

Timers, Timer Resolution, and
Development of Efficient Code

June 16, 2010

Abstract

This paper provides information about high-resolution timers and periodic timers for
Windows® operating systems. It provides guidelines for developers to use timers
efficiently with platform power management. It assumes that the reader is familiar
with concepts of periodic activity and scheduled timers.

This information applies to the following operating systems:
 Windows Server® 2008 R2
 Windows 7

References and resources discussed here are listed at the end of this paper.

The current version of this paper is maintained on the Web at:
 http://www.microsoft.com/whdc/system/pnppwr/powermgmt/Timer-Resolution.mspx

Disclaimer: This document is provided “as-is”. Information and views expressed in this document, including
URL and other Internet Web site references, may change without notice. You bear the risk of using it.
Some examples depicted herein are provided for illustration only and are fictitious. No real association or
connection is intended or should be inferred.

This document does not provide you with any legal rights to any intellectual property in any Microsoft
product. You may copy and use this document for your internal, reference purposes

© 2010 Microsoft Corporation. All rights reserved.

http://www.microsoft.com/whdc/system/pnppwr/powermgmt/Timer-Resolution.mspx

Timers, Timer Resolution, and Development of Efficient Code - 2

June 16, 2010
© 2010 Microsoft Corporation. All rights reserved.

Document History
Date Change

June 16, 2010 First publication

Contents

Introduction ... 3
Timer Resolution .. 3
Timer Coalescing .. 3
System Timer Resolution Manipulation .. 6
Recommendations for Application Developers ... 7
Timer Coalescing Fundamentals ... 7
Kernel-Mode Timer Coalescing Function ... 8
Timer Coalescing within a WDF Driver .. 9
User-Mode Timer Coalescing Function.. 9
Best Practices for Using Timer Coalescing ... 10
Conclusion .. 11
Resources ... 11

Timers, Timer Resolution, and Development of Efficient Code - 3

June 16, 2010
© 2010 Microsoft Corporation. All rights reserved.

Introduction

System power consumption and energy efficiency are heavily influenced by the
amount of processor activity, including periodic activity from applications and device
drivers. Modern processors can reduce their power consumption by entering into a
low-power idle state during the periods of idle time between executing instructions
for software activity.

However, many processor power management technologies require a minimum
amount of idle time to obtain a net power-savings benefit. If the processor is idle for
only very short periods of time, the power that is required to enter and exit the low-
power state can be greater than the power that is saved.

Software developers should evaluate their code for opportunities to remove periodic
activity. If possible, periodic activity should be replaced with event-driven or
interrupt-based designs. However, if periodic activity is required, this paper provides
a summary of developer best practices that enable the Windows kernel to more
efficiently manage timers and timer resolution.

Timer Resolution

The system timer resolution determines how frequently Windows performs two main
actions:

• Update the timer tick count if a full tick has elapsed.

• Check whether a scheduled timer object has expired.

A timer tick is a notion of elapsed time that Windows uses to track the time of day
and thread quantum times. By default, the clock interrupt and timer tick are the
same, but Windows or an application can change the clock interrupt period.

The default timer resolution on Windows 7 is 15.6 milliseconds (ms). Some
applications reduce this to 1 ms, which reduces the battery run time on mobile
systems by as much as 25 percent.

Such a dramatic reduction in battery life is not desirable, yet the effect of changing
timer resolution on desktop or server systems can be equally problematic. Decreased
battery life on a mobile system makes increased power consumption visible. A system
that is running on AC power incurs the same increased power usage, which may not
be as simple to detect. The cost increase to a facility that has several thousand
systems is significant.

Timer Coalescing

In addition to enabling systems to effectively use idle power states, improvements
that were introduced in Windows 7 allow developers to take greater advantage of
this technology. One of the tasks that the operating system undertakes on a system
timer event is to check whether scheduled timers have expired. If so, a callback is
made to the function pointer that is associated with the timer object.

Timers, Timer Resolution, and Development of Efficient Code - 4

June 16, 2010
© 2010 Microsoft Corporation. All rights reserved.

Windows 7 introduced timer coalescing, which allows scheduled timers to specify a
tolerable delay for timer expiration. For example, a scheduled timer that has a period
of 200 ms may specify a tolerance of 20 ms. This allows Windows to group multiple
software timer expirations into a single period of processing.

