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Overview 

 

Introduction on processor idle states 

– Processor idle states in theory 

– Processor idle states in the field 

Why should you care? 

Measurement methodology 

– Instrumented kernel functions 

– Wake-up scenarios 

Results 

Summary 



Robert Schöne   3 

Introduction on Processor Idle States 

 

 

 

 

𝑃 = 𝛼 𝐶𝑉2𝑓 + 𝐼𝑠𝑡𝑎𝑡𝑖𝑐𝑉 

Dynamic part Static part 
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𝑃 = 𝛼 𝐶𝑉2𝑓 + 𝐼𝑠𝑡𝑎𝑡𝑖𝑐𝑉 

Dynamic part Static part 

Power

gating 



Robert Schöne   6 

Introduction on Processor Idle States -Theory 

ACPI standard 

C0: The processor is executing instructions, P-States 

C1: Halt state 

– Return to C0 immediately 

C2 

– Return to C0 with delay 

– Processor responds to cache coherence traffic 

C3+: 

– Return to C0 with significant delay 

– Processor does not respond to cache coherence traffic 

Delays are handed over to OS via ACPI 
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Introduction on Processor Idle States – Intel 

C state Core Package 

C0 Processor is actively 

executing instructions, 

P-States 

C1 Processor is inactive If C1E is active: increase P-State 

to maximum 

C2 Handle traffic from QPI / PCIe 

C3 Flush caches to L3 cache, 

Clock gating 

Disable ring, thus L3 cache 

inaccessible, L3 retains context 

Disable QPI / PCIe if latency 

allows it, 

DRAM self-refresh 

C6 Save architectural state to 

SRAM, 

Power gate 

C7 Flush L3, power gate L3 and SA 
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Introduction on Processor Idle States – AMD Family 15h 

C state Module Package 

C0 Processor is actively, 

executing instructions 

P-States 

Northbridge P-States, 

Memory P-States 

Cx (up to 3, 

programmed 

by BIOS) 

Flush L1 and L2 cache if 

timer expires, 

Clock gate module, 

Store architectural state in 

DRAM, 

Power gate module, 

Pop Down P-State 

 
DRAM self-refresh, 
Northbridge clock and 
power gating, 
Package power off 
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Why Should You Care? 

Energy saving vs. responsiveness 

What if the latency numbers provided by the processor vendors are 

too high? 

– Use lower C States 

– Burn energy unnecessarily 

What if the latency numbers provided by the processor vendors are 

too low? 

– Use higher C states 

– Responsiveness and performance degrades 

Idle states might be used in the following cases: 

– OpenMP synchronization, blocking I/O, blocking MPI, Dynamic 

Concurrency Throttling 
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Measurement Methodology 

Local measurement 

Remote idle measurement 

Remote active measurement 
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Measurement Methodology 

Best case assumption with OS overhead, 400+ tests 

 

 userspace 
Kernel 

cpuidle/cpuidle.c 

cpuidle_idle_call

(){ 

// … 

cpuidle_enter_sta

te(); 

// take timestamp 

// write result 

// write c-state 

} 

cpuidle/sysfs.c 

 

… 

// take timestamp 

wake_up_nohz_cpu(

measure->cpuid); 

… 

Python script 

Write measure 

to sysfs 

 

 

 

 

 

 

Read c-state 

Read result 
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Test Systems 

Vendor Intel AMD 

Processor Xeon X5670 Xeon E5-2670 Opteron 6274 

Codename Westmere-EP Sandy Bridge-EP Bulldozer 

Cores 2x6 2x8 4x16 

Base clock 2.933 GHz 2.6 GHz 2.2 GHz 

Max Turbo Clock 3.333 GHz 3.3 GHz 3.1 GHz 

Uncore/NB clock 2.666 GHz - 2.0 GHz 

C-States C1, C3, C6 C1, C3, C6, C7 CC1, CC6 

PC-States PC1E, PC3, PC6 n/a 
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Results C1 (Local, According to ACPI: 3/2/0 µs) 

Higher latency on newer Intel 

system 

AMD Bulldozer latency much 

higher than Intel latency 

Remote case increases latency by 

approx. 0.2 - 0.5 µs (not depicted) 
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Results C3 (Intel, According to ACPI: 20/80 µs) 
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Results C3 (Intel, According to ACPI: 20/80 µs) 

Sandy Bridge ~20 µs faster than 

Westmere 

Package C3 adds approx. 6 µs in 

median 

Latency independent of frequency 
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Results C6 (Intel, According to ACPI: 200/104 µs) 
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Results C6 (Intel, According to ACPI: 200/104 µs) 

Sandy Bridge ~20-13 µs faster 

than Westmere for C6 

C6 performance depends on 

frequency, PC6 does not 
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Results C6 (AMD, According to ACPI: 100 µs) 

Fastest on highest P-State 

Remote faster than local 
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Results C6 (AMD, According to ACPI: 100 µs) 

Fastest on highest P-State 

Remote faster than local 

 Only whole processors can do a 

voltage reduction, single dies 

cannot 
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Summary 

 

 

ACPI projections too optimistic for Westmere and Bulldozer 

ACPI projections too pessimistic for Sandy Bridge 

OS uses wrong projections to choose best C-State 

 Redefine these values based on measurements and let OS know 

 

ACPI  and OS unaware of dependencies between P- and C-States and 

Package C-States 
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Thank You 

Questions? 
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No word on power/energy saving? 

Well this is something that depends! 

– On the processor frequency 

– On what you do, when you are in C0 

P(FIRESTARTER)>P(HPL)>P(while(1);)>P(sqrt(fp)) 

– On what other devices contribute to the system power 

consumption 

• Idle(PC6)=75 W, Idle(PC3)=80 W Idle(C1E)=98 W 

Idle(C1)=137 W 

• Idle(PC6)=175 W, Idle(PC3)=180 W Idle(C1E)=198 W 

Idle(C1)=237 W 

– On how well your OS supports device power management 

Wrong impression if I would add such analysis for a specific system 


