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ABSTRACT
External-memory dictionaries are a fundamental data struc-
ture in file systems and databases. Versioned (or fully-
persistent) dictionaries have an associated version tree where
queries can be performed at any version, updates can be per-
formed on leaf versions, and any version can be ‘cloned’ by
adding a child. Various query/update tradeoffs are known
for unversioned dictionaries, many of them with matching
upper and lower bounds. No fully-versioned external-memory
dictionaries are known with optimal space/query/update
tradeoffs. In particular, no versioned constructions are known
that offer updates in o(1) I/Os using O(N) space. We
present the first cache-oblivious and cache-aware construc-
tions that achieve a wide range of optimal points on this
tradeoff.

General Terms
Cache-oblivious algorithms, External-memory algorithms, Ver-
sioned data structures

1. INTRODUCTION
We study tradeoffs between space, query cost and update
cost for versioned external-memory dictionaries. A versioned
dictionary stores keys and their values with an associated
version tree, and supports the following operations:

• update(key, value, version): associate value to the
key in the specified leaf version

• query(start, end, version): return every key in the
range [start,end] together with the value written in the
closest ancestor to version

• clone(version): create a new version as a child of the
specified version

A versioned dictionary can be thought of as efficiently im-
plementing the union of many dictionaries: the ‘live’ keys at

version v are the union of all the keys in ancestor versions,
where if a key appears more than once, its closest ancestor
takes precedence. If the structure supports arbitrary ver-
sion trees, then we call it (fully-)versioned; if it supports
only linear version trees, we call it partially-versioned. We
are interested in fully-versioned structures. We use N to
denote the total number of keys written; for a version v, we
use Nv to denote the number of keys that are live at v.

The B-tree [2] is the classic external memory dictionary.
More recently, data structures that achieve a wide range of
query/update tradeoffs have been discovered, in particular,
those that offer updates in o(1) I/Os while increasing query
cost slightly are of great practical interest.

We aim to answer the following open questions:

1. Can one achieve optimal O(N) space with the same
query/update bounds as a CoW B-tree?

2. Can one achieve other points on the tradeoff curve?

3. Can these be achieved in both the DAM and CO mod-
els?

Even ignoring updates, it is already difficult to efficiently an-
swer range queries with little space. For deep version trees,
many keys in the range may not have been updated since
the root version, while some may have been updated many
times since then. It is easy to see that some elements must
be replicated many times for range queries to be asymp-
totically optimal – a construction that achieves this while
balancing asymptotically optimal space, query and update
costs is our main contribution.

As a warm-up, consider the following two naive implemen-
tations: keeping a B-tree of the latest key for each version
gives excellent query performance, but at the expense of
space and update costs. In contrast, keeping a single B-tree
with elements ordered by (key,version) uses optimal O(N)
space but a small range query may be forced to scan all the
elements in O(N/B) I/Os.

1.1 Unversioned query/update tradeoffs
The B-tree [2] is the classic external-memory dictionary.
The B-tree is typically analyzed in the disk access machine
(DAM) model [14]; this assumes an internal memory of size
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M and an arbitrarily large external memory where each IO
can read or write a block of B elements. An N-node B-tree
supports updates in O(logB N) such I/Os and range queries
returning Z elements in O(logB N + Z/B) I/Os. An im-
portant characteristic of the B-tree is that it is optimal for
searching within the DAM model.

It has been observed that there is a tradeoff between query
and update performance, and that B-trees achieve only one
point on this tradeoff. The buffered-repository tree (BRT)
[9] supports updates in amortized O(logN/B) I/Os and
queries in O(logN) I/Os. Hence, searches are slower in the
BRT than in the B-tree, whereas updates are significantly
faster. More generally, the Bε-tree of Brodal and Fagerberg
[8] supports a large part of this tradeoff: for 0 ≤ ε ≤ 1, the

Bε-tree supports updates in amortized O(
logBε+1 N)

B1−ε ) I/Os
and searches in O(logBε+1 N) I/Os. Thus, when ε = 1 it
matches the performance of a B-tree, and when ε = 0, it
matches the performance of a BRT. An interesting interme-
diate point is when ε = 1/2; then searches are slower by a

factor of roughly 2, but updates are roughly
√
B/2 faster

than a B-tree.

Similar results are known for the cache-oblivious (CO) model
[12]. The CO model is similar to the DAM model, except
that the block size B is unknown to the algorithm and can-
not be used as a tuning parameter. The COLA of Bender
et al. [5] achieves the same tradeoffs as the BRT in the
CO model. More recently, Brodal et al. [7] presented a CO
algorithm that achieves the same range of tradeoffs as the
Bε-tree. It is worth noting that all these schemes achieve
the optimal O(N) space bound – it has not been necessary
to use more space in order to achieve the tradeoffs in either
model.

1.2 Versioned query/update tradeoffs
No similar tradeoffs are known for versioned dictionaries, ei-
ther in the DAM or CO models. In fact, matching these
bounds in the CO model with fast updates is impossible
– Afshani et al. [1] showed that any partially-versioned
CO dictionary supporting range queries in O((logB N)c(1+
Z/B)) I/Os for any c > 0 must use Ω(N(log logN)ε) space,
where ε > 0 depends on c. In their model, every update
creates a new version (hence there are N versions). By con-
trast, in our model, we explicitly track a version tree V and
new versions are created with a clone operation (and we as-
sume that the version tree can fit entirely in memory; thus,
it is perhaps more appropriate to describe our solution as
‘semi-external memory’).

