

Pay Pre-Pay

Approach

Sockets

Hardware

Acceleration

Application type

General Apps

Low Latency

Apps

Compatibility with

UDP/TCP

Yes

No

Modifications

N/A

Extensive

Hardware

Acceleration

Low Latency

Apps

No Extensive

Extreme Low

Latency Apps

RIO Sockets Low Latency Apps Yes Moderate

Approach Application Type Compatibility with

UDP/TCP

Modifications

Sockets General Apps Yes N/A

Better Predictability

Lower Latency

Higher Throughput

RIO ~15 - 30% reduction in latency

Variability (stdev) reduced by a factor of 7

Maximum values reduced by a factor of 5

Windows Server 2008R2 sustains ~2 Million
datagrams per second

With RIO, we have seen double the
datagrams per second

Winsock I/O Model

I/O initiation
I/O

processing

I/O

completion

Physical

Memory

WSARecv(socket, buffer) User Virtual Address

Space

User

Kernel

I/O

Initiation

I/O

Processing

I/O

Completion

App

Winsock

I/O Manager

Winsock/Transport
I/O Request

NIC

NIC

Physical

Memory

DMA

User

Kernel

I/O

Initiation

I/O

Processing

I/O

Completion

User Virtual Address

Space

App

Winsock

I/O Manager

Winsock/Transport
I/O Request

WSARecv(socket, buffer)

App

Winsock

I/O Manager

Winsock/Transport

Physical

Memory

GetQueuedCompletionStatus()

NIC

User

Kernel

I/O

Initiation

I/O

Processing

I/O

Completion

User Virtual Address

Space

I/O Request

WSARecv(socket, buffer)

RIO

User

Kernel

App

Winsock

I/O Manager

Winsock/Transport

RIORegisterBuffer(buffer,size)
rbid

Physical

Memory

User Virtual Address

Space

RB

NIC

App

Winsock

I/O Manager

Winsock/Transport

RIOCreateRequestQueue(socket,size,cq)
RIOCreateCompletionQueue(size)

CQ

cq

RQ

rq

User

Kernel

NIC

NIC

CQ

App

Winsock

I/O Manager

Winsock/Transport

User

Kernel

RIOReceive(rq,rbid) RIODequeueCompletion(cq)

RIONotify(cq)

RQ

R

R

C

C

App

OS Kernel Pending I/O

requests

Completed I/O

requests

User

Kernel

Developing apps with the

RIO socket API

• What is New for RIO

• RIOSend, RIOSendEx,
RIOReceive, RIOReceiveEx

• RIOCreateRequestQueue (and
related)

• RIOCreateCompletionQueue
(and related)

• RIODequeueCompletion

• RIONotify

• RIORegisterBuffer

Length

RIO_BUF descriptors are used to

carve up the large RIOBUFFER

which is ‘locked down’

RIOSend/RIOReceive calls use

RIO_BUF descriptors to perform I/O

RIO Buffer

Registered

Memory

RIO_Buf

Descriptors

Offset

Length

Offset

Length

Offset

App

Socket

DLLs

Socket

Each RIO socket has dedicated

request queue, and a completion

queue

Request

Queue

Completion

Queue (CQ)

OR

Each RIO socket has separate

completion queues for SEND and

RECV

Request

Queue
Receive

CQ
Send

CQ

App

Socket

DLLs

Socket

App

Socket

DLLs

• Completion Queues may

be shared, making it easy

to handle multiple sockets.

• Alternatively, separate

completion queues make it

easy to segregate

completions to different

cores or NUMA nodes.

Request

Queues

Shared

CQ

Socket
Socket

Socket

SOCKET SocketHandle = WSASocket(
AF_INET,
SOCK_DGRAM,
IPPROTO_UDP,
NULL,
0,
WSA_FLAG_REGISTERED_IO);

R RIOCreateCompletionQueue

RIO_RQ CQ = RIOCreateRequestQueue(
SocketHandle,
MaxOutstandingReceiveRequests,
Reserved,
MaxOutstandingSendRequests,
Reserved,
CompletionQueueForReceiveCompletions,
CompletionQueueForSendCompletions,
UserSpecifiedPerSocketContextInformation);

RIOCreateRequestQueue

BOOL RIOSend(RIO_RQ SocketQueue,
PRIO_BUF pData,
ULONG Reserved,
DWORD Flags,
PVOID RequestContext);

//RioSendEx allows you specify other parameters (e.g. destination address etc.)

First Parameter is a

Request Queue – not a

socket

The data you send is

described by a RIO_BUF

BOOL RIOSend(RIO_RQ SocketQueue,
PRIO_BUF pData,
ULONG Reserved,
DWORD Flags,
PVOID RequestContext);

//RioSendEx allows you specify other parameters (e.g. destination address etc.)

BOOL RIOSend(RIO_RQ SocketQueue,
PRIO_BUF pData,
ULONG Reserved,
DWORD Flags,
PVOID RequestContext);

//RioSendEx allows you specify other parameters (e.g. destination address etc.)

BOOL RIOSend(RIO_RQ SocketQueue,
PRIO_BUF pData,
ULONG Reserved,
DWORD Flags,
PVOID RequestContext);

//RioSendEx allows you specify other parameters (e.g. destination address etc.)

ULONG NResults = 0;
RIORESULT Results[MaxResults];

// Poll the completion queue for completions

while (0 == (NResults = RIODequeueCompletion(CQ,
&Results[0], MaxResults))) {

YieldProcessor();
}

// Wait for one or more completions, and
// get them all in one operation

GetQueuedCompletionStatus(IocpHandle …)

NResults = RIODequeueCompletion(CQ, &Results[0], MaxResults);

RIO_NOTIFICATION_COMPLETION NotificationCompletion;

NotificationCompletion.Type = RIO_IOCP_COMPLETION;
NotificationCompletion.Iocp.IocpHandle = Iocp;
NotificationCompletion.Iocp.Overlapped = &Overlapped;
NotificationCompletion.Iocp.CompletionKey = NULL;

CQ = Rio.RIOCreateCompletionQueue(QueueSize, &NotificationCompletion);

Adding RIO Sockets

to Your App

Determine if your system supports RIO at run-time

• Check Windows version information.

• Attempt to create a RIO socket. This will fail if RIO is not supported.

• Attempt to retrieve the RIO Function Extensions. This will fail if RIO is not supported.

You can include RIO code in your app safely

…even if the runtime platform doesn’t support RIO

• RIO Functionality won’t work – of course

• But no Runtime Linkage problems

• This also means you could develop your code on Windows 7 and copy it to
Windows Server 8 machine for testing.

Recap

Better Predictability

Lower Latency

Higher Throughput

RIO ~15 - 30% reduction in latency

Variability (stdev) reduced by a factor of 7

Maximum values reduced by a factor of 5

Windows Server 2008R2 sustains ~2 Million
datagrams per second

With RIO, we have seen double the
datagrams per second

