
Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT Alerts Design Note

Author: David N. Cutler

Original Draft 1.0, February 9, 1989
Revision 1.2, March 30, 1989

Windows NT Alerts Design Note 2

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

This design note discusses a proposal to implement alerts in
both kernel and user mode. The alert capability can be used
to interrupt thread execution in either processor mode at
well defined points. A companion design note on APC's
contains information and algorithms that are pertinent to
this design.

There are three alert specific kernel services;
TestAlertThread, AlertThread, and AlertResumeThread. In
addition, the kernel Wait functions take a mode and an
alertable flag as arguments.

Each thread has an alerted flag for each of the processor
modes user and kernel. These flags are set by calling the
AlertThread function and specifying the thread and the mode
which are to be alerted.

If AlertThread is called and the target thread is in a wait
state, then several additional tests are performed to
determine the correct action to take.

If the mode of the wait is user, the alertable flag is set,
and the alert mode is user, then a thread specific APC is
queued to user mode which will raise the condition
"alerted", the user APC pending flag is set, and the thread
is unwaited with a completion status of "alerted".

If the mode of the wait is kernel or user, the alertable
flag is set, and the alert mode is kernel, then the thread
is unwaited with a status of "alerted". There is no APC
queued for kernel mode.

The following pseudo code describes the logic of
AlertThread:

PROCEDURE AlertThread (
 IN Mode : KtProcessorMode;
 IN Tcb : POINTER KtThread;
);

BEGIN

 Acquire dispatcher database lock;
 IF Tcb.State == Waiting THEN
 IF Tcb.WaitMode >= Mode AND Tcb.Alertable THEN
 IF Mode == User THEN
 Queue Tcb.AlertAcb;
 Tcb.UserApcPending = True;
 END IF;
 Unwait thread with a status of Alerted;
 ELSE
 Tcb.Alerted[Mode] = True;

Windows NT Alerts Design Note 3

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

 END IF;
 ELSE
 Tcb.Alerted[Mode] = True;
 END IF;
 Release dispatcher database lock;
END AlertThread;

When the user mode alerted flag gets set, it remains set
until either a TestAlert or a Wait alertable is performed
which clears the flag.

The kernel mode alerted flag is treated somewhat differently
in that it is cleared on each system service entry to the
system. The reasoning behind this is that a kernel mode
alert should only persist for the duration of time that
execution continues in kernel mode. As soon as execution
leaves kernel mode, the alerted flag is no longer
significant. This is a very important feature which allows
the conditional aborting of native system services by
protected subsystems which provide system services for other
operating system API's. This subject is discussed in more
detail at the end of this document.

The kernel service AlertResumeThread allows a thread to be
alerted and then resumed in a single operation. This
operation is really a kernel mode AlertThread followed by a
ResumeThread, but is provided as a kernel service so that is
can be executed without any race conditions.

The following pseudo code describes the logic of
AlertResumeThread:

PROCEDURE AlertResumeThread (
 IN Tcb : POINTER KtThread;
) RETURNS integer;

VARIABLE

 OldCount : integer;

BEGIN

 Acquire dispatcher database lock;
 IF Tcb.State == Waiting THEN
 IF Tcb.Alertable THEN
 Unwait thread with a status of Alerted;
 ELSE
 Tcb.Alerted[Kernel] = True;
 END IF;
 ELSE
 Tcb.Alerted[kernel] = True;

Windows NT Alerts Design Note 4

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

 END IF;
 OldCount = Tcb.SuspendCount;
 IF Tcb.SuspendCount <> 0 THEN
 Tcb.SuspendCount = Tcb.SuspendCount - 1;
 IF Tcb.SuspendCount == 0 THEN
 Release Tcb.SuspendSemaphore;
 END IF;
 END IF;
 Release dispatcher database lock;
 RETURN OldCount;
END AlertResumeThread;

TestAlertThread tests the alerted flag for a specified
processor mode and returns a status value of "alerted" if
the flag was set and "normal" if the flag was clear. If the
alerted flag was set, then it is cleared, and if the
specified mode is user, then an alert APC is queued to user
mode and user APC pending is set in the calling thread's
TCB.

In addition, TestAlertThread also tests whether a user APC
should be delivered. If the specified mode is user and the
user APC queue contains an entry, then APC pending is set in
the calling thread's TCB.

The following pseudo code describes the logic of TestAlert:

PROCEDURE TestAlertThread (
 IN Mode : KtProcessorMode;
) RETURNS KtStatus;

BEGIN

 Acquire dispatcher database lock;
 Get current TCB address;
 IF Tcb.Alerted[Mode] THEN
 Tcb.Alerted[Mode] = False;
 IF Mode == User THEN
 Queue Tcb.AlertAcb;
 Tcb.UserApcPending = True;
 END IF;
 Release dispatcher database lock;
 RETURN Alerted;
 ELSE
 IF Mode == User AND Tcb.ApcQueue[User] <> NIL THEN
 Tcb.UserApcPending = True;
 END IF;
 Release dispatcher database lock;
 RETURN Normal;
 END IF;
END TestAlertThread;

Windows NT Alerts Design Note 5

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

Wait tests the alerted flags for the specified and all more
privileged processor modes if the alertable argument value
is true. If an alerted flag is set, then a status value of
"alerted" is returned.

In addition, Wait also tests whether a user APC should be
delivered if the alertable argument value is true and the
specified mode is user. For this case, if the user APC queue
contains an entry, then APC pending is set in the calling
thread's TCB and a status value of "UserApc" is returned.

The following pseudo code describes the logic of Wait:

Windows NT Alerts Design Note 6

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

PROCEDURE Wait (
 IN Mode : KtProcessorMode;
 IN Alertable : boolean;
 IN WaitObject : POINTER KtDispatcherObject;
 IN Timeout : POINTER integer;
) RETURNS KTStatus;

BEGIN

Repeat:
 Acquire dispatcher database lock;
 Get current TCB address;
 IF Alertable THEN
 IF Tcb.Alerted[Mode] THEN
 Tcb.Alerted[Mode] = False;
 IF Mode == User THEN
 Queue Tcb.AlertAcb;
 Tcb.UserApcPending = True;
 END IF;
 Release dispatcher database lock;
 RETURN Alerted;
 ELSEIF Mode == User THEN
 IF Tcb.UserApcQueue <> NIL THEN
 Tcb.UserApcPending = True;
 Release dispatcher database lock;
 RETURN UserApc;
 ELSEIF Tcb.Alerted[Kernel] THEN
 Tcb.Alerted[Kernel] = False;
 Release dispatcher database lock;
 RETURN Alerted;
 END IF;
 END IF;
 END IF;
 IF WaitObject.Signal THEN
 Satisfy wait for WaitObject;
 Release dispatcher database lock;
 RETURN Tcb.WaitStatus;
 ELSE
 Tcb.Alertable = Alertable;
 Construct wait control block for WaitObject;
 Initialize Tcb.Timer with time out value;
 Insert wait control block in wait queue;
 Insert Tcb.Timer in timer queue;
 Select new thread to run;
 Swap context to new thread;
 IF Tcb.WaitStatus == KernelApc THEN
 Goto Repeat;
 ELSE
 RETURN Tcb.WaitStatus;
 END IF;
 END IF;
END Wait;

Windows NT Alerts Design Note 7

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

It is the responsibility of the executive to test for the
"alerted" return status from TestAlert and Wait and perform
the correct operation (e.g. cleaning up data structure,
unwinding, etc).

Wait and AlertThread both allow a thread that is waiting
user mode alertable to be awakened by a kernel mode alert.
If this were not done, then it would not be possible to
abort the Wait system service.

The interesting combinations of initial conditions and the
resultant action when a Wait system service is executed are
given below.

Case 1

 Wait Mode = Kernel
 Tcb.Alerted[User] = True
 Tcb.Alerted[Kernel] = False
 Alertable = True

 Action - Put thread in wait state

Case 2

 Wait Mode = Kernel
 Tcb.Alerted[User] = x
 Tcb.Alerted[Kernel] = True
 Alertable = True

 Action - Clear Tcb.Alerted[Kernel] and return Alerted

Case

 Wait Mode = User
 Tcb.Alerted[User] = True
 Tcb.Alerted[Kernel] = x
 Alertable = True

 Action - Clear Tcb.Alerted[User], queue Tcb.AlertAcb,
 and set Tcb.UserApcPending

Case 4

 Wait Mode = User
 Tcb.Alerted[User] = False
 Tcb.Alerted[Kernel] = True
 Alertable = True

 Action - Clear Tcb.Alerted[Kernel] and return Alerted

Case 5

Windows NT Alerts Design Note 8

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

 Wait Mode = User
 Tcb.Alerted[User] = False
 Tcb.Alerted[Kernel] = False
 Alertable = True

 Action - Put thread in wait state

Kernel mode alerts can be used to implement the semantics
necessary to abort native system services. The following
discussion describes how this can be implemented in Windows
NT.

In Mach the operations necessary to abort a native system
service are suspend, abort service, and resume. This
capability is used to get a thread out of a possible wait
state in the system and deliver a signal, terminate
execution, etc.

A similar set of primitives can be provided in Windows NT
using the kernel alert capability.

Windows NT suspends a thread by sending it a normal kernel
APC that causes the thread to wait on an semaphore that is
built into the thread object. The resume operation simply
releases the builtin semaphore which continues thread
execution.

The suspend wait operation is nonalertable to ensure that
the alert and resume operation functions properly; see
below.

If a thread is in a wait state when it is suspended, then
the wait completion status is set to "kernel APC". This is
done so the wait can be repeated when the APC returns.

Implementing the primitives to abort native system services
does not quite solve the whole problem. Each native service
that can result in a long wait must be written such that it
is responsive to kernel alerts. This means that a native
service should wait alertable in kernel mode when it does a
wait that could take a long time. Also, if very long
algorithms are being performed, then TestAlert should also
be called at appropriate points.

It is preferable that a native service either complete
successfully or be entirely aborted. For those cases where
there are really two parts to the service such as an
operation followed by a wait, the service should be broken
into two parts. Each part should be executed separately from
the calling mode.

Windows NT Alerts Design Note 9

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

A protected subsystem that is a system service server can
stop, alter, and a resume a thread by performing the
sequence of operations suspend, get state, set state, and
alert and resume.

If a native service is active when the suspend operation
takes place, then the kernel alerted flag will remain set
for the duration of the service after the thread is resumed.
The alerted flag can be tested by the service using the
TestAlert function.

A more interesting case is when the native service is
waiting kernel mode alertable. The suspend service causes a
normal kernel APC to be sent to the target thread which
completes its wait with a status of "kernel APC". The target
thread then waits nonalertable on its builtin suspend
semaphore.

When the subsystem executes the alert and resume service,
the kernel alerted flag is set in the target thread and the
target thread's suspend semaphore is released. This causes
the target thread to be unwaited with a status that is the
key value of the semaphore.

Unwaiting the thread causes it to continue execution in the
suspend APC routine which simply returns to the kernel APC
delivery code. The kernel APC delivery code restores the
state of the thread and resumes execution at the point of
interruption which is in the wait code. The wait code tests
the wait completion status and determines that the wait was
satisfied to deliver a kernel APC. The wait is repeated and
finds that the kernel alerted flag is set and that the wait
is alertable. Thus it returns immediately with a wait
completion status of "alerted".

Note that the kernel APC delivery code must save and restore
the wait completion status in the TCB so that the subsequent
suspend wait does not destroy it.

Windows NT Alerts Design Note 10

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

Revision History:

 Original Draft 1.0, February 9, 1989

 Revision 1.1, February 10, 1989

1. Include tests for nonempty user APC queue in
TestAlert and Wait algorithm descriptions.

 Revision 1.2, March 30, 1989

1. Minor edits to conform to standard format.

[end of alerts]

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT APC Design Note

Author: David N. Cutler

Original Draft 1.0, February 6, 1989
Revision 1.2, March 30, 1989

APC Design Note 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The following design note describes a proposal for the
handling of APC's in Windows NT. The companion design notes
on alerts and attach process contain information and
algorithms that are pertinent to this design.

The nice thing about APC's is that they interrupt thread
execution at any point and cause a procedure to be executed
in the context of a specified thread. This capability can be
used to reduce the number of threads required to perform a
particular function and can alleviate the need for polling.

The new model for implementing OS/2 and POSIX compatibility
with protected subsystems would suggest that APC's could be
used to substantially reduce the overhead and implementation
complexity of these subsystems. For instance OS/2 timers
could be implemented by NT timers that queue an APC when
they expire. The APC would be fielded by the OS/2 subsystem
which would clear the appropriate semaphore and delete or
repeat the timer as appropriate.

As good as this all sounds it is not without flaw. The very
thing that makes APC's so useful is also the same thing that
makes them so bad. This is the fact that they interrupt a
thread at arbitrary points. To get past this liability, the
capability to "disable" APC's over short regions of code is
needed. But this then has the problem of not being very
modular and also requires a lot of thought on the part of
the user. Writing code that is "APC" safe is VERY difficult.

SRC never recognized the need for APC's but did recognize
that it was useful to be able to send a thread an alert
signal. This signal typically means quit what you are doing
and reset to some canonical state. SRC's system provides a
function to send an alert to a thread (AlertThread), a
function to test if a thread had been alerted (TestAlert),
and a form of wait that allows a thread to be alerted while
it is waiting (WaitAlertable).

When TestAlert or WaitAlertable is called and the subject
thread has been alerted, then the condition "alert" is
raised. In addition, if AlertThread is called while a thread
is waiting as the result of a call to WaitAlertable, then
the thread is unwaited and the "alert" condition is raised.

The nice thing about the SRC alert design is that the alert
condition occurs at well defined points in the execution of
a program. These points are exactly the points where the
program says it is alertable. Writing code that is "alert"
safe is easy.

We do not want to drop the flexibility of APC's, but at the
same time we do not want to interrupt the execution of a
thread at arbitrary points. Therefore why not combine the

APC Design Note 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

notion of alertable with the functionality of APC's? To do
this we simply do not deliver an APC unless the thread is
alertable or calls TestAlert.

We only need to do this for user mode, and it fact, do not
want to do this for kernel mode as we need to break into the
kernel mode execution of a thread at an arbitrary point. As
system designers this does not (or more succinctly better
not!) present us with the same level of difficulty that it
does the run of the mill user.

Thus in user mode, APC's are only delivered at points where
the program is alertable. In kernel mode APC's are delivered
when the appropriate enabling conditions are present.

The following is an explantion of how APC's would work using
the concepts described above.

There are three types of APC's:

1. special kernel

2. normal kernel

3. normal user

A special kernel APC is deliverable whenever the Interrupt
Request Level (IRQL) of the corresponding thread is equal to
zero, and executes in kernel mode at IRQL 1. This type of
APC is used to break into a thread's execution and perform
some short operation such as posting I/O status. Code that
runs as the result of a special kernel APC is not allowed to
acquire any mutexes that can also be acquired at IRQL 0.
Special kernel APC code is allowed to take page faults, and
thus memory management code must ensure that it runs at IRQL
1 when it owns a mutex that could also be acquired during a
special kernel APC.

A normal kernel APC is deliverable whenever the IRQL of the
corresponding thread is equal to zero, a normal kernel APC
is not already in progress, and the thread does not own any
kernel level mutexes. Normal kernel APC code executes at
IRQL 0 and is allowed to execute any code including all
system services.

A normal user APC is deliverable at any time the target
thread is user mode alertable. Normal user APC code executes
at IRQL 0 and is allowed to execute any code including all
system services.

APC Design Note 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Both normal kernel and normal user APC's can also specify a
routine that is to be executed in kernel mode at IRQL 1 just
prior to executing the normal APC routine.

Each thread has a machine state which includes IRQL, an APC
pending flag for each of the modes kernel and user, an APC
in progress flag for kernel mode, and the number of mutexes
that are owned in kernel mode. This state is used to
determine when an APC should be delivered to a thread.

Unlike VAX or PRISM, there is no hardware support for APC's.
Thus at each exit from kernel mode (i.e. on each REI type of
operation), appropriate tests must be made to determine
whether an APC should be delivered or not.

APC Design Note 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The following pseudo code describes the logic of system
exit:

ExitFromSystem:

 disable interrupts;
 IF Previous IRQL == 0 THEN
 Get current TCB address;
 IF Previous mode == Kernel THEN
 IF Tcb.KernelApcPending THEN
 IRQL = 1;
 Call kernel APC delivery code;
 END IF;
 ELSEIF Tcb.UserApcPending THEN
 IRQL = 1;
 Call user APC delivery code;
 END IF;
 END IF;
 Restore state and continue execution;

The user APC delivery code is only called when an APC can
actually be delivered to user mode. Calling the kernel APC
delivery code, however, does not guarantee that a kernel APC
can really be delivered. Further checks must be performed to
ensure that proper enabling conditions are present. These
tests include whether the thread currently owns any mutexes
and whether a normal kernel APC is already in progress.

A thread in Windows NT can be in one of six states:

1. initialized - the thread has been initialized but
has not been readied for execution.

2. running - the thread is currently in execution on
some processor.

3. ready - the thread is either in a processor ready

queue (i.e. ready to execute) or in a process
ready queue (i.e. process is not in balance set).

4. standby - the thread has been selected to run on a

processor but has not actually started its
execution.

5. terminated - the thread has terminated but has not

yet been rundown (e.g. all resources have not been
returned).

6. waiting - the thread is waiting on one or more

dispatcher objects to attain a state of signaled.

APC Design Note 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

When an APC is queued, certain tests must be performed to

determine what action if any should be taken.

APC Design Note 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The following pseudo code describes the logic of queuing an
APC:

PROCEDURE QueueApc (
 IN Acb : POINTER KtApc;
 IN Tcb : POINTER KtThread;
);

BEGIN

 IF Acb.Mode == Kernel THEN
 IF Acb.Type == Special THEN
 Insert APC at front of thread kernel APC
 queue selected by Acb.ApcIndex;
 ELSE
 Insert APC at end of thread kernel APC queue
 selected by Acb.ApcIndex;
 END IF;
 IF Tcb.State == Running AND
 Acb.ApcIndex == Tcb.ApcIndex THEN
 IF Tcb.NextProcessor == CurrentProcessor THEN
 Set software interrupt at IRQL 1;
 ELSE
 Set APC delivery request for target
 processor;
 Set interrupt request for target
 processor;
 END IF;
 ELSEIF (Tcb.State == Waiting AND
 Acb.ApcIndex == Tcb.ApcIndex AND
 Tcb.WaitIrql == 0) AND
 (Acb.Type == Special OR
 (Tcb.MutexCount == 0 AND

 NOT Tcb.KernelApcInProgress)) THEN
 Unwait thread with status of KernelApc;
 END IF;
 Tcb.KernelApcPending = True;
 ELSE
 Insert APC at the end of thread user APC queue
 selected by Acb.ApcIndex;
 IF Tcb.State == Waiting AND
 Acb.ApcIndex == Tcb.ApcIndex AND
 Tcb.WaitMode == User AND
 Tcb.Alertable THEN
 Tcb.UserApcPending = True;
 Unwait thread with status of Alerted;
 END IF;
 END IF;
END QueueApc;

APC Design Note 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

A thread may be unwaited to execute a special kernel, normal
kernel, or normal user APC.

If the APC executes in kernel mode then the APC will have
already been executed by the time that execution continues
in the wait code. For this case the wait function is merely
repeated.

If the APC executes in user mode, then execution continues
in the wait code without having deliverd the user APC. For
this case, the wait code simply returns the status "alerted"
to the executive level Wait routine. The executive level
Wait routine must return a status of "RepeatService" to the
system service dispatch. The system service dispatcher backs
up the PC so that the wait service will be repeated,
restores state as necessary, and then executes the "REI"
which will cause a user APC to occur.

APC Design Note 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History

 Original Draft 1.0, February 6, 1989

 Revision 1.1, February 10, 1989

1. Move alert algorithms to alert design note.

2. Add test for attached process in QueueApc

procedure.

3. Add software interrupt request when APC is

queued to the current processor in kernel
mode.

4. Correct algorithm for delivery of user APC.

Revision 1.2, March 30, 1989

1. Minor edits to confrom to standard format.

2. Add capability to receive APC's while attached

to another address space.

[end of apc.doc]

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT Argument Validation Specification

Author: David N. Cutler

Original Draft, May 4, 1989
Revision 1.1, May 5, 1989
Revision 1.2, May 10, 1989
Revision 1.3, July 15, 1989

Windows NT Argument Validation Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

i

1. Overview... 1

2. Requirements ... 1

3. Operation ... 1

4. Interfaces.. 3
4.1 Probe for Readability and Read Argument Value...................... 3
4.2 Probe for Writeability and Read Argument Value 4
4.3 Probe for Writeability and Read/Write Argument Value 5
4.4 Probing An Aggregate Value... 7

 Windows NT Argument Validation Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1

1. Overview

This document describes the argument probing and capture
requirements to which all system services must adhere.

System services must be written such that they are robust and provide
protection against malicious attack and inadvertent program bugs. It
must not be possible to crash or corrupt the system by passing an
invalid argument value, a pointer to memory that is not accessible to the
caller, or by dynamically altering or deleting the memory occupied by an
argument in a simultaneously executing thread.

2. Requirements

Every system service must ensure that the arguments on which it
operates are valid (i.e., values are correct). This is essential to robust
system operation and involves the capturing of values and the probing of
argument addresses at appropriate points.

In general, a system service should capture all arguments on entry to the
procedure. This ensures that the caller or one of its cohorts (buddy
threads) cannot dynamically alter the value of the argument after it has
been read and verified, or delete the memory in which it is contained.

In some cases, it is not necessary to capture the value of an argument
immediately. Such is the case for I/O buffers and name strings. However,
all pointers MUST be captured and the addresses to which they point
MUST be probed for accessibility.

Fortunately, most arguments do not need explicit capture since they are
passed in registers. Arguments that are passed in memory are probed
and captured by the system service dispatcher as necessary.

3. Operation

The address space layout of Windows NT contains a boundary that
delineates user address space from system address space. All addresses
above the boundary are considered system addresses and all addresses
below the boundary are considered user addresses.

Pages in the system part of the address space are owned by kernel mode
and are not accessible to the user unless they are double mapped into
the user part of the address space. Pages in the user part of the address
space are owned by user mode and the access for kernel mode is
identical to that for user mode.

 Windows NT Argument Validation Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2

The executive NEVER creates a page in the user part of the address
space that is owned by kernel mode. Furthermore, at the boundary
between user address space and system address space, there are 64K
bytes that are inaccessible to all modes. This address space layout
makes it possible to determine whether an address is a valid user
address simply by doing a boundary comparison.

When a system service is called, the trap handler gets control, saves
state, and transfers control to the system service dispatcher. The system
service dispatcher determines which system service is being called, and
obtains the address of the appropriate function and the number of in-
memory arguments from a dispatch table. If the previous processor mode
is user mode and there is one or more in-memory arguments, then the
in-memory argument list is probed and then copied to the kernel stack. If
an access violation occurs during the copy, then the system service is
completed with a status of access violation. If an access violation does
not occur, then the the pointer to the in-memory argument list is
changed to point to the copy of the arguments on the kernel stack. The
system service dispatcher sets up a catchall condition handler, and then
calls the system service function.

The first thing the system service should do is establish a condition
handler. This handler should be prepared to handle access violations
that may occur as argument pointers are dereferenced to read or write
actual argument values.

Next, the system service code should obtain the previous processor
mode. If the previous processor mode was kernel, then there is no need
to probe any arguments. The executive does not call itself with bad
arguments.

If the previous processor mode was user, then any argument values that
are read or written by dereferencing a pointer must be probed for
accessibility. Probing is accomplished by first ensuring that the address
of the variable is within the user's address space and then reading or
writing the variable as appropriate. The code that actually probes
pointer-related arguments does not set up a condition handler. It merely
does the boundary check and then reads or writes the indicated location.
If the boundary check fails, an access violation condition is raised. If the
memory is inaccessible, an access violation is raised by hardware. Thus
probes are extremely cheap.

The complete code at the beginning of a system service should be
constructed as follows:

 Windows NT Argument Validation Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3

 // set up condition handler to catch access violations
 .
 .
 .

 if (GetPreviousMode() != KernelMode) {
 .
 .
 .
 // probe and capture reference arguments
 .
 .
 .
 }

At this point in the execution of a system service, all input values have
been captured and all output variables have been probed for writeability.
The system service performs its function, writes output values as
necessary, and returns a status that indicates whether the service
succeeded or failed.

During the writing of output values, an access violation can occur
because another thread or user altered the address space of the calling
thread. Access violations that occur at this time are silent and do not
cause the service to fail. If this were not the case, then it would be very
difficult to actually complete a system service since code would have to
be added to back out and undo the service right up until the very last
output value is written. If the caller receives a success status under such
conditions, it is likely that the caller will attempt to access one of the
output values and get an access violation.

4. Interfaces

The following sections describe the interfaces that are provided to probe
arguments for read and write accessibility.

4.1 Probe for Readability and Read Argument Value

The following functions provide the capability to probe a primitive data
type for readability and to read an argument value.

 Windows NT Argument Validation Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4

CHAR
ProbeAndReadChar (
 IN PCHAR Address
);

UCHAR
ProbeAndReadUchar (
 IN PUCHAR Address
);

SHORT
ProbeAndReadShort (
 IN PSHORT Address
);

USHORT
ProbeAndReadUshort (
 IN PUSHORT Address
);

LONG
ProbeAndReadLong (
 IN PLONG Address
);

ULONG
ProbeAndReadUlong (
 IN PULONG Address
);

QUAD
ProbeAndReadQuad (
 IN PQUAD Address
);

UQUAD
ProbeAndReadUquad (
 IN PUQUAD Address
);

 Windows NT Argument Validation Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5

HANDLE
ProbeAndReadHandle (
 IN PHANDLE Address
);

BOOLEAN
ProbeAndReadBoolean (
 IN PBOOLEAN Address
);

The previous functions are used to probe and read a value pointed to by
a safe pointer. A safe pointer is one that has either been captured on
procedure entry or which has been previously captured with one of the
these functions. The functions compare the pointer value to the
user/system address boundary, read the appropriate data-type value,
and return the value as the function value. If the value is not of
consequence, then the function value is simply not assigned to a
variable. Note that both signed and unsigned data types are provided.

4.2 Probe for Writeability and Read Argument Value

The following functions provide the capability to probe a primitive data
type for writeability and read an argument value.

 Windows NT Argument Validation Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6

CHAR
ProbeForWriteChar (
 IN PCHAR Address
);

UCHAR
ProbeForWriteUchar (
 IN PUCHAR Address
);

SHORT
ProbeForWriteShort (
 IN PSHORT Address
);

USHORT
ProbeForWriteUshort (
 IN PUSHORT Address
);

LONG
ProbeForWriteLong (
 IN PLONG Address
);

ULONG
ProbeForWriteUlong (
 IN PULONG Address
);

 Windows NT Argument Validation Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7

QUAD
ProbeForWriteQuad (
 IN PQUAD Address
);

UQUAD
ProbeForWriteUquad (
 IN PUQUAD Address
);

HANDLE
ProbeForWriteHandle (
 IN PHANDLE Address
);

BOOLEAN
ProbeForWriteBoolean (
 IN PBOOLEAN Address
);

The previous functions are used to probe for writeability and read a value
pointed to by a safe pointer. A safe pointer is one that has either been
captured on procedure entry or which has been previously captured with
one of these functions. The functions compare the pointer value to the
user/system address boundary, read the appropriate data type value,
write the value that was read back into memory, and return the original
value as the function value. If the value is not of consequence, then the
function value is simply not assigned to a variable. Note that both signed
and unsigned data types are provided.

4.3 Probe for Writeability and Read/Write Argument Value

The following functions provide the capability to probe a primitive data
type for writeability, read an argument value, and write a specified value.

 Windows NT Argument Validation Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

8

CHAR
ProbeAndWriteChar (
 IN PCHAR Address,
 IN CHAR Value
);

UCHAR
ProbeAndWriteUchar (
 IN PUCHAR Address,
 IN UCHAR Value
);

SHORT
ProbeAndWriteShort (
 IN PSHORT Address,
 IN SHORT Value
);

 Windows NT Argument Validation Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

9

USHORT
ProbeAndWriteUshort (
 IN PUSHORT Address,
 IN USHORT Value
);

LONG
ProbeAndWriteLong (
 IN PLONG Address,
 IN LONG Value
);

ULONG
ProbeAndWriteUlong (
 IN PULONG Address,
 IN ULONG Value
);

QUAD
ProbeAndWriteQuad (
 IN PQUAD Address,
 IN QUAD Value
);

UQUAD
ProbeAndWriteUquad (
 IN PUQUAD Address,
 IN UQUAD Value
);

HANDLE
ProbeAndWriteHandle (
 IN PHANDLE Address,
 IN HANDLE Value
);

BOOLEAN
ProbeAndWriteBoolean (
 IN PBOOLEAN Address,
 IN BOOLEAN Value
);

The previous functions are used to probe a primitive data type for
writeability and read a value pointed to by a safe pointer. In addition, the
value that is to be written is specified as an argument to the function. A

 Windows NT Argument Validation Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10

safe pointer is one that has either been captured on procedure entry or
which has been previously captured with one of these functions. The
functions compare the pointer value to the user/system address
boundary, read the appropriate data-type value, write the specified value
to memory, and return the original memory contents as the function
value. If the value is not of consequence, then the function value is
simply not assigned to a variable. Note that both signed and unsigned
data types are provided.

4.4 Probing An Aggregate Value

The following functions provide the capability to probe aggregate data
types (i.e., structures, arrays, strings, etc.) for read and write
accessibility.

VOID
ProbeForRead (
 IN PCHAR Address,
 IN ULONG Length
);

VOID
ProbeForWrite (
 IN PCHAR Address,
 IN ULONG Length
);

The previous functions are used to probe an aggregate for read or write
accessibility using a safe pointer. A safe pointer is one that has either
been captured on procedure entry or which has been previously captured
with one of the preceding functions. The functions compare the starting
and ending addresses of the specified aggregate for read or write
accessibility and then read or write one character from each page that is
spanned by the aggregate. Note that these functions do not capture the
aggregate value.

 Windows NT Argument Validation Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

11

Revision History:

Original Draft 1.0, May 4, 1989

Revision 1.1, May 5, 1989

 1. Add capturing of reference arguments to sample system service

code.

 2. Change data type definitions to make Portable System Group
conventions.

Revision 1.2, May 10, 1989

 1. Move the capturing and probing of the in-memory argument
list into the system service dispatcher.

Revision 1.3, July 15, 1989

 1. Add functions to probe handle and boolean values.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT Attach Process Design Note

Author: David N. Cutler

Original Draft 1.0, February 8, 1989
Revision 1.2, March 30, 1989

Windows NT Attach Process Design Note 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This design note discusses a proposal that would allow a
thread to attach to the address space of another process,
execute code in the attached process's address space, and
then detach and resume execution in the original process
address space. It is envisioned that this capability will be
required to implement the newly proposed system structure.

This capability would not be exported to user mode at all.
It is intended for internal use by the executive layer of
the system.

The new system structure (i.e. system service servers)
requires the ability to perform certain operations on behalf
of another process. Typical of these operations is creating
and deleting virtual memory. In order to implement these
operations, we either have to build the data structures and
algorithms such that they can be done outside the recipient
process or architect a way to actually execute code within
the address space of another process.

A good example of a difficult service to build outside of a
process is the deletion of virtual memory. Mach stands on
its head to implement this capability and, while it is doing
such an operation, a global virtual memory lock must be
held.

Graham Hamilton (of exDECwest fame) suggested that a way to
do this was to have some number of anonymous system threads
which could do such an operation. A requesting thread would
build a request packet that contained the arguments of the
operation to be performed, the function that was to be
executed, a pointer to the address map that the thread was
to execute in, and an event to synchronize the completion of
the operation. The request packet would then be queued to
the worker thread, a semaphore signaled, and the requesting
thread would wait on the event. A worker thread would be
awakened by the signal of the semaphore and would remove an
entry from the request queue. The thread would attach to the
new address space, perform the operation, set the event,
detach from the address space, and then look for more work
to do. The requesting thread would then resume execution.

In analyzing Graham's proposal it is clear that there are
two extra context switches, a copy of the argument data, two
extra translation buffer and data cache flushes, and the
need to attach to an address space. So why not just let the
requesting thread directly attach to the target process
address space and avoid the worker threads, the argument
copy, and the two extra context switches?

When a thread wanted to execute in another process' address
space it would execute the following logic:

Windows NT Attach Process Design Note 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 verify that source process has the rights necessary to
 perform the desired operation on the destination
 process
 obtain pointers to objects in the source process as
 necessary
 KeAttachProcess(pPcb)
 perform desired operation in address space of target
 process
 KeDetachProcess()
 resume execution is source process

There are several questions and complications that arise
from doing this kind of operation. These include:

1. How is the kernel stack of the source thread
addressed in the target process?

2. What happens if the source process gets removed from

the balance set while an attach operation is in
progress and causes the process' thread's kernel
stacks to be made pageable?

3. What happens if the target process is not in the

balance set?

4. What happens if the source or target processes are

terminated?

5. What happens if the source thread is terminated?

6. What happens if a thread tries to do a second attach

after having attached to a target process' address
space?

7. What object table is visible when a thread is

attached to the address space of another process?

8. What working set is manipulated while a thread is

attached to the address space of another process?

9. What process gets charged for the time that is

consumed while the thread is attached to another
process' address space?

10. How is mutex ownership handled between the source

and target processes?

11. What happens if user and/or kernel mode are alerted

while a process is attached?

Windows NT Attach Process Design Note 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

12. What happens to APC's that are queued to the thread
after it has entered the target process' address
space?

13. Can the attached thread receive APC's?

14. What happens if a suspend or resume is performed on

the specified thread?

Before attempting to answer these questions it is useful to
review the kernel data structures that correspond to process
and thread objects. These data structures are described in
more detail at the end of this note.

There is a Process Control Block (PCB) and a Thread Control
Block (TCB).

A PCB contains a pointer to a process address map (actually
the physical address of the Page Directory for the process),
a list of all the TCB's that are members of the PCB, a count
of all the kernel mutexes owned by member TCB's, and a state
which is either "included" or "excluded" (corresponds to
whether the process is, or is not, in the balance set).

A TCB contains a pointer to the PCB of which it is a member,
an APC queue for each of the modes kernel and user, a kernel
APC in progress flag, a kernel APC pending flag, a user APC
pending flag, a user alert APC Control Block (ACB), an
alerted flag for each of the modes kernel and user, an
alertable wait flag, an owned mutex count, and link pointers
for linking the thread into the PCB's TCB list.

Actually there are several other fields in the TCB and PCB,
but they are not really pertinent to this discussion.

The kernel data structures that describe the TCB and PCB are
contained within the executive data structures that describe
the process and thread objects. The executive must use the
linkage structures provided by the kernel and cannot keep a
separate set of linkage pointers that tie the data
structures together.

The below discussion addresses the questioins raised above
and gives an explanation of how KeAttachProcess and
KeDetachProcess work.

How is the kernel stack of the source thread addressed in
the target process?

We would like to make kernel stacks addressible in the
process part of the address space. However, in order to
attach to another process' address space we will need to map

Windows NT Attach Process Design Note 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

kernel stacks in the system part of the address space so we
can avoid an argument copy and allocation of a temporary
kernel stack. If we do not do this, then we will have to
allocate a temporary kernel stack in the system part of the
address space, copy necessary argument information to the
temporary stack, switch to the temporary stack, attach the
target process' address space, execute the necessary logic,
switch back to the source address space, switch back to the
original stack, and then deallocate the temporary stack.

When a process is in the balance set the kernel stacks of
all its threads must be locked in memory (there are several
ways we can do this - the reference count on the pages being
the most likely candidate). When a process is not in the
balance set, the kernel stacks of all its threads are
pageable. The locking and unlocking of these pages is
performed by the balance set manager when it brings a
process into or out of the balance set.

What happens if the source process gets removed from the
balance set while an attach operation is in progress and
causes the process' thread's kernel stacks to be made
pageable?

If the source process is allowed to leave the balance set
while a thread is attached to another process, then the
kernel stack on which the thread is running would become
pageable. This cannot be allowed to happen since it would
cause the system to crash if a page fault occurred on the
kernel stack itself. In order to prevent this situation from
happening, the Pcb.MutexCount in the source PCB is
incremented by one on attach to ensure that the process is
not allowed to leave the balance set. When the corresponding
detach is executed the count if decremented by one.

Even though the process is not allowed to leave the balance
set any threads that do not own mutexes are prevented from
further execution if the process is excluded from the
balance set. Threads that do own mutexes are allowed to
continue execution until they release all the mutexes they
own. Therefore Tcb.MutexCount in the TCB is incremented by
one on attach to ensure that the thread continues to
execute. When the corresponding detach is executed the count
is decremented by one.

What happens if the target process is not in the balance
set?

If the target process is not in the balance set, then the
subject TCB is inserted in the target PCB's ready queue.
When the corresponding process is brought into the balance
set, the thread's TCB will be inserted in the appropriate
dispatcher ready queue. We must ensure that once the target

Windows NT Attach Process Design Note 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

process is brought into the balance set, it is not allowed
to leave the balance set until the detach operation is
performed. This is required since we have incremented
Tcb.MutexCount which allows the thread to continue running
in the target process' address space even though the process
might be removed from the balance set. Therefore
Pcb.MutexCount is also incremented in the target process'
PCB during the attach operation. When the detach operation
occurs all the mutex counts will be corrected to enable the
respective processes to leave the balance set.

What happens if the source or target processes are
terminated?

What happens if the source thread is terminated?

The kernel does not allocate or deallocate any data
structures that control the execution of threads within the
system. It depends on the executive to keep appropriate
reference counts, and only when the reference count is zero,
can the executive delete data structures. Therefore the
executive must ensure that the reference count of the source
process, the target process, and the subject thread are such
that they cannot be deleted during the execution of a
attach/detach sequence.

What happens if a thread tries to do a second attach after
having attached to a target process' address space?

The TCB of a thread contains the storage necessary to save
information for a single execution of an attach/detach
sequence. Therefore the rule is that only one level of
attach is allowed. If an attempt is made to attach to
another address space while an address space is already
attached, then a bug check will occur.

What object table is visible when a thread is attached to
the address space of another process?

The object table of the attached process is visible to a
thread when it is attached to another process' address
space. It is doubtful that it will ever be necessary to
create an object in another process' object table, but this
operation can be performed if necessary.

What working set is manipulated while a thread is attached
to the address space of another process?

While a thread is attached to another process' address space
it takes page faults and manipulates the working set of that
process as if it were really a thread in that process.

Windows NT Attach Process Design Note 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

What process gets charged for the time that is consumed
while the thread is attached to another process' address
space?

While a thread is attached to a target process' address space,
the target process is charged for the execution time
accumulated by the thread. When the detach operation occurs,
execution time is again charged to the source process.

How is mutex ownership handled between the source and target
processes?

There is simple rule for mutex ownership. When a thread does
and attach or detach process it cannot own any mutexes. If
an attempt is made to attach/detach while a thread owns a
mutex, then a bug check will occur.

What happens if user and/or kernel mode are alerted while a
process is attached?

There is no interaction between alert and attach process.
Kernel alert applies to whatever context the thread is
currently in. The thread can either respond or ignor kernel
alert as appropriate. User alert only applies to the source
context since user mode cannot be entered when a process is
attached.

A user mode alert cannot occur while a thread has a process
attached since the thread will never do a wait alertable for
user mode. An alert ACB may have been queued just prior to
attaching the process in which case it will occur when the
thread detachs and returns to user mode.

What happens to APC's that are queued to the thread after it has
entered the target process' address space?

Can the attached thread receive APC's?

An ACB is initialized and directed to a thread running in a
specific address space. Therefore APC's directed to a source
process context cannot be allowed to occur while the subject
thread is attached to the address space of another process.
This means that there must be a way to direct an APC to the
right context and make sure it does not occur at the wrong
time.

To accomplish this, each TCB will contain an APC state index

(Tcb.ApcStateIndex) which can have a value of zero or one
(only one level of attach is allowed). When an ACB is
initialized the address of the associated TCB must be
specified. This allows Tcb.ApcStateIndex and
Tcb.CurrentApcState.Pcb to be captured and stored in the ACB
in addition to the address of the TCB itself.

Windows NT Attach Process Design Note 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Two sets of APC context are stored in the TCB; the current APC

context (Tcb.CurrentApcState) and the saved APC context
(Tcb.SavedApcState). Each set of context contains the APC
state information described for the kernel TCB data
structure.

An array of pointers is used to address the two sets of APC

context. When an ACB is queued, the appropriate set of APC
context is selected by using Acb.ApcStateIndex to obtain the
appropriate array member which contains the address of the
corresponding set of APC context. A comparison is then made
between the PCB address stored in the ACB and the PCB
address stored in the selected APC context. If a mismatch
occurs, then a bug check is executed (i.e. an attach was
performed, an ACB was initialized (e.g. associated with a
timer), a detach was performed, and then the ACB was
queued). Otherwise the ACB is inserted in the selected APC
queue and appropriate APC state bits are updated. If
Tcb.ApcStateIndex is equal to Acb.ApcStateIndex, then the
APC effects the current context of the subject thread and
checks are made to determine if an APC should be delivered
immediately.

When Tcb.ApcStateIndex is zero, the first pointer of the array

points to Tcb.CurrentApcState and the second pointer points
to Tcb.SavedApcState. To ensure a PCB address mismatch
occurs if an attempt is made to queue an ACB with an
Acb.ApcStateIndex value of one, a value of NIL is stored in
Tcb.SavedApcState.Pcb.

When Tcb.ApcStateIndex is one, the first pointer of the array

points to Tcb.SavedApcState and the second pointer of the
array points to Tcb.CurrentApcState. Both sets of context
have a valid PCB pointer.

When an attach process is executed, Tcb.ApcStateIndex is

examined. If the value is one, then a bug check occurs (i.e.
an attempt is being made to attach another process while one
is already attached). Otherwise Tcb.ApcStateIndex is
incremented and the current APC context is copied to the
saved APC context. The two pointers in the array that
address the APC context blocks are switched and the current
APC state is initialized.

While a thread is executing in another process' address space,

the thread can initialize and receive APC's targeted to that
address space.

When a detach process is executed, Tcb.ApcStateIndex is examined.

If the value is zero, then a bug check occurs (i.e. an
attempt is being made to detach an address space when one is
not attached). The current APC context is also examined to

Windows NT Attach Process Design Note 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

determine if the thread has a "clean" APC context. If a
kernel APC is in progress, the kernel APC queue contains an
entry, or the user APC queue contains as entry, then a bug
check occurs. Otherwise Tcb.ApcStateIndex is decremented,
the saved APC context is moved to the current APC context,
the saved APC context PCB address is set to NIL, and the two
entries in the pointer array are switched.

What happens if a suspend or resume is performed on the
specified thread?

A thread is suspended by queuing the thread's builtin
suspend ACB. This ACB is initialized such that it's target
is the source process' address space and causes a normal
kernel APC. In an attempt is made to suspend a thread while
it attached to another process, then the suspend ACB will
get queued to the source context and the suspend count will
get adjusted. Suspension of the thread will not actually
occur until the thread does a detach and reenters the source
context. The thread may be suspended and resumed several
times while it is attached to another process. This works in
the same way as the case where the suspend APC cannot be
delivered because the thread is either currently in a kernel
APC or has kernel APC's blocked (IRQL raised).

Windows NT Attach Process Design Note 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The following pseudo code describes the operation of attach to
address space:

PROCEDURE KeAttachProcess (
 IN Pcb : POINTER KtPcb;
);

BEGIN

 Acquire dispatcher database lock;
 Get current TCB address;
 IF Tcb.ApcStateIndex == 1 OR Tcb.MutexCount <> 0 THEN
 Call bugcheck with fatal error;
 ELSE
 Tcb.ApcStateIndex += 1;
 Tcb.SavedApcState = Tcb.CurrentApcState;
 Tcb.CurrentApcState.Pcb = Pcb;
 Tcb.CurrentApcState.KernelApcInProgress = FALSE;
 Tcb.CurrentApcState.KernelApcPending = FALSE;
 Tcb.CurrentApcState.UserApcPending = FALSE;
 Initialize APC queue headers for current state;

 Swap APC context pointers in APC pointer array;
 Tcb.MutexCount += 1;
 Pcb.MutexCount += 1;
 Tcb.SavedApcState.Pcb->Pcb.MutexCount += 1;
 IF Pcb.Active OR Pcb.MutexCount > 1 THEN
 Flush data cache;
 Set new page directory pointer;
 Release dispatcher database lock;
 ELSE
 Tcb.PcbReadyQueue = TRUE;
 Insert TCB in PCB's ready queue;
 Select new thread to run;
 Call context switch routine;
 END IF;
 END IF;
 RETURN;
END KeAttachProcess;

Windows NT Attach Process Design Note 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The following pseudo code describes the operation of detach
from address space:

PROCEDURE KeDetachProcess (
);

BEGIN

 Acquire dispatcher database lock;
 Get current TCB address;
 IF Tcb.ApcStateIndex == 0 OR Tcb.MutexCount <> 1 OR
 Tcb.CurrentApcState.KernelApcInProgress OR
 Current kernel APC queue not empty OR
 Current user APC queue not empty THEN
 Call bugcheck with fatal error;
 ELSE
 Tcb.ApcStateIndex -= 1;

 Tcb.CurrentApcState.Pcb->Pcb.MutexCount -= 1;
 IF Tcb.CurrentApcState.Pcb->Pcb.MutexCount == 0
 AND NOT Tcb.CurrentApcState.Pcb->Pcb.Active
 THEN
 Set Tcb.CurrentApcState.Pcb->Pcb.Event;
 END IF;

 Tcb.CurrentApcState = Tcb.SavedApcState;
 Tcb.SavedApcState.Pcb = NIL;

 Swap APC context pointers in APC pointer array;
 Tcb.MutexCount -= 1;
 IF Kernel APC queue not empty THEN
 Tcb.CurrentApcState.KernelApcPending = TRUE;
 Set software interrupt at IRQL 1;
 END IF;
 Tcb.CurrentApcState.Pcb->Pcb.MutexCount -= 1;
 IF Tcb.CurrentApcState.Pcb->Pcb.MutexCount == 0
 AND NOT Tcb.CurrentApcState.Pcb->Pcb.Active
 THEN
 Set Tcb.CurrentApcState.Pcb->Pcb.Event;
 Tcb.PcbReadyQueue = TRUE;
 Insert TCB in PCB's ready queue;
 Select new thread to run;
 Call context switch routine;
 ELSE
 Flush data cache;
 Set new page directory pointer;
 Release dispatcher database lock;
 END IF;
 END IF;
 RETURN;
END KeDetachProcess;

Windows NT Attach Process Design Note 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History:

Original Draft 1.0, February 8, 1989

 Revision 1.1, February 17, 1989

1. Add text to explain what interactions exist
between attach/detach process and
suspend/resume, APC's, alerts, and mutexes.

2. Allow APC's to be queued and processed in

either the source or target address on
attach/detach operations.

Revision 1.2, March 30, 1989

1. Minor edits ot conform to standard format.

[end of attproc]

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS Base Product Contents

Author: Lou Perazzoli

Original Draft 0.0, September 19, 1990
Revision 0.1, September 25, 1990
Revision 0.2, October 2, 1990
Revision 0.3, October 15, 1990
Revision 0.4, October 18, 1990
Revision 0.5, October 30, 1990
Revision 0.6, November 27, 1990

NT OS Base Product Contents i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction.. 1

2. Internal development workstation ... 1

3. Beta testing SDK kit (includes DDK) ... 2
3.1 API Sets .. 2
3.2 Subsystems .. 2
3.3 File Systems.. 3
3.4 Device Drivers... 3

3.4.1 MIPS R4000 PC drivers:.. 4
3.4.2 Intel 486/MP and uni-processor drivers: 4

3.5 Fault tolerance.. 5
3.6 Language support ... 5
3.7 MIPS support .. 5
3.8 Intel 486 support .. 5
3.9 Hardware booting support... 6
3.10 Installation / Setup... 6
3.11 Performance utilities ... 6
3.12 Development utilities... 7
3.13 Internal Development Utilities (not shipped with SDK) 7

4. Retail Product for RISC/PC (includes an SDK)............................... 8
4.1 API Sets .. 8
4.2 Subsystems .. 8
4.3 Device Drivers... 8
4.4 File Systems.. 8
4.5 Fault tolerance.. 8
4.6 Language support ... 8
4.7 Hardware booting support... 8
4.8 Installation / Setup... 8
4.9 Security ... 9
4.10 Performance utilities ... 11
4.11 Development utilities... 12

5. Retail Product for Servers (RISC, 486 and 486MP)......................... 13
5.1 API Sets .. 13
5.2 Subsystems .. 13
5.3 File Systems.. 13
5.4 Device Drivers... 13
5.5 Fault tolerance.. 13
5.6 Language support ... 13
5.7 Hardware booting support... 13
5.8 Installation / Setup... 14

NT OS Base Product Contents ii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5.9 Security ... 14
5.10 Performance utilities ... 14
5.11 Development utilities... 14

6. Retail Product for 486 workstations .. 15
6.1 API Sets .. 15
6.2 Subsystems .. 15
6.3 File Systems.. 15
6.4 Device Drivers... 15
6.5 Fault tolerance.. 15
6.6 Language support ... 15
6.7 Intel 486 support .. 15
6.8 Installation / Setup... 15
6.9 Security ... 16
6.10 Performance utilities ... 16
6.11 Development utilities... 16

NT OS Base Product Content 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

This document describes the NT Base group deliverables for the NT OS for four
product releases:

 o beta testing SDK kit for RISC and 486

 o retail product for MIPS and 486 workstation (includes retail SDK kit).

 o retail product for RISC, uniprocessor 486, and 486 mutliprocessor servers

 o retail product for 486 workstation which includes MVDM and Win-16
support.

 Note that 386 workstations will be supported (B6 stepping and above), but
they will not have kernel support for correcting the deficiencies in i386
memory management. This deficiency manifests itself by allowing one thread
to change the page protection on a page to read-only and having another
thread (which is executing a kernel service) write to that page. The 486 has
hardware support to honor page protections in kernel mode.

The Base group is responsible for those portions of NT OS which do not include
networking or windowing, for example, device drivers, files systems, scheduler,
loader.

2. Internal development workstation

Allows self-hosting of NT on an NT workstation. This includes CMD.EXE, compiler,
assembler, linker, SLM, editor (MEP), redirector, and other tools.

As the windowing environment will still be under development, a stopgap character
mode window driver will be developed which will allow the VGA on the 386/486 and
frame buffer on JAZZ to appear as an ANSI terminal device. This allows character
based applications to operate using the graphics device as an output device. The
ANSI terminal emulation will be incorporated into the Windows environment for the
SDK release. This support is described in the document titled NT Console Interface
Specification.

NT OS Base Product Content 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3. Beta testing SDK kit (includes DDK)

The beta testing SDK kit contains the basic features of NT OS to allow ISVs and
OEMs to begin developing applications and device drivers targeted specifically at
Win-32 and/or NT.

3.1 API Sets

The following API sets are provided (including necessary header files for C language):

Win-32 Base API - provides the 32-bit interface for integrating with the base
operating system. These APIs are described in the document titled Win32
Base APIs and are designed as a logical extension to the Windows 3.0 Base
APIs thereby allowing a straightforward conversion of software developed for
Windows 3.0. This same API set is offered on the 32-bit version of Windows.

NT Native API - this is the underlying API set for NT. It is currently undecided if this
API set is formally documented, though certain features may be provided
through an "NT Extension" API set. One such feature which would improve
server based applications is asynchronous I/O. Issue: if the NT API set is
provided, documentation must exist.

Device Drivers - this is the "public executive" (device helper) API set exposed by NT
kernel mode components. The User Ed group is developing documentation for
device driver developers. The NT Design Workbook specifies the device driver
model and interface in documents titled NT OS Driver Model Specification and
NT OS I/O System Specification.

3.2 Subsystems

The NT OS base provides a number of subsystems which act as servers for various
applications. Subsystems operate as user mode processes but may have amplified
privileges beyond the client application. This allows subsystems to manage global
state, open key files, and manage critical resources on behalf of its clients.

The following subsystems exist in the NT OS base:

 o Session Manager - provides a mechanism to start processes executing images
which were developed for a different API environment then the current
process. For example, a POSIX application can "exec" an image which was
developed with the OS/2 API set. The session manager is describes in a
document titled NT OS Session Management and Control.

 o Security

NT OS Base Product Content 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Local Security Authority - maintains security policy information, including
list of privileged users, audit control, and security domain membership.
This is described in a document titled NT OS Local Security Specification.

 o Security Account Manager - maintains user and group account
information as described in the document NT OS Security Account
Manager Protected Server (SAM).

 o Loader - provides mechanism for locating DLLs, translating symbol names to
executable images, and other DLL related functions.

 o Windows Base - provide mechanism for maintaining shared state between
window processes and groups. The functionality provided by this subsystem
may be moved to the subsystem which provides windows graphic support.

 o Debug - provides dispatching of debug events. This subsystem is described in
the document titled NT OS Debug Architecture.

Issue: Is DOS emulation required on the RISC/PC? How about Win-16 emulation?

3.3 File Systems

 o FAT - supports the FAT file format. This allows floppy disks to be exchanged
between NT and DOS. The overall file system design is described in the
document titled NT File System Design Note.

 o HPFS - supports the HPFS file format as defined by OS/2 v1.21.

 o NTFS - supports the NT native fully recoverable file system. This file system
provides enhanced data integrity features to provide basic support for
transactions. The NTFS is described in the document titled NT Recoverable
File System Specification.

 o CD-ROM - supports the ISO CD-ROM file format.

 o NPFS - supports named pipes. The named pipe file system is described in the
document titled NT Named Pipe File Specification.

 o BOOT - supports multiple boot partitions and allows new file formats to be
bootable as described in the NT Boot Architecture.

3.4 Device Drivers

Device drivers provide the necessary logic to bind the I/O functions to a physical
device. NT OS supplies the proper mechanisms to allow drivers to be loaded either
at system initialization or later once the system is operational.

NT OS Base Product Content 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.4.1 MIPS R4000 PC drivers:

 o floppy as described in the document NT Floppy Driver Specification.

 o SCSI driver with support for disk, CD-rom and tape as described in NT SCSI
Design Note.

 o serial - western digital part (2 serial, 1 parallel port), supports modems,
printers, basic serial devices as described in the NT Serial Driver Specification.

 o parallel - western digital part, supports printers and basic parallel devices as
described in the NT Parallel Driver Specification.

 o video - frame buffer as described in NT Screen Device Driver Design Note.

 o keyboard as described in NT Keyboard Device Driver Design Note.

 o mouse - in port as described in NT Mouse Device Driver Design Note.

 o sound

 o EISA support - verification driver to show that EISA functions properly.

3.4.2 Intel 486/MP and uni-processor drivers:

 o floppy as described in the document NT Floppy Driver Specification.

 o SCSI driver with support for disk, CD-rom and tape as described in NT SCSI
Design Note.

 o disk - ST506 EDSI driver as described in the NT EDSI Driver Specification.

 o serial - Intel 8250 part supports modems, printers, basic serial devices as
described in the NT Serial Driver Specification.

 o parallel supports printers and basic parallel devices as described in the NT
Parallel Driver Specification..

 o video - frame buffer as described in NT Screen Device Driver Design Note.

 o keyboard as described in NT Keyboard Device Driver Design Note.

 o mouse - in port and serial variants as described in NT Mouse Device Driver
Design Note.

 o EISA support - verification driver to show that EISA functions properly

NT OS Base Product Content 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o MCA support - verification driver to show that MCA functions properly

3.5 Fault tolerance

For systems with battery backed up memory, power fail recovery is supported. This
support involves saving volatile hardware registers and caches into RAM during loss
of power and restoring the system state when power is regained. At restoration
time, all drivers requesting powerfail notification are notified and any I/O operations
in progress are restarted by the drivers.

3.6 Language support

3.7 MIPS support

 o C compiler for MIPS (from either MS or MIPS)

 o MIPS assembler for R4000 (only runs on RISC/PC)

 o Linker for R4000 (provided by NT/Base group)

 o Debugger similar to symdeb

 o Kernel debugger for device driver ISV's (requires separate host machine,
currently running OS/2)

 o C Run time libraries for Win-32 applications

 o Cross development tools for 486 development:

 o C6.0 compiler

 o MASM Assembler

 o Linker for 486 modules. Current plan is for the NT native linker to
support both MIPS and 486 OMFs (Object Module Formats).

3.8 Intel 486 support

 o C6.0 compiler

 o MASM Assembler

 o Linker for 486 modules.

 o Debugger similar to symdeb

NT OS Base Product Content 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Kernel debugger for device driver ISV's (requires host machine, currently
OS/2).

 Issue: the kernel debugger should be ported to the Win-32 environment at a
minimum and possibly to the Win-16 environment. Porting to the Win-16
environment provides the least disruption to the target audience.

 o C Run time libraries for Win-32 applications

3.9 Hardware booting support

The following platforms are being utilized for development and/or testing and as
such hardware booting support and configuration will be provided.

 o Power PC/RISC (Jazz)

 o Compaq Deskpro-486 (EISA)

For 386 environments, Intel 387 floating point emulation is provided for system
without 387 coprocessors.

3.10 Installation / Setup

The beta SDK release will have minimal installation / setup support. This includes
support for building a bootable system from a floppy disk kit and copying the
appropriate SDK header files and utilities to the hard disk.

3.11 Performance utilities

The beta SDK will have basic performance utilities.

 o profiler - provides mechanism to obtain a time sampled PC histogram. The
profiler is implemented like a debugger; no changes are required to the
application to enable profiling. The profiler operates in its own address space
and creates profiling objects on behalf of the process being profiled. When the
process completes, the profiler closes the profile objects and analyzes the
collected data. The beta SDK version of the profiler will not be GUI based.
The profiler fucntionality is not currently documented.

 o show system information - shows the current resource usage, active
processes, active threads, etc. within the system. The show system
functionality is not currently documented.

NT OS Base Product Content 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.12 Development utilities

CMD.EXE - command interpreter (ported from OS/2) provides basic
commands (dir, ren, del, etc) and batch script capability.

format - format disks, supports FAT format for floppy, HPFS, FAT, and NTFS
for hard disks.

chkdsk - check disk, checks disk for consistent file structure and bad blocks
chmode - allows protection on file to be changed
diskcopy - sector based floppy disk copy
diskcomp - sector based disk comparison
du - disk usage by directory
ech - echo string
fcom - compare files (both text and binary)
fcopy - general purpose file/directory copy
fdel - general purpose file/directory deletion
fview - extensible file viewer, views text files, objects, images, etc.
ls - list directory contents
nmake - program maintenance utility
ppr - remote print
qgrep - search for strings in files
sort - sort file contents base on keys
timer - simple execution timer
touch - change file time stamps
walk - walk a directory tree applying command to files and directories
where - locate files in a directory tree
ync - single character batch file prompts (yes, no, continue)
editor (MEP) which utilizes WinHelp

3.13 Internal Development Utilities (not shipped with SDK)

cp - copy file to file or files to directory
delnode - delete directory tree
exp - remove deleted files
mv - rename files and directories
rm - make files deleted
slm - source control maintenance facility
t - terminal emulator
undel - undelete deleted files
upd - timestamp based file copy
updrn - timestamp base file copy for directories
xcopy - copy file and directory tree

NT OS Base Product Content 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4. Retail Product for RISC/PC (includes an SDK)

The retail product for RISC/PC includes the final version of the components
provided in the beta SDK release plus installation/setup features, POSIX
compliance and security at the C2 level.

4.1 API Sets

Same as beta SDK with addition of POSIX support.

POSIX 1003.1 API - provides the POSIX compliant APIs. These APIs are defined by
the IEEE 1003.1 POSIX specification. The APIs supported are the minimum
set required for to obtain POSIX certification, i.e., none of the optional APIs
will be supported.

4.2 Subsystems

Same as Beta SDK with the addition of POSIX.

 o POSIX - provides support for all processes executing the POSIX API set.

4.3 Device Drivers

Same as beta SDK.

4.4 File Systems

Same as beta SDK.

4.5 Fault tolerance

Same as beta SDK.

4.6 Language support

Same as beta SDK plus the addition of C run time libraries for POSIX applications.

4.7 Hardware booting support

Same as beta SDK.

4.8 Installation / Setup

Complete installation / setup support including configuration management. The
documentation for installation and system management is currently under
development.

NT OS Base Product Content 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Architecture dependent kernel routines

 o System configuration / configuration management

 o System management

 o Error log reporting mechanism. This is a character mode application that
allows error log reports to be generated based on error type, time, and
device type. For example, list all Fatal errors on device Harddisk0
between Jan 1 1990 12:00 and Jan 1 1990 18:00.

 o System crash dump and analysis utility. This provides a mechanism to
dump the contents of physical memory to a file on the disk in the case of a
system crash. When the system is rebooted, the analysis utility allows the
cause of the crash to be analyzed. In severe cases, crash dump contents
may be copied to floppy or tape and sent to product support specialists for
analysis.

 o File backup on SCSI tape. This utility provides the ability to backup and
restore complete volumes or selected files onto tape.

Issue: does this need to be SYTRON compatible to provide the ability to read
files written on an OS/2 system? How about just supporting TAR
format??

 o Application installation - provides a mechanism to install application software
on an NT system.

 o National Language Support (NLS) - provides a mechanism for tailoring an NT
system to a specific language environment.

 o Shutdown - allow orderly shutdown of the system as a reasonable alternative
to Ctrl-Alt-Del. The shutdown mechanism flushes file caches, terminates
network connects, and does an orderly shutdown of the system.

4.9 Security

NT OS provides security features to allow the base operating system to be certified
at the C2 level (discretionary access control) for the first product release, and
eventually at the B1 level. In order to gain certifications certain features and
utilities must be present in the system to allow the detection and analysis of break-
in attempts and suspected attempts. In addition, a mechanism must be provided to
allow users to display and manipulate security information on objects, most notably
files.

NT OS Base Product Content 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The following components are provided to support security:

User Interface:

User Account Manager - This utility is based upon the LAN Manager 3.0 User
Account Manager utility. It includes minor extensions to support
administration of Security Account Manager concepts that don't exist in
LAN Manager.

Local Security Manager - This utility allows the security parameters of each NT
system to be administered. This is a new utility with no corresponding
LAN Manager functionality. This utility will utilize the Local Security
Manager DLL described below.

Win32 Logon User Interface - This is the user interface presented at logon time.
It collects the user name and password and prevents password stealing by
unauthorized processes. This UI is projected by the Win32 logon process
described below.

Win32 File Browser extensions - The Win32 File Browser will be extended to
support security by:

 - Displaying security of files and directories upon request.

 - Allow modification of file and directory protection and auditing
requirements (using the Object Security editor DLL described below).

 - Allow modification of file and directory owner values.

The Win32 Shell will allow a user to establish security personas and to modify
the user's active security persona. This will allow the user to perform
actions such as changing default protection or enabling and disabling
privileges.

Some aspects of installation will deal with establishing the customer's mode of
operation (secure or non-secure) and collecting security parameters, if
running securely. A secure system may also have to convert a LAN
Manager UAS database to a Security Account Manager database.

Some aspects of configuration control will deal with the security attributes
associated with components of the configured system. For example,
protected subsystems, such as the NT Session Manager, may be assigned
privileges to be run with.

Runtime Library & Client Stubs:

NT OS Base Product Content 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Runtime Library routines will be included for the manipulation of security data
structures, such as access control lists.

Client RPC stubs will be included for Security Account Manager services,
making the security Account Manager a network-wide service. This allows
administration of security accounts from remote nodes.

Client RPC stubs will be included for Local Security Authority services, making
the Local Security Authority a network-wide service. This allows
administration of individual system security from remote nodes.

Executable Images And DLLs:

Security Account Manager protected subsystem image (sam.exe). This image is
run as a native NT protected subsystem. It services user/group account
administration requests, as well as user authentication requests. This
image will only be run on Domain Controller nodes.

Local Security Authority protected subsystem (lsa.exe). This image is run as a
native NT protected subsystem. This image is responsible or maintaining
and enforcing all security policy for an individual system, such as what
audit messages to generate. This protected subsystem will be active on
each NT system.

Win32 Logon Process (w32logon.exe). This image is responsible for monitoring
Win32 for logon requests, and processing them when received. It prevents
Trojan programs from stealing user passwords. This is a customer
modifiable or replaceable module and we will ship the source code for this
module. This image will be active on each NT system.

Local Security Manager DLL (lsm.dll). This DLL provides Win32 user Interface
screens for administering the local system security. This is implemented
as a DLL to allow this functionality to be activated from a number of
related UI utilities (such as the security account administrator).

Object Security Editor DLL (objsec.dll). This DLL provides object protection
viewing and modification capabilities. It is implemented as a DLL to allow
a standard view of object security to be used anyplace it is needed. For
example, the file browser will use this DLL for file and directory protection
modification and the Security Account Manager will use this DLL for user
and group account protection modification.

4.10 Performance utilities

Same as beta SDK with a GUI interface to show system information utility.

NT OS Base Product Content 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4.11 Development utilities

Same as beta SDK with the addition of UI enhancements to some utilities and the
user debugger.

NT OS Base Product Content 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5. Retail Product for Servers (RISC, 486 and 486MP)

The retail product for servers includes the retail product components provided in
the above product in addition to a more robust networking environment.

5.1 API Sets

Same as RISC workstation product.

5.2 Subsystems

Same as RISC workstation product.

5.3 File Systems

Same as RISC workstation product.

5.4 Device Drivers

Same as retail product (both MIPS and 486).

5.5 Fault tolerance

 o Disk Mirror - allows files mirroring of disk image on another disk(s) block for
block. While this is implemented as a layered driver, it is listed under file
systems.

 o UPS - uninterruptable power systems support

 o Dual controller support ??

5.6 Language support

Same as RISC workstation product with the addition of C++ support.

5.7 Hardware booting support

The following platforms are being utilized for development and/or testing and as
such hardware booting support and configuration will be provided.

 o Power PC/RISC (Jazz)

 o Power PC/486 with EISA bus

 o Power PC/486 with MCA bus

 o Compaq Deskpro 486

NT OS Base Product Content 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o IBM PS/2 Model 90

 o Power MP/486 - to be determined.

5.8 Installation / Setup

Same installation / setup features provided in the RISC workstation product plus
the addition of:

 o Disk mirroring management

 o Logical volume management - allows multiple disks to be configured such
that they appear as a single drive.

5.9 Security

More network based security? remote admin?

5.10 Performance utilities

 network performance things?

5.11 Development utilities

Same as RISC workstation product.

NT OS Base Product Content 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6. Retail Product for 486 workstations

The retail product for 486 workstations provides the support for running Windows
16-bit applications and DOS applications as well as support for 32-bit OS/2 non PM
base (i.e., server) applications.

6.1 API Sets

Same as server product.

6.2 Subsystems

Same as server product plus the addition of:

 o MVDM subsystem

 o Windows 16-bit subsystem

 o OS/2 subsystem

6.3 File Systems

Same as server product.

6.4 Device Drivers

Same as server product.

6.5 Fault tolerance

Same as server product.

6.6 Language support

Same as server product.

6.7 Intel 486 support

Same as server product.

5.8 Hardware booting support

Same as server product.

NT OS Base Product Content 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6.8 Installation / Setup

Same installation / setup features provided in the server product plus the addition
of:

 o MVDM installation

 o Windows 16-bit installation

 o OS/2 Subsystem installation

6.9 Security

Same as server product.

6.10 Performance utilities

Same as server product.

6.11 Development utilities

Same as server product.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Caching Design Note

Author: Tom Miller

Revision 1.3, October 31, 1991

Caching Design Note i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview...1
1.1 File Streams and Cache Maps ...1
1.2 Target Clients of the Cache Manager2
1.3 Cache Manager Interfaces ...3

2. WalkThrough of Cache Manager Interaction..................................5
2.1 Setting up the File Object on Create ..5

2.1.1 FsContext...5
2.1.2 SectionObjectPointer ..7
2.1.3 PrivateCacheMap field ..7

2.2 Initializing Cache Maps for a File Stream.................................7
2.3 Accessing Data in the Cache ...8

2.3.1 Copying Data To and From the Cache...............................8
2.3.2 DMA Transfer of Data To and From the Cache9
2.3.3 Accessing Data Directly in the Cache................................9

2.4 Uninitializing Cache Maps for a File Stream10
2.5 Fast I/O Optimization ...10
2.6 Use of the Wait Input Parameter..11
2.7 Use of Stream Files ...11
2.8 File System Cleanup and Close Routines.................................12
2.9 Using Write Through and Cache Flushing13
2.10 Valid Data Length and File Size Considerations.....................14
2.11 Resource Locking Rules...15
2.12 Network File Server Interfaces ...17

3. File System Maintenance Functions (FSSUP).................................19
3.1 CcInitializeCacheMap..19

3.1.1 Cache Manager Callbacks...20
3.2 CcUninitializeCacheMap..21
3.3 CcExtendCachedFileSize ...23
3.4 CcExtendCacheSection ...23
3.5 CcFlushCache...24
3.6 CcPurgeFromWorkingSet...24
3.7 CcPurgeCacheSection..25
3.8 CcTruncateCachedFileSize ..25
3.9 CcZeroData...26
3.10 CcRepinBcb ..27
3.11 CcUnpinRepinnedBcb ...27
3.12 CcIsFileCached ...27
3.13 CcReadAhead..28
3.14 CcSetAdditionalCacheAttributes..29

4. Copy Interface (COPYSUP) ..30
4.1 CcCopyRead..30
4.2 CcCopyWrite ...30

5. Mdl Interface (MDLSUP)..32
5.1 CcMdlRead..32
5.2 CcMdlReadComplete ...33
5.3 CcPrepareMdlWrite ...34

Caching Design Note ii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5.4 CcMdlWriteComplete...35

6. Pin Interface (PINSUP)...36
6.1 CcPinRead ..36
6.2 CcMapData ...37
6.3 CcPinMappedData...38
6.4 CcPreparePinWrite ..40
6.5 CcSetDirtyPinnedData...41
6.6 CcUnpinData ..41

7. Revision History..42

Caching Design Note 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview

This design note describes the Cache Manager for Windows NT. The Cache Manager
uses a file mapping model, which is closely integrated with memory management.

The file mapping model or virtual block cache, has been chosen over a logical block
cache for the following reasons:

 o Virtual block caching is more compatible with the ability of user programs to
map files. It is possible for some programs to do NtReadFile and NtWriteFile
at the same time that other programs have the file mapped with read-only or
read/write access. With proper synchronization, both types of programs are
able to see the most current data.

 o By using a file mapping model, all of physical memory becomes available for
data caching, with the allocation of pages reacting dynamically to the
changing needs for image file pages versus data file pages.

 o Cache hits are processed more efficiently by handling virtual block hits
directly in a mapped file. In most cases an I/O request is able to access the
data directly in the cache, without calling the file system at all (see Section 0).
The I/O system makes a subroutine call to access the cache, and the Cache
Manager resolves the access via a single hardware virtual address lookup.

 o For the a recoverable file system such as NTFS, it is necessary to have
caching closely synchronized with logging. This requires that all cache entries
be directly identifiable by the recoverable file to which they belong.

The Cache Manager also provides a simple mechanism for dealing with unaligned
buffers. If a file has been opened with caching disabled
(FILE_NO_INTERMEDIATE_BUFFERING specified in the Create/Open options), then
an NtReadFile or NtWriteFile will fail if the alignment and size of the specified
transfer is less than that required by the target disk. The assumption is, that if a
program specified a request with caching disabled, then it really does not want to
pay the cost of having the transfer go to an intermediate buffer and be copied.

1.1 File Streams and Cache Maps

The Cache Manager is a central system component which may be thought of as
being layered closely on top of the Memory Management support. Key to
understanding the Cache Manager is the concept of File Streams.

A File Stream is a linear stream of bytes associated with a File Object. Each File
System creates, deletes and manipulates File Streams both for external use via NT
File System APIs, as well as for internal use by the File System itself. Examples of
File Streams maintained by File Systems are the data of a given file, the EAs of a
file, the Acl of a file, a directory, or any other file system metadata. How virtual byte
offsets within the File Stream are mapped to physical locations in nonvolatile store
is strictly an opaque operation determined by the File System, and may vary for
different types of file streams.

Caching Design Note 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Once a file system has identified which streams it wishes to support, it needs to
decide which of these streams it wishes to cache. For all streams which are to be
cached, the file system must actually support both cached and noncached access.
Noncached access is always issued via a read or write I/O Request Packet (IRP), in
which the IRP_NOCACHE flag is set in the Irp flags. (See the NT I/O System
Specification.) For streams which may be accessed by normal user programs, such
as the data of a file, the file system will also receive cached I/O requests via read or
write IRPs with the IRP_NOCACHE flag not set. Also for internal use a file system
may perform cached access to any of the streams it defines via direct calls to the
Cache Manager.