The classic versioned analogue of the B-tree is the copy-
on-write (CoW) B-tree [10], which is based on the ‘path-
copying’ technique originally presented by Driscoll et al. [11]
for making internal-memory data structures fully-persistent,
but it does not apply efficiently to external-memory struc-
tures. It supports updates to version v in O(logB Nv) I/Os
and range queries of size Z in O(logB Nv + Z/B) I/Os.
Clearly, these query bounds are the best we can hope for,
since O(logB Nv) is the bound we would get if we were to
isolate all the keys accessible from version v and store them
in a B-tree. This data structure is fundamental to every
NetApp filer [13], the ZFS file system [6], and in numerous

file systems and databases. The basic idea is to use a B-tree
with many roots, one for each version. A lookup proceeds
as in a B-tree, starting from the appropriate root. An up-
date to key k at version v goes as follows; if there is a root
node for v, perform a regular B-tree update for k starting at
that root node; otherwise, find the root node for v’s parent
version and perform a regular B-tree lookup for k to find
the correct leaf node, then duplicate this entire root-to-leaf
path, and finally set the root node of this path as the root
node for version v.

The CoW B-tree has two major problems that we seek to ad-
dress: first, it is not space-optimal – in general, each update
may cause a new path to be written, giving Θ(NB logB N)
space1 and second, it does not offer any update/query trade-
offs. The ‘multiversion B-tree’ (MVBT) of Becker et al.
[3] achieves O(logB Nv) I/Os for updates and queries with
O(N) space, but is only partially-versioned and does not
support any other tradeoffs.

1.3 Our results
We present the first fully-versioned dictionaries that achieve
optimal O(N) space, and optimal query/update tradeoffs in
both the DAM and CO models. One can see them as fully-
versioned analogues of the Bε-tree [8] and the COLA [5] in
the DAM and CO models respectively.

In the DAM model, we present an external-memory ver-
sioned dictionary using space O(N) that supports updates to

version v in amortized O( logB Nv

εB1−ε ) I/Os and supports range

queries of size Z in worst-case O( logB Nv

ε
+ Z

B
) I/Os.

In the CO model, we present a cache-oblivious external-
memory versioned dictionary that uses space O(N) and sup-
ports updates to version v in amortized O(logNv/B) I/Os,
and range queries at version v returning Z elements in amor-
tized O(logN+Z/B) I/Os. We can deamortize the structure
so that updates run in worst-case O(logNv) I/Os (with the
same amortized bound), and point queries at version v run
in worst-case O(logNv) I/Os. Similarly to Bender et al. [5],
with knowledge of B (‘cache-aware’), the data structure can

support updates to version v in amortized O(
logB Nv

εB1−ε ) I/Os,

and range queries of size Z in amortized O( logB Nv

ε
+ Z

B
)

I/Os.

Our results leave open two problems: first, fully deamortiz-
ing range queries in the CO dictionary, and second, achiev-
ing the ε-dependent bounds without knowledge of B.

2. PRELIMINARIES
2.1 Key and Version Ordering
We often discuss ordering elements lexicographically by key
and version (‘kv order’ ). Keys are assumed to have a nat-
ural total ordering, so we shall describe the version order-
ing. The versions are nodes in a version tree, so we have
the ancestor partial order � – we write x � y to mean ‘x
is an ancestor of y’. We say that versions x, y are com-
parable if either x � y or x � y. For kv order, we al-
low any total order consistent with � in the sense that ev-
ery version v occurs after all descendants w � v. Order-

1Typically, B is thousands in practice and logB N < 5.



ing versions descending by their DFS number satisfies this,
with the advantage that ancestorship can be tested in O(1)
time: let the interval I(v) = [DFS(v),maxw�v DFS(w)],
then v � w ⇐⇒ DFS(w) ∈ I(v). As the version tree
changes, we can use an efficient renumbering scheme to re-
tain integer DFS values, such as in the order maintenance
problem [4].

2.2 Definitions
Consider a set of elements A and versions V . An element
(k, v) is a lead element (at v) if v ∈ V . Define lead(A, v) as
the total number of lead elements at v in A and lead(A,V ) =∑

v∈V
lead(A, v). The lead-below count is the total lead at

versions descendent from v, i.e. lead below(v) =
∑

x�v
lead(v).

An element (k, x) is said to be live (or accessible) at version
v in A if x � v and k has not been rewritten between x and
v, i.e. there is no other element (k, y) ∈ A with x ≺ y � v.
Let live(A, v) be the total number of elements of A that are
live at v. Note that if v � w then live(v) ≤ live(w). Also

live(v) ≤ live(parent(v)) + lead(v), (1)

with the difference between right and left-hand sides being
equal to the number of keys k which appear in both versions
v and parent(v). We use N to denote the total number of
keys written; for a version v, we useNv to denote the number
of keys that are live at v, i.e. the number of distinct keys
written in ancestor versions of v (each key is live at least
once, so

∑
v
Nv ≥ N).

We assume that keys and values (which could be pointers to
data or real data) are all of fixed size.

3. A CACHE-OBLIVIOUS VERSIONED B-
TREE

In this section we present a cache-oblivious versioned B-tree,
which we refer to as a stratified doubling array (SDA). It
contains a collection of arrays of key-version-value tuples,
arranged into levels, with ‘forward pointers’ to facilitate
searching. Arrays in level l are roughly twice as large as
arrays in level l− 1, hence ‘doubling’, and have disjoint sets
of versions associated to them, hence ‘stratified’ in version
space.

