
Kernel Debugging Tutorial © 2005 Microsoft Corporation 1

Kernel Debugging with WinDbg

Getting Set Up

Fundamentals

Selected Techniques

Getting More Information

The debuggers in Debugging Tools for Windows are powerful, but they have a steep

learning curve. This is particularly true for WinDbg and KD, the kernel debuggers used by

driver developers (CDB and NTSD are user-space debuggers). The aim of this tutorial is to

give a developer experienced with other debuggers enough information to get launched into

kernel debugging and to use the Debugging Tools for Windows help file as a reference. The

developer is assumed to be familiar with the general concepts of the Windows operating

system and the build process.

The focus will be mainly on WinDbg, a kernel-mode and user-mode debugger with a

graphical interface. KD is more useful for scripts and automated debugging and enjoys the

reputation of being the tool of choice of the most serious programmers, but this tutorial will

focus on WinDbg and will merely allude to KD from time to time.

The target operating system is Windows 2000 or later. Much of what is described here

works for Windows NT 4.0, too. Furthermore, the target computer's processor uses x86

architecture. While much here will work for 64-bit targets, no specific attention will be given

them.

In overview, the tutorial begins with a brief description of setting up for debugging. The bulk

of the tutorial is two sections, fundamentals and selected techniques. Fundamentals are the

basic and most-often used debugger commands. Selected techniques are those other

commands and investigative approaches that will be useful in many situations. This latter

section is not, however, an exploration of substantive techniques that might be used to

investigate things like deadlocks, memory corruption or resource leaks. On first reading of

the tutorial, you may want to skip the selected techniques. The tutorial concludes by

pointing to the Microsoft debugger discussion group and the debugger feedback e-mail

address for further questions.

Getting set up

Get the latest!

Obtain the latest debugger, and update it regularly. The value of having the latest release

can hardly be overstated, because the debugger enjoys frequent improvements and fixes.

The debugger can be downloaded at

http://www.microsoft.com/whdc/devtools/debugging/default.mspx.

Host and target connection

http://www.microsoft.com/whdc/devtools/debugging/default.mspx

Kernel Debugging Tutorial © 2005 Microsoft Corporation 2

The debugging setup will be a two computer arrangement, connected by a null-modem

cable or by a 1394 cable. This tutorial does not examine “local” debugging on a single

system (where the debugger examines the computer it is running on). Three computer

debugging (target, debugging server and debugging client) will be briefly discussed.

A debugging session is a cooperative process between the host-side debugging application

(WinDbg or KD) and the target operating system; each party must do something. More

specifically, WinDbg is not a “hypervisor operating system” that runs the target as a guest

and is a real operating system in its own right. WinDbg is a debugging application in

partnership with a target operating system that is aware of its role in the debugging process.

In that partnership, the target sends information to and receives information from WinDbg.

The communication mechanism must be good, and it must be efficient.

A serial protocol is the tried-and-true mechanism for communication between the debugger

application and the target system. You connect the host and target machines with a null-

modem cable at a COM port at each end. An alternative communication mechanism is 1394.

The Debugging Tools for Windows help file describes each of these and how to configure the

target system in the topic “Configuring Software on the Target Computer.”

Your first session

Your host computer is assumed to be running Windows 2000 or later. The host operating

system can be a different version of Windows than the target operating system. The host

computer may be where you do your usual development, maintenance or troubleshooting.

It should be connected to the network if you want access to symbol and source servers (see

symbols and source).

From a Command Prompt window, change the current directory to the installation directory

of Debugging Tools for Windows. This is the directory in which windbg.exe and kd.exe are

Kernel Debugging Tutorial © 2005 Microsoft Corporation 3

located. Type windbg and press Enter. You should see this:

Windowing

At this point you can arrange your windows. The following example involves floating

windows. Start with the combined window that is the first above. Click on the bar labeled

“Command” and drag that bar and its window away from the main frame. Then shrink the

main frame, since you can use keystrokes instead of directly using the menu or the buttons.

Then use FileKernel Debug to get the protocol popup, and choose 1394 with channel 1.

At this point, your desktop looks like this:

Kernel Debugging Tutorial © 2005 Microsoft Corporation 4

Then click OK in the Kernel Debugging window.

Making the connection active

Now you are ready to make a connection between host and target. Go to the target

machine and boot Windows from one of the debugging entries. Immediately go back to the

host system, touch the WinDbg command window with the cursor to make it active, and

press CTRL+BREAK. In a few seconds you should see this:

Don't worry for now about the messages concerning symbols. You have a WinDbg

connection to a Windows Server 2003 system. You're in business!

Kernel Debugging Tutorial © 2005 Microsoft Corporation 5

A small but crucial thing to understand: The area at the very bottom of the command

window shows the “kd>” prompt. That means that WinDbg is ready to accept commands

there. If no prompt is displayed, WinDbg cannot process commands at this moment,

although any commands you type will be stored in a buffer and executed as soon as

possible. You must wait for “kd>” to appear to be sure WinDbg is ready to respond. It is a

fact of WinDbg‟s life that sometimes it is busy doing something you cannot see (such as

getting information from the target, and the information can be voluminous). The absence

of “kd>” is your only clue that WinDbg is busy. One possibility is that WinDbg is working to

resolve a symbol and taking longer than you might expect. Unfortunately, there is also the

occasional situation where WinDbg is waiting for something such as connection with a target

that will never respond (maybe boot.ini was configured badly, or the wrong option was

chosen). You will have to decide when enough time has passed to resort to drastic

measures like pressing CTRL+BREAK or, conceivably, stopping WinDbg and starting a new

instance.

Finding symbols and source

By now you are probably eager to start debugging, but there are a few more things you

should do, since they will improve your debugging experience enormously.

The first thing is to ensure that WinDbg can find the symbols for a module of interest.

Symbols indicate to what statement a binary instruction corresponds and what are the

variables in force. Symbols map, in other words. You have available the symbols and the

source files for your own modules, if they are in the same place as they were at build time.

But what if you need to step through some other code that may have been built long before

now? Or, for that matter, what if your code isn‟t in the same location where it was built?

To explicitly set a location for symbols, use the .sympath command. Break (CTRL-BREAK)

in the command window and type

.sympath

SRV*<DownstreamStore>*http://msdl.microsoft.com/download/symbols

to tell WinDbg to look for symbols on the Microsoft public symbols server. To get WinDbg to

use that server and to keep a copy of downloaded symbols in a local store, for example, in

D:\DebugSymbols, you would do:

.sympath SRV*d:\DebugSymbols*http://msdl.microsoft.com/download/symbols

Occasionally you may have trouble in getting symbols from the symbols server. In such a

case, begin with the !sym noisy command to get more information about what WinDbg is

trying to do to obtain symbols. Next, use !lmi to see what WinDbg knows about the one

essential Windows module, ntoskrnl. Then try to get symbols for ntoskrnl, using .reload /f.

Thus:

kd> !sym noisy

Kernel Debugging Tutorial © 2005 Microsoft Corporation 6

noisy mode - symbol prompts on

kd> !lmi nt

Loaded Module Info: [nt]

 Module: ntoskrnl

 Base Address: 80a02000

 Image Name: ntoskrnl.exe

 Machine Type: 332 (I386)

 Time Stamp: 3e80048b Mon Mar 24 23:26:03 2003

 Size: 4d8000

 CheckSum: 3f6f03

Characteristics: 10e

Debug Data Dirs: Type Size VA Pointer

 CODEVIEW 25, ee00, e600 RSDS - GUID: (0xec9b7590,

0xd1bb, 0x47a6, 0xa6, 0xd5, 0x38, 0x35, 0x38, 0xc2, 0xb3, 0x1a)

 Age: 1, Pdb: ntoskrnl.pdb

 Image Type: MEMORY - Image read successfully from loaded memory.

 Symbol Type: EXPORT - PDB not found

 Load Report: export symbols

The syntax of the commands used here is described in the Debugging Tools for Windows

help file.

Exported symbols are usually pretty meager. Debugging Tools for Windows includes a

symbol server that can connect to a public symbol store on Microsoft's internet site. Add

this to your symbol path, and then load symbols:

kd> .sympath

SRV*d:\DebugSymbols*http://msdl.microsoft.com/download/symbols

Symbol search path is: SRV*d:\ DebugSymbols

*http://msdl.microsoft.com/download/symbols

kd> .reload /f nt

Kernel Debugging Tutorial © 2005 Microsoft Corporation 7

SYMSRV:

\\symbols\symbols\ntoskrnl.pdb\EC9B7590D1BB47A6A6D5383538C2B31A1\file.p

tr

SYMSRV: ntoskrnl.pdb from \\symbols\symbols: 9620480 bytes copied

DBGHELP: nt - public symbols

d:\DebugSymbols\ntoskrnl.pdb\EC9B7590D1BB47A6A6D5383538C2B31A1\ntoskrnl

.pdb

kd> !lmi nt

Loaded Module Info: [nt]

 Module: ntoskrnl

 Base Address: 80a02000

 Image Name: ntoskrnl.exe

 Machine Type: 332 (I386)

 Time Stamp: 3e80048b Mon Mar 24 23:26:03 2003

 Size: 4d8000

 CheckSum: 3f6f03

Characteristics: 10e

Debug Data Dirs: Type Size VA Pointer

 CODEVIEW 25, ee00, e600 RSDS - GUID: (0xec9b7590,

0xd1bb, 0x47a6, 0xa6, 0xd5, 0x38, 0x35, 0x38, 0xc2, 0xb3, 0x1a)

 Age: 1, Pdb: ntoskrnl.pdb

 Image Type: MEMORY - Image read successfully from loaded memory.

 Symbol Type: PDB - Symbols loaded successfully from symbol

server.

d:\DebugSymbols\ntoskrnl.pdb\EC9B7590D1BB47A6A6D5383538C2B31A1\ntoskrnl

.pdb

 Compiler: C - front end [13.10 bld 2179] - back end [13.10 bld

2190]

 Load Report: public symbols

Kernel Debugging Tutorial © 2005 Microsoft Corporation 8

d:\DebugSymbols\ntoskrnl.pdb\EC9B7590D1BB47A6A6D5383538C2B31A1\ntoskrnl

.pdb

While symbols will give you some information, they do not provide source code. In the

simplest case, source files will be found in the same place they were at build time (the

location will be in the binary and symbol files). But in many cases, they cannot be found

there (they may have been moved), and you must specify where to look. For that you need

a source path, for example,

.srcpath e:\Win2003SP1

That means: For source files, look in the e:\Win2003SP1 directory.

Another solution is to name a source server, if you have one:

.srcpath \\MySrcServer

If you experience trouble in getting source files, you should do .srcnoisy 1 to get more

information about what the debugger is doing to find them.

Workspaces

You‟ve not begun actual debugging, yet you have done a good deal of typing already. A lot

of the settings can be kept in a workspace. So you might use FileSave to save the

settings in a workspace, perhaps one you name kernel1394Win2003. After that, you could

start WinDbg with that workspace:

windbg -W kernel1394Win2003 -k 1394:channel=1

where –W specifies a workspace and –k gives the communication protocol (refer to the

Debugging Tools for Windows help file under “WinDbg Command-Line Options”). Note: You

should be careful to preserve lower and upper case in the command-line options you give to

WinDbg or KD.

To make things easier, you can put a shortcut on your desktop to start WinDbg with the

desired workspace, for example, with a 1394 connection:

Kernel Debugging Tutorial © 2005 Microsoft Corporation 9

The contents of the file above are:

cd /d "d:\Program Files\Debugging Tools for Windows"

start windbg.exe -y

SRV*d:\DebugSymbols*http://msdl.microsoft.com/download/symbols -W

kernel1394Win2003

The first line makes the Debugging Tools for Windows installation directory the current

directory, to ensure that debugger modules will be found. The second line starts WinDbg,

specifying a symbol path (-y) and workspace (-W).