As mentioned earlier, the Cache Manager uses mapping to implement the caching of
streams, and to integrate caching with Memory Management's policy with other
uses of pageable memory. Thus when a file system calls the Cache Manager to
intitiate caching of a stream, the Cache Manager immediately maps all or a portion
of the stream via a call to memory management. For larger streams, the Cache
Manager may subsequently find it necessary to map additional portions of the
stream on an as-needed basis. To keep track of which portions of a file stream the
Cache Manager currently has mapped, it uses private data structures which it
refers to as Cache Maps. For each stream being cached, the Cache Manager
maintains a single Shared Cache Map. For each File Object through which the
cached stream is being accessed, the Cache Manager also maintains a Private Cache
Map. The Shared Cache Map describes an initial portion of the file stream which is
mapped for common access via all File Objects for this stream. Each Private Cache
Map optionally describes an additional nonoverlapping portion of the stream
mapped on an as-needed basis to access bytes in the stream which were not
mapped by the Shared Cache Map.

Again, the Cache Maps are private structures maintained by the Cache Manager,
and a further understanding of these structures is not required by a person writing
a file system. However, a file system writer does have to be aware of the respective
relationships between a file system, the Cache Manager, and Memory Management.
For example, when an attempted cache access results in a "miss", this miss results
in a page fault which is serviced by Memory Management who subsequently makes
a (recursive) call back to the file system with a noncached I/O request.

1.2 Target Clients of the Cache Manager

The Cache Manager interfaces have been primarily designed to support the following
clients:

 o Normal file systems such as FAT, HPFS and CDFS. File systems may create
and cache File Streams for normal data files, the EAs associated with a file,
the volume structure of a volume, etc. Note that the Cache Manager knows
nothing about different types of streams; it only knows about File Objects and
different modes of access.

 For example, HPFS creates File Streams to cache normal file data, the first
time the data is actually accessed. It also creates a File Stream for a "Volume
File", which is a compressed mapping of the volume structure on a HPFS
volume. If the EAs or ACL for a given file fit in the Fnode, then they are

Caching Design Note 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

simply cached with the Fnode in the Volume File. The other case HPFS has is
that the EA or ACL is too large to fit in the Fnode, and is described by one or
more runs of contiguous sectors external to the Fnode. In this case, a
separate stream is created to cache the EA or ACL the first time they are
accessed.

 Interfaces are provided for File Systems to access data by copying, or
accessing it directly in the cache.

 o Network File System clients, such as the Lan Manager Redirector. For
starters, a Network File System looks like any other File System, with normal
data streams, and potentially other types of streams associated with files.
However, a Network File System client would normally not be maintaining any
"volume" structure of its own.

 o Network File Servers, such as the Lan Manager Server. A file server is not
expected to look like a file system at all. However, it also may be considered a
"client" of the Cache Manager via the host file system(s) which it calls.
Indeed, some of the file system calls which are ultimately supported by the
Cache Manager (such as the Mdl interfaces defined later), were designed with
Network File Servers in mind.

1.3 Cache Manager Interfaces

The Cache Manager has four sets of interfaces. One is for basic File Stream
maintenance, and the other three implement different access methods for the cache.
The three access methods share common support routines, but acknowledge the
different ways in which the cache will be used.

Following is a brief description of the four sets of interfaces supported by the cache
manager, which are described in detail in the following sections:

 o File Stream maintenance functions.

 The File Stream maintenance functions are implemented in the Cache
Manager module fssup.c. These routines are for initializing and uninitializing
cached operation for a stream, extending and truncating cached streams and
file sizes, flushing pages to disk, purging pages from the cache without
flushing, zeroing file data, and so on.

 o Copy Interface.

 The Copy Interface is implemented by the Cache Manager module copysup.c.
The copy interface is the simplest form of cached access. It supports copying
a range of bytes from a specified offset in a cached file stream to a buffer in
memory, or from a buffer in memory to a specifiedd offset in a cached file
stream. The copy interface also has a related call to initiate read ahead.

 o Mdl Interface.

Caching Design Note 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 The Mdl Interface is implemented by the Cache Manager module mdlsup.c.
The Mdl interface supports direct access to the cache via DMA. For example,
a network file server can efficiently support large client reads via DMA of the
desired bytes directly out of the cache to a network device. Similarly a
network file server is able to support large client writes by DMA directly into
the cache. The Mdl interface shares the same Read Ahead call as the copy
interface.

 o A Pinning Interface.

 The Pinning Interface is implemented by the Cache Manager module pinsup.c.
The pin interface may be used to lock (pin) data in the cache and access it
directly via a pointer, and then unpin the data when the pointer is no longer
required. Pinning is a database concept, and it is the optimal way for a File
System to deal with the caching of file system metadata:

The following table summarizes which of the Cache Manager's clients are intended
to use which of the four interface classes. Note that Network File Servers never call
the Cache Manager directly, but rather benefit from the specified interfaces via
associated calls to local file systems.

 Local File Network FS Network File
 Systems Clients Servers

FS Maint. x x

Copy Int. x x x

Mdl Int. x x

Pin Int. x

The next section walks through what a file system has to do to set up for and use
the Cache Manager. Then, subsequent sections will document the individual
routines belonging to the four classes of interfaces presented above.

Caching Design Note 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2. WalkThrough of Cache Manager Interaction

This section attempts to present all of the background information which is
important to understand when about to write a File System (including a Network
File System client) or File Server which intends to use the Cache Manager. All of the
following subsections but the last one relate only to file systems, but may provide
some insight to someone writing a file server.

The final subsection describes how a file server accesses cached file streams. The
final section should also be understood by anyone writing a local file system.

The following include files, present in \nt\private\inc, define the data structures
and procedure calls described in this section and the rest of this document:

 cache.h Cache Manager structures and routines

 fsrtl.h File System Rtl structures and routines

 io.h I/O system structures and routines

 ex.h Executive structures and routines

2.1 Setting up the File Object on Create

When a file system is called at its Create Fsd entry point, one of the important fields
in the Irp is a pointer to a File Object (see io.h) for the file being opened. There are
three pointers in the File Object which must be initialized in a particular way for a
file system which wishes to use the Cache Manager. These fields are FsContext,
SectionObjectPointer, and PrivateCacheMap. (A fourth pointer, FsContext2, has no
significance to the Cache Manager, and is usually used to point to a per file object
context called the Channel Control Block or CCB.) The following subsections
describe how these fields are to be initialized.

2.1.1 FsContext

The Cache Manager expects FsContext to point to a structure defined by FsRtl,
called the FSRTL_COMMON_FCB_HEADER. This structure must be allocated from
nonpaged pool, and must exist only once for the respective file stream, no matter
how many times it is opened. So, for example, for normal files, exactly one Common
Fcb Header must exist for each open file on the volume, no matter how many times
the file is opened. If the same file is opened multiple times, then for each File Object
which has the file open, FsContext must point to the same Common Fcb Header.
The Common Fcb Header will generally be contained at the beginning of a common
structure maintained by the file system for this file, typically called the File Control
Block, or Fcb.

\Note that currently the Common Fcb Header is actually only used to support
Fast I/O, which means it is actually only required for file objects describing
user file opens. However, it might be recommedable for a new file system to
always point FsContext to this structure, even for stream files.\

Caching Design Note 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The Common Fcb Header is defined in fsrtl.h, and at the time of this revision has
the following format.

typedef struct _FSRTL_COMMON_FCB_HEADER {

 CSHORT NodeTypeCode;
 CSHORT NodeByteSize;

 BOOLEAN IsFastIoPossible;

 LARGE_INTEGER AllocationSize;
 LARGE_INTEGER FileSize;
 LARGE_INTEGER ValidDataLength;

 PERESOURCE Resource;

} FSRTL_COMMON_FCB_HEADER;
typedef FSRTL_COMMON_FCB_HEADER *PFSRTL_COMMON_FCB_HEADER;

Here is a brief definition of these fields:

NodeTypeCode - A unique code identifying the Fcb for this particular file system.
This field is unused by the Cache Manager.

NodeByteSize - The size of the entire containing Fcb in bytes. This field is also not
used by the Cache Manager.

IsFastIoPossible - This boolean contain TRUE (0x01) whenever the file system
believes it is acceptable for the I/O system to call the Cache Manager directly
to read or write byte ranges directly in the cache, without calling the file
system. It must contain FALSE (0x00) whenever it is not acceptable to access
cache data directly. In this case, all cached reads and writes must be passed
to the file system via Irp.

 Examples of cases where this field might contain FALSE, would be if there are
active FileLocks or Network Oplocks in the file, or the media is undergoing
volume verification.

AllocationSize - The current allocation size of this file in bytes, typically an integral
multiple of the underlying device sector size or allocation cluster size. This
field must be initialized to the correct value when the Fcb is created, and
thereafter the Cache Manager must be notified when it changes.

FileSize - The logical size of the file up to which the file may be read. Reads
beginning before this point are truncated, and reads beyond this point return
STATUS_END_OF_FILE. This field must be initialized to the correct value
when the Fcb is created, and thereafter the Cache Manager must be notified
when it changes.

ValidDataLength - The size of the initialized portion of the file. If ValidDataLength is
less than FileSize, then reads extending beyond ValidDataLength return

Caching Design Note 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

binary 0 in the read buffer. This field must be initialized to the correct value
when the Fcb is created, and thereafter the Cache Manager will inform the file
system when it is safe to change this value for the file on disk (see Section 0).

Resource - Pointer to an ERESOURCE structure (defined in ex.h). The ERESOURCE
structure is usually allocated elsewhere in the Fcb. The executive resource
structure is a synchronization structure which supports multiple Shared
accessors at once, or one Exclusive accessor via the routines
ExAcquireResourceShared, ExAcquireResourceExclusive and
ExReleaseResource. FsRtl and the Cache Manager require that all file system
operations for this stream be synchronized by this resource. Of course,
modifying operations generally require that the file system take out exclusive
access, and nonmodifying access require that the file system take out shared
access. The synchronization requirements of streams will be further
discussed later.

2.1.2 SectionObjectPointer

Memory Management and the Cache Manager require that the SectionObjectPointer
field of the file object point to a structure call SECTION_OBJECT_POINTERS. This
structure must also exist only once for the file stream, and it must also be allocated
in nonpaged pool. Generally this structure is also allocated somewhere in the file
system's Fcb.

The Section Object Pointers structure is defined in io.h, and at the time of this
revision has the following format.

typedef struct _SECTION_OBJECT_POINTERS {
 PVOID DataSectionObject;
 PVOID SharedCacheMap;
 PVOID ImageSectionObject;
} SECTION_OBJECT_POINTERS;
typedef SECTION_OBJECT_POINTERS *PSECTION_OBJECT_POINTERS;

Here is a brief description of these fields, however the file system only has to
initialize this structure by clearing it:

DataSectionObject - This pointer is used by Memory Management whenever a data
section has been created for this stream, including when the Cache Manager
has done so.

SharedCacheMap - This pointer is used by the Cache Manager to point to its
SharedCacheMap structure whenever the file is currently being cached.

ImageSectionObject - This pointer is used by Memory Management whenever an
image section has been created for this stream.

2.1.3 PrivateCacheMap field

This pointer must simply be initialized with NULL (0x00000000). It is filled in by
the Cache Manager if the stream is cached. The only way for the file system to

Caching Design Note 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

reliably determine if this file object is currently being cached
(CcInitializeCacheMap has been called), is to have the Fcb Resource shared or
exclusive, and test the PrivateCacheMap field for NULL. It is not valid for the file
system to capture this information elsewhere, because under certain circumstances
the File Object has to be forcibly uninitialized.

2.2 Initializing Cache Maps for a File Stream

The previous section described how the Cache Manager expects the File Object to be
initialized on Create. The Cache Manager however does not expect Create to initiate
caching, but rather that this work be deferred to the first read or write of the file.
This is basically for two reasons:

First, experience has shown that it is very inefficient to immediately initiate caching
on a file when it is opened, since there are quite a few apps which open a file, get or
set some file information on the file or mark it for delete, and then close the file
without ever accessing its data. These applications may run noticeably slower if the
file system is needlessly initializing and uninitializing caching for the files.

More importantly, however, is the fact that under certain circumstances it becomes
necessary to forcibly uninitialize the Cache Maps on a file object. Examples are
when a file is truncated, or the file system supports removeable media and a volume
fails mount verification. A network file system client may decide to call
CcUninitializeCacheMap on all of its files in the event of an oplock break, or a
virtual circuit goes down, and the data can no longer be trusted. Forced
uninitialization works because we know that the next read or write, if there is one,
will simply initialize the cache again.

Note that if there are multiple accesses to the same file, as represented by multiple
file objects, the file system must call CcInitializeCacheMap for each file object that
attempts to access file data. It must also eventually call CcUninitializeCacheMap
for each of these file objects.

For further detail on initialization, see Section 0 on CcInitializeCacheMap.

Once, caching has been initialized on a file object, and the Fcb resource is still
acquired, a file system may access the cache via one of the classes of access
routines described in the next section.

2.3 Accessing Data in the Cache

Once the file object is set up and CcInitializeCacheMap has been called, a file
system may now access data in the cache. There are three methods for accessing
the cache, and these methods are described in the following subsections.

2.3.1 Copying Data To and From the Cache

The simplest way of accessing a stream is to copy data into and out of it. The
routines CcCopyRead and CcCopyWrite are provided for this purpose. They both
take a previously initialized file object along with a description of the desired byte
range in the file and an input or output buffer in memory. It is essential that the

Caching Design Note 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Fcb resource remain acquired from some time before the point where the file object
was initialized (if it was not already), until after the copy operation is complete.

In the case of a call to CcCopyRead, the caller may also wish to call CcReadAhead
to see if any Read Ahead is desired. The call to CcReadAhead takes some of the
same parameters as the call to CcCopyRead. CcReadAhead automatically
determines whether or not read ahead is appropriate, based on the recent history of
calls to CcReadAhead, and whether or not the data has perhaps already been read
ahead. If read ahead is required, it is scheduled to be performed by one of the
Cache Manager's worker threads, so as not to hold up the current thread.

For the case of CcCopyWrite, all modified pages are lazy written by default. For
most cases the file system simply does not have to worry about it, and the data will
typically get to disk within about five seconds of when it was modified. For cases
where Lazy Writing is not appropriate because the data has to be written through,
see Section 0.

2.3.2 DMA Transfer of Data To and From the Cache

Network file servers and network file system clients sometimes have to transfer large
amounts of data into or out of the cache from a network device. For such large
transfers, it is inefficient to allocate a temporary buffer, call the copy interfaces
above, transfer the data on the network device, and then free the temporary buffer.
In order to eliminate the large copy and temporary buffer in the above scenario, the
Cache Manager provides a second class of interface to the cache, called the Mdl
interface.

The Mdl (Memory Descriptor List) contains a physical description of a buffer in
memory, according to the physical pages it occupies. This structure should already
be familiar to anyone dealing with the network (see the Windows NT I/O System
Specification).

\Please note in the following discussion that the network software does not
actually call the CcMdl routines directly, however we describe it that way
here for simplicity. See Section 0.\

To read from the cache and write to the network, network software may first call
CcMdlRead, specifying the initialized file object and range of bytes required.
CcMdlRead returns an Mdl (actually a linked list of Mdls called an Mdl Chain)
describing the desired byte range directly in the cache. Note that the reader does
not have to specify a transfer that starts on a page or sector boundary, he only
needs to make sure he is specifying a file offset with sufficient alignment to satisfy
his network device. Once CcMdlRead has returned, the pages containing the
desired data are locked in memory, and the reader may use the Mdl chain to effect
the transfer on the network. Prior to that the network software may wish to
prepend an Mdl to the Mdl chain returned by the Cache Manager, in order to
describe header information. When the network transfer is complete,
CcMdlReadComplete must be called to unlock the cache buffers and delete the Mdl
chain. Just as described with the Copy interfaces, CcReadAhead may be called to
have the Cache Manager decide whether he should schedule some data to be read
ahead after a CcMdlRead.

Caching Design Note 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Similarly for writing to the cache, network software may call CcPrepareMdlWrite to
prepare a space in the cache to receive the desired data for a specified byte range in
the file. The Mdl returned may then be used to specify a direct DMA transfer of the
data into the cache off of the network. When the DMA is complete,
CcMdlWriteComplete must be called to unlock the buffers and free the Mdl chain.
Also as in the Copy case, after receiving the CcMdlWriteComplete call, the Cache
Manager automatically guarantees that the new data is eventually written to disk.

It is acceptable to mix Copy access and Mdl access to the same file.

2.3.3 Accessing Data Directly in the Cache

Local file systems sometimes wish to access data directly in the Cache, possibly
modifying it in place. This is particularly interesting for file streams which have
been defined to describe file system metadata, such as directories. For this purpose
the Cache Manager provides a third interface class referred to as the Pin interface.

If a file system wants to access a structure directly in a stream, possibly modify it,
and then release it, it may start by calling CcPinRead. CcPinRead takes an
initialized file object, and the offset and length of the desired byte range. It returns
a virtual address at which the desired file data may be accessed, and an opaque
Buffer Control Block address (Bcb) which will be used to free the buffer later. If the
file system subsequently modifies the pinned data, then it must call
CcSetDirtyPinnedData before unpinning it. If the file system knows in advance
that it will be modifying an entire range of bytes, then it may call
CcPreparePinWrite instead of CcPinRead, and the data will automatically be set
dirty (and optionally zeroed in advance). In any case, when the file system is done
with the pinned data, it must call CcUnpinData, to release the buffer, and allow it
to be written if it is dirty.

If the file system knows in advance that it does not need to modify the desired data,
or knows in advance that it may not need to modify the data, then instead of calling
CcPinRead it can use a faster call which is CcMapData. CcMapData has the same
interface as CcPinRead, but it is much cheaper since it does not lock the data in
memory. If the caller later decides that he does need to modify the data, then he
may call CcPinMappedData to lock it in memory (and then call
CcSetDirtyPinnedData). In any case, when done with the mapped and optionally
pinned data, the caller must call CcUnpinData when done.

Since pinning is generally used for random access to file system metadata, read
ahead is usually not performed. As to modified data, the Cache Manager
guarantees that any data that was set dirty will eventually be written to disk,
typically within about five seconds.

For reasons relating to Cache Manager implementation details, it is not acceptable
to mix Pin access to a file with Copy or Mdl access.

2.4 Uninitializing Cache Maps for a File Stream

When a file system is done accessing a given file on a given file object, it must call
CcUninitializeCacheMap. This routine should generally be called in the file

Caching Design Note 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

system's cleanup processing. CcUninitializeCacheMap must be called for each file
object on which CcInitializeCacheMap was called.

By default, CcUnintializeCacheMap does not remove the file from the cache, it
simply tells the Cache Manager that the file system is no longer accessing that file
from the specified file object. The file may still remain in the cache for some time
until its pages get reclaimed for caching another file (or program image, etc.).

If for any reason a file system does wish to have all or part of a file removed from the
cache, CcUnitializeCacheMap provides this capability as well (see Section 0).

2.5 Fast I/O Optimization

There is a module in FsRtl which provides fast access to cached data without calling
the file system. The routines in this module may be called by the I/O system when
caching has already been initialized on a file object. They may also be called by file
servers.

Since the file system is never called on the Fast I/O path, it is important that it have
the ability to enable or disable these calls. Fast I/O should generally be left enabled
unless some condition exists in a file for which correct handling can only be
guaranteed by executing the normal file system read and write paths. For example,
if any file locks exist in the file, or network oplocks, then execution of a fast I/O
path may not work correctly.

If the file system detects a case which makes Fast I/O unsafe, then it must simply
clear the IsFastIoPossible boolean in the common Fcb header. This boolean will be
tested while owning the Fcb resource shared, and if it is FALSE, the Fast I/O
routine returns FALSE as an indication that Fast I/O is not currently possible.

Once the file system detects that the last condition making Fast I/O impossible has
been removed, then it should set the IsFastIoPossible boolean to TRUE again.

2.6 Use of the Wait Input Parameter

A number of the Cache Manager routines and the FsRtl routines implementing Fast
I/O take a boolean Wait input parameter, and return a boolean result. Use of the
Wait parameter is the same in all cases, and is explained here in detail. By far the
most efficient operation is always afforded to synchronous callers, i.e., callers who
supply Wait as TRUE signifying that it is ok to block. This design encourages
callers to be multi-threaded in order to get parallel operation, rather than adding
lots of threads to file systems and having to pay the expense of locking down and
mapping buffers and then context switching to the next available file system thread.

The Wait parameter should be used as follows.

If the caller does not want to block (such as for disk I/O), then Wait should be
supplied as FALSE. If Wait was supplied as FALSE and it is currently impossible to
supply all of the requested data without blocking, then this routine will return
FALSE. However, if the data is immediately accessible in the cache and no blocking
is required, this routine supplies the data and returns TRUE.

Caching Design Note 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

If the caller supplies Wait as TRUE, then this routine is guaranteed to supply the
data and return TRUE. If the data is immediately accessible in the cache, then no
blocking will occur. Otherwise, the the data transfer from the file into the cache will
be initiated, and the caller will be blocked until the data can be returned.

File system Fsd's should typically supply Wait = TRUE if they are processing a
synchronous I/O request, or Wait = FALSE if they are processing an asynchronous
request.

File system or Server Fsp threads should supply Wait = TRUE.

2.7 Use of Stream Files

All of the Cache Manager routines which have been presented take a file object as
input in order to tell which file a particular operation is directed to. For normal
user file opens, it is the user's own file object, which the file system initializes
during create, which may be specified to all of the Cache Manager calls. For the
case where a file system wishes to cache file system metadata, there is no user file
object at hand.

For this case, the I/O system provides the capability of creating a "stream file
object", to represent an arbitrary stream as defined by the file system. The file
system simply calls IoCreateStreamFileObject (see the Windows NT I/O System
Specification), and sets up the file object fields as described in Section 0. Note that
in this case the common Fcb header and the section object pointers may generally
not be resident in an Fcb, but rather in any structure convenient to the file system.

Once the stream file is created and the various pointer fields initialized, the file
system may call CcInitializeCacheMap at any time to enable caching on this
stream.

When done with the stream file, the file system should call
CcUninitializeCacheMap to turn off caching on that file, and
ObDereferenceObject with the address of the file object to cause it to subsequently
get deleted.

2.8 File System Cleanup and Close Routines

Now that we have presented a walkthrough of the normal Cache Manager
interaction, and presented the special case of how stream files may be used, it is
important to complete the picture by explaining exactly what expectations are
placed on the file system cleanup and close routines (which respond to the Irps with
function codes IRP_MJ_CLEANUP and IRP_MJ_CLOSE).

Cleanup is called each time that the last user file handle to a given file object goes
away. For normal user files, the file system is guaranteed to get exactly one cleanup
call on a given file for each successful create operation which it performs. If the
same file is opened and accessed by multiple users, then each open results in a
separate file object, and separate cleanup calls on this file will be received as each
user file handle is closed.

Caching Design Note 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Within the I/O system, there are various cases where a system component wishes to
guarantee that a file object will not be deleted, even if the user closes its handle. It
does this typically by calling ObReferenceObjectByPointer for the file object.
When the system component no longer needs to rely on this file object it calls
ObDereferenceFileObject. So, for example, a file object is referenced each time an
I/O request is issued on it, and dereferenced each time the request is completed.
The Cache Manager references a file object the first time the file is cached, and it
dereferences the file object when no file objects have it cached, and there are no
more dirty pages to flush. A final example is that Memory Management references a
file object when a user or the Cache Manager creates a section for mapping that file,
and it dereferences the file object when there are no more sections in existence for
the file, and the last page has been removed from memory for the file. Note that
regardless of how many times the Cache Manager and Memory Management is
called for a given file, they only reference the first file object they were called with.

A file system is called to close a file object when the last reference to that file object
goes away. This may not occur until some time after cleanup is received on the file
object. For example if a system is idle for hours and memory management still has
pages for a file that was once mapped, the close call will not occur during this time.

In order to keep track of all these file objects, and thus assist the cleanup and close
routines to do the right thing, the file system is expected to maintain two counters
in the Fcb. The first counter is essentially a count of user handles, but has been
traditionally referred to as the "UncleanCount". The second count is a count of how
many referenced file objects referenced exist for a given file, and it has been
traditionally called the "OpenCount".

For normal user files, a file system should increment both the UncleanCount and
the OpenCount on each successful create. The UncleanCount should be
decremented on each cleanup call for a given file, and the OpenCount should be
decremented on each close call for a given file.

For stream files, a file system generally only needs to maintain (at most) an
OpenCount. Note that a cleanup call will be issued for a stream file object from
within the call to IoCreateStreamFileObject. It is important to recognize this
cleanup call in the file systems cleanup routine (by the way the stream file object
was set up), and expediently dismiss it; i.e., simply Noop all cleanup calls to stream
file objects. Generally it is also not necessary to maintain an OpenCount for stream
files, as a single close call will be received when the one and only file object for the
stream is dereferenced the last time.

The Cache Manager expects to be called at CcUninitializeCacheMap for each file
object which was initialized. If a file is being truncated or deleted, the TruncateSize
parameter should be correctly specified to this routine. It is acceptable to call
CcUninitializeCacheMap on a file object that was never initialized; the Cache
Manager will detect this case and do the right thing. In fact, if the file is being
deleted or truncated, the Cache Manager definitely should be unconditionally called
with the correct TruncateSize, because otherwise the file may not be purged from
the cache properly if it had been earlier cached or otherwise mapped via a different
file object.

Caching Design Note 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The only way that a file system really knows if both the Cache Manager and memory
management (or potentially anyone else) are done with a file, is when the
OpenCount finally goes to 0 in the close routine. This is the only time that it is safe
for the file system to delete its Fcb, or whatever other structure the file system has
associated with a given stream file.

2.9 Using Write Through and Cache Flushing

So far we have only discussed the Cache Manager's default method of lazy writing
all dirty data. There are two different ways for either the user program or a file
system to force dirty data out to disk and know when it is safely out there. These
two methods are write through or flushing.

A user program specifies that it wants all operations on a given file performed write
through by specifying FILE_WRITE_THROUGH in its Create options when it opens a
file, which the file system can later see in the file object via the
FO_WRITE_THROUGH flag in the file object flags. Once this flag is set in the file
object, the copy write and Mdl write routines automatically perform write through.
As a result, the Lazy Writer will never see dirty data modified through this file object
and will never attempt to write any.

Now the only question that remains is, how is write through dealt with in
conjunction with pin access? The current file systems in NT have chosen to write
through all structure information that is modified as the result of performing an
operation on a file object with FO_WRITE_THROUGH set. For such a file object,
each time that a pinned Bcb is set dirty, CcRepinBcb is called at the same time to
guarantee that the Bcb will not be deleted when it is unpinned. In addition, the file
systems remember all Bcbs that they have repinned. When the file system request
is complete, and all Bcbs have been unpinned and all resources have been released
(both very important to prevent deadlocks), and just before completing the Irp, the
file systems loop to call CcUnpinRepinnedBcb for each Bcb that was repinned.
This call is made with the WriteThrough flag specified as TRUE. An unpinned Bcb
causes the Bcb to be flushed, and the resulting I/O status is returned. This write
through is synchronized with the Lazy Writer, and the Lazy Writer will not lazy write
this page a second time.

Flushing is considerably simpler. A user request to flush file buffers results in a
flush Irp to the file system. CcFlushCache may be called to immediately flush all
dirty data to the file. In addition, a file system may choose to flush buffers in any
cached file or stream file at any time by also calling CcFlushCache. Unlike write
through, flushing is not synchronized with the Lazy Writer. However, this only
means two things:

 o Any buffer which is currently dirty and pinned will not be flushed. If the file
system does not eliminate this possibility by synchronizing this properly
within itself, then the affected buffer will still eventually get Lazy Written.

 o If a dirty buffer which is waiting to be flushed by the Lazy Writer is flushed
first, then the Lazy Writer will eventually go through the motions of flushing
this buffer anyway, but the flush will be nooped by Memory Management,
when it realizes that the buffer is no longer dirty.

Caching Design Note 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The current NT file systems only use flushing to mark volumes clean when they
have been idle for a while. For this case flushing activity is serialized with
everything else on a volume and the first case above does not occur. The second
case above can occur, but is benign.

2.10 Valid Data Length and File Size Considerations

Nearly every file system has system has separate concepts of Allocation Size (how
much space is allocated to a file) and File Size (how far may a caller read in the file).
Allocation Size will typically be a multiple of the disk sector size or allocation
quantum (aka cluster size), while File Size may be any number of bytes.

Some file systems (such as HPFS) have, in addition, a concept called Valid Data
Length, which is an indication of how much of the file has actually been initialized.
Reading beyond Valid Data Length is allowed (unlike reading beyond File Size),
however all zeros are returned in the buffer, regardless of what may actually be
present on the respective allocated sectors on disk. Returning 0's is both an
optimization (we do not have to read the sectors) as well as a security feature (the
caller does not get to read the data that used to be in those sectors from some
previous file).

It is a very good idea, even for file systems that do not have a concept of Valid Data
Length, to present and maintain a concept of Valid Data Length in their
implementation and in their interaction with the Cache Manager. This is advisable
for both the optimization and security related reasons discussed above. Consider
the frequent case where a user creates a file and is sequentially writing to the file.
As each user write comes in, the file system typically has to check if it needs to
extend the file allocation, and it also may want to advance the File Size early on for
internal reasons. When it comes time to call the Cache Manager, say at
CcCopyWrite, the Cache Manager has to get a page ready to receive the data, and
the only way to do that is to fault the page in. This now results in a page fault read
back to the file system from within the write path. Fortunately Resources, such as
the one synchronizing the Fcb, allow recursive acquisition, so the read proceeds
fine. The File Size may already be advanced, but clearly what the file system wants
to do in this case is detect that the read is beyond Valid Data Length, so that no real
read is required. The file system in this case should simply map the buffer and
clear it, and complete the request.

Now, for file systems that actually record Valid Data Length on disk, this field
should be updated in a reliable fashion such that even if the system dies, there are
still no windows where someone will get to see uninitialized data after the system
reboots. This is necessary to really make the file system secure. However, because
of the Lazy Writer, the file system can not easily and reliably keep track of when it is
safe to advance Valid Data Length, because it cannot make any assumptions about
what order the Lazy Writer will flush data to disk. Therefore, the Lazy Writer calls
the file system to inform it when it is safe to update Valid Data Length. It does this
by issuing a IRP_MJ_SET_INFORMATION Irp on the file with
SetEndOfFileInformation as the operation code and the AdvanceOnly flag set.
(The AdvanceOnly flag can only be set by the Lazy Writer. This call instructs the
file system that it can safely update ValidDataLength for the file to the specified size,
but only if that would make the new ValidDataLength greater than the current value

Caching Design Note 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

(someone could have done a WriteThrough or a flush in the meantime which would
already advance the ValidDataLength). In some cases, such as for stream files
containing file system metadata, the file system simply wishes to consider the entire
file to be valid, and it never wants to get the SetEndOfFileInformation calls
described above. For this case it may specify a NULL pointer for ValidDataLength in
the CcInitializeCacheMap call for this file. This will disable the Cache Manager's
ValidDataLength processing just described. For normal files, however, file systems
are recommended to support a concept of ValidDataLength in their implementation.

One final note about FileSize. In general paging I/O requests (IRP_PAGING_IO set
in the Irp Flags) are unsynchronized with File Size Changes. This is true whether
these requests emanate from the Cache Manager (especially the Lazy Writer) or
whether they occur from user mapped files. Fortunately the rules a file system
must follow are simple. On reads, paging I/O requests must obey end of file like
anyone else; thus reads extending beyond FileSize should be truncated to the
nearest allocation boundary beyond FileSize, and reads totally beyond FileSize
should receive STATUS_END_OF_FILE. Paging I/O writes are not allowed to extend
AllocationSize or FileSize; they are handled similarly to reads. Paging I/O writes
extending beyond end of file should be truncated to the nearest allocation boundary
beyond FileSize. Paging I/O writes starting beyond FileSize should be nooped with
an immediate completion with STATUS_SUCCESS. Complete all successful writes
with the Information field of the I/O status containing the requested byte count,
whether all the bytes really were transferred or not.

2.11 Resource Locking Rules

Doing a caching strategy with a mapped file model is a fairly complex problem. The
file system calls the Cache Manager, the Cache Manager calls Memory Management,
at which point Memory Management sometimes has to call the file system again.
Generally all of this activity stays within the same file. In spite of this complexity, at
the time of this writing two disk-based file systems (FAT and HPFS), the CDRom file
system, the Lan Manager Redirector, and the Lan Manager Server (through the calls
in the next subsection) are all completed and running reliably using the Cache
Manager.

Through the experiences gained with the above implementations, a set of resource
locking rules has been refined, which seems to allow for good parallelism without
deadlock. These rules are as follows:

 o Since most activity begins in the file system, the first rule of preventing
deadlock is that resources must be acquired in the order: file system
resources, Cache Manager resources, Memory Management resources.

Since some activity begins in the Lazy Writer as it processes its work queue,
and since it is necessary for the Lazy Writer to own some its resources across
calls to the file systems, the Cache Manager requires some very simple
callbacks to allow it to acquire file system resources first before beginning to
acquire its own resources. (See Section 0.)

Some activity also begins in Memory Management, such as in the Modified

Caching Design Note 17

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Page Writer, or in the servicing of MM services. In general, Memory
Management attempts to own no resources at all when it calls the file system.

 o The next rule is that the file system resources must support recursive
acquisition, since some Cache Manager calls that the file system makes will
sometimes result in recursive calls to the file system within the same thread.
It's important to note that the recursive calls are never random, but rather
logical consequences of the Cache Manager call being made; otherwise
recursive resource acquisition could actually be dangerous! One example of a
worst-case scenario: in the process of servicing a cached write request, the file
system calls CcCopyWrite, which results in a recursive call to the file system
for a noncached read to fault in the page to be written, then subsequently a
call for a noncached write of the page if the file object is Write Through.

All of the file systems currently use the executive resource package, which
supports single-thread exclusive access or multi-thread shared access. Both
exclusive and shared access support recursive acquisition. If an exclusive
user recursively requests a resource shared, this is transparently turned into
a recursive exclusive acquisition (there is only one release call). Finally, a
non-recursive exclusive acquisition can be converted to shared access to allow
greater sharing after completing a critical section. (Code which attempts to
convert shared to exclusive is almost certain to cause deadlocks.) The calls
are: ExAcquireResourceExclusive, ExAcquireResourceShared,
ExReleaseResource, and ExConvertExclusiveToShared.

Note that the file systems use some of the other synchronization mechanisms
available in NT, but never across calls to the Cache Manager.

 o As further assistance, the following table attempts to summarize how the
Cache Manager expects the the Fcb to be acquired when it is called at its
various entry points. This table was built from the actual usage in HPFS and
FAT. Note that the file systems should always attempt to own no other
resources exclusive (such as a resource synchronizing allocation on the
volume) across calls to the Cache Manager.

Multiple options in the table below are separated by "/". In the table E =
exclusive, S = shared, 0 = unowned, and - = don't care.

Caching Design Note 18

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Routine Fcb Res

CcInitializeCacheMap E/S
CcUninitializeCacheMap E
CcExtendCachedFileSize E
CcExtendCacheSection E
CcFlushCache E/0
CcPurgeFromWorkingSet -
CcPurgeCacheSection -
CcTruncateCachedFileSize E
CcZeroData E
CcRepinBcb -
CcUnpinRepinnedBcb 0
CcIsFileCached -
CcReadAhead S
CcSetAdditionalCacheAttributes E

CcCopyRead S
CcCopyWrite E/S

CcMdlRead S
CcMdlReadComplete -
CcPrepareMdlWrite E/S
CcMdlWriteComplete 0

CcPinRead -
CcMapData -
CcPinMappedData -
CcPreparePinWrite -
CcSetDirtyPinnedData -
CcUnpinData -

In addition, the caller should have nothing pinned (repinned is ok) when calling
CcExtendCacheSection or CcUnpinRepinnedBcb.

2.12 Network File Server Interfaces

There is not a lot to say here about how a network file server should use the Cache
Manager, as this occurs primarily by virtue of the fact that the file server calls a
local file system which is already using the Cache Manager. However, it is quickly
worth mentioning that there are basically two ways for a Server to access cached
files. Note that in any case servers will tend to open files, close files, and do all
other operations except read and write by calling the same file APIs that any other
local program would call.

The first alternative for reading and writing file data in a server is to also issue the
normal NtReadFile and NtWriteFile operations. This is not a bad approach, as the
server will still benefit from the Fast I/O operations implemented in these services.
However, note that all data will be copied into and out of the cache; there is no
opportunity to get at the Mdl interfaces at this level.

Caching Design Note 19

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The second alternative assumes that the Server is running as a kernel-mode
process, just like the current Lan Manager Server and all of the file systems.
Running in kernel mode the server is able to directly call the FsRtl Fast I/O
interfaces layers to either the Cache Manager copy interfaces or Mdl interfaces. The
FsRtl interfaces are nearly identical to the respective Cc interfaces documented in
this paper; the names are the same except that the Cc prefix is replaced by FsRtl.
The difference is that the FsRtl interfaces perform the necessary synchronization
with the file system via the Fcb resource, and they also perform a few simple checks
(such as IsFastIoPossible as described in Section 0). If the FsRtl routine cannot
perform the specified request, then it returns FALSE. If the Server receives FALSE
from an FsRtl Fast I/O routine, then it should build the same request in the form of
an Irp and queue it directly to the file system via IoCallDriver (see the Windows NT
I/O System Specification and Section 0).

Caching Design Note 20

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3. File System Maintenance Functions (FSSUP)

3.1 CcInitializeCacheMap

This routine is intended to be called by File Systems only. It initializes the Cache
Manager Data structures for data caching. It should be called the first time a File
Stream which is to be cached is read or written, or any time the stream is about to
be written and it is not already cached (FileObject->PrivateCacheMap == NULL).

The Fcb should be acquired either shared or exclusive when this routine is called.

The three size parameters passed will be captured in the Shared Cache Map, and
they must be updated as described later if they change.

If a window to the file cannot be mapped in the normal system cache, then it will be
mapped to the specified process, which should presumably be the file system's Fsp
process.

The callbacks are described in the next subsection.

VOID
CcInitializeCacheMap (
 IN PFILE_OBJECT FileObject,
 IN PLARGE_INTEGER AllocationSize,
 IN PLARGE_INTEGER FileSize,
 IN PLARGE_INTEGER ValidDataLength OPTIONAL,
 IN PEPROCESS Process,
 IN BOOLEAN PinAccess,
 IN PCACHE_MANAGER_CALLBACKS Callbacks,
 IN PVOID LazyWriteContext,
 IN PVOID CloseContext
);

Parameters:

FileObject - A pointer to the file object for the stream to be cached.

AllocationSize - The size of the file to be cached. This must be greater than or
equal to the actual size of the file. It might be greater, for example, if the
file is being created, or may be extended. If supplied as 0, it will be
defaulted by the Cache Manager.

FileSize - The exact File Size of the file, beyond which it may not be read.

ValidDataLength - The initialized portion of the file, beyond which 0's must be
returned if read (up to FileSize). This number also controls when the Lazy
Writer should call Set Information File to advance valid data length. If the
caller wants to consider all data valid and does not want callbacks, it can
specify NULL for this pointer (please refer to Section 0).

Caching Design Note 21

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Process - Pointer to the process to which the view should be mapped, if it
cannot be mapped in system space. This should typically be the Fsp
process itself.

PinAccess - FALSE if file will be used exclusively for Copy and Mdl access, or
TRUE if file will be used for Pin access. (Files for Pin access are mapped
entirely in one view, as it is assumed that the caller must access multiple
areas of the file at once. Therefore, it is a good idea organize files for Pin
Access into a number of small files.)

Callbacks - Pointer to a vector of Callbacks used by the Lazy Writer (see next
subsection)

LazyWriteContext - Parameter to pass to Lazy Write and Read Ahead callbacks.

CloseContext - Parameter to pass to Close callbacks

3.1.1 Cache Manager Callbacks

The Cache Manager must set rules for locking order in order to prevent deadlocks.
At a high level these rules are that first the file system is allowed to acquire its
resources, then the Cache Manager is allowed to acquire resources, and finally in
the worst case Memory Management may also acquire resources. These rules work
perfectly well in most cases, since most activity starts in the file system to begin
with. One case where there is a problem, however, is in the Lazy Writer. The Lazy
Writer must own some Cache Manager resources prior to calling the file system.

To keep this case from producing deadlocks, the Cache Manager requires a set of
callbacks to allow the Lazy Writer to acquire any necessary file system resources
first, before it begins to acquire its own. This allows the Lazy Writer to continue to
follow the locking rules, and prevent deadlocks.

To this end, CcInitializeCacheMap takes a pointer to a vector of callback
addresses, and two different callback parameters, as defined below:

This routine is called by the Lazy Writer prior to calling CcUninitializeCacheMap,
since this may result in a Close call to the file system. The context parameter
supplied is whatever the file system passed as the CloseContext parameter when it
called CcInitializeCacheMap.

typedef
BOOLEAN (*PACQUIRE_FOR_CLOSE) (
 IN PVOID Context,
 IN BOOLEAN Wait
);

This routine releases the Context acquired above.

Caching Design Note 22

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef
VOID (*PRELEASE_FROM_CLOSE) (
 IN PVOID Context
);

This routine is called by the Lazy Writer prior to doing a write, since this will require
some file system resources associated with this cached file. The context parameter
supplied is whatever the FS passed as the LazyWriteContext parameter when it
called CcInitializeCacheMap.

typedef
BOOLEAN (*PACQUIRE_FOR_LAZY_WRITE) (
 IN PVOID Context,
 IN BOOLEAN Wait
);

This routine releases the Context acquired above.

typedef
VOID (*PRELEASE_FROM_LAZY_WRITE) (
 IN PVOID Context
);

This routine is called by the Lazy Writer prior to doing a readahead. It also uses the
LazyWriteContext parameter.

typedef
BOOLEAN (*PACQUIRE_FOR_READ_AHEAD) (
 IN PVOID Context,
 IN BOOLEAN Wait
);

This routine releases the Context acquired above.

typedef
VOID (*PRELEASE_FROM_READ_AHEAD) (
 IN PVOID Context
);

Finally, this is the complete callback vector, a pointer to which must be passed to
CcInitializeCacheMap.

Caching Design Note 23

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef struct _CACHE_MANAGER_CALLBACKS {

 PACQUIRE_FOR_CLOSE AcquireForClose;
 PRELEASE_FROM_CLOSE ReleaseFromClose;
 PACQUIRE_FOR_LAZY_WRITE AcquireForLazyWrite;
 PRELEASE_FROM_LAZY_WRITE ReleaseFromLazyWrite;
 PACQUIRE_FOR_READ_AHEAD AcquireForReadAhead;
 PRELEASE_FROM_READ_AHEAD ReleaseFromReadAhead;

 } CACHE_MANAGER_CALLBACKS, *PCACHE_MANAGER_CALLBACKS;

3.2 CcUninitializeCacheMap

This routine uninitializes the previously initialized File Stream. This routine is only
intended to be called by File Systems. It should be called when the File System
receives a cleanup call on the File Object.

A File System which supports data caching must always call this routine whenever
it closes a file that it is trying to delete, whether it cached the file on the given file
object or not. This is because the final cleanup of a file related to truncation or
deletion of the file, can only occur on the last close, whether the last closer cached
the file or not. Any time CcUninitializeCacheMap is called on a file object for
which CcInitializeCacheMap was never called, the call is benign.

CcUninitializeCacheMap does the following:

 o If a File Stream was initialized on this File Object, it is uninitialized (unmap
any views, delete section, and delete Cache Manager structures).

 o On the last Cleanup, if the file has been deleted, the Section is forced closed.
If the file has been truncated, then the truncated pages are purged from the
cache.

Some times a file system may want pages of the file removed from the cache, even
though the file is still open. Examples in the case of a local file system might be if
the file has been truncated, a file's media has been removed from the drive. For a
network file system client, examples might be if an opportunistic locking protocol
dictates that a file may no longer be cached, or perhaps if a virtual circuit goes
down. For this purpose CcUnitializeCacheMap takes a TruncateSize parameter,
which, if specified, causes all pages from the specified file offset on to be purged
(removed) from the cache.

Caching Design Note 24

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

BOOLEAN
CcUninitializeCacheMap (
 IN PFILE_OBJECT FileObject,
 IN PLARGE_INTEGER TruncateSize OPTIONAL,
 IN PCACHE_UNINITIALIZE_EVENT UninitializeCompleteEvent OPTIONAL
);

Parameters:

FileObject - File Object which was previously supplied to
CcInitializeCacheMap.

TruncateSize - If specified, all pages should be purged (removed) from the cache
starting at, and including, the specified address.

UninitializeCompleteEvent - If specified, this event will be set when the
uninitialize is complete, since it may not be complete upon return. If the
caller wishes to wait on this event, he must absolutely guarantee that he
owns no resources, as this could lead to deadlocks. The format of this
structure is:

 typedef struct _CACHE_UNINITIALIZE_EVENT {
 struct _CACHE_UNINITIALIZE_EVENT *Next;
 KEVENT Event;
 } CACHE_UNINITIALIZE_EVENT, *PCACHE_UNINITIALIZE_EVENT;

Returns:

FALSE - if Section was not closed. In this case, if the caller really cares, it may
wish to specify and wait on the UninitializeCompleteEvent.

TRUE - if Section was closed.

3.3 CcExtendCachedFileSize

This routine must be called whenever a file has been extended to reflect this
extension in the Cache Manager data structures and the underlying section.
Calling this routine has a benign effect if the current size of the file is already
greater than or equal to FileSize. The Cache Manager must know the correct file
size to make the fast read paths work correctly.

VOID
CcExtendCachedFileSize (
 IN PFILE_OBJECT FileObject,
 IN PLARGE_INTEGER FileSize
)

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

Caching Design Note 25

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FileSize - Supplies the new file size for the file.

3.4 CcExtendCacheSection

This routine must be called whenever the allocation for a file has been extended to
reflect this extension in the Cache Manager data structures and the underlying
section. Calling this routine has a benign effect if the current allocation size of the
file is already greater than or equal to NewSize. The Cache Manager must know the
correct allocation size in order to insure that the underlying section is large enough.

BOOLEAN
CcExtendCachedFileSize (
 IN PFILE_OBJECT FileObject,
 IN PLARGE_INTEGER NewSize,
 IN BOOLEAN Wait
)

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

NewSize - Supplies the new allocation size for the file.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

Returns:

FALSE - if Wait was supplied as FALSE, and the extend was not possible
without blocking.

TRUE - if the extend was successfully completed.

3.5 CcFlushCache

This routine may be called to flush dirty data from the cache to the cached file on
disk. Any byte range within the file may be flushed, or the entire file may be flushed
by omitting the FileOffset parameter.

This routine does not take a Wait parameter; the caller should assume that it will
always block.

Caching Design Note 26

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
CcFlushCache (
 IN PFILE_OBJECT FileObject,
 IN PLARGE_INTEGER FileOffset OPTIONAL,
 IN ULONG Length,
 OUT PIO_STATUS_BLOCK IoStatus OPTIONAL
)

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

FileOffset - If this parameter is supplied (not NULL), then only the byte range
specified by FileOffset and Length are flushed.

Length - Defines the length of the byte range to flush, starting at FileOffset.
This parameter is ignored if FileOffset is specified as NULL.

IoStatus - The I/O status resulting from the flush operation.

3.6 CcPurgeFromWorkingSet

This routine which may optionally be used to purge all of the pages of a file from the
system cache or Fsp working set. The pages do not immediately leave memory, but
simply become eligible for replacement.

BOOLEAN
CcPurgeFromWorkingSet (
 IN PFILE_OBJECT FileObject,
 IN BOOLEAN Wait
)

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

Returns:

FALSE - if Wait was supplied as FALSE, and the extend was not possible
without blocking.

TRUE - if the extend was successfully completed.

Caching Design Note 27

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.7 CcPurgeCacheSection

This routine forcibly purges pages from the cache, automatically uninitializing all
file objects which have cached this file if necessary. It is meant for infrequent use
when dealing with such things as removeable media. Note that this routine is called
automatically if the Cache Manager is notified of a file truncation via
CcTruncateCachedFileSize.

VOID
CcPurgeCacheSection (
 IN PFILE_OBJECT FileObject,
 IN PLARGE_INTEGER PurgeSize
)

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

PurgeSize - The offset at which the purge is to begin. If not on a page
boundary, the page at PurgeSize is first flushed.

3.8 CcTruncateCachedFileSize

This routine must be called any time a local file system truncates a file. It informs
the Cache Manager of the new size. If any of AllocationSize, FileSize, or
ValidDataLength are larger than this number, they are reduced. Any pages beyond
this point are purged from the cache.

VOID
CcTruncateCachedFileSize (
 IN PFILE_OBJECT FileObject,
 IN PLARGE_INTEGER NewSize
)

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

NewSize - Supplies the new size for the file.

3.9 CcZeroData

This routine may be called to zero a given byte range in a file. As a general service,
it may even be called by file systems to zero byte ranges in files which are not
cached.

Up to some reasonable amount, this routine will simply attempt to zero data in the
cache, and let it be lazy written out. However, beyond a certain size, or for the
entire range if the file is not cached, the pages of the file are zeroed by writing to

Caching Design Note 28

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

them directly on disk. Note that for files which are not cached, the caller must
guarantee that the specified StartOffset is on a physical sector boundary for the
underlying disk, otherwise the disk driver will return an error and this routine will
raise that error status.

BOOLEAN
CcZeroData (
 IN PFILE_OBJECT FileObject,
 IN PLARGE_INTEGER StartOffset,
 IN PLARGE_INTEGER EndOffset,
 IN BOOLEAN Wait,
 OUT PIO_STATUS_BLOCK IoStatus
)

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

StartOffset - Supplies the file offset at which zeroing is to begin. If the file is not
cached, this offset must be on a hardware sector boundary.

EndOffset - Supplies the file offset at which zeroing is to end.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

IoStatus - Returns the I/O status from the zeroing operation.

Returns:

FALSE - if Wait was supplied as FALSE, and the extend was not possible
without blocking.

TRUE - if the extend was successfully completed.

3.10 CcRepinBcb

This routine may be called to guarantee that the specified Bcb does not go away.
This Bcb address must be one previously returned by either CcPinRead,
CcPreparePinWrite, or CcPinMappedData. The caller must subsequently call
CcUnpinRepinnedBcb for this Bcb. This sequence is usually done in connection
with a write through file object, however it may also be done to insure that a buffer
does not leave memory to facilitate possible error recovery.

Caching Design Note 29

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

BOOLEAN
CcRepinBcb (
 IN PBCB Bcb
)

Parameters:

Bcb - A previously returned pinned Bcb.

3.11 CcUnpinRepinnedBcb

This routine must be called to release a Bcb which was previously specified in
CcRepinBcb. It releases the Bcb, optionally writing it through to disk first.

VOID
CcUnpinRepinnedBcb (
 IN PBCB Bcb,
 IN BOOLEAN WriteThrough,
 OUT PIO_STATUS_BLOCK IoStatus
)

Parameters:

Bcb - Address of the Bcb

WriteThrough - Specified as TRUE, if the data represented by the Bcb should
first be written through

IoStatus - Returns the I/O status of the write, if WriteThrough was specified

3.12 CcIsFileCached

This routine is the approved way to determine if a file is cached by any FileObject,
whether it is cached by the input file object or not.

Note, if the caller wishes to determine if a given file object itself has been initialized
for caching, he should simply test FileObject->PrivateCacheMap. If this field is not
NULL, then the file object has been initialized for caching.

BOOLEAN
CcIsFileCached (
 IN PFILE_OBJECT FileObject
)

Parameters:

FileObject - The file object in question.

Caching Design Note 30

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Returns:

FALSE - if no file object has the file cached.

TRUE - if at least one file object has the file cached.

3.13 CcReadAhead

This routine is intended to be called by file systems, after a successful CcCopyRead
or CcMdlRead. The caller essentially specifies information about the previous read.
CcReadAhead maintains history information about a small number of recent calls
for this file object, and attempts to detect if read ahead would currently be
adviseable, and if so, whether or not the determined read ahead has already been
performed.

If the routine decides that it should perform some read ahead, then a read ahead
work request is queued off to one of the Cache Manager's worker threads, in order
to not tie up the current thread.

VOID
CcReadAhead (
 IN PFILE_OBJECT FileObject,
 IN PLARGE_INTEGER FileOffset,
 IN ULONG Length,
 IN ULONG StillNeed
)

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

FileOffset - Byte offset in file where the last read was just performed.

Length - The number of bytes successfully returned to the reader.

StillNeed - If the read was CcCopyRead, this parameter should specify 0. If the
read was CcMdlRead, then the caller had specified both a Length and
MinimumLength that he desired, and we may therefore have given him
less than Length. If so, this parameter should specify the Length
requested in CcMdlRead minus the length we returned to him.

3.14 CcSetAdditionalCacheAttributes

This routine may be called to disable read ahead or lazy write on a file object.
Disabling read ahead is always safe. The caller must guarantee that if it disables
lazy write, that it will write all dirty pages eventually for the entire file by flushing. A
file system should clearly not disable lazy write just because someone opens the file
write through, because disabling lazywrite applies to the file itself (not a given file

Caching Design Note 31

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

object), and someone else may open the file without write through. Note also that
write through is properly synchronized with the Lazy Writer anyway.

VOID
CcSetAdditionalCacheAttributes (
 IN PFILE_OBJECT FileObject,
 IN BOOLEAN DisableReadAhead,
 IN BOOLEAN DisableLazyWrite
)

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

DisableReadAhead - If specified as TRUE, read ahead will be disabled.

DisableLazyWrite - If specified as TRUE, lazy writing will be disabled.

Caching Design Note 32

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4. Copy Interface (COPYSUP)

4.1 CcCopyRead

This routine attempts to copy the specified file data from the cache into the output
buffer, and deliver the correct I/O status.

BOOLEAN
CcCopyRead (
 IN PFILE_OBJECT FileObject,
 IN PLARGE_INTEGER FileOffset,
 IN ULONG Length,
 IN BOOLEAN Wait,
 OUT PVOID Buffer,
 OUT PIO_STATUS_BLOCK IoStatus
)

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

FileOffset - Byte offset in file for desired data.

Length - Length of desired data in bytes.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

Buffer - Pointer to output buffer to which data should be copied.

IoStatus - Pointer to standard I/O status block to receive the status for the
transfer. (STATUS_SUCCESS guaranteed for cache hits, otherwise the
actual I/O status is returned.)

Returns:

FALSE - if Wait was supplied as FALSE and the data was not delivered

TRUE - if the data is being delivered

4.2 CcCopyWrite

This routine attempts to copy the specified file data from the specified buffer into
the Cache, and deliver the correct I/O status. If the file object has
FO_WRITE_THROUGH set, then the data will have been written through to disk
upon return.

There is one optimization that is important to note. In CcCopyWrite, a fast
compare is made to see if the caller happens to be writing the same data that
already exists in the file at that point, a common case in certain applications. On

Caching Design Note 33

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

the first different byte that is seen, a move of the new data into the cache begins at
that point. However, if the buffer is completely the same, then the write is
essentially nooped. This optimization does not occur if the buffer was already dirty
anyway, or the write is beyond ValidDataLength, or the file does not support
ValidDataLength (NULL pointer was passed to CcInitializeCacheMap). Given these
checks, this optimization should always be safe, but the file system should be aware
of this optimization none the less.

BOOLEAN
CcCopyWrite (
 IN PFILE_OBJECT FileObject,
 IN PLARGE_INTEGER FileOffset,
 IN ULONG Length,
 IN BOOLEAN Wait,
 IN PVOID Buffer,
 IN PLSN Lsn OPTIONAL,
 OUT PIO_STATUS_BLOCK IoStatus
)

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

FileOffset - Byte offset in file to receive the data.

Length - Length of data in bytes.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

Buffer - Pointer to input buffer from which data should be copied.

Lsn - An optional pointer reserved for future support. Should be supplied as
NULL.

IoStatus - Pointer to standard I/O status block to receive the status for the
transfer. (STATUS_SUCCESS guaranteed when WriteThrough = FALSE,
otherwise the actual I/O status from the Write is returned.)

Returns:

FALSE - if Wait was supplied as FALSE and the data was not copied.

TRUE - if the data has been copied.

Caching Design Note 34

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5. Mdl Interface (MDLSUP)

5.1 CcMdlRead

This routine attempts to lock the specified file data in the cache and return a
description of it in an Mdl along with the correct I/O status.

If not all of the data can be delivered, but at least MinimumLength can be, then all of
the data currently available is still delivered.

If the caller does not want to block, then Wait should be supplied as FALSE. If Wait
was supplied as FALSE and it is currently impossible to supply the minimum
requested data without blocking, then this routine will return FALSE. However, if
the minimum amount of data is immediately accessible in the cache and no
blocking is required, this routine locks the data and returns TRUE.

If the caller supplies Wait as TRUE, then this routine is guaranteed to lock at least
MinimumLength data and return TRUE. If at least MinimumLength is immediately
accessible in the cache, then no blocking will occur, and all of the available data up
to Length will be returned. Otherwise, a data transfer from the file into the cache
will be initiated for all missing data up to MinimumLength, and the caller will be
blocked until the data can be returned.

File system Fsd's will typically not use CcMdlRead, except to implement the
IRP_MN_MDL subfunction of read.

File Server threads do not call this routine directly as that is not safe. They may call
FsRtlMdlRead, which has essentially the same interface. They may also queue an
Irp with IRP_MN_MDL set in the subfunction of an IRP_MJ_READ request. In this
case they must pass MinimumLength in via the Irp->IoStatus.Information field. They
can intercept the Irp completion via a completion routine (see the Windows NT I/O
System Specification) and read the I/O status and get the Mdl from Irp->MdlAddress.
It must then clear this field, or else not allow the Irp completion to continue.

After the caller is done with the data, it must call CcMdlReadComplete to free
Cache Manager resources.

Caching Design Note 35

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

BOOLEAN
CcMdlRead (
 IN PFILE_OBJECT FileObject,
 IN PLARGE_INTEGER FileOffset,
 IN ULONG Length,
 IN ULONG MinimumLength,
 IN BOOLEAN Wait,
 OUT PMDL *MdlChain,
 OUT PIO_STATUS_BLOCK IoStatus
)

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

FileOffset - Byte offset in file for desired data.

Length - Length of desired data in bytes.

MinimimumLength - Minimum data to be guaranteed on return if this routine
returns TRUE.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

MdlChain - Returns a pointer to an Mdl chain describing the desired data.

IoStatus - Pointer to standard I/O status block to receive the status and byte
length of the returned data for the transfer. (STATUS_SUCCESS
guaranteed for cache hits, otherwise the actual I/O status is returned.)

Returns:

FALSE - if Wait was supplied as FALSE and the data was not delivered

TRUE - if the data is being delivered

5.2 CcMdlReadComplete

This routine must be called after the call to CcMdlRead, when the Mdl is no longer
required. It performs any cleanup that is necessary from the CcMdlRead.

Note that this routine does not assume that the calls to CcMdlReadComplete will
occur in the same order as the calls to CcMdlRead, however it does assume that
each call to CcMdlRead will eventually be followed by a call to this routine.

File systems only use this routine to implement the IRP_MN_MDL_COMPLETE
subfunction of IRP_MJ_READ. Servers may generate this Irp with the MdlChain
returned from CcMdlRead in Irp->MdlAddress, or they may call

Caching Design Note 36

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FsRtlMdlReadComplete. (Either of these options are available regardless of how
they called CcMdlRead.)

VOID
CcMdlReadComplete (
 IN PFILE_OBJECT FileObject,
 IN PMDL MdlChain
);

Parameters:

FileObject - Same file object pointer supplied to CcMdlRead.

MdlChain - Mdl chain returned from CcMdlRead.

5.3 CcPrepareMdlWrite

This routine attempts to lock the specified file data in the cache and return a
description of it in an Mdl along with the correct I/O status. Pages to be completely
overwritten may be satisfied with empty pages.

File system Fsd's will typically not use CcMdlWrite, except to implement the
IRP_MN_MDL subfunction of write.

File Server threads do not call this routine directly as that is not safe. They may call
FsRtlPrepareMdlWrite, which has essentially the same interface. They may also
queue an Irp with IRP_MN_MDL set in the subfunction of an IRP_MJ_WRITE
request. They can intercept the Irp completion via a completion routine (see the
Windows NT I/O System Specification) and read the I/O status and get the Mdl from
Irp->MdlAddress. It must then clear this field, or else not allow the Irp completion
to continue.

After the caller is done with the data, it must call CcMdlWriteComplete to free
Cache Manager resources.

BOOLEAN
CcPrepareMdlWrite (
 IN PFILE_OBJECT FileObject,
 IN PLARGE_INTEGER FileOffset,
 IN ULONG Length,
 IN BOOLEAN Wait,
 OUT PMDL *MdlChain,
 OUT PIO_STATUS_BLOCK IoStatus
)

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

FileOffset - Byte offset in file for desired data.

Caching Design Note 37

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Length - Length of desired data in bytes.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

MdlChain - On output it returns a pointer to an Mdl chain describing the
desired data.

IoStatus - Returns I/O status from potential read required to prepare the data.

Returns:

FALSE - if Wait was supplied as FALSE and the pages were not delivered

TRUE - if the pages are being delivered

5.4 CcMdlWriteComplete

This routine must be called after a call to CcPrepareMdlWrite. The caller supplies
the ActualLength of data that it actually wrote into the buffer, which may be less
than or equal to the Length specified in CcPrepareMdlWrite.

This call does the following:

 o Makes sure the data up to ActualLength eventually gets written. If the file
object is not write through, the data will not be written immediately and
IoStatus will simply say ActualLength bytes were successfully written on return
(even though they were not). This strategy allows the caller to always check
the I/O status, and know that if it got an error, the file object must be write
through. If the file object is write through, then the data is written
synchronously, and the appropriate IoStatus is returned.

 o Unlocks the pages and deletes the MdlChain

File systems only use this routine to implement the IRP_MN_MDL_COMPLETE
subfunction of IRP_MJ_WRITE. Servers may generate this Irp with the MdlChain
returned from CcPrepareMdlWrite in Irp->MdlAddress, or they may call
FsRtlMdlWriteComplete. (Either of these options are available regardless of how
they called CcPrepareMdlWrite.)

Caching Design Note 38

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

BOOLEAN
CcMdlWriteComplete (
 IN PFILE_OBJECT FileObject,
 IN ULONG ActualLength,
 IN PMDL MdlChain,
 IN BOOLEAN Wait,
 OUT PIO_STATUS_BLOCK IoStatus
);

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

ActualLength - Length of data actually transferred.

MdlChain - Mdl chain returned from CcPrepareMdlWrite.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

IoStatus - Returns success, or the actual I/O status from Write Through.

Returns:

FALSE - if Wait was supplied as FALSE and the pages were not delivered

TRUE - if the pages are being delivered

Caching Design Note 39

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6. Pin Interface (PINSUP)

The Pin interface is implemented specifically for file systems which are
implementing a particular file structure on external media. In a sense it is a more
primitive interface than the Copy or Mdl interfaces which always guarantee that
data is never left locked in memory, and which automatically deal with cases where
the desired data crosses page boundaries, and so on. Therefore there are a couple
of special rules that users of this interface must obey.

In general, the Pin interface allows a range of bytes to be locked/pinned in memory
(or in the lighter-weight case mapped), and subsequently accessed directly by virtual
address. While the data is pinned or mapped system resources are being held. The
Cache Manager absolutely relies on the File System to guarantee that it will free
these resources by calling CcUnpinData.

Forgetting to unpin data is a serious error which can lead to system failure. One
approach has proven to be bullit-proof in guaranteeing that file systems never forget
to unpin data. By initializing all Bcb variables in a procedure to NULL, and nesting
all calls which may fail or Raise within a try statement of a try-finally clause, all
non-NULL Bcbs may be unpinned in the finally clause on the way out. This means
they will be unpinned whether the try statement is exited normally, or whether
some type of exception occurs which causes the procedure to be unwound.

There is another rule which is a bit more subtle, but for most cases not a problem.
Whenever a file system maps or pins a range of bytes in one request that are
present on one or more pages, it is invalid for that file system to ever make a
subsequent request to map or pin a range of bytes in this stream that includes a
page from the first request along with a page that was not included in the first
request. The reason for this is somewhat due to internal details, but here is a
simplified explanation. Once the Cache Manager completes the first request, he has
"delivered" this data at a particular range of virtual addresses. If the second request
comes along and overlaps the first request, but demands at least one additional
page at the beginning or end, it is impossible in general for the Cache Manager to
guarantee that it can deliver the new page(s) at contiguous virtual addresses. In the
worst case the new page(s) could currently be being accessed as part of another
request at a different virtual range. In reality the Cache Manager tries to avoid
doing dynamic mapping, but in addition to the potential mapping problems the
internal use of Bcbs also restricts overlapping requests.

6.1 CcPinRead

This routine attempts to lock/pin the specified file data in the cache. If successful
(returning TRUE), a pointer is returned to the desired data in the cache. This
routine is intended for File Systems.

If the caller subsequently modifies the data, it should call CcSetDirtyPinnedData.

In any case, the caller MUST subsequently call CcUnpinData. Naturally if
CcPinRead, CcMapData, or CcPreparePinWrite were called multiple times for the
same data, CcUnpinData must be called the same number of times.

Caching Design Note 40

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The returned Buffer pointer is valid until the data is unpinned, at which point it is
invalid to use the pointer further.

BOOLEAN
CcPinRead (
 IN PFILE_OBJECT FileObject,
 IN PLARGE_INTEGER FileOffset,
 IN ULONG Length,
 IN BOOLEAN Wait,
 OUT PVOID *Bcb,
 OUT PVOID *Buffer,
 OUT PIO_STATUS_BLOCK IoStatusBlock
)

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

FileOffset - Byte offset in file for desired data.

Length - Length of desired data in bytes.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

Bcb - On the first call this returns a pointer to a Bcb parameter which must be
supplied as input on all subsequent calls for this buffer.

Buffer - Returns pointer to desired data, valid until the buffer is unpinned or
freed.

IoStatus - Pointer to standard I/O status block to receive the status for the
transfer. (STATUS_SUCCESS guaranteed for cache hits, otherwise the
actual I/O status is returned.)

Returns:

FALSE - if Wait was supplied as FALSE and the data was not delivered

TRUE - if the data is being delivered

6.2 CcMapData

This routine attempts to map the specified file data in the cache. If successful
(returning TRUE), a pointer is returned to the desired data in the cache. Mapping
data is considerably cheaper than pinning it, however mapped data may not be
modified. One either needs to call CcPinRead (or CcPreparePinWrite) instead if
one knows in advance that the data is to be modified, or call CcPinMappedData
prior to modifying the data and setting it dirty. The caller must not modify the data
or set it dirty before calling CcPinMappedData.

Caching Design Note 41

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This routine is intended for File Systems.

The caller MUST subsequently call CcUnpinData once with the Bcb returned from
this call, or the modified Bcb returned from CcPinMappedData if that routine was
called. Naturally if CcPinRead, CcMapData, or CcPreparePinWrite were called
multiple times for the same data, CcUnpinData must be called the same number of
times.

The returned Buffer pointer is valid until the data is unpinned, at which point it is
invalid to use the pointer further.

BOOLEAN
CcMapData (
 IN PFILE_OBJECT FileObject,
 IN PLARGE_INTEGER FileOffset,
 IN ULONG Length,
 IN BOOLEAN Wait,
 OUT PVOID *Bcb,
 OUT PVOID *Buffer,
 OUT PIO_STATUS_BLOCK IoStatusBlock
)

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

FileOffset - Byte offset in file for desired data.

Length - Length of desired data in bytes.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

Bcb - On the first call this returns a pointer to a Bcb parameter which must be
supplied as input on all subsequent calls for this buffer.

Buffer - Returns pointer to desired data, valid until the buffer is unpinned or
freed.

IoStatus - Pointer to standard I/O status block to receive the status for the
transfer. (STATUS_SUCCESS guaranteed for cache hits, otherwise the
actual I/O status is returned.)

Returns:

FALSE - if Wait was supplied as FALSE and the data was not delivered

TRUE - if the data is being delivered

Caching Design Note 42

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6.3 CcPinMappedData

This routine attempts to pin the specified file data which may have previously only
been mapped. If successful (returning TRUE), a pointer is returned to the desired
data in the cache. The data is guaranteed to stay at the same virtual address. If
CcPinMappedData has already been called for this data or the data was actually
pinned in the first place (both cases determined from the Bcb IN OUT parameter),
then this call is benign. Also note that Bcbs that are either pinned or mapped have
to be unpinned, and a call to this routine does not mean that CcUnpinData has to
be called an additional time, in fact it should not.

Note that Bcb is an IN OUT parameter, and that its value may in fact change. If so,
it is the new value that must be specified to CcSetDirtyPinnedData or
CcUnpinData; the caller should avoid making copies of the Bcb prior to this call.

This routine is intended for File Systems.

If the caller subsequently modifies the data, it should call CcSetDirtyPinnedData.

In any case, the caller MUST subsequently call CcUnpinData. Naturally if
CcPinRead, CcMapData, or CcPreparePinWrite were called multiple times for the
same data, CcUnpinData must be called the same number of times.

BOOLEAN
CcPinMappedData (
 IN PFILE_OBJECT FileObject,
 IN PLARGE_INTEGER FileOffset,
 IN ULONG Length,
 IN BOOLEAN Wait,
 IN OUT PVOID *Bcb,
 OUT PIO_STATUS_BLOCK IoStatusBlock
)

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

FileOffset - Byte offset in file for desired data.

Length - Length of desired data in bytes.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

Bcb - On the first call this returns a pointer to a Bcb parameter which must be
supplied as input on all subsequent calls for this buffer.

IoStatus - Pointer to standard I/O status block to receive the status for the
transfer. (STATUS_SUCCESS guaranteed for cache hits, otherwise the
actual I/O status is returned.)

Caching Design Note 43

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Returns:

FALSE - if Wait was supplied as FALSE and the data was not delivered

TRUE - if the data is being delivered

6.4 CcPreparePinWrite

This routine attempts to lock the specified file data in the cache and return a
pointer to it along with the correct I/O status. Pages to be completely overwritten
may be satisfied with empty pages.

When this call returns with TRUE, the caller may immediately begin to transfer data
into the buffers via the Buffer pointer. The buffer will already be marked dirty.

The caller MUST subsequently call CcUnpinData. Naturally if CcPinRead or
CcPreparePinWrite were called multiple times for the same data, CcUnpinData (or
CcFreePinnedData) must be called the same number of times.

The returned Buffer pointer is valid until the data is unpinned, at which point it is
invalid to use the pointer further.

BOOLEAN
CcPreparePinWrite (
 IN PFILE_OBJECT FileObject,
 IN PLARGE_INTEGER FileOffset,
 IN ULONG Length,
 IN BOOLEAN Zero,
 IN BOOLEAN Wait,
 IN PLSN Lsn OPTIONAL,
 OUT PVOID *Bcb,
 OUT PVOID *Buffer,
 OUT PIO_STATUS_BLOCK IoStatus
)

Parameters:

FileObject - A file object for which CcInitializeCacheMap has been previously
called.

FileOffset - Byte offset in file for desired data.

Length - Length of desired data in bytes.

Zero - If supplied as TRUE, the buffer will be zeroed on return.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

Lsn - An optional pointer reserved for future support. Should be supplied as
NULL.

Caching Design Note 44

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Bcb - This returns a pointer to a Bcb parameter which must be supplied as
input to CcPinWriteComplete.

Buffer - Returns pointer to desired data, valid until the buffer is unpinned or
freed.

IoStatus - Pointer to standard I/O status block to receive the status for the
transfer. (STATUS_SUCCESS guaranteed for cache hits, otherwise the
actual I/O status is returned.)

Returns:

FALSE - if Wait was supplied as FALSE and the pages were not delivered

TRUE - if the pages are being delivered

6.5 CcSetDirtyPinnedData

This routine declares that the data previously read via a call to CcPinRead has been
modified. It is important to call this routine to insure that the data will eventually
be written to disk in a timely manner.

VOID
CcSetDirtyPinnedData (
 IN PVOID Bcb,
 IN PLSN Lsn OPTIONAL,
)

Parameters:

Bcb - Bcb parameter returned from a call to CcPinRead.

Lsn - An optional pointer reserved for future support. Should be supplied as
NULL.

6.6 CcUnpinData

This routine must be called after each call to CcPinRead, CcMapData or
CcPreparePinWrite. It unlocks the data from the cache, enabling it to be written if
it is dirty. Data will never be written while it is pinned.

VOID
CcUnpinData (
 IN PVOID Bcb
)

Parameters:

Bcb - Bcb parameter returned from the last call to CcPinRead, CcMapData
(possibly modified by CcPinMappedData) or CcPreparePinWrite.

Caching Design Note 45

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7. Revision History

Original Draft 1.0, February 3, 1990

Revision Draft 1.1, March 5, 1990

 - Minor changes plus incorporate review comments

 - Addition of MmDeclareWsRoutines

 - Addition of Section on further Memory Management Requirements

 - Addition of entire

Revision Draft 1.2, June 15, 1990

 - Complete rewrite except for the first half of Page 1, to reflect the actual
implementation driven by the Design Review meeting for Draft 1.1.

Revision Draft 1.3, October 27, 1991

 - Greatly expanded detail and update to describe actual implementation for
PDK1.