The basic idea is to store arrays of kv-ordered elements, as
in the COLA of Bender et al. [5], except that we apply
a version split process, similar to the one employed in the
versioned B-tree, albeit more complex, in order to avoid ar-
rays containing too few elements from some version (we call
this a ‘density’ property). The result is that each level may
have several arrays, tagged with disjoint sets of versions that
indicate which should be used.

3.1 Arrays
An array (A,V ) contains a set A of entries (k, v, x) where
k is a key, v is a version, and x is either a data value or
a forward pointer containing an array index (the array into
which it indexes will become clear from the context later),
ordered by (k, v). The set V is a set of ‘valid versions’ that
will be used for lookups and merges between various arrays.
Each array also contains a pointer to a unique ‘next array’,

identifying the array, if any, into which its forward pointers
point. Arrays implement the following operations:

• search(k,v,[lb],[ub]): search for a (k, v) pair, within
optional lower and upper bounds. It returns the index
of a least upper bound y for (k, v) in the k-v order,
and the destinations of the two closest forward point-
ers either side of y.

• iterate(loc): provides an iterator over elements start-
ing from index loc.

• append(k,v,x): appends the entry to the end of the
array, returning its location.

3.2 Definitions
For a version v, the density of version v in A is δ(A, v) =
live(A, v)/|A|. We say that a version v is dense in A if
δ(A, v) ≥ 1/3, and that an array (A,V ) is dense if every
v ∈ V is dense in A. Note that if v is dense in (A, V ) then
every descendant version is also dense there.

Given a non-empty set of versions V , we say a version v is
an orphan of V if it has no strict ancestor in V . We say
the array (A,V ) is a stratum if the orphans of V are all
siblings – they have the same parent, not in V , which we
write without ambiguity as parent(V );

For a version v and set of versions V , let TV [v] = {w ∈ V :
v � w} be the subtree of V rooted at v. For W ⊂ V a set of
versions and A an array, define the split of A with respect
to W to be the set of all entries live in any version in W :
λ(A,W ) = {(k, x) ∈ A : (k, x) is live at some v ∈ W }, i.e.
the set of all keys live in any version in W . For W a stratum
with orphans wi having common parent p, define

arr_size(A,W ) := live(A, p) + lead(A,W )

= live(A, p) +
∑

i
lead below(A,wi)

(2)

As in (1), |λT (A,W )| ≤ arr_size(A,W ) with the difference
being those keys live in the parent version but over-written
in all orphans of W .

As a special case, when W = TV [v] for some version v ∈ V ,
define λT (A, V, v) = λ(A, TV [v]), and as usual where A
and V are clear, we write T [v] and λT (v) for the set of
versions and corresponding split respectively. Note that
lead(A,TV [v]) = lead below(A, v).

A version split of an array (A, V ) gives a set of strata {(Ai, Vi)}i
such that A = ∪iAi, and V = ∪iVi, and Vi are mutually dis-
joint.

3.3 Levels
As previously mentioned, an SDA keeps (k, v, x) tuples in
arrays arranged into levels. Each level l ≥ 0 contains a set
of arrays (Al

i, V
l
i ) with disjoint sets of valid versions. We

keep in memory a map from version to the array in which
it is valid – if such a thing exists. We also keep track of the
subset of those versions (which we call ‘real’) for which there
is at least one lead key in the array where v is valid.



3.3.1 Promotion Conditions
Before describing invariant properties of levels, we introduce
the following logical conditions on arrays and versions:

• We try to ensure that arrays at level l have sizes in the
range 2l ≤ |A| < 2l+1; we refer to these size conditions
as (P-min-size)l,A : |A| ≥ 2l, and its contrary (P-max-
size)l,A = ¬(P-min-size)l+1,A;

• It will be important for all arrays, both those in a level
and those being promoted, to have a suitably large
number of keys live in each version; such a lower bound
on the number of live keys clearly implies a density
constraint given the size constraints above. Formally
we’ll refer to (P-live)l,v : live(v) ≥ 2l/3.

• Likewise it often turns out to be important that no
strict ancestor of an array has so many keys live. The
intuition here is that we want to ensure that there are
not too many copied keys in an array so that merges
can be ‘paid’ for by insertion of lead keys. The con-
straint we’ll refer to is simply the contradiction of P-
live: (P-plive)l,V = ¬(P-live)l+1,parent(V );

• In order to be able to argue that the amount of merge
work done is bounded by a linear function of the num-
ber of keys inserted, we will insist on a lower bound
on the number of lead keys in each promoted array:
(P-lead)l,v : lead below(v) ≥ 2l+1/3;

• Putting it together, when searching for arrays to pro-
mote we will look for a version v whose subtree satisfies
the conjunction of the above properties: (P-prom)l,v =
(P-live)l+1,v ∧ (P-lead)l+1,v ∧ (P-min-size)l+1,λT (v).

The following properties hold for every array (A, V ) at level
l with at least one real version (i.e. version with lead > 0):

• (L-dense) A is dense for all versions in V .

• (L-size) A is not too big: (P-max-size)l,A;

• (L-live) A has a minimal number of keys live for every
version: (P-live)l,v for all v ∈ V ;

• (L-plive) The parent of A has few keys live: (P-plive)l,V ;

• (L-no-prom) There are no versions in A which are
‘promotable’ in the sense used above: ∀v ∈ V,¬ (P-
prom)l+1,v

• (L-edge) If there are enough keys in version v to justify
promotion (ignoring the lead requirement) then no de-
scendant can have reached a strictly higher level yet:
∀v ∈ V, (P-live)l+1,v =⇒ no level l′ > l contains a
key in a version strictly descendant from v.

