
© Microsoft Corporation 1

Windows Kernel Internals

Cache Manager

David B. Probert, Ph.D.

Windows Kernel Development

Microsoft Corporation



© Microsoft Corporation 2

What is the Cache Manager?

• Set of kernel-mode routines and 

asynchronous worker routines that form 

the interface between filesystems and the 

memory manager for Windows NT



© Microsoft Corporation 3

Cache Manager Functionality

• Access methods for pages of file data on 

opened files

• Automatic asynchronous read ahead

• Automatic asynchronous write behind 

(lazy write)

• Supports “Fast I/O” – IRP bypass



© Microsoft Corporation 4

Who Uses the Cache Manager?

• Disk File Systems (NTFS, FAT, CDFS, 

UDFS)

• Windows File Server(s)

• Windows Redirector

• Registry (as of Windows XP)



© Microsoft Corporation 5

What Can Be Cached?

• User data streams

• File system metadata

– directories

– transaction logs

– NTFS MFT

– synthetic structures – FAT’s Virtual Volume 

File

• … anything that can be represented as a 

stream of bytes



© Microsoft Corporation 6

Virtual Block vs Logical Block 

Cache
• More traditional approach is logical block 

cache (SmartDrive):

– File+FileOffset translated by file system into 

one or more partition offsets

– Each partition offset translated by cache 

manager to cache address

• In a virtual block cache:

– File+FileOffset translated by cache manager 

to cache address, its memory mapping!



© Microsoft Corporation 7

Advantages of Virtual Block Cache 

integrated with VM

• Single memory manager

– the actual “cache” manager!

• Data cache is dynamically sized – just 

another working set

• Cache coherency with user mapped files 

is free



© Microsoft Corporation 8

How Does It Work?

• Mapped stream model integrated with memory 

management

• Cached streams are mapped with fixed-size 

views (256KB)

• Pages are faulted into memory via MM

• Pages may be modified in memory and written 

back

• MM manages global memory policy



© Microsoft Corporation 9

Cache Addresses

• MM allocated kernel VA range (512MB +)

– common: 0xc1000000 – 0xe0000000

• Visible in all kernel-mode contexts

• Member of the System Cache working set 

(includes paged pool and code)

– this is what Task Manager shows you!

– not just the “file” cache, though it does frequently 

dominate

• Competes for physical memory

• “Owned” by Cache Manager



© Microsoft Corporation 10

Datastructure Layout

• File Object == Handle (U or K), not one per file

• Section Object Pointers and FS File Context are 
the same for all file objects for the same stream

K
e
r
n
e
l

Handle

File Object
Filesystem File Context

FS Handle Context (2)

Section Object Pointers

Data Section (Mm)

Image Section (Mm)

Shared Cache Map (Cc)

Private Cache Map (Cc)



© Microsoft Corporation 11

Datastructures

• File Object
– FsContext – per physical stream context

– FsContext2 – per user handle stream context, not all 
streams have handle context (metadata)

– SectionObjectPointers – the point of “single 
instancing”

• DataSection – exists if the stream has had a mapped section 
created (for use by Cc or user)

• SharedCacheMap – exists if the stream has been set up for 
the cache manager

• ImageSection – exists for executables

– PrivateCacheMap – per handle Cc context 
(readahead) that also serves as reference from this 
file object to the shared cache map



© Microsoft Corporation 12

Single Instancing & Metadata

• Although filesystems represent metadata as streams, 
they are not exported to user mode

• Directories require a level of indirection to escape single 
instancing exposing the data

• Filesystems create a second internal “stream” fileobject
– user’s fileobject has NULL members in its Section Object 

Pointers

– stream fileobjects have no FsContext2 (user handle context)

• All metadata streams are built like this (MFTs, FATs, etc.)

• FsContext2 == NULL plays an important role in how Cc 
treats these streams, which we’ll discuss later.



© Microsoft Corporation 13

View Management

• A Shared Cache Map has an array of View Access 
Control Block (VACB) pointers which record the base 
cache address of each view
– promoted to a sparse form for files > 32MB

• Access interfaces map File+FileOffset to a cache 
address

• Taking a view miss results in a new mapping, possibly 
unmapping an unreferenced view in another file (views 
are recycled LRU)

• Since a view is fixed size, mapping across a view is 
impossible – Cc returns one address

• Fixed size means no fragmentation …



© Microsoft Corporation 14

View Mapping

0-256KB 256KB-512KB 512KB-768KB

c1000000

File Offfset

<NULL> cf0c0000

VACB Array



© Microsoft Corporation 15

Interface Summary

• File objects start out unadorned

• CcInitializeCacheMap to initiate caching via Cc 
on a file object
– setup the Shared/Private Cache Map & Mm if 

neccesary

• Access methods (Copy, Mdl, Mapping/Pinning)

• Maintenance Functions

• CcUninitializeCacheMap to terminate caching on 
a file object
– teardown S/P Cache Maps

– Mm lives on. Its data section is the cache!