NT OS/2 Coding Conventions

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group
NT OS/2 Coding Conventions
Author: Mark Lucovsky, Helen Custer
Revision 1.5, January 21, 1991

NT OS/2 Coding Conventions

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Introduction .. 3
Module Headers ... 3
Function Headers.. 4
Header Files.. 6

Header File Inclusion ... 6
Header File Format... 7

Naming ... 8
Variable Names .. 9

Initial Caps Format ... 9
Unstructured Format... 9

Data Type Names ... 9
Structure Field Names and Enumeration Constants ... 10
Macro and Constant Names.. 10

Indentation and Placement of Braces ... 11
Constructs to Avoid.. 13

Left Hand Side Typecasts... 13
Zero Length Arrays in Structures ... 13

NT OS/2 Coding Conventions

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Introduction
All code written for NT OS/2 by members of the Portable Systems Group
adheres to a common coding style. This style gives the system a
uniform appearance that allows group members to read, modify, and
maintain each other's modules without learning several different coding
conventions.

The following items are standardized:

 Module headers
 Function headers and declarations
 Header file format
 Names of variables, data types, structure fields, macros,

and constants
 Control structure indentation and placement of braces

Module Headers
The following prototype should appear at the beginning of each module.
The source to the prototype can be found in file \nt\bak\inc\modhdr.c.
/*++

Copyright (c) 1989 Microsoft Corporation

Module Name:

 name-of-module-filename

Abstract:

 abstract-for-module

Author:

 name-of-author (email-name) creation-date-dd-mmm-yyyy

[Environment:]

 optional-environment-info (e.g. kernel mode only...)

[Notes:]

 optional-notes

Revision History:

 most-recent-revision-date email-name
 description
 .
 .
 least-recent-revision-date email-name
 description

--*/

NT OS/2 Coding Conventions

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The following is a sample of a completed module header:
/*++

Copyright (c) 1989 Microsoft Corporation

Module Name:

 pool.c

Abstract:

 This module contains the pool allocator for the NT OS/2
 executive.

Author:

 Mark Lucovsky (markl) 16-Feb-1989

Environment:

 Kernel mode only.

Revision History:

 22-Feb-1989 markl

 Modified module to conform to the new naming and coding
 standards agreed to 21-Feb-1989.

 20-Feb-1989 markl

 Added module and function headers.

--*/

Note that the revision history portion is not completed. Until we get
further along in the project, we will not keep a revision history.

The /*++ <text> --*/ construct is used by a comment extractor program
that will be developed to assist in our documentation efforts.

Function Headers
The following is a prototype function declaration. This declaration is
to appear with the implementation of the function. The source to the
prototype can be found in file \nt\bak\inc\prochdr.c.
Notice the following details in the function declaration:

 A form-feed character should appear one line before the
"return-type" line. This convention is noted in this
document with the string "<form-feed>".

 All formal arguments are preceded by one of the following
macro definitions:

NT OS/2 Coding Conventions

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 IN Indicates that the argument is a non-modifiable input
 value (i.e., call-by-value semantics)
 OUT Indicates that the argument is an address which refers
 to a variable or structure that will be modified
 by the function (i.e., call-by-reference
 semantics)
 IN OUT Indicates that the argument is the address of an
 input variable or structure that is both read and
 written by the function (i.e., call-by-reference
 semantics)

 The OPTIONAL macro appears after a formal argument of type
pointer, HANDLE, or ULONG when the function accepts either
a NULL or non-NULL value. To determine whether the actual
value supplied is NULL or non-NULL, the programmer must use
the macro ARGUMENT_PRESENT, which takes the pointer,
HANDLE, or ULONG variable as an argument and returns a
value of type BOOLEAN.

 The order of the arguments in the comment block is the same

as the order in which they appear in the function
declaration.

 The function declaration follows:

<form-feed>
return-type
function-name(
 direction type-name argument-name,
 direction type-name argument-name...
)

/*++

Routine Description:

 description-of-function

Arguments:

 argument-name - [Supplies | Returns] description-of-argument
 .
 .
 .

Return Value:

 return-value - description-of-return-value
 -or-
 None

 --*/

{
 .
 .
 .

NT OS/2 Coding Conventions

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

}

The following is a sample of a completed function declaration:
<form-feed>
VOID
IoBuildPartialMdl(
 IN PMDL SourceMdl,
 IN PMDL TargetMdl,
 IN PVOID VirtualAddress,
 IN ULONG Length OPTIONAL
)

/*++

Routine Description:

This routine maps a portion of a buffer as described by an
MDL. The portion of the buffer to be mapped is specified via a virtual
address and an optional length. If the length is not supplied, then
the remainder of the buffer is mapped.

Arguments:

 SourceMdl - MDL for the current buffer.

 TargetMdl - MDL to map the specified portion of the buffer.

 VirtualAddress - Base of the buffer to begin mapping.

 Length - Optional length of buffer to be mapped; if zero,
 remainder.

Return value:

 None.

When a function is declared externally in a header file, its
declaration contains only the function prototype and not the comment
section. For example:
VOID
IoBuildPartialMdl(
 IN PMDL SourceMdl,
 IN PMDL TargetMdl,
 IN PVOID VirtualAddress,
 IN ULONG Length OPTIONAL
);

Header Files
The following sections define the requirements for inclusion and format
of header files.

Header File Inclusion
There are three types of header files in the NT OS/2 system:

NT OS/2 Coding Conventions

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 Header files that are private to a single operating system
component (the kernel or the I/O system, for example)

 A header file that is shared by the internal components of
the operating system (the kernel and the executive)

 A public header file that defines external application
programming interfaces (APIs) for system components outside
the kernel and executive

Each component of the operating system has a private header file. The
naming convention for these header files is <component-name>p.h. For
example, the private header file for kernel component, ke, is called
kep.h.

The NT OS/2 shared header file, \nt\private\src\ntos\inc\ntos.h, is
included by each component of the executive and by the kernel, using
the following statement:
#include "ntos.h"

(This file is included by a component's private include file.)

File ntos.h contains a list of #include statements, one for each
operating system component. Each operating system component has a
corresponding header file that defines prototypes for the functions
that are shared with other components within the executive. The naming
convention for these header files is <component-name>.h. For example,
the header file containing shared prototypes for kernel component, ke,
is called ke.h.

The public header file, \nt\sdk\inc\ntos2.h, is included by all
components outside the NT OS/2 kernel and executive, using the
following statement:
#include <ntos2.h>

Header File Format
Modules should be able to nest header files without causing multiple
definition problems. To accomplish this, each header file should be
conditionally expanded to itself, or to nothing if it has already been
expanded.

In the example below, if the module pool.h was not previously included,
then the macro _POOL_ is defined and the header file is expanded.
Otherwise, _POOL_ is already defined and the remainder of the header
file is ignored. This results in the header file being included only
once.

The following header file style should be used:
/*++

Copyright (c) 1989 Microsoft Corporation

Module Name:

 pool.h

NT OS/2 Coding Conventions

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Abstract:

 This module defines the NT OS/2 pool data structures and
 function prototypes.

Author:

 Mark Lucovsky (markl) 16-Feb-1989

Revision History:

--*/

#ifndef _POOL_
#define _POOL_

#include "ntdef.h"
#include "list.h"
#include "process.h"

typedef enum _POOL_TYPE {
 NonPagedPool,
 PagedPool
 } POOL_TYPE;

#endif // _POOL_

Note that if module list.h were shown, the conditional would appear as
follows:
 #ifndef _LIST_
 #define _LIST_

 //
 // body
 //

 #endif // _LIST_

NT OS/2 Coding Conventions

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Naming
The following sections describe the naming conventions for variables,
structure fields, types, constants, and macros.

Variable Names
Variable names are either in "initial caps" format, or they are
unstructured. The following two sections describe when each is
appropriate.
Note that the NT OS/2 system does not use the Hungarian naming
convention used in some of the other Microsoft products.

Initial Caps Format
All global variables and formal argument names must use the initial
caps format. The following rules define this format:

 Words within a name are spelled out; abbreviations are
discouraged.

 The first character of each word in a name is capitalized.
 Acronyms are treated as words, that is, only the first

character of the acronym is capitalized.

The following list shows some sample names that conform to these rules:
NumberOfBytes
TcbAddress
BilledProcess

Unstructured Format
Local variables may appear in either the initial caps format, or in a
format of the programmer's preference. The following list shows some
possibilities for local variable names:
loopindex
LoopIndex
loop_index

Data Type Names
A set of primitive data types for use in the NT OS/2 system is defined
in the file \nt\sdk\inc\ntdef.h. All NT OS/2 software must declare
variables using these defined types rather than standard C types, where
appropriate. The following are some examples of NT OS/2 types:

VOID
PVOID
QUAD
UQUAD
STRING
TIME

All new type names should be created in uppercase using typedef. Words
within the name may either be packed together or separated by
underscores. All types should have a corresponding typedef which

NT OS/2 Coding Conventions

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

defines a pointer to the type. The name for the pointer is the type
name with a "P" prefix.

The following example illustrates how to use typedef to create a
structure type:

typedef struct _POOL_LIST_HEAD {
 ULONG CurrentFreeLength;
 ULONG TotalEverAllocated;
 LIST_ENTRY ListHead;
} POOL_LIST_HEAD, *PPOOL_LIST_HEAD;

The following example illustrates how to use typedef to create an
enumerated type:
typedef enum _POOL_TYPE {
 NonPagedPool,
 PagedPool,
 MaxPoolType
 } POOL_TYPE;

Structure Field Names and Enumeration Constants

Structure field names should follow initial caps format. They should
not have field name prefixes tied to a type. The following is a sample
structure:

typedef struct _POOL_LIST_HEAD {
 ULONG CurrentFreeLength;
 ULONG TotalEverAllocated;
 LIST_ENTRY ListHead;
} POOL_LIST_HEAD, *PPOOL_LIST_HEAD;

As illustrated in the previous section, enumeration constants should
also follow initial caps format.

Macro and Constant Names

All macros and manifest constants should have uppercase names. Words
within a name may either be packed together, or separated by
underscores.

The following statements illustrate some macro and manifest constant
names:

#define PAGE_SIZE 4096
#define CONTAINING_RECORD(address, type, field) \
 ((type *)((LONG)(address) - \
 (LONG)(&((type *)0)->field)))

Note: Any macro that is likely to be replaced by a function at a later
time should use the naming conventions for functions.

NT OS/2 Coding Conventions

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Indentation and Placement of Braces

The following skeletal statements illustrate the proper indentation and
placement of braces for C control structures. In all cases,
indentations consist of four spaces each.
All control structures should routinely use braces even if there is
only a single statement that will be executed.
<form-feed>
INT
FooBar(
 INT ArgumentOne,
 PULONG ArgumentTwo
)

/*++

Routine Description:

 This is the routine description.

Arguments:

 ArgumentOne - Supplies the value for argument 1.

 ArgumentTwo - Supplies the address of argument 2.

Return Value:

 0 - Success

 1 - Failure

--*/

{
 //
 // Local variables are indented one tab (tabs are 4 spaces)
 //

 ULONG LocalVariable1;
 LONG Counter;

 //
 // for loops
 // - all for loops must have braces
 // - closing brace is at same indentation level as
 // for statement
 //

 for (Counter = 0; Counter < 10; Counter++) {

 //
 // Body of loop
 //

 }

NT OS/2 Coding Conventions

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 //
 // if statement
 //
 // - All if statements should use braces
 //

 if (Counter == 0) {

 //
 // Then statements
 //

 }

 //
 // if then else
 //

 if (Counter == 1) {

 //
 // Then statements
 //

 } else {

 //
 // Else statements
 //

 }

 //
 // switch statement
 //

 switch (Counter) {

 case 1 :

 //
 // case 1 statements
 //
 break;

 case 2 :

 //
 // case 2 statements
 //
 break;

 default :

 //
 // default case

NT OS/2 Coding Conventions

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 //
 break;

 }
}

Constructs to Avoid

NT OS/2 is written in portable, ANSI C. Due to differences in C
compilers, there are a number of coding constructs that need to be
avoided in order to promote portability.

Left Hand Side Typecasts

Some C compilers allow the cast operator on the left hand side of an
assignment. This is not allowed by standard C and must be avoided in NT
OS/2.

Zero Length Arrays in Structures
Zero length arrays embedded in structure definitions are not handled
uniformly by all C compilers. They should not be used in NT OS/2.

NT OS/2 Coding Conventions

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History

Original Draft 1.0, February 21, 1989 - ml
Revision 1.1, February 23, 1989 - ml
Revision 1.2, May 5, 1989 - hkc
 1. Extracted coding guidelines from exec.txt and converted
text to Word.
 2. Added text regarding primitive data type definitions.
 3. Added text and example describing OPTIONAL arguments.
 4. Added text regarding the inclusion of header files in
implementation modules.
 5. Style edit.
Revision 1.3, May 11, 1989 - Incorporated group comments. hkc
Revision 1.5, January 21, 1991 tonye
 1. Emphasized that all control structures must use braces.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS/2 Linker/Librarian/Image Format Specification

Author: Michael J. O'Leary

Revision 1.3, May 31, 1990

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview.. 1
1.1 Design Goals... 1
1.2 Constraints .. 1

2. Coff .. 1
2.1 What is Coff? .. 1
2.2 Why Coff?... 2
2.3 Coff Structure.. 2

2.3.1 Coff File Layout.. 2
2.3.2 Coff File Header.. 4
2.3.3 Coff Optional Header.. 5
2.3.4 Coff Section Header.. 7
2.3.5 Coff Relocation Entry ... 11
2.3.6 Coff Linenumber Entry ... 11
2.3.7 Coff Symbol Table Entry .. 11
2.3.8 Coff Auxiliary Symbol Table Entry.. 14

2.3.8.1 Coff Symbol Table Ordering... 14
2.3.9 Coff String Table .. 16
2.3.10 Overlays .. 16
2.3.11 Common Areas ... 16
2.3.12 16-bit Offset Definition... 16

3. Fixups .. 16
3.1 Based Relocations... 16
3.2 Relocation Types .. 17

3.2.1 I860 Relocation Types .. 17
3.2.2 386 Relocation Types.. 19

3.3 DLL Support ... 19
3.3.1 Thunks... 20
3.3.2 Export Section... 23

4. Image Activation ... 24

5. Resources... 25

6. CodeView Support... 25
6.1 Incremental Linking.. 25
6.2 Linker Command Line.. 26
6.3 Linker Switches .. 26

7. Librarian .. 26
7.1 Librarian Switches .. 27
7.2 Library File Layout ... 27

7.2.1 Library File Header ... 28
7.2.2 Library Member Header.. 28
7.2.3 Linker Member ... 29

Linker/Librarian/Image Format iii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7.2.4 Secondary Linker Member.. 29
7.2.5 Long Names Member.. 30

Linker/Librarian 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview

This specification describes the Linker and Librarian for the NT OS/2 system. The Common Object
File Format (COFF) standard with extensions needed to support Dynamic Linked Libraries (DLL's)
and new languages such as C++ will be used both as the Object Module Format (OMF) produced by
the compilers/assemblers and the executable image format used by the operating system to load a
program.

1.1 Design Goals

 o Fastest possible image activation.

 o Minimize and localize pages that can't be shared and require fixups.

 o Able to base a DLL or image at a prefered memory location.

 o Linker is the only program that modifies or constructs images.

 o Resource compiler will produce object fed to linker.

 o Need to easily support extensions to image format.

 o Linker will support multiple sections in objects.

1.2 Constraints

 o Must be able to distinguish Cruiser Images vs NT images.

 o Header must have common flags.

 o DLL support compatible with Cruiser.

 o Support transfer of control (calls) and data references.

 o All init routines called before program entry.

 o Must be compatible with Intel i860 assembler.

 o Understand basic coff.

 o Identify Intel extensions.

2. Coff

2.1 What is Coff?

Coff (Common Object File Format) is the formal definition for the structure of machine code files in
the UNIX System V environment. All machine code files, whether fully linked executables, compiled
applications, or system libraries, are COFF structured files. This will also become the formal definition
for NT OS/2.

Linker/Librarian 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The COFF definition describes a complex data structure that represents object files, executable files,
and archive (library) files. The Coff data structure defines fields for machine code, relocation
information, symbolic information, and more. The contents of these fields are accessed by an
organized system of pointers. Assemblers, compilers, linkers, and archivers manipulate the contents of
the COFF data structure to achieve their particular objective.

2.2 Why Coff?

Coff was chosen over the Crusier Linear Executable Format because of the following reasons.

 o Crusier images are not mappable.

 o No mappable image header.

 o Text and data pages are not laid out in the file such that they can be direclty mapped and
paged into memory. Must grovel over a mapping table to determine page table contents.

 o Preloaded pages prohibit mapping.

 o Certain fields are not on their natural alignments.

 o Iterated data pages prohibit mapping.

 o Crusier format contains 386 specifics.

 o Wasted space for fields that will never be used.

 o Verify Record Table.

 o Resident Name Table.

 o Checksums.

 o Fixups are by page/offset instead of by virtual address.

 o Resource Compiler modifies executable image.

 o Current i860 tools support COFF. We don't want to have to do another assembler.

2.3 Coff Structure

2.3.1 Coff File Layout

For NT OS/2, the following diagram shows the structure of a basic coff file. All headers must be at the
beginning of the file. All other parts of the file can be in any order. An executable file will always be in
the order show in this diagram.

Linker/Librarian 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 Ö-----------------------------───────┐
virtual ° FILE HEADER ° relative
pointers° TargetMachine ° sizes
 ° NumberOfSections--------------û-Ì
 ° TimeDateStamp ° °
Ö-------À------PointerToSymbolTable ° °
° ° NumberOfSymbols---------------û-é-------Ì
° ° SizeOfOptionalHeader----------ûÌ° °
° ° Characteristics °°° °
° û-----------------------------──────-À°° °
° ° OPTIONAL HEADER °°° °
│ │ TargetVersionStamp │││ │
│ │ LinkerVersionStamp │││ │
│ │ SizeOfCode │││ │
│ │ SizeOfInitializedData │││ │
│ │ SizeOfUninitializedData │││ │
│ │ AddressOfEntryPoint │││ │
│ │ BaseOfCode │││ │
│ │ BaseOfData │││ │
│ │ ImageBase │││ │
│ │ TargetOperatingSystem │││ │
│ │ TargetSubsystem │││ │
│ │ ImageVersionStamp │││ │
│ │ SizeOfImage │││ │
│ │ SizeOfHeaders │││ │
│ │ SizeOfHeap │││ │
│ │ SizeOfHeapCommit │││ │
│ │ SizeOfStack │││ │
│ │ SizeOfStackCommit │││ │
│ │ ZeroBits │││ │
│ │ CheckSum │││ │
│┌──────┤------PointerToBaseRelocations │││ │
││ │ NumberOfBaseRelocations-------├┼┼──┐ │
││ │ AddressOfProcessInitRoutine │││ │ │
││ │ AddressOfThreadInitRoutine │││ │ │
││ │ AddressOfDllTable │││ │ │
││ │ SectionNumberByType[6] ├┘│ │ │
││ │ AdditionalMachineValues[8] │ │ │ │
°│ û-----------------------------──────-À ° │ °
°│ ° SECTION HEADER ° ° │ °
°│ ° Name (e.g.,.text) ° ° │ °
°│ ° PhysicalAddress ° ° │ °
°│ ° VirtualAddress ° ° │ °
°│ ° SizeOfRawData-----------------û-é-Ì│ °
°│ Ö---À------PointerToRelocations ° ° °│ °
°│ ° Ö-À------PointerToRawData ° ° °│ °
°│Ö-é-é-À------PointerToLineNumbers ° ° °│ °
°│° ° ° ° NumberOfRelocationEntries-----û-é-é┼Ì °
°│° ° ° ° NumberOfLineNumberEntries-----û-é-é┼é-Ì °
°│° ° ° ° Characteristics ° ° °│° ° °

Linker/Librarian 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

°│° ° ° û------------------------------──────À ° °│° ° °
°│° ° ° ° other section header ° ° °│° ° °
°│° ° ° û------------------------------──────À ° °│° ° °
°│° ° ° ° last section header û-ì °│° ° °
°│° ° ° û------------------------------──────À °│° ° °
°└┼─┼─┼─┤ base relocations │ °│° ° °
° ° ° ° ° ├───┼┘° ° °
° ° ° ° û------------------------------──────À ° ° ° °
° ° ° Û-À raw data (.text) ° ° ° ° °
° ° ° ° û---ì ° ° °
° ° ° û------------------------------──────À ° ° °
° ° ° ° other sections raw data ° ° ° °
° ° ° û------------------------------──────À ° ° °
° ° Û---À first relocation entry ° ° ° °
° ° ° virtual address ° ° ° °
° ° ° symbol table index ° ° ° °
° ° ° relocation type ° ° ° °
° ° û------------------------------──────À ° ° °
° ° ° last relocation entry û-----ì ° °
° ° û------------------------------──────À ° °
° ° ° other sections relocations ° ° °
° ° û------------------------------──────À ° °
° Û-----À first line number entry ° ° °
° ° symbol table index ° ° °
° ° line number ° ° °
° û------------------------------──────À ° °
° ° last line number entry û-------ì °
° û------------------------------──────À °
° ° other sections line numbers ° °
° û------------------------------──────À °
Û-------À symbol table ° °
 ° name or string pointer ° °
 ° virtual address ° °
 ° section number ° °
 ° type ° °
 ° class ° °
 ° number aux entries ° °
 ° û---------ì
 û------------------------------──────À
 ° [size] string table ° SymPtr+NumSyms*SizeSym
 Û------------------------------──────ì

Linker/Librarian 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.3.2 Coff File Header

The file header size and format is that of standard COFF.

typedef struct _FILE_HEADER {
 USHORT TargetMachine;
 USHORT NumberOfSections;
 ULONG TimeDateStamp;
 ULONG PointerToSymbolTable;
 ULONG NumberOfSymbols;
 USHORT SizeOfOptionalHeader;
 USHORT Characteristics;
} FILE_HEADER, *PFILE_HEADER;

FILE_HEADER Structure:

TargetMachine ——Indicates the target machine the object/image file is executable.

TargetEnvironment Flags:

COFF_FILE_TARGET_UNKNOWN ——Indicates unknown target machine.

COFF_FILE_TARGET_860 ——Indicates the object/image is binary compatable with the
Intel i860 instruction set.

COFF_FILE_TARGET_386 ——Indicates object/image is binary compatable with the
Intel 386 instruction set.

COFF_FILE_TARGET_MIPS ——Indicates object/image is binary compatable with the
Mips instruction set.

NumberOfSections ——Indicates the number of section headers contained in the file. The number
of the first section is one.

TimeDateStamp ——Indicates the time and date when the file was created. Number of elapsed
seconds since 00:00:00 GMT, January 1, 1970.

PointerToSymbolTable ——A file pointer (offset from the beginning of the file) to the start of the
symbol table. The symbol table is sector aligned on disk.

NumberOfSymbols ——Indicates the number of symbol table entries. Each entry is 18 bytes in
length.

SizeOfOptionalHeader ——Indicates the size of the optional header.

Characteristics ——Indicates the characteristics of the object file.

Characteristics Flags:

COFF_FILE_RELOCS_STRIPPED ——Relocation information stripped from file.

Linker/Librarian 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

COFF_FILE_EXECUTABLE_IMAGE ——No unresolved external references.

COFF_FILE_LINE_NUMS_STRIPPED ——Line numbers stripped from file.

COFF_FILE_LOCAL_SYMS_STRIPPED ——Local symbols stripped from file.

COFF_FILE_MINIMAL_OBJECT ——Reserved.

COFF_FILE_UPDATE_OBJECT ——Reserved.

COFF_FILE_BYTES_REVERSED ——Bytes of machine word are reversed.

COFF_FILE_MACHINE_16BITS ——16 bit word machine.

COFF_FILE_MACHINE_32BITS ——32 bit word machine.

COFF_FILE_PATCH ——Reserved.

COFF_FILE_NT_EXTENSIONS ——If set, specifies the file contains new section
headers and padded symbol table.

COFF_FILE_DLL ——Image is a Dynamic Link Library.

COFF_FILE_BYTES_REVERSED_LO ——Bytes of machine are reversed.

COFF_FILE_BYTES_REVERSED_HI ——Bytes of machine are reversed. You can test
either of the above two bits, they are in the same bit position in each short word. This
allows you to identify if the coff object/image was written for a big or little endian
machine.

2.3.3 Coff Optional Header

There is no standard COFF optional header size and format. NT defines the optional header as:

Linker/Librarian 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef struct _OPTIONAL_HEADER {
 USHORT TargetVersionStamp;
 USHORT LinkerVersionStamp;
 ULONG SizeOfCode;
 ULONG SizeOfInitializedData;
 ULONG SizeOfUninitializedData;
 ULONG AddressOfEntryPoint;
 ULONG BaseOfCode;
 ULONG BaseOfData;
 ULONG ImageBase;
 USHORT TargetOperatingSystem;
 USHORT TargetSubsystem;
 ULONG ImageVersionStamp;
 ULONG SizeOfImage;
 ULONG SizeOfHeaders;
 ULONG SizeOfHeap;
 ULONG SizeOfHeapCommit;
 ULONG SizeOfStack;
 ULONG SizeOfStackCommit;
 ULONG ZeroBits;
 ULONG CheckSum;
 ULONG AddressOfBaseRelocations;
 ULONG NumberOfBaseRelocations;
 PVOID AddressOfProcessInitRoutines;
 PVOID AddressOfThreadInitRoutines;
 ULONG AddressOfDllTable;
 USHORT SectionNumberByTYpe[6];
 ULONG AdditionalMachineValues[8];
} OPTIONAL_HEADER, *POPTIONAL_HEADER;

OPTIONAL_HEADER Structure:

TargetVersionStamp ——Indicates operating system version.

LinkerVersionStamp ——Indicates which version of the linker was used to build image.

SizeOfCode ——Indicates the number of bytes of code.

SizeOfInitializedData ——Indicates the number of bytes of initialized data.

SizeOfUnInitializedData ——Indicates the number of bytes of uninitialized data.

AddressOfEntryPoint ——Relative virtual address of starting point of image. This value added to
the ImageBase is the virtual address of the entrypoint.

BaseOfCode ——Indicates the relative virtual address (64K aligned) of the origin of the first byte
of code. This value added to the ImageBase is the virtual address of the code.

Linker/Librarian 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

BaseOfData ——Indicates the relative virtual address (64K aligned) of the origin of the first byte
of data. This value added to the ImageBase is the virtual address of the data.

ImageBase ——Indicates the virtual address (64K aligned) of the origin of the file header.

TargetOperatingSystem ——Indicates operating system and system version on which the image is
executable.

TargetOperatingSystem Flags:

COFF_OPTIONAL_TARGET_OS_UNKNOWN ——Indicates unknown target
environment.

COFF_OPTIONAL_TARGET_OS_NTOS2 ——Indicates image is targeted for NT OS/2.

TargetSubsystem ——Indicates which subsystem of the operating system the image is intended to
run under.

TargetSubsystem Flags:

COFF_OPTIONAL_TARGET_SUBSYSTEM_UNKNOWN ——Indicates unknown
subsystem.

COFF_OPTIONAL_TARGET_SUBSYSTEM_NATIVE ——Indicates image runs under
the native operating system. Subsystems are native images.

COFF_OPTIONAL_TARGET_SUBSYSTEM_OS2 ——Indicates image is to run in the
OS/2 subsystem.

COFF_OPTIONAL_TARGET_SUBSYSTEM_POSIX ——Indicates image is to run in
the Posix subsystem.

ImageVersionStamp ——Indicates image version. To be used for backword compatibility. This
stamp can be set by the user with the Version: switch.

SizeOfImage ——Indicates the virtual size of the image.

SizeOfHeaders ——Indicates the total size of all headers.

SizeOfHeap ——Indicates the maximum size the heap is allowed to grow.

SizeOfHeapCommit ——Indicates the initial heap size.

SizeOfStack ——Indicates the maximum size the stack is allowed to grow.

SizeOfStackCommit ——Indicates the initial stack size.

ZeroBits ——Indicates how memory is to be allocated.

PointerToBaseRelocations ——A file pointer to a table that is used to apply relocations to the
image if the image can't be based at its desired base location. The first long word of the
base table indicates the number of base table entries that follow. PointerToBaseTable will

Linker/Librarian 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

be zero if the image doesn't have a base table. The base table structure is defined later in
this document.

AddressOfProcessInitRoutines ——TBD.

AddressOfThreadInitRoutines ——TBD.

AddressOfDllTable ——The relative virtual address of a table that defines DLL's. This is
described later in this document.

SectionNumberByType ——Is any array of interesting section numbers.

SectionNumberByType index values:

COFF_SECTION_TYPE_DEBUG ——Indicates the section with contains the debug
information.

COFF_SECTION_EXPORTS ——Indicates the section with contains the export table.

COFF_SECTION_RESOURCE ——Indicates the section with contains the resource data.

COFF_SECTION_SECURITY ——Indicates the section with contains security
information.

COFF_SECTION_EXCEPTION ——Indicates the section with contains the exception
tables.

The optional header is used only for images. If an object file contains an optional header of the proper
size, it is used in the following manner:

If TargetSubsystem is not COFF_OPTIONAL_TARGET_SUBSYSTEM_UNKNOWN, then a
subsystem is being defined. It tells the linker that the following sections within this file are for a
particular subsystem. With this information, the linker can guarantee that different subsystem
components won't be mixed together. Each library should contain one of these records.

If AddressOfEntryPoint is non-zero, then an entrypoint is being defined. This allows a compiler to
supply the entrypoint without using the linker command line switch.

All other fields are ignored.

2.3.4 Coff Section Header

All section headers must follow the file header (or optional header if there is one).

An object or image can contain any number of sections and in any order. The linker combines any
sections with the same name and with the same flags. For example, if a compiler wants to keep all
constants together, then the compiler could use a section name of .const in every object that contained
constants. The linker will merge these sections together (provided they also had the same flag attribute
such as R/O). In some coff implementations, if a section is empty (i.e., object contains no .bss), a

Linker/Librarian 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

section header still identifies the section, but would contain a zero size. For NT OS/2, this extra section
header is not required.

Section names must start with a period (.). For each section, a special symbol will be defined by the
linker. The period (.) will be replaced with a colon (:). This will be the next address after the section.
Thus if a section is named .text, then the linker will create the symbol :text.

Grouping of sections hasn't been determined yet.

There are two styles of the section header. The first section header size and format is that of standard
COFF. The second section header is an extension added to Coff. Both headers are the same size, but
different format. The COFF_OPTIONAL_NT_EXTENSIONS flag in the file header specifies which
section header the object contains. Section headers can not be mixed within one object, they must all
be of one type. The image file will always have the COFF_OPTIONAL_NT_EXTENSIONS flag
set, and thus the image will always contain new section headers.

The standard Coff section header has the following format:

typedef struct _OLD_SECTION_HEADER {
 UCHAR Name[8];
 ULONG PysicalAddress;
 ULONG VirtualAddress;
 ULONG SizeOfRawData;
 ULONG PointerToRawData;
 ULONG PointerToRelocations;
 ULONG PointerToLinenumbers;
 USHORT NumberOfRelocations;
 USHORT NumberOfLineNumbers;
 ULONG Characteristics;
} OLD_SECTION_HEADER, *POLD_SECTION_HEADER;

The new section header the following format:

typedef struct _NEW_SECTION_HEADER {
 UCHAR Name[8];
 ULONG NumberOfLinenumbers;
 ULONG VirtualAddress;
 ULONG SizeOfRawData;
 ULONG PointerToRawData;
 ULONG PointerToRelocations;
 ULONG PointerToLinenumbers;
 ULONG NumberOfRelocations;
 ULONG Characteristics;
} NEW_SECTION_HEADER, *PNEW_SECTION_HEADER;

SECTION_HEADER Structure:

Name ——Eight character null padded section name.

PysicalAddress ——Indicates the physical address of the section. This field only exits within the
old section header. Its value is never used.

Linker/Librarian 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VirtualAddress ——Indicates the relative virtual address of the section.

SizeOfRawData ——Indicates the size in bytes of the sections raw data.

PointerToRawData ——A file pointer (offset from the beginning of the file) to the raw data for
this sections.

PointerToRelocations ——A file pointer (offset from the beginning of the file) to the relocation
entries for this section. The relocation entries are sector aligned on disk.

PointerToLinenumbers ——A file pointer (offset from the beginning of the file) to the line number
entries for this section. The line number entries are sector aligned on disk.

NumberOfRelocations ——Indicates the number of relocation entries for this section.

NumberOfLinenumbers ——Indicates the number of line number entries for this section.

Characteristics ——This flag represent three kinds of information:

 o Section Type

 o Section Content

 o Section Memory Mapping

The flags determines how the linker and system loader handle the section. A section can
only be of one type, one content, but can have a combination of memory flags set.

For now, all NT/OS2 objects and images will be of type COFF_SCN_TYPE_REGULAR
except for those sections that want 16-bit offset addressing. These sections will be of type
COFF_SCN_TYPE_GROUPED.

Section grouping is controlled by using a colon (:) in the section name. For example, if you
have four objects each containing sections by the name of .DATA, .DATA:1, and
.DATA:2, which all have the SAME FLAGS, then the linker will only create one section
called .DATA which is a combination of all the sections but grouped in the following
order:

Linker/Librarian 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 Raw data for section .DATA
 ┌───────────────┐
 │Object 1 DATA │
 │Object 2 DATA │
 │Object 3 DATA │
 │Object 4 DATA │
 │Object 1 DATA:1│
 │Object 2 DATA:1│
 │Object 3 DATA:1│
 │Object 4 DATA:1│
 │Object 1 DATA:2│
 │Object 2 DATA:2│
 │Object 3 DATA:2│
 │Object 4 DATA:2│
 └───────────────┘

Further more, the linker performs grouping within a file. If a file contains multiple sections
with the same group name, the linker will group all raw data with the same group name
within the file together. A good example of this would be a library with many members
each containing a .DATA:1 group. The linker will combine all .DATA:1 raw data
extracted from the library together before it combines groups of the same name from other
libraries.

If a sections name is 8 characters (without the colon), then the linker will not allow it to
contain groups.

Characteristics Flags:

COFF_SCN_TYPE_REGULAR ——.

COFF_SCN_TYPE_DUMMY ——.

COFF_SCN_TYPE_NO_LOAD ——.

COFF_SCN_TYPE_GROUPED ——Used for 16-bit offset code.

COFF_SCN_TYPE_NO_PAD ——Specifies if section should not be padded to next
boundary before being combined with other like section.

COFF_SCN_TYPE_COPY ——Reserved.

COFF_SCN_CNT_CODE ——Section contains code.

COFF_SCN_CNT_INITIALIZED_DATA ——Section contains initialized data.

COFF_SCN_CNT_UNINITIALIZED_DATA ——Section contains uninitialized data.

COFF_SCN_CNT_OTHER ——Reserved.

COFF_SCN_CNT_INFO ——Section contains comments or some other type of
information.

Linker/Librarian 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

A comment section can contain any type of information and can include relocations
for this information. The first two long words of the raw data are reserved and are
defined as InfoType and InfoVersion.

InfoType Flags:

COFF_SCN_INFO_UNKNOWN ——Indicates unknown information.

COFF_SCN_INFO_DIRECTIVE ——Indicates raw data contains linker directives
such as entrypoint, full/partial/no debugging, etc. The compiler can set linker
options by use of these directives. Usually the sections is also marked as
discardable so this information doesn't become part of the image. InfoVersion
is the linker version required to understand these directives. The current linker
must have this version number or greater. The next long word is the number of
directives being set, followed by the directives themselves (to be defined later).
If the linker finds more than one directive of the same type (ie, two
entrypoints) the linker will generated a warning and will use the first directive
found.

COFF_SCN_INFO_COMPILER ——Indicates raw data contains compiler
information such as compiler type (i.e., C, Pascal, Fortran) and flags used.
InfoVersion indicates the compiler version.

COFF_SCN_INFO_CODEVIEW ——Indicates raw data contains CodeView
information, and InfoVersion can either be the compiler or debugger version
(to be determined later).

COFF_SCN_CNT_OVERLAY ——Section contains an overlay.

COFF_SCN_CNT_DISCARD ——Section contents will not become part of image.
Directives to the linker will usually be marked discardable (ie, entrypoint defined by
compiler).

COFF_SCN_MEM_NOT_CACHED ——Section is not cachable.

COFF_SCN_MEM_NOT_PAGED ——Section is not pageable.

COFF_SCN_MEM_SHARED ——Section is shareable.

COFF_SCN_MEM_EXECUTE ——Section is executable.

COFF_SCN_MEM_READ ——Section is readable.

COFF_SCN_MEM_WRITE ——Section is writeable.

2.3.5 Coff Relocation Entry

The relocation entries size and format is that of standard COFF.

Linker/Librarian 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef struct _RELOCATION_ENTRY {
 ULONG VirtualAddress;
 ULONG SymbolTableIndex;
 USHORT Type;
} RELOCATION_ENTRY, *PRELOCATION_ENTRY;

RELOCATION_ENTRY Structure:

VirtualAddress ——Indicates the virtual address (position) in the section to be relocated.

SymbolTableIndex ——Indicates the symbol table index (zero based) of the item that is referenced.

Type ——Indicates the relocation type. Relocation types are defined later in this document.

2.3.6 Coff Linenumber Entry

The linenumber entries size and format is that of standard COFF.

typedef struct _LINENUMBER_ENTRY {
 union {
 ULONG SymbolTableIndex;
 ULONG VirtualAddress;
 }
 USHORT Linenumber;
} LINENUMBER_ENTRY, *PLINENUMBER_ENTRY;

LINENUMBER_ENTRY Structure:

SymbolTableIndex ——If Linenumber is zero, indicates the symbol table index (zero based) of the
function name.

VirtualAddress ——If Linenumber is not zero, indicates virtual address of line number.

Linenumber ——Indicates the line number relative to the start of the function.

2.3.7 Coff Symbol Table Entry

The symbol table entry size and format is that of standard COFF.

Linker/Librarian 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef struct _SYMBOL_TABLE_ENTRY {
 UCHAR Name[8];
 ULONG Value;
 SHORT SectionNumber;
 USHORT Type;
 CHAR StorageClass;
 CHAR NumberOfAuxiliaryEntries;
} SYMBOL_TABLE_ENTRY, *PSYMBOL_TABLE_ENTRY;

SYMBOL_TABLE_ENTRY Structure:

Name ——Symbol name. If the first four bytes are zero, then the last 4 bytes are a pointer to the
symbol in the string table. The pointer technique is used if the symbol is longer than 8
bytes.

Value ——Symbols value dependent on section number, storage class, and type.

SectionNumber ——The section number the symbol is defined in.

SectionNumber meaning:

COFF_SYM_DEBUG ——Indicates value represents special symbolic debug information.

COFF_SYM_ABSOLUTE ——Indicates value is an absolute value.

COFF_SYM_UNDEFINED ——Indicates that value is used as common.

COFF_SYM_DEFINED ——Indicates that the symbol is defined.

Type ——Symbolic type.

Type flags:

COFF_SYM_TYPE_NULL ——Indicates no type.

COFF_SYM_TYPE_VOID ——Indicates type void.

COFF_SYM_TYPE_CHAR ——Indicates type character.

COFF_SYM_TYPE_SHORT ——Indicates type short integer.

COFF_SYM_TYPE_INT ——Indicates type integer.

COFF_SYM_TYPE_LONG ——Indicates type long integer.

COFF_SYM_TYPE_FLOAT ——Indicates type floating point.

COFF_SYM_TYPE_DOUBLE ——Indicates type double word.

COFF_SYM_TYPE_STRUCT ——Indicates type structure.

Linker/Librarian 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

COFF_SYM_TYPE_UNION ——Indicates type union.

COFF_SYM_TYPE_ENUM ——Indicates type enumeration.

COFF_SYM_TYPE_MOE ——Indicates type member of enumeration.

COFF_SYM_TYPE_UCHAR ——Indicates type unsigned character.

COFF_SYM_TYPE_USHORT ——Indicates type unsigned short integer.

COFF_SYM_TYPE_TYPE_UINT ——Indicates type unsigned integer.

COFF_SYM_TYPE_ULONG ——Indicates type unsigned long integer.

StorageClass ——Storage class of the symbol.

StorageClass flags:

COFF_SYM_CLASS_EXTERNAL

COFF_SYM_CLASS_DLL_EXTERNAL

COFF_SYM_CLASS_AUTOMATIC

COFF_SYM_CLASS_REGISTER

COFF_SYM_CLASS_LABEL

COFF_SYM_CLASS_UNDEFINED_LABEL

COFF_SYM_CLASS_STATIC

COFF_SYM_CLASS_UNDEFINED_STATIC

COFF_SYM_CLASS_MEMBER_OF_STRUCT

COFF_SYM_CLASS_ARGUMENT

COFF_SYM_CLASS_STRUCT_TAG

COFF_SYM_CLASS_MEMBER_OF_UNION

COFF_SYM_CLASS_UNION_TAG

COFF_SYM_CLASS_TYPE_DEFINTION

COFF_SYM_CLASS_ENUM_TAG

COFF_SYM_CLASS_MEMBER_OF_ENUM

COFF_SYM_CLASS_REGISTER_PARAM

COFF_SYM_CLASS_BIT_FIELD

Linker/Librarian 17

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

COFF_SYM_CLASS_BLOCK

COFF_SYM_CLASS_FUNCTION

COFF_SYM_CLASS_END_OF_STRUCT

COFF_SYM_CLASS_FILE

COFF_SYM_CLASS_SECTION

NumberOfAuxiliaryEntries ——Number of auxiliary entries that further define this symbol.

2.3.8 Coff Auxiliary Symbol Table Entry

In general, auxiliary entries either implement a linked list structure within the symbol table that is used
for efficient access of the symbol table data by both the linker and debugger, or contain
debug/relocation information that is outside the scope of the symbol table entry structure. The
following auxiliary entries are defined:

 o Filename - This is the first auxiliary entry in the symbol table. The contents of the auxiliary
entry is either the filename (if the name is 14 characters or less), or a pointer to the string table
where larger filenames are placed. Filename may contain a path.

 o Section Names - This auxiliary entry follows the symbol entry for a section name. It contains
the section length, the number of relocation entries for the section, and the number of line
number entries for the section. This information can also be found in the section header, but by
placing the information in the auxiliary entry, the debugger can obtain all needed information
directly from the symbol table.

 o Tagname - To be defined.

 o Function - To be defined. Will probably contain prototype information.

 o Block - Include special entries such as .bb (begin block), .eb (end block), .bf (begin function),
.ef (end function) and .eos (end of structure).

 o Array

2.3.8.1 Coff Symbol Table Ordering

Because of symbolic debugging requirments, the order of symbols in the symbol table is very
important. Symbols appear in the following sequence:

Linker/Librarian 18

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 ┌────────────────────┐
 │ .file filename1 │
 ├────────────────────┤
 │ .define function1 │
 ├────────────────────┤
 │ .define local var1 │
 │ for function1 │
 ├────────────────────┤
 │ ... │
 ├────────────────────┤
 │ .define local varN │
 │ for function1 │
 ├────────────────────┤
 │ .begin function │
 ├────────────────────┤
 │ .block begin │
 ├────────────────────┤
 │ ... │
 ├────────────────────┤
 │ .end block │
 ├────────────────────┤
 │ .end function │
 ├────────────────────┤
 │ statics │
 ├────────────────────┤
 │ ... │
 ├────────────────────┤
 │ .file filename2 │
 ├────────────────────┤
 │ .define function1 │
 ├────────────────────┤
 │ .define local var1 │
 │ for function2 │
 ├────────────────────┤
 │ ... │
 │ ... │
 ├────────────────────┤
 │ statics │
 ├────────────────────┤
 │ ... │
 ├────────────────────┤
 │ defined global │
 │ symbols │
 ├────────────────────┤
 │ undefined global │
 │ symbols │
 └────────────────────┘

Linker/Librarian 19

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.3.9 Coff String Table

The string table is the final component of the symbolic information. If in a symbol entry, the first four
characters of the symbol's name are NULL, then the last four characters represent an offset (relative to
the start of the string table) into the string table where the symbol's name is stored. Symbol names are
NULL-terminated, thus the symbol's name can be any length.

The first four bytes in the string table represent a long value that specifies the number of bytes in the
string table. An empty string table has a length field, but the value stored there is 0.

Internal symbols generated by compilers should try to be 8 characters or less, for these are the most
efficent and require the less space.

2.3.10 Overlays

 o To be defined

2.3.11 Common Areas

Common areas are defined by the symbol record containing a non-zero value, and a zero (undefined)
section number. In this case, the value is the size (number of bytes) of the symbol. The linker merges
symbols of the same name and allocates the largest required space in a section called .common with
content of COFF_SCN_TYPE_UNINITIALIZED_DATA.

2.3.12 16-bit Offset Definition

When sections have the SECTION_TYPE_GROUP flag set, the linker combines sections with the
same name but different content flags into one section. The combined section must be 64K or less,
otherwise the linker will generate an error. A special symbol will be defined by the linker that will be
the address of the middle of the section, thus signed 16-bit displacements can be used by compilers.
The special symbol defined by the linker will be that of the section name but the '.' (period) will be
replaced with a ';' (semi-colon).

It hasn't been determined how grouping of sections with different memory flags occur. In the worst
case, they must be all of one kind, probably R/W.

3. Fixups

 o Fixups will be performed in user mode. Thus, no code is required to verify fixups are valid (in
the event an image has been tampered with).

 o If the image is mapped at its specified based address, then the only runtime fixups required are
those for DLL's. If the image is not mapped at the specified base address, then the fixups have
to be re-applied.

 o The linker will generate thunks for calls to DLL's, thus the fixups are to read/write data, not to
code. Thus no Icache flushes are necessary.

 o The linker will have a switch to indicate if fixups should occur as they are needed, or for a
whole DLL at a time.

Linker/Librarian 20

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.1 Based Relocations

The base relocations are used to re-apply fixups when an image's based address is unavailable at load
time. The structure of a based entry follows:

typedef struct _BASED_RELOCATION_ENTRY {
 ULONG VirtualAddress;
 ULONG Value;
 USHORT Type;
} BASED_RELOCATION_ENTRY, *PBASED_RELOCATION_ENTRY;

BASED_RELOCATION_ENTRY Structure:

VirtualAddress ——Indicates the virtual address (position) in the image to be relocated.

Value ——Indicates the value of the item that is referenced. This value plus the new base should
replace the word located at the virtual address.

Type ——Indicates the relocation type. Relocation types are defined later in this document.

3.2 Relocation Types

3.2.1 I860 Relocation Types

 o COFF_REL_I860_ABSOLUTE

 This relocation is ignored.

 o COFF_REL_I860_DIR32

 *(long *)Location += Addr

 o COFF_REL_I860_PAIR

 Defines PairAddr.

 o COFF_REL_I860_HIGH

 *(short *)Location = ((Addr + PairAddr) >> 16)

 o COFF_REL_I860_LOW0

 *(short *)Location += (short)Addr

 o COFF_REL_I860_LOW1

 *(short *)Location += (short)Aligned(Addr, 2)

 o COFF_REL_I860_LOW2

 *(short *)Location += (short)Aligned(Addr, 4)

Linker/Librarian 21

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o COFF_REL_I860_LOW3

 *(short *)Location += (short)Aligned(Addr, 8)

 o COFF_REL_I860_LOW4

 *(short *)Location += (short)Aligned(Addr, 16)

 o COFF_REL_I860_SPLIT0

 T1 = *(long *)Location
 T2 = (((T1 >> 5) & 0xf800) | (T1 & 0x7ff)) + Addr
 T2 = ((T2 << 5) & 0x1f0000) | (T2 & 0x7ff)
 *(long *)Location = T2 | (T1 & (~0x1f07ff))

 o COFF_REL_I860_SPLIT1

 T1 = *(long *)Location
 T2 = (((T1 >> 5) & 0xf800) | (T1 & 0x7fe)) + Aligned(Addr,2)
 T2 = ((T2 << 5) & 0x1f0000) | (T2 & 0x7fe)
 *(long *)Location = T2 | (T1 & (~0x1f07fe))

 o COFF_REL_I860_SPLIT2

 T1 = *(long *)Location
 T2 = (((T1 >> 5) & 0xf800) | (T1 & 0x7fc)) + Aligned(Addr, 4)
 T2 = ((T2 << 5) & 0x1f0000) | (T2 & 0x7fc)
 *(long *)Location = T2 | (T1 & (~0x1f07fc))

 o COFF_REL_I860_HIGHADJ

 *(short *)Location = ((Addr + rel1.r_symndx) >> 16)
 if ((Addr + rel1.r_symndx) & 0x8000)
 *(short *)Location += 1

 o COFF_REL_I860_BRADDR

 Addr = Addr - ((VirtAddr - PhysAddr) + 4 + VirtAddr
 if ((Addr >= 0x4000000L) || (Addr < -0x4000000L))
 " Too Far "

I'll explain the previous relocation types by sample i860 code.

 orh h%foo,r0,r31 // COFF_REL_I860_HIGH
 or l%foo,r31,r31 // COFF_REL_I860_LOW0
 ld.l 0(r31),r16

The first 2 instructions moves the address of the memory location labeled foo into r31. The
COFF_REL_I860_HIGH type instructs the linker to extract the upper 16 bit of the address of foo for
use as immediate operand in the orh instruction. Similarly, the COFF_REL_I860_LOW0 type instructs

Linker/Librarian 22

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

the linker to extract the lower 16 bit of the address of foo for use as immediate operand in the or
instruction. The final ld.l loads the memory location referenced by r31 into r16.

Alternatively, you can use

 orh ha%foo,r0,r3 // COFF_REL_I860_HIGHADJ, PAIR
 ld.l l%foo(r31),r16 // COFF_REL_I860_LOW0

to load foo into r16. The COFF_REL_I860_HIGHADJ type behaves like the COFF_REL_I860_HIGH
type except that it adds 1 to the extracted upper 16 bit if bit 15 of the address value is set. This
adjustment is needed because load/store arithmetic instructions sign-extend the 16-bit immediate
operand. If you used

 orh h%foo,r0,r31 // COFF_REL_I860_HIGH
 ld.l l%foo(r31),r16 // COFF_REL_I860_LOW0

you will load from the wrong address when bit 15 of foo is set. Immediate operands are 0-extended in
logical instructions.

 orh ha%foo,r0,r31 // COFF_REL_I860_HIGHADJ, PAIR
 ld.b l%foo(r31),r16 // COFF_REL_I860_LOW0
 ld.s l%foo(r31),r16 // COFF_REL_I860_LOW1
 ld.l l%foo(r31),r16 // COFF_REL_I860_LOW2

 orh ha%foof,r0,r31 // COFF_REL_I860_HIGHADJ, PAIR
 fld.l l%foof(r31),f16// COFF_REL_I860_LOW2
 fld.d l%foof(r31),f16// COFF_REL_I860_LOW3
 fld.q l%foof(r31),f16// COFF_REL_I860_LOW4

The variaous COFF_REL_I860_LOW types are used to extract the lower 16 bits of a constant or and
address label. The linker verifies alignment of the immediate offsets (Intel i860 Programmer Reference
Manual section 5.2 programming notes) because the lower bits of the immediate are used to encode the
operand length. See appendix B of the Intel i860 Programmers Reference Manual for the instruction
format.

COFF_REL_I860_LOW1 verifies alignment of the immediate to 2 byte boundary.
COFF_REL_I860_LOW2 verifies alignment of the immediate to 4 byte boundary.
COFF_REL_I860_LOW3 verifies alignment of the immediate to 8 byte boundary.
COFF_REL_I860_LOW4 verifies alignment of the immediate to 16 byte boundary.

 orh ha%foo,r0,r31 // COFF_REL_I860_HIGHADJ, PAIR
 st.b r16,l%foo(r31) // COFF_REL_I860_SPLIT0
 st.s r16,l%foo(r31) // COFF_REL_I860_SPLIT1
 st.l r16,l%foo(r31) // COFF_REL_I860_SPLIT2

The COFF_REL_I860_SPLIT types are used by the st instruction (fst uses the
COFF_REL_I860_LOW fixups). They verify the alignment of the immediate as well as split the
immediate over bit 20..16 and 10..0 of the instruction. The alignment is needed because bit 0 and bit 28
are used to encode operand length.

Linker/Librarian 23

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

COFF_REL_I860_SPLIT1 verifies alignment of immediate to 2 byte boundary.
COFF_REL_I860_SPLIT2 verifies alignment of immediate to 4 byte boundary.

 br foo
 nop
foo: nop // COFF_REL_I860_BRADDR

The COFF_REL_I860_BRADDR type is used to fixup a br to an address label. The linker computes
the offset of the target label relative to the current PC + 4.

3.2.2 386 Relocation Types

 o COFF_REL_I386_ABSOLUTE

 o COFF_REL_I386_DIR16

 o COFF_REL_I386_REL16

 o COFF_REL_I386_DIR32

 o COFF_REL_I386_REL32

3.3 DLL Support

 o An executable image which is a DLL will:

 o Have an export section which contains the ordinals, function names, and function address
of each exported routine.

 o May contain init code if AddressOfEntryPoint != 0.

 o An executable image which uses a DLL will

 o Have a Dll Descriptor table for each DLL used. These tables will be grouped together and
the optional header will contain the address of the first table.

 o Thunks for the DLL that will be snaped at load time.

3.3.1 Thunks

The best way to describe thunks is show an example. The following example is i860 code.

Suppose we had the following Definition file:

 GetVersion=DosCalls.GetVersion
 GetMachineMode=DosCalls.GetMachineMode
 GetMode=VioCalls.GetMode
 Foo=DosCalls.128

Linker/Librarian 24

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

and the following user code:

call GetVersion
call GetMode
call GetMachineMode
call Foo

The image would end up contain the following code:

call thunk1
call thunk2
call thunk3
call thunk4

thunk1:
 br DosCallsThunkRoutine
 ld.c fir,r31
 .word relative address of GetVersionThunkData

thunk2:
 br VioCallsThunkRoutine
 ld.c fir,r31
 .word relative address of GetModeThunkData

thunk3:
 br DosCallsThunkRoutine
 ld.c fir,r31
 .word relative address of GetMachineModeThunkData

thunk4:
 br DosCallsThunkRoutine
 ld.c fir r31
 .word relative address of Ordinal128ThunkData

DosCallsThunkRoutine:
 ld.l 0(r31),r30
 add r30,r31,r30
 ld.l 0(r30), r29
 bri r29
 nop

VioCallsThunkRoutine:
 ld.l 4(r31),r30
 add r30,r31,r30
 ld.l 0(r30), r29

Linker/Librarian 25

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 bri r29
 nop

Notice that DosCallsThunkRoutine and VioCallsThunkRoutine are identical. The reason for this is
purely for debugging reasons. With different thunk routines, the user can set a breakpoint at the thunk
routine for a specific DLL or a profiler could show which functions within which DLL are being
called. The ideal situation would be to only generate one thunk routine if debugging isn't enabled,
otherwise generate a thunk routine per DLL. However, I haven't figured out a way to do this yet, so
until then, each DLL will have its own thunk routine.

Thunk data has the following format:

typedef struct _THUNK_DATA {
 PTHUNK_BY_NAME Function;
} THUNK_DATA, *PTHUNK_DATA;

THUNK_DATA Structure:

Function ——Specifies either an ordinal number or a pointer to THUNK_BY_NAME structure. If
it is an ordinal number, it will have a value less than 64K.

typedef struct _THUNK_BY_NAME {
 ULONG Hint;
 UCHAR Name[1];
} THUNK_BY_NAME, *PTHUNK_BY_NAME;

THUNK_BY_NAME Structure:

Hint ——A hint value that can be used to reference into the ExportNames in the
EXPORT_SECTION_DATA.

Name ——The functions name.

Thus by example, we have:

DosCallsThunkData:

GetVersionThunkData:
 .word pointer to hint & "GetVersion"

GetMachineModeThunkData
 .word pointer to hint & "GetMachineMode"

Ordinal128ThunkData:
 .word 128

Linker/Librarian 26

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VioCallsThunkData:

GetModeThunkData:
 .word pointer to hint & "GetMode"

The DLL descriptor is defined as:

typedef struct _DLL_DESCRIPTOR {
 ULONG Characteristics;
 PUCHAR Name;
 PVOID FirstThunk;
} DLL_DESCRIPTOR, *PDLL_DESCRIPTOR;

DLL_DESCRIPTOR Structure:

Characteristics ——TBD.

Name ——A pointer to the name of the DLL.

FirstThunk ——A pointer to the first thunk for this DLL.

The linker places all DLL descriptors contigously in the image file. An empty DLL descriptor (both
fields are zero) is appended to the list of DLL descriptors.The PointerToDLLTable in the optional
headers points to the first DLL descriptor.

The purpose of the DLL descriptor is that once a snap occurs, it is possible to snap all thunks for the
DLL at once. The linker places all the thunks for a particular DLL contiguously. It also appends an
additional thunk data record to the list. This record will have both function_ordinal and function_name
set to zero. This signifies the end of the DLL thunk data.

Linker/Librarian 27

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Thus, by example we have:

 ┌──────────────────────┐
 │characteristics │
 ├──────────────────────┤
 │pointer to "VioCalls" │
 ├──────────────────────┤
┌──┤pointer to first thunk│
│ ├──────────────────────┤
│ │characteristics │
│ ├──────────────────────┤
│ │pointer to "DosCalls" │
│ ├──────────────────────┤
│┌─┤pointer to first thunk│
││ ├──────────────────────┤
││ │0 │
││ ├──────────────────────┤
││ │0 │
││ ├──────────────────────┤
││ │0 │
││ ├──────────────────────┤
││ │0 │
││ └──────────────────────┘
││
││ THUNK DATA
││ ┌────────────────────────────────┐
│└─┤ pointer to "GetVersion" │
│ ├────────────────────────────────┤
│ │ pointer to "GetMachineMode" │
│ ├────────────────────────────────┤
│ │ 128 │
│ ├────────────────────────────────┤
│ │ 0 │
│ ├────────────────────────────────┤
└──┤ pointer to "GetMode" │
 ├────────────────────────────────┤
 │ 0 │
 └────────────────────────────────┘

The linker doesn't know if a function is within a DLL and it doesn't have to. The thunk and thunk data
will be extracted from a library that was created by the librarian from a definition file.

3.3.2 Export Section

The export section will be the first section header of an image that is flaged as a DLL. The raw data of
the section has the following format:

Linker/Librarian 28

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef struct _EXPORT_SECTION_DATA {
 ULONG Characteristics;
 PSZ DllName;
 ULONG VersionStamp;
 ULONG Base;
 ULONG NumberOfOrdinals;
 ULONG NumberOfNames;
 PVOID *AddressOfOrdinalFunction;
 PEXPORT_NAME_TABLE ExportNames;
} EXPORT_SECTION_DATA, *PEXPORT_SECTION_DATA;

EXPORT_SECTION_DATA Structure:

Characteristics ——TBD.

DllName ——A pointer to the name of the DLL.

VersionStamp ——TBD.

Base ——TBD.

NumberOfOrdinals ——Indicates the number of ordinal functions.

NumberOfNames ——Indicates the number of named functions.

AddressOfOrdinalFunction ——A virtual address of the ordinal function.

ExportNames ——A pointer to the function exported by name.

typedef struct _EXPORT_NAME_TABLE {
 PSZ ExportedName;
 ULONG Ordinal;
} EXPORT_NAME_TABLE, *PEXPORT_NAME_TABLE;

EXPORT_NAME_TABLE Structure:

DllName ——A pointer to the name of the Function.

Ordinal ——The ordinal assigned to the function.

4. Image Activation

 o Image headers, section headers, inport/export lists and debug information must all be
mappable.

 o Based images and DLL's.

 o Sections are aligned on sector boundaries and are mapped on 64K virtual addresses.

 o The only kernel memory resident structures is the information to resolve a virtual page to a disk
location.

Linker/Librarian 29

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Psedo code for activating FOO.EXE.

Activate("FOO.EXE");

Activate (Image_Name)
{
 Handle = CreateSection(Image_Name, ..., ...);
 Image_Base = MapView(Handle, ..., ...);
 if (Image_Base->Optional_Header.PreferredImageBase != Image_Base){
 perform_local_fixups();
 }
 Load_DLL(Image_Base);
}

Load_DLL (Image_Base)
{
 If (ImageBase->Section_Header[0].Name == '.export') {
 while (Fetch_Next_DLL_Name() != NULL) {
 DLL_Handle = CreateSection(DLL_Name, ..., ...);
 DLL_Base = MapView(DLL_Handle, ..., ...);
 if (DLL_Base->Optional_Header.PreferredImageBase != DLL_Base) {
 perform_local_fixups();
 }
 Load_DLL(DLL_Base);
 if (Image_Base->Optional_Header.EntryPoint) {
 call (Image_Base->Optional_Header.EntryPoint());
 }
 perform_DLL_fixups();
}

5. Resources

Resources are used for internationalzation. For example, if all the error messages of an image are in a
resource, then the object containing the resource can be replaced with a new resource object that
contains the error messages in another language.

 o Bitmaps, Fonts, Icons and Strings can all be resources.

 o The resource compiler will not modify the executable images as is done today in OS/2. Instead,
the resource compiler will produce either assembler or c language code that can be compiled
and then linked with the retain flag set so it can be incrementally linked later.

 o Resouces will be combined into one section.

 o The resource section will have a reserved name. Currently this name is .resrc.

 o The section flag will be marked as COFF_SCN_CNT_INITIALIZED_DATA.

Linker/Librarian 30

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The current OS/2 implib program will be incorporated into the linker. It will read a definition file and
produce a library which contains the thunk code for DLL entry points.

6. CodeView Support

CodeView information will reside in a section with content being COFF_SCN_TYPE_INFO. The
Linker does not know about the internal structure of the CodeView information. The section can
contain relocation entries for the information.

 o How duplicate debug information might be discarded hasn't been decided yet.

6.1 Incremental Linking

Incremental linking is used to replace specific parts of an image file. This is how you change
resources.

The linker will be able to incrementally link objects provided the retain switch was used before
incremental linking is desired. The linker will retain the needed relocation entries for each object that
refers to a specific section. The linker replaces the old section with the new section and re-applys the
fixups. NOTE: If the size of the section grows, and can't fit in the padded space left from sector
aligning, it hasn't been decided if the linker will move everything or just return an error indicating full
linking must occur.

Incremental linking is accomplished by linking an executable image with 1 or more objects.

6.2 Linker Command Line

The linker can except switches, objects, libraries, and the definition file in any order on the command
line. Only one definition file can be specified. The linker processes the object files (in order) before
processing the libraries.

6.3 Linker Switches

 o Debug:[None,Full,Partial]

 o Def:Filename

 o Dll

 o Map:[Filename]

 o Base:Address (64K aligned)

 o Entry:SymbolName

 o Force

 o Include:SymbolName

 o Out:Filename

 o Stack:Size

Linker/Librarian 31

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Version:Number

 o Retain=[All,ObjectName]:[All,SectionName]

 o Fixup=DllLibraryName:[All,1by1,None]

7. Librarian

 o The librarian will be imbedded into the linker or will at least share a DLL.

 o Multiple objects of the same name will NOT be allowed in the same library.

 o Multiple symbols of the same name will NOT be allowed in the same library.

The librarian has two functions:

The first function of the librarian is to simply merge files together. When the librarian builds a library,
a member header is created for each file that is a member of the library. This allows removal of each
individual file from a library. Any file can become a member of a library. When the files being added
to a library are not COFF objects, the librarian acts like a simple file merger. You can merge an
unlimited number of files together into one large file. This file will not be considered a valid library for
linking purposes. A valid library to be used by the linker is created by merging only COFF objects
together.

When a library contains only COFF objects, the librarian performs its second function, which is to
build a symbol table for all defined external functions within the library. This symbol table is called the
linker member, because it allows the linker to perform fast lookup on defined functions within the
library. Once the linker member is created, only COFF objects can be added to the library.

7.1 Librarian Switches

 o Remove:Membername

 o Def:Filename

 o List

Membername is the name of the file. The linker member name is backslash (/).

Linker/Librarian 32

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7.2 Library File Layout

 ┌──────────────────┐
 │ !<arcg>\n │
 ├──────────────────┤
 │ MEMBER HEADER │
 │ name │
 │ date │
 │ uid │
 │ gid │
 │ mode │
 │ size │
 │ '\n │
 ├──────────────────┤
 │ File 1 Contents │
 │ │
 │ │
 │ │
 ├──────────────────┤
 │ MEMBER HEADER │
 │ name │
 │ date │
 │ uid │
 │ gid │
 │ mode │
 │ size │
 │ '\n │
 ├──────────────────┤
 │ File 2 Contents │
 │ │
 │ │
 │ │
 ├──────────────────┤
 │etc ... │
 │ │
 └──────────────────┘

7.2.1 Library File Header

A library file always starts with the 8 characters !<arch>\n where \n is a newline character.

7.2.2 Library Member Header

The library member header size and format is that of standard COFF archive files.

Linker/Librarian 33

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef struct _MEMBER_HEADER {
 CHAR Name[16];
 CHAR Date[12];
 CHAR UserID[6];
 CHAR GroupID[6];
 CHAR Mode[8];
 CHAR Size[10];
 CHAR EndHeader[2];
} MEMBER_HEADER, *PMEMBER_HEADER;

MEMBER_HEADER Structure:

Name ——Is the file name of the member. It is terminated with a backslash (/) character, followed
by spaces if needed to fill out the rest of the character array. The member name is stored
this way only if the file name is less than 16 characters long. If the file name is 16
characters or more (path name is included), the the member names begins with a backslash
(/) character, followed by ascii digits which are used as an offset into the long name table
(described below).

Date ——Is the members creation data as an ASCII string of decimal characters.

UserID ——To be defined.

GroupID ——To be defined.

Mode ——To be defined.

Size ——Defines the size of the member in bytes. The size can be used to find the header of the
next member.

EndHeader ——Contains the string `\n (grave accent followed by a newline character).

NOTE: A member header always starts on an even-byte boundary. A newline character (\n) is
used for filling if the members contents ends on an odd-byte boundary.

Linker/Librarian 34

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7.2.3 Linker Member

If the file contains a COFF object, then a linker member is built by the librarian, and is the first
member of the archive file. The linker member is sorted by member header offsets. The linker member
is standard coff and is constructed in the following manner:

 ┌────────────────────────┐
 │ MEMBER HEADER │
 │ name "/ " │
 │ date │
 │ uid │
 │ gid │
 │ mode │
 │ size │
 │ '\n │
 ├────────────────────────┤
 │ number of symbols │
 ├────────────────────────┤
 │ member header offset │
 │ for symbol name1 │
 ├────────────────────────┤
 │ member header offset │
 │ for symbol name2 │
 ├────────────────────────┤
 │ . │
 │ . │
 │ . │
 ├────────────────────────┤
 │ member header offset │
 │ for symbol nameN │
 ├────────────────────────┤
 │ symbol name1 │
 │ symbol name2 │
 │ │
 │ │
 │ │
 │ symbol nameN │
 └────────────────────────┘

7.2.4 Secondary Linker Member

A second linker member is built by the NT librarian. This is not standard, but most existing tools
should ignore the second linker member. The second linker member is sorted by symbols names. The
second linker member is constructed in the following manner:

Linker/Librarian 35

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 ┌────────────────────────┐
 │ MEMBER HEADER │
 │ name "/ " │
 │ date │
 │ uid │
 │ gid │
 │ mode │
 │ size │
 │ '\n │
 ├────────────────────────┤
 │ number of offsets │
 ├────────────────────────┤
 │ member header 1 offset │
 ├────────────────────────┤
 │ member header 2 offset │
 ├────────────────────────┤
 │ . │
 │ . │
 │ . │
 ├────────────────────────┤
 │ number of symbols │
 ├────────────────────────┤
 │ member offset index │
 │ for symbol name1 │
 ├────────────────────────┤
 │ member offset index │
 │ for symbol name2 │
 ├────────────────────────┤
 │ . │
 │ . │
 │ . │
 ├────────────────────────┤
 │ member offset index │
 │ for symbol nameN │
 ├────────────────────────┤
 │ symbol name1 │
 │ symbol name2 │
 │ │
 │ │
 │ │
 │ symbol nameN │
 ├────────────────────────┤
 │ full member 1 filename │
 │ full member 2 filename │
 │ │
 │ │
 │ full member N filename │
 └────────────────────────┘

Linker/Librarian 36

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7.2.5 Long Names Member

The NT linker builds a long name table if any of the file names being added to the library are longer
than 15 characters. This is not standard COFF, but is part of the new System V ABI. The long name
table is constructed in the following manner:

 ┌────────────────────────┐
 │ MEMBER HEADER │
 │ name "// " │
 │ date │
 │ uid │
 │ gid │
 │ mode │
 │ size │
 │ '\n │
 ├────────────────────────┤
 │ asciiz strings │
 └────────────────────────┘

Linker/Librarian 37

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History

Original Draft 1.0, November 06, 1989

Revision 1.1, January 10, 1990

Revision 1.2, Febuary 26, 1990

Revision 1.3, May 31, 1990

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS/2 Debug Architecture

Author: Mark Lucovsky

Revision 1.1, May 8, 1990
Original Draft February 15, 1990

NT OS/2 Debug Architecture i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview.. 1
1.1 Debug Event Flow .. 1

2. Debug Architecture Partitioning.. 2
2.1 Debug Event Generation... 3

2.1.1 Event Generation Message Formats.. 3
2.1.1.1 Exception... 4
2.1.1.2 CreateThread ... 4
2.1.1.3 CreateProcess .. 5
2.1.1.4 ExitThread... 5
2.1.1.5 ExitProcess .. 5
2.1.1.6 MapSection.. 6
2.1.1.7 UnMapSection... 6

2.2 Event Propagation... 6
2.2.1 Emulation Subsystem APIs for Event Propagation 7

2.2.1.1 DbgSsInitialize .. 7
2.2.1.2 UiLookupRoutine.. 8
2.2.1.3 SubsystemKeyLookupRoutine.. 8
2.2.1.4 KmApiMsgFilter ... 9
2.2.1.5 DbgSsHandleKmApiMsg.. 10

2.2.2 Event Propagation Message Formats .. 10
2.2.2.1 Exception... 11
2.2.2.2 CreateThread ... 11
2.2.2.3 CreateProcess .. 11
2.2.2.4 ExitThread... 11
2.2.2.5 ExitProcess .. 12
2.2.2.6 MapSection.. 12
2.2.2.7 UnMapSection... 12

2.3 Coordinate Debugger and Debuggee .. 12
2.3.1 Dbg Server Data Structures... 12

2.3.1.1 Subsystem Structure .. 12
2.3.1.2 User Interface Structure .. 13
2.3.1.3 Application Process Structure ... 14
2.3.1.4 Application Thread Structure .. 15

2.3.2 Dbg Server Responses to Debug Event Propagation 16
2.3.2.1 Exception... 16
2.3.2.2 CreateThread ... 16
2.3.2.3 CreateProcess .. 17
2.3.2.4 ExitThread... 17
2.3.2.5 ExitProcess .. 18
2.3.2.6 MapSection.. 18
2.3.2.7 UnMapSection... 18

2.4 User Interface Interactions with the Dbg Server... 18
2.4.1 DbgUiConnectToDbg ... 19

NT OS/2 Debug Architecture ii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.4.2 DbgUiWaitStateChange.. 19
2.4.2.1 State Change Record ... 20
2.4.2.1.1 DbgCreateThreadStateChange ... 20
2.4.2.1.2 DbgCreateProcessStateChange .. 21
2.4.2.1.3 DbgExitThreadStateChange... 22
2.4.2.1.4 DbgExitProcessStateChange.. 22
2.4.2.1.5 DbgExceptionStateChange... 22
2.4.2.1.6 DbgBreakpointStateChange ... 22
2.4.2.1.7 DbgSingleStepStateChange ... 22
2.4.2.1.8 DbgMapSectionStateChange ... 23
2.4.2.1.9 DbgUnMapSectionStateChange... 23

2.4.3 DbgUiContinue ... 23
2.4.3.1 DbgExitThreadStateChange.. 24
2.4.3.2 DbgExitProcessStateChange... 24

NT OS/2 Debug Architecture 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview

This specification describes the Debug Architecture found in NT OS/2. The Debug Architecture
consists of the following:

 o Dbgk executive component. This component is responsible for generating debug events and
sending a message through a processes debug port when a debug event for the process occurs.

 o The debugger user interface (DebugUi) is an application that provides the human interface for a
debugger. An instance of DebugUi exists for each application being debugged.

 o Dbg user-mode subsystem (Dbg server). This component acts as a debug event coordinator,
ensuring that debug events occuring in a process are made available to its controlling DebugUi.

 o DbgSs APIs. This set of APIs allows an Emulation Subsystem to participate in the NT OS/2
Debug Architecture. While not required, It is expected that Emulation Subsystems pick up
debug events coming from the Dbgk component, add information to these events, and then
forward the event to the Dbg subsystem.

 o DbgUi APIs. This set of APIs allow a DebugUi to communicate with the Dbg server so that it
may receive notification of outstanding debug events, and respond to received debug events.