We will show how to maintain these properties under up-
dates.

3.4 Updates and promotions
Promotion is the process by which an array is moved up
from one level to the next and merged with an existing array
there. The update(k,v,x) operation is itself considered to
be a promotion – the promotion of the singleton array A =
[(k, v, x)] with valid version set V = {v}, to level 0. In
general, the only sort of array (A,V ) that will be promoted
from one level to the next is of the form λT (v) for a suitable
v. The properties we are interested in for (A, V ) are:

• V has a unique orphan v, which makes the choice of
array with which to merge simple;

• A has a large fraction of lead keys, which allows us to
account for the cost of merging and splitting;

• versions obey a density property, which in conjunction
with density for existing arrays in the target level al-
lows us to maintain (L-live).

We will show that the result of this merge can be ‘version
split’ into new arrays which are either suitable to remain at
level l, satisfying the level requirements above, or are suit-
able to be promoted to the next level l+1. Often the result
of the merge need not be split at all, or can be promoted
in its entirety. To be precise, an array (A, V ) promoted to
level l will satisfy the following ‘promotion conditions’:

• (P-orphan): V has a unique orphan v;

• (P-non-trivial)v : lead(v) > 0;

• (P-max-size)l,A (A is not too big);

• (P-plive)l,V (A’s parent has few live keys);

• (P-prom)l,v (... but A itself is promotable: it has large
enough live and lead counts, and is big enough);

• (P-edge): no level l′ ≥ l contains a key in a version
strictly descendant from v.

Note that a single insert into level 0 satisfies these condi-
tions.

3.5 Algorithm Overview
The choice of which array at level l to merge (A, V ) with
orphan v into is simple: if v is registered to some array
A′, then merge into that; else, if the next array to which
forward pointers in A point is at level l, then merge into
that; otherwise, there is no suitable array: A′ = ∅.

Our general approach is to first calculate an appropriate
set of output version sets, based on lead and live statistics
for the input arrays A and A′; to each such version set we
will associate an output array, initially empty; then we will
iterate over the contents of the input arrays in k, v-order,
appending each entry to appropriate output arrays.

This process is I/O efficient, since it requires one complete
sequential read across each input array, and sequential writes
to each output array. Importantly, for practical implemen-
tations, with sufficient prefetching and buffering, it can take



advantage of sequential I/O. After the output arrays are gen-
erated, forward pointer sample arrays will be back-propagated
down towards level 0, and at most one will be promoted up
to the level above. Thus the merge operation can be decom-
posed into the following phases:

1. seek a promotable version set, and remove it if one
is found;

2. perform a version split of the remainder;

3. execute the resulting promotion and version split; and

4. back-propagate forward pointer arrays.

We now describe each of these phases in detail.

3.5.1 Finding a Promotable Version
We say a version w ∈ V ′′ is promotable if λT (w) obeys
the promotion conditions for level l + 1, most importantly
(P-prom)l+1,λT (w). Using the statistics of the merged array
(A′′, V ′′), we search for the promotable version w for which
|λT (w)| is the largest possible. This can be done by search-
ing recursively down through V ′′, starting with whichever
orphan z of V ′′ is ancestral to w. Note that once the (P-
lead) or (P-min-size) conditions fail, the whole search fails,
since both are non-increasing down the tree.

Algorithm 1 find_promotable(W,w)

Require: A threshold size M
1: if |λT (w)| < M or lead below(w) < 2M/3 then

2: return null
3: else if lead(w) > 0 and live(w) ≥ M/3 then

4: return w
5: else

6: for u in the children of w do

7: let u′ = find_promotable(W,u)
8: if u′ is not null then
9: return u′

10: end if

11: end for

12: return null
13: end if

Pseudo-code is given in Algorithm 1. We search for a pro-
motable version w = find_promotable(V ′′, z) with M =
2l+1. If w is null, then we proceed to the version split phase
using (A′′, V ′′), otherwise we remove the subtree rooted at
w from V ′′ before proceeding, using the suitably diminished
counts for lead below(·) on the remaining versions. Both the
elements extracted by find_promotable and the remainder
satisfy the desired properties.

Lemma 1. Suppose (A′′, V ′′) is the result of merging a
promoted array (A,V ) into an existing array A′ at level l.
Let z be the unique orphan of V ′′ ancestral to the orphan
of V , and w = find_promotable(V ′′, z) 6= null. Then (1)
(AP , VP ) = λT (A

′′, V ′′, w) obeys the promotion conditions
at level l + 1; and (2) the remainder (AR, VR) of (A′′, V ′′)
after AP is removed, obeys (L-no-prom).

Proof. First note that the algorithm guarantees (P-non-
trivial)w and (P-prom)l+1,w, and that (P-orphan) is obvious.

The version w cannot be a strict descendant of v, since in
this case (P-edge) for A would imply that AP ⊂ A; (P-min-
size) cannot hold at level l+1 for a subarray of A, for which
(P-size) holds at level l. Likewise w cannot be unrelated
to v, since in that case λT (A

′′, w) = λT (A
′, w) and so (P-

prom)l+1,w is in contradiction to (L-no-promote). So w is a
weak ancestor of v.