Figures 1, 2, and 3 illustrate this feature. Figure 1 shows a time line of clock interrupts
and timers expiring. In Figure 2, the timer expirations are placed at the point where
the system would issue a callback. The advantages of timer coalescing are shown in
Figure 3, in which the timer expirations are grouped as might be possible with
coalescing.

Figure 1. Expiration time of software timers

Figure 2. Service of expired timers with no coalescing

Figure 3. Service of expired timers with coalescing

The first scheduled timer has a tolerance that allows it to be delayed until the next
timer interrupt, which lets the processor spend more time at idle after the first clock
interrupt. Similarly, the fourth scheduled timer expiration is delayed until the next
clock interrupt, which allows two timer expirations to be grouped.

Grouping processing of timer expiration in this way increases the number of periods
between clock interrupts that have long idle time. This lets the system take full
advantage of its power management features during these idle periods. As further
hardware advances that reduce power are introduced, the advantages of having the
processor in an idle state for extended periods will increase. Whenever it is possible,

Timers, Timer Resolution, and Development of Efficient Code - 5

June 16, 2010
© 2010 Microsoft Corporation. All rights reserved.

developers should use timer coalescing so that applications are prepared for the
future.

Intelligent Timer Tick Distribution (ITTD) is an example of an advance that increases
energy savings when combined with timer coalescing. Introduced in Windows 7, ITTD
is a kernel improvement that reduces clock interrupts on systems that have multiple
logical processors. The change that ITTD introduced is that the platform timer
interrupt does not automatically wake application processors.

Application processors (APs) are any processors in the system that are not the
primary or base service processor (BSP). ITTD prevents APs from waking from low-
power idle states unless software timers are expiring or hardware interrupts occur
other than the platform timer interrupt. Letting the APs remain in the idle power
state for increased durations of time helps reduce processor and platform power
consumption.

As figures 4 and 5 illustrate, in addition to longer idle periods for the BSP, timer
coalesce allows the platform timer interrupts to be removed from the AP.

Figure 4. Multiple logical processors without coalesce

Figure 5. Multiple logical processors with coalescing and ITTD

Timers, Timer Resolution, and Development of Efficient Code - 6

June 16, 2010
© 2010 Microsoft Corporation. All rights reserved.

By following the best practices for timer resolution, developers can avoid
unnecessary battery drain and energy consumption, which reduces costs and
improves mobile productivity. Using timer coalescing provides further enhancements
to power management.

System Timer Resolution Manipulation

The use of high-resolution periodic timers in an application can increase overall
system power consumption and subsequently reduce system battery life. Developers
might choose to use high-resolution periodic timers through the Windows
Multimedia API, or an application might use these timers inadvertently through
external libraries and application development frameworks.

The default system-wide timer resolution in Windows is 15.6 ms, which means that
every 15.6 ms the operating system receives a clock interrupt from the system timer
hardware. When the clock interrupt fires, Windows updates the timer tick count and
checks whether a scheduled timer object has expired. Some applications require that
timer expiration is serviced more frequently than once every 15.6 ms.

Applications can call timeBeginPeriod to increase the timer resolution. The maximum
resolution of 1 ms is used to support graphical animations, audio playback, or video
playback. This not only increases the timer resolution for the application to 1 ms, but
also affects the global system timer resolution, because Windows uses at least the
highest resolution (that is, the lowest interval) that any application requests.
Therefore, if only one application requests a timer resolution of 1 ms, the system
timer sets the interval (also called the “system timer tick”) to at least 1 ms. For more
information, see “timeBeginPeriod Function” on the MSDN® website.

Modern processors and chipsets, particularly in portable platforms, use the idle time
between system timer intervals to reduce system power consumption. Various
processor and chipset components are placed into low-power idle states between
timer intervals. However, these low-power idle states are often ineffective at
lowering system power consumption when the system timer interval is less than the
default.

If the system timer interval is decreased to less than the default, including when an
application calls timeBeginPeriod with a resolution of 1 ms, the low-power idle states
are ineffective at reducing system power consumption and system battery life
suffers.