1.1 Debug Event Flow

Before going any further, the following example of a debug event illustrates the typical interaction
between the components listed above.

 o The OS/2 subsystem (OS2SS) is controlling an application process. The process was started as
a debugged process through the SbCreateForeignSession API. Upon reciept of the process by
OS2SS, a debug port was assigned to the process using NtSetInformationProcess. OS2SS
owns the processes debug port and receives all messages arriving at this port. The application
process contians a single thread. At some point in the thread's lifetime, a reference to
inaccessible memory is made. This generates an access violation exception triggering a
potential debug event.

 o The exception dispatcher in the NT OS/2 executive calls into the Dbgk component (at its
DbgkForwardException entrypoint) to report the access violation. Dbgk determines whether
or not the process has an associated DebugPort. In this case, the process does have a
DebugPort, so a DBGKM_EXCEPTION message is formatted. All threads (except for the
current thread) in the process are frozen using KeFreezeThread. The current thread sends the
exception message through its DebugPort and awaits a reply.

 o OS2SS receives the exception message. Since the message type stored in the message header is
LPC_DEBUG_EVENT, OS2SS calls DbgSsHandleKmApiMsg passing the address of the
message. Exception messages requires no additional information from the OS2SS, so the

NT OS/2 Debug Architecture 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

message is forwarded to the Dbg server for processing. The message is sent as a datagram so
that OS2SS does not have to burn a thread while waiting for a reply.

 o The Dbg server receives the exception message. Using the Client Id from the the original
exception message, Dbg locates an internal per-thread data structure. The exception message is
captured into this data structure. A state change database entry for the application is recorded.
The DebugUi for the thread is located, and its debug state change semaphore is signaled (this
semaphore is shared between a DebugUi and the Dbg server).

 o At this point in time it is important to note that while three threads have participated so far,
only one thread remains blocked. The blocked thread is the application thread that caused the
access violation. This thread is waiting for a reply to its original exception message.

 o At some point in time, the thread's DebugUi will call the DbgUiWaitStateChange API. This
API waits on the debug state change semaphore. When the semaphore becomes signaled, the
DebugUi formats a DBGUI_WAIT_STATE_CHANGE message and sends the message to the
Dbg server.

 o Upon receipt of the DBGUI_WAIT_STATE_CHANGE message, the Dbg server scans the
state change database for the DebugUi. Finding a state change record, the Dbg server
populates the DBGUI_WAIT_STATE_CHANGE message and replies to the DebugUi.

 o The DebugUi returns from its call to DbgUiWaitStateChange. A state change type of
DbgExceptionStateChange is is returned, along with the Client Id of the thread that originally
caused the access violation. Using this information, the DebugUi can take appropriate action.
This may include reading and writing the threads registers using
NtGetContextThread/NtSetContextThread or reading and writing the processes virtual
memory using NtReadVirtualMemory/NtWriteVirtualMemory.

 o Once the DebugUi is done servicing the access violation, it can continue the thread's execution
by calling DbgUiContinue. This API simply formats a DBGUI_CONTINUE message and
sends it to the Dbg server.

 o Upon receipt of the continue message, the Dbg server locates the target thread, assures that it is
waiting to be continued, and that an appropriate continue status was passed. Dbg server then
sends a continue datagram to the OS2SS. After this is complete, a reply is generated to the
DebugUi which is then free to wait for further debug events.

 o Upon receipt of the continue datagram by DbgSs DLL code runing in the OS2SS, the continue
status is examined and appropriate callouts are made. The DLL code then generates a reply to
the original DBGKM_EXCEPTION message.

 o Upon receipt of this reply, the thread begins executing in the DbgKm component. All of the
threads in its process are unfrozen and the thread returns to the exception dispatcher

NT OS/2 Debug Architecture 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2. Debug Architecture Partitioning

The NT OS/2 Debug Architecture partitions the work involved in debugging into a number of stages.

2.1 Debug Event Generation

Debug event generation is done in the Dbgk component of the NT OS/2 executive. For each debug
event, the following occurs:

 o The process in which the debug event is occuring in is located.

 o If the process has a DebugPort, then all threads in the process are frozen.

 o A DBGKM_APIMSG is formated to indicate the type of debug event. This message is sent
through the processes DebugPort using LpcRequestWaitReplyPort.

 o Upon receipt of the reply, all threads in the process are unfrozen.

Debug events are generated for a number of reasons:

 o Exception. When a thread whose process has a DebugPort encounters an exception, a debug
event is generated.

 o CreateThread. When a thread begins executing in a process being debugged, a debug event is
generated before the thread gets a chance to execute in kernel mode.

 o CreateProcess. When the first thread in a process being debugged begins executing, a debug
event is generated before the thread gets a chance to execute in kernel mode.

 o ExitThread. When a thread exits in a process being debugged, a debug event is generated.
This occurs as soon as the system detects that the thread is exiting and has updated the exit
status for the thread.

 o ExitProcess. When the last thread in a process being debugged exits, a debug event is
generated. This occurs as soon as the the status of the process has been updated. Note that
when the last thread in a process exits, an exit thread debug event is not generated.

 o MapSection. When a process being debugged maps a view of a section backed by an image
file, a debug event is generated.

 o UnMapSection. When a process being debugged un-maps a view of a section backed by an
image file, a debug event is generated.

NT OS/2 Debug Architecture 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.1.1 Event Generation Message Formats

Event generation messages are always sent in the context of the thread reporting the event; therefore,
the client id stored in the message header can be used to determine the thread reporting the event.
Event generation messages consist of the following standard header:

typedef struct _DBGKM_APIMSG {
 PORT_MESSAGE h;
 DBGKM_APINUMBER ApiNumber;
 NTSTATUS ReturnedStatus;
 union u;
} DBGKM_APIMSG, *PDBGKM_APIMSG;

DBGKM_APIMSG Structure:

h ——Supplies the standard LPC port message. The ClientId field of this structure supplies the
client id of the thread reporting the debug event. The message type field (h.u2.s2.Type) is
LPC_DEBUG_EVENT.

ApiNumber ——Supplies the ApiNumber for this message. The ApiNumber is used to indicate the
type of event being generated.

ReturnedStatus ——Returns the continuation status for the debug event.

u ——Supplies the type specific event information.

2.1.1.1 Exception

If the ApiNumber is DbgKmExceptionApi, then u.Exception supplies a DBGKM_EXCEPTION
message. The format of this message follows:

typedef struct _DBGKM_EXCEPTION {
 EXCEPTION_RECORD ExceptionRecord;
 BOOLEAN FirstChance;
} DBGKM_EXCEPTION, *PDBGKM_EXCEPTION;

DBGKM_EXCEPTION Structure:

ExceptionRecord ——Supplies the exception record describing this exception.

FirstChance ——Supplies a variable that if TRUE, indicates that this is the first time this debug
event is being reported for this thread.

NT OS/2 Debug Architecture 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.1.1.2 CreateThread

If the ApiNumber is DbgKmCreateThreadApi, then u.CreateThread supplies a
DBGKM_CREATE_THREAD message. The format of this message follows:

typedef struct _DBGKM_CREATE_THREAD {
 ULONG SubSystemKey;
 PVOID StartAddress;
} DBGKM_CREATE_THREAD, *PDBGKM_CREATE_THREAD;

DBGKM_CREATE_THREAD Structure:

SubSystemKey ——This field is initialized to 0.

StartAddress ——Supplies the initial starting address for the thread. This is really advisory, since
anyone with THREAD_SET_CONTEXT access to the thread may change this and
superseed the value of this field.

2.1.1.3 CreateProcess

If the ApiNumber is DbgKmCreateProcessApi, then u.CreateProcess supplies a
DBGKM_CREATE_PROCESS message. The format of this message follows:

typedef struct _DBGKM_CREATE_PROCESS {
 ULONG SubSystemKey;
 HANDLE Section;
 DBGKM_CREATE_THREAD InitialThread;
} DBGKM_CREATE_PROCESS, *PDBGKM_CREATE_PROCESS;

DBGKM_CREATE_PROCESS Structure:

SubSystemKey ——This field is initialized to 0.

Section ——Supplies a handle to the section object that describes the initial address space of the
process. If this field is NULL, then no handle exists. The handle is valid in the sending
processes handle table.

InitialThread ——Supplies a description of the first thread to execute in the process.

NT OS/2 Debug Architecture 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.1.1.4 ExitThread

If the ApiNumber is DbgKmExitThreadApi, then u.ExitThread supplies a DBGKM_EXIT_THREAD
message. The format of this message follows:

typedef struct _DBGKM_EXIT_THREAD {
 NTSTATUS ExitStatus;
} DBGKM_EXIT_THREAD, *PDBGKM_EXIT_THREAD;

DBGKM_EXIT_THREAD Structure:

ExitStatus ——Supplies the exit status of the exiting thread.

2.1.1.5 ExitProcess

If the ApiNumber is DbgKmExitProcessApi, then u.ExitProcess supplies a
DBGKM_EXIT_PROCESS message. The format of this message follows:

typedef struct _DBGKM_EXIT_PROCESS {
 NTSTATUS ExitStatus;
} DBGKM_EXIT_PROCESS, *PDBGKM_EXIT_PROCESS;

DBGKM_EXIT_PROCESS Structure:

ExitStatus ——Supplies the exit status of the exiting process.

2.1.1.6 MapSection

If the ApiNumber is DbgKmMapSectionApi, then u.MapSection supplies a
DBGKM_MAP_SECTION message. The format of this message follows:

typedef struct _DBGKM_MAP_SECTION {
 HANDLE SectionHandle;
 PVOID BaseAddress;
 ULONG SectionOffset;
 ULONG ViewSize;
} DBGKM_MAP_SECTION, *PDBGKM_MAP_SECTION;

DBGKM_MAP_SECTION Structure:

SectionHandle ——Supplies a handle to the section mapped by the process. The handle is valid in
the context of the sending process.

BaseAddress ——Supplies the base address of where the section is mapped in the processes
address space.

NT OS/2 Debug Architecture 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

SectionOffset ——Supplies the offset in the section where the processes mapped view begins.

ViewSize ——Supplies the size of the mapped view.

2.1.1.7 UnMapSection

If the ApiNumber is DbgKmUnMapSectionApi, then u.UnMapSection supplies a
DBGKM_UNMAP_SECTION message. The format of this message follows:

typedef struct _DBGKM_UNMAP_SECTION {
 PVOID BaseAddress;
} DBGKM_UNMAP_SECTION, *PDBGKM_UNMAP_SECTION;

DBGKM_UNMAP_SECTION Structure:

BaseAddress ——Supplies the base address of where the section being un-mapped is in the
processes address space.

2.2 Event Propagation

Event propagation occurs after a a thread receives a debug event message on a processes DebugPort.
Upon receipt of the message, the thread adds any necessary information, and forwards the message to
the Dbg server.

Event propagation occurs within an Emulation Subsystem. In order to minimize thread blocking in the
subsystems, an asynchronous protocol is used to propagate debug events. The event propagation
protocol occurs as follows:

 o The event is generated. The thread generating the event reports the event using
LpcRequestWaitReplyPort against its processes DebugPort. The thread remains blocked
until a reply is received.

 o The subsystem receives the debug event message. After processing the message, it determines
whether or not to propagate the message to the Dbg server. If it does not propagate the
message, then it must reply to the thread reporting the event.

 o To propagate the message, a copy of the message is made, and is sent as a datagram to the Dbg
server. After receiving the message, and receiving a "continue" from the controlling debugger
user interface, the Dbg server sends a continue datagram back to the subsystem.

 o A dedicated thread in the subsystem receives the continue datagram, locates the associated
saved debug event message, and replies to the thread reporting the event.

NT OS/2 Debug Architecture 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.2.1 Emulation Subsystem APIs for Event Propagation

2.2.1.1 DbgSsInitialize

An Emulation Subsystem initializes itself so that it can participate in the NT OS/2 debug architecture
using the following API:

NTSTATUS
DbgSsInitialize(
 IN HANDLE KmReplyPort,
 IN PDBGSS_UI_LOOKUP UiLookUpRoutine,
 IN PDBGSS_SUBSYSTEMKEY_LOOKUP SubsystemKeyLookupRoutine OPTIONAL,
 IN PDBGSS_DBGKM_APIMSG_FILTER KmApiMsgFilter OPTIONAL
)

Parameters:

KmReplyPort ——Supplies a handle to the port that the subsystem receives DbgKm API messages
on.

UiLookupRoutine ——Supplies the address of a function that will be called upon receipt of a
process creation message. The purpose of this function is to identify the client id of the
debug user interface controlling the process.

SubsystemKeyLookupRoutine ——Supplies the address of a function that will be called upon
receipt of process creation and thread creation messages. The purpose of this function is to
allow a subsystem to correlate a key value with a given process or thread.

KmApiMsgFilter ——Supplies the address of a function that will be called upon receipt of a
DbgKm Api message. This function can take any action. If it returns any value other than
DBG_CONTINUE, DbgSsHandleKmApiMsg will not process the message. This
function is called before any other call outs occur.

Return Value:

SUCCESS() ——Initialization complete.

!SUCCESS() ——Failure occured while connecting to the Dbg server

This function is called by a subsystem to initialize portions of the debug subsystem dll. The main
purpose of this function is to set up callouts that are needed in order to use DbgSsHandleKmApiMsg,
and to connect to the Dbg server.

NT OS/2 Debug Architecture 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.2.1.2 UiLookupRoutine

The UiLookupRoutine is called during the propagation of create process debug events. Its function is
to locate the client id of the debugger user interface that controls the process whose creation is being
reported.

NTSTATUS
(*PDBGSS_UI_LOOKUP)(
 IN PCLIENT_ID AppClientId,
 OUT PCLIENT_ID DebugUiClientId
)

Parameters:

AppClientId ——Supplies the client id of the application thread reporting the create process debug
event.

DebugUiClientId ——Returns the client id of the debugger user interface that controls the
application process.

Return Value:

STATUS_SUCCESS ——The application is being debugged, and the client id of its debugger user
interface has been returned.

!SUCCESS() ——The application is not known as being debugged. The create process debug
event will not be propagated to the debug server. A reply is generated and sent to the thread
reporting the debug event.

2.2.1.3 SubsystemKeyLookupRoutine

The SubsystemKeyLookupRoutine is called during the propagation of create process and create thread
debug events. Its function is to allow a subsystem to associate a key value with the process or thread
whose creation is being reported. Examples of this are OS/2 might want to associate a TID with each
thread, and a PID with each process. The subsystem key value is informational only.

NT OS/2 Debug Architecture 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
(*PDBGSS_SUBSYSTEMKEY_LOOKUP)(
 IN PCLIENT_ID AppClientId,
 OUT PULONG SubsystemKey,
 IN BOOLEAN ProcessKey
)

Parameters:

AppClientId ——Supplies the client id of the application thread reporting the create process or
create thread debug event.

SubsystemKey ——Returns the subsystem key value to associate with the new process or thread.

ProcessKey ——Supplies a flag which if TRUE indicates that a subsystem key for the process is
needed; otherwise, a subsystem key for the thread is needed. Note that during the
propagation of a create process debug event, this function is called twice. It is called once
with ProcessKey set to TRUE, and once with ProcessKey set to FALSE.

Return Value:

STATUS_SUCCESS ——A subsystem key was found and returned.

!SUCCESS() ——A subsystem key was not located. This does not affect the propagation of the
create process or create thread debug events. The SubSystemKey fields in the propagated
messges will remain 0.

2.2.1.4 KmApiMsgFilter

The KmApiMsgFilter routine is called prior to debug event message propagation. The main purpose of
this API is to allow a subsystem an opportunity to monitor debug events and to cancel the propagation
of events.

NTSTATUS
(*PDBGSS_DBGKM_APIMSG_FILTER)(
 IN OUT PDBGKM_APIMSG ApiMsg
)

Parameters:

ApiMsg ——Supplies the DBGKM_APIMSG that is about to be propagated.

NT OS/2 Debug Architecture 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Return Value:

DBG_CONTINUE ——Message propagation will continue. Note that since this callout occurs
before the other callouts, event propagation can still be cancelled (by the UiLookupRoutine).

Others ——The message will not be propagated. No reply is generated for the debug event.

2.2.1.5 DbgSsHandleKmApiMsg

The DbgSsHandleKmApiMsg is called by a subsystem whenever a debug event message arrives.
This is typically done in the subsystem's main API loop whenever a message arrives whose type is
LPC_DEBUG_EVENT.

VOID
DbgSsHandleKmApiMsg(
 IN PDBGKM_APIMSG ApiMsg
)

Parameters:

ApiMsg ——Supplies the debug event message to propagate to the debug server.

A number of callouts are performed prior to propagating the message:

 o For all messages, the KmApiMsgFilter is called (if it was supplied during DbgSsInitialize). If
this returns anything other that DBG_CONTINUE, the message is not propagated by this
function. The caller is responsible for event propagation, and for replying to the thread
reporting the debug event.

 o For create process messages, the UiLookupRoutine is called. If a success code is returned than
message is propagated. Otherwise, a reply is generated to the thread reporting the debug event.

 o For create process and create thread messages, SubsystemKeyLookupRoutine is called. Failure
does not effect propagation. It simply inhibits the update of the messages SubSystemKey field.

NT OS/2 Debug Architecture 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.2.2 Event Propagation Message Formats

Event propagation messages are sent as datagrams to the Dbg server. Event propagation messages
consist of the following standard header:

typedef struct _DBGSS_APIMSG {
 PORT_MESSAGE h;
 DBGKM_APINUMBER ApiNumber;
 NTSTATUS ReturnedStatus;
 CLIENT_ID AppClientId;
 PVOID ContinueKey;
 union u.
} DBGSS_APIMSG, *PDBGSS_APIMSG;

DBGSS_APIMSG Structure:

h ——Supplies the standard LPC port message.

ApiNumber ——Supplies the ApiNumber for this message. The ApiNumber is used to indicate the
type of event being propagated.

ReturnedStatus ——Used to store the continuation status for the event.

AppClientId ——Supplies the client id of the application thread reporting the debug event. This
comes directly from the header of the associated DBGKM_APIMSG.

ContinueKey ——Supplies the continue key, that must be returned from the Dbg server in order to
cause a reply to be generated for the thread that is reporting the debug event.

u ——Supplies the type specific event propagation information.

2.2.2.1 Exception

If the ApiNumber is DbgSsExceptionApi, then u.Exception supplies a DBGKM_EXCEPTION
message. The message contains the same information as it did at the time the event was generated.

2.2.2.2 CreateThread

If the ApiNumber is DbgSsCreateThreadApi, then u.CreateThread supplies a
DBGKM_CREATE_THREAD message. The message contains the same information as it did at the
time the event was generated. If a SubsystemKeyLookupRoutine was called and returned success, then
the SubSystemKey field is modified appropriately.

NT OS/2 Debug Architecture 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.2.2.3 CreateProcess

If the ApiNumber is DbgSsCreateProcessApi, then u.CreateProcess supplies a
DBGSS_CREATE_PROCESS message. The format of this message follows:

typedef struct _DBGSS_CREATE_PROCESS {
 CLIENT_ID DebugUiClientId;
 DBGKM_CREATE_PROCESS NewProcess;
} DBGSS_CREATE_PROCESS, *PDBGSS_CREATE_PROCESS;

DBGSS_CREATE_PROCESS Structure:

DebugUiClientId ——Supplies the client id of the processes debugger user interface.

NewProcess ——Supplies the original contents of the DBGKM_CREATE_PROCESS message at
the time the event was generated. If a SubsystemKeyLookupRoutine was called and
returned success, then the SubSystemKey field is modified appropriately.

2.2.2.4 ExitThread

If the ApiNumber is DbgSsExitThreadApi, then u.ExitThread supplies a DBGKM_EXIT_THREAD
message. The message contains the same information as it did at the time the event was generated.

2.2.2.5 ExitProcess

If the ApiNumber is DbgSsExitProcessApi, then u.ExitProcess supplies a DBGKM_EXIT_PROCESS
message. The message contains the same information as it did at the time the event was generated.

2.2.2.6 MapSection

If the ApiNumber is DbgSsMapSectionApi, then u.MapSection supplies a DBGKM_MAP_SECTION
message. The message contains the same information as it did at the time the event was generated.

2.2.2.7 UnMapSection

If the ApiNumber is DbgSsUnMapSectionApi, then u.UnMapSection supplies a
DBGKM_UNMAP_SECTION message. The message contains the same information as it did at the
time the event was generated.

2.3 Coordinate Debugger and Debuggee

The purpose of the Dbg server is to coordinate debug events occuring in the applications being
debugged (debugee) with the requests for event notification coming from the applications debug user
interface. In order to facilitate this type of coordination, the Dbg server maintains a set of data
structures that bind a debugger with its debuggess, and that bind debuggees with their controlling
subsystem.

NT OS/2 Debug Architecture 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The data structures used to do the bindings are created and modified based on the receipt of propagated
debug event messages, connections to the Dbg server, and the receipt of wait and continue messages
from debuggers.

The following sections describe the data structures maintained by the Dbg server, and the actions that
causes the data structures to be created and modified.

2.3.1 Dbg Server Data Structures

2.3.1.1 Subsystem Structure

A subsystem structure exists for each subsystem connected to the Dbg server. A subsystem connects
to the Dbg server as part of DbgSsInitialize. The connection port used during the connection has a
security descriptor that limits access to only those processes that form part of the NT OS/2 TCB.

typedef struct _DBGP_SUBSYSTEM {
 CLIENT_ID SubsystemClientId;
 HANDLE CommunicationPort;
 HANDLE SubsystemProcessHandle;
} DBGP_SUBSYSTEM, *PDBGP_SUBSYSTEM;

DBGP_SUBSYSTEM Structure:

SubsystemClientId ——Contains the client id of the subsystem thread that initially connects to the
Dbg server.

CommunicationPort ——Contains a handle to the communication port used to send continue
datagrams back to the subsystem.

SubsystemProcessHandle ——Contains a handle to the subsystem process. This handle has
PROCESS_DUP_HANDLE access to the process.

2.3.1.2 User Interface Structure

A user interface structure is maintained for each debugger user interface (DebugUi) connected to the
Dbg server. Debugger user interface's connect to the Dbg server as part of their initialization process.
The connection must be made before the user interface starts any applications that need to be
debugged.

The user interface structure is the key coordination data structure. All of the application processes and
threads controlled by a user interface are linked off of the data structure.

NT OS/2 Debug Architecture 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef struct _DBGP_USER_INTERFACE {
 CLIENT_ID DebugUiClientId;
 HANDLE CommunicationPort;
 HANDLE DebugUiProcess;
 HANDLE StateChangeSemaphore;
 RTL_CRITICAL_SECTION UserInterfaceLock;
 LIST_ENTRY AppProcessListHead;
 LIST_ENTRY HashTableLinks;
} DBGP_USER_INTERFACE, *PDBGP_USER_INTERFACE;

DBGP_USER_INTERFACE Structure:

DebugUiClientId ——Contains the client id of the thread that connects to the Dbg server. During
the processing of a propagated create process debug event, the DebugUiClientId field of a
DBGSS_CREATE_PROCESS structure is matched against this field. Once a match is
found, the process is bound to the user interface.

CommunicationPort ——Contains a handle to the communication port used to reply back to
requests from the user interface.

DebugUiProcess ——Contains a handle to the user interface process. The handle has
PROCESS_DUP_HANDLE access to the process. This handle is used to duplicate object
handles into and out of the user interace.

StateChangeSemaphore ——Contains a handle to a semaphore shared between the Dbg server and
the user interface. The semaphore is signaled each time a propagated debug event is
available to be picked up by the user interface. The user interface waits on this semaphore.
When a wait is satisfied, the user interface can call into the Dbg server to receive
notification of debug events.

UserInterfaceLock ——Contains a critical section lock to gaurd the user interface and associated
structures.

AppProcessListHead ——Contains a list head where processes being debugged by the user
interface are linked.

HashTableLinks ——Contains a set of link words use to quickly locate a user interface by client
id.

2.3.1.3 Application Process Structure

An application process structure is maintained for each process accepted by the Dbg server. For a
process to be accepted, a process creation debug event must propagated to the Dbg server, and the
DebugUiClientId field of the DBGSS_APIMSG must match the client id of a user interface connected
to Dbg. Once this occurs, an application process structure is

NT OS/2 Debug Architecture 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef struct _DBGP_APP_PROCESS {
 LIST_ENTRY AppThreadListHead;
 LIST_ENTRY AppLinks;
 LIST_ENTRY HashTableLinks;
 CLIENT_ID AppClientId;
 PDBGP_USER_INTERFACE UserInterface;
 HANDLE HandleToProcess;
} DBGP_APP_PROCESS, *PDBGP_APP_PROCESS;

DBGP_APP_PROCESS Structure:

AppThreadListHead ——Contains the list head for all application threads that form this process.

AppLinks ——Contains the link words that are used to link the process to its user interface.

HashTableLinks ——Contain a set of link words to quickly locate an application process by its
UniqueProcess portion of its client id.

AppClientId ——Contains the client id of the processes initial thread. Only the UniqueProcess
portion of the client id is used.

UserInterface ——Contains a pointer to the processes user interface.

HandleToProcess ——Contains a handle to the application process. When the application process
structure is initially created, a handle is created in the context of the Dbg server. The
handle has PROCESS_VM_READ and PROCESS_VM_WRITE access. When the user
interface waits for and receives notification of the new process debug event, the handle is
duplicated into the user interface and closed in the Dbg server. This field is then modified
so that the handle value is a handle in the context of the user interface. When the user
interface issues a continue after an exit process debug event, the handle to the process is
closed and is no longer available to the user interface.

2.3.1.4 Application Thread Structure

An application thread structure is maintained for each thread accepted by the Dbg server. For a thread
to be accepted, a thread creation debug event must propagated to the Dbg server, and the process that
the thread is part of must have been previously accepted by Dbg.

NT OS/2 Debug Architecture 17

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef struct _DBGP_APP_THREAD {
 LIST_ENTRY AppLinks;
 LIST_ENTRY HashTableLinks;
 CLIENT_ID AppClientId;
 DBG_STATE CurrentState;
 DBG_STATE ContinueState;
 PDBGP_APP_PROCESS AppProcess;
 PDBGP_USER_INTERFACE UserInterface;
 HANDLE HandleToThread;
 PDBGP_SUBSYSTEM Subsystem;
 DBGSS_APIMSG LastSsApiMsg;
} DBGP_APP_THREAD, *PDBGP_APP_THREAD;

DBGP_APP_THREAD Structure:

AppLinks ——Contains link words that link an application thread to its process.

HashTableLinks ——Contain a set of link words to quickly locate an application thread by its
client id.

AppClientId ——Contains the client id of the thread.

CurrentState ——Contains the Dbg server maintained state for the thread. The thread can be in
three state clasess. If a debug event has been propagated to and has been accepted by the
Dbg server, the state class is "state change available". Once a user interface has received
notification of the state change, the class becomes "continue pending". When a user
interface issues a continue to a thread whose state class is "continue pending", the threads
state class returns to "idle".

ContinueState ——Contains the saved Dbg server state for the thread at the time the thread
transitions from "state change available" to "continue pending".

AppProcess ——Contains a pointer to the threads process.

UserInterface ——Contains a pointer to the threads user interface.

HandleToThread ——Contains a handle to the application thread. When the application thread
structure is initially created, a handle is created in the context of the Dbg server. The
handle has THREAD_GET_CONTEXT and THREAD_SET_CONTEXT access. When
the user interface waits for and receives notification of the new thread debug event, the
handle is duplicated into the user interface and closed in the Dbg server. This field is then
modified so that the handle value is a handle in the context of the user interface. When the
user interface issues a continue after an exit thread debug event, or after an exit process
debug event, the handle to the thread is closed and is no longer available to the user
interface.

NT OS/2 Debug Architecture 18

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Subsystem ——Contains a pointer to the thread's subsystem. This is used to locate the subsystem
to send a continue datagram to when the thread's user interface issues a continue.

LastSsApiMsg ——This field contains the last DBGSS_APIMSG for the thread. This message is
valid while a thread is in the "state change available" state class. Portions of this message
are made available to the user interface when it receives notification of the occurance of a
debug event.

2.3.2 Dbg Server Responses to Debug Event Propagation

The Dbg server responds to propagated debug events by creating or modifying its user interface,
application process, or application thread data structures.

Debug events are are propagated to the Dbg server by a subsystem that is connected to Dbg and is
identified by its subsystem structure. Upon receipt of a propagated debug event message, Dbg
determines whether or not to accept the message. If the message is accepted, then the message is
captured into the appropriate application thread structure, the thread's state is changed to the "state
change available" class, and the appropriate user interface's StateChangeSemaphore is signaled.

The following sections describe the actions taken by the Dbg server upon receipt of a propagated
debug event message:

2.3.2.1 Exception

The application thread structure for the specified thread is located. If the thread can not be found, or if
the thread is not known to the Dbg server, or if the thread is not "idle", the message is not accepted and
an appropriate continue datagram is sent to the appropriate subsystem; otherwise, the exception
message is accepted and the following occurs:

 o The CurrentState and ContinueState fields of thread are modified to either
DbgBreakpointStateChange, DbgSingleStepStateChange, or DbgExceptionState change
base on the ExceptionCode field of the ExceptionRecord.

2.3.2.2 CreateThread

The application process structure that the thread is part of is located. If the process can not be found ,
the message is not accepted and an appropriate continue datagram is sent to the appropriate subsystem;
otherwise, the create thread message is accepted and the following occurs:

 o An application thread structure for the thread is allocated.

 o The CurrentState and ContinueState fields are initialized to DbgCreateThreadStateChange.

 o The AppProcess field is set to point to the thread's process, the UserInterface field is initialized
to point to the thread's user interface, the AppClientId field is initialized, and the thread is
linked to its process.

NT OS/2 Debug Architecture 19

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o A handle to the thread is created in the context of the Dbg server. If this operation succeeds,
then the HandleToThread field is initialized to the value of the handle; otherwise, it is
initialized to NULL.

2.3.2.3 CreateProcess

The user interface whose client id is specified in the message is located. If the user interface can not be
located (the user interface has not connected to Dbg), the message is not accepted and an appropriate
continue datagram is sent to the appropriate subsystem; otherwise, the create process message is
accepted and the following occurs:

 o An application process structure for the process is allocated.

 o The UserInterface field is initialized to point to the process' user interface, the
AppClientId.UniqueProcess field is initialized.

 o The process is linked to its user interface.

 o A handle to the process is created in the context of the Dbg server. If this operation succeeds,
then the HandleToProcess field is initialized to the value of the handle; otherwise, it is
initialized to NULL.

 o An application thread structure for the thread described in the create process message is
allocated.

 o The CurrentState and ContinueState fields are initialized to DbgCreateProcessStateChange.

 o The AppProcess field is set to point to the thread's process, the UserInterface field is initialized
to point to the thread's user interface, the AppClientId field is initialized, and the thread is
linked to its process.

 o A handle to the thread is created in the context of the Dbg server. If this operation succeeds,
then the HandleToThread field is initialized to the value of the handle; otherwise, it is
initialized to NULL.

2.3.2.4 ExitThread

The application thread structure for the specified thread is located. If the thread can not be found, or if
the thread is not known to the Dbg server, or if the thread is not "idle", the message is not accepted and
an appropriate continue datagram is sent to the appropriate subsystem; otherwise, the exit thread
message is accepted and the following occurs:

 o The CurrentState and ContinueState fields of thread are set to DbgExitThreadStateChange.

NT OS/2 Debug Architecture 20

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.3.2.5 ExitProcess

The application thread structure for the specified thread is located. If the thread can not be found, or if
the thread is not known to the Dbg server, or if the thread is not "idle", the message is not accepted and
an appropriate continue datagram is sent to the appropriate subsystem; otherwise, the exit process
message is accepted and the following occurs:

 o The CurrentState and ContinueState fields of thread are set to DbgExitProcessStateChange.

2.3.2.6 MapSection

The application thread structure for the specified thread is located. If the thread can not be found, or if
the thread is not known to the Dbg server, or if the thread is not "idle", the message is not accepted and
an appropriate continue datagram is sent to the appropriate subsystem; otherwise, the map section
message is accepted and the following occurs:

 o The CurrentState and ContinueState fields of thread are set to DbgMapSectionStateChange.

2.3.2.7 UnMapSection

The application thread structure for the specified thread is located. If the thread can not be found, or if
the thread is not known to the Dbg server, or if the thread is not "idle", the message is not accepted and
an appropriate continue datagram is sent to the appropriate subsystem; otherwise, the un-map section
message is accepted and the following occurs:

 o The CurrentState and ContinueState fields of thread are set to
DbgUnMapSectionStateChange.

2.4 User Interface Interactions with the Dbg Server

A debug user interface has three main interactions with the Dbg server.

 o Connecting to the Dbg server

 o Waiting for debug event state changes to occur

 o Continuing an application thread

NT OS/2 Debug Architecture 21

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.4.1 DbgUiConnectToDbg

A user interface can connect to the Dbg server using DbgUiConnectToDbg.

NTSTATUS
DbgUiConnectToDbg(VOID)

Return Value:

SUCCESS() ——A connection between the user interface and the Dbg server has been made. The
DbgUi dll has been initialized.

!SUCCESS() ——The connection to Dbg did not occur. The user interface can not use services
provided by the Dbg server.

This routine makes a connection between the calling user interface and the Dbg server. If the routine
is successful, a communications port is created to link the user interface with the Dbg server. A user
interface data structure is created and initialized in the Dbg server. A shared state change semaphore is
created between the Dbg server and the user interface. The Dbg server is granted
SEMAPHORE_ALL_ACCESS to the semaphore. This allows it to signal the semaphore at the
appropriate times. A handle to the semaphore is duplicated to the user interface. The handle is granted
SYNCHRONIZE access to the semaphore. This allows the user interface an opportunity to wait on the
semaphore. The semaphore becomes signaled when a propagated debug event is available which
transitions one of the user interface's threads into the "state change available" state.

2.4.2 DbgUiWaitStateChange

A user interface can wait for a state change to occur in one of its threads using
DbgUiWaitStateChange.

NTSTATUS
DbgUiWaitStateChange(
 OUT PDBGUI_WAIT_STATE_CHANGE StateChange
)

Parameters:

StateChange ——Supplies the address of state change record that will contain the state change
information.

Return Value:

STATUS_USER_APC ——A user mode APC occured which caused this call to abort without
retreiving state change information.

NT OS/2 Debug Architecture 22

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

STATUS_ALERTED ——The thread was alerted while waiting for a state change to occur. No
state change information was retreived.

DBG_NO_STATE_CHANGE ——The state change semaphore was signaled, but the Dbg server
has no state change information to return. This error can only happen if a user interface bypasses
the DbgUi APIs and attempts to communicate directly with the Dbg server.

DBG_UNABLE_TO_PROVIDE_HANDLE ——A state change occurred that required a handle to
be duplicated into the user interface. For some reason, a handle could not be provided. All other
portions of the state change reporting were successful.

STATUS_SUCCESS ——A state change occured. Valid state change information was returned.

OTHERS ——Refer to object management error codes.

This function causes the calling user interface to wait for a state change to occur in one of it's
application threads. The wait is ALERTABLE. A state change occurs when an application thread
changes its state to the "state change available" class. If a user interface makes a successful call to this
function while one of its threads is in the "state change available" class, then the threads state is set to
"continue pending", and a state change record is formatted and returned to the caller. Once a state
change has been reported for a thread, its user interface is responsible for continuing the thread at the
appropriate time.

2.4.2.1 State Change Record

A state change record has the following format:

typedef struct _DBGUI_WAIT_STATE_CHANGE {
 DBG_STATE NewState;
 CLIENT_ID AppClientId;
 union StateInfo;
} DBGUI_WAIT_STATE_CHANGE, *PDBGUI_WAIT_STATE_CHANGE;

DBGUI_WAIT_STATE_CHANGE Structure:

NewState ——Supplies the new state of the thread reporting the state change.

AppClientId ——Supplies the client id of the thread reporting the state change.

StateInfo ——Supplies the per-state change type description that describes the state change.

2.4.2.1.1 DbgCreateThreadStateChange

The state change of DbgCreateThreadStateChange is reported whenever a state change is reported
due to the propagation of a create thread debug event. The major side effect of this state change is that
the user interface is given a handle to the thread reporting the state change. The handle is granted

NT OS/2 Debug Architecture 23

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

THREAD_GET_CONTEXT and THREAD_SET_CONTEXT access to the thread. This allows the
user interface to use NtReadContextThread and NtWriteContextThread to read and write the thread's
registers.

StateInfo for this type of state change is as follows:

typedef struct _DBGUI_CREATE_THREAD {
 HANDLE HandleToThread;
 DBGKM_CREATE_THREAD NewThread;
} DBGUI_CREATE_THREAD, *PDBGUI_CREATE_THREAD;

DBGUI_CREATE_THREAD Structure:

HandleToThread ——Supplies a handle to the thread identified by this state change. A value of
NULL indicates that the handle is not valid and that an informational status code of
DBG_UNABLE_TO_PROVIDE_HANDLE was returned.

NewThread ——Supplies the description of the new thread as formatted by the subsystem during
debug event propagation.

2.4.2.1.2 DbgCreateProcessStateChange

The state change of DbgCreateProcessStateChange is reported whenever a state change is reported
due to the propagation of a create process debug event. The major side effects of this state change are:

 o The user interface is given a handle to the process of the thread reporting the state change. The
handle is granted PROCESS_VM_READ and PROCESS_VM_WRITE access to the process.
This allows the user interface to use NtReadVirtualMemory and NtWriteVirtualMemory to
read and write the processes virtual memory.

 o The user interface is given a handle to the section that forms the initial address space for the
process reporting the state change. The handle is granted SECTION_ALL_ACCESS access to
the section. This allows the user interface to map a view of the section to locate the symbol
table and other section information.

 o The user interface is given a handle to the thread reporting the state change. The handle is
granted THREAD_GET_CONTEXT and THREAD_SET_CONTEXT access to the thread.
This allows the user interface to use NtReadContextThread and NtWriteContextThread to read
and write the thread's registers.

NT OS/2 Debug Architecture 24

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef struct _DBGUI_CREATE_PROCESS {
 HANDLE HandleToProcess;
 HANDLE HandleToThread;
 DBGKM_CREATE_PROCESS NewProcess;
} DBGUI_CREATE_PROCESS, *PDBGUI_CREATE_PROCESS;

DBGUI_CREATE_PROCESS Structure:

HandleToProcess ——Supplies a handle to the process identified by this state change. A value of
NULL indicates that the handle is not valid and that an informational status code of
DBG_UNABLE_TO_PROVIDE_HANDLE was returned.

HandleToThread ——Supplies a handle to the thread identified by this state change. A value of
NULL indicates that the handle is not valid and that an informational status code of
DBG_UNABLE_TO_PROVIDE_HANDLE was returned.

NewProcess ——Supplies the description of the new process as formatted by the subsystem during
debug event propagation. The Section field of this structure is modified to contain a
handle that is valid in the user interfaces context. A value of NULL indicates that the
handle is not valid and that an informational status code of
DBG_UNABLE_TO_PROVIDE_HANDLE was returned.

2.4.2.1.3 DbgExitThreadStateChange

The state change of DbgExitThreadStateChange is reported whenever a state change is reported due
to the propagation of an exit thread debug event. There are no side effects of this state change.

StateInfo for this type of state change is the same as that originally formatted by Dbgk during debug
event generation.

2.4.2.1.4 DbgExitProcessStateChange

The state change of DbgExitProcessStateChange is reported whenever a state change is reported due
to the propagation of an exit process debug event. There are no side effects of this state change.

StateInfo for this type of state change is the same as that originally formatted by Dbgk during debug
event generation.

2.4.2.1.5 DbgExceptionStateChange

The state change of DbgExceptionStateChange is reported whenever a state change is reported due to
the propagation of an exception debug event where the exception code is anything other than
STATUS_BREAKPOINT or STATUS_SINGLE_STEP. There are no side effects of this state change.

StateInfo for this type of state change is the same as that originally formatted by Dbgk during debug
event generation.

NT OS/2 Debug Architecture 25

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.4.2.1.6 DbgBreakpointStateChange

The state change of DbgBreakpointStateChange is reported whenever a state change is reported due
to the propagation of an exception debug event where the exception code is STATUS_BREAKPOINT
. There are no side effects of this state change.

StateInfo for this type of state change is the same as that originally formatted by Dbgk during debug
event generation.

2.4.2.1.7 DbgSingleStepStateChange

The state change of DbgSingleStepStateChange is reported whenever a state change is reported due
to the propagation of an exception debug event where the exception code is STATUS_SINGLE_STEP
. There are no side effects of this state change.

StateInfo for this type of state change is as that same as that originally formatted by Dbgk during debug
event generation.

2.4.2.1.8 DbgMapSectionStateChange

The state change of DbgMapSectionStateChange is reported whenever a state change is reported due
to the propagation of a map section debug event. The major side effects of this state change are:

 o The user interface is given a handle to the section being mapped by reporting the state change.
The handle is granted SECTION_ALL_ACCESS access to the section. This allows the user
interface to map a view of the section to locate the symbol table and other section information.

2.4.2.1.9 DbgUnMapSectionStateChange

The state change of DbgUnMapSectionStateChange is reported whenever a state change is reported
due to the propagation of an un-map section debug event. There are no side effects of this state
change.

StateInfo for this type of state change is the same as that originally formatted by Dbgk during debug
event generation.

NT OS/2 Debug Architecture 26

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.4.3 DbgUiContinue

A user interface can continue a thread that previously reported a state change using DbgUiContinue.

NTSTATUS
DbgUiContinue(
 IN PCLIENT_ID AppClientId,
 IN NTSTATUS ContinueStatus
)

Parameters:

AppClientId ——Supplies the address of the ClientId of the application thread being continued.
This must be an application thread that previously notified the caller through
DbgUiWaitStateChange but has not yet been continued.

ContinueStatus ——Supplies the continuation status to the thread being continued. Valid values
for this are DBG_EXCEPTION_HANDLED, DBG_EXCEPTION_NOT_HANDLED,
DBG_TERMINATE_THREAD, DBG_TERMINATE_PROCESS, or DBG_CONTINUE.

Return Value:

STATUS_SUCCESS ——Successful call to DbgUiContinue

STATUS_INVALID_CID ——An invalid ClientId was specified for the AppClientId, or the
specified Application was not waiting for a continue.

STATUS_INVALID_PARAMETER ——An invalid continue status was specified.

Continuing an application thread has a number of side effects. In some cases data structures inside of
the Dbg server are modified or event deallocated. This is all dependent upon the ContinueState of the
thread being continued. A number of standard actions occur during a continue regardless of the
thread's ContinueState:

 o A check is made to ensure that the ContinueStatus is valid, that the thread is known to Dbg, and
that the thread is in the "continue pending" state.

 o Perform and ContinueState dependent side effects.

 o Format a continue datagram and send it to the thread's subsystem. This is then picked up by the
subsystem which uses the continue key to reply to the original DBGKM_APIMSG which
generated the debug event. Once the reply is received the thread which genrated the original
debug even can continue execution.

NT OS/2 Debug Architecture 27

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The following sections describe the ContinueState dependent side effects of
DbgExitThreadStateChange and DbgExitProcessStateChange state changes. No other state change
types have side effects.

2.4.3.1 DbgExitThreadStateChange

Continuing a thread whose continue state is DbgExitThreadStateChange, causes the Dbg server to
deallocate its application thread structure. If a handle to the thread was successfully duplicated into the
user interface, the handle is closed. Once a user interface continues a thread in this state, it can no
longer read and write the thread's registers.

2.4.3.2 DbgExitProcessStateChange

Continuing a thread whose continue state is DbgExitProcessStateChange, causes the Dbg server to
deallocate its application process structure. If a handle to the process was successfully duplicated into
the user interface, the handle is closed. Since this also implies that an application thread has exited, the
thread's application thread structure is deallocated. If a handle to the thread was successfully
duplicated into the user interface, the handle is closed.

Once a user interface continues a thread in this state, it can no longer read and write the thread's
registers, or read and write the processes virtual memory.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT Driver Model Specification

Author: Darryl E. Havens

Revision 1.2, July 20, 1990

Windows NT Driver Model Specification i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction.. 1

2. Overview... 1

3. Driver Model Description .. 5
3.1. Time-Out Handling .. 9
3.2. Power Recovery .. 10
3.3. Canceling I/O .. 12
3.4. Driver Layering .. 12

4. File System Description .. 14
4.1. IFS Design ... 16
4.2. Mapped File I/O... 17
4.3. File Caching... 18
4.4. Splitting Transfers.. 18

4.4.1. FSP Model ... 18
4.4.2. FSD Parallel Model .. 20
4.4.3. FSD Serial Model... 20

4.5. Mounting and Volume Verification ... 20

5. Network Service Description.. 22

6. I/O Completion... 22

7. Error Logging and Handling .. 24
7.1. Error Logging Facility ... 24
7.2. Error Ports ... 25

8. Terminal I/O Considerations... 26
8.1. Unsolicited Input ... 26
8.2. Subsystem Input.. 26

9. I/O Data Structures and Objects .. 27
9.1. I/O Request Packet Description.. 27
9.2. Volume Parameter Block ... 28
9.3. File Object.. 28
9.4. Driver Object.. 29
9.5. Device Object ... 29
9.6. Controller Object.. 30
9.7. Adapter Object ... 30

10. I/O System APIs ... 30
10.1. IoAbortInvalidRequest .. 32
10.2. IoAllocateAdapterChannel .. 32

Windows NT Driver Model Specification ii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10.3. IoAllocateController.. 34
10.4. IoAllocateErrorLogEntry ... 35
10.5. IoAllocateIrp... 35
10.6. IoAllocateMdl ... 36
10.7. IoAsynchronousPageWrite .. 37
10.8. IoAttachDeviceByName... 38
10.9. IoBuildAsynchronousFsdRequest ... 38
10.10. IoBuildFspRequest ... 39
10.11. IoBuildPartialMdl ... 40
10.12. IoBuildSynchronousFsdRequest ... 41
10.13. IoCallDriver.. 42
10.14. IoCancelThreadIo ... 43
10.15. IoCheckDesiredAccess.. 43
10.16. IoCheckFunctionAccess.. 44
10.17. IoCheckShareAccess .. 45
10.18. IoCompleteRequest... 46
10.19. IoCreateController .. 46
10.20. IoCreateDevice ... 46
10.21. IoCreateFile.. 47
10.22. IoCreateStreamFile... 49
10.23. IoDeallocateAdapterChannel... 50
10.24. IoDeallocateController .. 50
10.25. IoDeallocateIrp ... 50
10.26. IoDeleteController .. 51
10.27. IoDeallocateMdl.. 51
10.28. IoDeleteDevice.. 52
10.29. IoDeregisterFileSystem ... 52
10.30. IoDetachDevice .. 52
10.31. IoFlushAdapterBuffers ... 53
10.32. IoGetAttachedDevice .. 53
10.33. IoGetCurrentIrpStackLocation.. 54
10.34. IoGetNextIrpStackLocation ... 54
10.35. IoGetRelatedDeviceObject... 55
10.36. IoGetRequestorProcess ... 55
10.37. IoInitializeDpcRequest .. 55
10.38. IoInitializeTimer ... 56
10.39. IoIsOperationSynchronous ... 57
10.40. IoMakeAssociatedIrp .. 57
10.41. IoMapTransfer.. 58
10.42. IoPageRead... 59
10.43. IoQueryInformation .. 60
10.44. IoRegisterFileSystem .. 60
10.45. IoRemoveShareAccess .. 61

Windows NT Driver Model Specification iii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10.46. IoRequestDpc... 61
10.47. IoSendMessage... 62
10.48. IoSetCompletionRoutine ... 62
10.49. IoSetShareAccess ... 64
10.50. IoStartNextPacket... 64
10.51. IoStartPacket ... 65
10.52. IoStartTimer... 66
10.53. IoStopTimer ... 66
10.54. IoSynchronousPageWrite.. 66
10.55. IoUpdateShareAccess ... 67
10.56. IoWriteErrorLogEntry ... 68

11. I/O System Folklore.. 68
11.1. Rules for Completing an I/O Request 68
11.2. Accessing Another Driver ... 70
11.3. Generating Packets .. 70
11.4. Direct vs. Buffered vs. Neither I/O.. 71
11.5. Building Virtually Discontiguous Buffers.............................. 74
11.6. I/O Services Synchronization ... 74

12. Revision History.. 76

Windows NT Driver Model Specification 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

The Windows NT I/O system provides system programmers the features necessary
to write their own device drivers for those devices that Windows NT does not
support as part of its regular SDK. The driver interface is designed to allow these
programmers to write all device drivers in a high-level language. Windows NT
provides all of the necessary include files to write these drivers in C.

This specification describes the basic flow of control of an I/O request from the
requestor's call, through the I/O system, through the device driver, and back
through the I/O system to the requestor. It does not attempt to exhaustively
enumerate all of the error conditions nor does it attempt to specify how every type of
device is to be dealt with in this design.

This specification also describes the basic driver model, how file systems and
network systems fit into that model, and then describes the data structures and I/O
APIs used to support the model.

For background information about the I/O system API used by code external to the
I/O system, please see the Windows NT I/O System Specification.

2. Overview

This section presents an overview of the sequence of operations that take place
when an I/O operation is requested.

When a user invokes the NtCreateFile or the NtOpenFile service, the system
attempts to translate the name of the supplied file specification that is to be
accessed. If the name successfully translates to a device object, then the system
passes the remainder of the file specification, if any, to the parse routine for the
object.

All I/O services begin by performing the following operations, except as noted.
Arguments and addresses are captured as appropriate.

o - The caller's arguments are probed for read access by the previous mode.

o - The file handle is translated, referenced, and checked for validity. If the
handle is valid, then it is set to the Not-Signaled state. This obviously does not
occur on an open or a create operation.

o - The event object handle, if specified, is translated, referenced, and set to
the Not-Signaled state, if valid.

Windows NT Driver Model Specification 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o - The caller's I/O status block is alignment checked and probed for write
access by the previous mode.

o - The caller's buffers, if any, are probed for the appropriate access by the
previous mode. This only occurs at this point if it is known that the I/O being
performed is buffered I/O1.

o - On an open or create call, the file name is parsed to determine the device
for which the operation is destined.

o - All other parameters specific to device-independent services are checked
for accessibility and validity.

Once the above checks have been made and it is determined that the caller's device-
independent parameters are valid, an I/O Request Packet (IRP) is allocated and the
parameters are marshalled into it. Some parameters, such as the length of a buffer,
are simply copied. Others, such as the handle for an event, are put into the IRP as
pointers to objects rather than as handles to them. Also at this point, any user
buffers that need to be locked into memory are probed and locked. This causes a
Memory Descriptor List (MDL) to be built that describes the pages that are locked.
The address of the MDL is also stored in the IRP.

The IRP is then handed to the driver's entry point according to the major function
code of the request. This routine is given a pointer to one of its device objects (the
one that the request is for) and a pointer to the IRP. It is the driver's responsibility
to validate the remainder of the parameters and then, if valid, to start the I/O
operation. Drivers can use the I/O system routine, IoStartPacket, to pass the
packet to the start I/O routine. This function gives the IRP directly to the driver's
start I/O routine if the device is not busy and sets the driver's busy flag. If the
device is already busy, then it simply queues the packet to the driver's request
queue. All synchronization of the queue is handled in this routine via the use of a
device queue, a kernel-provided object designed just for this purpose.

Regardless of whether the I/O actually gets started, the packet simply gets queued
for later processing, or an error of some kind occurred, the driver's major function
routine returns to the I/O system indicating whether or not everything up to this
point has been successful. The I/O system then returns to complete the original
user call. If the operation was successfully started or queued, then it is up to the

1 Buffered I/O refers to I/O being performed to an intermediary buffer. Direct I/O
refers to I/O being performed directly on the original buffer.

Windows NT Driver Model Specification 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

caller to synchronize itself with the completion of the I/O operation, unless one of
the synchronous options has been specified.

If an error does occur and the I/O operation was neither started nor queued for
later processing by the driver, then the operation is considered to be in error and
will never be "completed". That is, an error status code is returned to the caller
indicating that the operation failed. The file object will not be set to the Signaled
state, nor will the event, if one was specified. The APC routine is not executed and
the state of the I/O status block is undefined.

The start I/O routine must synchronize access to the device so that the Interrupt
Service Routine (ISR) cannot access the device at the same time as the start I/O
routine. Three items of interest must be considered. The start I/O routine must
synchronize with the following:

o - Interrupts occurring on the current processor

o - The same start I/O routine executing on another processor

o - Access to the device with power failures

These synchronization issues will be discussed in detail later. Note that this type of
synchronization is particularly interesting when dealing with controllers that service
multiple devices. It is possible to write a device driver that depends on the state of a
busy flag to synchronize access to the device, provided that no unsolicited input
interrupt can be taken from the device. That is, for devices of this type, the start
I/O routine will never be invoked when an interrupt can occur because the busy
flag would already be set. Of course, synchronization with powerfail interrupts
must still be dealt with by the driver.

Once the I/O operation completes on the device, the device requests an interrupt.
The interrupt will be taken when the processor's Interrupt Request Level (IRQL) is at
a lower level than that of the requesting interrupt. The interrupt dispatcher then
uses the interrupt object, created when the driver was initialized, to invoke the device
driver's ISR. The ISR is executed at the same priority level that the device
interrupted. This means that no other devices at the same interrupt request level
can be serviced until the current interrupt servicing has been completed.

Device drivers are written to perform as little work as possible in their interrupt
service routines. Notice also that access to the device needs to be synchronized with
the remainder of the driver. Because Windows NT supports multiprocessor
systems, other parts of the device driver could be accessing the device or some
common data base from another processor. (They could not be doing so on the
current processor because part of synchronizing with the ISR is raising the current

Windows NT Driver Model Specification 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

IRQL to the level that the device interrupts, and this blocks the device from
interrupting on the current processor.) A per-device spin lock is used to perform
this synchronization among the processors. The steps a device driver takes in order
to synchronize with the interrupt service routine are as follows:

1. Save the current IRQL.

2. Raise the IRQL to the device interrupt priority level.

3. Obtain the spin lock for the device.

4. Raise IRQL to block powerfail interrupts and check for power failure. If a
failure has occurred, do not perform the next step.

5. Manipulate device registers.

6. Release spin lock.

7. Lower IRQL back to saved IRQL.

Notice that many drivers will simply raise the IRQL to block power failure interrupts
during step 2, hence saving extra time by not setting the IRQL twice. The main
reason that drivers might wish to use the above steps as written is that they might
want to do more than simply manipulate device registers at raised IRQL. It is much
better to do the work between steps 3 and 4 at device IRQL than it is at powerfail
IRQL.

Programmers developing device drivers for Windows NT need not concern
themselves with the particulars of how to synchronize access between the ISR and
other parts of the device driver. The kernel provides a synchronization mechanism
explicitly designed to aid in writing device drivers. When the device driver is being
initialized, it creates an entity called an interrupt object. An interrupt object allows
the device driver to describe to the system what IRQL its ISR should be associated
with. This object can then be used in calls to another kernel-provided routine,
KeSynchronizeExecution. This routine provides the above access
synchronization, except for synchronization with power recovery interrupts.

Power recovery is handled through the use of two other kernel-provided objects, the
power status object and the power notify object. The former object provides drivers
with the ability to specify a Boolean variable that should be set in the event that the
power has failed and then come back on with the contents of dynamic memory
preserved. This allows drivers to provide the synchronization in step 4 above. The
latter object provides drivers with the ability to register a routine that should be

Windows NT Driver Model Specification 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

invoked should a power recovery occur. This gives the driver a chance to reinitialize
its device, handle any problems that may have occurred if an operation was
currently in progress, perform cleanup operations, etc.

Once the driver ISR has completed its interrupt service processing, most of the time
it will need to do more work at a lower priority level, such as start another I/O
operation or "complete" the current operation. This can be done by requesting the
execution of a Deferred Procedure Call (DPC). The DPC queue, a kernel-provided
mechanism, allows the device driver to request the execution of a routine at a later
time at a lower IRQL. The I/O system provides a set of routines that allow the
device driver to use this mechanism. The following steps provide this functionality to
the driver:

o - The device driver, in its initialization routine, initializes the DPC in its
device object to specify the address of the routine that is to be executed when
the DPC is requested. This is done through the use of the
IoInitializeDpcRequest routine.

o - When the interrupt service routine wishes to request that a DPC routine be
executed later, it invokes the IoRequestDpc routine. This routine uses the
kernel-provided routine to insert the DPC into the system's DPC queue.

o - The DPC routine is executed after other higher level interrupts have been
dismissed and the DPC queue is being processed. This may happen on any
processor, including a different processor than the one on which the original
interrupt occurred.

When the DPC queue interrupt occurs, at DISPATCH_LEVEL, the system-provided
ISR examines the DPC queue to determine if there is any work to be performed. If
so, then it removes a DPC entry from the queue and processes it. Processing
consists of invoking the specified routine with a pointer to the DPC entry itself as
well as the parameters specified in the call to IoRequestDpc.

It is at DISPATCH_LEVEL IRQL that the driver performs the majority of its work. It
is here that the driver determines whether any errors have occurred, performs its
error logging if needed, cleans up its context for the operation and determines
whether there are more operations to do and starts them. All work that does not
absolutely have to be performed in the ISR at device IRQL is done in this DPC
routine.

The system provides a routine, IoStartNextPacket, that removes the next packet
from the front of the device queue and returns a pointer to it to the caller, making
the next IRP in the queue the "current" packet. If the device queue was empty, then

Windows NT Driver Model Specification 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

the function returns a null pointer. This function assumes that the device busy flag
is already set and will actually bugcheck the system if it is not set. If there was no
other packet in the queue, then the busy flag is cleared.

Once the driver has completed its own processing, it then invokes the system
routine, IoCompleteRequest, to complete the I/O operation. I/O completion, in
general, consists of the following operations:

o - Unlock any buffers that were locked down for DMA I/O.

o - Copy any buffered data from system buffers into the user's buffer.

o - Copy the status and state information from the IRP into the user's I/O
status block.

o - If an event was specified, set it to the Signaled state and dereference it.

o - If no event was specified, set the file object to the Signaled state.

o - Dereference the file object.

o - If an APC was requested, queue it to the target process.

Copying the data and the I/O status block information must be performed in the
context of the user's process so that its address space is accessible. Of course,
signaling the event cannot occur until these two operations have completed since
doing so causes a race condition.

The most important operation to complete as soon as possible is to unlock any
buffers that have been locked into memory. Therefore, the first operation that the
completion routine performs is to unlock the caller's buffers. This is done by
invoking a memory management routine that unlocks the pages.

Once any buffers that need to be unlocked have been unlocked the completion
routine queues a special kernel mode APC to the target process. When this APC
executes, it finishes the tasks to be performed. It copies any buffered data that
must be copied and copies the I/O status information into the requestor's I/O
status block. It also sets either the file object or the event to the Signaled state and
dereferences them, and queues the caller's APC, if one was specified. If the caller did
not specify an APC then the I/O request packet is deallocated.

Windows NT Driver Model Specification 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3. Driver Model Description

Device drivers in Windows NT are loaded either at system initialization or
dynamically using a special device driver loader program. This loader is executed
from a directory that can be protected from non-privileged but malicious users who
might try to load bogus code into the privileged part of the system, thereby
compromising the system. The device driver image files themselves are also loaded,
by default, from a protected directory on the boot device so that non-privileged users
cannot overwrite them.

The image file format for a device driver is no different than other normal programs
in the system. It is an executable program with a transfer address.

The components of a driver that the system is most interested in are as follows:

o - The initialization routine. This routine is invoked once when the driver is
loaded. It is responsible for any initialization that the driver must perform
including its own data, the device, the controller, etc.

This routine creates the objects (see the discussion below) that the driver
needs in order to be used by other drivers in the system, by user application
programs, etc.

This routine is specified as the transfer address of the device driver.

This routine is also responsible for filling in the addresses of the other
routines in the driver object. This allows the I/O system to locate the various
entry points for the driver.

o - The major function routines. These routines specify the entry points in the
driver for each of the major function codes that can be specified in an I/O
request packet. They are invoked when the driver is called with an IRP. It is
their responsibility to perform any parameter checking, etc. If the state of the
packet is acceptable, then the routine starts the I/O operation.

o - The start I/O routine. This routine is invoked to actually start the I/O
operation on a device. It is invoked either because the device is not busy and
a request is ready to be performed, or because the current request is finished
and now the next request can be started. Its responsibility is to actually start
the request on the device.

o - The unload routine. This routine is responsible for cleaning up any data
structures that the driver has, deallocating any pool, and closing any objects

Windows NT Driver Model Specification 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

that it has opened. The system then frees the driver's code and data space,
and marks it as gone from the system.

o - The cancel routines. These routines are invoked when a packet is to be
canceled, and the packet is in such a state that simply setting its cancel flag
will not cause the packet to be examined by the device driver. There is a
cancel entry point that cooresponds to each state that a packet can be in.
When a packet is marked for cancellation, the appropriate cancel routine is
invoked to cancel the request.

As can be seen from this initial overview, device drivers do not really have a full
context in the sense that a thread has a context. That is, they do not have their
own address space or set of registers. A driver's context is the objects that it owns
and the IRPs that it has access to via its device queue.

Device drivers execute in one of four different contexts depending on what part of
the driver is executing and why. These contexts are as follows:

1. In the context of the user client thread. User threads request I/O by
invoking the user APIs described in the Windows NT I/O System Specification.
These routines validate the I/O operation, including probing the device-
independent parameters and copying them into the IRP. The routines then
invoke the device driver at its various function entry points to check the
device-dependent parameters and to start the packet. If the device is already
busy performing some operation, then the request may simply be queued to
the driver.

The driver receives the request from the system in the form of an IRP. This
packet describes the user's parameters. The driver may then use the I/O
subroutines at this point to aid in getting the operation started. These
routines are discussed in a later section of this document.

2. In the context of the ISR. When a device interrupts the processor, the
processor executes a system routine that invokes the driver's interrupt service
routine. In some machine architectures this may happen directly. In others,
it may take place through a common interrupt dispatcher that gains control
and then passes control to the appropriate device driver(s). The kernel sets
up the necessary data structures for the given architecture so the correct
control flow takes place.

The ISR must synchronize itself with the device driver start I/O routine. This
is done through the use of the interrupt object and a routine, provided by the
kernel, KeSynchronizeExecution. This synchronization object is necessary

Windows NT Driver Model Specification 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

so that the driver's start I/O and interrupt service routines do not attempt to
access the device at the same time.

3. In the context of the DPC interrupt. Once an ISR has completed the
absolutely minimal amount of work required to satisfy the device interrupt, it
requests that it be able to perform the remainder of the work needed to
process the interrupt at a lower IRQL. This is done by requesting that it be
invoked at its DPC routine at DISPATCH_LEVEL.

The kernel's DISPATCH_LEVEL interrupt service routine scans the queue of
DPCs to be executed and invokes them in order. The driver's DPC routine
should perform the majority of its work servicing the device in this routine. It
should deal with checking for errors, making error log entries if appropriate,
setting the device to a known state if needed, completing any handshaking
required by the device, etc.

This routine is also responsible for starting the next I/O operation on the
device if there are any in the device queue. This can be done by invoking the
IoStartNextPacket function. This function checks, in a synchronized
manner, for another IRP in the device queue. If one is found, the routine
dequeues it and returns the address of the packet. The device driver can then
perform whatever actions are necessary to get the operation started on the
device.

The DPC routine is also responsible for completing the current I/O request.
This is done by invoking the IoCompleteRequest function. This function
actually completes the request by copying data, unlocking buffers, setting
events, etc.

The DPC routine is probably the most important and certainly the most
complicated part of a simple device driver. It is here where most of the time in
the driver will be spent.

4. In the context of the "driver process". Some drivers may actually have a
full driver process associated with them. Drivers that have associated
processes, as will be seen more clearly later, actually have two parts: 1) The
standard driver part described above, and 2) a process that has one or more
threads, each complete with a virtual address space, general register set, etc.
The Windows NT file system and network service drivers are built using this
model.

Drivers deal primarily with several different system objects that are specific to
drivers. These objects are as follows:

Windows NT Driver Model Specification 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o - Driver object. Driver objects are created by the driver loader when the
driver is initially loaded into the system. They are used by the system to
determine where the entry points are for the driver, as well as for locating all
of the controller and device objects that the driver is servicing. It also keeps
track of where the code for the driver is loaded, its size, etc.

Device driver writers themselves do not generally manipulate the driver object
itself. However, the object is used indirectly to locate entry points, etc., when
calling between drivers or when the I/O system is calling the driver.

o - Device object. A device object is created by a driver for each device or
device partition that the driver is to service. The collection of all of these
objects, therefore, describes all of the devices in the system. Device objects
contain information to allow the I/O system to manage I/O operations on the
device, device characteristics, queue headers, etc. They also contain a device-
specific area that the device driver can define. This allows the driver to
maintain device-dependent context besides the IRPs with which it deals.

o - Device queue. A device queue is a kernel-provided object that allows the
driver to synchronize a list of operations that need to be performed. Briefly, it
provides the driver with a queue of IRPs to be executed, queue and dequeue
routines, and a busy flag. Access to these items is synchronized by the
kernel.

Device drivers do not normally manipulate the device queue directly; rather,
they use the I/O system-provided routines to perform this work for them.

o - Interrupt object. Interrupt objects are created by the driver when
associating itself with an interrupt vector, so that its interrupt service routine
can be executed when the device interrupts. This is known as connecting to
an interrupt. Interrupt objects, which are provided by the kernel, also provide
the driver with a synchronization mechanism so that the driver can
synchronize the execution of various critical sections of code with the driver's
interrupt service routine.

o - Controller object. When the driver's initialization routine is invoked, it
can create a controller object to represent the physical controller for its
devices. Controller objects are created by device drivers to allow
synchronization of requests bound for devices through the controller to which
the devices are physically attached.

Windows NT Driver Model Specification 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o - Adapter object. Adapter objects are created by the I/O system when the
system is initialized. An adapter object represents the system's mapping
hardware. This object allows mapping registers to be allocated and set up so
that scatter/gather operations can be performed to and from DMA devices.
Device drivers use the adapter object in I/O system calls to allocate and
initialize these mapping registers. In some systems, a device driver, via its
device object, may be placed into a queue awaiting enough contiguous
mapping registers to perform its transfer.

This object is also used to represent the channels on buses on some systems.
The I/O system uses the adapter object to synchronize access to the channels
by queueing the requesting device object to the adapter object.

Windows NT takes a "layered" approach to its driver design. That is, one driver may
be layered on top of another device driver. This allows functionality to be added to
the I/O system in such a way that device drivers themselves can be smaller and
common code can be used for various types of devices.

For example, a device driver writer might want to implement a SCSI driver in one of
two ways:

o - The layered approach. Using this approach, the writer would write a "port"
driver and a "class" driver. The port driver would handle managing the
controller itself and determining which device could be serviced based on
requests being sent to it. The requests, of course, would be given to it in the
form of an IRP, as for any driver.

The class driver would handle the devices themselves. For example, one class
driver might drive the hard disks that are attached to the SCSI controller.
Another class driver might handle a floppy disk, or a tape drive.

This approach is used in Windows NT to implement some of its drivers,
including such drivers as the various file system drivers and network drivers.
Requests, for example, can be given to a file system driver that modifies the
request, and then gives it to the device driver itself. This is analogous to
having the file system driver be a class driver and the device driver being a
port driver.

o - The controller approach. This approach allows the driver writer to use the
controller object to provide synchronization rather than have a separate
device object and device driver to do this. For many simple controllers and
devices, this approach works best.

Windows NT Driver Model Specification 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

When a device driver which is using this approach wishes to start an I/O
operation, it must allocate the controller object, start the I/O operation and
then either deallocate the controller object if it is no longer needed (for
example, a disk seek), or keep the object allocated until the operation is
complete. When the operation is complete, such a driver deallocates the
controller so that the next operation can be started.

Which of these two approaches a device driver developer uses is discretionary.
Some more complex operations, such as a file system, clearly require something
more than a controller object. A SCSI driver could be done using either approach
with a fair amount of efficiency.

3.1. Time-Out Handling

Some device drivers must be concerned with operations timing out, whether
because the device itself has timed out or because the user has asked that an
operation be completed in a certain amount of time and it did not finish within the
allocated time.

The Windows NT kernel provides driver writers with a means to timing operations.
It does this through an object termed a timer object. A timer object can be initialized
by calling the KeInitializeTimer kernel function. This routine initializes a timer
object that can then be set to an expiration time using the KeSetTimer function.
Expiration times may either be expressed in an absolute or a delta time format. The
set timer routine also optionally accepts a Deferred Procedure Call (DPC) object
address. This allows the specified routine to be executed when the timer expires.
Finally, the kernel provides the KeCancelTimer function that allows a timer to be
canceled.

The I/O system provides a simple interface to the structures and routines provided
by the kernel. The interface allows the device driver to specify the address of a
routine to be executed once every second. This routine is provided with a context
pointer that it uses to access its own data structures. One of these structures can
contain a counter that is decremented each time the routine is invoked. If the
counter is ever decremented to zero, then the operation is considered to have timed
out. Whenever a new operation is started on the device, the counter can be set to
the number of seconds that the operation has before it should time-out. If no
operation is in progress, then the counter can be set to some predetermined value,
such as minus one. This allows the timer routine to determine that no operation is
being performed and it should not modify the counter.

The I/O system provides a device driver object with a built-in timer with the above
functionality. The routines used to support this interface are as follows:

Windows NT Driver Model Specification 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o - The IoInitializeTimer routine. This function accepts the address of the
routine that is to be executed and the address of a device object. The
IoInitializeTimer routine initializes the device object's timer for use when it
is started.

o - The IoStartTimer routine. This routine starts the timer; that is, it causes
the routine specified in the above call to be invoked once every second. The
driver-specified routine will be invoked with the context parameter that it
specified in the call to the IoInitializeTimer routine.

o - The IoStopTimer routine. This routine stops the timer; that is, it will
stop invoking the driver's timer routine once every second. The IoStopTimer
routine is generally only invoked if the driver is being unloaded from the
system.

3.2. Power Recovery

Drivers must also deal with the possibility of power failures and recoveries. When a
power failure interrupt occurs, the kernel saves enough state so that when the
power is restored the system can be restarted from wherever it was executing when
the power failed. Special considerations must be made for device drivers because of
the hardware associated with them.

The concerns here are three-fold:

1. Device drivers must be given the chance to reinitialize the devices that they
are servicing. This allows the devices to be put back into a well known state
so that operations may once again be requested. Controllers also need to be
reinitialized and placed into well known states.

2. Device drivers must deal with operations that were currently in progress
when power was lost. For most devices, this probably means restarting the
I/O request once the device has been reinitialized.

3. Device drivers must deal with synchronization of power recovery interrupts
and of executing code that touches the device itself. That is, the device driver
should ensure that once it is ready to actually tell the device to begin a
transfer, it does this atomically. This means locking out power failure
interrupts for a short period of time. If a power failure interrupt occurs
between the time that the device driver synchronized itself with its start I/O
routine (at device interrupt request level - DIRQL) and the time that it was
ready to begin writing device registers, then it would need to abort the
operation and not tell the device to perform it. This is because if the power

Windows NT Driver Model Specification 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

failed while writing device registers and then came back up, the device could
perform an erroneous operation if the transfer were restarted.

Likewise, the device driver needs to synchronize with power failures occurring
while the device driver is in its device interrupt service routine or in a DPC
routine that touches the device registers. In both of these cases the driver
needs to determine whether or not a power failure has occurred so that it does
not inadvertently "complete" an I/O request based on unpredictable device
register contents.

For these reasons, the Windows NT kernel provides device drivers with two different
objects that can be used to deal with power failures. These two objects are as
follows:

o - Power Notify Object. This object allows the driver to establish a DPC that
is to be invoked whenever the system's power is restored. This allows the
device driver to be asynchronously notified when the power has been restored
by having the system call one of the driver's routines. This routine should
deal with the first two concerns above. It should handle the device/controller
reinitialization and it should restart or fail the "current" request.

The kernel provides a routine to initialize a power notification object
(KeInitializePowerNotify), a routine to insert the power notification object
into a queue so that the associated routine can be invoked
(KeInsertQueuePowerNotify), and a routine to remove the object from a
queue (KeRemovePowerNotify).

o - Power Status Object. This object and its associated functions are
provided to deal with the third concern. This object provides the driver with a
flag that can be tested to determine whether or not the power has failed. The
flag is set to TRUE if the power has failed and recovered; otherwise it is set to
FALSE.

The kernel provides routines to initialize a power status object
(KeInitializePowerStatus), a routine to register the power status object
(KeInsertPowerStatus), and a routine to unregister the power status object
(KeRemovePowerStatus).

The model for recovering from a power fail interrupt is to use the power notification
object and two power status objects. The two status objects should be used as
follows:

Windows NT Driver Model Specification 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. The first power status object should be used to indicate that the power has
failed. This power status object will hereafter be termed the power failed
object.

2. The second power status object should be used to indicate whether or not
the power notification routine has finished its processing of the power
recovery. This power status object will hereafter be termed the power recovery
routine not done object.