If w = v then (P-edge) at level l for A implies (P-edge) at
level l + 1, since it’s a weaker constraint; if w ≺ v then the
number of keys live for w has not increased as a result of
promotion, and so (P-live)l+1,w must have held prior to the
promotion of A; the necessary (P-edge) constraint is then a
consequence of (L-edge) prior to promotion.

The only remaining condition which remains to be checked is
(P-max-size)l+1,AP

– that AP it is not too large. However,
AP ⊂ A′′ and |A′′| ≤ |A| + |A′| < 2l+2, by (L-size) and
(P-max-size) for A′ and A respectively.

The second part of the lemma follows from the fact that
find_promotable finds the oldest promotable version: sup-
pose w′ ∈ VR has at least 2l+1/3 keys live in AR. We have
w′ 6≺ w since otherwise find_promotable would have chosen
w′ before reaching w in the search ((P-lead)l+1,w =⇒ (P-
lead)l+1,w′ and likewise for (P-min-size)). We have w′ 6� w
because no such versions are in VR. Therefore, w′ is in-
comparable to w and also v, since w � v. But the version
statistics of such versions are unaffected in the merge, so
(L-no-promote) must hold post-merge since it held for A′

before.

3.5.2 Version Split
Now we describe the version split process that splits the re-
maining array (after optionally removing a promotable ar-
ray) into a collection of arrays, each of which obeys both
the minimum density constraint (L-dense) and a minimum
fraction of lead elements.

We use the notion of versions that are dense in their subtrees,
i.e., v for which δT (v) := δ(λT (v), v) ≥ 1/3. Intuitively, the
split λT (v) of a version dense in its subtree is easy to deal
with from the point of view of density, but need not contain
enough lead elements; on the other hand, if v isn’t dense, but
must have a good lead ratio – in order for u to not be dense,
there must be many lead keys strictly descendant from u.

We show how to construct a split by following the ‘least
dense’ child down the version tree, until we find a version
u not dense in its subtree, but all of whose children are
dense in their subtrees (see Figure 1). It is not difficult to
see that this always terminates; the difficult part is showing
that this process finds a version u with children u1 . . . ur and
a split λ(A′′,∪iT [ui]) with enough lead elements and where
all versions are dense. Removing the split subtree u1 . . . ui

and recursing gives a collection of splits as required, all of
which obey the required density property and all but the
last of which (for which no suitable u can be found) obey
a lead ratio requirement. The version-split algorithm is
shown in Algorithm 3.



Figure 1: The version split process, starting from

the orphan w. Filled nodes are dense in their sub-

trees.

Algorithm 2 find_dense_kids(u1 , . . . , un)

1: let u = argmin δT (ui)
2: if δT (u) > 1/3 then

3: return [u1, . . . , un] sorted by lead below() decreasing
4: else

5: return find_dense_kids(children of u)
6: end if

The proof of the fact that version_split provides a version
split with the desired properties is deferred until the full
paper. Here we simply state the result:

Lemma 2 (Version Split). Suppose that (A, V ) is a
stratum obeying (P-plive)l+1,V and (L-no-promote). Then
there is a version split of (A, V ), say (Ai, Vi) for i = 1 . . . n,
such that each array satisfies (L-dense) and (L-size) for level
l, and there is at most one index i for which lead(Ai) <
|Ai|/2.

If (A,V ) also satisfies (L-live) then every split of it does
(since all live elements are included), and likewise for (L-
edge). It follows that version splitting (A′′, V ′′) – which
necessarily has no promotable versions – results in a set of
arrays all of which satisfy all of the L-* conditions necessary
to stay at level l.

Algorithm 3 version_split(A, V, l)

Require: (A, V ) is a stratum.
1: let [u1, . . . , ur] = find_dense_kids(orphans of V )
2: let split(j) = ∪i≤jT [ui]
3: for i = 1 to r − 1 do

4: if |λ(A, split(i))| > min(2l+1, 3 · live(ui)) then
5: let U = split(i− 1)
6: return version_split(V \ U, l) :: U
7: end if

8: end for

9: return [split(r)]

The main result of this process is the following.

Lemma 3 (Promotion). The fraction of lead elements
over all output arrays after a version split is ≥ 1/39.

Proof. First, we claim that under the same conditions
as the version split lemma, if in addition |A| < 2M and
live(v) >= M/3 for all v, then the number of output strata
is at most 13. Consider the arrays which obey the lead
fraction constraint. Each has size at least M/3, since at
least one version is live in it, and least half of the array is
lead, so at least M/6 lead keys. The total number of lead
keys in the array A is ≤ 2M , since the array itself is no
larger than this; it follows that there can be no more than
12 arrays obeying the lead ratio constraint, and hence no
more than 13 in total.

Now, a merge at level l involves at least one promoted array,
which by (P-lead) contains > 2l+1/3 lead elements. By the
above, the output of the merge is at most 13 arrays of size
at most 2l+1, so there are at most 39 output elements per
lead element.

3.5.3 Extraction
Extraction is the process of executing a version split found as
in the previous section: it takes a list of disjoint version sets
{Vi}i, an iterator it of (k, v, x) tuples (in k, v order), and
outputs a set of arrays {λ(it, Vi)}i together with forward
pointer arrays demoted to lower levels.

For each version set Vi we create a set of output arrays
Aj

i , one for each level. A0
i is the primary output array and

will receive keys in version set Vi and will end the process
containing λ(A′′, Vi); the arrays Aj

i for j > 0 will contain
forward pointer samples of this array: if we are sampling
with frequency r, then Aj

i will contain a pointer to every rth

element of Aj−1
i .