A sample driver

It will be helpful to exercise WinDbg with the sample driver IoCtl. This can be found in the

Windows Device Driver Kit (DDK) and its successor, the Windows Driver Kit (WDK). Install

this kit and look in the src\general\Ioctl subdirectory. The advantages of IoCtl are that it is

simple and that it is a “legacy” driver, that is, one loaded by the Service Control Manager

(SCM) and not a part of Plug-and-Play (the in‟s and out‟s of PnP are not of interest here).

Kernel Debugging Tutorial © 2005 Microsoft Corporation 10

You should build both the user-space executable (ioctlapp.exe) and the kernel-space driver

(sioctl.sys), since the former will load the latter.

Here is something fairly important to understand. The build process is quite smart about

optimizing code, and optimization can result in code movement (logic is of course preserved)

and in keeping variable values solely in registers. To ensure a straightforward debugging

experience, you should produce a checked build with this compiler directive given in the

build window or in the appropriate sources file:

MSC_OPTIMIZATION=/Od

(That is “Oh d” and not “zero d.”)

Sometimes the above will result in a build problem with intrinsic functions like memcmp. If

you run into that problem, try:

MSC_OPTIMIZATION=/Odi

Please understand that preventing optimization is not a good choice for a production build.

With the above directive, you would not be creating and would not be testing a production-

type build. It is nonetheless a good practice to start testing with non-optimized builds and,

once you are familiar with the code and have eliminated the simpler errors, to advance to

production builds. When you have to deal with optimized code, you will find some assistance

in dealing with optimized code.

Starting to debug the sample driver

Set a breakpoint in IoCtl at DriverEntry. Before starting the driver, break into the WinDbg

command window and type this:

bu sioctl!DriverEntry

The bu (“Breakpoint Unresolved”) command defers the actual setting of the breakpoint until

the module is loaded; at that point, WinDbg will look in it for “DriverEntry.” Since there is

nothing more to do now, hit F5 (or you could type g, “Go”).

Next, copy ioctlapp.exe and sioctl.sys to a place on the target system such as

C:\Temp\IOCTL, log in with Administrator privileges on that system, and make

C:\Temp\IOCTL the current directory in a command window there. (You need not put this

Kernel Debugging Tutorial © 2005 Microsoft Corporation 11

path into a symbol path or source path in WinDbg.) In that same command window, type

ioctlapp and press Enter; in WinDbg you will see:

In the above, after execution stopped at the breakpoint, the !lmi command showed that

WinDbg did pick up the symbols from a DDK build. The timestamp is about what you would

expect, and the location of the symbol file is exactly that expected.

Depending on your docking arrangement, it may not be obvious, since windows can be

hidden by other windows, but you will have a source code window somewhere (the key

sequence „alt-Keypad *‟ ― without single quotation marks ― will bring that window to the

front):

Kernel Debugging Tutorial © 2005 Microsoft Corporation 12

The line marked in pink (the Debugging Tools for Windows help file calls it purple) is where

the breakpoint was set and is where execution stopped. Have execution proceed down to

IoCreateDevice (controlling execution says how this might be accomplished):

Kernel Debugging Tutorial © 2005 Microsoft Corporation 13

Here you see again the original breakpoint (highlighted in red, since now control is stopped

there), and you see the current statement marked in dark blue.

Fundamentals

That was a “test drive” in a debugging session. Here are the debugger‟s basic operations.

Commands, extensions, etc.

Commands come in several families: Plain (unadorned), ones beginning with a period (“.”)

and ones beginning with an exclamation point (“!”). The Debugging Tools for Windows help

file describes these families as commands, meta-commands and extension commands,

respectively. For present purposes, the families are pretty much the same.

Breakpoints

Causing an interruption in execution is one of the basic capabilities of the debugger. Here

are some ways that can be done.

 Breakin at operating system startup.

To get a break at the earliest point in operating system startup, be sure WinDbg is

properly connected, and do the key sequence CTRL-ALT-K repeatedly until you see:

At the next boot, the operating system will halt very shortly after ntoskrnl has

started but before any drivers have been loaded, and WinDbg will get control. This is

when you may wish to define breakpoints for drivers to be started at boot time.

 Ordinary breakpoints

Kernel Debugging Tutorial © 2005 Microsoft Corporation 14

The simplest breakpoints are those set via the bp (“Breakpoint”) command. For

example:

bp MyDriver!xyz

bp f89adeaa

In the first, the breakpoint is at a name in a module (<module>!<name>); in the

second, it is at the given address. When execution reaches one of those points, the

operating system halts and gives control to WinDbg. (You will see how to get the

address for the second command in finding a name.)

Note: The syntax of the first command assumes that the operating system has

loaded the module and that enough information is available through a symbol file or

through external names to identify xyz. If xyz cannot be found in the module, the

debugger will say so.

 Deferred breakpoints.

Speaking of drivers that haven‟t loaded, your very first breakpoint, set by bu (see

starting to debug the sample driver above), was a “deferred” breakpoint. The bu

command takes as a parameter the module and a name in it, for example:

bu sioctl!SioctlDeviceControl

where SioctlDeviceControl is an entry point or other name in the module sioctl.sys.

This form assumes that when the module is loaded, enough information will be

available to identify SioctlDeviceControl so that the breakpoint can be set. (If the

module is already loaded and the name is found, the breakpoint is set immediately.)

If the operating system cannot find SioctlDeviceControl, the debugger will say so,

and there will be no halt at SioctlDeviceControl.

A useful characteristic of deferred breakpoints is that they operate on

modules!names, whilst ordinary breakpoints operate on addresses or on

modules!names immediately resolved into addresses. Another feature of deferred

breakpoints is that they are remembered across boots (that wouldn‟t make sense for

address-expressed breakpoints). Yet another characteristic is that a deferred

breakpoint is remembered if the associated module is unloaded, whilst an ordinary

breakpoint is removed when the module is unloaded.

 Another way to set an ordinary breakpoint is via a source window. Return to

sioctl.sys. When you broke at DriverEntry, you could have scrolled the window down

to some place where you wished to stop, placed the cursor on the desired line and

hit F9:

Kernel Debugging Tutorial © 2005 Microsoft Corporation 15

The line in red is the breakpoint set via F9.

 To see all the breakpoints you‟ve defined, use the bl (“Breakpoint List”) command:

kd> bl

 0 e [d:\winddk\3790\src\general\ioctl\sys\sioctl.c @ 123]

0001 (0001) SIoctl!DriverEntry

 1 e [d:\winddk\3790\src\general\ioctl\sys\sioctl.c @ 338]

0001 (0001) Sioctl!SioctlDeviceControl+0x103

Kernel Debugging Tutorial © 2005 Microsoft Corporation 16

Notice a couple of things: Each breakpoint has a number, and breakpoint status is

shown, “e” for “enabled” or “d” for “disabled.”

 Now suppose you wish to take a breakpoint temporarily out of operation. bd

(“Disable Breakpoint”) would do the trick. You have to specify just the breakpoint

number:

kd> bd 1

kd> bl

 0 e [d:\winddk\3790\src\general\ioctl\sys\sioctl.c @ 123]

0001 (0001) SIoctl!DriverEntry

 1 d [d:\winddk\3790\src\general\ioctl\sys\sioctl.c @ 338]

0001 (0001) SIoctl!SioctlDeviceControl+0x103

 In a similar way, to remove breakpoint number 1 permanently, use bc 1 (“Clear

Breakpoint”). Now that breakpoint will be gone from the breakpoint list.

 Well and good. Sometimes, however, a breakpoint is set at a very busy place in the

operating system or a driver, and you may want to apply some conditions or

conditional actions so that the breakpoint stops only under those circumstances.

Here is the basic form:

bp SIoctl!SioctlDeviceControl+0x103 "j (@@(Irp)=0xffb5c4f8) '';

'g'"

The meaning of this is: Break only if the pointer Irp equals the address 0xFFB5C4F8;

if that condition is not met, proceed.

To go deeper into the above, the breakpoint is not itself conditional. Rather, the

breakpoint has an action clause (in double quotation marks); in that clause, the

command j (“Execute IF/ELSE”) is a conditional action. j's function is to execute its

TRUE|FALSE clauses (in single quotation marks). In the above, the TRUE clause (first)

is empty, so that when the breakpoint fires and the TRUE condition is met, WinDbg

would do nothing more than the default of halting. If the FALSE clause (second) is

met, execution would proceed, by executing g. One action or the other would be

done, depending on the condition in force.

 Consider next this slightly more elaborate form of the above:

bp SIoctl!SioctlDeviceControl+0x103 "j (@@(Irp)=0xffb5c4f8)

'.echo Found the interesting IRP' ; '.echo Skipping an IRP of no

interest; g' "

Kernel Debugging Tutorial © 2005 Microsoft Corporation 17

Here the TRUE clause puts out a message and stops. The FALSE clause puts out a

message and continues (a message is helpful because WinDbg would evaluate the

condition to FALSE and would otherwise go on silently).

Something to note: The following breakpoint, where register Eax is tested (you will

find registers treated more thoroughly in registers), won‟t work as you might expect:

bp SIoctl!SioctlDeviceControl+0x103 "j (@eax=0xffb5c4f8) '.echo

Here!' ; '.echo Skipping; g' "

The reason is that evaluation may “sign-extend” the register‟s value to 64 bits, i.e.,

to 0xFFFFFFFF`FFB5C4F8, and that would not match 0x00000000`FFB5C4F8. This

will be a issue only if the highest bit of the 32-bit value is 1 and if some other

conditions (for example, a 32-bit register) apply. “Sign Extension” in the Debugging

Tools for Windows help file gives details (see also “Setting a Conditional Breakpoint”

there).

A breakpoint may have conditions, with or without conditional actions. One condition

is “one-shot” firing: The breakpoint is to fire only once (it is cleared after being hit).

This is handy for a very high-traffic piece of code where you are interested in the

first hit only.

bp /1 SIoctl!SioctlDeviceControl+0x103

Another useful condition is a test for a process or thread:

bp /p 0x81234000 SIoctl!SioctlDeviceControl+0x103

bp /t 0xff234000 SIoctl!SioctlDeviceControl+0x103

which mean, respectively, Stop at the indicated point only if the process block

(EPROCESS) is at 0x81234000, and Stop at the indicated point only if the thread

block (ETHREAD) is at 0xFF234000.

Conditions can be combined:

bp /1 /C 4 /p 0x81234000 SIoctl!SioctlDeviceControl+0x103

The meaning here is, Break once but only when the call stack depth is greater than

four (here capitalization of “C” is significant, because “c” means “less than”) and the

process block is at 0x81234000.

 A different kind of breakpoint is one that is specified for access. For example,

ba w4 0xffb5c4f8+0x18+0x4

Kernel Debugging Tutorial © 2005 Microsoft Corporation 18

The address was taken from the IRP whose address you saw above, and at the offset

0x18+0x4 into the IRP is the IoStatus.Information member. So the breakpoint will

fire when something attempts an update of the four bytes constituting

IoStatus.Information in that IRP. Such breakpoints are called data breakpoints

(because they are triggered by data access) or processor breakpoints (because they

are implemented by the processor, not the debugger itself).

Expressions: MASM versus C++

You will probably agree that it is handy to use a variable in a driver program to provide a

parameter value like process address. Doing that, however, demands that you understand

something of debugger expressions.

The debugger has two ways of evaluating expressions, referred to “MASM” (Microsoft Macro

Assembler) and “C++.” To quote the Debugging Tools for Windows help file under “MASM

Expressions vs. C++ Expressions”:

In a MASM expression, the numerical value of any symbol is its memory address. In

a C++ expression, the numerical value of a variable is its actual value, not its

address.

Reading and re-reading that section will repay your time well.

An expression will be evaluated by MASM rules, C++ rules or a combination. In brief,

1. The default expression type is MASM.

2. The default type can be changed by .expr (see the Debugging Tools for Windows

help file).

3. Certain commands always use C++ evaluation.

4. Evaluation of a specific expression (or part of an expression) can be changed to

the form opposite to the usual expression type by prefixing the expression with

“@@.”