When the power fails, both of the power status objects will be set to TRUE. This
indicates to the driver that the power has failed and the power recovery routine has
not finished its processing. At well-defined points in the driver, both of these status
objects should be checked to determined whether either is TRUE. If either of the
objects is TRUE, then the driver should not continue processing of requests. That
is, the driver should not allow new requests to be processed. For example, the
driver's start I/O routine, interrupt service routine, and dispatch routines should
check to ensure that no power failure processing is occurring in the driver. This is
done by raising the current IRQL to POWER_LEVEL and check the logical OR of the
two status objects. If either is TRUE, then processing should not continue for the
device.

The power notification routine performs four functions:

1. The first step is to set the power failed object to FALSE. This indicates
that the driver is aware that the power has failed and recovered.

2. The second step is to perform any device initialization that is necessary to
allow normal operations to continue on the device.

3. The third step is to set the power recovery routine not done object to
FALSE. This indicates that all power recovery for the device has been
completed and operations can be continued normally.

4. The final step is to restart the current packet for the device, if one was
active. The CurrentIrp field of the device object is a pointer to the packet that
was currently being processed by the driver.

3.3. Canceling I/O

I/O operations can be canceled in one of two ways:

1. All of the I/O for a thread can be canceled by invoking the
IoCancelThreadIo subroutine. This routine scans the IRP list for a thread
and cancels the I/O operation represented by each IRP in the list. This

Windows NT Driver Model Specification 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

function is useful in thread rundown and termination. It is invoked from
kernel mode in the executive and is not available to general users.

2. All pending operations issued by the calling thread for a file handle can be
canceled by invoking the NtCancelIoFile service. This service performs the
same operation as above except that only the thread I/O for the file associated
with the specified file handle is canceled. All other I/O is unaffected.

\\ This functionality in the I/O system is currently being redesigned. This
design will be complete and implemented for the next version of this
specification. \\

3.4. Driver Layering

As mentioned earlier, drivers in the Windows NT I/O system may be layered. This
allows one driver to communicate with another driver by simply calling it and
passing it a pointer to an IRP. This feature allows the system programmer to add
functionality to the system in many broadly or narrowly focused ways.

Consider, for example, a file system and a simple disk driver. The file system is
represented by a file system driver and the disk driver is represented by a device
driver. Both have device objects which are named so that they can be referenced
from outside themselves. The file system sees the disk that the device driver
presents as a stream of 512-byte blocks that are referred to by numbers, 0 through
n.

In this simple case, when the user attempts to read part of a file from the file
system, the file system accepts the request and changes it into a request to the disk
driver for whatever blocks on the disk that need to be read.

IRPs are set up to handle exactly this type of layering. Each packet contains a fixed
portion that contains information about the original request, which thread the
request belongs to, event pointers, etc. The remainder of the packet is an array of
structures that is treated as a "stack". That is, each layer in the chain of drivers
owns one of the structures in the array. In our example then, the disk driver would
own "stack location" number one and the file system would own "stack location"
number two.

These stack locations contain the following information:

o - A major and minor function code. These function codes are used to tell
the driver what type of operation to perform and how to interpret the
remainder of the information in the structure.

Windows NT Driver Model Specification 17

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o - Parameters. These are the parameters that the driver uses, based on the
function codes, to perform the specified operation. Up to four separate 32-bit
longwords of arguments can be passed, as well as an 8-bit flags byte.

o - I/O system information. There is also some information that is
maintained by the I/O system that describes information about the driver.

As each layered driver is invoked down the chain, the "current stack location" is
adjusted so that it points to the proper structure for the next driver. As each driver
is invoked, it may decide that it would like to be invoked on certain conditions once
the I/O operation is complete. For example, the file system performing the read on
behalf of the user may wish to know if an error occurred during the read operation
so that it knows that there is a potentially bad block in the file.

A driver can register a "completion routine" through the use of the
IoSetCompletionRoutine function. This function accepts the following
parameters:

o - A pointer to the IRP that is currently being worked on.

o - The address of a routine to be invoked when all of the layers below the
current driver have completed the request.

o - A context parameter which can be used by the driver for whatever extra
information it requires.

o - Three flags which indicate whether the completion routine is to be invoked
if the operation is successful, if it completes with an error, or if the operation
is being canceled.

Once the drivers below the current driver, in our example the disk driver, completes
the operation, the file system's completion routine is invoked, if one was specified.
It is invoked with the following parameters:

o - A pointer to the driver's device object, which contains the information
about the volume or device on which the I/O operation is taking place.

o - A pointer to the IRP. The current stack location in the packet is the one
that belongs to the current driver.

o - The context pointer that was passed in the above function call.

If the driver does not wish to be invoked at all, then it need not call this I/O
function.

Windows NT Driver Model Specification 18

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Layering of drivers also yields the ability for the system programmer to insert layers
of drivers between each other to provide different functionality to the system. In the
previous scenario, for example, a driver can be inserted between the file system and
the disk driver which interfaces to many disks rather than to a single disk. It could
then present all of the disks to the file system as a single large disk with lots of
blocks, still referenced as 0 to n. Note that since this driver is completely file-
system-independent, it could be used with any file system type. So, this single
driver could be used as an enhancement that provided tightly coupled volume sets
to several different file systems without ever touching the sources of the file system
driver.

4. File System Description

File systems in Windows NT are executed as layered drivers with the special
exception that they have an actual process associated with them. These processes
are referred to as file system processes, or FSPs. Having these processes gives file
systems the ability to not only be able to execute in the context of a requesting
thread, or to execute without concern as to what thread they are executing in, but it
also gives them the ability to perform such operations as waiting on an object
without causing the client thread to wait.

File system processes are like most other user processes in the system except that
they run entirely in kernel mode. These types of processes are referred to as kernel
processes in Windows NT. They can make direct calls to I/O functions and to their
own file system drivers (FSDs). They can also allocate system pool, etc.

The communication between an FSD and an FSP occurs through a communication
region that is set up by the FSD during its initialization. This communication region
contains a queue, a spin lock to protect the queue, and an event. The spin lock and
the queue are used in conjuction to provide the functionality of an interlocked
queue. The event, generally autoclearing, is used to notify the FSP when an item
has been placed into the queue.

The queue provides a location for the FSD to place IRPs that need more processing
than the FSD itself is capable of performing in its limited context. Other shared
data used between the FSD and the FSP may be contained in this region. How it is
structured is up to the file system writer. The communication region need not be
statically allocated within the image. It can be allocated as part of the device
extension when the device object is created.

To synchronize access to the queue, the FSD performs the following steps:

o - Inserts the IRP into the queue using the ExInterlockedInsertTailList
function.

Windows NT Driver Model Specification 19

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o - Sets the event to the Signaled state.

The FSP synchronizes access to the queue by performing the following steps:

o - Wait for the event to be set to the Signaled state and reset it if it is not an
autoclearing type event.

o - Remove the entry from the head of the queue using the
ExInterlockedRemoveHeadList function.

o - Loop, removing entries from the head of the queue until there are no more
entries remaining.

It should be noted that it is possible for the FSP to be awakened for an entry in the
queue that it has already removed. Therefore, it must be able to handle the
situation where there are no entries in the queue to be processed.

Using this queueing method allows the FSD to pass information to the FSP. FSPs,
on the other hand, can communicate with FSDs by simply invoking routines in the
FSD. Because the FSD is thread-context-independent, this is basically no different
than the FSD being invoked by the system to perform a request on behalf of a user
thread.

The two parts of the file system, the FSD and the FSP, both reside in the same
image file on the disk. When this image is loaded, the loader maps the entire image
into system space. The FSD, in its initialization, sets up the data structures and
communication region that it will use to communicate with the FSP and creates the
FSP.

Both parts of the file system share data in the communication region described
above. Also in the communication region, or perhaps pointed to by it, are the data
structures that allow the FSD to determine which files have been opened, what data
is in the cache, etc.

Among this shared data is also a description of how blocks in files are mapped to
blocks on the disk itself. The data structure supported by the Windows NT I/O
system to describe this is termed a Map Control Block (MCB). Not all file systems
need to use MCBs, as the on-disk structure may already be well structured enough
to describe the mapped blocks efficiently.

An MCB describes the extents of a file in an array of structures composed of the
following two longwords of information:

Windows NT Driver Model Specification 20

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o - Virtual Block Number (VBN). The starting block within the file that the
extent represents.

o - Logical Block Number (LBN). The starting block on the disk where the
extent resides.

A header on the data structure describes the maximum number of entries in the
MCB, the current number of valid entries in the MCB, and the block number of the
extent in the file which represents the end of the file. It should be noted that this
structure also works well for describing sparse files and can be searched with a
binary search.

If the FSD attempts to translate a file block number into a disk block number and
the entry required to perform the mapping is not currently in the MCB, then the
FSD must have the FSP perform a window turn operation on the MCB. That is, the
FSP must adjust the entries in the MCB so that the file extent to be mapped is
actually described in the MCB entries. The FSP is needed for this operation because
the amount of shared data necessary to allow the FSD to perform this operation
would be too large for some file systems. The FSP is also needed so that no implicit
wait operations are required in the context of the client thread.

\\ The set of interface routines for providing this functionality has yet to be
designed. Since it is required fairly soon in the implementation of the project, it
will be provided in the next revision of this document. \\

4.1. IFS Design

Multiple file systems may be active in Windows NT at any given time. These file
systems might be servicing multiple devices or they might be servicing different
partitions on the same device.

When a file system is loaded, it registers itself as a resident file system that is
eligible to be invoked when a volume is to be "mounted". This is accomplished by
creating a device object whose type is FILE_DEVICE_FILE_SYSTEM and invoking the
IoRegisterFileSystem function with the returned device object. This function
inserts the device object onto the list of active file systems.

The loader sees a file system driver the same as it sees a device driver, as a simple
program. The transfer address of a file system driver is its initialization routine.

The entry points that the I/O system is interested in for a file system driver are as
follows:

Windows NT Driver Model Specification 21

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o - Initialization routine. This FSD routine initializes the file system's data
structures, allocates and initializes the communication region, creates a
device object for the file system, creates the FSP with at least one thread
executing, and registers itself as a file system.

When the FSP is created, it is passed the address of the device object. Its
responsibility is to initialize itself and set up any other structures that may be
used between the two components, if any.

The FSD routine must also fill in the driver object routine address fields with
its entry points so its routines can be located.

o - Major function routines. These routines correspond to the major function
codes in an IRP. They are selectively given control when the IRP is handed to
the driver. The file system supplies a routine entry point for each of the major
functions that it implements. All others are defaulted by the I/O system to a
routine that returns an error code indicating that the request is not
implemented by the driver.

The major function routines are responsible for validating the parameters in
the I/O request packet and determining what should be done to perform the
request. This might mean copying data from the file system's cache, or
performing a window turn on the file, etc. If more processing is required, then
the FSD might give the packet to its FSP.

o - Unload routine. This routine is invoked by the system when the file system
is being unloaded. Its responsibilities are to let the FSP know that it should
clean up and exit, and then to clean up any data structures the FSD has,
deallocate its communication region, unregister itself as an active file system,
and close its objects. The system then frees the file system's code and data
space and marks it as gone from the system.

o - The cancel routines. These routines are invoked when a packet is to be
canceled and the packet is in a state such that simply setting its cancel flag
will not cause the packet to be examined by the driver. There is a cancel
entry point that cooresponds to each state that a packet can be in. When a
packet is marked for cancellation, the appropriate cancel routine is invoked to
cancel the request.

Once the media in a device has been recognized by an active file system, a record is
kept of which file system owns the media. When a request for that device is issued,

Windows NT Driver Model Specification 22

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

the system first gives the request to the file system for processing. This file system
can then give the request to the device driver, if required.

The structure that is used to keep track of which file system is currently servicing a
device is called a volume parameter block (VPB). This structure contains the volume
label and serial number that the file system returned when the volume was
mounted. If a request is made for a volume that is no longer in the drive, then the
system hard error routine will be invoked to request that the user place the
appropriate media back into the drive so the operation can continue.

A file system may request that it be permitted to perform post-processing work in
the FSD after the device driver has completed the I/O operation. This is
accomplished by using the its stack location in the I/O request packet, as described
in an earlier section of this document on Driver Layering.

4.2. Mapped File I/O

\\ This section is somewhat out-of-date. The current revision, 1.1, has cleaned
up the obsolete statements made in previous versions which were very old. As
the design evolves, this section will be updated to reflect the latest thinking on
this area. \\

It is possible in Windows NT for users to perform I/O to a file by simply reading and
writing memory. A set of library routines are provided to support the interfaces that
set this up for the caller. Mapped I/O can be set up by calling the following
functions:

o - NtCreateFile(FH, ...);

o - NtCreateSection(SH, ..., FH);

o - NtMapViewOfSection(SH, ...);

Once the file has been created or opened (via NtCreateFile or NtOpenFile), a
section is created to the file. The user then creates the section for the file by
invoking the NtCreateSection service. When this service is invoked, it must be
invoked with the maximum size that the file will ever grow to before the section is
closed.

\\ This will need to be fixed. The section must be able to grow if people are to
realistically use sections for files. An editor, for example, cannot determine how
large a file will grow when the user initially opens it. \\

Windows NT Driver Model Specification 23

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The section is then mapped using the NtMapViewOfSection service. This service
allows the user access to the file actually backing up the section. Reads and writes
to the file occur implicitly by simply reading or writing the memory that is mapped
by the view to the section.

Likewise, the user may still use the file handle returned from the NtCreateFile (or
NtOpenFile) service to perform other operations on the file such as reading and
writing it. In this case, the file system simply maps a view to the section for the file
into the system virtual address space and then reads or writes the data from/to its
memory.

There is a design note, Windows NT Mapped I/O Design Note, that further
discusses this mapped I/O model and other models that were considered. See this
document if there are questions regarding mapped I/O.

4.3. File Caching

Caching in the file system is provided through the Cache Manager. This component
of the system provides file system drivers with the ability to map files into the
system virtual address space so that they can be managed by the file system
through the use of the memory manager. More information on the Cache Manager
can be found in the Windows NT Cache Design Note.

The amount of I/O system-specific support required to provide this functionality to
file systems is minimal. In fact, the only feature required is the addition of stream
file objects. Stream file objects allow a file system to represent various parts of an
on-disk structure that are not in proper files as files in the I/O system. That is, a
file is cached through the memory manager by creating a section that is backed by
the file itself. Once the section is created, the file system simply needs to map a
view to the part of the file that it requires access to, and then touch that virtual
address space. This causes a pagefault to occur for the mapped file. The memory
manager then performs a read or write operation to the file based on the type of
access the file system made to the memory location.

In order to allow EAs or ACLs for files to be cached, the file system needs a way to
describe the portions of the disk structure that contain this data. Since this data
may not be in the file itself, a virtual file concept is used to describe and map the
data as if it were part of a normal file. Stream file objects are used to represent
these abstractions.

A stream file object can be created to represent any part of the on-disk structure
that the file system needs access to through the cache. Creating a stream file object
is accomplished by calling the IoCreateStreamFile function. This function creates

Windows NT Driver Model Specification 24

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

a stream file and returns a pointer to it. The pointer can then be used by the file
system to create a memory section as it would for a normal file.

4.4. Splitting Transfers

Sometimes a user requests a file transfer that spans multiple extents in the file.
The FSD can determine this by attempting to map the offset in the file via the MCB
for the file. When this occurs, the file system needs some way of splitting the
request into several different transfers. This section describes the three options that
a file system writer has available.

All of the following models begin with a request (IRP), being passed to the
appropriate major function routine in the FSD. Once this routine recognizes that
the I/O request requires multiple transfer requests to the device, it uses one of the
following models. Each model is described using a scenario where the operation is a
read and there is no caching involved in the transaction to keep it as simple as
possible. Other scenarios may be extrapolated from the models without much
effort, so they are not exhaustively elaborated here.

4.4.1. FSP Model

The FSP model uses the FSP to split a transfer into multiple device requests. The
FSP splits the transfer by performing the following steps:

o - The FSD places the IRP into the interlocked work queue of the shared
communication region and sets the event associated with the queue to the
Signaled state for the FSP.

o - The FSP's wait on the event is now satisfied so it removes packets from the
interlocked work queue.

o - It determines the number of individual requests that are required to satisfy
the original request and fills in a counter location in the original IRP with that
number.

o - For each individual contiguous transfer from the device, the FSP performs
the following steps:

- Allocates an IRP,

- Fills in the IRP with the information to describe the partial request,

Windows NT Driver Model Specification 25

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

- Marks the IRP as an associated IRP using the IoMakeAssociatedIrp
function,

- Fills in the starting LBN for this extent,

- Fills in the length of this extent,

- Allocates and initializes an MDL for the next part of the requestor's
buffer using the IoAllocateMdl and IoBuildPartialMdl functions.

- Calls the appropriate device driver to perform the function using the
IoCallDriver function.

Each time a requested transfer completes, the device driver completes the IRP which
causes the system's I/O completion routine to be invoked. This routine sees that
the IRP is an associated IRP and decrements the counter in the original IRP. The
final I/O status is also formed from each I/O request packet.

Once all of the IRPs are complete, denoted by the original counter going to zero, the
completion code "completes" the original request. Notice that until the original
request is actually completed, the completion code need not context switch back to
the original requestor. Likewise, no context switches to the FSP are required.

This model causes the various pieces of the transfer to be processed in a quasi-
parallel fashion because the FSP can queue multiple transfer requests to the device
driver. This allows the device driver to process the packets more quickly.

A variation on this model is to use an algorithm where the FSP simply queues one
request for each extent, one at a time to the driver. The FSP then requests that it be
notified explicitly when the request completes. This allows the FSP to keep state
information about the original IRP rather than setting the associated IRP pointer in
the new IRPs that it queued.

This variation would work best if the FSP used APC routines in its own threads to
synchronize the I/O operations, thereby using fewer system resources by not
dedicating a thread to each request.

4.4.2. FSD Parallel Model

This model is similar to the FSP model except that, rather than have the FSD
context switch to the FSP to let it allocate the IRPs and queue them to the device
driver, the FSD would perform all of the steps itself. It would perform the allocation
and initialization of the IRPs while still executing in the context of the user's thread.

Windows NT Driver Model Specification 26

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

While this model works well for some small number of situations, it further
complicates the FSD code and causes more state information to be kept in the FSD.

This model is still considered quasi-parallel however, because it allows the file
system to queue multiple requests to the device driver without having to wait for
any one operation to complete.

4.4.3. FSD Serial Model

This model is similar to the FSD model except that rather than have the FSD
allocate, initialize, and queue multiple request packets, it simply allows the FSD to
reuse the original request packet over and over again until the entire transfer
request has been satisfied.

This is done by storing the original request information in the packet as context
information and then changing the MDL, length, and starting LBNs according to the
next extent of the file.

The stack location completion routine for the FSD in the IRP can be filled in so that
it gets a chance to execute when the request has been completed by the device
driver. When this routine is invoked, the FSD sees that this is a multiple-transfer
IRP, fills in the next request information, and gives it back to the device driver
again. This continues until the request has been completed.

Once the entire original request has been satisfied, the FSD calls the normal
completion code to complete the operation.

This model has the advantage that it requires the least amount of processing
overhead. No IRPs are being allocated and initialized from scratch. On the other
hand it is potentially slower because it is serialized. If the I/O were being done to
multiple spindles, such as a striped file, this method could actually lower the
throughput of the I/O system even though the amount of processing overhead is
less.

4.5. Mounting and Volume Verification

Windows NT supports multiple file systems running at the same time. This
imposes three basic requirements on Windows NT:

o - Automatic media recognition. When the media in a device is first
accessed, the system must be able to determine which file system is supposed
to deal with that media. That is, when a user makes a request such as an

Windows NT Driver Model Specification 27

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

open, read, write, etc., operation on a device that needs the support of a file
system, the system must be able to determine which file system is to handle
the request.

o - Supporting removable media. Because the system supports removable
media, such as floppy disks, it must also be able to dynamically change its
idea about which file system is currently supporting the device.

For example, if the user switches the media in a floppy drive, the system must
be able to determine whether the on-disk file structure on the new media is
the same as on the previous media. If it is not, then Windows NT must
determine which file system understands the new media and associate the
new file system with that media.

o - Supporting multiple partitions. Finally, the system must be able to
support multiple partitions on hard drives. This means that it must also be
able to support cases when each partition is a different on-disk structure.

These three requirements mean that when a device is first accessed or when a
device is being accessed whose media may have changed, the system must locate
the appropriate file system for the device. This is done by keeping track of the
media that the system thinks is currently in the drive. The structure used to do
this is a called a volume parameter block (VPB). This structure keeps the volume
label and the volume serial number of the media. It also keeps track of the file
system's device object associated with the volume.

Initially, the VPB associated with a drive is blank; that is, it has no name and a
zero (an invalid value) for its serial number. When a volume is first touched, the
system realizes that the information in the VPB is invalid and begins invoking
registered file systems to determine which one recognizes the structure on the
media. It does this by passing the FSD an IRP with a function of "mount".

The file system generally performs the following steps to determine whether or not it
should successfully complete the mount request, thereby "owning" the volume on
the device:

o - It begins by giving the IRP to a thread in the FSP which can perform I/O to
the device.

o - The FSP reads whatever blocks are required to determine whether or not it
recognizes the on-disk structure.

Windows NT Driver Model Specification 28

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o - It then either completes the request with an error if the structure was
unrecognizable, or it continues.

o - If the FSP continues, the FSP creates a device object which will be used to
hold its context for this volume and initializes the file system-specific data
structures in the newly created device object.

o - The FSP then fills in the device object field of the VPB with the address of
the newly created device object.

o - The FSP then creates a thread to handle this volume, passing it the
address of the newly created device object.

o - Finally, the FSP completes the original mount I/O request packet with a
success status, indicating that the media format was recognized.

If the file system does not recognize the structure on the media as its own, then the
system then continues through the list of registered FSD's looking for a file system
that recognizes the media. If none is found, then the RAW file system, the last in
the list, takes over the media and treats it as non-formatted media. This file system
provides a way of reading and writing the device. It recognizes all media.

Upon completion of a mount, the I/O system mount code checks the status of the
operation, and if it is successful, it associates the VPB with the device. This is
accomplished by having a pointer in the device object that contains the address of
the VPB. The VPB currently being pointed to represents the system's idea of the file
system structure in the drive.

5. Network Service Description

\\ This section is currently under design review in the Windows NT Network
Group. The current thinking is that there will be four to five layers: Redirectors,
Transports, Networks, Datalinks, and Physical links. Each layer will be able to
be invoked from the layer above it or directly by the user with no differences.
There can be any number of drivers at any layer. Further, some layers may be
subsumed by another layer.

This section will also discuss how names are resolved.

More information on Networks will be available in the next release of this
specification. \\

6. I/O Completion

Windows NT Driver Model Specification 29

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

I/O completion consists of a routine which drivers invoke and a special kernel APC
routine internal to the I/O system. This section presents how each is used and the
functions that each performs.

Once a driver has finished all of its processing for an I/O request, it invokes the
IoCompleteRequest function to actually complete the I/O request. The device
driver normally invokes this routine when it is at DISPATCH_LEVEL in its DPC
queue routine.

IoCompleteRequest begins by checking the IRP stack to determine if there are any
other drivers that need to be notified that the I/O completed. If there are, then it
invokes each driver's completion routine if one was specified in the stack. The
function determines whether or not there are more drivers that need to be notified
by comparing the count of stack entries to the current entry number. If they are
different, then there is another driver to be notified.

The routine determines whether or not to invoke the driver's completion routine
based on whether the cancel I/O flag is set, the success or failure of the status code
in the I/O status block of the IRP, and whether the routine is to be called for each
case depending on what was specified in the call to IoSetCompletionRoutine.

The algorithm that I/O completion uses to determine whether the routine should be
invoked is as follows:

if (Irp.CancelIo AND InvokeOnCancel)
 OR
 ((NT_SUCCESS(Irp.IoStatus.Status)) AND InvokeOnSuccess)
 OR
 ((!NT_SUCCESS(Irp.IoStatus.Status)) AND InvokeOnError)
 /* invoke the completion routine */

A driver may not wish to be invoked for any of the above reasons. If this is the case,
then it need not take any action since the I/O system guarantees that the flags are
zeroed in the stack when the driver is initially invoked.

Once all of the device drivers have been invoked, the I/O completion routine checks
to see if any pages were locked into memory for this operation. This is done by
querying the MdlAddress field of the IRP. If any MDLs are associated with the IRP
the I/O system walks the list and unlocks all of the pages associated with each of
the buffers described by the MDLs.

Windows NT Driver Model Specification 30

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Once any pages that were locked are unlocked a special kernel mode APC is
initialized and queued to the target thread using the kernel APC interface routines.
If the thread is in an appropriate state, then it will be scheduled to execute. The
address of the routine to be executed as the special kernel APC is part of the I/O
completion code.

Once the special kernel mode APC begins execution in the context of the target
thread, it performs the following steps to complete the I/O request:

o - All buffered data, if any, is copied from the system space buffers into the
user's buffers. If the system space buffers were temporary buffers allocated to
transfer this information, then they are deallocated.

Buffered data here also refers to any data that is OUT in any API, with the
exception of the I/O status block. That is, any data in the output buffer
interface such as the NtQueryDirectoryFile service, for example, is copied
into the user's buffers.

o - Any MDLs used to describe the user's buffers are deallocated.

o - The I/O status information in the IRP is copied to the user's I/O status
block.

o - The file object is set to the Signaled state, if no event was specified, and it
is dereferenced.

o - The specified event for this request, if any, is set to the Signaled state and
dereferenced.

o - If no APC was requested by the I/O initiator, then the IRP is deallocated.

o - If an APC was requested, an APC object is initialized and queued to the
thread. The IRP is deallocated once the APC has been removed from the
thread queue by the kernel.

Some system features cause special considerations in how I/O completion works.
IRPs that have been linked together by a file system, for example, are handled
differently to gain better performance and because the file system isn't generally
interested in the completion notification unless the operation fails. Many times it is
only concerned when all of the operations have completed and sometimes even then
it is not interested directly.

Windows NT Driver Model Specification 31

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Paging I/O also requires special consideration during I/O completion. Such
considerations include the following:

o - No pagefaults may occur on any path of pagefault code during I/O
completion.

o - No special kernel mode APCs may be taken in the context of the target
thread because this could cause another pagefault to occur. Moreover, APCs
are blocked anyway. Therefore, the general mechanism for completion cannot
be used.

o - Caching in the file system is disabled for paging I/O.

o - No APC is delivered to the target process to "complete" the paging I/O
request. This can all be done without actually entering the thread's context.
The pager's I/O status block is in non-paged memory in system space and will
never incur a pagefault. It is always visible regardless of what thread context
the system happens to be in when the I/O completion code is executing.

o - The pages that were being paged in do not need to be unlocked by the I/O
system since they will be unlocked by the pager.

7. Error Logging and Handling

Windows NT provides both special error handling for users, and an error logging
facility for drivers. This section explains how both work and how they should be
used from the driver's point of view.

7.1. Error Logging Facility

Error logging in Windows NT is supported by the following components:

o - I/O support routines. These routines provide drivers with an interface to
the error process. Communication with this process occurs through the use
of datagrams sent to its port that contain the information that the driver
would like to write to the error log file. These routines allow the driver to
allocate a datagram, fill it in, and send it to the error log process's port.

o - The I/O system thread. This thread removes error log buffer entries from
the pending queue and sends them to the error log process as datagrams. It
then frees the entries back into the buffer pool. This thread uses the
standard interlocked work queue and event method of synchronization used
by FSD/FSP drivers.

Windows NT Driver Model Specification 32

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o - The error log process. This process maintains a port to which error log
datagrams can be sent. It is the responsibility of this process to take the
datagrams and write their contents to the error log file. This process is also
responsible for maintaining the file itself. An old file can be opened, an old file
can be closed and a new one created, or a new file may be created. Finally, it
is the responsibility of this process to write time stamps to the file. These are
written in such a way that if no actual error log entries are written between
time stamps, then only one time stamp is entered in the file. This saves disk
space by minimizing the amount of data actually written to the file.

o - The error format utility (EFU). The EFU has the responsibility of reading
error entries out of the error log file and displaying the contents in a form that
is understandable by service personnel.

Because there are many different types of devices in the system and some will
be supported by device drivers other than the standard drivers that are part of
the Windows NT operating system, device driver writers can write error log
buffer translation routines that the EFU can invoke when an entry is found
for the specified device.

Each error log entry contains a header that specifies the type of entry being
formatted. This header also contains a device type identifier field that is filled
in by the driver through the I/O support routines. This is a unique name that
is declared by the device driver. When the EFU discovers the entry, it invokes
the entry in the DLL that corresponds to the entry to format it. All of the
images for formatting the entries are contained in the \error directory in the
Windows NT directory tree. The names of the images are the same as the
device type identifier field. That is, a ".DLL" is appended to the device type
identifier field and that dynalink library is invoked to format the entry.

The EFU passes the DLL routine a pointer to the entry to be formatted as well
as the address of a routine that can be invoked to output whatever
information needs to be output for formatting purposes.

The name of the entry point in the DLL for the EFU to invoke is FormatEntry.

The I/O support routines related to error logging are as follows:

o - IoAllocateErrorLogEntry - This routine allocates an error log entry for the
device driver. The header information is automatically filled in by the routine.
The driver can then place the error information into the entry. If there are no
available error log entries in the system, then a null pointer is returned.

Windows NT Driver Model Specification 33

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o - IoWriteErrorLogEntry - This routine sends the specified error log entry to
the error log process to be written to the error log file.

\\ There also needs to be an API like NtCloseErrorLogFile that users with the
appropriate privilege can call to have the error log process close the current error
log file and optionally open a new one. \\

7.2. Error Ports

Users may wish to be notified when a device operation is going to fail because the
wrong disk is in a drive or because of some other error that requires intervention on
behalf of the user. The OS/2 subsystem also requires this functionality in order to
emulate the "fail on error" flag.

Windows NT provides this type of functionality by giving the user the option of
providing an "error port" on a create or open to a file or device. This port allows the
I/O subsystem to RPC to the user when an error occurs to let him determine what
he would like to do about it. That is, if the wrong volume is in a device, for example,
an RPC message is sent to the user's port in order to determine what he'd like to do
about the situation. The user may return one of the following:

o - Retry - Retry the operation. In this case, the caller presumably
communicated the problem to the user and asked that the correct volume be
placed in the device. The operation is simply retried by sending the IRP back
through the system.

o - Abort - Abort the operation. In this case, the I/O request is simply aborted
and the operation is completed with the appropriate error status.

The I/O system uses this common model with the system hard error thread. This
thread has a globally known port that receives an RPC when an error such as the
above is encountered. The hard error routine does exactly what was described
above in order to have the situation resolved.

8. Terminal I/O Considerations

This section addresses those special requirements needed by terminal devices,
especially dealing with unsolicited input and conventions used by subsystems to
perform terminal input operations that they need to support.

8.1. Unsolicited Input

Windows NT Driver Model Specification 34

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The operating system emulation subsystems, the Session Manager (SM), and the
Terminal Logon Process need to be able to be notified when an unsolicited input
occurs on a terminal which, by definition, is not logged into the system. To do this,
there is an NtDeviceIoControlFile service that allows a user with sufficient
privilege to specify a port to be given a message when an unsolicited input occurs on
a terminal.

The Terminal Logon Process can therefore open the terminal, issue this service and
then close the terminal, and not keep any more state until something happens on
the terminal.

When someone enters a termination or interrupt character on the terminal, the
terminal driver will use the IoSendMessage routine to send a message to the
specified port. This routine allocates and queues a kernel mode APC to the I/O
completion thread. The routine specified as the APC will be a routine in the I/O
system that translates the name of the port and sends a datagram message to it
specifying the name of the terminal device on which the unsolicited input occurred.
The type of the message sent is PORT_TERMINAL_INPUT.

The Terminal Logon Process can then open the terminal and begin performing the
standard login sequence.

8.2. Subsystem Input

The model used for terminal input by subsystems that are emulating different APIs
varies, but the following recommendations help system performance and, in some
cases, provide the subsystem with an easier task:

o - Subsystems should attempt to perform all terminal input operations on
buffers that are long enough to contain the average terminal line size.

o - Subsystems should avoid performing single character I/O to terminals or
other devices when possible.

o - Subsystems may wish to have one dedicated thread that performs terminal
input. This thread can process the data by placing it into internal queues and
emulating the PM keyboard model of I/O. This allows the subsystem to have
one interface to these types of devices.

o - Subsystems should make use of the device I/O control service to set the
termination characters for a device to those characters generally recognized
by the API they are trying to emulate. They should also include those
characters that are considered out-of-band characters for their API. This

Windows NT Driver Model Specification 35

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

allows the subsystem to scan characters written to its buffer from the
terminal driver and determine when these character have been seen.

9. I/O Data Structures and Objects

This section gives a brief overview of the data structures and objects used in the
Windows NT I/O system. It describes what the data structures are, how they are
used, and in some cases a description of the major fields in the data structures.

All of the data structures in this section contain a type field which is used by the
I/O system for robustness. This allows the system to check to ensure that a pointer
really points to the type of structure to which it is supposed to point.

9.1. I/O Request Packet Description

The I/O Request Packet (IRP) is the primary data structure used in the I/O system
to pass information from system services to drivers, from drivers to other drivers,
and from drivers back to the I/O system. IRPs are always allocated from some part
of nonpaged memory since they are sometimes accessed at raised IRQL.

An IRP is allocated with an array of structures that are associated with each of the
drivers in the I/O system hierarchy required to complete the specific I/O request.
Each of these structures, called "stack locations", contain function and parameter
information for each driver. (For more information see the section in this document
on Driver Layering.)

The primary fields of an IRP include the following:

o - File object. This field points to the file object that the request is being
performed on.

o - MDL. This field points to the MDL(s) associated with the I/O operation.
The MDL(s) describe the buffer or buffers being used for the operation in
terms of both their virtual addresses and physical page numbers. MDLs also
describe the length of the buffer.

o - User service-independent parameters. These fields contain information
about the standard parameters to I/O system services. An example is a field
that contains a pointer to the referenced event object that the user specified in
a service call.

o - Thread. This field contains a pointer to the thread that originally
requested the I/O operation.

Windows NT Driver Model Specification 36

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o - I/O status. This field contains the final status of the operation. It is
copied into the user's I/O status block variable when the operation is
complete.

o - Flags. This field describes to the various drivers and I/O system
subroutines the type of operation that is represented by the IRP. For
example, IRP_INPUT_OPERATION is a flag that indicates that this is an input
operation and buffer copying during I/O completion needs to take place
between a system allocated buffer and the user's buffer.

o - IRP stack location management. These fields keep track of which stack
location in the IRP stack is the current location and how many locations are
in the stack.

o - Device queue entry. This structure is used to queue to IRP to the device
object device queue.

o - APC entry. This structure is used to allow the IRP to be used as an APC.
It may either represent the special kernel APC used in I/O completion or the
caller's APC routine.

9.2. Volume Parameter Block

A Volume Parameter Block (VPB) is used to keep track of the volume in a specific
device. It also associates the volume with a specific file system that is currently
managing the volume.

The major fields of a VPB are as follows:

o - Volume label. This field stores the name of the volume. This is useful
when a removable volume is accessed but the media has been taken out of
the drive. It gives the system a way to refer to the volume that the user can
understand.

o - Volume serial number. This field stores the serial number of the volume.
This is useful when two or more volumes mounted in the system have the
same name. The serial number uniquely identifies the volume. A serial
number of zero is invalid.

o - Real device object. This field is a pointer to the device object of the
physical device itself on which the media is currently mounted.

o - Device object. This field is a pointer to the file system's device object for
the volume. It is set by the file system after a successful mount operation.

Windows NT Driver Model Specification 37

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

9.3. File Object

A file object is the object used to represent files in Windows NT. These objects are
created by the object management parse routine for device objects in the I/O system
when a file is being opened or created. They represent the actual file itself.

The major fields of a file object are as follows:

o - Device object. This field is a pointer to the device object on which the file
resides. This field is interrogated by the I/O system to determine which driver
should be invoked when the file is being accessed through I/O system
services. If the device object has a VPB associated with it, then the device
driver for the VPB's file system device object is invoked rather than the real
device's driver.

o - VPB. This field is a pointer to the Volume Parameter Block for the volume
that the file resides on, if any.

o - File system context. These fields are reserved for use by the file system.
They are undefined for I/O system use.

o - File name. This field contains the volume-relative name of the file.

o - Synchronization objects. These fields are used to control caller
synchronization to the file. They allow the caller to wait on the file handle, for
example.

9.4. Driver Object

A driver object is used to represent the driver code and data. It is used to keep
track of the entry points for the driver as well as where the driver is currently
loaded. Driver objects are used by the I/O system and the Configuration Manager.

The major fields of a driver object are as follows:

o - Entry points. These fields keep track of the routine entry points in the
driver.

o - Device object. This field is a list head of all of the device objects that are
being serviced by this device driver. This list represents the number of
reasons why the driver cannot be unloaded from the system. The driver
cannot be unloaded from the system until all of its device object have been
deleted.

Windows NT Driver Model Specification 38

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o - Driver object. This field is a pointer to the next driver object in the system.
It is used to link all of the drivers in the system together.

o - Driver base. This field contains the base system virtual address of the
driver itself. It is used when the driver is being unloaded.

o - Driver size. This field contains the size of the driver. It is used when the
driver is being unloaded.

9.5. Device Object

A device object is a permanent object used to represent a physical, logical, or virtual
device. The collection of all device objects represents all known devices in the
system. Device objects are used by system services and drivers.

The major fields of a device object are as follows:

o - Reference count. This field represents the number of reasons why this
particular device object cannot be deleted.

o - Driver object. This field points to the driver object for this device. It is
used by the I/O system to locate the entry points to the driver so that it may
be invoked by system services and other drivers.

o - Device objects. These fields link this device object to other device objects
for this driver and for devices attached to this device.

o - Current IRP. This field is a pointer to the IRP that this driver is currently
working on if it is busy.

o - Timer information. These fields are used by the I/O system to implement
the timers for the driver.

o - Device extension. This field is a pointer to the driver-specific extension to
the device object.

o - Device type. This field specifies the type of device that the object
represents.

o - Device queue. This structure is used to allow IRPs to be queued to the
device using kernel synchronization and worked on.

Windows NT Driver Model Specification 39

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

9.6. Controller Object

A controller object represents a hardware controller. It is used by drivers to
synchronize access to the controller by various devices.

The major fields of a controller object are as follows:

o - Wait queue. This structure allows device objects to be queued and
dequeued to/from the controller using kernel-provided synchronization.

9.7. Adapter Object

An adapter object represents a hardware bus adapter or DMA controller. It is used
to synchronize access to the hardware.

The major fields of an adapter object are as follows:

o - Channel information. These fields describe the channels on the adapter.

o - Map register information. These fields describe the map registers in the
adapter.

o - Map register allocation control. These fields keep track of the allocation of
map registers in the adapter.

o - Wait queue. This structure allows device objects to be queued and
dequeued to/from the adapter using kernel-provided synchronization.

10. I/O System APIs

The APIs described in this section are used by various components of the I/O
system. Some are used by executive services, some are used by file systems, some
are used by I/O subroutines, and some are used by drivers. All of the functions
must be called from kernel mode.

Some of these functions are implemented as separate procedures, some as inline
routines, and some as C language macros.

This section describes the following APIs:

IoAbortInvalidRequest - Abort an invalid I/O Request Packet.
IoAllocateAdapterChannel - Allocate adapter channel and execute routine.
IoAllocateErrorLogEntry - Allocate error log entry.
IoAllocateIrp - Allocate I/O Request Packet.

Windows NT Driver Model Specification 40

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

IoAllocateMdl - Allocate a Memory Descriptor List.
IoAsynchronousPageWrite - Write page data to the paging file
asynchronously.
IoAttachDeviceByName - Attach two device objects.
IoBuildAsynchronousFsdRequest - Build asynchronous I/O Request Packet
for an FSD.
IoBuildFspRequest - Build I/O Request Packet for an FSP.
IoBuildPartialMdl - Build a partial Memory Descriptor List.
IoBuildSynchronousFsdRequest - Build synchronous I/O Request Packet for
an FSD.
IoCallDriver - Invokes a driver at its major function entry point.
IoCancelThreadIo - Cancel all I/O for a thread.
IoCheckDesiredAccess - Check desired access against granted access.
IoCheckFunctionAccess - Check function access against granted access.
IoCheckShareAccess - Check shared access request to a file.
IoCreateController - Create a controller object.
IoCompleteRequest - Complete an I/O request.
IoCreateDevice - Create a device object.
IoCreateFile - Create/open a file.
IoCreateStreamFile - Create a stream file object.
IoDeallocateAdapterChannel - Deallocate an adapter channel
IoDeallocateController - Deallocate a controller.
IoDeallocateIrp - Deallocate an I/O Request Packet.
IoDeallocateMdl - Deallocate a Memory Descriptor List.
IoDeleteController - Delete a controller object.
IoDeleteDevice - Delete a device object.
IoDeregisterFileSystem - Deregister driver as an active file system.
IoDetachDevice - Detach two device objects.
IoFlushAdapterBuffers - Flush adapter buffers to memory or device.
IoGetAttachedDevice - Get pointer to highest level attached device.
IoGetCurrentIrpStackLocation - Get pointer to IRP stack location.
IoGetNextIrpStackLocation - Get pointer to next IRP stack location.
IoGetRelatedDeviceObject - Get device object related to specified file object.
IoGetRequestorProcess - Get process of I/O requestor.
IoInitializeDpcRequest - Initialize a DPC for later posting.
IoInitializeTimer - Initialize a one-second timer.
IoIsOperationSynchronous - Determine whether an I/O operation is
synchronous.
IoMakeAssociatedIrp - Allocate and initialize an associated IRP.
IoMapTransfer - Map an I/O transfer in DMA controller.
IoPageRead - Build a page read request packet for the pager.
IoQueryInformation - Query information about a file.
IoRegisterFileSystem - Register driver as an active file system.

Windows NT Driver Model Specification 41

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

IoRemoveShareAccess - Remove the share access information when a file is
closed.
IoRequestDpc - Request a DPC routine execution.
IoSendMessage - Send terminal input message to port.
IoSetCompletionRoutine - Set completion routine and context in IRP stack.
IoSetShareAccess - Set share access information for a file open.
IoStartNextPacket - Start the next I/O Request Packet, if any.
IoStartPacket - Start the current I/O Request Packet if device not busy.
IoStartTimer - Start a one-second timer.
IoStopTimer - Stop a one-second timer.
IoSynchronousPageWrite - Write page data to the paging file synchronously.
IoUpdateShareAccess - Update share access information for a file.
IoWriteErrorLogEntry - Queue error log entry to be written to log file.

10.1. IoAbortInvalidRequest

A driver may abort an invalid I/O Request Packet using the IoAbortInvalidRequest
function:

VOID
IoAbortInvalidRequest(

IN PIRP Irp
);

Parameters:

Irp - A pointer to the IRP that represents the I/O request.

The IoAbortInvalidRequest function is invoked to abort a request represented by
an IRP when the packet specifies an invalid operation. For example, this routine is
invoked when an attempt is made to read from a nonexistent sector on a disk
device. This function causes the entire operation to be aborted. That is, the
initiator's I/O operation is not completed normally, if the request has not already
been successfully queued at a driver level above the current driver that invoked the
function.

This function must be invoked at DISPATCH_LEVEL.

Once this function has been invoked the IRP is no longer accessible to the
driver that made the call.

Windows NT Driver Model Specification 42

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10.2. IoAllocateAdapterChannel

A driver may allocate an adapter object channel and cause its execution routine to
be invoked using the IoAllocateAdapterChannel function:

VOID
IoAllocateAdapterChannel(

IN PADAPTER_OBJECT AdapterObject,
IN PDEVICE_OBJECT DeviceObject,
IN ULONG NumberOfMapRegisters,
IN PDRIVER_CONTROL ExecutionRoutine,
IN PVOID Context
);

Parameters:

AdapterObject - A pointer to the adapter object that represents the adapter

channel to be allocated.

DeviceObject - A pointer to the device object that represents the device on

which the I/O is to be performed.

NumberOfMapRegisters - Supplies the number of map registers to be

allocated. If zero, only the adapter is allocated and no map registers are
allocated.

ExecutionRoutine - The address of a routine to be executed once the adapter

channel has successfully been allocated.

Context - A context parameter to pass to the ExecutionRoutine when it is

invoked.

The routine specified by the ExecutionRoutine parameters has the following type
definition:

typedef
IO_ALLOCATION_ACTION
(*PDRIVER_CONTROL) (

IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID MapRegisterBase,
IN PVOID Context
);

Windows NT Driver Model Specification 43

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Parameters:

DeviceObject - A pointer to the device object specified as the DeviceObject

parameter in the call to the IoAllocateAdapterChannel function.

Irp - A pointer to the current I/O Request Packet that the device is working

on.

MapRegisterBase - A pointer to the base address of the first map register

allocated. If no map registers were allocated, then the pointer's value is
null.

Context - A pointer to be used as context for the routine. This value of this

parameter is the same as the Context parameter in the call to the
IoAllocateAdapterChannel function.

The IoAllocateAdapterChannel function allocates an adapter object for the channel
specified by the AdapterObject, waiting if necessary. If the caller requested a set of
map registers, then the number of registers are also allocated. The DeviceObject is
potentially queued to the adapter object wait queue if the channel is busy, or if the
number of requested map registers cannot be immediately granted.

Once the adapter channel, and potentially the map registers, have been allocated,
the driver's ExecutionRoutine is invoked.

The execution routine may return a value that indicates whether or not the channel
and/or map registers are to remain allocated to the device. If they are, then the
driver must subsequently invoke the appropriate routine to explicitly deallocate
them.

This function is used by device drivers that service devices that are referenced
through a bus adapter or a DMA controller.

10.3. IoAllocateController

A driver may allocate a controller object and cause its execution routine to be
invoked using the IoAllocateController function:

VOID
IoAllocateController(

IN PCONTROLLER_OBJECT ControllerObject,
IN PDEVICE_OBJECT DeviceObject,
IN PDRIVER_CONTROL ExecutionRoutine,
IN PVOID Context

Windows NT Driver Model Specification 44

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

);

Parameters:

ControllerObject - A pointer to the controller object that represents the

physical device controller to be allocated.

DeviceObject - A pointer to the device object that represents the device on

which the I/O is to be performed.

ExecutionRoutine - The address of a routine to be executed once the controller

has successfully been allocated.

Context - A context parameter to pass to the ExecutionRoutine when it is

invoked.

The routine specified by the ExecutionRoutine parameters has the following type
definition:

typedef
IO_ALLOCATION_ACTION
(*PDRIVER_CONTROL) (

IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID MapRegisterBase,
IN PVOID Context
);

Parameters:

DeviceObject - A pointer to the device object specified as the DeviceObject

parameter in the call to the IoAllocateController function.

Irp - A pointer to the current I/O Request Packet that the device is worked on.

MapRegisterBase - A reserved pointer that should be set to null.

Context - A pointer to be used as context for the routine. This value of this

parameter is the same as the Context parameter in the call to the
IoAllocateController function.

Windows NT Driver Model Specification 45

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The IoAllocateController function allocates the controller specified by the
ControllerObject parameter. The DeviceObject is potentially queued to the controller
object wait queue if the controller is busy.

Once the controller has been allocated, the driver's ExecutionRoutine is invoked.

The execution routine may return a value that indicates whether or not the
controller is to remain allocated to the device. If so, then the driver must
subsequently invoke the appropriate routine to explicitly deallocate it.

This function is used by device drivers that service devices that are referenced
through a physical device controller.

10.4. IoAllocateErrorLogEntry

An error log entry buffer may be allocated using the IoAllocateErrorLogEntry
function:

PVOID
IoAllocateErrorLogEntry(

IN PDEVICE_OBJECT DeviceObject,
IN UCHAR EntrySize
);

Parameters:

DeviceObject - A pointer to the device object to be associated with the error log

entry.

EntrySize - The size of the buffer to be allocated. This value must be less than

the maximum number of bytes in an entry buffer as specified by
ERROR_LOG_MAXIMUM_SIZE.

The IoAllocateErrorLogEntry function allocates an error log entry buffer and
returns a pointer to it. The size of the buffer allocated may be specified by the
EntrySize parameter. This parameter specifies the size in bytes and must be less
than the maximum size of an error log buffer.

The device driver may then fill in the data buffer and use the IoWriteErrorLogEntry
function to post the entry to the error log thread. The device driver may treat the
data as anything it likes provided that it does not overflow the size of the buffer.

Windows NT Driver Model Specification 46

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10.5. IoAllocateIrp

An I/O Request Packet may be allocated and initialized using the IoAllocateIrp
function:

PIRP
IoAllocateIrp(

IN CCHAR StackSize,
IN BOOLEAN ChargeQuota
);

Parameters:

StackSize - Specifies the number of stack locations needed in the IRP. This

value should equal the number of layers in the chain of layered drivers
servicing this request.

ChargeQuota - Specifies whether the current thread should be charged quota

for the pool memory used to allocate the IRP. This flag should only be
specified by system services. File system processes should not charge
quota for associated IRPs used to implement a function.

The IoAllocateIrp function allocates and initializes an I/O Request Packet (IRP). It
allocates the packet so that it contains StackSize stack locations at the end of the
packet for use in layering drivers.

10.6. IoAllocateMdl

An MDL (Memory Descriptor List) may be allocated and initialized using the
IoAllocateMdl function:

PMDL
IoAllocateMdl(

IN PVOID VirtualAddress,
IN ULONG Length,
IN BOOLEAN SecondaryBuffer,
IN BOOLEAN ChargeQuota,
IN OUT PIRP Irp OPTIONAL
);

Parameters:

VirtualAddress - Specifies the base virtual address of the buffer that the MDL

is to describe.

Windows NT Driver Model Specification 47

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Length - Specifies the length of the buffer starting at VirtualAddress that the

MDL is to describe, in bytes.

SecondaryBuffer - Indicates whether this buffer is a primary or secondary

buffer. This determines how the MDL will be linked into the IRP, if
specified. All buffers except for the first buffer described by an MDL in
an IRP are considered secondary buffers.

ChargeQuota - Indicates whether quota should be charged to the current

thread for the non-paged pool that is allocated to contain the MDL.

Irp - Optionally specifies a pointer to an IRP that the MDL is to be associated

with. If this parameter is specified, then the MDL is linked into the
IRP's MDL list according to the value of SecondaryBuffer.

The IoAllocateMdl function allocates and initializes a Memory Descriptor List. The
MDL is allocated in such a way that it can later be used to map the buffer; that is,
there is enough storage to contain the Page Frame Numbers (PFNs) that map the
buffer into physical memory. The PFNs themselves are not initialized. The MDL
header is initialized to describe the specified buffer.

This function is used by the I/O system to map the caller's buffers. It is also used
by any device driver that needs to break a buffer into parts, each mapped by an
MDL, or to map a separate buffer. Mapping a complete buffer may be used to when
a driver is given a pointer to the caller's buffer and needs to lock it, or when it needs
to lock a buffer that the driver has allocated.

10.7. IoAsynchronousPageWrite

The modified page writer can asynchronously write pages of data to the paging file
or to a mapped file using the IoAsynchronousPageWrite function:

NTSTATUS
IoAsynchronousPageWrite(

IN PFILE_OBJECT FileObject,
IN PMDL MemoryDescriptorList,
IN PLARGE_INTEGER StartingOffset,
IN PIO_APC_ROUTINE ApcRoutine,
IN PVOID ApcContext,
OUT PIO_STATUS_BLOCK IoStatusBlock
);

Parameters:

Windows NT Driver Model Specification 48

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FileObject - A pointer to a referenced file object representing the file to write.

MemoryDescriptorList - A Memory Descriptor List (MDL) that describes the

locked-down buffer containing the data to write to the file.

StartingOffset - The starting byte offset where the write operation is to begin.

ApcRoutine - The address of an APC routine that is to be executed once the

I/O operation is complete. This is the only valid synchronization
technique for this type of request.

ApcContext - A value that will be given to the caller's ApcRoutine when it is

invoked.

IoStatusBlock - A variable to receive the final completion status and

information about the write operation. The number of bytes actually
written is returned in the Information field.

The IoAsynchronousPageWrite function gives the Windows NT Modified Page
Writer a quick way of building and starting an I/O request to write data to a file
asynchronously. This allows I/O completion to be short circuited for paging I/O.

The function writes the number of bytes specified by the MDL from the buffer
described by the MDL, beginning at the StartingOffset within the file. The
ApcRoutine is invoked once the operation has completed.

This function is only invoked by the Windows NT Modified Page Writer.

10.8. IoAttachDeviceByName

A device object may be attached to another device object to allow association
between the two using the IoAttachDevice function:

NTSTATUS
IoAttachDevice(

IN PDEVICE_OBJECT SourceDevice,
IN PSTRING TargetDevice
);

Parameters:

SourceDevice - A pointer to the device object that should be attached. This

device object must belong to the calling driver.

Windows NT Driver Model Specification 49

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

TargetDevice - The name of the device that the SourceDevice should be

attached to for servicing.

The IoAttachDevice function allows a device driver to attach a device object to
another device object. This association allows operations given to the lower level
device driver to be given to the device driver for the SourceDevice device object. It
also establishes the layering between drivers so that the same IRP may be used by
all layers. If the device has already been attached to, then this function returns an
appropriate error status.

This service is used by intermediate device drivers. It allows a driver to attach a
device object to another device in such a way that any requests being made to the
original device will now be given to the intermediate device driver's device object.
For example, a file system normally interfaces directly to a disk device driver. This
function allows an intermediate driver, such as a striper driver, to attach itself to
the disk driver's device object such that when the file system attempts to
communicate with the disk driver via its device object, the request will be routed to
the intermediate device driver first.

10.9. IoBuildAsynchronousFsdRequest

A file system driver may build an asynchronous I/O Request Packet for use in
performing a read or a write to another device driver using the
IoBuildAsynchronousFsdRequest function:

PIRP
IoBuildAsynchronousFsdRequest(

IN ULONG MajorFunction,
IN PDEVICE_OBJECT DeviceObject,
IN OUT PVOID Buffer,
IN ULONG Length,
IN PLARGE_INTEGER StartingOffset,
OUT PIO_STATUS_BLOCK IoStatusBlock
);

Parameters:

MajorFunction - The function that the FSD is requesting the lower level driver

to perform. This value must be one of IRP_MJ_READ or IRP_MJ_WRITE.

DeviceObject - A pointer to the device object that represents the target of the

read or the write operation. The device driver for this device will be
invoked with the IRP that this function builds.

Windows NT Driver Model Specification 50

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Buffer - A pointer to a buffer that, on a write contains the data to write, or, on

a read is to receive the data read.

Length - Specifies the length, in bytes, of the data to be read or written. (For

many devices, such as disks, this value must be an integral of 512.)

StartingBlock - Specifies the byte offset that the transfer is to begin. (For

many devices, such as disks, this value must specify a sector
boundary.)

IoStatusBlock - A variable to receive the final status and information from the

operation. The final status will be written to the Status field and the
number of bytes read or written will be contained in the Information
field of this variable once the operation has completed. This variable
must be in a nonpageable page.

The IoBuildAsynchronousFsdRequest function builds an I/O Request Packet (IRP)
that can be given to a device driver to perform an asynchronous read or a write
operation. The IRP contains only enough information to get the operation started
and to complete to the FSD. No other context information is kept track of since the
request is context-independent.

It is up to the FSD to determine when the I/O has completed, if it is interested.
This can be done by setting a completion routine in the returned IRP using the
IoSetCompletionRoutine function.

This function is used by file system drivers operating in a thread-context-
independent manner to issue I/O requests.

10.10. IoBuildFspRequest

A file system process may build an I/O Request Packet for use in performing a read
or a write to another device driver using the IoBuildFspRequest function:

PIRP
IoBuildFspRequest(

IN ULONG MajorFunction,
IN PDEVICE_OBJECT DeviceObject,
IN OUT PVOID Buffer,
IN ULONG Length,
IN PLARGE_INTEGER StartingOffset,
IN PKEVENT Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,

Windows NT Driver Model Specification 51

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock
);

Parameters:

MajorFunction - The function that the FSP is requesting the target device to

perform. This value must be one of IRP_MJ_READ or IRP_MJ_WRITE.

DeviceObject - A pointer to the device object that represents the target of the

read or the write operation. The device driver for this device will be
invoked with the IRP that this function builds.

Buffer - A pointer to a buffer that contains the data to write, or is the location

that is to receive the data read.

Length - Specifies the length, in bytes, of the data to be read or written. (For

many devices, such as disks, this value must be an integral of 512.)

StartingOffset - Specifies the byte offset at which the transfer is to begin. (For

many devices, such as disks, this value must be the start of a sector
boundary.)

Event - An optional pointer to a kernel event that should be set to the

Signaled state once the operation completes.

ApcRoutine - Optionally specifies the address of an APC routine that should be

executed upon completion of the request. This routine is invoked with
the address of the I/O status block and the ApcContext value as its
parameters.

ApcContext - Optionally specifies a context parameter that should be passed

to the ApcRoutine when it is invoked upon completion of the I/O
operation.

IoStatusBlock - A variable to receive the final status and information from the

operation. The final status will be written to the Status field and the
number of bytes read or written will be contained in the Information
field of this variable once the operation has completed.

The IoBuildFspRequest function builds an I/O Request Packet (IRP) that can be
given to a device driver to perform a read or write operation. The IRP closely
resembles an IRP that would be built by the general NtReadFile or NtWriteFile

Windows NT Driver Model Specification 52

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

services. This packet can be modified by the FSP before the FSP invokes the device
driver with the request, if necessary.

Completion of the I/O request occurs as for normal I/O requests, except that this
packet refers to a kernel event, whereas a normal packet refers to an event object.

This function is used by file system processes (FSPs) operating in their own context
and issuing I/O operations on behalf of I/O system users.

10.11. IoBuildPartialMdl

A Memory Descriptor List (MDL) may be built to describe part of a buffer described
by another MDL (i.e., "master") by using the IoBuildPartialMdl function:

VOID
IoBuildPartialMdl(

IN PMDL SourceMdl,
IN OUT PMDL TargetMdl,
IN PVOID VirtualAddress,
IN ULONG Length,
);

Parameters:

SourceMdl - A pointer to the MDL that describes the original buffer, a subset

of which is to be mapped by this function.

TargetMdl - A pointer to an MDL to be filled in that describes the desired

subset of the buffer specified by the SourceMdl parameter. The MDL
must be large enough to contain the PFNs required to map the subset
buffer.

VirtualAddress - Specifies the base virtual address of the TargetMdl buffer to

be mapped; this value must be contained within the buffer mapped by
the SourceMdl.

Length - Specifies the length in bytes to be mapped by the TargetMdl; this

value in combination with that of VirtualAddress must specify a buffer
that is a proper subset of the SourceMdl buffer. If specified as zero,
then the function maps the remainder of the SourceMdl buffer, starting
at VirtualAddress, as the TargetMdl.

The IoBuildPartialMdl function maps a subset of a buffer that is currently mapped
by the SourceMdl. The VirtualAddress and Length parameters describe the mapped

Windows NT Driver Model Specification 53

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

subset. The descriptor to map the specified subset is written to the TargetMdl. If a
length of zero is specified, then the remainder of the specified buffer is mapped
starting at VirtualAddress. See section 4.4, Splitting Transfers, for an overview of
how this function is used.

10.12. IoBuildSynchronousFsdRequest

A file system driver may build a synchronous I/O Request Packet for use in
performing a read or a write to another device driver using the
IoBuildSynchronousFsdRequest function:

PIRP
IoBuildSynchronousFsdRequest(

IN ULONG MajorFunction,
IN PDEVICE_OBJECT DeviceObject,
IN OUT PVOID Buffer,
IN ULONG Length,
IN PLARGE_INTEGER StartingOffset,
IN PKEVENT Event,
OUT PIO_STATUS_BLOCK IoStatusBlock
);

Parameters:

MajorFunction - The function that the FSD is requesting the lower level driver

to perform. This value must be one of IRP_MJ_READ or IRP_MJ_WRITE.

DeviceObject - A pointer to the device object that represents the target of the

read or the write operation. The driver for this device will be invoked
with the IRP that this function builds.

Buffer - A pointer to a buffer that contains the data to write, or is the location

that is to receive the data read.

Length - Specifies the length, in bytes, of the data to be read or written. (For

many devices, such as disks, this value must be an integral of 512.)

StartingOffset - Specifies the byte offset that the transfer is to begin. (For

many devices, such as disks, this value must specify the start of a
sector boundary.)

Event - A pointer to a kernel event that is to be set to the Signaled state once

the operation completes.

Windows NT Driver Model Specification 54

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

IoStatusBlock - A variable to receive the final status and information from the
operation. The final status will be written to the Status field and the
number of bytes read or written will be contained in the Information
field of this variable once the operation has completed. This variable
must be in a nonpageable page.

The IoBuildSynchronousFsdRequest function builds an I/O Request Packet (IRP)
that can be given to a device driver to perform a synchronous read or write
operation. The IRP contains only enough information to get the operation started
and to complete to the FSD.

It is up to the FSD to determine when the I/O has completed by waiting on the
Event. It should be noted that performing the wait operation causes the current
thread to wait. Therefore this operation should be used during initialization of the
driver or when the I/O being performed is synchronous.

10.13. IoCallDriver

The I/O system or a layered driver may invoke a driver at its major function entry
using the IoCallDriver function:

NTSTATUS
IoCallDriver(

IN PDEVICE_OBJECT DeviceObject,
IN OUT PIRP Irp
);

Parameters:

DeviceObject - A pointer to the device object upon which the I/O request is to

be performed. The Irp is given to the driver that is servicing the device.

Irp - A pointer to the I/O Request Packet that represents the request to be

performed.

The IoCallDriver function invokes a driver's major function routine according to the
IRP function code. The driver that is called is the one that is servicing the device
specified by DeviceObject. The IRP specified by Irp is passed to the driver at its
appropriate entry point.

This function is used by I/O system services and layered drivers.

Once this function has been invoked the IRP is no longer accessible to the
driver.

Windows NT Driver Model Specification 55

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10.14. IoCancelThreadIo

All pending I/O operations for a given thread may be canceled by using the
IoCancelThreadIo function:

VOID
IoCancelThreadIo(

IN PETHREAD Tcb
);

Parameters:

Tcb - A pointer to the Thread Control Block for the thread whose pending I/O

operations should be canceled.

The IoCancelThreadIo function chases all of the pending I/O requests for the
specified thread and cancels each one. Some requests may already be in a state of
being completed and these are allowed to complete. Pending operations that are not
in a state of being completed are canceled if they can be. Most of the operations
that would normally occur during I/O completion, such as unlocking buffers and
dereferencing events, are performed so that thread rundown occurs properly.

This function is used by the executive during thread rundown.

10.15. IoCheckDesiredAccess

A driver can check whether a desired access is permitted to a file using the
IoCheckDesiredAccess function:

NTSTATUS
IoCheckDesiredAccess(

IN OUT PACCESS_MASK DesiredAccess,
IN ACCESS_MASK GrantedAccess
);

Parameters:

DesiredAccess - Supplies a pointer to the access mask that represents the
type of access to the file that is desired.

GrantedAccess - Supplies the access mask that represents the access already

granted to the file.

Windows NT Driver Model Specification 56

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The IoCheckDesiredAccess function checks whether or not the caller has the
desired access rights to a file based on the current granted access mask. If not,
then an access denied error status is returned. Otherwise, a successful status is
returned and the DesiredAccess variable is overwritten with an expanded
representation of the actual access desired. That is, all generic accesses to the file
are expanded to individual access bits.

This function is used as a security filter by kernel mode components that are
accessing files for user mode clients. Since no access checks are made for kernel
mode requests, a server system needs a way of determining whether or not its client
has the appropriate access to perform a given function on the file. The
IoCheckDesiredAccess routine is used to provide this functionality.

10.16. IoCheckFunctionAccess

A driver can check whether an operation is permitted to a file using the
IoCheckFunctionAccess function:

NTSTATUS
IoCheckFunctionAccess(

IN ACCESS_MASK GrantedAccess,
IN UCHAR MajorFunction,
IN UCHAR MinorFunction,
IN PFILE_INFORMATION_CLASS FileInformationClass OPTIONAL,
IN PFS_INFORMATION_CLASS FsInformationClass OPTIONAL
);

Parameters:

GrantedAccess - Supplies the access mask that represents the access granted
to the file.

MajorFunction - Supplies the IRP major function code that represents the

operation to be performed on the file.

MinorFunction - Supplies the IRP minor function code that represents the

operation to be performed on the file, if any.

FileInformationClass - Supplies the file information class for the set or query

operation to be performed on the file. This parameter is optional if the
function code does not specify a set or query operation.

Windows NT Driver Model Specification 57

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FsInformationClass - Supplies the file system information class for the set or
query volume operation to be performed. This parameter is optional if
the function code does not specify a set or query volume operation.

The IoCheckFunctionAccess function checks whether or not the caller has the
access rights to a file to perform a specific function given his granted access. If not,
then an access denied error status is returned. Otherwise, a successful status is
returned.

This function is used as a security filter by kernel mode components that are
accessing files for user mode clients. Since no access checks are made for kernel
mode requests, a server system needs a way of determining whether or not its client
has the appropriate access to perform a given function on the file. The
IoCheckFunctionAccess routine is used to provide this functionality.

10.17. IoCheckShareAccess

A file system may check whether shared access is permitted to a file using the
IoCheckShareAccess function:

NTSTATUS
IoCheckShareAccess(

IN ACCESS_MASK DesiredAccess,
IN ULONG DesiredShareAccess,
IN OUT PFILE_OBJECT FileObject,
IN OUT PSHARE_ACCESS ShareAccess
IN BOOLEAN Update
);

Parameters:

DesiredAccess - Supplies the types of access that the current open request
would like to the file. This parameter is generally the same
DesiredAccess parameter given to the file system by the I/O system
when the open request is made via the create file IRP.

DesiredShareAccess - Supplies the types of shared access that the current

open request would like to the file. This parameter is generally the
same ShareAccess parameter given to the file system by the I/O system
when the open request is made via the create file IRP.

FileObject - A pointer to the file object for the current open request.

Windows NT Driver Model Specification 58

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ShareAccess - A pointer to the common share access data structure
associated with the file being opened. This structure is treated as an
opaque type by drivers.

Update - Supplies a BOOLEAN value indicating whether the share access

information for the file is to be updated if the open request is permitted.

The IoCheckShareAccess function checks a file open request to determine if the
types of desired and shared accesses specified are compatible with the way in which
the file is currently being accessed by other opens of the file.

File systems maintain state about files through structures called File Control Blocks
(FCBs). The SHARE_ACCESS is a structure that describes how the file is currently
accessed by all opens. It is contained in the FCB as part of the open file state.

If the requestor's access to the file is compatible with the way in which the file is
currently open, a status of STATUS_SUCCESS is returned and the SHARE_ACCESS
information for the file is updated according to the Update parameter. If the file
request is denied because of a file sharing violation, then a status of
STATUS_SHARING_VIOLATION is returned.

This function is used by file systems, after ensuring that the requestor has access to
the file, to determine whether or not the open request can be satisfied according to
the Windows NT file sharing semantics.

10.18. IoCompleteRequest

The processing for an I/O request may be declared complete using the
IoCompleteRequest function:

VOID
IoCompleteRequest(

IN PIRP Irp,
IN CCHAR PriorityBoost
);

Parameters:

Irp - A pointer to the I/O Request Packet that represents the I/O operation to

be completed.

PriorityBoost - Specifies the amount of priority boost the requesting thread

should be given when the special kernel APC is queued to it for I/O
completion.

Windows NT Driver Model Specification 59

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The IoCompleteRequest function "completes" an I/O operation for the request
packet that represents it. Completing an operation involves notifying all drivers in
the IRP stack that the I/O operation has completed, provided that they would like to
know (that is, they invoked the IoSetCompletionRoutine function to set the
address of a completion routine). It also involves unlocking the caller's buffers,
posting the event if one was specified, queueing the APC to the requesting thread if
one was specified, as well as other operations.

This function must be invoked at DISPATCH_LEVEL.

This function is used by drivers to indicate that the I/O operation has completed
and the driver is finished with its processing.

10.19. IoCreateController

A driver can create a controller object using the IoCreateController function:

PDEVICE_OBJECT
IoCreateController(

);

Parameters:

None.

The IoCreateController function allocates and initializes a controller object for use
by a driver. The controller object is used to synchronize access to various hardware
devices connected to the controller hardware. For more information on controller
objects and how they are used see the Driver Model Description section of this
document.

10.20. IoCreateDevice

A driver can create a device object using the IoCreateDevice function:

PDEVICE_OBJECT
IoCreateDevice(

IN PDRIVER_OBJECT DriverObject,
IN ULONG DeviceExtension,
IN PSTRING DeviceName OPTIONAL,
IN DEVICETYPE DeviceType,
IN BOOLEAN Exclusive
);

Windows NT Driver Model Specification 60

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Parameters:

DriverObject - Supplies a pointer to the driver object created by the I/O

system when the driver was loaded. This object indicates which driver
is to be associated with the device object being created.

DeviceExtension - The size, in bytes, of any extension that should be allocated

beyond the end of the I/O system's notion of the device object. This
part of the device object can be used by the device driver to contain
context information or a communication region for use in
communicating between an FSD and an FSP.

DeviceName - An optional pointer to a string that describes the name of the

device that the device object represents. This name is associated with
the device object and inserted in the object directory hierarchy.

DeviceType - The type of the device that the device object represents. The

values for this parameter must have the same representation and
meaning that they have in the NtQueryInformationFile system service.

Exclusive - Indicates that this device is created as an exclusive device; that is,

once the device object is "opened" by one process, no other processes
may open the device.

The IoCreateDevice function allocates and initializes a device object for use by a
driver. The object is a permanent object, is exclusive if the Exclusive parameter is
TRUE, and is "owned" by the device driver associated with the DriverObject
parameter. The device object is also linked into the I/O database in such a way that
if the driver is unloaded, all of its device objects can be found.

Device objects for disks, tapes, CD ROMs, and RAM disks are given a Volume
Parameter Block (VPB) that is initialized to indicate that the volume has never been
mounted on the device.

A device driver may use the DeviceExtension parameter to cause storage to be
allocated at the end of the device object. This storage, located by the
DeviceExtension field in the device object, may be used by the device driver to keep
device-specific context information.

This function must be invoked by each driver to create one or more device objects;
otherwise the driver cannot be located by the I/O system.

Windows NT Driver Model Specification 61

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10.21. IoCreateFile

The I/O system or a driver can create or open a file using the IoCreateFile function:

NTSTATUS
IoCreateFile(

OUT PHANDLE FileHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PLARGE_INTEGER AllocationSize OPTIONAL,
IN ULONG FileAttributes,
IN ULONG ShareAccess,
IN HANDLE ErrorPort OPTIONAL,
IN ULONG Disposition,
IN ULONG Options,
IN PVOID EaBuffer OPTIONAL,
IN ULONG EaLength,
IN BOOLEAN ForceAccessCheck,
IN BOOLEAN PagingFileOpen
);

Parameters:

FileHandle - A variable to receive the handle to the file.

DesiredAccess - Specifies the type of access that the caller requires to the file.

See the NtCreateFile description in the Windows NT I/O System
Specification for more information.

ObjectAttributes - A pointer to a structure that specifies the name of the file, a

root directory, a security descriptor, a quality of service descriptor, and
a set of file object attributes flags. See the NtCreateFile description in
the Windows NT I/O System Specification for more information.

IoStatusBlock - A variable to receive the final completion status and

information about the operation. The actual action taken by the system
is written to the Information field of this variable.

AllocationSize - Optionally specifies the initial allocation size of the file in

bytes. The size has no effect unless the file is created, overwritten, or
superseded.

Windows NT Driver Model Specification 62

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FileAttributes - Specifies the file attributes for the file. See the NtCreateFile
description in the Windows NT I/O System Specification for more
information.

ShareAccess - Specifies the type of share access that the caller would like to

the file. See the NtCreateFile description in the Windows NT I/O
System Specification for more information.

ErrorPort - Optionally specifies a handle to an open port to be RPC'd to if an

error such as "the wrong volume is in the drive" occurs. If a handle is
specified, the caller must have PORT_READ and PORT_WRITE access
to the port.

CreateDisposition - Specifies the actions to be taken if the file does or does not

already exist. See the NtCreateFile description in the Windows NT I/O
System Specification for more information.

CreateOptions - Specifies the options that should be used when creating or

opening the file. See the NtCreateFile description in the Windows NT
I/O System Specification for more information.

EaBuffer - Optionally specifies a list of EAs that should be set on the file if it is

created. This is done as an atomic operation. That is, if an error
occurs setting the EAs on the file, then the file will not be created.

EaLength - Supplies the length of the EaBuffer. If no buffer is supplied then

this value should be zero.

ForceAccessCheck - Indicates whether access checking should be forced even

though the caller's previous mode is kernel. If TRUE, then access
checking will be performed.

PagingFileOpen - Indicates whether a paging file is being opened by the

Modified Page Writer. Special handling is performed in some file
systems when a paging file is being opened.