3.6 Lookup
A point query for k, v calls query_rec(A, k, v) (see Algo-
rithm 4), where A is the unique array registered to version
v at level 0. In general, at level l we search within a lower
and upper bound to find the least upper bound (k′, v′, x) for
(k, v) and the associated forward pointers strictly below and
weakly above this location. If k′ = k and v′ � v, then the
least upper bound is the desired key and we return x (by
the ordering on versions, v′ must be the closest ancestor of
v for which a value of k has been written); if v′ 6� v, then
scan forwards until an ancestor is found, in which case we
return it, or we reach an entry for which k′ 6= k, in which
case we recurse to the array to which forward pointers in A
point. The search terminates either when a suitable entry
(k, v′, x) is found, with v′ � v, or when there are no forward
pointers in A.

A range query query(start,end,version) is handled by
performing a lookup query(start,version) (with the mod-
ification that we do not break out of arrays early as in the
lookup described above). We then merge the outputs of the
iterators from each of these arrays in (k, v)-order, with the
exception that for any key k, we output only the first version



Algorithm 4 query_rec(A, k, v, [lb], [ub])

Require: An array A, and optionally two locations within
A: lower bound lb and upper bound ub

1: let loc, lb, ub = A.search(k, v, lb, ub)
2: let it = A.iterate(loc)
3: let k′ = k
4: while it.has_next() and k′ = k do

5: let (k′, v′, x) = it.next()
6: if k′ = k and v′ � v then

7: return (k, v′, x)
8: end if

9: end while

10: let N be the next array of A
11: if N 6= null then
12: return query_rec(N, k, v, lb, ub)
13: else

14: return null
15: end if

ancestral to the desired version, and skip over the remaining
versions.

To get the desired lookup performance, we need to modify
the forward pointer construction. In the description here,
FPs may not be evenly spaced within an array; in particular,
for increasing inserts, all the FPs live at the start of each
array and a lookup always involves a scan to the end of some
arrays. This can be solved by storing, for some constant
8 < k < B, in every kth element of every array a redundant
FP, which is a copy of its two closest real FPs to the left
and right. This guarantees that every element has a forward
pointer within O(1) blocks on either side. Space for these
redundant FPs can be left in the initial output during the
execution phase, and their values retrospectively updated by
rescanning each output array A0

i (Aj
i for j > 0 consists only

of forward pointers, and so has no such problem).

3.7 Clone
On snapshot or clone of version v to new descendant ver-
sion v′, v′ is registered for each array A which is currently
registered to the parent of v. This does not require any I/Os.

3.8 Update
Theorem 1. The stratified doubling array performs up-

dates to a leaf version v in a cache-oblivious O(logNv/B)
amortized I/Os.

Proof. Assume we have at our disposal a memory buffer
of size at least B (recall that B is not known to the algo-
rithm). Then each array that is involved in a disk merge
has size at least B, so a merge of some number of arrays of
total size k elements costs O(k/B) I/Os. In the COLA [5],
each element exists in exactly one array and may participate
in O(logN) merges, which immediately gives the desired
amortized bound. In the scheme described here, elements
may exist in many arrays, and elements may participate in
many merges at the same level (eg when an array at level
l is version split and some subarrays remain at level l after
the version split). Nevertheless, we shall prove the theorem
using a more involved accounting argument.

We will assume that each I/O costs $1 and can read or
write B elements. Each element (k, v) inserted at version
v has an initial credit $c/B, for some constant c to be deter-
mined later. For an array (A,W ), recall an element (k, v)
a lead element if v ∈ W . When an array (A,W ) is pro-
moted from level l to l + 1, all its lead elements are given
extra credit $c/B. Assume for now that this is sufficient
to pay for all I/O operations. By the level condition (L-
live), all arrays (A,W ) with v ∈ W must live in levels
l ≤ lgNv + O(1). This implies that the total charge to
element (k,v) is O(logNv/B), since (k, v) appears as a lead
element in exactly one array, is only charged when it ap-
pears as a lead element (hence it can only be charged at
those levels where v ∈ W ), and lead elements can never be
demoted (so it is charged at most once per promotion). It
now remains to prove the assumption.

Lemma 4. For c > 45, the credit of every element (k, v)
is ≥ 0.

Proof. Each array is either dead or alive. An array at
level l is alive if it enters level l by being promoted from
level l − 1, and becomes dead at level l if it enters level l
as a result of a version split. Consider a merge at level l.
The algorithm guarantees that at least one of these arrays
is alive. We will charge the entire cost of the merge to the
lead elements in the alive arrays participating in it (if there
is more than one such array, divide the cost equally between
their lead elements).

Consider a merge at level l. It involves O(1) passes over
O(1) input arrays, at least one of which is alive (otherwise
the promotion would not have been triggered), followed by a
version split which produces some output arrays. The Pro-
motion Lemma implies that for c > 39 , the lead elements in
the alive array can pay for all the I/Os involved in producing
the output arrays. Since the input array has just been pro-
moted, by (P-lead), it has at least 2l+1/3 lead elements. The
total input size is at most 2l+2, so to perform the input and
output passes, it suffices to ensure that c > 39+6 = 45.

The theorem follows since the lead elements of alive ar-
rays can pay for all the I/Os involved in merging and split-
ting.

