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Sockets General Apps Yes N/A





Better Predictability

Lower Latency

Higher Throughput

RIO ~15 - 30% reduction in latency

Variability (stdev) reduced by a factor of 7

Maximum values reduced by a factor of 5

Windows Server 2008R2 sustains ~2 Million 
datagrams per second

With RIO, we have seen double the 
datagrams per second



Winsock I/O Model
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Developing apps with the 

RIO socket API



• What is New for RIO

• RIOSend, RIOSendEx, 
RIOReceive, RIOReceiveEx

• RIOCreateRequestQueue (and 
related)

• RIOCreateCompletionQueue
(and related)

• RIODequeueCompletion

• RIONotify

• RIORegisterBuffer
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• Completion Queues may 
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SOCKET SocketHandle = WSASocket(  
AF_INET,
SOCK_DGRAM,
IPPROTO_UDP,
NULL,
0,
WSA_FLAG_REGISTERED_IO);



R RIOCreateCompletionQueue



RIO_RQ CQ = RIOCreateRequestQueue( 
SocketHandle,
MaxOutstandingReceiveRequests,
Reserved,
MaxOutstandingSendRequests,
Reserved,
CompletionQueueForReceiveCompletions,
CompletionQueueForSendCompletions,
UserSpecifiedPerSocketContextInformation);

RIOCreateRequestQueue



BOOL RIOSend( RIO_RQ SocketQueue,  
PRIO_BUF pData,
ULONG Reserved,  
DWORD Flags,  
PVOID RequestContext);

//RioSendEx allows you specify other parameters  (e.g. destination address etc.)

First Parameter is a 

Request Queue – not a 

socket



The data you send is 

described by a RIO_BUF

BOOL RIOSend( RIO_RQ SocketQueue,  
PRIO_BUF pData,
ULONG Reserved,  
DWORD Flags,  
PVOID RequestContext);

//RioSendEx allows you specify other parameters  (e.g. destination address etc.)



BOOL RIOSend( RIO_RQ SocketQueue,  
PRIO_BUF pData,
ULONG Reserved,  
DWORD Flags,  
PVOID RequestContext);

//RioSendEx allows you specify other parameters  (e.g. destination address etc.)



BOOL RIOSend( RIO_RQ SocketQueue,  
PRIO_BUF pData,
ULONG Reserved,  
DWORD Flags,  
PVOID RequestContext);

//RioSendEx allows you specify other parameters  (e.g. destination address etc.)





ULONG NResults = 0;
RIORESULT Results[MaxResults];

// Poll the completion queue for completions

while (0 == (NResults = RIODequeueCompletion(CQ,          
&Results[0], MaxResults))) {

YieldProcessor();
}



// Wait for one or more completions, and 
// get them all in one operation

GetQueuedCompletionStatus(IocpHandle …)

NResults = RIODequeueCompletion(CQ, &Results[0], MaxResults);



RIO_NOTIFICATION_COMPLETION NotificationCompletion;

NotificationCompletion.Type = RIO_IOCP_COMPLETION;
NotificationCompletion.Iocp.IocpHandle = Iocp;
NotificationCompletion.Iocp.Overlapped = &Overlapped;
NotificationCompletion.Iocp.CompletionKey = NULL;

CQ = Rio.RIOCreateCompletionQueue(QueueSize, &NotificationCompletion);





Adding RIO Sockets 

to Your App







Determine if your system supports RIO at run-time

• Check Windows version information.

• Attempt to create a RIO socket. This will fail if RIO is not supported.

• Attempt to retrieve the RIO Function Extensions.  This will fail if RIO is not supported.

You can include RIO code in your app safely

…even if the runtime platform doesn’t support RIO

• RIO Functionality won’t work – of course

• But no Runtime Linkage problems 

• This also means you could develop your code on Windows 7 and copy it to 
Windows Server 8 machine for testing.





Recap





Better Predictability

Lower Latency

Higher Throughput

RIO ~15 - 30% reduction in latency

Variability (stdev) reduced by a factor of 7

Maximum values reduced by a factor of 5

Windows Server 2008R2 sustains ~2 Million 
datagrams per second

With RIO, we have seen double the 
datagrams per second