The IoCreateFile function is used by the I/O system to implement the NtCreateFile
and NtOpenFile system services. It is also used by those kernel components that
require special processing such as forcing access checks, or opening a paging file.

Each of the parameters to this function are syntactically and semantically the same
as those specified in the NtCreateFile system service. The only differences between
this function and the system service are the final two parameters.

Windows NT Driver Model Specification 63

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10.22. IoCreateStreamFile

A file system can create a stream file object using the IoCreateStreamFile function:

PFILE_OBJECT
IoCreateStreamFile(

IN PFILE_OBJECT FileObject OPTIONAL,
IN PDEVICE_OBJECT DeviceObject OPTIONAL
);

Parameters:

FileObject - A pointer to a file object that the stream file object is to be

modeled after. This parameter is optional if the DeviceObject parameter
is specified.

DeviceObject - A pointer to device object representing the physical device on

which the stream file is being opened. This parameter is optional if the
FileObject parameter is specified.

The IoCreateStreamFile function creates a stream file object that can be used to
cache a stream of a file other than the data of the file. This function is used by file
systems to represent those parts of the on-disk structure that are not included in
proper files.

10.23. IoDeallocateAdapterChannel

A driver can explicitly deallocate an adapter channel using the
IoDeallocateAdapterChannel function:

VOID
IoDeallocateAdapterChannel(

IN PADAPTER_CHANNEL AdapterObject
);

Parameters:

AdapterObject - A pointer to the adapter object representing the adapter

channel to be deallocated.

The IoDeallocateAdapterChannel function frees an adapter channel that was
previously allocated using the IoAllocateAdapterChannel function. If any map
registers were allocated, then they are deallocated as well.

Windows NT Driver Model Specification 64

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This function is used by a device driver to allocate an adapter channel and/or map
registers because the device it services is referenced through a bus adapter or a
DMA controller.

10.24. IoDeallocateController

A driver may explicitly deallocate a controller object using the
IoDeallocateController function:

VOID
IoDeallocateController(

IN PCONTROLLER_OBJECT ControllerObject
);

Parameters:

ControllerObject - A pointer to the controller object that is to be deallocated.

The IoDeallocateController function frees a controller object that was previously
allocated using the IoAllocateController function.

This function is used by a device driver to allocate a controller because the device it
services is referenced through a device controller.

10.25. IoDeallocateIrp

An I/O Request Packet may be deallocated using the IoDeallocateIrp function:

VOID
IoDeallocateIrp(

IN PIRP Irp
);

Parameters:

Irp - A pointer to the I/O Request Packet to be deallocated.

The IoDeallocateIrp function deallocates the specified IRP.

This function is used by the I/O system to deallocate IRPs once all of the processing
for the request has been completed. It is also possible, in some cases, for a file
system process to use this service to dispose of associated IRPs that the FSP created
to implement a request.

Windows NT Driver Model Specification 65

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10.26. IoDeleteController

A controller object can be deleted using the IoDeleteController function:

VOID
IoDeleteController(

IN PCONTROLLER_OBJECT Controller
);

Parameters:

Controller - A pointer to the controller object to delete.

The IoDeleteController function deletes a controller object. This function is
invoked when a device driver is unloading. It is an error to attempt to delete a
controller object if it is owned by a device object or if a device object is currently
waiting to allocate the controller.

10.27. IoDeallocateMdl

A Memory Descriptor List (MDL) may be deallocated using the IoDeallocateMdl
function:

VOID
IoDeallocateMdl(

IN PMDL Mdl
);

Parameters:

Mdl - A pointer to the MDL to be deallocated.

The IoDeallocateMdl function deallocates an MDL that was previously allocated
through the IoAllocateMdl function. The function frees the storage for the MDL
back to the MDL pool from which it was allocated.

This function is used by the I/O system completion code as well as by any drivers
that perform their own local buffer management.

10.28. IoDeleteDevice

A driver can delete a device object using the IoDeleteDevice function:

Windows NT Driver Model Specification 66

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
IoDeleteDevice(

IN PDEVICE_OBJECT DeviceObject
);

Parameters:

DeviceObject - A pointer to the device object that is to be deleted.

The IoDeleteDevice function marks a device object for deletion as soon as its
reference count is decremented to zero. No other references may be established to
the object once it is marked for deletion; it is treated as if the object does not exist.

This function is invoked by a device driver to delete its device objects when the
driver is being unloaded.

10.29. IoDeregisterFileSystem

A file system may deregister itself as an active file system using the
IoDeregisterFileSystem function:

VOID
IoDeregisterFileSystem(

IN OUT PDEVICE_OBJECT DeviceObject
);

Parameters:

DeviceObject - A pointer to the device object for the file system.

The IoDeregisterFileSystem function causes the file system specified by the
DeviceObject to be deregistered as an active file system. This is done by simply
removing the specified device object from the list of active file systems.

This function is invoked by a registered file system (see IoRegisterFileSystem)
when the driver for the file system is being unloaded.

10.30. IoDetachDevice

A driver may use the IoDetachDevice function to detach one device object from
another device object:

VOID
IoDetachDevice(

Windows NT Driver Model Specification 67

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

IN OUT PDEVICE_OBJECT TargetDevice
);

Parameters:

TargetDevice - A pointer to the target device object that is to be detached from

by the device that is servicing it.

The IoDetachDevice function detaches the device that is currently attached to the
specified TargetDevice. This function disassociates two devices previous attached to
each other with the IoAttachDevice function.

This function is invoked by intermediate drivers when they are unloading or when
they have been told to stop servicing a device.

10.31. IoFlushAdapterBuffers

A driver can flush the buffers of an I/O adapter using the IoFlushAdapterBuffers
function:

VOID
IoFlushAdapterBuffers(

IN PADAPTER_OBJECT AdapterObject
);

Parameters:

AdapterObject - A pointer to the adapter object representing the adapter

whose buffers are to be flushed.

The IoFlushAdapterBuffers function is used to flush any remaining data in the I/O
adapter's buffers. This function must be invoked at the end of each data transfer by
all device drivers that deal with devices attached to the adapter.

10.32. IoGetAttachedDevice

The I/O system or a driver may obtain a pointer to the highest level device attached
to a specific device object using the IoGetAttachedDevice function:

PDEVICE_OBJECT
IoGetAttachedDevice(

IN PDEVICE_OBJECT DeviceObject
);

Windows NT Driver Model Specification 68

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Parameters:

DeviceObject - A pointer to the device for which the highest level attached

device object is to be returned.

The IoGetAttachedDevice function returns the highest level device attached to a
specified device object. That is, it follows all of the links of the devices that are
attached to the specified device. This allows the I/O system or a driver to pass a
request to the highest level driver associated with a device. If no devices are
attached to the specified device object, then a pointer to the specified device object
is returned.

This function is invoked by the I/O system and drivers to determine what driver an
IRP should be passed to.

10.33. IoGetCurrentIrpStackLocation

A driver can obtain a pointer to the current stack location in an I/O Request Packet
(IRP) using the IoGetCurrentIrpStackLocation function:

PIO_STACK_LOCATION
IoGetCurrentIrpStackLocation(

IN PIRP Irp
);

Parameters:

Irp - A pointer to the I/O Request Packet that contains the stack location

whose address is to be returned.

The IoGetCurrentIrpStackLocation function returns a pointer to the current stack
location in the specified IRP. This location contains the function codes, parameters,
and I/O system information that describe the operation being requested to the
driver.

This function is invoked by all device drivers to determine the operation to perform,
as well as to determine the parameters, if any, that have been specified for the
operation.

10.34. IoGetNextIrpStackLocation

A driver may obtain a pointer to the next stack location in an I/O Request Packet
(IRP) using the IoGetNextIrpStackLocation function:

Windows NT Driver Model Specification 69

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

PIO_STACK_LOCATION
IoGetNextIrpStackLocation(

IN PIRP Irp
);

Parameters:

Irp - A pointer to the I/O Request Packet that contains the stack location

whose address is to be returned.

The IoGetNextIrpStackLocation function returns a pointer to the next stack
location in the specified IRP. This allows the current device driver to pass
parameter and function code information to the next level driver using the same
packet with which the current driver was invoked.

This function is invoked by all device drivers that pass IRPs to lower level drivers to
pass function and parameter information. Note that even if the parameters are
exactly the same, they must still be placed into the next driver's stack location since
it will automatically look for them there.

10.35. IoGetRelatedDeviceObject

The device object referred to by a file object can be obtained using the
IoGetRelatedDeviceObject function:

PDEVICE_OBJECT
IoGetRelatedDeviceObject(

IN PFILE_OBJECT FileObject
);

Parameters:

FileObject - A pointer to the file object whose related device object is returned.

The IoGetRelatedDeviceObject function returns a pointer to the device object that
a file object refers to after all device object links have been chased.

This function is used by the I/O system and by any device driver that needs to
determine the highest level device object to which a file object refers.

10.36. IoGetRequestorProcess

A driver may obtain a pointer to the process that originally made an I/O request
using the IoGetRequestorProcess function:

Windows NT Driver Model Specification 70

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

PEPROCESS
IoGetRequestorProcess(

IN PIRP Irp
);

Parameters:

Irp - A pointer to the I/O Request Packet representing the request whose

originator process is returned.

The IoGetRequestorProcess function allows a driver to obtain a pointer to the
process data structure for the originator of a specified I/O request. This function is
useful to file systems in keeping track of which processes own locks.

This function is used by file systems to keep track of lock owners and processes that
have associated events with pipes.

10.37. IoInitializeDpcRequest

A device driver may initialize its device object's DPC using the
IoInitializeDpcRequest function:

VOID
IoInitializeDpcRequest(

IN PDEVICE_OBJECT DeviceObject,
IN PIO_DPC_ROUTINE DpcRoutine
);

Parameters:

DeviceObject - A pointer to the device object that contains the DPC entry that

is to be initialized.

DpcRoutine - The address of a routine that is to be invoked at

DISPATCH_LEVEL when the Deferred Procedure Call entry is removed
from the DPC queue by the kernel.

The routine specified by the DpcRoutine parameter has the following type definition:

typedef
VOID
(*PIO_DPC_ROUTINE) (

Windows NT Driver Model Specification 71

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

IN PKDPC Dpc,
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID Context
);

Parameters:

Dpc - A pointer to the kernel DPC used to represent the call to this procedure.

This parameter is ignored by device drivers.

DeviceObject - A pointer to the device object whose request needs servicing.

This is the same device object as specified in the
IoInitializeDpcRequest and IoRequestDpc I/O system calls.

Irp - A pointer to the I/O Request Packet that needs to be serviced. This is

generally the reason that the DPC was requested in the first place.

Context - A pointer to whatever context is required by the device driver.

The IoInitializeDpcRequest function is used by the device driver's initialization
routine to initialize the DPC in the device driver's device object so that the DPC can
be used later to submit DPC requests. This allows the driver's interrupt service
routine to request a DPC through the IoRequestDpc interface without having to
initialize the DPC at device IRQL.

10.38. IoInitializeTimer

A device driver timer may be initialized using the IoInitializeTimer function:

VOID
IoInitializeTimer(

IN PDEVICE_OBJECT DeviceObject,
IN PIO_TIMER_ROUTINE TimerRoutine
);

Parameters:

DeviceObject - A pointer to the device object that contains the timer to be

used.

TimerRoutine - Specifies the timer routine that is to be invoked once every

second with a pointer to the counter associated with the device object.

Windows NT Driver Model Specification 72

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The routine specified by the TimerRoutine parameter has the following type
definition:

typedef
VOID
(*PIO_TIMER_ROUTINE) (

IN PDEVICE_OBJECT DeviceObject,
IN PLONG TimerCounter
);

Parameters:

DeviceObject - A pointer to the device object with which the timer counter is

associated.

TimerCounter - A pointer to the timer counter associated with the device

object.

The IoInitializeTimer function sets up a timer that expires once every second.
Each time the timer expires, the system invokes the routine specified by the
TimerRoutine parameter. The timer is actually started using the IoStartTimer
function.

10.39. IoIsOperationSynchronous

A driver can determine whether an I/O operation is synchronous using the
IoIsOperationSynchronous function:

BOOLEAN
IoIsOperationSynchronous(

IN PIRP Irp
);

Parameters:

Irp - Pointer to the I/O Request Packet for the operation to be checked.

The IoIsOperationSynchronous function checks whether the I/O request
represented by the specified IRP is synchronous and returns a BOOLEAN value of
TRUE if it is synchronous.

This function is used by drivers to determine whether an operation is synchronous
and therefore whether or not the requestor's thread may be used by the driver to
perform the I/O operation.

Windows NT Driver Model Specification 73

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10.40. IoMakeAssociatedIrp

An associated I/O Request Packet can be allocated and initialized using the
IoMakeAssociatedIrp function:

PIRP
IoMakeAssociatedIrp(

IN PIRP Irp,
IN CCHAR StackSize
);

Parameters:

Irp - Pointer to the master I/O Request Packet with which the new packet

should be associated.

StackSize - Specifies the number of stack locations needed in the IRP. This

value should equal the number of layers in the chain of layered drivers
servicing this request.

The IoMakeAssociatedIrp allocates and initializes an I/O Request Packet and
associates it with a master packet. The count in the master packet should already
have been set by the caller to the number of packets to be associated with it. The
number of stack locations to be allocated for the associated IRP is specified by the
StackSize parameter.

10.41. IoMapTransfer

A DMA I/O transfer may be mapped through an adapter or DMA controller using
the IoMapTransfer function:

VOID
IoMapTransfer(

IN PADAPTER_OBJECT AdapterObject,
IN PMDL Mdl,
IN PVOID MapRegisterBase,
IN PVOID CurrentVa,
IN ULONG Length,
IN BOOLEAN WriteToDevice
);

Parameters:

Windows NT Driver Model Specification 74

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

AdapterObject - A pointer to the adapter object representing the adapter or
DMA controller where the map registers reside.

Mdl - A pointer to a Memory Descriptor List (MDL) that maps the locked-down

buffer to/from which the I/O is to take place.

MapRegisterBase - A pointer to the base of the map registers in the adapter or

DMA controller. This value is passed to the driver's ExecutionRoutine
when the adapter object and map registers have been allocated by the
IoAllocateAdapterChannel function.

CurrentVa - A pointer to the current virtual address in the buffer described by

the Mdl where the I/O operation is to take place.

Length - Supplies the length of the transfer to map.

WriteToDevice - Supplies a BOOLEAN value that indicates that the direction of

the data transfer is to the device.

The IoMapTransfer function loads the appropriate map registers in the adapter or
DMA controller to cause the I/O operation to map to the appropriate memory
locations described by the Mdl, CurrentVa, and Length parameters.

This function is used by device drivers to map DMA I/O to the appropriate memory
buffer.

10.42. IoPageRead

The pager can read pages of data from the paging file or from a mapped file using
the IoPageRead function:

NTSTATUS
IoPageRead(

IN PFILE_OBJECT FileObject,
IN PMDL MemoryDescriptorList,
IN PLARGE_INTEGER StartingOffset,
IN PKEVENT Event,
OUT PIO_STATUS_BLOCK IoStatusBlock
);

Parameters:

FileObject - A pointer to a referenced file object representing the file to be read.

Windows NT Driver Model Specification 75

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

MemoryDescriptorList - A Memory Descriptor List (MDL) that describes the
locked-down buffer into which data from the file is to be read.

StartingOffset - The starting byte offset within the specified file where the read

operation is to begin.

Event - A pointer to a kernel event that should be set to the Signaled state

once the I/O operation is complete. This is the only valid
synchronization technique for this type of request.

IoStatusBlock - A variable to receive the final completion status and

information for the read operation. The number of bytes actually read
is returned in the Information field.

This variable must be locked into memory so that it cannot move until
the I/O is complete.

The IoPageRead function gives the Windows NT Pager a quick way of building and
starting an I/O request to read data from a file. This allows I/O completion to be
short circuited so that no APCs or pagefaults occur while attempting to complete a
page read operation.

The function reads the number of bytes specified by the MDL into the buffer
described by the MDL, beginning at the StartingBlock within the file. The Event is
set to the Signaled state once the operation has completed.

This function is only invoked by the Windows NT Pager.

10.43. IoQueryInformation

Information about a file object may be obtained using the IoQueryInformation
function:

NTSTATUS
IoQueryInformation(

IN PFILE_OBJECT FileObject,
IN FILE_INFORMATION_CLASS FileInformationClass,
IN ULONG Length,
OUT PVOID FileInformation,
OUT PULONG ReturnedLength
);

Parameters:

Windows NT Driver Model Specification 76

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FileObject - A pointer to the file object for which information is to be returned.

FileInformationClass - The file information class of the type of information that

is to be returned.

Length - The length of the FileInformation buffer, in bytes.

FileInformation - A buffer to receive the returned information about the file.

ReturnedLength - A variable to receive the length of the information returned

in the FileInformation buffer.

The IoQueryInformation function returns information about a file according to the
type of information requested. The types of information that can be requested are
defined by the FILE_INFORMATION_CLASS data type.

This function performs the same basic function as the NtQueryInformationFile
system service, but uses a pointer to a file object rather than a handle interface. It
must be invoked from kernel mode. It is also used by the NtQueryObject object
system service to obtain the size of an ACL for a file.

10.44. IoRegisterFileSystem

A file system driver may register itself as an active file system using the
IoRegisterFileSystem function:

VOID
IoRegisterFileSystem(

IN OUT PDEVICE_OBJECT DeviceObject
);

Parameters:

DeviceObject - A pointer to the device object that represents the file system.

The IoRegisterFileSystem function registers a driver as an active file system. This
is accomplished by placing the file system's DeviceObject into a LIFO-ordered list of
file systems to be searched when a file system is needed to service a device.

This function is invoked by each file system driver. The file systems are placed in
various queues depending on the type of file system. For example, disk file systems
are placed in a queue that is searched whenever a disk media is to be automatically

Windows NT Driver Model Specification 77

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

mounted. Each disk file system driver is queried in turn to determine whether or
not the driver recognizes the on-disk structure.

10.45. IoRemoveShareAccess

A file's share access information may be removed for a given open instance using
the IoRemoveShareAccess function:

VOID
IoRemoveShareAccess(

IN PFILE_OBJECT FileObject,
IN OUT PSHARE_ACCESS ShareAccess
);

Parameters:

FileObject - A pointer to the file object for the current open request.

ShareAccess - A pointer to the common share access data structure

associated with the file being closed.

The IoRemoveShareAccess function removes the share access information for the
file being closed as described by the FileObject parameter. This updates how the file
is currently being accessed.

When a file is being closed, the file system uses the IoRemoveShareAccess
function to update how the file is currently opened. This function updates the
SHARE_ACCESS structure according to how the file was opened by the specified file
object. It is unnecessary to call this function for the last close request on the file.
That is, if the file is only accessed through the single, specified file object, the file
system need not invoke this function to update the share access information for
that file.

10.46. IoRequestDpc

A DPC routine can be queued by using the IoRequestDpc function:

VOID
IoRequestDpc(

IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID Context
);

Windows NT Driver Model Specification 78

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Parameters:

DeviceObject - A pointer to the device object that represents the device for

which I/O was requested.

Irp - A pointer to an I/O Request Packet that the DPC routine is to service.

This pointer is passed to the driver's DPC routine as one of its
arguments.

Context - Supplies a pointer to whatever context the interrupt service routine

would like to pass to the DPC routine. This pointer is passed to the
driver's DPC routine as one of its arguments.

The IoRequestDpc function requests that the DPC routine associated with the
DeviceObject be invoked at DISPATCH_LEVEL and passed a pointer to the
DeviceObject, a pointer to the Irp, and the Context parameter. The device object's
DPC entry must have been initialized using the IoInitializeDpcRequest I/O
function.

10.47. IoSendMessage

A terminal driver may send an "unsolicited input" message to a message port using
the IoSendMessage function:

VOID
IoSendMessage(

IN PSTRING DestinationPort,
IN PSTRING TerminalName
);

Parameters:

DestinationPort - The name of the port to which the message is sent.

TerminalName - The name of the terminal on which the unsolicited input

occurred.

The IoSendMessage function allocates a datagram and sends it to the
DestinationPort. The datagram contains a message that indicates that unsolicited
input occurred on the terminal specified by the TerminalName parameter.

This function is invoked by terminal drivers when unsolicited input is encountered
to give the system notification that perhaps a user is attempting to log on.

Windows NT Driver Model Specification 79

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10.48. IoSetCompletionRoutine

A driver may set a completion routine address and a context parameter in an I/O
Request Packet (IRP) stack location using the IoSetCompletionRoutine function:

VOID
IoSetCompletionRoutine(

IN PIRP Irp,
IN PIO_COMPLETION_ROUTINE CompletionRoutine,
IN PVOID Context,
IN BOOLEAN InvokeOnSuccess,
IN BOOLEAN InvokeOnError,
IN BOOLEAN InvokeOnCancel
);

Parameters:

Irp - A pointer to the IRP that contains the stack location in which the

completion routine is set.

CompletionRoutine - The address of a completion routine to be executed upon

completion of the I/O request.

Context - A context parameter that is passed to the completion routine. The

driver can use this parameter for any context that it needs.

InvokeOnSuccess - Indicates that the completion routine is to be invoked if the

I/O operation completes successfully.

InvokeOnError - Indicates that the completion routine is to be invoked if the

I/O operation completed with an error.

InvokeOnCancel - Indicates that the completion routine is to be invoked if the

I/O operation is being canceled.

The routine specified by the CompletionRoutine has the following type definition:

typedef
NTSTATUS
(*PIO_COMPLETION_ROUTINE) (

IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID Context
);

Windows NT Driver Model Specification 80

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Parameters:

DeviceObject - Supplies a pointer to the device driver's device object.

Irp - Supplies a pointer to the I/O Request Packet.

Context - Supplies the value of the Context parameter specified in the call to

the IoSetCompletionRoutine function.

The IoSetCompletionRoutine stores the address of the completion routine into the
current IRP so that when the operation completes the driver can be invoked. If the
driver does not wish to be invoked for any of the above reasons, then it need not
perform any function calls.

This function is invoked by any layered driver that wishes to be notified when an
I/O operation that it has passed to a lower level driver completes.

10.49. IoSetShareAccess

A file's share access information may be set using the IoSetShareAccess function:

VOID
IoSetShareAccess(

IN ACCESS_MASK DesiredAccess,
IN ULONG DesiredShareAccess,
IN OUT PFILE_OBJECT FileObject,
OUT PSHARE_ACCESS ShareAccess
);

Parameters:

DesiredAccess - Supplies the types of access that the current open request

would like to the file. This is the same desired access parameter given
to the file system by the I/O system when the open request is made.

DesiredShareAccess - Supplies the types of shared access that the current

open request would like to the file. This is the same shared access
parameter given to the file system by the I/O system when the open
request is made.

FileObject - A pointer to the file object for the current open request.

Windows NT Driver Model Specification 81

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ShareAccess - A pointer to the common share access data structure
associated with the file being opened.

The IoSetShareAccess function sets the initial share access state for a file when it
is opened or created for the first time. After the initial file open/create, other
requests may be checked against the share access for the file using the
IoCheckSharedAccess function.

File systems maintain state about files through structures called File Control Blocks
(FCBs). The SHARE_ACCESS is a structure that describes how the file is currently
accessed by all opens. It is contained in the FCB as part of the open file state for
the file. The SHARE_ACCESS data structure itself should be treated as an opaque
data type by file systems and drivers. That is, its contents should only be accessed
through the I/O system functions. This allows the structure to change from release
to release without having to modify driver source code.

It should be noted that this function provides no synchronization with other
updates to the SHARE_ACCESS structure. The file system should lock access to
the structure by locking its FCB.

This function is used by file systems to set the initial share access for a file.

10.50. IoStartNextPacket

The next packet queued to a driver can be started using the IoStartNextPacket
function:

VOID
IoStartNextPacket(

IN PDEVICE_OBJECT DeviceObject
);

Parameters:

DeviceObject - A pointer to the device object that contains the device queue for

the device on which the I/O request is performed.

The IoStartNextPacket function checks the device queue in the specified
DeviceObject for an IRP and, if one is found, it is dequeued and passed to the
driver's start I/O routine with a pointer to the IRP and a pointer to the DeviceObject.

This function is generally invoked by a driver after the processing of the current IRP
has been completed by the driver. This allows the driver to start the next operation
that is pending for the device.

Windows NT Driver Model Specification 82

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10.51. IoStartPacket

An I/O request can be started on a device using the IoStartPacket function:

VOID
IoStartPacket(

IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PULONG Key OPTIONAL
);

Parameters:

DeviceObject - A pointer to the device object for the device on which the

request is to be performed.

Irp - A pointer to the I/O Request Packet to be started on the specified device,

provided that the device is not already busy.

Key - An optional key value that specifies where in the pending IRP list the Irp

should be queued if the device is already busy.

The IoStartPacket function checks the device queue in the specified DeviceObject
and either starts the request by passing it to the driver's start I/O routine or queues
it to the device's work queue for later processing. If the Irp is queued to the device's
work queue, then a Key may optionally be specified that indicates where in the
pending list the request is queued.

For more information on how a packet is actually queued to a device queue, see the
Windows NT Kernel Specification. In particular, refer to the section on Device
Queue Objects.

This function is used by a driver's major function routine to start an operation on a
device or to have it queued if the device is already busy.

10.52. IoStartTimer

An initialized one second timer can be started by using the IoStartTimer function:

VOID
IoStartTimer(

IN PDEVICE_OBJECT DeviceObject
);

Windows NT Driver Model Specification 83

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Parameters:

DeviceObject - Specifies the device object whose timer is to be started. The

timer must have been initialized using the IoInitializeTimer function.

The IoStartTimer function starts the timer that was previously initialized by
IoInitializeTimer. Once the timer has been started, the timer routine is invoked
once every second.

This function is used by drivers to time out operations. The timer counter should
be initialized either to a negative count if no timed operation is being performed, or
to the number of seconds that the operation has to complete if a timed operation is
being performed. If the timer routine decrements the counter and it becomes zero,
then the operation did not complete in time. If the counter is a negative number,
then the routine should not modify it.

10.53. IoStopTimer

A one-second timer can be stopped using the IoStopTimer function:

VOID
IoStopTimer(

IN PDEVICE_OBJECT DeviceObject
);

Parameters:

DeviceObject - Specifies the device object whose timer is to be stopped.

The IoStopTimer function stops the timer that was previously started by the
IoStartTimer function. While the timer is then canceled and will not expire again,
it is possible for the timer routine to be invoked one more time after the call to this
routine has been completed. This is because the timer could have expired and been
placed into the queue during a window that cannot be canceled. Furthermore, the
timer could have expired on another processor at the same time that the call to this
routine was being made.

This function is used by drivers to cancel one second timers. This function is
generally only invoked when the driver is being unloaded from the system.

Windows NT Driver Model Specification 84

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10.54. IoSynchronousPageWrite

The pager can synchronously write pages of data to the paging file or to a mapped
file using the IoSynchronousPageWrite function:

NTSTATUS
IoSynchronousPageWrite(

IN PFILE_OBJECT FileObject,
IN PMDL MemoryDescriptorList,
IN PLARGE_INTEGER StartingOffset,
IN PKEVENT Event,
OUT PIO_STATUS_BLOCK IoStatusBlock
);

Parameters:

FileObject - A pointer to a referenced file object representing the file to write.

MemoryDescriptorList - A Memory Descriptor List (MDL) that describes the

locked-down buffer containing the data to write to the file.

StartingOffset - The starting byte offset within the specified file where the write

operation is to begin.

Event - Supplies a pointer to a kernel event that to set to the signaled state

once the write is complete.

IoStatusBlock - A variable to receive the final completion status and

information about the write operation. The number of bytes actually
written is returned in the Information field.

The IoSynchronousPageWrite function gives the memory manager a quick way of
building and starting an I/O request to write data to a file. This allows I/O
completion to be short circuited for paging I/O.

The function writes the number of bytes specified by the MDL from the buffer
described by the MDL, beginning at the StartingOffset within the file. The Event is
set to the signaled state once the operation has completed.

This function is only invoked by the memory manager.

Windows NT Driver Model Specification 85

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10.55. IoUpdateShareAccess

A file system can update the share access for a file using the IoUpdateShareAccess
function:

VOID
IoUpdateShareAccess(

IN OUT PFILE_OBJECT FileObject,
IN OUT PSHARE_ACCCESS ShareAccess
);

Parameters:

FileObject - A pointer to the file object for the current open request.

ShareAccess - A pointer to the common share access data structure

associated with the file being opened. This structure is treated as an
opaque type by drivers.

The IoUpdateShareAccess function updates the ShareAccess according to the types
of access being requested for the current open request. This function may only be
invoked if a previous call to IoCheckShareAccess succeeded.

This function simply updates the SHARE_ACCESS structure maintained for files. It
performs the same update functionality as the IoCheckShareAccess function but
does not perform the check access functionality.

10.56. IoWriteErrorLogEntry

An error log entry buffer may be written to the error log queue using the
IoWriteErrorLogEntry function:

VOID
IoWriteErrorLogEntry(

IN OUT PVOID ErrorLogEntry
);

Parameters:

ErrorLogEntry - A pointer to the error log entry buffer that contains the entry

data. This entry must have been allocated using the
IoAllocateErrorLogEntry function.

Windows NT Driver Model Specification 86

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The IoWriteErrorLogEntry queues the specified error log entry buffer to the error
log thread's database so that the thread can send it to the error log process. The
error log process is actually responsible for writing the entry out to the error log file.

This function is used by drivers to post an error log entry.

11. I/O System Folklore

The following sections describe those features of the I/O system that are not fully
described in any other documentation. These sections further describe how the I/O
system works and how driver writers can use this knowledge and I/O system
features to develop robust, high-performance drivers.

11.1. Rules for Completing an I/O Request

A driver needs to complete an I/O request in one of two different situations:

o - The request packet was in error and will not be processed at all. For
example, a parameter was invalid for the specified function.

o - The request packet parameters are correct, so the I/O request will be
processed.

In the first case, the packet is given to the driver at the appropriate dispatch entry
point for the function code in the IRP stack location. For a file system driver, this
means that the packet is given to the FSD. Since the packet is in error, there is no
reason to return a pending status and then asynchronously complete the request at
a later time. The driver dispatch routine can immediately determine that this is the
case, so the packet should be aborted as follows:

o - Set the error status in the IRP by writing to the IoStatus.Status field of the
packet.

o - Raise IRQL to DISPATCH_LEVEL, saving the old IRQL.

o - Invoke the IoAbortInvalidRequest function.

o - Lower IRQL to the previous IRQL returned from the raise operation.

o - Return to the caller of the dispatch routine with the same status written to
the status field of the IRP.

This sequence causes the I/O system to return the error to the original caller of the
system service. The I/O system will not set the caller's file handle or optional event

Windows NT Driver Model Specification 87

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

to the Signaled state, and it will not write the caller's I/O status block. This is the
definition of an I/O request that was in error. Notice that the driver must still write
the status block in the IRP even though it will not be written to the caller's I/O
status block. This must be done in case there is a layered driver above the current
driver.

In the second case, all of the parameters for the specified function are correct. This
means that the I/O request will be processed.

Once the driver has determined that the I/O request is to be completed, it has one
of two options:

o - Process the request and complete it immediately.

o - Queue the request to be performed at a later time and return a pending
status.

If the request can be immediately processed without causing the current thread to
wait, then the driver should do so. An example of such a situation is when the
caller has requested information about a file and the information is in memory. The
driver can simply place the information into the buffer and complete the request.
Notice that an optimization for the user can be made here if the driver returns a
status of STATUS_SUCCESS. This means that the request was not only successful,
but it is actually complete at this point. That is, the file object or event has been set
to the Signaled state, the I/O status block has been written, etc.

If the packet is to be queued and completed at a later time, then the driver should
queue the packet and return STATUS_PENDING.

Once the request completes, then the driver should invoke the normal completion
function. In either of the preceding cases, the sequence that the driver uses to
complete the request is as follows:

o - Set the appropriate status in the IRP IoStatus.Status field.

o - Raise IRQL to DISPATCH_LEVEL, saving the old IRQL.

o - Invoke the IoCompleteRequest function.

o - Lower IRQL to the previous IRQL returned from the raise operation.

o - Return to the caller of the dispatch routine with the same status written to
the status field of the IRP.

Windows NT Driver Model Specification 88

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Notice that if the request is queued and processed later it may still incur an error.
The IoCompleteRequest sequence should still be used by the driver to complete the
I/O request.

11.2. Accessing Another Driver

The Windows NT I/O system allows drivers to be layered so that one driver may
communicate directly with another driver. The upper-level driver may do this either
by reusing the same IRP or by passing a new, separate IRP.

In either case, a driver may invoke another driver by using the IoCallDriver
function. This function takes two parameters:

o - A pointer to the device object for the device upon which the request is to be
performed

o - A pointer to the I/O Request Packet itself

To obtain a pointer to the device object the upper level driver must first open the
device. This can be done by simply invoking the NtOpenFile system service. This
service returns a handle to a file object that represents a connection to the device.
The file object can then be referenced by invoking the ObReferenceObjectByHandle
function. This function writes the address of the file object as one of its output
parameters. The file object itself contains a pointer to the device object for the
device that was opened. This pointer can now be used to reference the device in
IoCallDriver function calls.

If the driver is either unloading or it is told to close the device through a
configuration control function packet, it should perform the following steps:

o - Dereference the file object pointer by invoking the ObDereferenceObject
function.

o - Close the handle to the file object by invoking the NtClose system service.

These steps will cause the appropriate reference counts to be decremented so that
the device can be removed from the system if necessary.

11.3. Generating Packets

Most of the time, a driver that would like to communicate with another driver can
simply reuse the I/O Request Packet (IRP) that it is given by simply using the next
stack location in the IRP. It can do this by invoking the

Windows NT Driver Model Specification 89

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

IoGetNextIrpStackLocation function to get a pointer to the next stack location in
the IRP. The driver can then fill in the function and parameter fields and pass the
packet to the driver by using the IoCallDriver function.

However, there are times when this is insufficient and the driver must allocate a
different IRP to pass to the next driver. This happens when the driver implements a
request by splitting it into several different parallel requests. There are several
different routines that can be used to aid in this situation:

o - IoAllocateIrp - This routine simply allocates and initializes an IRP. It is
then up to the calling driver to fill in the appropriate header locations as well
as the stack location to tell the target driver the function that is to be
performed. Obtaining a pointer to the appropriate stack location can be done
using the IoGetNextIrpStackLocation.

Allocation of the packet is done using the appropriate IRP lookaside list if
there are packets available in the system lists. The StackSize parameter
required by the IoAllocateIrp function can be obtained from the StackSize
field of the target device object.

o - IoBuildSynchronousFsdRequest - This function can be used to build a
packet that is adequate to request that a target driver perform either a read or
a write operation. However, the packet that this function builds is
synchronized by an event specified as one of its parameters, so the current
thread will have to wait for the event to be set to the Signaled state in order to
synchronize the completion of the request. Therefore, it is recommended that
these types of packets only be used in cases where the requesting thread is
performing a synchronous I/O function.

o - IoBuildAsynchronousFsdRequest - This function can be used to build a
packet that is adequate to request that a driver perform either a read or a
write operation. It is up to the driver that builds the packet to synchronize
the completion of the packet by specifying a completion routine for itself. This
is done using the IoSetCompletionRoutine function. That is, once the
packet is built, the driver sets the address of its completion routine before
giving it to the next driver. In this way, the driver is notified when the request
packet has completed.

This function is generally used by the FSD part of drivers because the
specified completion routine is executed in a thread-independent context.

o - IoBuildFspRequest - This function can be used to build a packet that is
adequate to request that a driver perform either a read or a write operation. It

Windows NT Driver Model Specification 90

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

is generally used by the FSP part of a driver because synchronization of the
packet is performed through either a kernel event or an APC routine. The FSP
must supply one of these two parameters as its synchronization mechanism
or it will not be able to determine when the packet is complete.

\\ There will certainly be other routines that can be used to generate packets
that will be added before the system ships. These routines will be added as
needed. It is not recommended that drivers actually use the IoAllocateIrp
interface and then generate everything by hand, however there is no better way
to do this today unless one of the other routines provides the exact functionality
needed by the driver.\\

11.4. Direct vs. Buffered vs. Neither I/O

The Windows NT I/O system provides drivers with a choice of three different
methods for implementing I/O operations. These are as follows:

1. Direct I/O - Direct I/O refers to the capability to perform I/O directly into
the caller's buffer. That is, the I/O system will set up the necessary data
structures to allow the I/O operation to be performed directly into the caller's
buffer. The driver writer specifies that this type of I/O is desired by setting
the DO_DIRECT_IO flag in the Flags field of the device object.

If this flag is set, the I/O system performs the following operations before
passing the IRP to the driver:

o - The caller's buffer is probed for the appropriate access according to
whether the request being performed is a read or a write operation.

o - The caller's buffer will be locked into memory so that the physical
memory backing the buffer cannot be reused for some other operation.

o - An MDL will be built that describes the user's buffer.

o - The MdlAddress field of the IRP will be set to point to the MDL that
was built.

A driver might do direct I/O for two different reasons. It will use this type of
I/O if a device that it is servicing performs DMA I/O. The MDL can be used in
a call to the IoMapTransfer function to map the caller's buffer so that when
the DMA controller reads from or writes to memory the appropriate locations
will be read or written.

Windows NT Driver Model Specification 91

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

A driver might also use direct I/O if it needs to gain direct access to the
caller's buffer but will not be executing in the context of the caller. For
example, an FSP thread might need to copy data directly into the caller's
buffer but, by definition, does not have direct access to it. The
MmMapLockedPages function must be used to map the caller's buffer into
the FSP thread's virtual address space by passing it a pointer to the MDL.
This temporarily allows direct access to those physical pages backing the
caller's buffer. Once the copy operation has completed, the
MmUnmapLockedPages function can be used to unmap the caller's buffer.

2. Buffered I/O - Buffered I/O refers to the capability to perform I/O
operations to an intermediate buffer that contains a copy of the data from the
caller (write operation) or a copy of the data that is to be copied back to the
caller's buffer (read operation) when the request is complete.

This type of I/O is generally used when a device that is being serviced cannot
perform DMA I/O directly into a buffer. It is also used when keeping the
caller's buffer locked for an extended period could cause system resources to
be depleted.

A driver may specify that it performs buffered I/O by setting the
DO_BUFFERED_IO flag in the Flags field of its device object. When this flag is
set, the I/O system performs the following operations to set up the caller's
buffer before passing the IRP to the driver:

o - The caller's buffer is probed for the appropriate access according to
whether the request being performed is a read or a write operation.

o - A sufficiently large buffer is allocated from system non-paged pool to
handle all of the data being read or written.

o - If the operation is a write, the data in the caller's buffer is copied
into the allocated system buffer. If the operation is a read, the
IRP_INPUT_OPERATION flag is set in the IRP flags field so that the
contents of the system buffer will be copied into the caller's buffer after
the operation has completed. The IRP_DEALLOCATE_BUFFER flag is
also set in the IRP flags field so that the buffer will be deallocated after
the copy operation is complete.

o - The AssociatedIrp.SystemBuffer field of the IRP is set to point to the
allocated system buffer.

Windows NT Driver Model Specification 92

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Once the operation completes, the system buffer is automatically deallocated
by the I/O system.

3. Neither I/O - Under certain circumstances, a driver might postpone
specifying either direct I/O or buffered I/O until it has a chance to determine
which type of operation is appropriate, based on whether data is immediately
available or whether the data must be obtained from elsewhere
asynchronously. For this case, the driver sets neither of the flags in the
device object Flags field. It is then up to the driver to perform the necessary
steps to allow either direct or buffered I/O to be performed. Notice that for
some cases, the driver may not have to perform either type of I/O operation
and can simply copy the data directly into the user's buffer.

If this type of I/O operation is specified by the device object, the I/O system
performs the following steps before passing the IRP to the driver:

o - The caller's buffer is probed for the appropriate access according to
whether the request being performed is a read or a write operation.

o - A pointer to the caller's buffer is passed in the UserBuffer field of the
IRP.

If the driver determines that the data is immediately available and wants to
copy it directly into the caller's buffer, then it does so by using an exception
handler around the code that performs the copy. This is done to catch access
violations that occur when another thread executing in the same process
changes the virtual address space described by the caller's buffer. This may
also occur because of a kernel APC being executed in the context of the
current thread.

If the data is not immediately available, then the driver may wish to perform
either direct or buffered I/O. It must perform the same steps that the I/O
system does to setup the appropriate structures so that the I/O can be
completed normally. Any deviation from the exact setup can cause the
system to crash.

It is also possible for a device driver to specify a preallocated driver buffer that
contains data to be copied into the caller's buffer. This can be accomplished
by performing the following steps:

o - Specify Neither I/O in the device object Flags field, setting neither of
the other two device object flags.

Windows NT Driver Model Specification 93

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o - Set the AssociatedIrp.SystemBuffer field to point to the preallocated
driver buffer.

o - Set the IRP_INPUT_OPERATION flag in the IRP flags field, but not set
the IRP_DEALLOCATE_BUFFER flag in the IRP flags field.

These three types of I/O are used for all NtReadFile and NtWriteFile operations.
Most other NT API services use buffered I/O almost exclusively, except for the
NtDeviceIoControlFile and NtFsControlFile system services. These services pass
their buffers according to the method bits in the I/O control code. More detailed
information is contained in the Windows NT IRP Language Definition specification.

11.5. Building Virtually Discontiguous Buffers

There are currently no Windows NT APIs in the I/O system that allow callers to
provide more than one input or output buffer. This keeps the design of the I/O
system as simple as possible and causes I/O completion to execute more quickly.
Since no complex I/O user buffer state is required, there is at most only one copy
operation that takes place during I/O completion.

However, layered drivers, such as network drivers, may need to provide each other
with more than one virtually discontiguous buffer. A transport driver may wish to
add a transport header to the front of a user data buffer. A datalink driver may
wish to put another header in front of the transport's header, and so on. Rather
than having each driver allocate a buffer, place its data into the buffer and then
copy all of the previous data after its own data, it is much more efficient to simply
insert a virtual buffer descriptor in front of the current data descriptor.

The data structures that represent these virtual buffer descriptors in Windows NT
are Memory Descriptor Lists (MDLs). Each MDL describes the physical pages that
make up a single virtually contiguous buffer. By chaining MDLs through the
structure's Next pointer, virtually discontiguous buffers may be specified in different
driver layers.

During I/O completion, if the drivers do not run down the MDLs, then the I/O
system will provide this functionality automatically. That is, all MDLs chained
together from the IRP's MdlAddress field will automatically be deallocated and the
pages described by those MDLs will be unlocked. If the driver that specified the
MDL needs to perform its own buffer management, then it should deal with this by
unlinking its MDL from the chain in its I/O completion routine.

Windows NT Driver Model Specification 94

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

11.6. I/O Services Synchronization

The Windows NT I/O system provides many services to users. Among these
services are those that may be completed synchronously as well as those that may
be completed asynchronously. This section explains how the I/O system services
actually work to provide these capabilities to users, even though the I/O system's
design is based on an asynchronous model. This section provides background
information to enable driver writers to better understand the environment in which
their driver is executing.

The I/O system services that complete asynchronously may either be invoked as
asynchronous system services, or they may be invoked to execute synchronously.
(The latter is the case when the file that the services are operating on was opened
with one of the FILE_SYNCHRONOUS_IO options.) For those services that are
asynchronous and are invoked to complete as such, no special processing is
required. Once the packet is given to the driver, the I/O system simply returns to
the caller.

However, a user may open a file using one of the synchronous I/O options. For this
case, all services, synchronous and asynchronous, perform the steps outlined below
to synchronize access to the file. Note that these options also cause all I/O
operations on the file to be serialized.

o - The parameters for the service are probed, captured, and validated.

o - The file object is referenced by calling the object manager with the caller's
file handle.

o - The semaphore associated with the file object is then waited on in either
an alertable or non-alertable manner, depending on which synchronous I/O
option was used in the open or create call.

o - The service calls the driver normally and then waits for the file object itself
to be set to the Signaled state. This is a special case where the I/O
completion routines will set the file object to the Signaled state along with an
event, if one was specified. The other special operation performed is to copy
the I/O status into the file object itself so that the service can return it to the
caller without having to touch the caller's I/O status block. This makes
special error recovery code unnecessary when the address space for the I/O
status block has been deleted while the driver was servicing the request.

o - The semaphore is released and the service returns to the caller.

Windows NT Driver Model Specification 95

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Some services that are synchronous must also deal with the asynchronous I/O
system, even when the user did not open the file specifying one of the synchronous
I/O options. These services perform the following steps to make it appear as if the
I/O system is synchronous:

o - The parameters for the service are probed, captured, and validated.

o - The file object is referenced by calling the object manager with the caller's
handle.

o - A local kernel event variable is initialized to the Not-Signaled state and
used as the user-specified event in the IRP. A local I/O status block variable
is used as the user-specified I/O status block and its address is placed in the
IRP.

o - The IRP_SYNCHRONOUS_API flag is set in the flags field of the IRP. This
flag informs the I/O completion code that the event is a kernel event, rather
than a normal user object system event, and should not, therefore, be
dereferenced during completion.

o - The service calls the driver.

o - If the return status from the driver is STATUS_PENDING, then the service
waits for the local kernel event to be set to the Signaled state.

o - The local I/O status block contents are copied to the caller's I/O status
block, and the status field is returned as the final status from the service.

Windows NT Driver Model Specification 96

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

12. Revision History

Original Draft 1.0, March 21, 1989

Changes from I/O specification revision 1.2, from which this draft was
spawned:

- Redo IRP stacks; single routine; parameters.
- Add new I/O APIs.
- Fill in sections on APIs and data structures.

Revision 1.1, February 12, 1990

- Brought spec up to current design level.
- Fixed lots of typos and grammatical errors.
- Removed IoAllocateAdapterAndChannel.
- Removed IoIsRequestComplete.
- Added IoAbortInvalidRequest.
- Added IoAllocateAdapterChannel.
- Added IoAllocateController.
- Added IoDeallocateAdapterChannel.
- Added IoDeallocateController.
- Added IoDeallocateMdl.
- Added IoGetRelatedDeviceObject.
- Added IoGetRequestorProcess.
- Added IoMapTransfer.
- Added IoGetAttachedDevice.
- Fixed IN, OUT, and IN OUT in IoXxx calls.
- Added I/O system folklore section.

Revision 1.2, July 20, 1990

- Add device object pointer to timer routine.
- Updated share access manipulation routines to reflect latest design.
- Added IoDeallocateIrpAtDispatchLevel.
- Added IoFlushAdapterBuffers.
- Added IoIsOperationSynchronous.
- Added IoCreateStreamFile.
- Replaced IoPageWrite with new routines.
- Added description of stream file objects.
- Updated cancel description to reflect latest design.
- Updated timer descriptions to match latest design.
- Updated description of I/O completion w/o using PFN mutex.

Windows NT Driver Model Specification 97

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision 1.3, xxxx ??, 1990

- Update description of unlocking pages during completion
- Document IoIsOperationSynchronous.
- Remove IoDeallocateIrpAtDispatchLevel.
- Modify IoAsynchronousPageWrite to use 64-bit offset.
- Modify IoBuildAsynchronousFsdRequest to use 64-bit offset.
- Modify IoBuildFspRequest to use 64-bit offset.
- Modify IoBuildSynchronousFsdRequest to use 64-bit offset.
- Modify IoPageRead to use 64-bit offset.
- Modify IoSynchronousPageWrite to use 64-bit offset.
- Removed IoQueryAcl function.
- Removed IoSetAcl function.
- Remove access parameters from IoUpdateShareAccess.
- Changed references from SUCCESS to NT_SUCCESS.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS/2 Design Workbook Introduction

Author: Lou Perazzoli

Original Draft 1.0, March 31, 1989
Revision 2.0, May 5, 1989
Revision 3.0, August 17, 1989
Revision 4.0, October 15, 1989
Revision 5.0, January 15, 1990
Revision 6.0, July 25, 1990

Hardcopy released to The Smithsonian Institute.

Digital copy released to Universities for non-commercial academic use under the Windows Research
Kernel License.

NT OS/2 Design Workbook Introduction i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction.. 1

2. Project Goals.. 1

3. NT OS/2 Components.. 2

4. Functional Specifications... 3

NT OS/2 Design Workbook Introduction 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

The NT OS/2 system is a portable implementation of OS/2 developed in a high-level language. The
initial release of NT OS/2 is targeted for Intel 860-based hardware, which includes both personal
computers (Frazzle) and servers (Dazzle).

The first systems based on a RISC microprocessor will be available for testing in the fall of 1990.

2. Project Goals

The ultimate goal of the NT OS/2 project is to develop a portable implementation of OS/2 executing
on the Intel 860 and to establish this combination of hardware and software as the standard for high-
performance personal computers and server systems.

NT OS/2 has the following overall project goals (though not all these goals will be attained by the first
implementation of NT OS/2):

 o Portability to a variety of hardware architectures. Though the first implementation is targeted
to the Intel 860, the overall system design isolates the machine-dependent portions for
portability to other architectures.

 o Support for multiple processors with shared memory via symmetric multiprocessing. This
provides performance improvements for multiprocessor workstations and servers.

 o Compatibility with the OS/2 V2.0 32-bit application programming interface (API). Because
the initial target system is not an Intel x86 architecture, all applications will have to be
recompiled and relinked. In addition, any assembly language code will have to be rewritten or
converted to a higher level language such as C.

 o Security at the C2 level with future versions achieving higher levels of security. This includes
login/logout options on the personal computer and the server system, and declaration and
enforcement of protection attributes for shareable resources (files, IPC, memory objects, etc.).

 o Support for a POSIX-compliant API interface that passes the POSIX validation suites.

 o Support for internationalization.

 o Support for LANMAN networking and management of personal computers and servers.

 o Support for the current Presentation Manager API running in both the OS/2 environment and
the POSIX environment.

 o Support for distributed applications. The network is integrated into the system to allow
transparent distribution of applications and services within a network.

 o Support for object-oriented file systems and object-oriented presentation manager.

NT OS/2 Design Workbook Introduction 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Easy extensibility by layering new features on the existing system without modifying the
underlying system.

 o Simultaneous execution by multiple users, each with a unique security profile.

 o Interoperability and data interchange between OS/2 and POSIX applications.

 o High reliability that prevents errant user programs from causing a system crash or exhausting
system-wide resources. Resource quotas, a protected kernel, and protected objects are used to
improve reliability.

3. NT OS/2 Components

NT OS/2 consists of a highly integrated kernel / executive that executes in kernel mode. It provides
the necessary services to allow the emulation of OS/2 and POSIX APIs via protected subsystems
executing in user mode. Both the OS/2 and POSIX subsystems provide these services through remote
procedure calls from a client to the server subsystem. The server subsystem, in turn, emulates the
desired operation locally or by calling the executive, and returns the results to the caller. The
following diagram illustrates the structure of NT OS/2.

NT OS/2 Design Workbook Introduction 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 Ö--------------Ì Ö--------------Ì
 ° OS/2 ° ° POSIX °
 ° Processes ° ° Processes °
 Û--------------ì Û--------------ì
 ° ° ° °
 V ° ° V
 Ö---------Ì ° ° Ö---------Ì
 °OS/2 ° ° ° °POSIX °
 °Subsystem° ° ° °Subsystem°
 Û---------ì ° ° Û---------ì
 ° ° ° ° ° °
 ° V V V V °
Ö---------Ì ° Ö-------------Ì ° Ö---------------Ì
° Session ° ° °Presentation ° ° ° Security °
° Manager °-> ° °Manager ° ° <- ° Authenticator °
Û---------ì ° Û-------------ì ° Û---------------ì
 ° ° ° ° °
 V V V V V
User Mode
==
Kernel Mode
NT OS/2 Executive
Ö---Ì
° NT OS/2 APIs °
û---------------Ú------------Ú------------Ú--------------Ú----------À
° I/O ° Object ° Memory °Interprocess ° Process °
° System ° Management ° Management °Communication ° Structure°
û---------Ì ° ° ° ° °
° File ° ° ° ° ° °
° System ° û------------Ù------------Ù--------------Ù----------À
° Devices ° ° Executive Support Routines °
û---------Ù-----Ù-----------------------Ú---------------------------À
° Device Drivers ° °
° Ö----------------ì °
° ° Kernel °
Û----------------------Ù--ì

Block Diagram of NT OS/2:

4. Functional Specifications

The following specifications are contained within this design workbook. Each specification contains
an abstract of the component it describes, how that component fits into the system, the various APIs
that are used to access the functionality, and enough detail to ensure the defined capability can be
implemented.

NT OS/2 Design Workbook Introduction 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The goal of the specifications is to allow someone to understand the functionality provided by a
particular piece of the system. It is NOT a goal to describe the actual implementation.

Each specification addresses Cruiser and POSIX compatibility, if appropriate. The following is a list
of design specifications included in this version of the workbook:

 1. Kernel - Describes the function of the kernel, the objects implemented, and the various
interfaces provided to manipulate these objects. This specification contains implementation
details, where necessary, to reveal how multiprocessing and processor dispatching take place.
This specification also describes synchronization, scheduling/dispatching, and Asynchronous
Procedure Calls (APCs).

 2. Object Management - Describes how the executive deals with objects, what they are for, how
they are protected, how they are named, how they are allocated, how they are accounted for,
and how they are deleted. This specification also addresses object directories and how to access
them using the file system directory operations.

 3. Process Structure - Describes the process and thread objects and the operations that can be
performed on them. This specification also explains signals and how OS/2 compatibility and
POSIX compliance are addressed.

 4. Virtual Memory - Describes the virtual memory objects and the operations that can be
performed on these objects.

 5. I/O Management - Describes the APIs and objects available for I/O operations.

 6. Security - Describes how security is provided in the system, the ACL format, ACL access
checking rules, login/logout, the authorization file, and the partial closure of covert channels.
This specification also describes audit and alarm logging.

 7. Local Process Communication - Describes the client/server protected subsystem model, client
impersonation, port objects, and connection/disconnection operations.

 8. Remote Procedure Call - Describes a transport-independent interface to remote procedure calls.

 9. Session Manager - Describes how the subsystems for OS/2 and POSIX are created, and how
they interact with each other.

 10. File System - Describes the file systems, how they are put together, the functions they perform,
and how they accomplish the tasks that they are given.

 11. Semaphores and Events - Describes the APIs and objects available for synchronization.

 12. Argument Validation - Describes the argument probing and capture requirements for system
services.

NT OS/2 Design Workbook Introduction 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 13. Timers - Describes the timer object, which is used to mark time, and the functions available to
manipulate it.

 14. Coding Guidelines - Describes the naming and structure of NT OS/2 code.

 15. LAN Manager Software - Describes the network capabilities of the system, how network
drivers fit together, and how the protocol stacks are managed.

 16. Exceptions - Describes the dispatching of hardware exceptions to the condition dispatcher and
the arguments that accompany each exception. It also explains guard page handling, automatic
stack expansion, and access violations on the user stack, as well as how signals are handled at
the user level.

 17. OS/2 Emulation Subsystem - Describes the requirements and methods used to design and build
the OS/2 emulation subsystem.

 18. Status values - Describes the format for status values return by NT OS/2 APIs.

 19. Subsystem Design Rational - Describes the rationale for designing OS/2 and POSIX emulation
as subsystems as opposed to supporting the APIs directly in the executive.

 20. Shared Resource Specification - Describes the routines that implement multiple-readers, single-
writer access to a share resource.

 21. Executive Support Routines - Describes executive support routines which are available in
kernel mode and not documented in other chapters.

 22. Driver Model - Describes the device driver model, how I/O is managed throughout the system,
how the file system and network capabilities fit into the system, and the objects and operations
that are available to help manage the I/O system. It also presents I/O validation, queueing, page
lockdown, double mapping, I/O completion, and error logging.

 23. POSIX Emulation Subsystem - Describes the requirements and methods used to design and
build the POSIX emulation subsystem.

 24. Time Conversion Specification - Describes the APIs available for viewing time and converting
to and from different formats.

 25. Mutant Specification - Describes the mutant object and services which operate upon the object.

 26. Transport Driver Interface - Describes the interface for the network transport layer.

 27. Network Driver Interface Specification - Describes the interface for the network physical layer.

 28. Lan Manager Server - Describes the design of the Lan Manager server and the operations
supported.

NT OS/2 Design Workbook Introduction 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 29. C Structured Exception Handling - Describes the extensions to C in the MS 860 compiler to
support structured exception handling.

 30. NT C User's Guide - Describes the command syntax and language issues for the MS 860 C
compiler.

 31. Prefix Table - Describes the prefix table package.

 32. System Startup Design Note - Describes system startup after phase one initialization.

33. Debug Architecture - Describes the debug architecture for NT OS/2.

 34. Linker/Librarian - Describes the NT OS/2 linker, librarian, and image format.

 35. Caching Design Note - Describes the system-wide file caching implementation.

 36. Utility Design Specification - Describes the basic support routines for NT OS/2 utilities.

37. OS/2 Environment Subsection Security - Describes the security features of the OS/2 environment
subsystem.

 38. Security Account Manager Protected Server - Describes the security account manager which
maintains user and group account information.

NT OS/2 Design Workbook Introduction 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History:

Original Draft 1.0, March 31, 1989

Revision 2.0, May 5, 1989

 1. The following specifications were added to the design workbook:

 o Local Process Communication

 o File Systems

 o Session Manager

 o Semaphores and Events

 o Argument Validation

 o Timers

 o Coding Guidelines

 2. The in-progress specification list was changed to add the OS Emulation Environment
specification.

 3. The block diagram was modified.

Revision 3.0, August 17, 1989

 1. The following specifications were added to the design workbook:

 o Subsystem Design Rationale

 o Status Codes

 o Shared Resources

 o Executive Support Routines

 o User-mode Interlocked and Fast Lock Routines

 o OS/2 Subsystem Emulation

Revision 4.0, October 15, 1989

 1. The following specifications were added to the design workbook:

NT OS/2 Design Workbook Introduction 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o POSIX Subsystem Emulation

 o Time Conversion Specification

 2. The User-mode Interlocked and Fast Lock Routines Specification was dropped because the
APIs were non-portable.

 3. The specification list was revised to match the actual specifications in the workbook.

 4. The File System Specification was replaced by the File System Design Note.

 5. The I/O System Specification was broken into two separate specifications:

 o I/O System Specification - Documents I/O system API

 o Driver Model Specification - Documents drivers and I/O system internals

Revision 5.0, January 15, 1990.

 1. The following specifications were added to the design workbook:

 o Mutant Specification

 o Transport Driver Interface

 o Physical Driver Interface

 o Lan Manager Server

 o C Structured Exception Handling

 o NT C User's Guide

Revision 6.0, July 25, 1990.

 1. The following specifications were added to the design workbook:

 o System Startup Design Note

 o Debug Architecture

 o OS/2 Linker/Librarian/Image Format Specification

 o Caching Design Note

 o Utility Design Specification

NT OS/2 Design Workbook Introduction 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o OS/2 Environment Subsystem Security

 o Security Account Manager Protected Server

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT Exception Handling Specification

Author: David N. Cutler

Original Draft 1.0, May 22, 1989
Revision 1.1, June 2, 1989
Revision 1.2, June 6, 1989
Revision 1.3, August, 4, 1989
Revision 1.4, August, 15, 1989
Revision 1.5, November 7, 1989

Windows NT Exception Handling Specification iii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction.. 1

2. Goals .. 1

3. Exception Architecture.. 2
3.1 Frame-Based Exception Handlers.. 2
3.2 Exception Dispatching .. 3
3.3 Exception Handling and Unwind ... 4
3.4 Exception Record .. 4
3.5 Exception Context ... 6

4. Hardware-Defined Exceptions ... 7
4.1 Access Violation .. 8
4.2 Breakpoint .. 8
4.3 Data-Type Misalignment ... 8
4.4 Floating Divide By Zero ... 8
4.5 Floating Overflow .. 9
4.6 Floating Underflow.. 9
4.7 Floating Reserved Operand.. 9
4.8 Illegal Instruction.. 9
4.9 Privileged Instruction .. 9
4.10 Invalid Lock Sequence... 10
4.11 Integer Divide By Zero ... 10
4.12 Integer Overflow .. 10
4.13 Single Step.. 10

5. Windows NT Software-Defined Exceptions..................................... 11
5.1 Guard Page Violation... 11
5.2 Page Read Error .. 11
5.3 Paging File Quota Exceeded... 11

6. Standard Exception Handling ... 11
6.1 Alignment Faults... 12
6.2 IEEE Floating Faults ... 12

7. Exception Handling Interfaces... 12
7.1 Exception Dispatcher .. 12
7.2 Exception Handler... 13
7.3 Raise Exception... 15
7.4 Continuing From An Exception ... 15
7.5 Unwinding From An Exception .. 16
7.6 Last Chance Exception Handling... 18

8. OS/2 2.0 Compatibility... 18

Windows NT Exception Handling Specification iv

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

8.1 Windows NT Intel i860 Implementation 19
8.2 OS/2 2.0 Intel x86 Implementation ... 19
8.3 Windows NT Implementation of OS/2 Capabilities................... 20

Windows NT Exception Handling Specification 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

This specification describes the exception handling capabilities of Windows NT. An
exception is an event that occurs during the execution of a program which requires
the execution of software outside the normal flow of control.

Exceptions can result from the execution of certain instruction sequences, in which
case they are initiated by hardware. Other conditions may arise as the result of the
execution of a software routine (e.g., an invalid parameter value), and are therefore
initiated explicitly by software.

When an exception is initiated, a systematic search is performed in an attempt to
find an exception handler that will dispose of (handle) the exception.

An exception handler is a function written to explicitly deal with the possibility that
an exception may occur in a certain sequence of code.

Exception handlers are declared in a language-specific syntax and are associated
with a specific scope of code. The scope may be a block, a set of nested blocks, or an
entire procedure or function.

Microsoft compilers for Windows NT adhere to a common calling standard which
enables exception handlers to be established and disestablished in a very efficient
manner.

\ The initial hardware target for Windows NT is the Intel i860, and
therefore, the Microsoft C compiler for the i860 will be the first compiler
that conforms to the required calling standard. As Windows NT is ported to
other architectures, compilers will be required to implement a calling
standard that is functional enough to support the Windows NT exception
handling capabilities. \

Exception handling capabilities are an integral and pervasive part of the Windows
NT system. They enable a very robust implementation of the system software. It is
envisioned that ISVs, application writers, and third-party compiler writers will see
the benefits of exception handling capabilities and also use them in a pervasive
manner.

2. Goals

The goals of the Windows NT exception handling capabilities are the following:

 o Provide a single mechanism for exception handling that is usable across all
languages.

Windows NT Exception Handling Specification 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Provide a single mechanism for the handling of hardware-, as well as
software-generated exceptions.

 o Provide a single exception handling mechanism that can be used by
privileged, as well as nonprivileged software.

 o Provide a single mechanism for the handling of exceptions and for the
capabilities necessary to support sophisticated debuggers.

 o Provide an exception handling architecture with the capabilities necessary to
emulate the exception handling capabilities of other operating systems (e.g.
OS/2 and POSIX).

 o Provide an exception handling mechanism that is portable and which
separates machine-dependent from machine-independent information.

 o Provide an exception handling mechanism that supports the structured
exception handling extensions being proposed by Microsoft for the C
language (see Structured Exception Handling in C by Don MacLaren, May 10,
1989).

3. Exception Architecture

The overall exception architecture of Windows NT encompasses the process creation
primitives, system service emulation subsystems, the Microsoft calling standard(s),
and system routines that raise, dispatch, and unwind exceptions.

Two optional exception ports may be specified when a process is created. These
ports are called the debugger port and the system service emulation subsystem
port.

When an exception is initiated, an attempt is made to send a message to the
recipient process's debugger port. If there is no debugger port, or the associated
debugger does not handle the exception, then a search of the current thread's call
frames is conducted in an attempt to locate an exception handler. If no frame-based
handler can be found, or none of the frame-based handlers handle the exception,
then another attempt is made to send a message to the recipient process's debugger
port. If there is no debugger port, or the associated debugger does not handle the
exception, then an attempt is made to send a message to the recipient process's
system service emulation subsystem port. If there is no subsystem port, or the
subsystem does not handle the exception, then the system provides default
handling based on the exception type.

Thus the search hierarchy is:

Windows NT Exception Handling Specification 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 1. Debugger first chance

 2. Frame-based handlers

 3. Debugger second chance

 4. Emulation subsystem

The purpose of this architecture is to provide a very robust exception architecture,
while at the same time allow for the emulation of the exception handling capabilites
of various operating system environments (e.g., OS/2 2.0 exception handling, POSIX
signals, etc.).

Throughout this document, explanations concerning the implementation of the
Windows NT exception architecture are given referring to the Intel i860. It should
not be inferred that the described implementation is the only possible
implementation, and in fact, the actual implementation on other hardware
architectures may be different.

3.1 Frame-Based Exception Handlers

An exception handler can be associated with each call frame in the procedure call
hierarchy of a program. This requires that each procedure or function that either
saves nonvolatile registers or establishes an associated exception handler, have a
call frame.

Microsoft compilers for Windows NT adhere to a standard calling convention for
the construction of a call frame. A call frame for the Intel i860 contains the
following:

 1. A register save mask that describes the nonvolatile registers saved in the
frame. These registers are saved in a standard place relative to the frame
pointer.

 2. Two flags that specify whether an extended register save mask and/or
exception handler address is present in the frame.

 3. An optional extended register save mask that describes the volatile registers
saved in the frame. These registers are saved in a standard place relative to
the frame pointer.

 4. An optional address of an exception handler that is associated with the frame.

Windows NT Exception Handling Specification 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Call frames for other architectures contain similar information. The exact details of
the call frame layout are described in the Microsoft Windows NT calling
standard(s).

3.2 Exception Dispatching

When a hardware exception occurs, the Windows NT trap handling software gets
control and saves the hardware state of the current thread in a context record. The
reason for the trap is determined, and an exception record is constructed which
describes the exception and any pertinent parameters. Executive software is then
called to dispatch the exception.

If the previous processor mode was kernel, then the exception dispatcher is called to
search the kernel stack call frames in an attempt to locate an exception handler. If a
frame-based handler cannot be located, or no frame-based handler handles the
exception, then KeBugCheck is called to shut down system operation. Unhandled
exceptions emanating from within privileged software are considered fatal bugs.

If the previous processor mode was user, then an attempt is made to send a
message to the associated debugger port. This message includes the exception
record and the identification of the client thread. The debugger may handle the
exception (e.g., breakpoint or single step) and modify the thread state as
appropriate, or not handle the exception and defer to any frame-based exception
handlers found on the user stack.

If the debugger replies that it has handled the exception, then the machine state is
restored and thread execution is continued. Otherwise, if the debugger replies that
it has not handled the exception, or there is no debugger port, then executive
software must prepare to execute the exception dispatcher in user mode.

If the debugger does not dispose of the exception, then stack space is allocated on
the user stack, and both the exception record and the context record are moved to
the user stack. The machine state of the thread is modified such that thread
execution will resume in code that is part of the executive, but it executes in user
mode.

The machine state is restored and execution of the thread is resumed in user mode
within executive code that calls the exception dispatcher to search the user stack for
an exception handler. If a frame-based handler handles the exception, then thread
execution is continued. Otherwise, if no frame-based handler is found, or no frame-
based handler handles the exception, then the NtLastChance system service is
executed.

The purpose of the NtLastChance system service is to provide the debugger a
second chance to handle the exception and to provide the system service emulation

Windows NT Exception Handling Specification 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

subsystem associated with the thread's process, if any, a chance to perform any
subsystem-specific exception processing. A second attempt is made to send a
message to the associated debugger port. This message includes the exception
record and the identification of the client thread. The debugger may handle the
exception (e.g., query the user and receive a disposition) and modify the thread state
as appropriate, or not handle the exception and defer to the system service
emulation subsystem associated with the thread's process.

If the debugger replies that it has handled the exception, then the machine state is
restored and thread execution is continued. Otherwise, if the debugger replies that
it has not handled the exception, or there is no debugger port, then an attempt is
made to send a message to the associated subsystem. This message includes the
exception record and the identification of the client thread. The subsystem may
handle the exception and modify the thread state as appropriate, or not handle the
exception and defer to any default handling supplied by the executive.

If the subsystem replies that it has handled the exception, then the machine state is
restored and thread execution is continued. Otherwise, the executive provides
default handling of the exception, which is most cases causes the thread to be
terminated.

3.3 Exception Handling and Unwind

During the dispatching of an exception, each frame-based handler is called
specifying the associated exception and context records as parameters. The
exception handler can handle the exception and continue execution, not handle the
exception and continue the search for an exception handler, or handle the exception
and initiate an unwind operation.

Handling an exception may be as simple as noting an error and setting a flag that
will be examined later, printing a warning or error message, or taking some other
overt action. If execution can be continued, then it may be necessary to change the
machine state by modifying the context record (e.g., advance the continuation
instruction address).

If execution can be continued, then the exception handler returns to the exception
dispatcher with a status code that specifies that execution should be continued.
Continuing execution causes the exception dispatcher to stop its search for an
exception handler. The machine state from the context record is restored and
execution is continued accordingly.

If execution of the thread cannot be continued, then the exception handler usually
initiates an unwind operation by calling a system-supplied function specifying a
target call frame and a continuation address. The unwind function walks the stack

Windows NT Exception Handling Specification 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

backwards searching for the target call frame. As it walks the stack, the unwind
function calls each exception handler that is encountered to allow it to perform any
cleanup actions that may be necessary (e.g., release a semaphore, etc.). When the
target call frame is reached, the machine state is restored and execution is
continued at the specified address.

3.4 Exception Record

An exception record describes an exception and its associated parameters. The
same structure is used for both hardware-, and software-generated exceptions.

An exception record has the following structure:

Exception Record Structure

NTSTATUS ExceptionCode - The status code that specifies the reason for the
exception.

ULONG ExceptionFlags - A set of flags that describes attributes of the
exception.

Exception Flags

EXCEPTION_NONCONTINUABLE - The exception is not continuable, and
any attempt to continue will cause the exception
STATUS_NONCONTINUABLE_EXCEPTION to be raised.

EXCEPTION_UNWINDING - The exception record describes an exception for
which an unwind is in progress.

EXCEPTION_EXIT_UNWIND - The exception record describes an exception
for which an exit unwind is in progress.

EXCEPTION_STACK_INVALID - The user stack was not within the limits
specified by the Thread Environment Block (TEB) when the exception
was raised in user mode. Alternately, during the trace backwards
through the call frames on the user (or kernel) stack, a call frame was
encountered that was not within the stack limits specified by the TEB
(or within the kernel stack limits), or a call frame was encountered
that was unaligned.

EXCEPTION_NESTED_CALL - The exception record describes an exception
that was raised while the current exception handler was active, i.e., a
nested exception is in progress and the current handler was also
called to handle the previous exception.

Windows NT Exception Handling Specification 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

PEXCEPTION_RECORD ExceptionRecord - An optional pointer to an associated
exception record. Exception records can be chained together to provide
additional information when nested exceptions are raised.

PVOID ExceptionAddress - The instruction address at which the hardware
exception occurred or the address from which the software exception was
raised.

ULONG NumberParameters - The number of additional parameters that further
describe the exception and immediately follow this parameter in the
exception record.

ULONG ExceptionInformation[NumberParameters] - Additional information that
describes the exception.

The EXCEPTION_NONCONTINUABLE bit in the exception flags field is the only flag
that can be set by the user. The remaining flags are set by system supplied software
as the result of dispatching an exception or the unwinding of call frames.

3.5 Exception Context

A context record describes the machine state at the time an exception occurred. This
record is hardware architecture dependent and is not portable. Therefore, in
general, software should not use the information contained is this record.
Hardware-architecture-dependent code such as math libraries, however, can make
use of this information to optimize certain operations.

For a hardware-initiated exception, the context record contains the complete
machine state at the time of the exception. For a software-initiated exception, the
context record contains the machine state at the time the exception was raised by
software.

The context record is constructed so that it has an identical format to the call
frames generated by the Microsoft compilers for the Intel i860. The context record
for the Intel i860 has the following structure:

Context Record Structure

ULONG ContextFlags - A set of flags that describes which sections of the
context record contain valid information.

Context Flags

CONTEXT_CONTROL - The Psr, Epsr, Fir, IntR1, IntFp, and IntSp fields of
the context record are valid.

Windows NT Exception Handling Specification 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

CONTROL_FLOATING_POINT - The FltF2...FltF31 and Fsr fields of the
context record are valid.

CONTEXT_INTEGER - The IntR4...IntR31 fields of the context record are
valid.

CONTEXT_PIPELINE - The AddStageX, MulStageX, FldStageX, IntResult,
Kr, Ki, Merge, T, Fsr1, Fsr2, and Fsr3 fields of the context record are
valid.

ULONG Fsr - The contents of the floating point status register (FSR) at the time
of the exception.

UQUAD AddStage1, AddStage2, AddStage3 - Stages 1 - 3 of the floating point
addition pipeline.

UQUAD MulStage1, MulStage2, MulStage3 - Stages 1 - 3 of the floating point
multiplication pipeline.