3.9 Lookup
For large range queries (that retrieve a constant fraction
Z = Ω(Nv) of the live keys of some version v), the density
property of the arrays immediately gives an asymptotically
optimal bound of O(logNv +Z/B). For much smaller range
queries, the worst-case performance may be the same as for
a point query. We now prove the amortized bound, which
applies to smaller queries.

Theorem 2. A range query at version v costs O(logNv+
Z/B) amortized I/Os.

Proof. We first consider just point queries, and amortize
the cost of lookup(k, v) over all keys live at v. Let l(k, v) be
the cost of lookup(k, v), then the amortized cost is given by∑

k l(k, v)/Nv .



For an array Ai, let l(k, v,Ai) be the number of I/Os used
in examining elements in Ai for lookup(k,v). The idea is
that since the elements of Ai are (k, v)-ordered, the parts of
Ai examined by each key lookup for version v are disjoint,
hence

∑
k
l(k, v,Ai) ≤ |Ai|. We have the following:

∑
k
l(k, v)

Nv

=

∑
i

∑
k
(l(k, v,Ai) +O(1))

Nv

≤
∑

i
|Ai|+

∑
k

∑
i
O(1)

Nv

=
O(Nv) +O(Nv logNv)

Nv

= O(logNv).

The O(1) additive term is due to finding and following FPs
between arrays, which follows from the redundant FP con-
struction. The second inequality follows since there are
O(logNv) arrays examined during the searches for all keys in
some fixed version v, and the first term follows from the den-
sity property and the geometrically increasing array sizes.

A range query incurs the same initial lookup cost (to locate
the starting points of the iterators in each array), and then
the subsequent scan can be analysed in the same way as
above. We can also deamortize the point query bound to
worst-case O(logNv) by embedding a small lookup structure
into the part of each array defined by each key k. The proofs
will appear in the full version of the paper.

3.10 Space
We can prove that the structure has asymptotically optimal
space requirements.

Theorem 3. The structure uses O(N) external memory
space to store N elements, regardless of the version tree.

Proof. It is easy to see that there are exactly N lead
elements. Whenever an array containing k lead elements is
promoted, Theorem 1 established that at most O(k) space
is used and possibly never freed (used by dead arrays). Each
lead element gets promoted exactly once and by the promo-
tion conditions, the number of lead elements must double
between successive promotions. Thus the total space is at
most O(

∑
i>0 N/2i) = O(N).

3.11 Deamortized updates
A single update in the SDA algorithm may trigger a cascade
of merges, in the worst case requiring Ω(N/B) I/Os. With
some effort, we can deamortize the merge and insert pro-
cesses, such that lookups are valid at every point in time,
and an insert to version v takes worst-case O(logNv) IOs,
and amortized O( logNv

B
) IOs as before.

3.12 Cache-aware tradeoffs
Examining the level conditions in Section 3.3.1, arrays ap-
proximately double in size between successive levels. Simi-
larly to Bender et al. [5], we can obtain a range of ‘cache-
aware’ query/update tradeoffs by selecting a ‘growth factor’
g = Bε ≥ 2. Some work is needed to ensure the version
splitting process, and we can obtain the following results,
the proof of which is deferred to the full paper.

Theorem 4. The data structure can support updates to
version v in amortized O(

logB Nv

εB1−ε ) I/Os, and range queries

of size Z in amortized O(
logB Nv

ε
+ Z

B
) I/Os.

4. EXPERIMENTAL RESULTS
We implemented a prototype of the versioned B-tree and the
cache-oblivious versioned B-tree in OCaml, an efficient com-
piled functional language. The machine had 1GB RAM (but
we restricted 256MB to be available for the buffer cache in
the tests), a 2GHz AMD Athlon 64 processor (although our
implementation was only single-threaded), a 500GB SATA
disk and an Intel X25-M SSD. We used a block size of 32KB
for the B-tree on disk and 4KB on SSD. The disk can per-
form ≈ 50 such I/Os/s; by contrast, the SSD can perform
35,000 random 4KB reads/s but must write in blocks of
512KB; however some buffering tricks in the firmware allow
writes of 4KB blocks. 2 There was no such tuning to be
done for the cache-oblivious structure.

We started with a single root version and inserted random
100 byte key-value pairs to random leaf versions, and peri-
odically performed range queries of size 10,000 at a random
version. Every 100,000 insertions, we create a new version as
follows: with probability 1/3 we clone a random leaf version
and w.p. 2/3 we clone a random internal node of the version
tree. This aims to keep to the version tree ‘balanced’ in the
sense that there are roughly twice as many internal nodes
as leaves.

The figures show results for the versioned B-tree (btree),
the SDA (strat-DA) and, for comparison, the SDA where
we forbid any version splitting; hence there is a single ar-
ray at each level. Figure 2 shows the insertion performance
on the disk. As expected, the B-tree performance degrades
rapidly when the dataset exceeds internal memory available.
Figures 3 and 4 show range query performance on disk and
the SSD. The SDA beats the B-tree and DA by a factor of
more than 10 on both disk and SSD, while the versioned
B-tree beats the non-version-split DA on SSD, likely due to
excellent random read performance (on disk, the overhead
of scanning over irrelevant versions in the DA appears to be
low compared to the overhead of performing random reads).
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APPENDIX
A. PROOFS
A.1 Version Split Lemma
We prove the Version Split Lemma, which is crucial for main-
taining density within levels, and for bounding the amount
of merge work we need to do. We first demonstrate that
there is some redundancy in the P-* conditions:

Lemma 5. If (A,V ) is a stratum for which (P-plive)l,V
and (L-no-promote) hold, then (P-live)l+1,v =⇒ (P-max-
size)l,λ(A,TV v), i.e.,

live(v) ≥ 2l+1/3 =⇒ |λ(A,TV v)| < 2l+1. (3)

In particular, all such versions are dense in their subtrees.