System battery life can be reduced as much as 25 percent, depending on the
hardware platform. This is because transitions to and from low-power states incur an
energy cost. Therefore, entering and exiting low-power states without spending a
minimum amount of time in the low-power states can be more costly than if the
system simply remained in the high-power state.

If an application changes the timer resolution, developers should ensure that external
libraries and application development frameworks do not unexpectedly also change
the system timer interval on the application’s behalf.

Developers can determine whether an application increases the platform timer
resolution by using the PowerCfg command-line utility with the /energy option. Run

Timers, Timer Resolution, and Development of Efficient Code - 7

June 16, 2010
© 2010 Microsoft Corporation. All rights reserved.

the PowerCfg utility while the application to be analyzed is active, and then check the
resulting energy report. The report lists the instances of increased platform timer
resolution and indicates whether processes that are related to an application
increased the timer resolution. Although a code scan reveals whether an application
uses the timeBeginPeriod method, calls to external libraries or plug-ins may also alter
timer resolution. Exercising a broad set of application scenarios while PowerCfg is
monitoring timer resolution can be useful to locate timer issues.

Recommendations for Application Developers

When designing and developing applications, follow these best practices when using
high-resolution periodic timers:

✓ Understand the effect of high-resolution periodic timers on system power
consumption.

A single application can cause the system timer interval to change, which can
reduce system battery life as much as 25 percent.

✓ Validate that the system timer interval does not unexpectedly change the
application that is running.

To do this, run the PowerCfg utility with the /energy option and view the
resulting energy report for instances of timer resolution increase requests.

Specifying /duration 5 reduces the scan time to 5 seconds from the full 30-
second default. Some systems have permissions issues with writing the energy
report to the %systemroot%\system32 directory. Use the /output switch to
redirect to a different location\file name.

✓ If an application must use a high-resolution periodic timer, enable the periodic
timer only while the required functionality is active.

For example, if the high-resolution periodic timer is required for animation,
disable the periodic timer when the animation is complete. If the high-resolution
periodic timer is required for audio or video playback, consider disabling the
timer when:

• Playback is paused.

• The window or tab that contains the video player is not visible.

• The screen is dimmed or sleeping.

✓ If an application must use a high-resolution periodic timer, consider disabling use
of the periodic timer and associated functionality when a Power Saver power
plan is active or when the system is running on battery power.

Timer Coalescing Fundamentals

Timer coalescing enables application and device driver software to specify a tolerable
delay for the expiration of a software timer. The Windows kernel uses the tolerable
delay value to adjust the time that the timer is expired so that it coincides with the
expiration time of other software timers.

Although timer coalescing helps improve the average processor idle duration and
therefore reduce the overall system power consumption, developers should first
eliminate any unnecessary periodic activity in their software. Use timer coalescing for

Timers, Timer Resolution, and Development of Efficient Code - 8

June 16, 2010
© 2010 Microsoft Corporation. All rights reserved.

software timers only if it is impossible to change the periodic activity to an interrupt
or event-driven design.

Software should specify a minimum tolerable delay of 32 ms, which corresponds to
the duration of two default system clock intervals of 15.6 ms each. If possible, a
larger tolerable delay, such as 50 ms, is preferred. Also, the tolerable delay can often
scale up with the period of the timer. For example, a 500-ms timer might use a 50-ms
tolerable delay, whereas a 10-second timer could use a 1-second tolerable delay.

To improve system efficiency for software timers that can be coalesced, developers
can specify both the period and the tolerable delay for the timers in multiples of
50 ms. For example, use timer periods of 50, 100, 250, 500, and 1,000 ms. Similarly,
tolerable delay values of 50, 100, 150, and 250 ms are appropriate.

The key consideration when developers migrate periodic activity to use software
timers that can be coalesced is that the period between successive timer expirations
is not guaranteed. The duration of time between any two timer expirations is within
the range of the period of the timer, plus or minus the tolerable delay.

Kernel-Mode Timer Coalescing Function

Developers can take advantage of Windows timer coalescing in device drivers by
using the new kernel-mode KeSetCoalescableTimer function. However, developers
should first determine whether they can remove any periodic activity from drivers
and change to interrupt or event-driven designs. If eliminating periodic activity is not
possible, Windows timer coalescing helps the periodic activity become more efficient.
For more information, see “KeSetCoalescableTimer” in the Windows Driver Kit
(WDK).