UQUAD FldStage1, FldStage2, FldStage3 - Stages 1 - 3 of the floating point
load pipeline.

UQUAD IntResult - The integer result of the graphics pipeline.

UQUAD Kr - The contents of the KR register.

UQUAD Ki - The contents of the KI register.

UQUAD Merge - The contents of the MERGE register.

UQUAD T - The contents of the T register.

ULONG Fir - The continuation instruction pointer.

ULONG Fsr1, Fsr2, Fsr3 - The contents of the floating status register (FSR) for
stages 1 - 3 of the pipeline.

ULONG IntR4...IntR31 - The contents of the integer registers r4 - r31.

UQUAD FltF2...FltF31 - The contents of the floating point registers f2 - f31.

ULONG IntSp - The contents of the stack pointer at the time of the exception.

ULONG ExtendedSaveMask - The extended register save mask that specifies
that register Int16...IntR31 are saved in the record.

Windows NT Exception Handling Specification 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ULONG Handler - The address of the associated exception handler.

ULONG RegisterSaveMask - The standard register save mask that specifies that
registers IntR4...IntR15 and FltF2...FltF31 are saved in the record.

ULONG IntFp - The contents of the frame pointer at the time of the exception.

ULONG IntR1 - The contents of the register R1 (return address) at the time of
the exception.

ULONG - Psr - The processor status (PSR) at the time of the exception.

ULONG - Epsr - The extended processor status (EPSR) at the time of the
exception.

4. Hardware-Defined Exceptions

Hardware-defined exceptions are initiated by the executive when a particular kind of
fault condition is encountered as the result of instruction execution, e.g., an integer
overflow. System software collects the information necessary to initiate the
exception and then calls a routine that routes the exception to the appropriate
exception handler.

The following sections describe the various hardware-defined exceptions in a
machine-independent format. For each exception, the exception status code and any
additional parameters are specified. These values are placed in the exception record
when the particular type of exception is generated. In addition, any pertinent Intel
i860-dependent information is also provided.

Not all hardware architectures generate all the various exceptions that are defined.
Each port of Windows NT to a new hardware architecture requires a mapping of the
hardware-defined exceptions onto the machine-independent format given below.

\ The following sections must be carefully examined to ensure that they
represent a machine-independent description for x86, as well as i860,
exceptions. \

4.1 Access Violation

An access violation exception is generated when an attempt is made to load or store
data from/to a location that is not accessible to the current process, or when an
attempt is made to execute an instruction that is not accessibile to the current
process.

Exception Code: STATUS_ACCESS_VIOLATION

Windows NT Exception Handling Specification 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Additional Parameters: 2

Read/Write - A value of zero signifies a read; a value of one signifies a write.

Virtual Address - The virtual address of the data that is not accessible.

4.2 Breakpoint

A breakpoint exception occurs when a breakpoint instruction is executed, or a
hardware-defined breakpoint is encountered (e.g. an address in a breakpoint
register). This exception is intended for use by debuggers.

Exception Code: STATUS_BREAKPOINT

Additional Parameters: 1

Read/Write - A value of zero signifies a read; a value of one signifies a write.

i860 Implementation: The execution of a TRAP r30,r29,r0 instruction, or a match
with the address in the breakpoint register causes a breakpoint exception on
the Intel i860.

4.3 Data-Type Misalignment

A data-type misalignment exception is generated when an attempt is made to load
or store data from/to an address that is not naturally aligned, on a hardware
architecture that does not provide alignment hardware. For example, 16-bit entities
must be aligned on two-byte boundaries, 32-bit entities must be aligned on four-
byte boundaries, etc.

Exception Code: STATUS_DATATYPE_MISALIGNMENT

Additional Parameters: 3

Read/Write - A value of zero signifies a read; a value of one signifies a write.

Data-type Mask - A data-type mask that specifies how many low-address bits
must be zero. For example, the data-type mask for a 16-bit entity is one, a
32-bit entity three, etc.

Virtual Address - The virtual address of the misaligned data.

4.4 Floating Divide By Zero

A floating divide by zero exception is generated when an attempt is made to divide a
floating point dividend by a floating point divisor of zero.

Windows NT Exception Handling Specification 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Exception Code: STATUS_FLOATING_DIVIDE_BY_ZERO

Additional Parameters: None

4.5 Floating Overflow

A floating overflow exception is generated when the resulting exponent of a floating
point operation is greater than the magnitude allowed for the respective floating
point data type.

Exception code: STATUS_FLOATING_OVERFLOW

Additional Parameters: None

4.6 Floating Underflow

A floating underflow exception is generated when the resulting exponent of a floating
point operation is less than the magnitude provided for the respective floating point
data type.

Exception Code: STATUS_FLOATING_UNDERFLOW

Additional Parameters: None

4.7 Floating Reserved Operand

A floating reserved operand exception is generated when one or more of the source
operands in a floating point operation have a format that is reserved.

Exception Code: STATUS_FLOATING_RESERVED_OPERAND

Additional Parameters: None

4.8 Illegal Instruction

An illegal instruction exception is generated when an attempt is made to execute an
instruction whose operation is not defined for the host machine architecture.

Exception Code: STATUS_ILLEGAL_INSTRUCTION

Additional Parameters: None

i860 Implementation: The execution of a TRAP instruction other than TRAP
r30,r29,r0 or TRAP r30,r28,r0 or TRAP r30,r27,r0 causes an illegal
instruction exception.

Windows NT Exception Handling Specification 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4.9 Privileged Instruction

A privileged instruction exception is generated when an attempt is made to execute
an instruction whose operation is not allowed in current machine mode (e.g., an
attempt to execute an instruction from user mode that is only allowed in kernel
mode).

Exception Code: STATUS_PRIVILEGED_INSTRUCTION

Additional Parameters: None

4.10 Invalid Lock Sequence

An invalid lock sequence exception is generated when an attempt is made to execute
an operation, within an interlocked section of code, such that the sequence is
invalid for the host machine architecture.

Exception Code: STATUS_INVALID_LOCK_SEQUENCE

Additional Parameters: None

i860 Implementation: Exceeding the 32-instruction limit within a lock sequence, an
attempt to execute a TRAP instruction within a lock sequence, or an attempt to
execute an INTOVR instruction within a lock sequence causes an invalid lock
sequence exception.

4.11 Integer Divide By Zero

An integer divide-by-zero exception is generated when an attempt is made to divide
an integer dividend by an integer divisor of zero.

Exception Code: STATUS_INTEGER_DIVIDE_BY_ZERO

Additional Parameters: None

4.12 Integer Overflow

An integer overflow exception is generated when the result of an integer operation
causes a carry out of the the most significant bit of the result, which is not the same
as the carry into of the most significant bit of the result. For example, the addition
of two positive integers that produces a negative result.

Exception Code: STATUS_INTEGER_OVERFLOW

Additional Parameters: None

Windows NT Exception Handling Specification 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

i860 Implementation: The execution of an INTOVR instruction when OF set in
EPSR causes an integer overflow exception. The OF bit in EPSR is cleared prior
to initiating this exception.

4.13 Single Step

A single step exception is generated when a trace trap or other single instruction
execution mechanism signals that one instruction has been executed. This
exception is intended for use by debuggers.

Exception Code: STATUS_SINGLE_STEP

Additional Parameters: None

i860 Implementation: The execution of a TRAP r30,r28,r0 instruction causes a
single step exception.

5. Windows NT Software-Defined Exceptions

Windows NT software-defined exceptions are explicitly raised by system software
when certain conditions are encountered, e.g., a page file read error. System
software collects the information necessary to initiate the exception and then calls a
routine that routes the exception to the appropriate exception handler.

5.1 Guard Page Violation

A guard page violation exception is generated when an attempt is made to load or
store data from/to a location that is contained within a guard page. Memory
management software immediately turns the guard page into a demand zero page
and initiates a guard page violation exception.

Exception Code: STATUS_GUARD_PAGE_VIOLATION

Additional Parameters: 2

Read/Write - A value of zero signifies a read; a value of one signifies a write.

Virtual Address - The virtual address of the data within a guard page.

5.2 Page Read Error

A page read error exception is generated when an attempt is made to read a page
into memory and an I/O error is encountered.

Exception Code: STATUS_IN_PAGE_ERROR

Windows NT Exception Handling Specification 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Additional Parameters: 1

Virtual Address - A virtual address within the page that was being read.

5.3 Paging File Quota Exceeded

A page file quota exceeded exception is generated when an attempt is made to
commit backing store space for a page that is being removed from a process's
working set.

Exception Code: STATUS_PAGEFILE_QUOTA

Additional Parameters: 1

Virtual Address - A virtual address within the page that was being read.

6. Standard Exception Handling

Standard exception handling is provided for some exceptions in which it is most
likely that the user will select the default handling as the first resort, rather than
wait until all other handlers have been given an opportunity to handle the
exception. This enables the fault to be handled in the most efficient manner.

This capability is provided in Windows NT for alignment faults and IEEE floating
point faults.

6.1 Alignment Faults

Standard handling of alignment faults ... TBS

6.2 IEEE Floating Faults

Standard handling of IEEE faults ... TBS

7. Exception Handling Interfaces

Several interfaces are supplied by the Windows NT system to implement the
exception handling architecture described above. Some of these interfaces are
intended for use only by the exception handling components themselves, while
others are available to user-level software. The following subsections describe the
exception handling APIs that are provided by Windows NT.

Windows NT Exception Handling Specification 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7.1 Exception Dispatcher

The exception dispatcher is responsible for searching the stack for frame-based
exception handlers. There is a single exception dispatcher and it is responsible for
dispatching both hardware-, and software-generated exceptions.

The exception dispatcher can be invoked with the RtlpDispatchException function:

BOOLEAN
RtlDispatchException (
 IN PEXCEPTION_RECORD ExceptionRecord,
 IN PCONTEXT ContextRecord
);

Parameters:

ExceptionRecord - A pointer to an exception record that describes the
exception, and the parameters of the exception, that has been raised.

ContextRecord - A pointer to a context record that describes the machine state
at the time the exception occurred.

The exception dispatcher walks backward through the call frame hierarchy
attempting to find an exception handler that will handle the exception. As each
handler is encountered, it is called specifying the exception record, the context
record, the address of the call frame of the establisher of the handler, and whether
the handler is being called recursively or not, as parameters.

The exception handler may handle the exception or request that the scan of call
frames be continued. As each step backwards is made in the call hierarchy, a check
is made to ensure that the previous call frame address is within the current thread's
stack limits and is aligned. If the stack is not within limits or is unaligned, then the
EXCEPTION_STACK_INVALID flag is set in the exception flags field and the
NtLastChance system service is called to finish processing of the exception.
Otherwise, the previous frame is examined to determine if it specifies an exception
handler.

The exception dispatcher is called by RtlRaiseException and by the executive code
that processes hardware-generated exceptions.

7.2 Exception Handler

An exception handler is usually called by the exception dispatcher, specifying
parameters that describe the exception and the environment in which the exception
handler was established. Exception handlers, however, are also called during an

Windows NT Exception Handling Specification 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

unwind operation and are given a chance to clean up data structures, deallocate
resources, or do any other operations that are necessary to unwind the establisher's
call frame.

The EXCEPTION_UNWINDING, EXCEPTION_EXIT_UNWIND, and
EXCEPTION_NESTED_CALL flags in the exception record determine how an
exception handler is being called. These flags are set by the exception dispatcher
and the unwind function. If both the EXCEPTION_UNWINDING and
EXCEPTION_EXIT_UNWIND flags are clear, then the exception handler is being
called to handle an exception. Otherwise, an unwind operation is in progress, and
the exception handler is being called to perform any necessary cleanup operations.
If the exception handler is being called to handle an exception, then the
EXCEPTION_NESTED_CALL flag determines whether a nested exception is in
progress (i.e., another exception was raised in the containing scope before the
previous exception was disposed of).

An exception handler has the following type definition:

typedef
EXCEPTION_DISPOSITION
(*PEXCEPTION_ROUTINE) (
 IN PEXCEPTION_RECORD ExceptionRecord,
 IN PVOID EstablisherFrame,
 IN OUT PCONTEXT ContextRecord,
 IN OUT PVOID DispatcherContext
);

Parameters:

ExceptionRecord - A pointer to an exception record that describes the exception

and the parameters of the exception.

EstablisherFrame - A pointer to the call frame of the establisher of the
exception handler.

ContextRecord - A pointer to a context record that describes the machine state
at the time the exception occurred.

DispatcherContext - A pointer to a record that receives state information on
nested exceptions and collided unwinds.

When an exception handler is called to handle an exception, it has several options
for how it processes an exception:

Windows NT Exception Handling Specification 17

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 1. It can handle the exception, provide any fixup that is necessary by modifying
the context record, and then continue execution of the program at the point of
the exception by returning a disposition value of ExceptionContinueExecution.

 2. It can handle the exception, determine that execution cannot be continued,
and initiate an unwind operation.

 3. It can decide that it cannot handle the exception and return a disposition
value of ExceptionContinueSearch, which causes the exception dispatcher to
continue the search for an exception handler.

When an exception handler is called during an unwind operation, it also has several
options for how it processes the call:

 1. It can perform any necessary cleanup operations and return a disposition
value of ExceptionContinueSearch.

 2. It can perform any necessary cleanup operations and initiate another unwind
operation to a different target.

 3. It can restore the machine state from the context record and continue
execution directly.

If the exception handler belongs to the exception dispatcher itself, then it can also
return a disposition value of ExceptionNestedException when it is called to handle an
exception. Likewise, if the exception handler belongs to the unwind function, then it
can also return a disposition value of ExceptionCollidedUnwind when it is called to
perform any necessary cleanup operations (i.e., an unwind is in progress). For both
of these cases, the DispatcherContext parameter is used to return information to
either the exception dispatcher or the unwind function. No other exception handler
can place information in this output parameter.

If an invalid disposition value is returned by an exception handler, then the
exception STATUS_INVALID_DISPOSITION is raised by the exception dispatcher.

The ContextRecord parameter is intended for use by machine-specific code that
either restores the machine state during an unwind operation, or manipulates the
machine state in such a way as to fix up an exception. An example of such an
exception handler is the default IEEE floating point exception handler, which uses
the machine state information to determine how a floating point exception should
actually be handled. Another example is the fixup necessary for unaligned data
references. This type of exception handler is machine specific and will generally be
supplied by Microsoft.

Windows NT Exception Handling Specification 18

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

When an exception handler is called to handle an exception, the context record
contains the machine state at the time of the exception. However, when an
exception handler is called during an unwind operation, the context record contains
the machine state of the exception handler's establisher.

When a disposition value of ExceptionContinueExecution is returned, the exception
dispatcher checks to determine if the exception is continuable. If it is not
continuable (i.e., the EXCEPTION_NONCONTINUABLE flag is set in the exception
flags field of the exception record), then the exception dispatcher raises the
exception STATUS_NONCONTINUABLE_EXCEPTION. Otherwise, the machine state
is restored and execution resumes at the point of the exception.

A disposition value of ExceptionContinueSearch causes the exception dispatcher or
unwind function to continue its scan of call frames.

If the exception handler of the exception dispatcher is encountered during the scan
for an exception handler, then it returns a disposition value of
ExceptionNestedException and the address of the call frame that established the
exception handler most recently called by the exception dispatcher. The
EXCEPTION_NESTED_CALL flag is set in the exception flags field of the exception
record for each exception handler that is called between the exception dispatcher
handler and the establisher of the most recently called exception handler. It is the
responsibility of the individual exception handlers themselves to determine if they
can be recursively called.

The exception handler of the unwind function returns a disposition value of
ExceptionCollidedUnwind and the target frame of the current unwind. This
information is used to determine the new scope of the unwind.

7.3 Raise Exception

A software exception can be raised with the RtlRaiseException function:

VOID
RtlRaiseException (
 IN PEXCEPTION_RECORD ExceptionRecord
);

Parameters:

ExceptionRecord - A pointer to an exception record that describes the
exception, and the parameters of the exception, that is raised.

Raising a software exception captures the machine state of the current thread in a
context record. The ExceptionAddress field of the exception record is set to the

Windows NT Exception Handling Specification 19

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

caller's return address, and the exception dispatcher is then called in an attempt to
locate a frame-based exception handler to handle the exception. Note that the
associated debugger, if any, is not given a first chance to handle software
exceptions.

If an exception handler returns a disposition value of ExceptionContinueExecution,
then execution will return to the caller of RtlRaiseException. If no frame-based
exception handler disposes of the exception, then NtLastChance is called to enable
the appropriate system service emulation subsystem to perform any subsystem-
specific processing.

7.4 Continuing From An Exception

Execution of a thread can be continued from the point of an exception with the
NtContinue function:

VOID
NtContinue (
 IN PCONTEXT ContextRecord,
 IN BOOLEAN TestAlert
);

Parameters:

ContextRecord - A pointer to a context record that describes the machine state
that is to be restored.

TestAlert - A boolean value that specifies whether an alert should be tested for
the previous processor mode. This parameter is used for APC processing.

This function restores the machine state from the specified context record and
resumes execution of the thread.

\ Note that such a service would not normally be required. The Intel i860
architecture, however, does not allow the entire machine state to be
completely restored in user mode, and therefore, a system service must be
called in kernel mode to perform this operation. \

This function is called by the exception dispatcher to continue the execution of a
thread when an exception handler returns a dispostion value of
ExecptionContinueExecution.

7.5 Unwinding From An Exception

An exception can be unwound with the RtlUnwind function:

Windows NT Exception Handling Specification 20

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
RtlUnwind (
 IN PVOID TargetFrame OPTIONAL,
 IN PVOID TargetIp OPTIONAL,
 IN PEXCEPTION_RECORD ExceptionRecord OPTIONAL
);

Parameters:

TargetFrame - An optional pointer to the call frame that is the target of the
unwind. If this parameter is not specified, then the
EXCEPTION_EXIT_UNWIND flag is set in the exception flags field of the
exception record.

TargetIp - An optional instruction address that specifies the continuation
address. This parameter is ignored if the TargetFrame parameter is not
specified.

ExceptionRecord - An optional pointer to an exception record that is used when
each exception handler is called during the unwind operation.

This function initiates an unwind of procedure call frames. The machine state at the
time of the call to RtlUnwind is captured in a context record, the
EXCEPTION_UNWINDING flag is set in the exception flags field of the exception
record, and the EXCEPTION_EXIT_UNWIND flag is also set if the TargetFrame
parameter is not specified. A backward walk through the procedure call frames is
then performed to find the target of the unwind operation.

As each call frame is unwound, the machine state of the previous frame is
computed by restoring any registers stored by the procedure. The previous frame is
then examined to determine if it has an associated exception handler. If the call
frame has an exception handler, then it is called specifying the exception record, the
establisher's frame pointer, and the context record that contains the machine state
of the handler's establisher. The exception handler should perform any cleanup
operations that are necessary, and continue the unwind operation by returning a
disposition value of ExceptionContinueSearch, initiating another unwind operation,
or directly restoring the machine state from the context record.

Note that languages that support a termination model for exception handling (e.g.,
Ada, Modula-3, and the proposed extensions to Microsoft C) can implement this
capability by unwinding to the frame of the establisher when a language-specific
exception handler is invoked during either an unwind operation or during the
dispatching of an exception.

Windows NT Exception Handling Specification 21

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

There is no return from a call to RtlUnwind. Control is either transferred to the
specified instruction pointer address, or NtLastChance is called to perform
secondary debugger processing and/or subsystem-specific default processing at the
completion of the unwind operation. If RtlUnwind encounters an error during its
processing, it raises another exception rather than return control to the caller.

If the target call frame is reached and an exit unwind is not being performed (i.e. the
TargetFrame parameter is specified), then the computed machine state is restored
from the context record and control is transfered to the address specified by the
TargetIp parameter. Note that the stack pointer is not restored making it possible to
transfer information on the stack. It is the responsibility of the code at the target
address to reset the stack pointer as necessary.

If an exit unwind is being performed (i.e. the TargetFrame parameter is not
specified), then all call frames are unwound until the base of the stack is reached.
NtLastChance is then called to perform secondary debugger processing and/or
subsystem-specific processing.

If the ExceptionRecord parameter is specified, then each exception handler
encountered during the unwind operation is called using the specified record. If this
parameter is not specified, then RtlUnwind constructs an exception record that
specifies the exception STATUS_UNWIND.

During an unwind operation, it is possible for one unwind to collide with a previous
unwind. This occurs when the scope of the second unwind overlaps the scope of the
first unwind.

There are two cases to consider:

 1. The target frame of the second unwind is a frame that has already been
unwound by the first unwind.

 2. The target frame of the second unwind occurs earlier in the call hierarchy
than the target of the first unwind.

The first case is processed by unwinding call frames for the second unwind until the
first call frame unwound by the first unwind is encountered. The second unwind is
then terminated and processing of the first unwind is continued at the point where
the first unwind was interrupted by the second unwind.

The second case is processed by changing the target of the first unwind to that of
the second unwind, and then applying the handling that is provided for case one.

Windows NT Exception Handling Specification 22

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7.6 Last Chance Exception Handling

Last chance exception handling can be invoked with the NtLastChance function:

NTSTATUS
NtLastChance (
 IN PEXCEPTION_RECORD ExceptionRecord,
 IN PCONTEXT ContextRecord
);

Parameters:

ExceptionRecord - A pointer to an exception record that describes the
exception, and the parameters of the exception, that has been raised.

ContextRecord - A pointer to a context record that describes the machine state
at the time the exception occurred.

Last chance handling copies the exception and context records onto the kernel stack
and checks to determine if a system service emulation subsystem port is associated
with the thread's process. If a subsystem port is associated with the thread's
process, then a message is sent to the port specifying the exception record and the
identification of the client thread. Otherwise, default handling is provided for the
exception.

This function is called by the exception dispatcher to perform subsystem and/or
default handling for an exception that is not handled by any of the frame-based
exception handlers. It is not called by any other component of the system.

Normally there is no return from the call to NtLastChance. However, if the context
or exception record is not accessible to the calling process, then an access violation
status is returned.

8. OS/2 2.0 Compatibility

The OS/2 Cruiser project is currently designing a new exception handling capability
for OS/2 that replaces the current DosSetVec interface, and which can provide the
basis for frame-based exception handling.

It is desirable to be able to directly emulate the proposed exception capabilities of
OS/2 with the native frame-based exception handling provided by Windows NT.
Furthermore, it is desirable to be able to use both the OS/2 style of exception
handlers in the same program as the Windows NT frame-based handlers without a
conflict arising. Currently this is not possible without further refinement of the
OS/2 proposal and the introduction of certain constraints concerning the

Windows NT Exception Handling Specification 23

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

establishment and disestablishment of OS/2 exception handlers. Other problems
with the current OS/2 design include the visibility of x86 architectural features,
which makes the user interface nonportable.

The following changes and restrictions need to be specified:

 1. The machine-dependent state must be separated from the exception state in
the OS/2 proposal so that portable software can be written that makes use of
the exception handling capabilities of OS/2 on architectures other than the
x86.

 2. The exception information included in an exception record for OS/2 must be
specified in such a way as to be portable to architectures other than the x86
(i.e., a higher level of abstraction is needed for the parameter values).

 3. A restriction must be placed on the establishment and disestablishment of
OS/2 exception handlers such that they are strictly frame based (i.e., an
exception handler that is established in a frame must be disestablished before
leaving the frame).

 4. A restriction must be placed on the use of OS/2 style exception handlers in
the same frame as Windows NT frame-based exception handlers.

 5. The semantics of DosRaiseException must be corrected to return to the call
site if a continuation status is returned by an exception handler.

If these changes and restrictions are implemented, then the Windows NT exception
handling capabilities, with slight modification, can directly emulate the OS/2
exception handling capabilities.

8.1 Windows NT Intel i860 Implementation

The Intel i860 Windows NT implementation of exception handling is frame based.
Each call frame has a pointer that is dedicated to holding the address of an
exception handler for the frame. Usually this is a language-supplied handler that
provides whatever semantics are required to provide exception handling for the
language. If there is no handler associated with the frame, then a flag is clear in the
frame to signify that there is no exception handler and the dedicated pointer does
not contain meaningful information. If the handler address is specified as VOID,
then there is also no exception handler associated with the frame.

When an exception occurs, or an unwind operation is initiated, a backward walk
through the call frames is conducted. If a call frame contains an exception handler,
then it is called with the appropriate arguments.

Windows NT Exception Handling Specification 24

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Establishing an exception handler does not require the allocation of any heap
storage, or the initialization of any data structure on the part of the user. Exception
handlers are automatically disestablished upon leaving a procedure and deleting its
call frame from the stack.

Unwind does not return to its caller. Rather it unwinds call frames, calling exception
handlers as appropriate until the target of the unwind is reached, and then restores
the machine state and transfers control to a specified destination instruction
address.

8.2 OS/2 2.0 Intel x86 Implementation

The OS/2 implementation of exception handling on the Intel x86 is list based. The
head of the list is anchored in the Thread Information Block (TIB) of a thread. When
an exception handler is established, a structure called an exception-handler-
structure is supplied by the user, and linked into the last in, first out (LIFO) list of
exception handlers. Disestablishing an exception handler removes the appropriate
exception-handler-structure from the list.

The exception-handler-structure contains a link pointer and a pointer to the
exception handler associated with the structure. The fields of the structure are
exported to the user who is free to change the address of the exception handler
while the structure is in the exception list.

When an exception occurs, or an unwind operation is initiated, a forward walk
through the exception handler list is performed. Each handler is called with the
appropriate arguments.

After completing an unwind operation (no unwind is actually done), the OS/2
function returns control to the caller, which must perform a longjmp() if necessary.

OS/2 defines the following APIs for exception handling:

 1. DosSetExceptionHandler (*exception-handler-structure) - This function
establishes an exception handler by placing the specified exception-handler-
structure at the front of the exception handler list.

 2. DosUnsetExceptionHandler (*exception-handler-structure) - This function
disestablishes an exception handler by removing the specified exception-
handler-structure from the exception handler list.

 3. DosRaiseException (*exception-structure) - This function raises a software
exception.

Windows NT Exception Handling Specification 25

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 4. DosUnwindException (*exception-handler-structure) - This function causes
exception handlers to be called up, including the exception handler specified
by the exception-handler-structure.

8.3 Windows NT Implementation of OS/2 Capabilities

In order to directly emulate OS/2 exception handling in Windows NT, the
restrictions and changes described above for OS/2 must be made. Assuming these
changes are made, the following paragraphs describe how Windows NT can directly
emulate the OS/2 capabilities.

The meaning of the handler address in a call frame is expanded to be either a
handler address (low-order bit is clear), or a pointer to a LIFO list of exception-
handler-structures (low-order bit is set). A call frame can contain either a list head
for OS/2 style exception handlers or a pointer to a single exception handler for
Windows NT exceptions.

The function DosSetExceptionHandler inserts an exception-handler-structure in
the LIFO list of exception handlers defined for the current call frame. If there is a
Windows NT exception handler already established for the frame, then an attempt
to insert an OS/2 style handler causes the exception
STATUS_INCOMPATIBLE_EXCEPTION_HANDLER to be raised. Otherwise, the
specified exception-handler-structure is inserted at the front of the exception
handler list and the low-order bit of the exception handler address is set.

The function DosUnsetExceptionHandler removes an exception-handler-structure
from the exception list associated with the current frame. If the current frame
contains a Windows NT exception handler, or the specified exception-handler-
structure is not in the current frame's exception handler list, then the exception
STATUS_HANDLER_NOT_FOUND is raised. Otherwise, the specified exception-
handler-structure is removed from the exception handler list of the currrent frame.

The function DosRaiseException reformats the exception record that it is passed
into the exception record expected by RtlRaiseException. No other processing is
required. If an exception handler returns a continuation status, then control returns
to the caller of DosRaiseException.

The function DosUnwindException performs a prescan of call frames in an attempt
to locate the specified exception-handler-structure. The prescan is performed by
walking backwards through the call frame and examining the exception handler list
for each frame that contains such a list. If the specified exception-handler-structure
is not found, then the exception STATUS_HANDLER_NOT_FOUND is raised.
Otherwise, RtlUnwind is called specifying the address of the target frame to unwind

Windows NT Exception Handling Specification 26

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

to and the address of the exception-handler-structure as the continuation
instruction address.

The Windows NT exception dispatcher performs a walk backwards through the call
frames when an exception is raised. If it encounters a frame with a handler that has
the low-order bit set, it knows that this is not really the address of a handler, but
rather the address of an exception handler list for the frame. It calls each handler in
the list, one after the other, exactly in the same manner as OS/2, thus
implementating exactly the exception dispatching semantics of OS/2.

The function RtlUnwind also performs a walk backwards through the call frames
when an unwind operation is initiated. This function also recognizes that frames
containing a handler with the low-order bit set really point to a list of OS/2 style
exception handlers. If the target of the unwind is a frame that contains an exception
handler list, then it is known that the continuation address is really the address of
an exception-handler-structure that is the target of the unwind and that control is
to be returned to the caller of unwind. This implements exactly the same unwind
semantics as OS/2.

Windows NT Exception Handling Specification 27

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History:

Original Draft 1.0, May 22, 1989

Revision 1.1, June 2, 1989

 1. Major update to include first draft comments.

 2. Added section on the implementation of OS/2 exception handling on top
of the Windows NT capabilities.

Revision 1.2, June 6, 1989

 1. Minor corrections of typos.

 2. Deleted parameter to illegal instruction, privileged instruction, and invalid
lock sequence exceptions to make them more portable.

 3. Changed the type name of the context record to match the definition of
thread context in the process structure.

Revision 1.3, August 4, 1989

 1. Changed the exception dispatch sequence to include a second call to the
debugger just before calling the system service emulation subsystem.

 2. Changed the name of the RECURSIVE_CALL flag to NESTED_CALL.

 3. Changed the definition of NtLastChance so that the function returns an
access violation status if the exception or context record are not accessible
to the calling process.

Revision 1.4, August 15, 1989

 1. Changed names of exception flags to include a leading "EXCEPTION_" tag.

 2. Changed field names in the context record to reflect the actual
implementation which uses the context record as a call frame.

 3. Changed the name of the exception dispatcher to a private internal name
and added stack limit parameters.

 4. Changed the exception disposition values from manifest constants to an
enumerated type.

Windows NT Exception Handling Specification 28

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 5. The exception STATUS_INVALID_DISPOSITION is raised if an invalid
disposition value.

 6. Change name of NtContinueExecution to NtContinue and add a boolean
parameter to specify whether a test alert should be executed.

 7. The registers f0, f1, and r0 are no longer saved in the context record.

Revision 1.5, November 6, 1989

 1. Delete stack limit arguments from exception dispatcher routine.

 2. Change name of collided unwind status code from
ExceptionNestedUnwind to ExceptionCollidedUnwind.

 3. Change name of exception dispatcher from RtlpDispatchException to
RtlDispatchException.

 4. Change name of unwind routine from NtUnwind to RtlUnwind.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT Executive Support Routines Specification

Author: David Treadwell, Windows NT team

Revision 1.0, August 2, 1989
Revision 1.1, October 11, 1989
Revision 1.2, January 31, 1989

Windows NT Executive Support Routines Specification i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction.. 1

2. Get Information About Pages... 3
2.1 ExCreateBitMap.. 3
2.2 DeleteBitMap .. 3
2.3 ExInitializeBitMap... 4
2.4 ExClearAllBits... 4
2.5 ExSetAllBits .. 5
2.6 ExFindClearBits.. 5
2.7 ExFindSetBits ... 5
2.8 ExFindClearBitsAndSet... 6
2.9 ExFindSetBitsAndClear... 6
2.10 ExClearBits... 7
2.11 ExSetBits .. 7
2.12 ExFindLongestRunClear.. 8
2.13 ExFindLongestRunSet... 8
2.14 ExCheckBit ... 9

3. Determine Pool Type ... 10
3.1 MmDeterminePoolType.. 10

4. Allocate and Deallocate Pool.. 11
4.1 ExLockPool ... 11
4.2 ExUnlockPool.. 11
4.3 InitializePool.. 12
4.4 ExAllocatePool... 12
4.5 ExAllocatePoolWithQuota .. 13
4.6 ExDeallocatePool... 14

5. Initialize and Extend Zone Buffer .. 15
5.1 ExInitializeZone .. 15
5.2 ExExtendZone... 16

6. Perform Interlocked Allocate and Free from Zone........................... 17
6.1 ExAllocateFromZone ... 17
6.2 ExFreeToZone ... 17
6.3 ExIsFullZone... 17
6.4 ExInterlockedAllocateFromZone .. 18
6.5 ExInterlockedFreeToZone .. 18

7. Zero and Move Memory... 20
7.1 ExZeroMemory.. 20
7.2 ExMoveMemory... 20

Windows NT Executive Support Routines Specification ii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

8. Manage Memory for I/O.. 22
8.1 MmProbeAndLockPages .. 22
8.2 MmUnlockPages.. 22
8.3 MmMapLockedPages ... 23
8.4 MmUnmapLockedPages .. 23
8.5 MmMapIoSpace... 24
8.6 MmUnmapIoSpace .. 25
8.7 MmGetPhysicalAddress... 25
8.8 MmSizeOfMdl.. 26
8.9 MmCreateMdl ... 26

9. Is Address Valid.. 28
9.1 MmIsAddressValid .. 28

10. Perform Bit Map Operations.. 29
10.1 PAGE_ALIGN... 29
10.2 BYTES_TO_PAGES.. 29
10.3 ROUND_TO_PAGES... 29
10.4 BYTE_OFFSET .. 30
10.5 ADDRESS_AND_SIZE_TO_SPAN_PAGES 30

11. Manage Object Handles and Handle Tables 32
11.1 ExCreateHandleTable .. 32
11.2 ExLockHandleTable... 33
11.3 ExUnlockHandleTable ... 33
11.4 ExDupHandleTable ... 34
11.5 ExDestroyHandleTable .. 34
11.6 ExDumpHandleTable .. 35
11.7 ExEnumHandleTable .. 35
11.8 ExCreateHandle .. 36
11.9 ExDestroyHandle .. 37
11.10 ExMapHandleToPointer ... 37

12. Probe and Validate Arguments .. 39
12.1 ProbeForRead.. 39
12.2 ProbeForWrite ... 39
12.3 ProbeAndReadChar ... 40
12.4 ProbeAndReadUchar ... 40
12.5 ProbeAndReadShort .. 40
12.6 ProbeAndReadLong ... 40
12.7 ProbeAndReadUlong.. 40
12.8 ProbeAndReadQuad .. 40
12.9 ProbeAndReadUquad .. 40
12.10 ProbeAndReadHandle.. 41

Windows NT Executive Support Routines Specification iii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

12.11 ProbeAndReadBoolean .. 41
12.12 ProbeForWriteChar.. 41
12.13 ProbeForWriteUchar.. 41
12.14 ProbeForWriteShort... 41
12.15 ProbeForWriteUshort... 41
12.16 ProbeForWriteLong.. 41
12.17 ProbeForWriteUlong .. 41
12.18 ProbeForWriteQuad... 41
12.19 ProbeForWriteUquad ... 42
12.20 ProbeForWriteHandle .. 42
12.21 ProbeForWriteBoolean... 42
12.22 ProbeAndWriteChar... 42
12.23 ProbeAndWriteUchar... 42
12.24 ProbeAndWriteShort.. 42
12.25 ProbeAndWriteUshort.. 42
12.26 ProbeAndWriteLong... 42
12.27 ProbeAndWriteUlong ... 43
12.28 ProbeAndWriteQuad.. 43
12.29 ProbeAndWriteUquad .. 43
12.30 ProbeAndWriteHandle ... 43
12.31 ProbeAndWriteBoolean.. 43

13. Perform Restricted Interlock Operations...................................... 44
13.1 ExInterlockedAddLong .. 44
13.2 ExInterlockedAddShort ... 44
13.3 ExInterlockedInsertHeadList ... 45
13.4 ExInterlockedInsertTailList.. 45
13.5 ExInterlockedRemoveHeadList... 46
13.6 ExInterlockedPopEntryList .. 46
13.7 ExInterlockedPushEntryList .. 47

14. Allocate and Free Spin Locks .. 48
14.1 ExAllocateSpinLock... 48
14.2 ExFreeSpinLock .. 48

15. Perform General Interlocked Operations...................................... 49
15.1 RtlInterlockedAddLong .. 49
15.2 RtlInterlockedAddShort ... 49
15.3 RtlInterlockedInsertHeadList ... 50
15.4 RtlInterlockedInsertTailList ... 50
15.5 RtlInterlockedRemoveHeadList .. 51
15.6 RtlInterlockedRemoveHeadList .. 51
15.7 RtlInterlockedPopEntryList.. 52
15.8 RtlInterlockedPushEntryList.. 52

Windows NT Executive Support Routines Specification iv

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

16. Perform Operations on Counted Strings 54
16.1 RtlInitString .. 54
16.2 RtlCopyString.. 54
16.3 RtlCompareString.. 55
16.4 RtlEqualString .. 55

17. Debugging Support Functions... 57
17.1 DbgBreakPoint .. 57
17.2 DbgCommand ... 57
17.3 DbgQueryInstructionCounter .. 57
17.4 DbgPrint ... 58
17.5 DbgPrompt.. 58
17.6 DbgLoadImageFileSymbols.. 59
17.7 DbgSetDirBaseForImage.. 59
17.8 DbgKillDirBase.. 60
17.9 DbgCheckpointSimulator .. 60

Windows NT Executive Support Routines Specification 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

This chapter describes executive support routines that are not documented
elsewhere in the Windows NT Design Workbook. The routines are callable from
kernel mode within the Windows NT executive. The following routines are
presented in subsequent sections:

Get Information About Pages ——Routines to calculate values related to the
memory pagesize

Determine Pool Type ——A memory management routine that determines
whether a virtual address resides in paged or nonpaged memory pool

Allocate and Deallocate Pool ——Routines used to allocate and deallocate
memory pool using a binary buddy algorithm

Initialize and Extend Zone Buffer ——Routines that initialize or extend a zone
buffer (used primarily by local process communication)

Perform Interlocked Allocate and Free from Zone ——Routines to allocate and
free memory from a zone in a multiprocessor-safe manner

Zero and Move Memory ——Routines to zero and move memory

Manage Memory for I/O ——Routines that provide memory management support
for the I/O system

Is Address Valid ——A routine that determines if a given virtual address will
cause a page fault if read

Perform Bit Map Operations ——Routines to create, initialize, and manipulate bit
maps

Manage Object Handles and Handle Tables ——Routines that support object
handles and handle tables

Probe and Validate Arguments ——Routines that provide argument validation for
system service calls

Perform Restricted Interlocked Operations ——Restricted routines (no page faults
allowed) implementing operations that must be synchronized across
processors in a multiprocessing system

Allocate and Free Spin Locks ——Routines to allocate and free spin locks
(specialized mutual exclusion semaphores)

Windows NT Executive Support Routines Specification 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Perform General Interlocked Operations ——Unrestricted routines (page faults
allowed) implementing operations that must be synchronized across
processors in a multiprocessing system

Perform Operations on Counted Strings ——Routines that manipulate counted
strings (strings that maintain a length field)

Debugging Support Functions ——Routines for interfacing kernel-mode
commands to the kernel-mode debugger.

Windows NT Executive Support Routines Specification 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2. Get Information About Pages

Implementation of the bit map routines for the Windows NT executive.

Bit numbers within the bit map are zero based. The first is numbered zero.

A bit map is allocated and initialized using the ExCreateBitMap routine. Once a
bit map has been created, it must be set to a known state using either the
ExSetAllBits or the ExClearAllBits routine.

The ExInitializeBitMap routine is provided to initialize preallocated bit maps.

The bit map routines keep track of the number of bits clear or set by
subtracting or adding the number of bits operated on as bit ranges are cleared
or set; individual bit states are not tested. This means that if a range of bits is
set, it is assumed that the total range is currently clear.

2.1 ExCreateBitMap

PEX_BITMAP
ExCreateBitMap(
 IN ULONG SizeOfBitMap,
 IN POOL_TYPE PoolType
)

Routine Description:

This procedure allocates a bit map from the specified pool and returns a
pointer to the bit map.

Parameters:

SizeOfBitMap - Supplies the number of bits required in the bitmap.

PoolType - Supplies the type of pool from which to allocate the bit map.

Return Value:

PEX_BITMAP - Returns a pointer to the allocated bit map. The bit map is not
initialized.

2.2 DeleteBitMap

VOID
DeleteBitMap(

Windows NT Executive Support Routines Specification 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 IN PEX_BITMAP BitMap
)

Routine Description:

This procedure deallocates a bit map from the specified pool.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

Return Value:

None.

2.3 ExInitializeBitMap

VOID
ExInitializeBitMap(
 IN PEX_BITMAP BitMap,
 IN ULONG SizeOfBitMap
)

Routine Description:

This procedure initializes a bit map which has already been allocated.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

SizeOfBitMap - Supplies the number of bits required in the bit map.

Return Value:

None.

2.4 ExClearAllBits

VOID
ExClearAllBits(
 IN PEX_BITMAP BitMap
)

Routine Description:

Windows NT Executive Support Routines Specification 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This procedure clears all bits in the specified bit map.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

Return Value:

None.

2.5 ExSetAllBits

VOID
ExSetAllBits(
 IN PEX_BITMAP BitMap
)

Routine Description:

This procedure sets all bits in the specified bit map.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

Return Value:

None.

2.6 ExFindClearBits

ULONG
ExFindClearBits(
 IN PEX_BITMAP BitMap,
 IN ULONG NumberToFind
)

Routine Description:

This procedure searches the specified bit map for the specified contiguous
region of clear bits.

Uses methods from Pinball scan for bit block algorithm.

Windows NT Executive Support Routines Specification 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

NumberToFind - Supplies the size of the contiguous region to find.

Return Value:

ULONG - Starting value (zero based) of the contiguous region found.

2.7 ExFindSetBits

ULONG
ExFindSetBits(
 IN PEX_BITMAP BitMap,
 IN ULONG NumberToFind
)

Routine Description:

This procedure searches the specified bit map for the specified contiguous
region of set bits.

Uses methods from Pinball scan for bit block algorithm.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

NumberToFind - Supplies the size of the contiguous region to find.

Return Value:

ULONG - Starting value (zero based) of the contiguous region found.

2.8 ExFindClearBitsAndSet

ULONG
ExFindClearBitsAndSet(
 IN PEX_BITMAP BitMap,
 IN ULONG NumberToFind
)

Routine Description:

Windows NT Executive Support Routines Specification 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This procedure searches the specified bit map for the specified contiguous
region of clear bits, sets the bits and returns the starting bit number which
was clear then set.

Uses methods from Pinball scan for bit block algorithm.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

NumberToFind - Supplies the size of the contiguous region to find.

Return Value:

ULONG - Starting value (zero based) of the contiguous region found.

2.9 ExFindSetBitsAndClear

ULONG
ExFindSetBitsAndClear(
 IN PEX_BITMAP BitMap,
 IN ULONG NumberToFind
)

Routine Description:

This procedure searches the specified bit map for the specified contiguous
region of set bits, clears the bits and returns the starting bit number which
was set then clear.

Uses methods from Pinball scan for bit block algorithm.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

NumberToFind - Supplies the size of the contiguous region to find.

Return Value:

ULONG - Starting value (zero based) of the contiguous region found.

2.10 ExClearBits

VOID

Windows NT Executive Support Routines Specification 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ExClearBits(
 IN PEX_BITMAP BitMap,
 IN ULONG StartingLocation,
 IN ULONG NumberToClear
)

Routine Description:

This procedure clears the specified range of bits within the specified bit map.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

StartingLocation - Supplies the number of the first bit to clear.

NumberToClear - Supplies the number of bits to clear.

Return Value:

None.

2.11 ExSetBits

VOID
ExSetBits(
 IN PEX_BITMAP BitMap,
 IN ULONG StartingLocation,
 IN ULONG NumberToSet
)

Routine Description:

This procedure sets the specified range of bits within the specified bit map.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

StartingLocation - Supplies the number of the first bit to set.

NumberToClear - Supplies the number of bits to set.

Return Value:

Windows NT Executive Support Routines Specification 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

None.

2.12 ExFindLongestRunClear

ULONG
ExFindLongestRunClear(
 IN PEX_BITMAP BitMap
)

Routine Description:

This procedure finds the largest contiguous range of clear bits within the
specified bit map.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

Return Value:

ULONG - Largest contiguous range of clear bits.

2.13 ExFindLongestRunSet

ULONG
ExFindLongestRunSet(
 IN PEX_BITMAP BitMap
)

Routine Description:

This procedure finds the largest contiguous range of set bits within the
specified bit map.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

Return Value:

ULONG - Largest contiguous range of set bits.

2.14 ExCheckBit

ULONG

Windows NT Executive Support Routines Specification 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ExCheckBit(
 IN PEX_BITMAP BitMap,
 IN ULONG BitPosition
)

Routine Description:

This procedure returns the state of the specified bit within the specified bit
map.

Parameters:

BitMap - Supplies a pointer to the previously allocated bit map.

BitPosition - Supplies the bit number of which to return the state.

Return Value:

ULONG - The state of the specified bit.

Windows NT Executive Support Routines Specification 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3. Determine Pool Type

This module contains the routines which allocate and deallocate one or more
pages from paged or nonpaged pool.

3.1 MmDeterminePoolType

POOL_TYPE
MmDeterminePoolType(
 IN PVOID VirtualAddress
)

Routine Description:

This function determines which pool a virtual address resides within.

Parameters:

VirtualAddress - Supplies the virtual address to determine which pool it resides
within.

Return Value:

Returns the POOL_TYPE (PagedPool or NonPagedPool).

Environment:

Kernel Mode Only.

Windows NT Executive Support Routines Specification 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4. Allocate and Deallocate Pool

Implementation of the binary buddy pool allocator for the Windows NT
executive.

4.1 ExLockPool

HANDLE
ExLockPool(
 IN POOL_TYPE PoolType
)

Routine Description:

This function locks the pool specified by pool type.

Parameters:

PoolType - Specifies the pool that should be locked.

Return Value:

Opaque - Returns a lock handle that must be returned in a subsequent call to
ExUnlockPool.

4.2 ExUnlockPool

VOID
ExUnlockPool(
 IN POOL_TYPE PoolType,
 IN HANDLE LockHandle,
 IN BOOLEAN Wait
)

Routine Description:

This function unlocks the pool specified by pool type. If the value of the Wait
parameter is true, then the pool's lock is released using "wait == true".

Parameters:

PoolType - Specifies the pool that should be unlocked.

LockHandle - Specifies the lock handle from a previous call to ExLockPool.

Windows NT Executive Support Routines Specification 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Wait - Supplies a boolean value that signifies whether the call to ExUnlockPool
will be immediately followed by a call to one of the kernel Wait functions.

Return Value:

None.

4.3 InitializePool

VOID
InitializePool(
 IN POOL_TYPE PoolType,
 IN ULONG Threshold
)

Routine Description:

This procedure initializes a pool descriptor for a binary buddy pool type. Once
initialized, the pool may be used for allocation and deallocation.

This function should be called once for each pool type during system
initialization.

Each pool descriptor contains an array of list heads for free blocks. Each list
head holds blocks of a particular size. One list head contains page-sized
blocks. The other list heads contain 1/2- page-sized blocks, 1/4-page-sized
blocks.... A threshold is associated with the page-sized list head. The number
of free blocks on this list will not grow past the specified threshold. When a
deallocation occurs that would cause the threshold to be exceeded, the page is
returned to the page-aliged pool allocator.

Parameters:

PoolType - Supplies the type of pool being initialized (e.g. nonpaged pool, paged
pool...).

Threshold - Supplies the threshold value for the specified pool.

Return Value:

None.

4.4 ExAllocatePool

PVOID

Windows NT Executive Support Routines Specification 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ExAllocatePool(
 IN POOL_TYPE PoolType,
 IN ULONG NumberOfBytes
)

Routine Description:

This function allocates a block of pool of the specified type and returns a
pointer to the allocated block. This function is used to access both the page-
aligned pools, and the binary buddy (less than a page) pools.

If the number of bytes specifies a size that is too large to be satisfied by the
appropriate binary buddy pool, then the page-aligned pool allocator is used.
The allocated block will be page-aligned and a page-sized multiple.

Otherwise, the appropriate binary buddy pool is used. The allocated block will
be 64-bit aligned, but will not be page aligned. The binary buddy allocator
calculates the smallest block size that is a power of two and that can be used
to satisfy the request. If there are no blocks available of this size, then a block
of the next larger block size is allocated and split in half. One piece is placed
back into the pool, and the other piece is used to satisfy the request. If the
allocator reaches the paged-sized block list, and nothing is there, the page-
aligned pool allocator is called. The page is added to the binary buddy pool...

Parameters:

PoolType - Supplies the type of pool to allocate.

NumberOfBytes - Supplies the number of bytes to allocate.

Return Value:

Non-NULL - Returns a pointer to the allocated pool.

4.5 ExAllocatePoolWithQuota

PVOID
ExAllocatePoolWithQuota(
 IN POOL_TYPE PoolType,
 IN ULONG NumberOfBytes
)

Routine Description:

Windows NT Executive Support Routines Specification 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This function allocates a block of pool of the specified type, returns a pointer to
the allocated block, and if the binary buddy allocator was used to satisfy the
request, charges pool quota to the current process. This function is used to
access both the page-aligned pools, and the binary buddy.

If the number of bytes specifies a size that is too large to be satisfied by the
appropriate binary buddy pool, then the page-aligned pool allocator is used.
The allocated block will be page-aligned and a page-sized multiple. No quota is
charged to the current process if this is the case.

Otherwise, the appropriate binary buddy pool is used. The allocated block will
be 64-bit aligned, but will not be page aligned. After the allocation completes,
an attempt will be made to charge pool quota (of the appropriate type) to the
current process object. If the quota charge succeeds, then the pool block's
header is adjusted to point to the current process. The process object is not
dereferenced until the pool is deallocated and the appropriate amount of quota
is returned to the process. Otherwise, the pool is deallocated, a "quota
exceeded" condition is raised.

Parameters:

PoolType - Supplies the type of pool to allocate.

NumberOfBytes - Supplies the number of bytes to allocate.

Return Value:

Non-NULL - Returns a pointer to the allocated pool.

Unspecified - If insuffient quota exists to complete the pool allocation, the
return value is unspecified.

4.6 ExDeallocatePool

VOID
ExDeallocatePool(
 IN PVOID P
)

Routine Description:

This function deallocates a block of pool. This function is used to deallocate to
both the page aligned pools, and the binary buddy (less than a page) pools.

Windows NT Executive Support Routines Specification 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

If the address of the block being deallocated is page-aligned, then the page-
aliged pool deallocator is used.

Otherwise, the binary buddy pool deallocator is used. Deallocation looks at the
allocated block's pool header to determine the pool type and block size being
deallocated. If the pool was allocated using ExAllocatePoolWithQuota, then
after the deallocation is complete, the appropriate process's pool quota is
adjusted to reflect the deallocation, and the process object is dereferenced.

Parameters:

P - Supplies the address of the block of pool being deallocated.

Return Value:

None.

Windows NT Executive Support Routines Specification 17

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5. Initialize and Extend Zone Buffer

This module implements a simple zone buffer manager. The primary consumer
of this module is local LPC.

The zone package provides a fast and efficient memory allocator for fixed-size
64-bit aligned blocks of storage. The zone package does not provide any
serialization over access to the zone header and associated free list and
segment list. It is the responsibility of the caller to provide any necessary
serialization.

The zone package views a zone as a set of fixed-size blocks of storage. The
block size of a zone is specified during zone initialization. Storage is assigned
to a zone during zone initialization and when a zone is extended. In both of
these cases, a segment and length are specified.

The zone package uses the first ZONE_SEGMENT_HEADER portion of the
segment for zone overhead. The remainder of the segment is carved up into
fixed-size blocks and each block is added to the free list maintained in the zone
header.

As long as a block is on the free list, the first SINGLE_LIST_ENTRY (32 bit)
sized piece of the block is used as zone overhead. The rest of the block is not
used by the zone package and may be used by applications to cache
information. When a block is not on the free list, its entire contents are
available to the application.

5.1 ExInitializeZone

NTSTATUS
ExInitializeZone(
 IN PZONE_HEADER Zone,
 IN ULONG BlockSize,
 IN PVOID InitialSegment,
 IN ULONG InitialSegmentSize
)

Routine Description:

This function initializes a zone header. Once successfully initialized, blocks
can be allocated and freed from the zone, and the zone can be extended.

Parameters:

Zone - Supplies the address of a zone header to be initialized.

Windows NT Executive Support Routines Specification 18

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

BlockSize - Supplies the block size of the allocatable unit within the zone. The
size must be larger that the size of the initial segment, and must be 64-bit
aligned.

InitialSegment - Supplies the address of a segment of storage. The first
ZONE_SEGMENT_HEADER-sized portion of the segment is used by the
zone allocator. The remainder of the segment is carved up into fixed size
(BlockSize) blocks and is made available for allocation and deallocation
from the zone. The address of the segment must be aligned on a 64-bit
boundary.

InitialSegmentSize - Supplies the size in bytes of the InitialSegment.

Return Value:

STATUS_UNSUCCESSFUL - BlockSize or InitialSegment was not aligned on 64-
bit boundaries, or BlockSize was larger than the initial segment size.

STATUS_SUCCESS - The zone was successfully initialized.

5.2 ExExtendZone

NTSTATUS
ExExtendZone(
 IN PZONE_HEADER Zone,
 IN PVOID Segment,
 IN ULONG SegmentSize
)

Routine Description:

This function extends a zone by adding another segment's worth of blocks to
the zone.

Parameters:

Zone - Supplies the address of a zone header to be extended.

Segment - Supplies the address of a segment of storage. The first
ZONE_SEGMENT_HEADER-sized portion of the segment is used by the
zone allocator. The remainder of the segment is carved up into fixed-size
(BlockSize) blocks and is added to the zone. The address of the segment
must be aligned on a 64- bit boundary.

SegmentSize - Supplies the size in bytes of Segment.

Windows NT Executive Support Routines Specification 19

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Return Value:

STATUS_UNSUCCESSFUL - BlockSize or Segment was not aligned on 64-bit
boundaries, or BlockSize was larger than the segment size.

STATUS_SUCCESS - The zone was successfully extended.

Windows NT Executive Support Routines Specification 20

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6. Perform Interlocked Allocate and Free from Zone

Public executive data structures and procedure prototypes.

6.1 ExAllocateFromZone

PVOID
ExAllocateFromZone(
 IN PZONE_HEADER Zone
)

Routine Description:

This routine removes an entry from the zone and returns a pointer to it.

Parameters:

Zone - Pointer to the zone header controlling the storage from which the entry
is to be allocated.

Return Value:

The function value is a pointer to the storage allocated from the zone.

6.2 ExFreeToZone

VOID
ExFreeToZone(
 IN PZONE_HEADER Zone,
 IN PVOID Block
)

Routine Description:

This routine places the specified block of storage back onto the free list in the
specified zone.

Parameters:

Zone - Pointer to the zone header controlling the storage to which the entry is
to be inserted.

Block - Pointer to the block of storage to be freed back to the zone.

Return Value:

Windows NT Executive Support Routines Specification 21

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

None.

6.3 ExIsFullZone

BOOLEAN
ExIsFullZone(
 IN PZONE_HEADER Zone
)

Routine Description:

This routine determines if the specified zone is full or not. A zone is considered
full if the free list is empty.

Parameters:

Zone - Pointer to the zone header to be tested.

Return Value:

TRUE if the zone is full and FALSE otherwise.

6.4 ExInterlockedAllocateFromZone

PVOID
ExInterlockedAllocateFromZone(
 IN PZONE_HEADER Zone,
 IN PKSPIN_LOCK Lock
)

Routine Description:

This routine removes an entry from the zone and returns a pointer to it. The
removal is performed with the specified lock owned for the sequence to make it
MP-safe.

Parameters:

Zone - Pointer to the zone header controlling the storage from which the entry
is to be allocated.

Lock - Pointer to the spin lock which should be obtained before removing the
entry from the allocation list. The lock is released before returning to the
caller.

Windows NT Executive Support Routines Specification 22

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Return Value:

The function value is a pointer to the storage allocated from the zone.

6.5 ExInterlockedFreeToZone

VOID
ExInterlockedFreeToZone(
 IN PZONE_HEADER Zone,
 IN PVOID Block,
 IN PKSPIN_LOCK Lock
)

Routine Description:

This routine places the specified block of storage back onto the free list in the
specified zone. The insertion is performed with the lock owned for the
sequence to make it MP-safe.

Parameters:

Zone - Pointer to the zone header controlling the storage to which the entry is
to be inserted.

Block - Pointer to the block of storage to be freed back to the zone.

Lock - Pointer to the spin lock which should be obtained before inserting the
entry onto the free list. The lock is released before returning to the caller.

Return Value:

None.

Windows NT Executive Support Routines Specification 23

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7. Zero and Move Memory

This module implements functions to zero and move memory blocks of
memory. If the memory is aligned on 8 byte boundaries then these functions
are very efficient, otherwise they do their work a byte at a time.

7.1 ExZeroMemory

VOID
ExZeroMemory(
 IN PVOID Destination,
 IN ULONG Length
)

Routine Description:

These functions zero memory. The ExZeroMemory function determines the
most efficient method to use based on the alignment of the Destination pointer
and the Length. If the Destination pointer is aligned but the Length is not,
then it will zero alignment sized units and then zero the odd number of bytes to
finish up. If the Destination pointer is not aligned, then it will zero the entire
length by bytes.

Parameters:

Destination (r16) - Supplies a pointer to the memory to zero.

Length (r17) - Supplies the Length, in bytes, of the memory to be zeroed.

Return Value:

None.

Performance:

10 Instructions to setup

2 Instructions per MEMORY_ALIGNMENT bytes zeroed

4 Instructions for each trailing odd byte

4 Instructions to finish

Zero ObjectTableEntry (16 bytes, quad aligned) is 18 instructions

Windows NT Executive Support Routines Specification 24

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7.2 ExMoveMemory

VOID
ExMoveMemory(
 IN PVOID Destination,
 IN PVOID Source OPTIONAL,
 IN ULONG Length
)

Routine Description:

This function moves memory. The ExMoveMemory function determines the
most efficient method to use based on the alignment of the Source and
Destination pointers and the Length.

Parameters:

Destination (r16) - Supplies a pointer to the destination of the move.

Source (r17) - Supplies a pointer to the memory to move. If NULL then zeros
the memory at Destination.

Length (r18) - Supplies the Length, in bytes, of the memory to be moved.

Return Value:

None.

Windows NT Executive Support Routines Specification 25

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

8. Manage Memory for I/O

This module contains routines which provide support for the I/O system.

8.1 MmProbeAndLockPages

VOID
MmProbeAndLockPages(
 IN OUT PMDL MemoryDescriptorList,
 IN KPROCESSOR_MODE AccessMode,
 IN LOCK_OPERATION Operation
)

Routine Description:

This routine probes the specified pages, makes the pages resident and locks
the physical pages mapped by the virtual pages in memory. The Memory
descriptor list is updated to describe the physical pages.

Parameters:

MemoryDescriptorList - Supplies a pointer to a Memory Descriptor List (MDL).
The supplied MDL must supply a virtual address, byte offset and length
field. The physical page portion of the MDL is updated when the pages are
locked in memory.

AccessMode - Supplies the access mode in which to probe the arguments. One
of KernelMode or UserMode.

Operation - Supplies the operation type. One of IoReadAccess, IoWriteAccess or
IoModifyAccess.

Return Value:

None - exceptions are raised.

Environment:

Kernel mode.

8.2 MmUnlockPages

VOID
MmUnlockPages(
 IN OUT PMDL MemoryDescriptorList

Windows NT Executive Support Routines Specification 26

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

)

Routine Description:

This routine unlocks physical pages which are described by a Memory
Descriptor List.

Parameters:

MemoryDescriptorList - Supplies a pointer to a memory description list (MDL).
The supplied MDL must have been supplied to MmLockPages to lock the
pages down. As the pages are unlocked, the MDL is updated.

Return Value:

None.

Environment:

Kernel mode.

8.3 MmMapLockedPages

PVOID
MmMapLockedPages(
 IN PMDL MemoryDescriptorList,
 IN KPROCESSOR_MODE AccessMode
)

Routine Description:

This function maps physical pages described by a memory description list into
the system virtual address space.

Parameters:

MemoryDescriptorList - Supplies a valid Memory Descriptor List which has been
updated by MmProbeAndLockPages.

AccessMode - Supplies an indicator of where to map the pages; KernelMode
indicates that the pages should be mapped in the system part of the
address space, UserMode indicates the pages should be mapped in the
user part of the address space.

Return Value:

Windows NT Executive Support Routines Specification 27

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Returns the base address where the pages are mapped. The base address has
the same offset as the virtual address in the MDL.

This routine will raise an exception if the processor mode is USER_MODE and
quota limits or VM limits are exceeded.

Environment:

Kernel mode.

8.4 MmUnmapLockedPages

VOID
MmUnmapLockedPages(
 IN PVOID BaseAddress,
 IN PMDL MemoryDescriptorList
)

Routine Description:

This routine unmaps locked pages which were previously mapped via a
MmMapLockedPages function.

Parameters:

BaseAddress - Supplies the base address where the pages were previously
mapped.

MemoryDescriptorList - Supplies a valid Memory Descriptor List which has been
updated by MmProbeAndLockPages.

Return Value:

None.

Environment:

Kernel mode.

8.5 MmMapIoSpace

PVOID
MmMapIoSpace(
 IN PHYSICAL_ADDRESS PhysicalAddress,

Windows NT Executive Support Routines Specification 28

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 IN ULONG NumberOfBytes
)

Routine Description:

This function maps the specified physical address into the non-pageable
portion of the system address space.

Parameters:

PhysicalAddress - Supplies the starting physical address to map.

NumberOfBytes - Supplies the number of bytes to map.

Return Value:

Returns the virtual address which maps the specified physical addresses.

Environment:

Kernel mode. APCs disabled.

8.6 MmUnmapIoSpace

VOID
MmUnmapIoSpace(
 IN PVOID BaseAddress,
 IN ULONG NumberOfBytes
)

Routine Description:

This function unmaps a range of physical address which were previously
mapped via an MmMapIoSpace function call.

Parameters:

BaseAddress - Supplies the base virtual address where the physical address
was previously mapped.

NumberOfBytes - Supplies the number of bytes which were mapped.

Return Value:

None.

Windows NT Executive Support Routines Specification 29

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Environment:

Kernel mode.

8.7 MmGetPhysicalAddress

PHYSICAL_ADDRESS
MmGetPhysicalAddress(
 IN PVOID BaseAddress
)

Routine Description:

This function returns the corresponding physical address for a valid virtual
address.

Parameters:

BaseAddress - Supplies the virtual address for which to return the physical
address.

Return Value:

Returns the corresponding physical address.

Environment:

Kernel mode. APCs disabled.

8.8 MmSizeOfMdl

ULONG
MmSizeOfMdl(
 IN PVOID Base,
 IN ULONG Length
)

Routine Description:

This function returns the number of bytes required for an MDL for a given
buffer and size.

Parameters:

Base - Supplies the base virtual address for the buffer.

Windows NT Executive Support Routines Specification 30

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Length - Supplies the size of the buffer in bytes.

Return Value:

Returns the number of bytes required to contain the MDL.

Environment:

Kernel mode.

8.9 MmCreateMdl

PMDL
MmCreateMdl(
 IN PMDL MemoryDescriptorList OPTIONAL,
 IN PVOID Base,
 IN ULONG Length
)

Routine Description:

This function optionally allocates and initializes an MDL.

Parameters:

MemoryDescriptorList - Optionally supplies the address of the MDL to initialize.
If this address is supplied as NULL an MDL is allocated from non-paged
pool and initialized.

Base - Supplies the base virtual address for the buffer.

Length - Supplies the size of the buffer in bytes.

Return Value:

Returns the address of the initialized MDL.

Environment:

Kernel mode.

Windows NT Executive Support Routines Specification 31

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

9. Is Address Valid

This module contains the pager for memory management.

9.1 MmIsAddressValid

BOOLEAN
MmIsAddressValid(
 IN PVOID VirtualAddress
)

Routine Description:

For a given virtual address this function returns TRUE if no page fault will
occur for a read operation on the address, FALSE otherwise.

Note that after this routine was called, if appropriate locks are not held, a non-
faulting address could fault.

Parameters:

VirtualAddress - Supplies the virtual address to check.

Return Value:

TRUE if a no page fault would be generated reading the virtual address, FALSE
otherwise.

Environment:

Kernel mode.

Windows NT Executive Support Routines Specification 32

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10. Perform Bit Map Operations

This module contains the public data structures and procedure prototypes for
the memory management system.

10.1 PAGE_ALIGN

PVOID
PAGE_ALIGN(
 IN PVOID Va
)

Routine Description:

The PAGE_ALIGN macro takes a virtual address and returns a page-aligned
virtual address for that page.

Parameters:

Va - Virtual address.

Return Value:

Returns the page aligned virtual address.

10.2 BYTES_TO_PAGES

ULONG
BYTES_TO_PAGES(
 IN ULONG Size
)

Routine Description:

The BYTES_TO_PAGES macro takes the size in bytes and calculates the
number of pages required to contain the bytes.

Parameters:

Size - Size in bytes.

Return Value:

Returns the number of pages required to contain the specified size.

Windows NT Executive Support Routines Specification 33

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10.3 ROUND_TO_PAGES

ULONG
ROUND_TO_PAGES(
 IN ULONG Size
)

Routine Description:

The ROUND_TO_PAGES macro takes a size in bytes and rounds it up to a
multiple of the page size.

Parameters:

Size - Size in bytes to round up to a page multiple.

Return Value:

Returns the size rounded up to a multiple of the page size.

10.4 BYTE_OFFSET

ULONG
BYTE_OFFSET(
 IN PVOID Va
)

Routine Description:

The BYTE_OFFSET macro takes a virtual address and returns the byte offset of
that address within the page.

Parameters:

Va - Virtual address.

Return Value:

Returns the byte offset portion of the virtual address.

10.5 ADDRESS_AND_SIZE_TO_SPAN_PAGES

ULONG
ADDRESS_AND_SIZE_TO_SPAN_PAGES(
 IN PVOID Va,

Windows NT Executive Support Routines Specification 34

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 IN ULONG Size
)

Routine Description:

The ADDRESS_AND_SIZE_TO_SPAN_PAGES macro takes a virtual address and
size and returns the number of pages spanned by the size.

Parameters:

Va - Virtual address.

Size - Size in bytes.

Return Value:

Returns the number of pages spanned by the size.

Windows NT Executive Support Routines Specification 35

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

11. Manage Object Handles and Handle Tables

This module implements a set of functions for supporting handles. Handles are
opaque pointers that are implemented as indexes into a handle table.

Access to handle tables is serialized with a mutex. The level number
associated with the mutex is specified at the time the handle table is created.
Also specified at creation time are the initial size of the handle table, the
memory pool type to allocate the table from and the size of each entry in the
handle table.

The size of each entry in the handle table is specified as a power of 2. The size
specifies how many 32-bit values are to be stored in each handle table entry.
Thus a size of zero, specifies 1 (==2**0) 32-bit value. A size of 2 specifies 4
(=2**2) 32-bit values. The ability to support different sizes of handle table
entries leads to some polymorphic interfaces.

The polymorphism occurs in two of the interfaces, ExCreateHandle and
ExMapHandleToPointer. ExCreateHandle takes a handle table and a pointer.
For handle tables whose entry size is one 32-bit value, the pointer parameter
will be the value of the created handle. For handle tables whose entry size is
more than one, the pointer parameter is a pointer to the 32-bit handle values
which will be copied to the newly created handle table entry.

ExMapHandleToPointer takes a handle table and a handle parameter. For
handle tables whose entry size is one, it returns the 32-bit value stored in the
handle table entry. For handle tables whose entry size is more than one, it
returns a pointer to the handle table entry itself. In both cases,
ExMapHandleToPointer LEAVES THE HANDLE TABLE LOCKED. The caller
must then call the ExUnlockHandleTable function to unlock the table when
they are done referencing the contents of the handle table entry.

Free handle table entries are kept on a free list. The head of the free list is in
the handle table header. To distinguish free entries from busy entries, the low
order bit of the first 32-bit word of a free handle table entry is set to one. This
means that the value associated with a handle can't have the low order bit set.

11.1 ExCreateHandleTable

PVOID
ExCreateHandleTable(
 IN ULONG InitialCountTableEntries,
 IN ULONG CountTableEntriesToGrowBy,
 IN ULONG LogSizeTableEntry,
 IN ULONG TableMutexLevel,

Windows NT Executive Support Routines Specification 36

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 IN ULONG SerialNumberMask
)

Routine Description:

This function creates a handle table for storing opaque pointers. A handle is
an index into a handle table.

Parameters:

InitialCountTableEntries - Initial size of the handle table.

CountTableEntriesToGrowBy - Number of entries to grow the handle table by
when it becomes full.

LogSizeTableEntry - Log, base 2, of the number of 32-bit values in each handle
table entry.

TableMutexLevel - The level number to associated with the mutex that is used
to synchronize access to the handle table.

SerialNumberMask - If non-zero then the last 32-bit value in each handle table
entry is supposed to contain a serial number and the value of this
parameter is used to mask off bits that are not part of the serial number
value.

Return Value:

An opaque pointer to the handle table. Returns NULL if an error occurred.
The following errors can occur:

- Insufficient memory

11.2 ExLockHandleTable

VOID
ExLockHandleTable(
 IN PVOID HandleTableHandle
)

Routine Description:

This function acquires the mutex for the specified handle table. After acquiring
the mutex, it then acquired the spin lock for the specified handle table and sets

Windows NT Executive Support Routines Specification 37

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

the MutexOwned flag in the handle table to TRUE before releasing the spin
lock.

The purpose of the dual level locking is so that ExMapHandleToPointer can do
it's work by just acquiring the spin lock.

Parameters:

HandleTableHandle - An opaque pointer to a handle table

Return Value:

None.

11.3 ExUnlockHandleTable

VOID
ExUnlockHandleTable(
 IN PVOID HandleTableHandle,
 IN BOOLEAN ReleaseMutex
)

Routine Description:

This function releases the spin lock associated the specified handle table. If
the ReleaseMutex parameter is TRUE then the mutex associated with the
handle table is also released, before releasing the spin lock.

Parameters:

HandleTableHandle - An opaque pointer to a handle table

ReleaseMutex - A flag indicated whether or not to release the mutex associated
with the specified handle table.

Return Value:

None.

11.4 ExDupHandleTable

PVOID
ExDupHandleTable(
 IN PVOID HandleTableHandle,
 IN EX_DUPLICATE_HANDLE_ROUTINE DupHandleProcedure OPTIONAL

Windows NT Executive Support Routines Specification 38

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

)

Routine Description:

This function creates a duplicate copy of the specified handle table.

Parameters:

HandleTableHandle - An opaque pointer to a handle table

DupHandleProcedure - A pointer to a procedure to call for each valid handle in
the duplicated handle table.

Return Value:

An opaque pointer to the handle table. Returns NULL if an error occurred.
The following errors can occur:

- Insufficient memory

11.5 ExDestroyHandleTable

VOID
ExDestroyHandleTable(
 IN PVOID HandleTableHandle,
 IN EX_DESTROY_HANDLE_ROUTINE DestroyHandleProcedure OPTIONAL
)

Routine Description:

This function destorys the specified handle table. It first locks the handle table
to prevent others from accessing it, and then invalidates the handle table and
frees the memory associated with it.

Parameters:

HandleTableHandle - An opaque pointer to a handle table

DestroyHandleProcedure - A pointer to a procedure to call for each valid handle
in the handle table being destroyed.

Return Value:

None.

Windows NT Executive Support Routines Specification 39

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

11.6 ExDumpHandleTable

VOID
ExDumpHandleTable(
 IN PVOID HandleTableHandle,
 IN EX_DUMP_HANDLE_ROUTINE DumpHandleProcedure OPTIONAL,
 IN PVOID Stream OPTIONAL
)

Routine Description:

This function prints out a formatted dump of the specified handle table.

Parameters:

HandleTableHandle - an opaque pointer to a handle table.

DumpHandleProcedure - A pointer to a procedure to call for each valid handle
in the handle table being dumped.

Stream - I/O stream to send the output to. Defaults to stdout.

Return Value:

None.

11.7 ExEnumHandleTable

BOOLEAN
ExEnumHandleTable(
 IN PVOID HandleTableHandle,
 IN EX_ENUMERATE_HANDLE_ROUTINE EnumHandleProcedure,
 IN PVOID EnumParameter,
 OUT PHANDLE Handle OPTIONAL
)

Routine Description:

This function enumerates all the valid handles in a handle table. For each valid
handle in the handle table, this functions calls an enumeration procedure
specified by the caller. If the enumeration procedure returns TRUE, then the
enumeration is stop, the current handle is returned to the caller via the
optional Handle parameter and this function returns TRUE to indicated that
the enumeration stopped at a specific handle.

Windows NT Executive Support Routines Specification 40

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Parameters:

HandleTableHandle - An opaque pointer to a handle table.

EnumHandleProcedure - A pointer to a procedure to call for each valid handle
in the handle table being enumerated.