Proof. Suppose by way of contradiction that there exists
a version w such that live(w) ≥ 2l+1/3 and |λ(A, TV w)| ≥
M . Let v be the oldest ancestor of w in V for which live(v) ≥
2l+1/3. Since v is an ancestor of w, |λ(A, TV v)| ≥ |λ(A,TV w)|
and so (P-live) and (P-min-size) both hold for v. By (L-no-
promote), lead below(v) < 2l+2/3. Whether v is an orphan
of V (in which case (P-plive)l,V is needed) or not, it must
be the case that live(parent(v)) < 2l+1/3, so |λ(A,TV v)| ≤
live(parent(v)) + lead below(v) < 2l+1, in contradiction to
(P-min-size).

The following lemma forms the basis of the Version Split
Lemma.

Lemma 6. Suppose (A,W ) is a stratum in level l such
that, for M = 2l+1 we have

1. (cD) live(v) < M/3 for v = parent(W ) and all ver-
sions v ∈ W that are not dense in their subtrees; and

2. (cS) |λ(A, TV v)| < M for all v ∈ W such that v is
dense in its subtree.

Then version_split(W, l) gives a version split Wi of (A,W )
such that the associated extracted arrays Ai = λ(A,Wi) sat-
isfy:

1. (vS) |Ai| ≤ M for all i;

2. (vD) Ai is dense for all versions in Wi;

3. (vL) lead(Ai)
|Ai|

≥ 1
2
for all but at most one i.

Proof. Proof is by induction on the size of W . Consider
a pass through the version_split algorithm.

The subroutine find_dense_kids returns the children u1 . . . ur

of some version u, such that all ui are dense in their sub-
trees; the children are ordered decreasing by lead below. It
returns the orphans of W iff all orphans of W are dense in
their own subtree; in this case u = parent(W ) and it is not
known whether u is dense in A or not; in all other cases v is
not dense in its subtree.

As a particular case of the density of the ui, u1 is dense in
its subtree, which from (cS) means that |λ(A, TV u1)| < M ;

density implies that |λ(A, TV u1)| < 3live(u1). Therefore
the size test on line 4 of the algorithm must evaluate to
false, and we never split at u1.

If the test evaluates to true for i > 1 then, since it was
false at i− 1, the array U constructed in line 7 must satisfy
|λ(A,U)| ≤ M (vS), and is dense for all versions (vD). This
also holds if the loop exits without having found an upper
bound i: U = split(r) is still small enough and dense for
all versions. In this case we are done since the version split
list has a single entry, so (vL) holds. This is the base case
for induction, since it exhausts W .

In the former case, where split(i) fails the size test, the
lemma will proved by induction so long as we can establish
firstly that the conditions of the lemma still hold for W \U ,
and secondly that (vL) holds for U , for which it suffices to
prove that live(u) < lead(U), since |λ(A,U)| ≤ live(u) +
lead(U).

The condition (cD) is trivially maintained, since the set of
versions not dense in their subtrees can only shrink. For
(cS), we have to check that if v is a version in W \ U , not
dense in λ(A, TWv), but made dense in λ(A,TW \ Uv) by
the removal of keys with versions strictly descendant from
v, then |λ(A, TW \ Uv)| < M (to maintain (cS)). However,
since such a version is not dense prior to the removal of
Ai, it follows from (cD) that live(v) < M/3, and so post-
hoc density implies |λ(A, TW \ Uv)| < 3 · live(v) < M as
required for (cS).

We now return to the case where there is an i > 1 such that
U = split(i − 1) passes the size test, but U ′ = split(i)
fails. Failure at i implies either that there is a j ≤ i such
that uj is not dense in U ′, or that |U ′| > M . In either case,
since uk are ordered by lead below() decreasing,

lead(U ′) =
i∑

k=1

lead below(uk)

≤ i

i− 1

i−1∑

k=1

lead below(uk)

≤ 2lead(U)

⇒ lead(U) ≥ 1

2
lead(U ′) (4)

If |U ′| > M then we can use (cD) directly: live(v) < M/3,
and so lead(U ′) ≥ |U ′| − live(v) > 2M/3, which implies
lead(U) > M/3 from (4), and so (vL) holds for U . If on the
other hand uj is not dense in U ′ then

3live(v) ≤ 3live(uj)

< |U ′|
≤ live(v) + lead(U ′)

⇒ 2live(v) < lead(U ′)

≤ 2lead(U).

In either case live(v) < lead(U) and therefore (vL) holds.

Now we apply this lemma to prove the version split lemma.



Proof of Version Split Lemma. To prove the lemma
we must establish that (cD) and (cS) are a consequence of
(P-plive)l+1,V and (L-no-promote). (P-plive)l+1,V is exactly
the first clause of (cD), namely live(parent(V )) < M/3.
Consider any version v. From Lemma 5, v is dense in its sub-
tree whenever live(v) ≥ M/3, the contrapositive of which is
that whenever v is not dense in its subtree, live(v) < M/3,
i.e. (cD). On the other hand, if v is dense in its subtree
and |λ(A, TV v)| ≥ M then by the definition of density,
live(v) ≥ M/3, a contradiction to Lemma 5. Thus, we must
have |λ(A, TV v)| < M , proving (cS).
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