Even this summary is fairly involved, and you should refer to “Evaluating Expressions” in

the Debugging Tools for Windows help file for the details. For now, here are a few examples

to give a sense of how evaluation works.

Earlier you were stopped at Sioctl!SioctlDeviceControl+0x103, so use dv to look at a

variable known there (see the dv command for more information):

kd> dv Irp

 Irp = 0xff70fbc0

The response means, The variable Irp contains 0xFF70FBC0. Further, dv is interpreting its

parameter in C++ terms, in that the response is based on the variable‟s content and not on

its address. You can confirm that so:

Kernel Debugging Tutorial © 2005 Microsoft Corporation 19

kd> ?? Irp

struct _IRP * 0xff70fbc0

since ?? always functions on the basis of C++ (see the ?? command). For the MASM type of

evaluation, try ? (see the ? command):

kd> ? Irp

Evaluate expression: -141181880 = f795bc48

which means, The variable Irp is located at 0XF795BC48. You can confirm that the variable

at that location truly does contain the value 0xFF70FBC0 by displaying memory via dd (see

the dd command):

kd> dd f795bc48 l1

f795bc48 ff70fbc0

And the storage pointed to is:

kd> dd 0xff70fbc0

ff70fbc0 00940006 00000000 00000070 ff660c30

ff70fbd0 ff70fbd0 ff70fbd0 00000000 00000000

ff70fbe0 01010001 04000000 0006fdc0 00000000

ff70fbf0 00000000 00000000 00000000 04008f20

ff70fc00 00000000 00000000 00000000 00000000

ff70fc10 ff73f4d8 00000000 00000000 00000000

ff70fc20 ff70fc30 ffb05b90 00000000 00000000

ff70fc30 0005000e 00000064 0000003c 9c402408

This indeed looks like an IRP, as dt shows (see the dt command), since the Type and Size

members have plausible values:

kd> dt Irp

Local var @ 0xf795bc48 Type _IRP*

0xff70fbc0

 +0x000 Type : 6

 +0x002 Size : 0x94

 +0x004 MdlAddress : (null)

Kernel Debugging Tutorial © 2005 Microsoft Corporation 20

 +0x008 Flags : 0x70

 +0x00c AssociatedIrp : __unnamed

 +0x010 ThreadListEntry : _LIST_ENTRY [0xff70fbd0 - 0xff70fbd0]

 +0x018 IoStatus : _IO_STATUS_BLOCK

 +0x020 RequestorMode : 1 ''

 +0x021 PendingReturned : 0 ''

 +0x022 StackCount : 1 ''

 +0x023 CurrentLocation : 1 ''

 +0x024 Cancel : 0 ''

 +0x025 CancelIrql : 0 ''

 +0x026 ApcEnvironment : 0 ''

 +0x027 AllocationFlags : 0x4 ''

 +0x028 UserIosb : 0x0006fdc0

 +0x02c UserEvent : (null)

 +0x030 Overlay : __unnamed

 +0x038 CancelRoutine : (null)

 +0x03c UserBuffer : 0x04008f20

 +0x040 Tail : __unnamed

Sometimes you will want to employ C++ evaluation inside a MASM expression. The “@@”

prefix achieves that. Since extensions always use parameters as MASM expressions, you

can see the effect of @@ when it is employed with the extension!irp (see IRPs):

kd> !irp @@(Irp)

Irp is active with 1 stacks 1 is current (= 0xff70fc30)

 No Mdl System buffer = ff660c30 Thread ff73f4d8: Irp stack trace.

 cmd flg cl Device File Completion-Context

>[e, 0] 5 0 82361348 ffb05b90 00000000-00000000

 \Driver\SIoctl

 Args: 00000064 0000003c 9c402408 00000000

Kernel Debugging Tutorial © 2005 Microsoft Corporation 21

To repeat, without the @@ prefix to the variable Irp above, !irp would have used the

address of the variable rather than the value of the variable. To make the point concrete, if

the variable were located at 0xF795BC48 and contained the value 0xFF70FBC0, doing !irp Irp

instead of !irp @@(Irp) would ask WinDbg to format the IRP stack for an IRP supposedly

located at 0xF795BC48.

A further thing to understand: The @@ prefix is rather versatile, for its true meaning is, Use

the evaluation method other than that currently being used in the surrounding expression.

If the overall evaluation is MASM, @@ means C++, and if it is C++, @@ means MASM.

A final bit of advice: If you cannot get an expression to work as you expect, consider

whether you‟re asking the debugger to understand it in MASM or C++ terms.

Displaying and setting memory, variables, registers and so forth

There are quite a few ways to display and change things.

 To display the variables in the current routine (the current “scope”), use dv (“Display

Variables”). For example, if stopped at Sioctl!SioctlDeviceControl+0x103:

kd> dv

 DeviceObject = 0x82361348

 Irp = 0xff70fbc0

 outBufLength = 0x64

 buffer = 0x00000000 ""

 irpSp = 0xff70fc30

 data = 0xf886b0c0 "This String is from Device

Driver !!!"

 ntStatus = 0

 mdl = 0x00000000

 inBufLength = 0x3c

 datalen = 0x26

 outBuf = 0x00000030 ""

 inBuf = 0xff660c30 "This String is from User

Application; using METHOD_BUFFERED"

This is a list of parameter variables and local variables known at the breakpoint.

“Known” is an important qualifier. For example, if a variable is optimized into a

Kernel Debugging Tutorial © 2005 Microsoft Corporation 22

register, it will not be displayed, although one can dip into disassembly

(View(Disassembly brings up the disassembly window) and examine registers.

If only a single variable is of interest, you can do:

kd> dv outBufLength

 outBufLength = 0x64

 Another useful command is dt (“Display Type”). For example, continuing to use the

breakpoint at Sioctl!SioctlDeviceControl+0x103:

kd> dt Irp

Local var @ 0xf795bc48 Type _IRP*

0xff70fbc0

 +0x000 Type : 6

 +0x002 Size : 0x94

 +0x004 MdlAddress : (null)

 +0x008 Flags : 0x70

 +0x00c AssociatedIrp : __unnamed

 +0x010 ThreadListEntry : _LIST_ENTRY [0xff70fbd0 -

0xff70fbd0]

 +0x018 IoStatus : _IO_STATUS_BLOCK

 +0x020 RequestorMode : 1 ''

 +0x021 PendingReturned : 0 ''

 +0x022 StackCount : 1 ''

 +0x023 CurrentLocation : 1 ''

 +0x024 Cancel : 0 ''

 +0x025 CancelIrql : 0 ''

 +0x026 ApcEnvironment : 0 ''

 +0x027 AllocationFlags : 0x4 ''

 +0x028 UserIosb : 0x0006fdc0

 +0x02c UserEvent : (null)

 +0x030 Overlay : __unnamed

Kernel Debugging Tutorial © 2005 Microsoft Corporation 23

 +0x038 CancelRoutine : (null)

 +0x03c UserBuffer : 0x04008f20

 +0x040 Tail : __unnamed

The above says that the variable Irp is at 0xF795BC48 and that it contains

0xFF70FBC0; since dt knows the variable to be an IRP pointer (“Type _IRP*”), the

area at 0xFF70FBC0 is formatted as an IRP.

To expand the structure one level:

kd> dt -r1 Irp

Local var @ 0xf795bc48 Type _IRP*

0xff70fbc0

 +0x000 Type : 6

 +0x002 Size : 0x94

 +0x004 MdlAddress : (null)

 +0x008 Flags : 0x70

 +0x00c AssociatedIrp : __unnamed

 +0x000 MasterIrp : 0xff660c30

 +0x000 IrpCount : -10089424

 +0x000 SystemBuffer : 0xff660c30

 +0x010 ThreadListEntry : _LIST_ENTRY [0xff70fbd0 -

0xff70fbd0]

 +0x000 Flink : 0xff70fbd0 [0xff70fbd0 -

0xff70fbd0]

 +0x004 Blink : 0xff70fbd0 [0xff70fbd0 -

0xff70fbd0]

 +0x018 IoStatus : _IO_STATUS_BLOCK

 +0x000 Status : 0

 +0x000 Pointer : (null)

 +0x004 Information : 0

 +0x020 RequestorMode : 1 ''

 +0x021 PendingReturned : 0 ''

Kernel Debugging Tutorial © 2005 Microsoft Corporation 24

 +0x022 StackCount : 1 ''

 +0x023 CurrentLocation : 1 ''

 +0x024 Cancel : 0 ''

 +0x025 CancelIrql : 0 ''

 +0x026 ApcEnvironment : 0 ''

 +0x027 AllocationFlags : 0x4 ''

 +0x028 UserIosb : 0x0006fdc0

 +0x000 Status : 67142040

 +0x000 Pointer : 0x04008198

 +0x004 Information : 0x2a

 +0x02c UserEvent : (null)

 +0x030 Overlay : __unnamed

 +0x000 AsynchronousParameters : __unnamed

 +0x000 AllocationSize : _LARGE_INTEGER 0x0

 +0x038 CancelRoutine : (null)

 +0x03c UserBuffer : 0x04008f20

 +0x040 Tail : __unnamed

 +0x000 Overlay : __unnamed

 +0x000 Apc : _KAPC

 +0x000 CompletionKey : (null)

It is possible to display some structures even when they aren‟t in scope (assuming,

that is, that the memory in question has not been reused for some other purpose):

kd> dt nt!_IRP 0xff70fbc0

 +0x000 Type : 6

 +0x002 Size : 0x94

 +0x004 MdlAddress : (null)

 +0x008 Flags : 0x70

 +0x00c AssociatedIrp : __unnamed

Kernel Debugging Tutorial © 2005 Microsoft Corporation 25

 +0x010 ThreadListEntry : _LIST_ENTRY [0xff70fbd0 -

0xff70fbd0]

 +0x018 IoStatus : _IO_STATUS_BLOCK

 +0x020 RequestorMode : 1 ''

 +0x021 PendingReturned : 0 ''

 +0x022 StackCount : 1 ''

 +0x023 CurrentLocation : 1 ''

 +0x024 Cancel : 0 ''

 +0x025 CancelIrql : 0 ''

 +0x026 ApcEnvironment : 0 ''

 +0x027 AllocationFlags : 0x4 ''

 +0x028 UserIosb : 0x0006fdc0

 +0x02c UserEvent : (null)

 +0x030 Overlay : __unnamed

 +0x038 CancelRoutine : (null)

 +0x03c UserBuffer : 0x04008f20

 +0x040 Tail : __unnamed

The command above exploits your knowledge that there is an IRP at 0xFF70FBC0

and the fact that there is a mapping of the IRP structure in ntoskrnl.

 What if you‟re interested in a single field of a structure with many member fields?

Take the member Size, for example:

kd> dt nt!_IRP Size 0xff70fbc0

unsigned short 0x94

A rather more intuitive way is the ?? (“Evaluate C++ Expression”) command:

kd> ?? Irp->Size

unsigned short 0x94

That is, ?? understands that its parameter is a pointer to a member of the

appropriate structure.

Kernel Debugging Tutorial © 2005 Microsoft Corporation 26

 To display memory without the formatting above, commands like dd, dw and db

(“Display Memory”) are available:

kd> dd 0xff70fbc0 l0x10

ff70fbc0 00940006 00000000 00000070 ff660c30

ff70fbd0 ff70fbd0 ff70fbd0 00000000 00000000

ff70fbe0 01010001 04000000 0006fdc0 00000000

ff70fbf0 00000000 00000000 00000000 04008f20

kd> dw 0xff70fbc0 l0x20

ff70fbc0 0006 0094 0000 0000 0070 0000 0c30 ff66

ff70fbd0 fbd0 ff70 fbd0 ff70 0000 0000 0000 0000

ff70fbe0 0001 0101 0000 0400 fdc0 0006 0000 0000

ff70fbf0 0000 0000 0000 0000 0000 0000 8f20 0400

kd> db 0xff70fbc0 l0x40

ff70fbc0 06 00 94 00 00 00 00 00-70 00 00 00 30 0c 66 ff p...0.f.

ff70fbd0 d0 fb 70 ff d0 fb 70 ff-00 00 00 00 00 00 00 00 ..p...p.........

ff70fbe0 01 00 01 01 00 00 00 04-c0 fd 06 00 00 00 00 00

ff70fbf0 00 00 00 00 00 00 00 00-00 00 00 00 20 8f 00 04

(Note: The second parameter in each of the three commands above is a length,

given by l (the letter “l”) immediately followed by a value such as 0x10.)