The following is the function prototype for the KeSetCoalescableTimer function:

NTKERNELAPI

BOOLEAN

KeSetCoalescableTimer (

 __inout PKTIMER Timer,

 __in LARGE_INTEGER DueTime,

 __in ULONG Period,

 __in ULONG TolerableDelay,

 __in_opt PKDPC Dpc

);

KeSetCoalesableTimer resembles the KeSetTimerEx function that is used to set the
period when a timer should periodically expire. In many situations existing calls to
KeSetTimerEx can easily be replaced with calls to KeSetCoalescableTimer. The
TolerableDelay parameter is the only new parameter for the KeSetCoalescableTimer
function. This parameter lets the caller specify the tolerance for the timer's period in
milliseconds. For more information, see “KeSetTimerEx” in the WDK.

Developers should specify a tolerance of at least 32 ms for the TolerableDelay
parameter. Optimally, the tolerance scales up with the period of the timer. For
example, if a timer has a period of 1 second, a tolerable delay of at least 50 ms is
appropriate. However, if a timer has a period of 30 seconds, it should have a tolerable
delay of at least 1,000 ms.

Timers, Timer Resolution, and Development of Efficient Code - 9

June 16, 2010
© 2010 Microsoft Corporation. All rights reserved.

The following table describes the requirements for calling the KeSetCoalescableTimer
function.

KeSetCoalescableTimer requirements

Interrupt request level
(IRQL)

<= DISPATCH_LEVEL

Headers Declared in wdm.h. Include wdm.h, ntddk.h, or ntifs.h.

Supported operating
systems

Windows 7 or Windows Server® 2008 R2 and later
versions.

An alternative is to use an IoTimer routine, which is a deferred procedure call (DPC)
that is called one time per second. The underlying timer for an IoTimer routine is
automatically coalesced in Windows 7 and later versions of Windows with a minimal
(32-ms) tolerable delay. For more information, see “IoTimer” in the WDK.

Timer Coalescing within a WDF Driver

Windows timer coalescing is available in the Windows Driver Framework (WDF)
beginning with version 1.9. Developers can specify a tolerable delay value in the
TolerableDelay member of the WDF_TIMER_CONFIG structure. WDF version 1.9
defines the WDF_TIMER_CONFIG structure as follows:

typedef struct _WDF_TIMER_CONFIG {

 ULONG Size;

 PFN_WDF_TIMER EvtTimerFunc;

 ULONG Period;

 BOOLEAN AutomaticSerialization;

 ULONG TolerableDelay;

} WDF_TIMER_CONFIG, *PWDF_TIMER_CONFIG;

The following table describes the requirements for using the TolerableDelay member
of the WDF_TIMER_CONFIG structure.

WDF_TIMER_CONFIG.TolerableDelay requirements

WDF version WDF version 1.9 and later

Headers Declared in wdftimer.h. Include wdf.h

Supported operating systems Windows 7 or Windows Server 2008 R2 and later
versions

User-Mode Timer Coalescing Function

Developers can take advantage of Windows timer coalescing in applications and
services by using the new user-mode SetWaitableTimerEx function. However, similar
to device drivers, developers should first determine whether they can remove any
periodic activity from applications and services and change to event-driven designs. If
periodic activity cannot be eliminated, Windows timer coalescing helps the periodic
activity become more efficient. For more information, see “SetWaitableTimerEx
Function” on the MSDN website.

Timers, Timer Resolution, and Development of Efficient Code - 10

June 16, 2010
© 2010 Microsoft Corporation. All rights reserved.

 The following is the function prototype for the SetWaitableTimerEx function:

BOOL

WINAPI

SetWaitableTimerEx(

 __in HANDLE hTimer,

 __in const LARGE_INTEGER *lpDueTime,

 __in LONG lPeriod,

 __in_opt PTIMERAPCROUTINE pfnCompletionRoutine,

 __in_opt LPVOID lpArgToCompletionRoutine,

 __in_opt PREASON_CONTEXT WakeContext,

 __in ULONG TolerableDelay

);

SetWaitableTimerEx resembles the SetWaitableTimer function that is used to set the
period when a timer should periodically expire. In many situations it is easy to replace
existing calls to SetWaitableTimer with calls to SetWaitableTimerEx.
SetWaitableTimerEx has two new parameters: WakeContext and TolerableDelay. Use
the WakeContext parameter only when setting a timer that can wake the system
from a sleep state. The TolerableDelay parameter lets the caller specify the tolerance
for the timer's period in milliseconds. For more information, see
“SetWaitableTimerEx Function” on the MSDN website.