© Microsoft Corporation 16

The Cache Manager Doesn’t Stand Alone

• Cc is an extension of either Mm or the FS 

depending how you look at it

• Cc is intimately tied into the filesystem 

model

• Understanding Cc means we have to take 

a slight detour to mention some concepts 

filesystem folks think are interesting. Raise 

your hand if you’re a filesystem person :-)



© Microsoft Corporation 17

The Big Block Diagram

Cache Manager

Memory Manager

Filesystem

Storage Drivers

Disk

Fast IO Read/Write IRP-based Read/Write

Page 
Fault

Cache 
Access, 
Flush, 
Purge

Noncached 
IO

Cached IO



© Microsoft Corporation 18

The Slight Filesystem Digression

• Three basic types of IO on NT: cached, 
noncached and “paging”

• Paging IO is simply IO generated by Mm –
flushing or faulting
– the data section implies the file is big enough

– can never extend a file

• A filesystem will re-enter itself on the same 
callstack as Mm dispatches cache pagefaults

• This makes things exciting! (ERESOURCEs)



© Microsoft Corporation 19

The Three File Sizes

• FileSize – how big the file looks to the user
– 1 byte, 102 bytes, 1040592 bytes

• AllocationSize – how much backing store is 
allocated on the volume
– multiple of cluster size, which is 2n * sector size

– ... a more practical definition shortly

• ValidDataLength – how much of the file has 
been written by the user in cache, zeros seen 
beyond (some OS use sparse allocation)

• ValidDataLength <= FileSize <= AllocationSize



© Microsoft Corporation 20

Valid Data Length

• The Win32 model expects full allocation of files 
(STATUS_DISK_FULL is uncool)

• Writing zeroes is expensive, but users tend to write files 
front to back

• Windows FS keep track of this as a high-water mark

• If the user reads beyond VDL, we may be able to get 
clever and not bother the filesystem at all.

• If a user writes beyond VDL, zeroing of a “hole” may be 
required

• Never SetEndOfFile and write at the end if you can help 
it!



© Microsoft Corporation 21

How to get data into the cache



© Microsoft Corporation 22

Fast IO – Who Needs an FS?

• Fast IO paths short circuit the IO to a 
common FsRtl routine or filesystem-
provided call

• This is just memory mapped IO, 
synchronizing with the FS for …

• Extending FileSize up to AllocationSize!

– VDL zeroing means the cache data is already 
good

– Hint set in fileobject so FS will update directory

• Extending ValidDataLength up to FileSize



© Microsoft Corporation 23

Regular Cached IO

• Filesystems also implement a cached path

• Basically the same logic as the Fast IO 

path (or vice versa, depending)

• Reuses the same Cc functions

• Why not use Fast IO all the time?

– file locks

– oplocks

– extending files (and so forth)



© Microsoft Corporation 24

Copy Method

• Used for user cached IO, both fast and IRP based 

• CcCopyRead maps and copies a mapped cache 

byte range into a buffer

• CcCopyWrite copies a buffer into a mapped cache 

byte range and marks the range for writing

• “Fast” versions of each are really the same code, 

but only taking 32bit fileoffsets

– NT used to run on 386s! :-)



© Microsoft Corporation 25

Mdl (DMA) Method

• Used by network transport layers 

• CcMdlRead returns an Mdl describing 

specified byte range

• CcMdlReadComplete frees the Mdl

• CcPrepareMdlWrite returns an Mdl 

describing specified byte range (may 

contain “smart” zeros with respect to VDL)

• CcMdlWriteComplete frees the Mdl and 

marks range for writing



© Microsoft Corporation 26

Pagefault Cluster Hints

• Taking a pagefault can result in Mm 
opportunistically bringing surrounding 
pages in (up 7/15 depending)

• Since Cc takes pagefaults on streams, but 
knows a lot about which pages are useful, 
Mm provides a hinting mechanism in the 
TLS

– MmSetPageFaultReadAhead()

• Not exposed to usermode …



© Microsoft Corporation 27

Readahead

• CcScheduleReadAhead detects patterns on a handle 
and schedules readahead into the next suspected 
ranges
– Regular motion, backwards and forwards, with gaps