The first displays 16 doublewords (four bytes each, or 64 bytes total) as double

words. The second displays the same as words. The third, the same as bytes.

 What about changing a variable? Continuing at Sioctl!SioctlDeviceControl+0x103,

you would see that the intuitive form

kd> outBufLength = 00

 ^ Syntax error in 'outBufLength = 00'

doesn't work. But ?? does the job:

kd> ?? outBufLength = 0

Kernel Debugging Tutorial © 2005 Microsoft Corporation 27

unsigned long 0

Now go back to the IRP you used with dt above:

kd> dt Irp

Local var @ 0xf795bc48 Type _IRP*

0xff70fbc0

 +0x000 Type : 6

 +0x002 Size : 0x94

 +0x004 MdlAddress : (null)

 +0x008 Flags : 0x70

 +0x00c AssociatedIrp : __unnamed

 +0x010 ThreadListEntry : _LIST_ENTRY [0xff70fbd0 -

0xff70fbd0]

 +0x018 IoStatus : _IO_STATUS_BLOCK

 +0x020 RequestorMode : 1 ''

 +0x021 PendingReturned : 0 ''

 +0x022 StackCount : 1 ''

 +0x023 CurrentLocation : 1 ''

 +0x024 Cancel : 0 ''

 +0x025 CancelIrql : 0 ''

 +0x026 ApcEnvironment : 0 ''

 +0x027 AllocationFlags : 0x4 ''

 +0x028 UserIosb : 0x0006fdc0

 +0x02c UserEvent : (null)

 +0x030 Overlay : __unnamed

 +0x038 CancelRoutine : (null)

 +0x03c UserBuffer : 0x04008f20

 +0x040 Tail : __unnamed

To change the first word (two bytes, that is) via ew (“Enter Values”):

Kernel Debugging Tutorial © 2005 Microsoft Corporation 28

kd> ew 0xff70fbc0 3

kd> dt Irp

Local var @ 0xf795bc48 Type _IRP*

0xff70fbc0

 +0x000 Type : 3

 +0x002 Size : 0x94

 +0x004 MdlAddress : (null)

 +0x008 Flags : 0x70

 +0x00c AssociatedIrp : __unnamed

 +0x010 ThreadListEntry : _LIST_ENTRY [0xff70fbd0 -

0xff70fbd0]

 +0x018 IoStatus : _IO_STATUS_BLOCK

 +0x020 RequestorMode : 1 ''

 +0x021 PendingReturned : 0 ''

 +0x022 StackCount : 1 ''

 +0x023 CurrentLocation : 1 ''

 +0x024 Cancel : 0 ''

 +0x025 CancelIrql : 0 ''

 +0x026 ApcEnvironment : 0 ''

 +0x027 AllocationFlags : 0x4 ''

 +0x028 UserIosb : 0x0006fdc0

 +0x02c UserEvent : (null)

 +0x030 Overlay : __unnamed

 +0x038 CancelRoutine : (null)

 +0x03c UserBuffer : 0x04008f20

 +0x040 Tail : __unnamed

Of course, the following is probably more natural than ew:

Kernel Debugging Tutorial © 2005 Microsoft Corporation 29

kd> ?? irp->type = 3

Type does not have given member error at 'type = 3'

kd> ?? irp->Type = 3

short 3

kd> dt irp

ioctlapp!Irp

Local var @ 0xf795bc48 Type _IRP*

0xff70fbc0

 +0x000 Type : 3

 +0x002 Size : 0x94

 +0x004 MdlAddress : (null)

 +0x008 Flags : 0x70

 +0x00c AssociatedIrp : __unnamed

 +0x010 ThreadListEntry : _LIST_ENTRY [0xff70fbd0 -

0xff70fbd0]

 +0x018 IoStatus : _IO_STATUS_BLOCK

 +0x020 RequestorMode : 1 ''

 +0x021 PendingReturned : 0 ''

 +0x022 StackCount : 1 ''

 +0x023 CurrentLocation : 1 ''

 +0x024 Cancel : 0 ''

 +0x025 CancelIrql : 0 ''

 +0x026 ApcEnvironment : 0 ''

 +0x027 AllocationFlags : 0x4 ''

 +0x028 UserIosb : 0x0006fdc0

 +0x02c UserEvent : (null)

 +0x030 Overlay : __unnamed

Kernel Debugging Tutorial © 2005 Microsoft Corporation 30

 +0x038 CancelRoutine : (null)

 +0x03c UserBuffer : 0x04008f20

 +0x040 Tail : __unnamed

There are a couple of things to notice in the above. First, the case of a member of a

structure is significant, as shown by WinDbg‟s claim that there was no “type”

member of Irp. Second, dt irp was ambiguous, but WinDbg helpfully displayed the

instances it thought were likely fits, one in ioctlapp.exe and one in sioctl.sys. Since

case can be significant, you should employ it whenever you know it.

In addition to ew, there are other “Enter Values” commands: eb for a byte, ed for a

doubleword, eq for quadword (8 bytes) and so forth. Refer to the Debugging Tools

for Windows help file under “Enter Values.”

 The Locals window may be easier to use for things like a structure with imbedded

pointers to structures:

Kernel Debugging Tutorial © 2005 Microsoft Corporation 31

You can, not so incidentally, overtype values in the Locals window to change values.

 Registers (as well as segment pointers and flags) can be displayed and altered. For

example:

kd> r

eax=81478f68 ebx=00000000 ecx=814243a8 edx=0000003c esi=81778ea0

edi=81478f68

eip=f8803553 esp=f7813bb4 ebp=f7813c3c iopl=0 nv up ei ng

nz ac pe nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000

efl=00000292

Or just:

kd> r eax

eax=81478f68

Sometimes you will want to alter a register. Eax, for instance, is often used at exit

from a routine to carry the return value, so, just before exit from a routine:

r eax = 0xc0000001

which happens to denote the status value STATUS_UNSUCCESSFUL.

Here are some other examples:

r eip = poi(@esp)

r esp = @esp + 0xc

which mean, respectively, Set Eip (the instruction pointer) to the value found at

offset 0x0 from the stack pointer, and Add 0xC to Esp (the stack pointer), effectively

unwinding the stack pointer. The Debugging Tools for Windows help file, under

“Register Syntax,” explains poi and why register names have to be prefixed with a

single “@” in some places.

You may be asking yourself how the above register-setting commands could be

useful. Consider the case where there is a “bad” driver whose DriverEntry will cause

a bug check ("blue screen") — due to an access violation, perhaps. You could deal

with the problem by setting a deferred breakpoint when ntoskrnl loads. The following

command must be typed on a single line:

Kernel Debugging Tutorial © 2005 Microsoft Corporation 32

bu sioctl!DriverEntry "r eip = poi(@esp); r eax = 0xc0000001; r

esp = @esp + 0xc; .echo sioctl!DriverEntry entered; g"

The meaning is: At sioctl.sys‟s DriverEntry, 1) set the instruction pointer (Eip) thus;

2) set the return code (Eax) thus; 3) set the stack pointer (Esp) thus; 4) announce

that DriverEntry has been entered; and 5) proceed. (Of course, this technique

merely removes the possibility of DriverEntry causing a blowup such as an access

violation. If the operating system expects the driver to be supplying function, that

function is not going to be available, and down the road there may be other

problems.)

In case you‟re wondering whether it is possible to use a register to set a variable, it

is. For example, returning yet again to the IoCtl dispatch routine:

kd> r

eax=00000000 ebx=00000000 ecx=81a88f18 edx=81a88ef4 esi=ff9e18a8

edi=ff981e7e

eip=f87a40fe esp=f88fac78 ebp=f88fac90 iopl=0 nv up ei pl

zr na po nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000

efl=00000246

kd> ?? ntStatus = @ecx

long -2119659752

kd> dd &ntStatus l1

f88fac78 81a88f18

In this case, the form @ecx should be employed, to ensure WinDbg knows you‟re

referring to a register.

There are more registers than those shown by default. To see the full complement,

use the rM command (“M” must be uppercase; this is actually the r command with

the parameter M, with no space allowed between command and parameter):

kd> rM 0xff

eax=00000001 ebx=0050e2a3 ecx=80571780 edx=000003f8 esi=000000c0

edi=d87a75a8

eip=804df1c0 esp=8056f564 ebp=8056f574 iopl=0 nv up ei pl

nz na pe nc

Kernel Debugging Tutorial © 2005 Microsoft Corporation 33

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000

efl=00000202

fpcw=0000: rn 24 ------ fpsw=0000: top=0 cc=0000 --------

fptw=0000

fopcode=6745 fpip=2301:a0020000 fpdp=dcfe:efcdab89

st0= 5.143591243081972142170e-4932 st1=

0.001025530551233493990e-4933

st2= 0.000000002357022271740e-4932 st3=

2.471625214254630491460e-4906

st4= 3.370207406893238285120e-4932 st5=-

7.461339669368745455450e+4855

st6= 6.698191557136036873700e-4932 st7=-

2.455410815115332972380e-4906

mm0=c3d2e1f010325476 mm1=0000ffdff1200000

mm2=000000018168d902 mm3=f33cffdff1200000

mm4=804efc868056f170 mm5=7430804efb880000

mm6=ff02740200000000 mm7=f1a48056f1020000

xmm0=0 9.11671e-041 3.10647e+035 -1.154e-034

xmm1=-7.98492e-039 -2.83455e+038 -2.91106e+038 5.85182e-042

xmm2=1.77965e-043 -1.17906e-010 -4.44585e-038 -7.98511e-039

xmm3=-7.98511e-039 0 0 -7.98504e-039

xmm4=-7.98503e-039 1.20545e-040 -1.47202e-037 -1.47202e-037

xmm5=-2.05476e+018 -452.247 -1.42468e-037 -8.60834e+033

xmm6=2.8026e-044 -1.47202e-037 -452.247 0

xmm7=8.40779e-045 -7.98503e-039 0 -7.98511e-039

cr0=8001003b cr2=d93db000 cr3=00039000

dr0=00000000 dr1=00000000 dr2=00000000

dr3=00000000 dr6=ffff0ff0 dr7=00000400 cr4=000006d9

 If you don‟t like to use commands to change things, you can bring up a memory

window (ViewMemory), variable window (ViewLocals) or register window

(ViewRegisters) and overtype values as you like. For example,

Kernel Debugging Tutorial © 2005 Microsoft Corporation 34

In the above, you could overtype the hexadecimal values.

Controlling execution

Earlier (see IoCreateDevice) you were asked to let execution proceed from one point to the

next, without being told how. There are several ways to control execution. All the below,

except the first, assume that execution is currently halted.

 Break in (CTRL-BREAK) — This sequence will always interrupt a system, so long as

that system is running and is in communication with WinDbg (the sequence in KD is

CTRL-C).

 Step over (F10) — This causes execution to proceed one statement (if C or C++ and

WinDbg is in “source mode,” toggled by DebugSource Mode) or one instruction

at a time, with the provision that if a call is encountered, execution passes over the

call without entering the called routine.

 Step in (F11) — This is like step-over, except that execution of a call does go into

the called routine.

 Step out (SHIFT-F11) — This causes execution to run to an exit from the current

routine (current place in the call stack). Useful if you‟ve seen enough of the routine.

