
Robert Schöne (robert.schoene@tu-dresden.de)

Daniel Molka (daniel.molka@tu-dresden.de)

Michael Werner (michael.werner3@tu-dresden.de)

Wake-up Latencies for Processor Idle

States on Current x86 Processors
5th International Conference on Energy-Aware High

Performance Computing (EnA-HPC)

Robert Schöne 2

Overview

Introduction on processor idle states

– Processor idle states in theory

– Processor idle states in the field

Why should you care?

Measurement methodology

– Instrumented kernel functions

– Wake-up scenarios

Results

Summary

Robert Schöne 3

Introduction on Processor Idle States

𝑃 = 𝛼 𝐶𝑉2𝑓 + 𝐼𝑠𝑡𝑎𝑡𝑖𝑐𝑉

Dynamic part Static part

DVFS

Robert Schöne 4

Introduction on Processor Idle States

𝑃 = 𝛼 𝐶𝑉2𝑓 + 𝐼𝑠𝑡𝑎𝑡𝑖𝑐𝑉

Dynamic part Static part

Clock

gating

Robert Schöne 5

Introduction on Processor Idle States

𝑃 = 𝛼 𝐶𝑉2𝑓 + 𝐼𝑠𝑡𝑎𝑡𝑖𝑐𝑉

Dynamic part Static part

Power

gating

Robert Schöne 6

Introduction on Processor Idle States -Theory

ACPI standard

C0: The processor is executing instructions, P-States

C1: Halt state

– Return to C0 immediately

C2

– Return to C0 with delay

– Processor responds to cache coherence traffic

C3+:

– Return to C0 with significant delay

– Processor does not respond to cache coherence traffic

Delays are handed over to OS via ACPI

Robert Schöne 7

Introduction on Processor Idle States – Intel

C state Core Package

C0 Processor is actively

executing instructions,

P-States

C1 Processor is inactive If C1E is active: increase P-State

to maximum

C2 Handle traffic from QPI / PCIe

C3 Flush caches to L3 cache,

Clock gating

Disable ring, thus L3 cache

inaccessible, L3 retains context

Disable QPI / PCIe if latency

allows it,

DRAM self-refresh

C6 Save architectural state to

SRAM,

Power gate

C7 Flush L3, power gate L3 and SA

Robert Schöne 8

Introduction on Processor Idle States – AMD Family 15h

C state Module Package

C0 Processor is actively,

executing instructions

P-States

Northbridge P-States,

Memory P-States

Cx (up to 3,

programmed

by BIOS)

Flush L1 and L2 cache if

timer expires,

Clock gate module,

Store architectural state in

DRAM,

Power gate module,

Pop Down P-State

DRAM self-refresh,
Northbridge clock and
power gating,
Package power off

Robert Schöne 9

Why Should You Care?

Energy saving vs. responsiveness

What if the latency numbers provided by the processor vendors are

too high?

– Use lower C States

– Burn energy unnecessarily

What if the latency numbers provided by the processor vendors are

too low?

– Use higher C states

– Responsiveness and performance degrades

Idle states might be used in the following cases:

– OpenMP synchronization, blocking I/O, blocking MPI, Dynamic

Concurrency Throttling

Robert Schöne 10

Measurement Methodology

Local measurement

Remote idle measurement

Remote active measurement

Robert Schöne 11

Measurement Methodology

Best case assumption with OS overhead, 400+ tests

 userspace
Kernel

cpuidle/cpuidle.c

cpuidle_idle_call

(){

// …

cpuidle_enter_sta

te();

// take timestamp

// write result

// write c-state

}

cpuidle/sysfs.c

…

// take timestamp

wake_up_nohz_cpu(

measure->cpuid);

…

Python script

Write measure

to sysfs

Read c-state

Read result

Robert Schöne 12

Test Systems

Vendor Intel AMD

Processor Xeon X5670 Xeon E5-2670 Opteron 6274

Codename Westmere-EP Sandy Bridge-EP Bulldozer

Cores 2x6 2x8 4x16

Base clock 2.933 GHz 2.6 GHz 2.2 GHz

Max Turbo Clock 3.333 GHz 3.3 GHz 3.1 GHz

Uncore/NB clock 2.666 GHz - 2.0 GHz

C-States C1, C3, C6 C1, C3, C6, C7 CC1, CC6

PC-States PC1E, PC3, PC6 n/a

Robert Schöne 13

Results C1 (Local, According to ACPI: 3/2/0 µs)

Higher latency on newer Intel

system

AMD Bulldozer latency much

higher than Intel latency

Remote case increases latency by

approx. 0.2 - 0.5 µs (not depicted)

Robert Schöne 14

Results C3 (Intel, According to ACPI: 20/80 µs)

Robert Schöne 15

Results C3 (Intel, According to ACPI: 20/80 µs)

Sandy Bridge ~20 µs faster than

Westmere

Package C3 adds approx. 6 µs in

median

Latency independent of frequency

Robert Schöne 16

Results C6 (Intel, According to ACPI: 200/104 µs)

Robert Schöne 17

Results C6 (Intel, According to ACPI: 200/104 µs)

Sandy Bridge ~20-13 µs faster

than Westmere for C6

C6 performance depends on

frequency, PC6 does not

Robert Schöne 18

Results C6 (AMD, According to ACPI: 100 µs)

Fastest on highest P-State

Remote faster than local

Robert Schöne 19

Results C6 (AMD, According to ACPI: 100 µs)

Fastest on highest P-State

Remote faster than local

 Only whole processors can do a

voltage reduction, single dies

cannot

Robert Schöne 20

Summary

ACPI projections too optimistic for Westmere and Bulldozer

ACPI projections too pessimistic for Sandy Bridge

OS uses wrong projections to choose best C-State

 Redefine these values based on measurements and let OS know

ACPI and OS unaware of dependencies between P- and C-States and

Package C-States

Robert Schöne 21

Thank You

Questions?

Robert Schöne 22

No word on power/energy saving?

Well this is something that depends!

– On the processor frequency

– On what you do, when you are in C0

P(FIRESTARTER)>P(HPL)>P(while(1);)>P(sqrt(fp))

– On what other devices contribute to the system power

consumption

• Idle(PC6)=75 W, Idle(PC3)=80 W Idle(C1E)=98 W

Idle(C1)=137 W

• Idle(PC6)=175 W, Idle(PC3)=180 W Idle(C1E)=198 W

Idle(C1)=237 W

– On how well your OS supports device power management

Wrong impression if I would add such analysis for a specific system