– Private Cache Map contains the per-handle info

– Called by CcCopyRead and CcMdlRead

• Readahead granularity (64KB) controls the scheduling 
trigger points and length
– Small IOs – don’t want readahead every 4KB

– Large IOs – ya get what ya need (up to 8MB, thanks to Jim 
Gray)

• CcPerformReadAhead maps and touch-faults pages in a 
Cc worker thread, will use the new Mm prefetch APIs in 
a future release



© Microsoft Corporation 28

Unmap Behind

• Recall how views are managed (misses)

• On view miss, Cc will unmap two views behind 
the current (missed) view before mapping

• Unmapped valid pages go to the standby list in 
LRU order and can be soft-faulted. In practice, 
this is where much of the actual cache is as of 
Windows 2000.

• Unmap behind logic is default due to large file 
read/write operations causing huge swings in 
working set. Mm’s working set trim falls down at 
the speed a disk can produce pages, Cc must 
help.



© Microsoft Corporation 29

Cache Hints

• Cache hints affect both read ahead and unmap 
behind

• Two flags specifiable at Win32 CreateFile()

• FILE_FLAG_SEQUENTIAL_SCAN
– doubles readahead unit on handle, unmaps to the 

front of the standby list (MRU order) if all handles are 
SEQUENTIAL

• FILE_FLAG_RANDOM_ACCESS
– turns off readahead on handle, turns off unmap 

behind logic if any handle is RANDOM

• Unfortunately, there is no way to split the effect



© Microsoft Corporation 30

Write Throttling
• Avoids out of memory problems by delaying writes to the 

cache
– Filling memory faster than writeback speed is not useful, we may 

as well run into it sooner

• Throttle limit is twofold
– CcDirtyPageThreshold – dynamic, but ~1500 on all current 

machines (small, but see above)

– MmAvailablePages & pagefile page backlog

• CcCanIWrite sees if write is ok, optionally blocking, also 
serving as the restart test

• CcDeferWrite sets up for callback when write should be 
allowed (async case)

• !defwrites debugger extension triages and shows the 
state of the throttle



© Microsoft Corporation 31

Writing Cached Data

• There are three basic sets of threads 

involved, only one of which is Cc’s

– Mm’s modified page writer

• the paging file

– Mm’s mapped page writer

• almost anything else

– Cc’s lazy writer pool

• executing in the kernel critical work queue

• writes data produced through Cc interfaces



© Microsoft Corporation 32

The Lazy Writer
• Name is misleading, its really delayed

• All files with dirty data have been queued onto 
CcDirtySharedCacheMapList

• Work queueing – CcLazyWriteScan()
– Once per second, queues work to arrive at writing 1/8th

of dirty data given current dirty and production rates

– Fairness considerations are interesting

• CcLazyWriterCursor rotated around the list, 
pointing at the next file to operate on (fairness)
– 16th pass rule for user and metadata streams

• Work issuing – CcWriteBehind()
– Uses a special mode of CcFlushCache() which flushes 

front to back (HotSpots – fairness again)



© Microsoft Corporation 33

Write Throttling
• Avoids out of memory problems by delaying 

writes to the cache
– Filling memory faster than writeback speed is not 

useful, we may as well run into it sooner

• Throttle limit is twofold
– CcDirtyPageThreshold – dynamic, but ~1500 on all 

current machines (small, but see above)

– MmAvailablePages & pagefile page backlog

• CcCanIWrite sees if write is ok, optionally 
blocking, also serving as the restart test

• CcDeferWrite sets up for callback when write 
should be allowed (async case)

• !defwrites debugger extension triages and shows 
the state of the throttle



© Microsoft Corporation 34

Valid Data Length Calls
• Cache Manager knows highest offset successfully 

written to disk – via the lazy writer

• File system is informed by special 

FileEndOfFileInformation call after each write 

which extends/maintains VDL

• FS which persist VDL to disk (NTFS) push that 

down here

• FS use it as a hint to update directory entries 

(recall Fast IO extension, one among several)

• CcFlushCache() flushing front to back is important 

so we move VDL on disk as soon as possible.



© Microsoft Corporation 35

Letting the Filesystem Into The Cache

• Two distinct access interfaces

– Map – given File+FileOffset, return a cache address

– Pin – same, but acquires synchronization – this is a 

range lock on the stream

• Lazy writer acquires synchronization, allowing it to serialize 

metadata production with metadata writing

• Pinning also allows setting of a log sequence 

number (LSN) on the update, for transactional 

FS

– FS receives an LSN callback from the lazy writer prior 

to range flush



© Microsoft Corporation 36

Remember FsContext2?