 Run to cursor (F7 or CRTL-F10) — Place the cursor in a source or disassembly

window where you want execution to break, then hit F7; execution will run to that

point. A word of caution, however: If the flow of execution were not to reach that

point (e.g., an IF statement isn‟t executed), WinDbg would not break, because

execution did not come to the indicated point!

Kernel Debugging Tutorial © 2005 Microsoft Corporation 35

 Run (F5) — Run until a breakpoint is encountered or an event like a bug check

occurs. You may think of Run as normal execution mode.

 Set instruction to current line (CTRL-SHIFT-I) — In a source window, you can put the

cursor on a line, do that keystroke sequence, and execution will start from that point

as soon as you let it proceed (e.g., F5 or F10). This is handy if you want to retry a

sequence. But it requires some care. For example, registers and variables are not set

to what they would be if execution had reached that line naturally.

 Direct setting of Eip — You can put a value into the Eip register, and as soon as you

hit F5 (or F10 or whatever), execution commences from that address. As should be

obvious, this is like setting instruction to the cursor-designated current line, except

that you specify the address of an Assembly instruction.

The call stack

At almost any point in execution, there is an area of storage that is used as the stack; the

stack is where local state, including parameters and return addresses, is saved. There is a

kernel stack, if execution is in kernel space, and a user stack for execution in user space.

When you hit a breakpoint, it is likely there will be several routines on the current stack,

and there can be quite a few. For example, if instruction has stopped because of a

breakpoint in the routine PrintIrpInfo in sioctl.sys, use k (“Stack Backtrace”):

kd> k

ChildEBP RetAddr

f7428ba8 f889b54a SIoctl!PrintIrpInfo+0x6

[d:\winddk\3790.1824\src\general\ioctl\sys\sioctl.c @ 708]

f7428c3c 804e0e0d SIoctl!SioctlDeviceControl+0xfa

[d:\winddk\3790.1824\src\general\ioctl\sys\sioctl.c @ 337]

WARNING: Stack unwind information not available. Following frames may

be wrong.

f7428c60 80580e2a nt!IofCallDriver+0x33

f7428d00 805876c2 nt!CcFastCopyRead+0x3c3

f7428d34 804e7a8c nt!NtDeviceIoControlFile+0x28

f7428d64 00000000 nt!ZwYieldExecution+0xaa9

The topmost line (newest) is the stack frame where control stopped. You can see earlier

callers, too, but if you don‟t have symbols, they may not be represented correctly. Since

you enjoy access to the symbols for sioctl.sys, you are presented with file and line number

information for each frame involving the driver.

Kernel Debugging Tutorial © 2005 Microsoft Corporation 36

You can readily switch to the source window for IoCtl‟s IRP handler, but suppose you want

to see an earlier routine? You bring up the calls window (ViewCall stack), so:

You can double-click on an entry and be taken to the source file, if that source file can be

located.

If you are interested only in variables pertaining to a routine on the stack, you can make

the routine current by double-clicking on its line above, or you can do kn (a sibling of k)

and then .frame. For example, to get information about the dispatch routine that called

PrintIrpInfo:

kd> kn

 # ChildEBP RetAddr

00 f7428ba8 f889b54a SIoctl!PrintIrpInfo+0x6

[d:\winddk\3790.1824\src\general\ioctl\sys\sioctl.c @ 708]

01 f7428c3c 804e0e0d SIoctl!SioctlDeviceControl+0xfa

[d:\winddk\3790.1824\src\general\ioctl\sys\sioctl.c @ 337]

WARNING: Stack unwind information not available. Following frames may

be wrong.

02 f7428c60 80580e2a nt!IofCallDriver+0x33

03 f7428d00 805876c2 nt!CcFastCopyRead+0x3c3

04 f7428d34 804e7a8c nt!NtDeviceIoControlFile+0x28

05 f7428d64 00000000 nt!ZwYieldExecution+0xaa9

Kernel Debugging Tutorial © 2005 Microsoft Corporation 37

kd> .frame 1

01 f7428c3c 804e0e0d SIoctl!SioctlDeviceControl+0xfa

[d:\winddk\3790.1824\src\general\ioctl\sys\sioctl.c @ 337]

Having set the frame number, you‟re able to display (or change, if you wish) variables

known in that frame and registers belonging to that frame:

kd> dv

 DeviceObject = 0x80f895e8

 Irp = 0x820572a8

 outBufLength = 0x64

 buffer = 0x00000000 ""

 irpSp = 0x82057318

 data = 0xf889b0c0 "This String is from Device Driver !!!"

 ntStatus = 0

 mdl = 0x00000000

 inBufLength = 0x3c

 datalen = 0x26

 outBuf = 0x82096b20 "This String is from User Application;

using METHOD_BUFFERED"

 inBuf = 0x82096b20 "This String is from User Application;

using METHOD_BUFFERED"

kd> r

eax=00000000 ebx=00000000 ecx=80506be8 edx=820572a8 esi=81fabda0

edi=820572a8

eip=f889bcf6 esp=f7428ba4 ebp=f7428ba8 iopl=0 nv up ei ng nz ac

pe nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000

efl=00000292

SIoctl!PrintIrpInfo+0x6:

f889bcf6 8b4508 mov eax,[ebp+0x8]

ss:0010:f7428bb0=820572a8

Finding a name in a module

Kernel Debugging Tutorial © 2005 Microsoft Corporation 38

The x (“Examine Symbols”) command locates symbols in modules. For example, if you want

to put a breakpoint at the Ioctl routine to handle DeviceIoControl IRPs but don‟t quite

remember the routine‟s name, you might do:

kd> x sioctl!*ioctl*

f8883080 SIoctl!SioctlUnloadDriver (struct _DRIVER_OBJECT *)

f8883010 SIoctl!SioctlCreateClose (struct _DEVICE_OBJECT *, struct _IRP

*)

f8883450 SIoctl!SioctlDeviceControl (struct _DEVICE_OBJECT *, struct

_IRP *)

This means, Tell me all the symbols in the module sioctl that contain “ioctl.”

That may seem trivial. Consider, however, this message seen in the debugger in an actual

support case:

PopPolicyWorkerAction: action request 2 failed c000009a

On a guess that the routine PopPolicyWorkerAction is in ntoskrnl, you might look there:

kd> x nt!PopPolicy*

805146c0 nt!PopPolicyWorkerThread = <no type information>

8064e389 nt!PopPolicySystemIdle = <no type information>

805b328d nt!PopPolicyWorkerNotify = <no type information>

8056e620 nt!PopPolicyLock = <no type information>

8064d5f8 nt!PopPolicyWorkerActionPromote = <no type information>

805c7d10 nt!PopPolicyWorkerMain = <no type information>

8064d51b nt!PopPolicyWorkerAction = <no type information>

80561c70 nt!PopPolicy = <no type information>

8056e878 nt!PopPolicyIrpQueue = <no type information>

80561a98 nt!PopPolicyLockThread = <no type information>

8064e74a nt!PopPolicyTimeChange = <no type information>

8056e8b0 nt!PopPolicyWorker = <no type information>

With that information, you might put a breakpoint in the routine shown in red.

Dealing with optimized code

Kernel Debugging Tutorial © 2005 Microsoft Corporation 39

If an executable was built in a free build and/or with some optimization, it may be difficult

to follow execution in a source window, and local variables may not be available or may be

shown with incorrect values. With x86 code you might try following execution in the source

window and also in the disassembly window (it helps to place those windows side by side).

You don‟t have to understand very much about x86 Assembly to follow the flow of control;

look primarily for test (e.g., test or cmp) and branch (e.g., jnz) instructions in order to

follow flow.

Selected techniques

That covers fundamental operations. Although the overarching focus here is not on how to

investigate particular areas, there are nonetheless a number of substantive debugger

commands — technically, they are extensions and are written as DLLs — as well as

techniques that deserve mention because they are used over and over in many areas.

Processes and threads

To see the current process (at a stopped point):

kd> !process

PROCESS 816fc3c0 SessionId: 1 Cid: 08f8 Peb: 7ffdf000 ParentCid:

0d8c

 DirBase: 10503000 ObjectTable: e1afeaa8 HandleCount: 19.

 Image: ioctlapp.exe

 VadRoot 825145e0 Vads 22 Clone 0 Private 38. Modified 0. Locked 0.

 DeviceMap e10d0198

 Token e1c8e030

 ElapsedTime 00:00:00.518

 UserTime 00:00:00.000

 KernelTime 00:00:00.109

 QuotaPoolUsage[PagedPool] 9096

 QuotaPoolUsage[NonPagedPool] 992

 Working Set Sizes (now,min,max) (263, 50, 345) (1052KB, 200KB,

1380KB)

 PeakWorkingSetSize 263

 VirtualSize 6 Mb

Kernel Debugging Tutorial © 2005 Microsoft Corporation 40

 PeakVirtualSize 6 Mb

 PageFaultCount 259

 MemoryPriority BACKGROUND

 BasePriority 8

 CommitCharge 48

 THREAD 825d2020 Cid 08f8.0708 Teb: 7ffde000 Win32Thread:

00000000 RUNNING on processor 0

The addresses of the process block (EPROCESS) and thread block (ETHREAD) have been

marked in red. You could use these in a conditional breakpoint.

To see all the processes in summary form:

kd> !process 0 0

**** NT ACTIVE PROCESS DUMP ****

PROCESS 826af478 SessionId: none Cid: 0004 Peb: 00000000

ParentCid: 0000

 DirBase: 02c20000 ObjectTable: e1001e60 HandleCount: 363.

 Image: System

PROCESS 82407d88 SessionId: none Cid: 0158 Peb: 7ffdf000

ParentCid: 0004

 DirBase: 1fbe8000 ObjectTable: e13ff740 HandleCount: 24.

 Image: smss.exe

PROCESS 82461d88 SessionId: 0 Cid: 0188 Peb: 7ffdf000 ParentCid:

0158

 DirBase: 1f14d000 ObjectTable: e15e8958 HandleCount: 408.

 Image: csrss.exe

...

Kernel Debugging Tutorial © 2005 Microsoft Corporation 41

To see a particular process with a thread summary, give the process block‟s address and

ask for detail via the second parameter (see the Debugging Tools for Windows help file for

information about the detail parameter):

kd> !process 826af478 3

PROCESS 826af478 SessionId: none Cid: 0004 Peb: 00000000

ParentCid: 0000

 DirBase: 02c20000 ObjectTable: e1001e60 HandleCount: 362.

 Image: System

 VadRoot 81a43840 Vads 4 Clone 0 Private 3. Modified 18884. Locked 0.

 DeviceMap e1002868

 Token e1002ae0

 ElapsedTime 07:19:11.250

 UserTime 00:00:00.000

 KernelTime 00:00:11.328

 QuotaPoolUsage[PagedPool] 0

 QuotaPoolUsage[NonPagedPool] 0

 Working Set Sizes (now,min,max) (54, 0, 345) (216KB, 0KB, 1380KB)

 PeakWorkingSetSize 497

 VirtualSize 1 Mb

 PeakVirtualSize 2 Mb

 PageFaultCount 4179

 MemoryPriority BACKGROUND

 BasePriority 8

 CommitCharge 7

 THREAD 826af1f8 Cid 0004.0008 Teb: 00000000 Win32Thread:

00000000 WAIT: (WrFreePage) KernelMode Non-Alertable

 80580040 SynchronizationEvent

 80581140 NotificationTimer

Kernel Debugging Tutorial © 2005 Microsoft Corporation 42

 THREAD 826aea98 Cid 0004.0010 Teb: 00000000 Win32Thread:

00000000 WAIT: (WrQueue) KernelMode Non-Alertable

 80582d80 QueueObject

 THREAD 826ae818 Cid 0004.0014 Teb: 00000000 Win32Thread:

00000000 WAIT: (WrQueue) KernelMode Non-Alertable

 80582d80 QueueObject

...

