ACM,
2010.

[15] Afek, U., Dice, D. and Morrison, A. Cache index-Aware Memory
Allocation. In ¡UNKNOWN AS YET¿, 2010.

[16] J.D. Bekenstein. Information in the holographic universe. SCI-
ENTIFIC AMERICAN-AMERICAN EDITION-, 289(2):58–65, 2003.
ISSN 0036-8733.

[17] P.J. Denning. Virtual memory. ACM Computing Surveys (CSUR), 2
(3):153–189, 1970.

[18] P.J. Denning. Working sets past and present. IEEE Transactions on
Software Engineering, pages 64–84, 1980. ISSN 0098-5589.

[19] P.J. Denning. Before Memory Was Virtual. http://cs.gmu.edu/
cne/pjd/PUBS/bvm.pdf.

[20] Bell Laboratories. The Manual for the Seventh Edition of Unix can be
found at http://cm.bell-labs.com/7thEdMan/bswv7.html.

[21] A list of historical magnetic hard drive sizes and prices can be found
at http://ns1758.ca/winch/winchest.html.

[22] More recent data on historical magnetic hard drive sizes and
prices can be found at http://www.mattscomputertrends.com/
harddiskdata.html, .

[23] A detailed chronological history of solid state drive development can
be found at http://www.storagesearch.com/.

[24] A list of random access latency times for recent hard drives
can be found at http://www.tomshardware.com/charts/
raid-matrix-charts/Random-Access-Time,227.html.

[25] P. Desnoyers. Empirical evaluation of NAND flash memory perfor-
mance. ACM SIGOPS Operating Systems Review, 44(1):50–54, 2010.

[26] J.C. McCallum. A list of historical memory sizes and prices can be
found at http://www.jcmit.com/memoryprice.htm.

[27] A list of historical memory interconnect speeds can be found
at http://en.wikipedia.org/wiki/List_of_device_bit_
rates#Memory_Interconnect.2FRAM_buses, .

[28] University of Washington. Dept. of Computer Science, D. McNamee,
and K. Armstrong. Extending the mach external pager interface to
allow user-level page replacement policies. 1990.

[29] K. Harty and D.R. Cheriton. Application-controlled physical memory
using external page-cache management. In Proceedings of the fifth
international conference on Architectural support for programming
languages and operating systems, pages 187–197. ACM, 1992. ISBN
0897915348.

[30] S.M. Hand. Self-paging in the Nemesis operating system. Operating
systems review, 33:73–86, 1998. ISSN 0163-5980.

[31] C. Click, G. Tene, and M. Wolf. The pauseless GC algorithm. In
Proceedings of the 1st ACM/USENIX international conference on
Virtual execution environments, pages 46–56. ACM, 2005. ISBN
1595930477.

[32] A paper on the Azul memory module can be found at
http://www.managedruntime.org/files/downloads/
AzulVmemMetricsMRI.pdf.

[33] The N1527 proposal lying before ISO WG14 C1X can be found
at http://www.open-std.org/jtc1/sc22/wg14/www/docs/
n1527.pdf.

[34] The perl-compiler discussion can be found at http://groups.
google.com/group/perl-compiler/msg/dbb6d04c2665d265.

Draft 1 6 2011/5/11

http://www.boost.org/doc/libs/release/libs/pool/doc/
http://www.boost.org/doc/libs/release/libs/pool/doc/
http://cs.gmu.edu/cne/pjd/PUBS/bvm.pdf
http://cs.gmu.edu/cne/pjd/PUBS/bvm.pdf
http://cm.bell-labs.com/7thEdMan/bswv7.html
http://ns1758.ca/winch/winchest.html
http://www.mattscomputertrends.com/harddiskdata.html
http://www.mattscomputertrends.com/harddiskdata.html
http://www.storagesearch.com/
http://www.tomshardware.com/charts/raid-matrix-charts/Random-Access-Time,227.html
http://www.tomshardware.com/charts/raid-matrix-charts/Random-Access-Time,227.html
http://www.jcmit.com/memoryprice.htm
http://en.wikipedia.org/wiki/List_of_device_bit_rates#Memory_Interconnect.2FRAM_buses
http://en.wikipedia.org/wiki/List_of_device_bit_rates#Memory_Interconnect.2FRAM_buses
http://www.managedruntime.org/files/downloads/AzulVmemMetricsMRI.pdf
http://www.managedruntime.org/files/downloads/AzulVmemMetricsMRI.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1527.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1527.pdf
http://groups.google.com/group/perl-compiler/msg/dbb6d04c2665d265
http://groups.google.com/group/perl-compiler/msg/dbb6d04c2665d265

	1 Introduction
	2 How computing systems currently manage memory
	3 Historical trends in growths of capacities and speeds
	3.1 The increasing non-substitutability of RAM
	3.2 How growth in RAM capacity is going to far outstrip our ability to access it
	3.3 Conclusions

	4 Replacing page faulted virtual memory
	4.1 How much latency does page faulted virtual memory actually introduce into application execution?
	4.2 What to use instead of page faulted virtual memory
	4.2.1 Testing the feasibility of a user mode page allocator

	5 Conclusion and further work