Developers should specify a tolerance of at least 32 ms for the TolerableDelay
parameter. Optimally, the tolerance scales up with the period of the timer. For
example, if a timer has a period of 1 second, a tolerable delay of at least 50 ms is
appropriate. However, if a timer has a period of 30 seconds, it should have a tolerable
delay of at least 1,000 ms.

The following table describes the requirements for calling the SetWaitableTimerEx
function.

SetWaitableTimerEx requirements

Header Winbase.h

Library Kernel32.lib
DLL Kernel32.dll

Supported operating systems Windows 7 or Windows Server 2008 R2 or later versions

Best Practices for Using Timer Coalescing

Developers should use Windows timer coalescing to help improve the energy
efficiency of their application and device driver software. However, timer coalescing
cannot replace due diligence. Developers should first eliminate any unnecessary
periodic activity in their software and change that activity to event-driven or
interrupt-based designs.

When developers use the Windows timer coalescing functions, they should use the
following best practices:

✓ Review application and driver software for opportunities to take advantage of
timer coalescing. Remember that the period for a coalesced timer is not
guaranteed. However, successive timer expirations are always within plus or
minus the tolerable delay of the specified period.

✓ Specify a value for the TolerableDelay parameter of at least 32 ms, which
corresponds to two 15.6-ms platform timer interrupt intervals.

Timers, Timer Resolution, and Development of Efficient Code - 11

June 16, 2010
© 2010 Microsoft Corporation. All rights reserved.

✓ Scale up the tolerable delay with the period of the timer. For example, if a
tolerable delay of 50 ms is appropriate for a timer that has a 500-ms period, then
a tolerable delay of 100 ms is appropriate for a timer that has a 1-second period.

✓ Specify tolerable delay values and timer periods in multiples of 50 ms, for
example, 50, 100, 250, 500 ms, and so on.

If possible, change periodic activity in device drivers to use an IoTimer routine, which
is called one time per second and is automatically coalesced by the Windows kernel.

Conclusion

Modern processors are adept at reducing power use when idle, and advances such as
Intelligent Timer Tick Distribution enable further power reductions. Applications can
allow systems to reduce power consumption by using timer resolution appropriately
and can enhance power savings by using timer coalescing. By using timer coalescing,
developers also facilitate future power saving advances by increasing idle periods.

Resources

MSDN:
SetWaitableTimerEx Function

http://msdn.microsoft.com/en-us/library/dd405521(VS.85).aspx

timeBeginPeriod Function
http://msdn.microsoft.com/en-us/library/dd757624%28VS.85%29.aspx

Windows Driver Kit (WDK):
IoTimer

http://msdn.microsoft.com/en-us/library/ff550381.aspx

KeSetCoalescableTimer
http://msdn.microsoft.com/en-us/library/ff553249(VS.85).aspx

KeSetTimerEx
http://msdn.microsoft.com/en-us/library/ff553292(VS.85).aspx

WHDC:
Energy Smart Software

http://www.microsoft.com/whdc/system/pnppwr/powermgmt/Energy-
Smart_SW.mspx

The Science of Sleep
http://www.microsoft.com/whdc/system/pnppwr/powermgmt/Science-
Sleep.mspx

http://msdn.microsoft.com/en-us/library/dd405521(VS.85).aspx
http://msdn.microsoft.com/en-us/library/dd757624%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ff550381.aspx
http://msdn.microsoft.com/en-us/library/ff553249(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ff553292(VS.85).aspx
http://www.microsoft.com/whdc/system/pnppwr/powermgmt/Energy-Smart_SW.mspx
http://www.microsoft.com/whdc/system/pnppwr/powermgmt/Energy-Smart_SW.mspx
http://www.microsoft.com/whdc/system/pnppwr/powermgmt/Science-Sleep.mspx
http://www.microsoft.com/whdc/system/pnppwr/powermgmt/Science-Sleep.mspx