To see a particular thread in maximum detail, use !thread with 0xFF as the detail

parameter:

kd> !thread 826af1f8 0xff

THREAD 826af1f8 Cid 0004.0008 Teb: 00000000 Win32Thread: 00000000

WAIT: (WrFreePage) KernelMode Non-Alertable

 80580040 SynchronizationEvent

 80581140 NotificationTimer

Not impersonating

DeviceMap e1002868

Owning Process 826af478 Image: System

Wait Start TickCount 1688197 Ticks: 153 (0:00:00:02.390)

Context Switch Count 9133

UserTime 00:00:00.0000

KernelTime 00:00:03.0406

Start Address nt!Phase1Initialization (0x806fb790)

Stack Init f88b3000 Current f88b2780 Base f88b3000 Limit f88b0000 Call

0

Priority 0 BasePriority 0 PriorityDecrement 0

ChildEBP RetAddr

f88b2798 804edb2b nt!KiSwapContext+0x26 (FPO: [EBP 0xf88b27c0] [0,0,4])

Kernel Debugging Tutorial © 2005 Microsoft Corporation 43

f88b27c0 804f0e7a nt!KiSwapThread+0x280 (FPO: [Non-Fpo]) (CONV:

fastcall)

f88b27f4 80502fc2 nt!KeWaitForMultipleObjects+0x324 (FPO: [Non-Fpo])

(CONV: stdcall)

Driver and device objects

If you are writing a driver, you will often be looking at device stacks. You might begin by

finding devices belonging to a certain driver and then examine the stack a device is in.

Suppose you are interested in the ScsiPort miniport driver aic78xx.sys. Start with !drvobj:

kd> !drvobj aic78xx

Driver object (82627250) is for:

 \Driver\aic78xx

Driver Extension List: (id , addr)

(f8386480 8267da38)

Device Object list:

82666030 8267b030 8263c030 8267ca40

There are four device objects here. Use To look at the first, use !devobj to get some

information about the device and !devstack to show the device-object stack to which the

device object belongs:

kd> !devobj 82666030

Device object (82666030) is for:

 aic78xx1Port2Path0Target1Lun0 \Driver\aic78xx DriverObject 82627250

Current Irp 00000000 RefCount 0 Type 00000007 Flags 00001050

Dacl e13bb39c DevExt 826660e8 DevObjExt 82666d10 Dope 8267a9d8 DevNode

8263cdc8

ExtensionFlags (0000000000)

AttachedDevice (Upper) 826bb030 \Driver\Disk

Device queue is not busy.

kd> !devstack 82666030

 !DevObj !DrvObj !DevExt ObjectName

 826bbe00 \Driver\PartMgr 826bbeb8

Kernel Debugging Tutorial © 2005 Microsoft Corporation 44

 826bb030 \Driver\Disk 826bb0e8 DR2

> 82666030 \Driver\aic78xx 826660e8 aic78xx1Port2Path0Target1Lun0

!DevNode 8263cdc8 :

 DeviceInst is

"SCSI\Disk&Ven_QUANTUM&Prod_VIKING_II_4.5WLS&Rev_5520\5&375eb691&1&010"

 ServiceName is "disk"

IRPs

The most common method of communication amongst drivers is the I/O Request Packet, or

IRP. To see an IRP‟s I/O completion stack, as for example at

Sioctl!SioctlDeviceControl+0x103:

kd> !irp @@(Irp)

Irp is active with 1 stacks 1 is current (= 0xff70fc30)

 No Mdl System buffer = ff660c30 Thread ff73f4d8: Irp stack trace.

 cmd flg cl Device File Completion-Context

>[e, 0] 5 0 82361348 ffb05b90 00000000-00000000

 \Driver\SIoctl

 Args: 00000064 0000003c 9c402408 00000000

To get the full IRP plus its stack, ask for detail:

kd> !irp @@(Irp) 1

Irp is active with 1 stacks 1 is current (= 0xff70fc30)

 No Mdl System buffer = ff660c30 Thread ff73f4d8: Irp stack trace.

Flags = 00000070

ThreadListEntry.Flink = ff70fbd0

ThreadListEntry.Blink = ff70fbd0

IoStatus.Status = 00000000

IoStatus.Information = 00000000

RequestorMode = 00000001

Cancel = 00

CancelIrql = 0

Kernel Debugging Tutorial © 2005 Microsoft Corporation 45

ApcEnvironment = 00

UserIosb = 0006fdc0

UserEvent = 00000000

Overlay.AsynchronousParameters.UserApcRoutine = 00000000

Overlay.AsynchronousParameters.UserApcContext = 00000000

Overlay.AllocationSize = 00000000 - 00000000

CancelRoutine = 00000000

UserBuffer = 04008f20

&Tail.Overlay.DeviceQueueEntry = ff70fc00

Tail.Overlay.Thread = ff73f4d8

Tail.Overlay.AuxiliaryBuffer = 00000000

Tail.Overlay.ListEntry.Flink = 00000000

Tail.Overlay.ListEntry.Blink = 00000000

Tail.Overlay.CurrentStackLocation = ff70fc30

Tail.Overlay.OriginalFileObject = ffb05b90

Tail.Apc = 00000000

Tail.CompletionKey = 00000000

 cmd flg cl Device File Completion-Context

>[e, 0] 5 0 82361348 ffb05b90 00000000-00000000

 \Driver\SIoctl

 Args: 00000064 0000003c 9c402408 00000000

To get only the IRP proper, with its first-level members:

kd> dt nt!_IRP @@(Irp)

 +0x000 Type : 6

 +0x002 Size : 0x94

 +0x004 MdlAddress : (null)

 +0x008 Flags : 0x70

 +0x00c AssociatedIrp : __unnamed

Kernel Debugging Tutorial © 2005 Microsoft Corporation 46

 +0x010 ThreadListEntry : _LIST_ENTRY [0xff70fbd0 - 0xff70fbd0]

 +0x018 IoStatus : _IO_STATUS_BLOCK

 +0x020 RequestorMode : 1 ''

 +0x021 PendingReturned : 0 ''

 +0x022 StackCount : 1 ''

 +0x023 CurrentLocation : 1 ''

 +0x024 Cancel : 0 ''

 +0x025 CancelIrql : 0 ''

 +0x026 ApcEnvironment : 0 ''

 +0x027 AllocationFlags : 0x4 ''

 +0x028 UserIosb : 0x0006fdc0

 +0x02c UserEvent : (null)

 +0x030 Overlay : __unnamed

 +0x038 CancelRoutine : (null)

 +0x03c UserBuffer : 0x04008f20

 +0x040 Tail : __unnamed

IRQL

A command (available for targets that are Windows Server 2003 or later) for occasional use

is !irql, because it shows the current IRQL on the concerned processor. Breaking at

Sioctl!SioctlDeviceControl+0x0:

kd> !irql

Debugger saved IRQL for processor 0x0 -- 0 (LOW_LEVEL)

For an example of a higher IRQL, suppose you added the following code (in curly braces) to

Sioctl!SioctlDeviceControl just before the break statement at the end of the

IOCTL_SIOCTL_METHOD_BUFFERED clause:

Irp->IoStatus.Information = (outBufLength<datalen?outBufLength:datalen);

{ /* Begin added code */

 KIRQL saveIrql;

 ULONG i = 0;

Kernel Debugging Tutorial © 2005 Microsoft Corporation 47

 KeRaiseIrql(DISPATCH_LEVEL, &saveIrql);

 i++;

 KeLowerIrql(saveIrql);

} /* End added code */

break;

Now, if you set a breakpoint at the statement after KeRaiseIrql and hit that breakpoint:

kd> !irql

Debugger saved IRQL for processor 0x0 -- 2 (DISPATCH_LEVEL)

Note, by the way, that the !pcr command will not ordinarily show the IRQL you‟re interested

in, namely, the IRQL in force at the point a breakpoint caused a halt.

Dump Files

There is little to say about dump files that is peculiar to them. A few things are worth

mentioning.

 There are three kinds of kernel dump files. A full-memory dump is best, but the

somewhat less voluminous kernel dump suffices for most purposes. There is also the

small-memory dump, which is 64KB in size (and so will be generated more quickly

than the two other types). Since a small-memory dump does not have full

information about executables, it may be necessary to employ the .exepath

command to point to executable images if investigating them is required. Windows

can be configured to create one of these dump files if a crash (bug check) occurs.

 To investigate a dump file, start WinDbg but do not specify a protocol for a target

system. When in WinDbg, open the dump file with FileOpen Crash Dump. It will

help if the symbol path and possibly the source path are already set.

 Now, in the WinDbg command window, do !analyze –v, to get a summary. The

command will probably suggest an execution context (.cxr); setting that context will

give you access to the call stack at the time the bug check was issued (which,

hopefully, will be close to the actual error). You may need to proceed to processes

and threads (!process and !thread), to look at the list of kernel modules (lmnt),

from that list to look at selected driver objects (!drvobj) and possibly to look at

device nodes (!devnode), device objects (!devobj) and device stacks (!devstack).

But beyond !analyze –v, there are no simple prescriptions in working with a dump

file.

If a kernel-mode dump file has been created after a bug check has occurred, debugging this

file is similar to debugging a bug check that occurs when a debugger is attached. The

Kernel Debugging Tutorial © 2005 Microsoft Corporation 48

following section shows an example of live debugging, but it is similar to the analysis of a

dump file.

Debugging a Bug Check

Here is how to begin analyzing a bug check. In this example, the kernel debugger is

attached when the crash occurs, but the procedure when analyzing a kernel-mode dump file

is similar.

In this example, the sample driver Sioctl.sys is loaded, and a breakpoint is set at

Sioctl!DriverEntry. When the debugger stops at this breakpoint, set Eip to 0. This is never

a valid value, since the instruction pointer cannot be zero. Then let execution proceed via

F5. A kernel error will occur, and a bug check will be issued. You can then use

the !analyze extension command to investigate:

kd> !analyze -v

*

*

* Bugcheck Analysis

*

*

*

SYSTEM_THREAD_EXCEPTION_NOT_HANDLED (7e)

This is a very common bugcheck. Usually the exception address

pinpoints

the driver/function that caused the problem. Always note this address

as well as the link date of the driver/image that contains this address.

Arguments:

Arg1: c0000005, The exception code that was not handled

Arg2: 00000000, The address that the exception occurred at

Arg3: f88f2bd8, Exception Record Address

Arg4: f88f2828, Context Record Address

Kernel Debugging Tutorial © 2005 Microsoft Corporation 49

Debugging Details:

EXCEPTION_CODE: (NTSTATUS) 0xc0000005 - The instruction at "0x%08lx"

referenced memory at "0x%08lx". The memory could not be "%s".

FAULTING_IP:

+0

00000000 ?? ???

EXCEPTION_RECORD: f88f2bd8 -- (.exr fffffffff88f2bd8)

ExceptionAddress: 00000000

 ExceptionCode: c0000005 (Access violation)

 ExceptionFlags: 00000000

NumberParameters: 2

 Parameter[0]: 00000000

 Parameter[1]: 00000000

Attempt to read from address 00000000

CONTEXT: f88f2828 -- (.cxr fffffffff88f2828)

eax=ffff99ea ebx=00000000 ecx=0000bb40 edx=8055f7a4 esi=e190049e

edi=81e826e8

eip=00000000 esp=f88f2ca0 ebp=f88f2cf0 iopl=0 nv up ei pl nz na

pe nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000

efl=00010202

00000000 ?? ???

Resetting default scope

Kernel Debugging Tutorial © 2005 Microsoft Corporation 50

DEFAULT_BUCKET_ID: DRIVER_FAULT

CURRENT_IRQL: 0

ERROR_CODE: (NTSTATUS) 0xc0000005 - The instruction at "0x%08lx"

referenced memory at "0x%08lx". The memory could not be "%s".