• Synchronization on Pin interfaces requires 
that Cc be the writer of the data

• Mm provides a method to turn off the 
mapped page writer for a stream, 
MmDisableModifiedWriteOfSection()

– confusing name, I know (modified writer is not 
involved)

• Serves as the trigger for Cc to perform 
synchronization on write



© Microsoft Corporation 37

Mapping/Pinning Method

• CcMapData to map byte range for read 

access

• CcPinRead to map byte range for 

read/write access

• CcPreparePinWrite

• CcPinMappedData

• CcSetDirtyPinnedData

• CcUnpinData



© Microsoft Corporation 38

BCBs and Lies Thereof

• Mapping and Pinning interfaces return 

opaque Buffer Control Block (BCB) 

pointers

• Unpin receives BCBs to indicate regions

• BCBs for Map interfaces are usually VACB 

pointers

• BCBs for Pin interfaces are pointers to a 

real BCB structure in Cc, which references 

a VACB for the cache address



© Microsoft Corporation 39

Basic Maintenance Functions
• CcSetFileSizes

– used by FS to tell Cc/Mm when it changes file sizes

– updates VDL goal for the callback

– extends data sections, purges on truncate

• CcFlushCache

• CcPurgeCacheSection

• CcZeroData

– used during VDL zeroing for MDL hack

• ... and a few others, of course



© Microsoft Corporation 40

Cc Grab Bag

• Every component has them, lets take a 

short tour of some of the more interesting 

ones

• This is the R-rated portion of today’s 

presentation :-)



© Microsoft Corporation 41

We Can’t Use That 16GB

• It takes on the order of 2-3KB pool (minimum) to cache a 
single stream once the handle has been closed

• Cc structures are torn down at handle close

• File object, Filesystem contexts (FCB, CCB, MCB) Mm 
section structures, PTEs, etc. remain, and add up.

• If cache is dominated by small files, pool limits dominate 
ability to cache. Mm must trim files from the cache if pool 
fills.

• This dramatically limits the effective cache size on large 
machines in reasonable scenarios

• Motivates thinking about a large-machine cache at the 
volume level (block cache!), much to our chagrin – lower 
overhead per page of data



© Microsoft Corporation 42

Single Instancing is Security 

Context Insensitive

• What is single instancing and why does it matter?

• Recall the datastructures – Mm and Cc need a fileobject 
to reference. They choose the first fileobject seen for the 
file.

• Terminal Server creates an unanticipated case – multiple 
security contexts – a lot more often

• If multiple security contexts reference a file, page faults 
and flushes still only occur in the context of that first 
fileobject

• User logs out or SMB connection backing user’s 
fileobject is torn down – oops!



© Microsoft Corporation 43

Single Instancing is Security 

Context Insensitive

• Windows XP SMB RDR must break single instancing 

down to the security context level to solve.

• This means that each TS session will have a unique data 

section, and thus cache, for each file that otherwise 

could be shared between sessions.

• Non optimal. An optimal solution will require a lot of work 

that isn’t well understood yet.



© Microsoft Corporation 44

Mapping Is An Expense

• Requires Mm to pick up spinlocks

– easy case – MP scale problem

• Cc MDL functions have to map part of the 

cache to build MDLs (and then unmap)

• Mm may provide an API which does not 

need a virtual address

– recall comment about readahead and 

mapping



© Microsoft Corporation 45

Views Are Large

• Mm provides views at a fixed size, 256KB

• Many files are smaller, some are larger

• If we had a pool of views at 64KB, we may avoid view 
misses under heavy load

• Mediating factors

– Once misses start, they’ll happen as fast with small as 
large

– Can’t be used for large files or mapping cost will 
skyrocket

– As a result, benefit depends on file size mix

– Overallocation of small views would eat into VA for 
large views

• An area to be investigated



© Microsoft Corporation 46

Flushes Are Synchronous

• Mm only has a synchronous flush API

• An asynchronous paging IO flush would 

require FS rework as well

• There are only so many critical worker 

threads, and so many workers Cc can 

schedule

• As a result, effective bandwidth of the 

mapped and lazy writers is limited



© Microsoft Corporation 47

Cache Manager Summary

Virtual block cache for files not logical block cache 
for disks

Memory manager is the ACTUAL cache manager

Cache Manager context integrated into FileObjects

Cache Manager manages views on files in kernel 
virtual address space

I/O has special fast path for cached accesses

The Lazy Writer periodically flushes dirty data to 
disk

Filesystems need two interfaces to CC: map and pin



© Microsoft Corporation 48

Discussion