READ_ADDRESS: 00000000

BUGCHECK_STR: 0x7E

LAST_CONTROL_TRANSFER: from 805b9cbb to 00000000

STACK_TEXT:

WARNING: Frame IP not in any known module. Following frames may be

wrong.

f88f2c9c 805b9cbb 81e826e8 8123a000 00000000 0x0

f88f2d58 805b9ee5 80000234 8123a000 81e826e8 nt!IopLoadDriver+0x5e1

f88f2d80 804ec5c8 80000234 00000000 822aeda0

nt!IopLoadUnloadDriver+0x43

f88f2dac 805f1828 f7718cf4 00000000 00000000 nt!ExpWorkerThread+0xe9

f88f2ddc 8050058e 804ec50d 00000001 00000000

nt!PspSystemThreadStartup+0x2e

00000000 00000000 00000000 00000000 00000000 nt!KiThreadStartup+0x16

FAILED_INSTRUCTION_ADDRESS:

+0

00000000 ?? ???

Kernel Debugging Tutorial © 2005 Microsoft Corporation 51

FOLLOWUP_IP:

nt!IopLoadDriver+5e1

805b9cbb 3bc3 cmp eax,ebx

SYMBOL_STACK_INDEX: 1

SYMBOL_NAME: nt!IopLoadDriver+5e1

MODULE_NAME: nt

IMAGE_NAME: ntoskrnl.exe

DEBUG_FLR_IMAGE_TIMESTAMP: 3e800a79

STACK_COMMAND: .cxr fffffffff88f2828 ; kb

FAILURE_BUCKET_ID: 0x7E_NULL_IP_nt!IopLoadDriver+5e1

BUCKET_ID: 0x7E_NULL_IP_nt!IopLoadDriver+5e1

kd> .cxr fffffffff88f2828

eax=ffff99ea ebx=00000000 ecx=0000bb40 edx=8055f7a4 esi=e190049e

edi=81e826e8

eip=00000000 esp=f88f2ca0 ebp=f88f2cf0 iopl=0 nv up ei pl nz na

pe nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000

efl=00010202

00000000 ?? ???

kd> kb

 *** Stack trace for last set context - .thread/.cxr resets it

Kernel Debugging Tutorial © 2005 Microsoft Corporation 52

ChildEBP RetAddr Args to Child

WARNING: Frame IP not in any known module. Following frames may be

wrong.

f88f2c9c 805b9cbb 81e826e8 8123a000 00000000 0x0

f88f2d58 805b9ee5 80000234 8123a000 81e826e8 nt!IopLoadDriver+0x5e1

f88f2d80 804ec5c8 80000234 00000000 822aeda0

nt!IopLoadUnloadDriver+0x43

f88f2dac 805f1828 f7718cf4 00000000 00000000 nt!ExpWorkerThread+0xe9

f88f2ddc 8050058e 804ec50d 00000001 00000000

nt!PspSystemThreadStartup+0x2e

00000000 00000000 00000000 00000000 00000000 nt!KiThreadStartup+0x16

The topmost entry in the above stack looks wrong. That is something you might encounter

in a dump file. How would you work with that if you didn‟t know how the bug check had

been produced?

1. Do .frame 1, to get to the frame for the caller of the mystery routine,

nt!IopLoadDriver.

2. Go to the disassembly window, where the call by nt!IopLoadDriver is conveniently

displayed, in instructions:

8062da9e ff572c call dword ptr [edi+0x2c]

8062daa1 3bc3 cmp eax,ebx

3. The call was to the address in a doubleword pointed to by the Edi register‟s value

plus 0x2C. That is the address you need. So, display the Edi register:

kd> r edi

Last set context:

edi=81a2bb18

4. A little arithmetic:

kd> ? 81a2bb18+0x2c

Evaluate expression: -2120041660 = 81a2bb44

5. So the address is in storage at 0x81A2BB44:

kd> dd 81a2bb44 l1

Kernel Debugging Tutorial © 2005 Microsoft Corporation 53

81a2bb44 f87941a3

6. What‟s at that address?

kd> dt f87941a3

GsDriverEntry

 SIoctl!GsDriverEntry+0(

 _DRIVER_OBJECT*,

 _UNICODE_STRING*)

Thus you would have determined the real routine at the top of the stack.

Pseudo-registers

Pseudo-registers are variables that you can employ for various purposes. A number of

pseudo-registers are predefined in meaning: $ra for the return point in the current entry on

the call stack, $ip for the instruction pointer, $scopeip for the address of the current scope

(local context, which makes available local variables in the current routine), $proc that

points to the current EPROCESS, and so forth. These might be useful in conditional

statements.

There are also pseudo-registers with operator-defined meaning, $t0 through $t19. These

can be turned to various purposes, like counting breakpoints. A pseudo-register was put to

that use in a real-life case where there were many updates to a piece of storage:

ba w4 81b404d8-18 "r$t0=@$t0+1;as /x ${/v:$$t0} @$t0;.block {.echo hit

$$t0};ad ${/v:$$t0};dd 81b404d8-18 l1;k;!thread -1 0;!process -1 0"

The approximate meaning of the above is, When the doubleword at 0x81B404D8 is updated,

update the pseudo-register $t0 as a hit counter, say what is the number of the hit and show

the value at 0x81B404D8, the call stack, the current process and the current thread. (To

understand details in the above, refer to aliasing below.)

Another illustrative use is from a support case where it was necessary to track the activity

of Atapi.sys‟s DPC routine (Atapi.sys is a standard operating system driver). This routine

was entered extremely often, but the investigating engineer knew that at a specific point

there would be an interesting IRP about to be completed, and the variable irp pointed to

that IRP. In another routine in Tape.sys (another standard operating system driver), there

was a variable named Irp that pointed to the same IRP. The engineer wanted to stop in

Tape.sys at just the right time, so he started by setting a one-time breakpoint in the

Atapi.sys DPC:

bp /1 Atapi!IdeProcessCompletedRequest+0x3bd "dv irp; r$t0=@@(irp)"

Kernel Debugging Tutorial © 2005 Microsoft Corporation 54

That breakpoint‟s action was to set the pseudo-register $t0 to the value of the variable irp,

which was the address of the IRP of interest. (It also displayed the value of irp.)

When that one-time breakpoint was hit, the engineer did this:

bp Tape!TapeIoCompleteAssociated+0x1c6 "j (@@(Irp)=$t0) '.echo stopped

at TAPE!TapeIoCompleteAssociated+0x1c6; dv Irp' ; 'g'"

This means: When this second breakpoint in Tape.sys is hit, if the local variable Irp matches

$t0, put out some eye-catching information and display the value of Irp. If, on the other

hand, Irp does not match $t0, just go. When this second breakpoint caused execution to

stop, control had halted where the engineer desired.

Aliasing

It may be convenient to replace a set of characters with another set in a command string.

One use is to define a short string for a long set of commands. For example,

kd> as Demo r; !process -1 0; k; !thread -1 0

kd> al

 Alias Value

 ------- -------

 Demo r; !process -1 0; k; !thread -1 0

kd> demo

Couldn't resolve error at 'emo'

kd> Demo

eax=00000001 ebx=001a6987 ecx=80571780 edx=ffd11118 esi=0000003e

edi=f8bcc776

eip=804df1c0 esp=8056f564 ebp=8056f574 iopl=0 nv up ei pl nz na

pe nc

cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000

efl=00000202

nt!RtlpBreakWithStatusInstruction:

804df1c0 cc int 3

PROCESS 80579f60 SessionId: none Cid: 0000 Peb: 00000000

ParentCid: 0000

 DirBase: 00039000 ObjectTable: e1000e78 HandleCount: 234.

Kernel Debugging Tutorial © 2005 Microsoft Corporation 55

 Image: Idle

ChildEBP RetAddr

8056f560 804e8682 nt!RtlpBreakWithStatusInstruction

8056f560 804e61ce nt!KeUpdateSystemTime+0x132

80579f60 00000000 nt!KiIdleLoop+0xe

THREAD 80579d00 Cid 0000.0000 Teb: 00000000 Win32Thread: 00000000

RUNNING on processor 0

Note that the alias and what replaces it are case-sensitive.

If you look back at pseudo-registers, you will now recognize that alias commands were used

in the first example there. To begin, suppose that this was the actual command:

bp SioctlDeviceControl "r$t0=@$t0+1;as /x ${/v:$$t0} @$t0;.block {.echo

hit # $$t0};ad ${/v:$$t0};k ;!thread -1 0;!process -1 0;g"

Here‟s what would be put out in the WinDbg command window, with the effect of aliasing

shown in red:

hit # 0x1

ChildEBP RetAddr

f747dc20 80a2675c SIoctl!SioctlDeviceControl

f747dc3c 80c70bed nt!IofCallDriver+0x62

f747dc54 80c71b0d nt!IopSynchronousServiceTail+0x159

f747dcf4 80c673aa nt!IopXxxControlFile+0x665

f747dd28 80afbbf2 nt!NtDeviceIoControlFile+0x28

f747dd28 7ffe0304 nt!_KiSystemService+0x13f

0006fdc8 04003bcb SharedUserData!SystemCallStub+0x4

0006fde8 04002314 ioctlapp!_ftbuf+0x1b

0006ff78 04002e02 ioctlapp!main+0x1e4

0006ffc0 77e4f38c ioctlapp!mainCRTStartup+0x14d

WARNING: Frame IP not in any known module. Following frames may be

wrong.

Kernel Debugging Tutorial © 2005 Microsoft Corporation 56

0006fff0 00000000 0x77e4f38c

THREAD feca2b88 Cid 0714.0e2c Teb: 7ffde000 Win32Thread: 00000000

RUNNING on processor 0

PROCESS ff877b50 SessionId: 1 Cid: 0714 Peb: 7ffdf000 ParentCid:

0d04

 DirBase: 048f0000 ObjectTable: e2342440 HandleCount: 19.

 Image: ioctlapp.exe

...

hit # 0x2

...

hit # 0x3

...

The basic trick above is to define the command block associated with hitting the breakpoint

in such a way that the imbedded alias definition isn‟t evaluated immediately but only when

a breakpoint is hit. That is achieved by using the ${} (“Alias Interpreter”) token with the /v

option to specify an alias not evaluated at specification (in the bp command, that is) and

the .block (“Block”) token to cause alias evaluation at the time of hitting the breakpoint

and executing the associated commands. Finally, the /x option of the as command ensures

64-bit values are used, and the ad ensures the latest alias is cleaned up.

Script files and other ways to reduce work

It is possible to run a script file to execute a number of WinDbg commands. Consider as an

example a dump file from an x64 system. Here the focus is on SCSI Request Blocks (SRBs)

from a device driver called xStor.sys:

1. Use !irpfind (see the Debugging Tools for Windows help file) to find IRPs in the non-

paged pool. You will get lines like this:

fffffadfe5df1010 [fffffadfe5ee6760] irpStack: (4, 0)

fffffadfe78cc060 [\Driver\dmio] 0xfffffadfe6919470

The value in red is the address of that specific IRP.

2. Copy those lines into a file.

3. In the file, select all lines containing xStor and put those lines into another file,

debugtst1.txt. That yields lines like this one:

Kernel Debugging Tutorial © 2005 Microsoft Corporation 57

fffffadfe5e4c9d0 [00000000] irpStack: (f, 0) fffffadfe783d050

[\Driver\xStor] 0xfffffadfe6919470

4. Editing debugtst1.txt, change each line:

!irp fffffadfe5e4c9d0 1

The !irp extension displays the IRP at the given address, including the IRP‟s major

fields and its stack. Save debugtst1.txt.

5. Now, in WinDbg, give the command $$<c:\temp\debugtst1.txt. You will get a lot

of output, starting with:

1: kd> $$<c:\temp\debugtst1.txt

1: kd> !irp fffffadfe5e4c9d0 1

Irp is active with 2 stacks 2 is current (= 0xfffffadfe5e4cae8)

 Mdl = fffffadfe600f5e0 Thread 00000000: Irp stack trace.

Flags = 00000000

ThreadListEntry.Flink = fffffadfe5e4c9f0

ThreadListEntry.Blink = fffffadfe5e4c9f0

IoStatus.Status = c00000bb

IoStatus.Information = 00000000

...

Tail.Apc = 0326cc00

Tail.CompletionKey = 0326cc00

 cmd flg cl Device File Completion-Context

 [0, 0] 0 0 00000000 00000000 00000000-00000000

 Args: 00000000 00000000 00000000 00000000

>[f, 0] 0 e1 fffffadfe783d050 00000000 fffffadfe3ee46d0-

fffffadfe6869010 Success Error Cancel pending

 \Driver\xStor CLASSPNP!TransferPktComplete

Kernel Debugging Tutorial © 2005 Microsoft Corporation 58

 Args: fffffadfe6869130 00000000 00000000

00000000

The value in red is, under these conditions, the SRB address for that IRP.

6. To get the SRBs formatted, create debugtst2.txt by finding and copying all lines in

the above output that contain „Args: ffff‟. Then change each line to be like this:

dt nt!SCSI_REQUEST_BLOCK fffffadfe6869130

Note: Since the Microsoft symbol store contains only "public symbols", so

nt!SCSI_REQUEST_BLOCK may not be available. For present purposes, think of it

simply as a structure defined in a driver for which you have complete symbols.

7. You would save debugtst2.txt. Then in WinDbg you would do

$$<c:\temp\debugtst2.txt. The output would be like this:

1: kd> dt nt!SCSI_REQUEST_BLOCK fffffadfe6869130

 +0x000 Length : 0x58

 +0x002 Function : 0 ''

 +0x003 SrbStatus : 0 ''

 +0x004 ScsiStatus : 0 ''

 +0x005 PathId : 0 ''

 +0x006 TargetId : 0xff ''

 +0x007 Lun : 0 ''

...

 +0x038 SrbExtension : (null)

 +0x040 InternalStatus : 0x21044d0

 +0x040 QueueSortKey : 0x21044d0

 +0x044 Reserved : 0

 +0x048 Cdb : [16] "*"

Thus, with a few minutes‟ work, you would have found and displayed all the SRBs of interest.

It is possible to write a debugger extension to do the same thing, but for a one-off

investigation, a simple script may be the better approach. You can take a script a step

further by packaging commands with control logic to form a command program. The control

Kernel Debugging Tutorial © 2005 Microsoft Corporation 59

is exercised through flow-operation tokens like .if and .for. For details about scripts and

command programs, see “Run Script File” and “Using Debugger Command Programs” in the

Debugging Tools for Windows help file.

A debugger extension is even more powerful, but it takes more time to write. An extension,

written in C or C++ and built as a DLL, has available the full power of the debugger and its

“engine.” Many of commonly used commands such as !process are in fact extensions. The

specifics of writing an extension are beyond the present scope. Refer to “Debugger

Extensions” in the Debugging Tools for Windows help file.

Remote debugging

WinDbg (and KD) can be connected to a target to act as a server for a debugger instance

acting as client, via TCP/IP or other protocol. A test system is connected via COMx or 1394

to a debugger, and the debugger is made into a server; then a developer can investigate

problems or exercise function at a distance. This setup is very valuable in automated testing,

allowing a person to investigate lab problems from his or her desk.

To get this capability, you can start the debugger with a command-line option to indicate its

role:

windbg -server tcp:port=5555

or you can issue a command in WinDbg after it has started:

.server tcp:port=5005

Either method causes WinDbg to act as a debugging server, listening at TCP/IP port 5005.

In a different instance of WinDbg, do this to connect as a client:

.tcp:server=myserver,port=5005

To start a WinDbg client from scratch:

windbg -remote tcp:server=myserver,port=5005

COMx, named-pipe and SSL are other available protocols.

A few things to realize about remote debugging:

 If there is a firewall between the host system in one local or corporate network and

the target system in another network, remote debugging is more complicated. See

the Debugging Tools for Windows help file for details.

 Access to symbols and to source are based on the permissions of the person logged

in at the remote server, not the permissions of the person that is running the client.

Kernel Debugging Tutorial © 2005 Microsoft Corporation 60

 The client sets source file locations by the .lsrcpath (“local source path”) command,

not .srcpath.

“Short” call stacks

WinDbg does its best to figure out the call stack, but sometimes it is defeated. Retrieving

such a situation is one of the most difficult tasks facing the person who is debugging, since

she or he must use her/his own knowledge to supplement WinDbg‟s expert knowledge. Be

warned, then! Tough slogging ahead.

Consider this example from a dump file where there was a double-fault bug check

(unexpected kernel-mode trap with first argument 0x00000008):

kd> k

ChildEBP RetAddr

be80cff8 00000000 hal!HalpClockInterruptPn+0x84

It would seem there was only one routine on the stack, an operating system clock-interrupt

routine. It is a bit suspicious that that should have failed. So, begin by looking at the

current thread:

kd> !thread

THREAD 88f108a0 Cid 8.54c Teb: 00000000 Win32Thread: 00000000

RUNNING

...

Start Address rpcxdr!SunRpcGetRxStats (0xf7352702)

Stack Init be810000 Current be80fd34 Base be810000 Limit be80d000 Call

0

The stack starts at 0xBE810000 and goes down to 0xBE80D000 (three pages, which is

normal). The stack base (ChildEBP) for the apparently failing clock routine is 0xBE80CFF8,

which is beyond (below) the stack‟s end. Is it likely that a clock routine would have used

more than the standard stack?

The detective work begins with looking for addresses in the stack that may indicate other

routines. For this the usual tool is dds (“Display Words and Symbols”), to look for stored

addresses (dqs and dps can be used, too; note that all three of these commands are case-

sensitive). For present purposes ignore the clock-interrupt routine and instead focus on the

stack up to but not including the routine interrupted by the clock routine. But don‟t ignore

Kernel Debugging Tutorial © 2005 Microsoft Corporation 61

the clock routine entirely: You start with the fact that its base stack pointer (ChildEBP above)

is 0xBE80CFF8.

Next look at 0xBE80CFF8 and see if anything interesting shows up (annotations below are

shown with C-style comment delimiters):

2: kd> dds be80cff8 be80cff8+0x100

be80cff8 ???????? /* Invalid storage address. */

be80cffc ???????? /* Invalid storage address. */

be80d000 00000000

...

be80d034 00000000

be80d038 00000020

...

be80d058 be80d084

be80d05c 00000000

be80d060 bfee03e0 zzznds+0x103e0

be80d064 00000008

be80d068 00000246

be80d06c 8a61c004

be80d070 bfbb7858

be80d074 88c1da28

be80d078 00000000

be80d07c 00000000

be80d080 00000000

be80d084 be80d0d8 /* Saved Ebp of zzznds+0xBED7, as

explained below. */

Kernel Debugging Tutorial © 2005 Microsoft Corporation 62

be80d088 bfedbed7 zzznds+0xbed7

...

Assume that the line with the identification “zzzndx+0x103E0” is the driver routine

interrupted by the clock routine. You will notice the earlier line (higher stack address) with

the identification “zzznds+0xBED7.”

Now look at disassembled instructions a little before zzznds+0xBED7 (the point of call):

zzznds+0xbed0:

bfedbed0 53 push ebx

bfedbed1 57 push edi

bfedbed2 e8e7420000 call zzznds+0x101be (bfee01be)

Note that the call is to zzznds+0x101BE, which is fairly close to the first identified line. Thus,

the disassembly could well be the call to that.

Now disassemble zzznds+0x101BE to see how that call worked:

bfee01be 55 push ebp /* Save the caller's EBP.

*/

bfee01bf 8bec mov ebp,esp /* Make the current ESP

our EBP. */

bfee01c1 83ec0c sub esp,0xc /* Adjust ESP by

subtracting 0xC. */

bfee01c4 53 push ebx

Looking back to the output from dds above, you can see at 0xBE80D088 the caller‟s saved

Ebp. But the operations of pushing down that Ebp (push ebp at 0xBFEE01BE) and of saving

it at 0xBE80D088 mean that Esp after the pushing is 0xBE80D084, and since Esp becomes

the current Ebp (instruction at 0xBFEE01BF), and since 0xC is subtracted from Esp at

0xBFEE01C1, the resulting Esp value at the instruction at 0XBFEE01C4 has to be

0xBE80D078.

Now you have determined the Ebp, Esp and Eip values for what was called by

zzznds+0xBED7, namely, 0xBE80D084, 0xBE80D078 and 0xBFEE01C4, so you supply them

to the k command for it to use them rather than try to discover values:

2: kd> k = 0xBE80D084 0xBE80D078 0xBFEE01C4

Kernel Debugging Tutorial © 2005 Microsoft Corporation 63

ChildEBP RetAddr

WARNING: Stack unwind information not available. Following frames may

be wrong.

be80d084 bfedbed7 zzznds+0x101c4

be80d0d8 bff6030f zzznds+0xbed7

be80d0fc 8046d778 SCSIPORT!SpStartIoSynchronized+0x139

be80d114 bff60e4f nt!KeSynchronizeExecution+0x28

be80d148 8006627b SCSIPORT!SpBuildScatterGather+0x249

be80d174 8041d30e hal!HalAllocateAdapterChannel+0x11b

be80d18c bff5f8c8 nt!IoAllocateAdapterChannel+0x28

be80d1bc 8041f73f SCSIPORT!ScsiPortStartIo+0x2ea

be80d1e0 bff5f4ec nt!IoStartPacket+0x6f

be80d214 bff601d0 SCSIPORT!ScsiPortFdoDispatch+0x26c

be80d22c bff622f7 SCSIPORT!SpDispatchRequest+0x70

be80d248 bff5e390 SCSIPORT!ScsiPortPdoScsi+0xef

be80d258 8041deb1 SCSIPORT!ScsiPortGlobalDispatch+0x1a

...

That is only part, the latest part, of the stack (there was more). But you should have the

general idea.

To arrive at the parameters given to k immediately above, a good deal of detective work

was necessary, involving a search of the stack and looking at code to see how the stack is

built at a certain point. The work will vary from case to case. The lesson here is that if

WinDbg‟s stack backtrace looks short, see if the kernel stack allotted to the failing thread is

plausibly accounted for. If not, begin to dig in.

Unexpected change of thread context during stepping

If you spend an extended period of time in stepping through kernel code (with F10 or F11,

for example), you may notice that control suddenly jumps to a point you didn‟t expect. This

is the more likely if the code is running at an IRQL less than DISPATCH_LEVEL and you

employ step-over (F10). If you knew that you were following control running under a

Kernel Debugging Tutorial © 2005 Microsoft Corporation 64

specific thread and now checked the running thread, you would know for certain that the

thread changed.

This behavior is normal, if disconcerting. The debugger accomplishes stepping by putting a

debugging instruction (e.g., int 3 on x86) at the next instruction or the next statement (the

debugging instruction isn‟t ordinarily visible to the person debugging). If the thread‟s

quantum expires in moving from the current instruction/statement to the next, the

operating system may dispatch a different thread, and that thread might encounter the

debugging instruction, whereupon the debugger would get control. The debugger does not

check that the thread is the same as that for the last stepping point but simply stops

execution. In such a situation you may observe a jump. This scenario becomes more likely if

the stepped-over code involves a great deal of processing, as might happen in stepping over

an API that calls an API that calls an API and so forth.

There is no simple way of dealing with this behavior, which, to repeat, is expected. What

can work for you is to be on the watch for unexpected jumps in stepping, and to check the

current thread if you are suspicious. If you find the thread has switched, you should look

back to find the last good point, restart the testing from square 1, set a one-time thread-

qualified breakpoint at that last good point, and let things run until that breakpoint is

reached. Then you can proceed: You are still exposed to switches, but you are that much

further along the path of interest.

Getting more information

This brief essay did not plumb all the debugger‟s possibilities. For more information, consult

the Debugging Tools for Windows help file. If you still have unanswered questions, bring

them up in the public newsgroup microsoft.public.windbg (hosted by

msnews.microsoft.com), or send email to windbgfb@microsoft.com.