EnumParameter - An unterpreted 32-bit value that is passed to the
EnumHandleProcedure each time it is called.

Handle - An optional pointer to a variable that will receive the Handle value
that the enumeration stopped at. Contents of the variable only valid if
this function returns TRUE.

Return Value:

TRUE if the enumeration stopped at a specific handle. FALSE otherwise.

11.8 ExCreateHandle

HANDLE
ExCreateHandle(
 IN PVOID HandleTableHandle,
 IN PVOID Pointer
)

Routine Description:

This function create a handle in the specified handle table. If there is
insufficient room in the handle table for a new entry, then the handle table is
reallocated to a larger size.

Parameters:

HandleTableHandle - An opaque pointer to a handle table

Pointer - Initial value of the handle table entry if the entry size is one. The low
order bit must be zero. If the entry size is not one, then it is a pointer to
an array of 32-bit values that are the initial value of the handle table
entry. The number of 32-bit values in the array is the size of each handle
table entry. The low order bit of the first 32-bit value in the array must be
zero.

Return Value:

Windows NT Executive Support Routines Specification 41

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The handle created or NULL if an error occurred. The following errors can
occur:

- Invalid handle table

- Low order bit of the first pointer is not zero

- Insufficient memory

11.9 ExDestroyHandle

BOOLEAN
ExDestroyHandle(
 IN PVOID HandleTableHandle,
 IN HANDLE Handle
)

Routine Description:

This function removes a handle from a handle table.

Parameters:

HandleTableHandle - An opaque pointer to a handle table

Handle - Handle returned by ExCreateHandle for this handle table

Return Value:

Returns TRUE if the handle was successfully deleted from the handle table.
Returns FALSE otherwise.

11.10 ExMapHandleToPointer

BOOLEAN
ExMapHandleToPointer(
 IN PVOID HandleTableHandle,
 IN HANDLE Handle,
 OUT PVOID HandleValue
)

Routine Description:

This function maps a handle into a pointer. It always returns with the handle
table locked, so the caller must call ExUnlockHandleTable.

Windows NT Executive Support Routines Specification 42

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Parameters:

HandleTableHandle - An opaque pointer to a handle table

Handle - Handle returned by ExCreateHandle for this handle table

HandleValue - A pointer to a variable that is to receive the value of the handle.
If the passed handle table has a handle table entry size of one, then
HandleValue is the 32-bit value associated with the passed handle. If the
handle table entry size is more than one, then HandleValue is a pointer to
the handle table entry itself.

Return Value:

This function returns TRUE if the handle table mutex was acquired and FALSE
if just the handle table spin lock was acquired. The return value of this
function should be passed as the ReleaseMutex parameter to the
ExUnlockHandleTable function.

If the returned value is FALSE and the HandleValue variable is set to NULL,
then an error occurred. The following errors can occur:

- Invalid handle table

- Invalid handle

Windows NT Executive Support Routines Specification 43

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

12. Probe and Validate Arguments

This module contains the routine to probe variable length buffers for read or
write accessibility and to ensure correct alignment.

12.1 ProbeForRead

VOID
ProbeForRead(
 IN PVOID Address,
 IN ULONG Length,
 IN ULONG Alignment
)

Routine Description:

This function probes a structure for read accessibility and ensures correct
alignment of the structure. If the structure is not accessible or has incorrect
alignment, then an exception is raised.

Parameters:

Address - Supplies a pointer to the structure to be probed.

Length - Supplies the length of the structure.

Alignment - Supplies the required alignment of the structure expressed as the
number of bytes in the primitive datatype (e.g., 1 for char, 2 for short, 4
for long, and 8 for quad).

Return Value:

None.

12.2 ProbeForWrite

VOID
ProbeForWrite(
 IN PVOID Address,
 IN ULONG Length,
 IN ULONG Alignment
)

Routine Description:

Windows NT Executive Support Routines Specification 44

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This function probes a structure for write accessibility and ensures correct
alignment of the structure. If the structure is not accessible or has incorrect
alignment, then an exception is raised.

Parameters:

Address - Supplies a pointer to the structure to be probed.

Length - Supplies the length of the structure.

Alignment - Supplies the required alignment of the structure expressed as the
number of bytes in the primitive datatype (e.g., 1 for char, 2 for short, 4
for long, and 8 for quad).

Return Value:

None.

12.3 ProbeAndReadChar

CHAR
ProbeAndReadChar(
 IN PCHAR Address
)

12.4 ProbeAndReadUchar

UCHAR
ProbeAndReadUchar(
 IN PUCHAR Address
)

12.5 ProbeAndReadShort

SHORT
ProbeAndReadShort(
 IN PSHORT Address
)

12.6 ProbeAndReadLong

LONG
ProbeAndReadLong(
 IN PLONG Address
)

Windows NT Executive Support Routines Specification 45

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

12.7 ProbeAndReadUlong

ULONG
ProbeAndReadUlong(
 IN PULONG Address
)

12.8 ProbeAndReadQuad

QUAD
ProbeAndReadQuad(
 IN PQUAD Address
)

12.9 ProbeAndReadUquad

UQUAD
ProbeAndReadUquad(
 IN PUQUAD Address
)

12.10 ProbeAndReadHandle

HANDLE
ProbeAndReadHandle(
 IN PHANDLE Address
)

12.11 ProbeAndReadBoolean

BOOLEAN
ProbeAndReadBoolean(
 IN PBOOLEAN Address
)

12.12 ProbeForWriteChar

CHAR
ProbeForWriteChar(
 IN PCHAR Address
)

Windows NT Executive Support Routines Specification 46

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

12.13 ProbeForWriteUchar

UCHAR
ProbeForWriteUchar(
 IN PUCHAR Address
)

12.14 ProbeForWriteShort

SHORT
ProbeForWriteShort(
 IN PSHORT Address
)

12.15 ProbeForWriteUshort

USHORT
ProbeForWriteUshort(
 IN PUSHORT Address
)

12.16 ProbeForWriteLong

LONG
ProbeForWriteLong(
 IN PLONG Address
)
12.17 ProbeForWriteUlong

ULONG
ProbeForWriteUlong(
 IN PULONG Address
)

12.18 ProbeForWriteQuad

QUAD
ProbeForWriteQuad(
 IN PQUAD Address
)

12.19 ProbeForWriteUquad

UQUAD
ProbeForWriteUquad(

Windows NT Executive Support Routines Specification 47

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 IN PUQUAD Address
)

12.20 ProbeForWriteHandle

HANDLE
ProbeForWriteHandle(
 IN PHANDLE Address
)

12.21 ProbeForWriteBoolean

BOOLEAN
ProbeForWriteBoolean(
 IN PBOOLEAN Address
)

12.22 ProbeAndWriteChar

CHAR
ProbeAndWriteChar(
 IN PCHAR Address
)

12.23 ProbeAndWriteUchar

UCHAR
ProbeAndWriteUchar(
 IN PUCHAR Address
)

12.24 ProbeAndWriteShort

SHORT
ProbeAndWriteShort(
 IN PSHORT Address
)

12.25 ProbeAndWriteUshort

USHORT
ProbeAndWriteUshort(
 IN PUSHORT Address
)

Windows NT Executive Support Routines Specification 48

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

12.26 ProbeAndWriteLong

LONG
ProbeAndWriteLong(
 IN PLONG Address
)

12.27 ProbeAndWriteUlong

ULONG
ProbeAndWriteUlong(
 IN PULONG Address
)

12.28 ProbeAndWriteQuad

QUAD
ProbeAndWriteQuad(
 IN PQUAD Address
)

12.29 ProbeAndWriteUquad

UQUAD
ProbeAndWriteUquad(
 IN PUQUAD Address
)

12.30 ProbeAndWriteHandle

HANDLE
ProbeAndWriteHandle(
 IN PHANDLE Address
)

12.31 ProbeAndWriteBoolean

BOOLEAN
ProbeAndWriteBoolean(
 IN PBOOLEAN Address
)

Windows NT Executive Support Routines Specification 49

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

13. Perform Restricted Interlock Operations

This module implements functions to support interlocked operations in a
general way such that all the data that is operated on can be pageable
including the locks themselves.

NOTE: The code in this module has been very carefully aligned such that no
interlocked routine can cross a page boundary. Care must be taken when
making any changes to this module to ensure that a page crossing does not
occur.

13.1 ExInterlockedAddLong

LONG
ExInterlockedAddLong(
 IN PLONG Addend,
 IN LONG Increment,
 IN PKSPIN_LOCK Lock
)

Routine Description:

This function performs an interlocked add of an increment value to an addend
variable of type long. The initial value of the addend variable is returned as the
function value.

Parameters:

Addend (r16) - Supplies a pointer to a variable whose value is to be adjusted by
the increment value.

Increment (r17) - Supplies the increment value to be added to the addend
variable.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access
to the addend variable.

Return Value:

The initial value of the addend variable.

13.2 ExInterlockedAddShort

SHORT
ExInterlockedAddShort(

Windows NT Executive Support Routines Specification 50

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 IN PSHORT Addend,
 IN SHORT Increment,
 IN PKSPIN_LOCK Lock
)

Routine Description:

This function performs an interlocked add of an increment value to an addend
variable of type short. The initial value of the addend variable is returned as
the function value.

Parameters:

Addend (r16) - Supplies a pointer to a variable whose value is to be adjusted by
the increment value.

Increment (r17) - Supplies the increment value to be added to the addend
variable.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access
to the addend variable.

Return Value:

The initial value of the addend variable.

13.3 ExInterlockedInsertHeadList

VOID
ExInterlockedInsertHeadList(
 IN PLIST_ENTRY ListHead,
 IN PLIST_ENTRY ListEntry,
 IN PKSPIN_LOCK Lock
)

Routine Description:

This function inserts an entry at the head of a doubly linked list so that access
to the list is synchronized in a multiprocessor system.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the doubly linked list into
which an entry is to be inserted.

Windows NT Executive Support Routines Specification 51

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ListEntry (r17) - Supplies a pointer to the entry to be inserted at the head of the
list.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access
to the list.

Return Value:

None.

13.4 ExInterlockedInsertTailList

VOID
ExInterlockedInsertTailList(
 IN PLIST_ENTRY ListHead,
 IN PLIST_ENTRY ListEntry,
 IN PKSPIN_LOCK Lock
)

Routine Description:

This function inserts an entry at the tail of a doubly linked list so that access to
the list is synchronized in a multiprocessor system.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the doubly linked list into
which an entry is to be inserted.

ListEntry (r17) - Supplies a pointer to the entry to be inserted at the tail of the
list.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access
to the list.

Return Value:

None.

13.5 ExInterlockedRemoveHeadList

PLIST_ENTRY
ExInterlockedRemoveHeadList(
 IN PLIST_ENTRY ListHead,
 IN PKSPIN_LOCK Lock

Windows NT Executive Support Routines Specification 52

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

)

Routine Description:

This function removes an entry from the head of a doubly linked list so that
access to the list is synchronized in a multiprocessor system. If there are no
entries in the list, then a value of NULL is returned. Otherwise, the address of
the entry that is removed is returned as the function value.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the doubly linked list from
which an entry is to be removed.

Lock (r17) - Supplies a pointer to a spin lock to be used to synchronize access
to the list.

Return Value:

The address of the entry removed from the list, or NULL if the list is empty.

13.6 ExInterlockedPopEntryList

PSINGLE_LIST_ENTRY
ExInterlockedPopEntryList(
 IN PSINGLE_LIST_ENTRY ListHead,
 IN PKSPIN_LOCK Lock
)

Routine Description:

This function removes an entry from the front of a singly linked list so that
access to the list is synchronized in a multiprocessor system. If there are no
entries in the list, then a value of NULL is returned. Otherwise, the address of
the entry that is removed is returned as the function value.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the singly linked list from
which an entry is to be removed.

Lock (r17) - Supplies a pointer to a spin lock to be used to synchronize access
to the list.

Return Value:

Windows NT Executive Support Routines Specification 53

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The address of the entry removed from the list, or NULL if the list is empty.

13.7 ExInterlockedPushEntryList

VOID
ExInterlockedPushEntryList(
 IN PSINGLE_LIST_ENTRY ListHead,
 IN PSINGLE_LIST_ENTRY ListEntry,
 IN PKSPIN_LOCK Lock
)

Routine Description:

This function inserts an entry at the head of a singly linked list so that access
to the list is synchronized in a multiprocessor system.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the singly linked list into
which an entry is to be inserted.

ListEntry (r17) - Supplies a pointer to the entry to be inserted at the head of the
list.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access
to the list.

Return Value:

None.

Windows NT Executive Support Routines Specification 54

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

14. Allocate and Free Spin Locks

This module implements the executive functions to allocate and free spin locks.

14.1 ExAllocateSpinLock

VOID
ExAllocateSpinLock(
 IN PKSPIN_LOCK SpinLock
)

Routine Description:

This function allocates and initializes a spin lock.

Parameters:

SpinLock - Supplies a pointer to a spin lock.

Return Value:

None.

14.2 ExFreeSpinLock

VOID
ExFreeSpinLock(
 IN PKSPIN_LOCK SpinLock
)

Routine Description:

This function frees a previously allocated spin lock.

Parameters:

SpinLock - Supplies a pointer to a spin lock.

Return Value:

None.

Windows NT Executive Support Routines Specification 55

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

15. Perform General Interlocked Operations

This module implements functions to support interlocked operations in a
general way such that all the data that is operated on can be pageable
including the locks themselves.

NOTE: The code in this module has been very carefully aligned such that no
interlocked routine can cross a page boundary. Care must be taken when
making any changes to this module to ensure that a page crossing does not
occur.

15.1 RtlInterlockedAddLong

LONG
RtlInterlockedAddLong(
 IN PLONG Addend,
 IN LONG Increment,
 IN PKSPIN_LOCK Lock
)

Routine Description:

This function performs an interlocked add of an increment value to an addend
variable of type long. The initial value of the addend variable is returned as the
function value.

Parameters:

Addend (r16) - Supplies a pointer to a variable whose value is to be adjusted by
the increment value.

Increment (r17) - Supplies the increment value to be added to the addend
variable.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access
to the addend variable.

Return Value:

The initial value of the addend variable.

15.2 RtlInterlockedAddShort

SHORT
RtlInterlockedAddShort(

Windows NT Executive Support Routines Specification 56

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 IN PSHORT Addend,
 IN SHORT Increment,
 IN PKSPIN_LOCK Lock
)

Routine Description:

This function performs an interlocked add of an increment value to an addend
variable of type short. The initial value of the addend variable is returned as
the function value.

Parameters:

Addend (r16) - Supplies a pointer to a variable whose value is to be adjusted by
the increment value.

Increment (r17) - Supplies the increment value to be added to the addend
variable.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access
to the addend variable.

Return Value:

The initial value of the addend variable.

15.3 RtlInterlockedInsertHeadList

VOID
RtlInterlockedInsertHeadList(
 IN PLIST_ENTRY ListHead,
 IN PLIST_ENTRY ListEntry,
 IN PKSPIN_LOCK Lock
)

Routine Description:

This function inserts an entry at the head of a doubly linked list so that access
to the list is synchronized in a multiprocessor system.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the doubly linked list into
which an entry is to be inserted.

Windows NT Executive Support Routines Specification 57

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ListEntry (r17) - Supplies a pointer to the entry to be inserted at the head of the
list.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access
to the list.

Return Value:

None.

15.4 RtlInterlockedInsertTailList

VOID
RtlInterlockedInsertTailList(
 IN PLIST_ENTRY ListHead,
 IN PLIST_ENTRY ListEntry,
 IN PKSPIN_LOCK Lock
)

Routine Description:

This function inserts an entry at the tail of a doubly linked list so that access to
the list is synchronized in a multiprocessor system.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the doubly linked list into
which an entry is to be inserted.

ListEntry (r17) - Supplies a pointer to the entry to be inserted at the tail of the
list.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access
to the list.

Return Value:

None.

15.5 RtlInterlockedRemoveHeadList

PLIST_ENTRY
RtlInterlockedRemoveHeadList(
 IN PLIST_ENTRY ListHead,
 IN PKSPIN_LOCK Lock

Windows NT Executive Support Routines Specification 58

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

)

Routine Description:

This function removes an entry from the head of a doubly linked list so that
access to the list is synchronized in a multiprocessor system. If there are no
entries in the list, then a value of NULL is returned. Otherwise, the address of
the entry that is removed is returned as the function value.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the doubly linked list from
which an entry is to be removed.

Lock (r17) - Supplies a pointer to a spin lock to be used to synchronize access
to the list.

Return Value:

The address of the entry removed from the list, or NULL if the list is empty.

15.6 RtlInterlockedRemoveHeadList

PLIST_ENTRY
RtlInterlockedRemoveHeadList(
 IN PLIST_ENTRY ListHead,
 IN PKSPIN_LOCK Lock
)

Routine Description:

This function removes an entry from the head of a doubly linked list so that
access to the list is synchronized in a multiprocessor system. If there are no
entries in the list, then a value of NULL is returned. Otherwise, the address of
the entry that is removed is returned as the function value.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the doubly linked list from
which an entry is to be removed.

Lock (r17) - Supplies a pointer to a spin lock to be used to synchronize access
to the list.

Return Value:

Windows NT Executive Support Routines Specification 59

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The address of the entry removed from the list, or NULL if the list is empty.

15.7 RtlInterlockedPopEntryList

PSINGLE_LIST_ENTRY
RtlInterlockedPopEntryList(
 IN PSINGLE_LIST_ENTRY ListHead,
 IN PKSPIN_LOCK Lock
)

Routine Description:

This function removes an entry from the front of a singly linked list so that
access to the list is synchronized in a multiprocessor system. If there are no
entries in the list, then a value of NULL is returned. Otherwise, the address of
the entry that is removed is returned as the function value.

Parameters:

ListHead (r16) - Supplies a pointer to the head of the singly linked list from
which an entry is to be removed.

Lock (r17) - Supplies a pointer to a spin lock to be used to synchronize access
to the list.

Return Value:

The address of the entry removed from the list, or NULL if the list is empty.

15.8 RtlInterlockedPushEntryList

VOID
RtlInterlockedPushEntryList(
 IN PSINGLE_LIST_ENTRY ListHead,
 IN PSINGLE_LIST_ENTRY ListEntry,
 IN PKSPIN_LOCK Lock
)

Routine Description:

This function inserts an entry at the head of a singly linked list so that access
to the list is synchronized in a multiprocessor system.

Parameters:

Windows NT Executive Support Routines Specification 60

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ListHead (r16) - Supplies a pointer to the head of the singly linked list into

which an entry is to be inserted.

ListEntry (r17) - Supplies a pointer to the entry to be inserted at the head of the
list.

Lock (r18) - Supplies a pointer to a spin lock to be used to synchronize access
to the list.

Return Value:

None.

Windows NT Executive Support Routines Specification 61

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

16. Perform Operations on Counted Strings

This module defines functions for manipulating counted strings (STRING). A
counted string is a data structure containing three fields. The Buffer field is a
pointer to the string itself. The MaximumLength field contains the maximum
number of bytes that can be stored in the memory pointed to by the Buffer
field. The Length field contains the current length, in bytes, of the string
pointed to by the Buffer field. Users of counted strings should not make any
assumptions about the existence of a null byte at the end of the string, unless
the null byte is explicitly included in the Length of the string.

16.1 RtlInitString

VOID
RtlInitString(
 OUT PSTRING DestinationString,
 IN PSZ SourceString OPTIONAL
)

Routine Description:

The RtlInitString function initializes a Windows NT counted string. The
DestinationString is initialized to point to the SourceString and the Length and
MaximumLength fields of DestinationString are initialized to the length of the
SourceString, which is zero if SourceString is not specified.

Parameters:

DestinationString - Pointer to the counted string to initialize

SourceString - Optional pointer to a null terminated string that the counted
string is to point to.

Return Value:

None.

16.2 RtlCopyString

VOID
RtlCopyString(
 OUT PSTRING DestinationString,
 IN PSTRING SourceString OPTIONAL
)

Windows NT Executive Support Routines Specification 62

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Routine Description:

The RtlCopyString function copies the SourceString to the DestinationString. If
SourceString is not specified, then the Length field of DestinationString is set
to zero. The MaximumLength and Buffer fields of DestinationString are not
modified by this function.

The number of bytes copied from the SourceString is either the Length of
SourceString or the MaximumLength of DestinationString, whichever is
smaller.

Parameters:

DestinationString - Pointer to the destination string.

SourceString - Optional pointer to the source string.

Return Value:

None.

16.3 RtlCompareString

LONG
RtlCompareString(
 IN PSTRING String1,
 IN PSTRING String2,
 IN BOOLEAN CaseInSensitive
)

Routine Description:

The RtlCompareString function compares two counted strings. The return
value indicates if the strings are equal or String1 is less than String2 or String1
is greater than String2.

The CaseInSensitive parameter specifies if case is to be ignored when doing the
comparison.

Parameters:

String1 - Pointer to the first string.

String2 - Pointer to the second string.

Windows NT Executive Support Routines Specification 63

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

CaseInsensitive - TRUE if case should be ignored when doing the comparison.

Return Value:

Signed value that gives the results of the comparison:

Zero - String1 equals String2

< Zero - String1 less than String2

> Zero - String1 greater than String2

16.4 RtlEqualString

BOOLEAN
RtlEqualString(
 IN PSTRING String1,
 IN PSTRING String2,
 IN BOOLEAN CaseInSensitive
)

Routine Description:

The RtlEqualString function compares two counted strings for equality.

The CaseInSensitive parameter specifies if case is to be ignored when doing the
comparison.

Parameters:

String1 - Pointer to the first string.

String2 - Pointer to the second string.

CaseInsensitive - TRUE if case should be ignored when doing the comparison.

Return Value:

Boolean value that is TRUE if String1 equals String2 and FALSE otherwise.

Windows NT Executive Support Routines Specification 64

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

17. Debugging Support Functions

This module implements functions to support debugging Windows NT. Each
function executes a trap r31,r29,r0 instruction with a special value in R31.
The simulator decodes this trap instruction and dispatches to the correct piece
of code in the simulator based on the value in R31. See the simscal.c source
file in the simulator source directory.

17.1 DbgBreakPoint

VOID
DbgBreakPoint()

Routine Description:

This function executes a breakpoint instruction. Useful for enter the debugger
under program control.

Parameters:

None.

Return Value:

None.

17.2 DbgCommand

VOID
DbgCommand(
 PCH Command,
 ULONG Parameter
)

Routine Description:

This function passes a string to the debugger to execute as if it was type by the
user.

Parameters:

Command - a pointer to a string that contains one or more debugger
commands. Multiple commands are separated by either a semicolon or
newline character.

Windows NT Executive Support Routines Specification 65

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Parameter - a 32 bit parameter that is stored in $9 simulator variable.

Return Value:

None.

17.3 DbgQueryInstructionCounter

ULONG
DbgQueryInstructionCounter()

Routine Description:

This function returns the current value of the i860 simulator's instruction
counter.

Parameters:

None.

Return Value:

32 bit instruction counter.

17.4 DbgPrint

ULONG
DbgPrint(
 IN PCH Format
)

Routine Description:

This function displays a formatted string on the debugging console. The syntax
of it's argments is the same as accepted by the Microsoft C Runtime printf
routines with the addition of the following format specifiers:

S - argument is a PSTRING (pointer to STRING)

Parameters:

Format - specifies a pointer to the format string.

Remaining arguments are variable and depend upon the contents of the format
string. Maximum of 8 arguments may be specified.

Windows NT Executive Support Routines Specification 66

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Return Value:

Number of characters displayed on the debugging console.

17.5 DbgPrompt

ULONG
DbgPrompt(
 IN PCH Prompt,
 OUT PCH Response,
 IN ULONG MaximumResponseLength
)

Routine Description:

This function displays the prompt string on the debugging console and then
reads a line of text from the debugging console. The line read is returned in
the memory pointed to by the second parameter. The third parameter specifies
the maximum number of characters that can be stored in the response area.

Parameters:

Prompt - specifies the text to display as the prompt.

Response - specifies where to store the response read from the debugging
console.

Prompt - specifies the maximum number of characters that can be stored in the
Response buffer.

Return Value:

Number of characters stored in the Response buffer. Includes the terminating
newline character, but not the null character after that.

17.6 DbgLoadImageFileSymbols

ULONG
DbgLoadImageFileSymbols(
 IN PCH FileName
)

Routine Description:

Windows NT Executive Support Routines Specification 67

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This function attempts to load any symbolic debugging information from an
image file into the debugger.

Parameters:

FileName - specifies the name of the image file to load symbols from.

Return Value:

Returns 0 if the image file is not found or is not a valid image file. Otherwise
returns the entry point address from the image file header.

17.7 DbgSetDirBaseForImage

VOID
DbgSetDirBaseForImage(
 IN PCH ImagePathName,
 IN ULONG DirBase
)

Routine Description:

This function identifies the dirbase value to associate with an image file whose
sybols have been loaded with the DbgLoadImageFileSymbols function. The
first parameter should point to the path name returned by the
DbgLoadImageFileSymbols function. The second parameter is the 20 bit DTB
value that is associated with the process into which the image file was loaded.

Parameters:

ImagePathName - specifies the fully qualified path name of the image file that
has been loaded into a Windows NT address space.

DirBase - specifies the 20 bit DTB value that is associated with the Windows
NT process that will run the image file.

Return Value:

None.

17.8 DbgKillDirBase

VOID
DbgKillDirBase(
 IN ULONG DirBase

Windows NT Executive Support Routines Specification 68

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

)

Routine Description:

This function tells the debugger when a particular process context is being
destroyed. This allows the debugger to remove any process specific
breakpoints from its breakpoint table.

Parameters:

DirBase - the 20 bit DTB value that is associated with the Windows NT process
that is being destroyed.

Return Value:

None.

17.9 DbgCheckpointSimulator

BOOLEAN
DbgCheckpointSimulator(
 IN PCH FileName OPTIONAL
)

Routine Description:

This function saves the entire state of the i860 simulator to the specified file. It
returns FALSE when the checkpoint operation is completed. It returns TRUE
when the function returns due to having been restarted.

Parameters:

FileName - an optional parameter that specifies the name of the file to save the
state of the simulator in. If not specified, then the file name defaults to
the image file name with a .CHK extension.

Return Value:

Returns FALSE when the checkpoint is complete. Returns TRUE if the
simulator has been restarted from the checkpoint file.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS/2 File System Design Note

Author: Gary D. Kimura

Revision 1.0, Sep 11, 1989

NT OS/2 File System Design Note iii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction..1
1.1 Function of File System ..1
1.2 NT OS/2 Environment for the File System...1

2. File System Operations ..2
2.1 FSD/FSP Dispatch and Communication...2
2.2 File System Initialization ..3
2.3 Before the First Operation on a Volume...3
2.4 Open and Create File Operations ..5
2.5 Read, Write, Set, and Query File Operations..6
2.6 Close File Operation ...7

3. Loose Ends...7

NT OS/2 File System Design Note 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

This design note describes the implementation of an NT OS/2 file system. All NT OS/2 file
systems share similar properties in their communication with the NT OS/2 I/O system, and their
basic internal flow of control. The information presented here is based on knowledge gained
while implementing the FAT file system for NT OS/2, but also contains information applicable
to all NT OS/2 file systems.

Before reading this design note, the reader should be familiar with the "NT OS/2 I/O System
Specification" document and the section within the "NT OS/2 Memory Management Design
Note" regarding I/O support. The I/O system specification presents a high level view of the NT
OS/2 user API calls and the support routines it provides for use by the various NT OS/2 file
systems and device drivers. This design augments the I/O system document by describing in
detail how a file system actually ties into the I/O system, in terms of the I/O system's major data
structures and flow of control.

This design note presents a tour of the communication that occurs between the NT OS/2 I/O
system and the file system. It is intended as a guide to file system programmers in understanding
how the file system interacts with the I/O system, and avoids discussing file system internals,
such as its internal data structures or its resource locking mechanism and granularity.

1.1 Function of File System

The task of the file system is to handle user (and system) generated requests to read and write
files to or from a disk volume. The user passes all I/O requests to the I/O system (via calls such
as NtReadFile) which in turn passes the request to the appropriate file system or device driver in
a structure called an I/O request packet (IRP). The IRP contains a function code and parameters
appropriate for the function. For example, to open a file the IRP contains a code indicating an
open file operation and a file name parameter1.

In the case of a file system the IRP also contains a pointer to the device object denoting the target
device that the file system should direct all sector read and write requests towards. That is, to
actually read a sector on a device the file system calls back to the I/O system with information
from the IRP indicating which device to read.

In this sense, the file system is not tied to any physical device. From the standpoint of the I/O
system, a file system acts more like a filter. In NT OS/2, disk drivers only deal with reading and
writing physical device sectors. The primary job of the file system is to add structure to this
device. So a user or system request to manipulate a file goes from the I/O system to the file
system where it is passed back to the I/O system as actual reads and writes of sectors on a disk.

1The IRP actually contains additional open file parameters that are not discussed in this example.

NT OS/2 File System Design Note 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1.2 NT OS/2 Environment for the File System

An NT OS/2 file system exports three entry points and these entry points are only called by the
I/O system (i.e., a user never directly calls the file system). There is an initialization routine, a
dispatch routine, and an unload routine.

The initialization routine is called at system start up during I/O initialization. This routine is
responsible for creating the file system's device object and for initializing any global data
structures and processes/threads used by the file system. The structure of a file system's device
object is covered later in this design note.

The dispatch routine is called by the I/O system to process all IRPs targeted for the file system.
These include requests to mount a volume, open or create a file, read and write to a file, and
close a file. Logically, the dispatch routine either completes the I/O request and then returns
control to the I/O system, or it returns to the I/O system immediately and indicates that the I/O
will be completed at a later time (i.e., its return status is STATUS_PENDING).

The unload routine is called by the I/O system when the file system is being removed from a
running NT OS/2 system. The unload routine is responsible for cleaning up all of its global data
structures, processes, and threads. After calling unload, the file system is essentially unavailable
for use until its initialization routine is called again.

2. File System Operations

This section describes the implementation details of an NT OS/2 file system. It describes the
basic flow of control through the file system and its communication with the I/O system.

2.1 FSD/FSP Dispatch and Communication

The term File System Driver (FSD) refers to a set of routines called by the I/O system (via the
file system's dispatch routine). These are kernel-mode routines that execute in the same context
in which they are called by the I/O system. That is, there is not a special process/thread or
context switch associated with executing the FSD. Execution paths through the FSD should be
fairly short and not require long waits (e.g., for a disk I/O to complete).

The workhorse of the file system is the File System Process (FSP). The term FSP refers to the
set of threads executing within a dedicated file system process. Unlike the FSD, the FSP has the
entire user address space available for use, and can dedicate threads to systematically attend to
the tasks associated with an I/O request. An FSP thread can wait for I/O to complete and can
easily maintain context unavailable to the FSD.

Figure 1 illustrates the relationship between the FSD and the FSP. The FSD is called by the I/O
system with an IRP containing the requested operation. Then, based on the amount of work and
context required by the request, the FSD either sends the necessary read and write requests to the
target device object (as associated IRPs) or it enqueues the IRP to the work queue used by the
FSP. If the request is queued to the FSP, the FSP dequeues the IRP and performs the work
required to complete the request.

NT OS/2 File System Design Note 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Figure 1 - FSD/FSP Layout

As a rule of thumb, file read and write requests can usually go through the FSD directly to the
target device object. All other requests, such as file create, that require file system buffering or
data structure editing go through the FSP.

Within a single file system, there are multiple work queues and an FSP thread dedicated to each
queue. The FSP thread is a normal thread (i.e., it is merely the name of a thread that is handling
work queue activity). There is a queue to handle mount requests and a queue for each mounted
volume. The construction and use of each work queue is described in the following subsections.

2.2 File System Initialization

The file system initialization procedure is called at system start up during I/O initialization. This
procedure is responsible for creating the device object for the file system, creating the FSP
process, and starting the FSP mount thread. It also initializes all of the global data structures
used by the file system. It is called with a pointer to the driver object for the file system created
by the I/O system.

The device object created at initialization is called the file system device object and contains the
name of the file system (e.g., "\Fat") and a work queue. All mount requests are sent by the FSD
dispatcher to this work queue and are processed by a dedicated FSP mount thread. Figure 2
illustrates the relationship between the file system device object and the FSP mount thread.

Figure 2 - File System Initialization

In summary, the initialization phase creates a file system device object and sets a pointer to it in
the Driver Object. It also creates the FSP process and FSP mount thread. The FSP mount thread
only processes requests that are placed in the file system device object's work queue, and the
only type of requests valid in that work queue are mount volume requests.

NT OS/2 File System Design Note 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.3 Before the First Operation on a Volume

When a user calls NtCreateFile, one of the first things the I/O system must decide is whether the
volume targeted by the request is mounted. If this is the first operation on the volume, then the
volume is not mounted and the I/O system must send an IRP to the file system requesting that the
volume be mounted. After the volume is mounted, the I/O system can then forward the create
file request.

On a mount request, the I/O system calls the file system FSD dispatch routine passing as input
parameters a pointer to the file system device object and an IRP (See Figure 3a). The IRP
contains two parameters of interest2. There is a pointer to a volume parameter block (VPB) and
to a targeted device object. The VPB is a structure used to denote a disk volume. It will contain,
after the volume is mounted, the volume label and its serial number. Within the system, there is
one VPB for every mounted volume.

The targeted device object is the device object that is to be used by the file system when it issues
a read or write sector request. The VPB also contains a pointer to a device object (this field is set
by the I/O system) called the real device (not shown in Figure 3). In most cases, the targeted
device object and real device are identical and simply denote the disk driver containing the
volume (e.g., a floppy or hard disk). However, to accommodate multi-volume disk sets and disk
strippers, the targeted device object and the real device can be different device objects. The file
system only sends request to the targeted device object and never to the real device.

Figure 3a shows the parameters and data structures sent to the file system FSD dispatch routine
on a mount request. When it is called, the FSD dispatcher will enqueue the mount request to the
FSP mount thread's work queue. Note that the work queue is located by the FSD dispatcher via
the file system device object which is passed in as an input parameter.

Figure 3 - Processing a Mount Request

To process the mount request, the FSP mount thread issues the necessary read sector requests to
the targeted device object to decide if the volume belongs to this file system (e.g., whether it is a
Fat file system or a Pinball file system). If the mount is successful, the file system creates a new
device object for the volume. This device object replaces the device object originally referenced
by the VPB. It contains a work queue for the volume, and a volume control block (VCB). Upon

2An IRP actually contains more than two parameters, but only these two are germane to this
discussion.

NT OS/2 File System Design Note 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

completion of a successful mount operation, the file system also inserts in the VPB the volume
label and serial number. Figure 3b shows the results after a successful mount request.

The FSP mount thread also creates a new FSP volume thread to process subsequent I/O requests
targeted for the volume. That is, when the I/O system calls the FSD dispatcher to do I/O to a
mounted volume, it will pass as input a pointer to the volume device object and not the file
system device object. The FSD dispatcher will then send the request to the work queue for the
appropriate FSP volume thread.

A slightly different chain of events takes place if the volume being mounted has previously been
mounted by the file system. That is, the file system already possesses a VCB for the volume.
This situation can occur with removable media where the I/O system is attempting an operation
on what it thinks is a new volume, when in reality the volume was mounted in a different drive at
an earlier time.

To handle the remount case, the file system will keep track of every device object that is
mounted and search this list whenever a new mount request is processed. If a match with a
previous volume is found, the file system will then simply replace the new VPB it is given as
input with the old VPB. This simply requires changing the real device pointer found in the VPB
and the target device object pointer found in the old VCB. The remount process is illustrated in
Figure 4.

Figure 4 - Volume Remount

In summary, the file system's mount procedure is used to establish that the target device object
contains a proper file system structure. If the file system recognizes the on disk structure, it
creates a new device object for the volume in place of the file system device object, sets the
volume label and serial number in the VPB, and starts up an FSP volume thread.

2.4 Open and Create File Operations

The open and create file3 operation takes as input a file object denoting the file being opened and
the device object (created by the file system) which is targeted for the operation. The FSD
dispatcher queues the open and create file requests to the work queue for the appropriate FSP
volume thread. Figure 5a illustrates the input given to the FSD dispatcher.

3This discussion also applies to opening and creating directories.

NT OS/2 File System Design Note 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Figure 5 - Opening and Creating a File

The file object passed to the file system contains the file name being opened relative to the root
of the volume and it contains the requested access mode. It is the job of the file system to open
the file on the targeted device object. The information available to the file system is the device
object of the volume (passed as input from the I/O system), the VCB and VPB associated with
the volume, and a pointer to the targeted device object. The FSP volume thread is free to issue
as many read and write sector commands to the targeted device object as necessary to open
(create) the file.

When the file is successfully opened, the file system creates a file control block (FCB)4 and a
context control block (CCB) which are both used to store information about the opened file.
Both of these records are referenced by the file object through its two FsContext pointers. The
file object also contains a section object pointer which points to a reserved longword in the FCB.
This longword is used by the memory management system. See Figure 5b.

The FCB and CCB are internal file system control structures. An FCB is created for every
opened file on a volume. It contains the file name, mapping information, and a pointer to the
VCB containing the file5. Only one FCB is created per opened file. The FCB is shared by
multiple file objects if the file objects denote the same file. A CCB is created for every file
object6 and contains information specific to the file object, such as current file position
information.

In summary, when opening a file, the file system is passed as input a file object denoting the file
and a device object denoting the volume where the file is to exist. If the open operation is
successful, the file system creates an FCB and a CCB record, both referenced by the file object.

2.5 Read, Write, Set, and Query File Operations

The basic operations on a file, after it is opened, are read, write, set, and query. These operations
take as input a file object and a pointer to the device object for the volume. See Figure 6.

4If the operation opens a directory, then the structure is called a directory control block (DCB).

5This is a simplification of the actual FCB structure.

6Actually as an optimization it is only created when absolutely necessary.

NT OS/2 File System Design Note 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Figure 6 - Read, Write, Set, and Query File Input

When processing an IRP of this type, the FSD dispatcher can either send the IRP to the FSP
work queue and let the FSP volume thread handle the request, or it can complete the request
itself. The FSP can actually handle all types I/O requests; however, for efficiency, it is better to
have the FSD handle the requests when possible. The criterion used to determine if the FSD can
handle a request are the amount of time required to process the request and the type of resource
locks needed to read or alter the file system's internal data structures. If a lot of extra processing
is required or if too many time consuming locks are needed to perform the operation, then the
FSP should handle the request.

These operations do not alter the infrastructure connecting the file object, device object, FCB, or
CCB. However, they still may need to acquire an exclusive resource lock on the structures in
order to alter their other fields (such as setting a delete flag or expanding file allocation).

2.6 Close File Operation

The last operation on a file is the close operation. This operation takes the same input as the
preceding read, write, set, and query operations, but unlike those operations, the close operation
modifies the infrastructure.

To do a close operation, the file system first performs any necessary I/O to the target device
object to either close or delete the file. It then removes the FCB7 and CCB from its internal data
structure. After the close operation the file object is no longer valid and must be removed (or
recycled) by the I/O system.

3. Loose Ends

7The FCB is removed only it if is no longer reference by any file object.

NT OS/2 File System Design Note 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History

Original Draft 1.0, September 7, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS/2 File System Support Routines Specification

Author: Gary D. Kimura

Revision 1.0, August 10, 1990

NT OS/2 File System Support Routines Specification i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction.. 1

2. Miscellaneous Support Macros.. 2
2.1 FsRtlCompleteRequest ... 2

3. Byte Range File Lock Routines... 3
3.1 FsRtlInitializeFileLock ... 3
3.2 FsRtlUninitializeFileLock... 4
3.3 FsRtlAreThereCurrentFileLocks .. 4
3.4 FsRtlProcessFileLock ... 5
3.5 FsRtlCheckLockForReadAccess .. 5
3.6 FsRtlCheckLockForWriteAccess ... 6
3.7 FsRtlGetNextFileLock.. 6

4. Name Support Routines... 8
4.1 FsRtlFirstDbcsCharacter... 8
4.2 FsRtlDissectDbcs.. 10
4.3 FsRtlUpcaseDbcs.. 11
4.4 FsRtlDbcsContainsWildCards .. 12
4.5 FsRtlCompareDbcs ... 12
4.6 FsRtlIsDbcsInExpression.. 13
4.7 FsRtlIsNameValid... 14
4.8 FsRtlIsPathValid ... 14
4.9 FsRtlIsLegalDbcsCharacter .. 15
4.10 FsRtlToUpperDbcsCharacter.. 16

5. Mapped Control Block Routines ... 17
5.1 FsRtlInitializeMcb .. 18
5.2 FsRtlUninitializeMcb.. 18
5.3 FsRtlAddMcbEntry... 18
5.4 FsRtlRemoveMcbEntry .. 19
5.5 FsRtlLookupMcbEntry ... 20
5.6 FsRtlLookupLastMcbEntry .. 21
5.7 FsRtlNumberOfRunsInMcb.. 21
5.8 FsRtlGetNextMcbEntry .. 22

6. Volume Mapped Control Block Routines ... 24
6.1 FsRtlInitializeVmcb.. 25
6.2 FsRtlUninitializeVmcb ... 25
6.3 FsRtlSetMaximumLbnVmcb.. 26
6.4 FsRtlAddVmcbMapping... 26
6.5 FsRtlRemoveVmcbMapping .. 27
6.6 FsRtlVmcbVbnToLbn .. 27
6.7 FsRtlVmcbLbnToVbn .. 28

NT OS/2 File System Support Routines Specification ii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6.8 FsRtlSetDirtyVmcb... 28
6.9 FsRtlSetCleanVmcb.. 29
6.10 FsRtlGetDirtySectorsVmcb .. 29

NT OS/2 File System Support Routines Specification 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

This specification describes a library of file system support routines for use by the different file
systems within NT OS/2. They are executive level routines that are too file system specific to belong
in the Ex or public Rtl component, and are also inappropriate for the I/O component.

The name of this component is FsRtl. Each set of routines within FsRtl is tailored for supporting a
specific file system function. Most components within FsRtl define an abstract data type and routines
for manipulating the data. In addition, the header file for FsRtl defines some global data types
common to multiple file systems.

The global data types defined within FsRtl are:

 o Logical Block Number (LBN). LBN is the moniker used to identify physical blocks on the

disk. The numbering sequence is from zero to N-1 where N is the number of sectors on the
disk.

 o Virtual Block Number (VBN). The VBN identifies the sectors of a file relative to the start of
the file. A value of 0 corresponds to the first sector of data for a file, a value of 1 corresponds
to the second sector, and so forth.

The individual categories of support provided by FsRtl are:

 o Byte Range File Locks (FILE_LOCK). This package implements a set of routines for

handling byte range file locking. The routines provide a consistent method of all file system to
maintain and implement byte range file locks.

 o Name Support. This package provides string manipulation routines and macros that are
tailored for file system usage.

 o Mapped Control Block (MCB). This package provides for in-memory retrieval mapping
support. Retrieval mapping is the correspondence between LBN's and VBN's for a given file.

 o Volume Mapped Control Block (VMCB). The Pinball and Fat file systems treat the ancillary
structures of the on-disk file system as one large file, called the Volume File. This allows the
file systems to utilize memory management for maintaining a cache of these sectors stored in
memory. This package provides necessary support for constructing and maintaining an
artificial mapping between LBNs and VBNs in the volume file.

 o Notify Change Directory Routines. \\ still needs to be added \\

To use the FsRtl component a file system must explicitly include the file <fsrtl.h> (i.e., the file is not
automatically included with <ntos.h>).

NT OS/2 File System Support Routines Specification 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The remainder of this document describes, in detail, each of the preceding components, and also
miscellaneous macros.

NT OS/2 File System Support Routines Specification 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2. Miscellaneous Support Macros

This module defines all of the general File System Rtl routines

2.1 FsRtlCompleteRequest

VOID
FsRtlCompleteRequest(
 IN PIRP Irp,
 IN NTSTATUS Status
)

Routine Description:

This routine is used to complete an IRP with the indicated status. It does the necessary raise and
lower of IRQL.

Parameters:

Irp - Supplies a pointer to the Irp to complete

Status - Supplies the completion status for the Irp

Return Value:

None.

NT OS/2 File System Support Routines Specification 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3. Byte Range File Lock Routines

The file lock package provides a set of routines that allow the caller to handle byte range file
lock requests. A variable of type FILE_LOCK is needed for every file with byte range locking.
The package provides routines to set and clear locks, and to test for read or write access to a file
with byte range locks.

The main idea of the package is to have the file system initialize a FILE_LOCK variable for
every data file as its opened, and then to simply call a file lock processing routine to handle all
IRP's with a major function code of LOCK_CONTROL. The package is responsible for keeping
track of locks and for completing the LOCK_CONTROL IRPS. When processing a read or write
request the file system can then call two query routines to check for access.

Most of the code for processing IRPS and checking for access use paged pool and can encounter
a page fault, therefore the check routines cannot be called at DPC level. To help servers that do
call the file system to do read/write operations at DPC level there is a additional routine that
simply checks for the existence of a lock on a file and can be run at DPC level.

Concurrent access to the FILE_LOCK variable must be control by the caller.

The functions provided in this package are as follows:

o FsRtlInitializeFileLock - Initialize a new FILE_LOCK structure.

o FsRtlUninitializeFileLock - Uninitialize an existing FILE_LOCK structure.

o FsRtlProcessFileLock - Process an IRP whose major function code is LOCK_CONTROL.

o FsRtlCheckLockForReadAccess - Check for read access to a range of bytes in a file.

o FsRtlCheckLockForWriteAccess - Check for write access to a range of bytes in a file.

o FsRtlAreThereCurrentFileLocks - Check if there are any locks currently assigned to a file.

o FsRtlGetNextFileLock - This procedure enumerates the current locks of a file lock variable.

3.1 FsRtlInitializeFileLock

VOID
FsRtlInitializeFileLock(
 IN PFILE_LOCK OpaqueFileLock,
 IN POOL_TYPE PoolType,
 IN PCOMPLETE_LOCK_IRP_ROUTINE CompleteLockIrpRoutine OPTIONAL
)

Routine Description:

NT OS/2 File System Support Routines Specification 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This routine initializes a new FILE_LOCK structure. The caller must supply the memory for the
structure. This call must precede all other calls that utilize the FILE_LOCK variable.

Parameters:

OpaqueFileLock - Supplies a pointer to the FILE_LOCK structure to initialize.

PoolType - Supplies the pool type to use when allocating additional internal storage. If
nonpaged pool is selected then all of the routines in this package can be called a DPC level.
However, using nonpaged pool for storing file lock information is not a wise use of
nonpaged pool.

CompleteLockIrpRoutine - Optionally supplies an alternate routine to call for completing IRPs.
FsRtlProcessFileLock by default will call IoCompleteRequest to finish up an IRP; however
if the caller want to process the completion itself then it needs to specify a completion
routine here. This routine will then be called in place of IoCompleteRequest.

Return Value:

None.

3.2 FsRtlUninitializeFileLock

VOID
FsRtlUninitializeFileLock(
 IN PFILE_LOCK OpaqueFileLock
)

Routine Description:

This routine uninitializes a FILE_LOCK structure. After calling this routine the File lock must
be reinitialized before being used again.

This routine will free all files locks and completes any outstanding lock requests as a result of
cleaning itself up.

Parameters:

OpaqueFileLock - Supplies a pointer to the FILE_LOCK struture being decommissioned.

Return Value:

None.

NT OS/2 File System Support Routines Specification 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.3 FsRtlAreThereCurrentFileLocks

BOOLEAN
FsRtlAreThereCurrentFileLocks(
 IN PFILE_LOCK OpaqueFileLock
)

Routine Description:

This routine tells its if caller there are any current file locks for the file. It does this test by
simply checking the file lock variable and not by accessing other pieces of memory. Therefore if
the FileLock variable is in nonpaged pool then this test can be done at DPC.

Parameters:

FileLock - Supplies the File lock being queried

Return Value:

BOOLEAN - TRUE if there are current locks on the file and FALSE otherwise

3.4 FsRtlProcessFileLock

NTSTATUS
FsRtlProcessFileLock(
 IN PFILE_LOCK OpaqueFileLock,
 IN PIRP Irp,
 IN PVOID Context OPTIONAL
)

Routine Description:

This routine processes a file lock IRP it does either a lock request, or an unlock request. It also
completes the IRP. Once called the user (i.e., File System) has relinquished control of the input
IRP.

If pool is not available to store the information this routine will raise a status value indicating
insufficient resources.

Parameters:

OpaqueFileLock - Supplies the File lock being modified/queried.

Irp - Supplies the Irp being processed.

NT OS/2 File System Support Routines Specification 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Context - Optionally supplies a context to use when calling the user alternate IRP completion
routine.

Return Value:

NTSTATUS - The return status for the operation.

3.5 FsRtlCheckLockForReadAccess

BOOLEAN
FsRtlCheckLockForReadAccess(
 IN PFILE_LOCK OpaqueFileLock,
 IN PIRP Irp
)

Routine Description:

This routine checks to see if the caller has read access to the range indicated in the IRP due to
file locks. This call does not complete the Irp it only uses it to get the lock information and read
information. The IRP must be for a read operation.

Parameters:

OpaqueFileLock - Supplies the File Lock to check.

Irp - Supplies the Irp being processed.

Return Value:

BOOLEAN - TRUE if the indicated user/request has read access to the entire specified byte
range, and FALSE otherwise

3.6 FsRtlCheckLockForWriteAccess

BOOLEAN
FsRtlCheckLockForWriteAccess(
 IN PFILE_LOCK OpaqueFileLock,
 IN PIRP Irp
)

Routine Description:

This routine checks to see if the caller has write access to the indicated range due to file locks.
This call does not complete the Irp it only uses it to get the lock information and write
information. The IRP must be for a write operation.

NT OS/2 File System Support Routines Specification 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Parameters:

OpaqueFileLock - Supplies the File Lock to check.

Irp - Supplies the Irp being processed.

Return Value:

BOOLEAN - TRUE if the indicated user/request has write access to the entire specified byte
range, and FALSE otherwise

3.7 FsRtlGetNextFileLock

PFILE_LOCK_INFO
FsRtlGetNextFileLock(
 IN PFILE_LOCK OpaqueFileLock,
 IN BOOLEAN Restart
)

Routine Description:

This routine enumerate the file lock current denoted by the input file lock variable. It returns a
pointer to the file lock information stored for each lock. The caller is responsible for
synchronizing call to this procedure and for not altering any of the data returned by this
procedure.

The way a programing will use this procedure to enumerate all of the locks is as follows:

 for (p = FsRtlGetNextFileLock(FileLock, TRUE);

 p != NULL;

 p = FsRtlGetNextFileLock(FileLock, FALSE)) {

 // Process the lock information referenced by p

 }

Parameters:

OpaqueFileLock - Supplies the File Lock to enumerate. The current enumeration state is stored
in the file lock variable so if multiple threads are enumerating the lock at the same time the
results will be unpredictable.

Restart - Indicates if the enumeration is to start at the beginning of the file lock list or if we are
continuing from a previous call.

NT OS/2 File System Support Routines Specification 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Return Value:

PFILE_LOCK_INFO - Either it returns a pointer to the next file lock record for the input file
lock or it returns NULL if there are not more locks.

NT OS/2 File System Support Routines Specification 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4. Name Support Routines

The name support package is for manipulating DBCS strings (later this will be extended to also
handle UNICODE strings). The routines allow the caller to dissect and compare strings.

There are two exported typedef's defined by this package. The first is a structure called
CODEPAGE. Every Dbcs routines takes as input a code page record. This record contains the
double byte character and upcase information. If a code page not supplied the routines currently
use the default US code page.

We need to work out the routines for a file system to contruct a code page.

The second typedef is an enumerated type called COMPARISON_RESULTS that is used when
comparing two strings. It indicates if one string is less than, equal to, or greater than the other.
The comparison routines also know how to handle wild cards.

The following routines are provided by this package:

o FsRtlDissectDbcs - This routine takes a path name string and breaks into two parts. The first
name in the string and the remainder. It also checks that the first name is valid for an OS/2 file.

o FsRtlUpcaseDbcs - This routines takes a string and computes its upcased equivalent.

o FsRtlDbcsContainsWildCards - This routines tells the caller if a string contains any wildcard
characters (i.e., * or ?).

o FsRtlCompareDbcs - This routine compares two strings.

o FsRtlIsDbcsInExpression - This routine is used to compare a string against a template
(possibly containing wildcards) to sees if the string is in the language denoted by the template.

o FsRtlIsNameValid - This routine checks to see if a string contains valid characters.

o FsRtlIsPathValid - This routine checks to see if a string contains valid names separated by
backslashes.

o FsRtlFirstDbcsCharacter - This routine is used to extract the first character from a DBCS
string.

o FsRtlIslegalDbcsCharacter - This routine is used to decide if a DBCS character value is legal.

o FsRtlToUpperDbcsCharacter - This routine is used to upcase a single DBCS character.

4.1 FsRtlFirstDbcsCharacter

USHORT
FsRtlFirstDbcsCharacter(

NT OS/2 File System Support Routines Specification 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 IN PCODEPAGE CodePage OPTIONAL,
 IN STRING Name,
 OUT PSTRING RemainingName
)

Routine Description:

This routine takes an input Dbcs string and returns as its function value the first character in the
string and as an output parameter the remaining name after the first character. If the name is
empty then a value of zero is returned. If the first character in the input name is invalid then an
invalid character is returned and the remaining name is advanced by one byte through the input
name.

Example of its results are:

 Name Function Result RemainingName

 empty 0 empty

 A A empty

 ~A ~ A (~ denotes an illegal char)

 AB A B

Note that given a Dbcs string denoted by a STRING variable Str the 1st, 2nd, and subsequent
Dbcs characters can be extracted using the following programming construct

 while (Str.Length != 0) {

 Dbcs = FsRtlFirstDbcsCharacter(NULL, Str, &Str);

 // Dbcs now contains the next character in the string.

 }

Parameters:

CodePage - Is an optional input parameter. If supplied it specifies the code page to use when
examining the input string; otherwise a generic code page is used.

Name - Supplies the input string being examined

RemainingName - Receives the remaining part of the input string after the first character.

Return Value:

USHORT - Receives the first character found in the input string.

NT OS/2 File System Support Routines Specification 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4.2 FsRtlDissectDbcs

BOOLEAN
FsRtlDissectDbcs(
 IN PCODEPAGE CodePage OPTIONAL,
 IN STRING InputName,
 IN BOOLEAN Is8dot3,
 OUT PSTRING FirstPart,
 OUT PSTRING RemainingPart
)

Routine Description:

This routine takes an input Dbcs string and dissects it into two substrings. The first output string
contains the name that appears at the beginning of the input string, the second output string
contains the remainder of the input string.

In the input string backslashes are used to separate names. The input string must not start with a
backslash. Both output strings will not begin with a backslash.

If the input string does not contain any names then both output strings are empty. If the input
string contains only one name then the first output string contains the name and the second string
is empty.

Note that both output strings use the same string buffer memory of the input string.

This routine returns a function result of TRUE if the input string is well formed (including
empty) and contains only valid characters (including wildcards). It returns FALSE if the input
string is illformed, contains invalid characters.

Example of its results are:

 InputString FirstPart RemainingPart Function Result

 empty empty empty TRUE

 A A empty TRUE

 A\B\C\D\E A B\C\D\E TRUE

 *A? *A? empty TRUE

 \A empty empty FALSE

 A[,] empty empty FALSE

 A\\B+;\C A \B+;\C TRUE

NT OS/2 File System Support Routines Specification 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Parameters:

CodePage - Is an optional input parameter. If supplied it specifies the code page to use when
dissecting the input string; otherwise a generic code page is used.

InputName - Supplies the input string being dissected

Is8dot3 - Indicates if the first part of the input name must be 8.3 or can be long file name.

FirstPart - Receives the first name in the input string

RemainingPart - Receives the remaining part of the input string

Return Value:

BOOLEAN - TRUE if the input string is well formed and its first part does not contain any
illegal characters, and FALSE otherwise.

4.3 FsRtlUpcaseDbcs

VOID
FsRtlUpcaseDbcs(
 IN PCODEPAGE CodePage OPTIONAL,
 IN STRING InputName,
 OUT PSTRING OutputName
)

Routine Description:

This routine copies and upcases a Dbcs input string into a caller supplied output string according
to the following upcase mapping rules.

For character values between 0 and 127, upcase normally.

For character values between 128 and 255 and not DBCS, use the upcase table in the code page
to upcase a single character.

For character values between 128 and 255 and DBCS, do not alter.

The first two points above are handled transparently via the Code Page

Parameters:

CodePage - Is an optional input parameter. If supplied it specifies the code page to use when
upcasing the input string; otherwise a generic code page is used.

NT OS/2 File System Support Routines Specification 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

InputName - Supplies the input string to upcase

OutputName - Receives the output string, the output buffer must already be supplied by the caller

Return Value:

None.

4.4 FsRtlDbcsContainsWildCards

BOOLEAN
FsRtlDbcsContainsWildCards(
 IN PCODEPAGE CodePage OPTIONAL,
 IN STRING Name
)

Routine Description:

This routine checks if the input Dbcs name contains any wild card characters (i.e., * or ?).

Parameters:

CodePage - Is an optional input parameter. If supplied it specifies the code page to use when
examining the input string; otherwise a generic code page is used.

Name - Supplies the name to examine

Return Value:

BOOLEAN - TRUE if the input name contains any wildcard characters and FALSE otherwise.

4.5 FsRtlCompareDbcs

COMPARISON_RESULTS
FsRtlCompareDbcs(
 IN PCODEPAGE CodePage OPTIONAL,
 IN STRING Expression,
 IN STRING Name,
 IN COMPARISON_RESULTS WildIs,
 IN BOOLEAN CaseInsensitive
)

Routine Description:

This routine compares a Dbcs expression with a Dbcs name lexigraphically for LessThan,
EqualTo, or GreaterThan. If the expression does not contain any wildcards, this procedure does

NT OS/2 File System Support Routines Specification 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

a complete comparison. If the expression does contain wild cards, then the comparison is only
done up to the first wildcard character. The Name parameter must not contain wild cards. The
wildcard character compares as less then all other characters. So the wildcard name "*.*" will
always compare less than all other strings.

Parameters:

CodePage - Is an optional input parameter. If supplied it specifies the code page to use when
examining the input string; otherwise a generic code page is used.

Expression - Supplies the first name (expression) to compare, optionally with wild cards.
(Upcased already if CaseInsensitive is supplied as TRUE.)

Name - Supplies the second name to compare - no wild cards allowed.

WildIs - Determines what Result is returned if a wild card is encountered in the Expression
String.

CaseInsensitive - TRUE if Name should be Upcased before comparing.

Return Value:

COMPARISON_RESULTS -

LessThan if Expression < Name

EqualTo if Expression == Name

GreaterThan if Expression > Name

4.6 FsRtlIsDbcsInExpression

BOOLEAN
FsRtlIsDbcsInExpression(
 IN PCODEPAGE CodePage OPTIONAL,
 IN STRING Expression,
 IN STRING Name,
 IN BOOLEAN CaseInsensitive
)

Routine Description:

This routine compares a Dbcs name and an expression and tells the caller if the name is equal to
or not equal to the expression. The input name cannot contain wildcards, while the expression
may contain wildcards.

NT OS/2 File System Support Routines Specification 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Parameters:

CodePage - Is an optional input parameter. If supplied it specifies the code page to use when
examining the input string; otherwise a generic code page is used.

Expression - Supplies the input expression to check against (Caller must already upcase if
passing CaseInsensitive TRUE.)

Name - Supplies the input name to check for.

CaseInsensitive - TRUE if Name should be Upcased before comparing.

Return Value:

BOOLEAN - TRUE if Name is an element in the set of strings denoted by the input Expression
and FALSE otherwise.

4.7 FsRtlIsNameValid

BOOLEAN
FsRtlIsNameValid(
 IN PCODEPAGE CodePage OPTIONAL,
 IN STRING Name,
 IN BOOLEAN Is8dot3,
 IN BOOLEAN CanContainWildCards,
 OUT PSTRING LongestValidPrefix OPTIONAL
)

Routine Description:

This routine scans the input Dbcs name and verifies that if only contains valid characters.

Parameters:

CodePage - Is an optional input parameter. If supplied it specifies the code page to use when
examining the input string; otherwise a generic code page is used.

Name - Supplies the input name to check.

Is8dot3 - Specifies if the Name must be 8.3 or can be a long file name.

CanContainWildCards - Indicates if the name can contain wild cards (i.e., * and ?).

LongestValidPrefix - This optional output parameter receives a string denoting the largest valid
prefix found for the input string. If the input string is completely valid then the longest
valid prefix is equal to the input string.

NT OS/2 File System Support Routines Specification 17

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Return Value:

BOOLEAN - TRUE if the input name is valid and FALSE otherwise.

4.8 FsRtlIsPathValid

BOOLEAN
FsRtlIsPathValid(
 IN PCODEPAGE CodePage OPTIONAL,
 IN STRING Name,
 IN BOOLEAN Is8dot3,
 IN BOOLEAN MustHaveLeadingBackslash,
 IN BOOLEAN CanContainWildCards,
 OUT PSTRING LongestValidPrefix OPTIONAL
)

Routine Description:

This routine scans the input Dbcs string and verifies that it is only composed of valid names
separated by backslashes.

Parameters:

CodePage - Is an optional input parameter. If supplied it specifies the code page to use when
examining the input string; otherwise a generic code page is used.

Name - Supplies the input name to check.

Is8dot3 - Specifies if the Name must be 8.3 or can be a long file name.

MustHaveLeadingBackslash - Specifies if the name must start with a leading backslash.

CanContainWildCards - Indicates if the name can contain wild cards (i.e., * and ?).

LongestValidPrefix - This optional output parameter receives a string denoting the largest valid
prefix found for the input string. If the input string is completely valid then the longest
valid prefix is equal to the input string.

Return Value:

BOOLEAN - TRUE if the input name is valid and FALSE otherwise.

4.9 FsRtlIsLegalDbcsCharacter

BOOLEAN
FsRtlIsLegalDbcsCharacter(

NT OS/2 File System Support Routines Specification 18

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 IN PCODEPAGE CodePage OPTIONAL,
 IN USHORT DbcsCharacter
)

Routine Description:

This routine takes an input character (either double byte or single byte) and indicates to the caller
if the character is legal. The input to this procedure should be the return value of having called
FsRtlFirstDbcsCharacter.

Parameters:

CodePage - Is an optional input parameter. If supplied it specifies the code page to use when
examining the input character; otherwise a generic code page is used.

DbcsCharacter - Supplies the input character being examined

Return Value:

BOOLEAN - TRUE if the input character is legal and FALSE otherwise

4.10 FsRtlToUpperDbcsCharacter

USHORT
FsRtlToUpperDbcsCharacter(
 IN PCODEPAGE CodePage OPTIONAL,
 IN USHORT DbcsCharacter
)

Routine Description:

This routine takes an input character (either double byte or single byte) and returns its upcased
equivalent character. The input to this procedure should be the return value of having called
FsRtlFirstDbcsCharacter.

Parameters:

CodePage - Is an optional input parameter. If supplied it specifies the code page to use when
examining the input character; otherwise a generic code page is used.

DbcsCharacter - Supplies the input character being upcased

Return Value:

USHORT - Recieves the upcased character

NT OS/2 File System Support Routines Specification 19

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5. Mapped Control Block Routines

The MCB routines provide support for maintaining an in-memory copy of the retrieval mapping
information for a file. The general idea is to have the file system lookup the retrieval mapping
for a VBN once from the disk, add the mapping to the MCB structure, and then utilize the MCB
to retrieve the mapping for subsequent accesses to the file. A variable of type MCB is used to
store the mapping information.

The routines provided here allow the user to incrementally store some or all of the retrieval
mapping for a file and to do so in any order. That is, the mapping can be inserted to the MCB
structure all at once starting from the beginning and working to the end of the file, or it can be
randomly scattered throughout the file.

The package identifies each contiguous run of sectors mapping VBNs and LBNs indenpendent
of the order they are added to the MCB structure. For example a user can define a mapping
between VBN sector 0 and LBN sector 107, and between VBN sector 2 and LBN sector 109.
The mapping now contains two runs each one sector in length. Now if the user adds an additional
mapping between VBN sector 1 and LBN sector 106 the MCB structure will contain only one
run 3 sectors in length.

Concurrent access to the MCB structure is control by this package.

The following routines are provided by this package:

o FsRtlInitializeMcb - Initialize a new MCB structure. There should be one MCB for every
opened file. Each MCB structure must be initialized before it can be used by the system.

o FsRtlUninitializeMcb - Uninitialize an MCB structure. This call is used to cleanup any
anciallary structures allocated and maintained by the MCB. After being uninitialized the MCB
must again be initialized before it can be used by the system.

o FsRtlAddMcbEntry - This routine adds a new range of mappings between LBNs and VBNs to
the MCB structure.

o FsRtlRemoveMcbEntry - This routines removes an existing range of mappings between LBNs
and VBNs from the MCB structure.

o FsRtlLookupMcbEntry - This routine returns the LBN mapped to by a VBN, and indicates, in
sectors, the length of the run.

o FsRtlLookupLastMcbEntry - This routine returns the mapping for the largest VBN stored in
the structure.

o FsRtlNumberOfRunsInMcb - This routine tells the caller total number of discontiguous
sectors runs stored in the MCB structure.

NT OS/2 File System Support Routines Specification 20

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o FsRtlGetNextMcbEntry - This routine returns the the caller the starting VBN and LBN of a
given run stored in the MCB structure.

5.1 FsRtlInitializeMcb

VOID
FsRtlInitializeMcb(
 IN PMCB OpaqueMcb,
 IN POOL_TYPE PoolType
)

Routine Description:

This routine initializes a new Mcb structure. The caller must supply the memory for the Mcb
structure. This call must precede all other calls that set/query the Mcb structure.

If pool is not available this routine will raise a status value indicating insufficient resources.

Parameters:

OpaqueMcb - Supplies a pointer to the Mcb structure to initialize.

PoolType - Supplies the pool type to use when allocating additional internal Mcb memory.

Return Value:

None.

5.2 FsRtlUninitializeMcb

VOID
FsRtlUninitializeMcb(
 IN PMCB OpaqueMcb
)

Routine Description:

This routine uninitializes an Mcb structure. After calling this routine the input Mcb structure
must be re-initialized before being used again.

Parameters:

OpaqueMcb - Supplies a pointer to the Mcb structure to uninitialize.

Return Value:

NT OS/2 File System Support Routines Specification 21

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

None.

5.3 FsRtlAddMcbEntry

BOOLEAN
FsRtlAddMcbEntry(
 IN PMCB OpaqueMcb,
 IN VBN Vbn,
 IN LBN Lbn,
 IN ULONG SectorCount
)

Routine Description:

This routine is used to add a new mapping of VBNs to LBNs to an existing Mcb. The
information added will map

Vbn to Lbn,

Vbn+1 to Lbn+1,...

Vbn+(SectorCount-1) to Lbn+(SectorCount-1).

The mapping for the VBNs must not already exist in the Mcb. If the mapping continues a
previous run, then this routine will actually coalesce them into 1 run.

If pool is not available to store the information this routine will raise a status value indicating
insufficient resources.

An input Lbn value of zero is illegal (i.e., the Mcb structure will never map a Vbn to a zero Lbn
value).

Parameters:

OpaqueMcb - Supplies the Mcb in which to add the new mapping.

Vbn - Supplies the starting Vbn of the new mapping run to add to the Mcb.

Lbn - Supplies the starting Lbn of the new mapping run to add to the Mcb.

SectorCount - Supplies the size of the new mapping run (in sectors).

Return Value:

BOOLEAN - TRUE if the mapping was added successfully (i.e., the new Vbns did not collide
with existing Vbns), and FALSE otherwise. If FALSE is returned then the Mcb is not changed.

NT OS/2 File System Support Routines Specification 22

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5.4 FsRtlRemoveMcbEntry

VOID
FsRtlRemoveMcbEntry(
 IN PMCB OpaqueMcb,
 IN VBN Vbn,
 IN ULONG SectorCount
)

Routine Description:

This routine removes a mapping of VBNs to LBNs from an Mcb. The mappings removed are for

Vbn,

Vbn+1, to

Vbn+(SectorCount-1).

The operation works even if the mapping for a Vbn in the specified range does not already exist
in the Mcb. If the specified range of Vbn includes the last mapped Vbn in the Mcb then the Mcb
mapping shrinks accordingly.

If pool is not available to store the information this routine will raise a status value indicating
insufficient resources.

Parameters:

OpaqueMcb - Supplies the Mcb from which to remove the mapping.

Vbn - Supplies the starting Vbn of the mappings to remove.

SectorCount - Supplies the size of the mappings to remove (in sectors).

Return Value:

None.

5.5 FsRtlLookupMcbEntry

BOOLEAN
FsRtlLookupMcbEntry(
 IN PMCB OpaqueMcb,
 IN VBN Vbn,
 OUT PLBN Lbn,
 OUT PULONG SectorCount OPTIONAL

NT OS/2 File System Support Routines Specification 23

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

)

Routine Description:

This routine retrieves the mapping of a Vbn to an Lbn from an Mcb. It indicates if the mapping
exists and the size of the run.

Parameters:

OpaqueMcb - Supplies the Mcb being examined.

Vbn - Supplies the Vbn to lookup.

Lbn - Receives the Lbn corresponding to the Vbn. A value of zero is returned if the Vbn does
not have a corresponding Lbn.

SectorCount - Receives the number of sectors that map from the Vbn to contiguous Lbn values
beginning with the input Vbn.

Return Value:

BOOLEAN - TRUE if the Vbn is within the range of VBNs mapped by the MCB (even if it
corresponds to a hole in the mapping), and FALSE if the Vbn is beyond the range of the MCB's
mapping.

For example, if an MCB has a mapping for VBNs 5 and 7 but not for 6, then a lookup on Vbn 5
or 7 will yield a non zero Lbn and a sector count of 1. A lookup for Vbn 6 will return TRUE
with an Lbn value of 0, and lookup for Vbn 8 or above will return FALSE.

5.6 FsRtlLookupLastMcbEntry

BOOLEAN
FsRtlLookupLastMcbEntry(
 IN PMCB OpaqueMcb,
 OUT PVBN Vbn,
 OUT PLBN Lbn
)

Routine Description:

This routine retrieves the last Vbn to Lbn mapping stored in the Mcb. It returns the mapping for
the last sector or the last run in the Mcb. The results of this function is useful when extending an
existing file and needing to a hint on where to try and allocate sectors on the disk.

Parameters:

NT OS/2 File System Support Routines Specification 24

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

OpaqueMcb - Supplies the Mcb being examined.

Vbn - Receives the last Vbn value mapped.

Lbn - Receives the Lbn corresponding to the Vbn.

Return Value:

BOOLEAN - TRUE if there is a mapping within the Mcb and FALSE otherwise (i.e., the Mcb
does not contain any mapping).

5.7 FsRtlNumberOfRunsInMcb

ULONG
FsRtlNumberOfRunsInMcb(
 IN PMCB OpaqueMcb
)

Routine Description:

This routine returns to the its caller the number of distinct runs mapped by an Mcb. Holes (i.e.,
Vbns that map to Lbn=0) are counted as runs. For example, an Mcb containing a mapping for
only Vbns 0 and 3 will have 3 runs, one for the first mapped sector, a second for the hole
covering Vbns 1 and 2, and a third for Vbn 3.

Parameters:

OpaqueMcb - Supplies the Mcb being examined.

Return Value:

ULONG - Returns the number of distinct runs mapped by the input Mcb.

5.8 FsRtlGetNextMcbEntry

BOOLEAN
FsRtlGetNextMcbEntry(
 IN PMCB OpaqueMcb,
 IN ULONG RunIndex,
 OUT PVBN Vbn,
 OUT PLBN Lbn,
 OUT PULONG SectorCount
)

Routine Description:

NT OS/2 File System Support Routines Specification 25

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This routine returns to its caller the Vbn, Lbn, and SectorCount for distinct runs mapped by an
Mcb. Holes are counted as runs. For example, to construct to print out all of the runs in a a file
is:

 for (i = 0; FsRtlGetNextMcbEntry(Mcb,i,&Vbn,&Lbn,&Count); i++){

 // print out vbn, lbn, and count

 }

Parameters:

OpaqueMcb - Supplies the Mcb being examined.

RunIndex - Supplies the index of the run (zero based) to return to the caller.

Vbn - Receives the starting Vbn of the returned run, or zero if the run does not exist.

Lbn - Recieves the starting Lbn of the returned run, or zero if the run does not exist.

SectorCount - Receives the number of sectors within the returned run, or zero if the run does not
exist.

Return Value:

BOOLEAN - TRUE if the specified run (i.e., RunIndex) exists in the Mcb, and FALSE
otherwise. If FALSE is returned then the Vbn, Lbn, and SectorCount parameters receive zero.

NT OS/2 File System Support Routines Specification 26

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6. Volume Mapped Control Block Routines

The VMCB routines provide support for maintaining a mapping between LBNs and VBNs for a
virtual volume file. The volume file is all of the sectors that make up the on-disk structures. A
file system uses this package to map LBNs for on-disk structure to VBNs in a volume file. This
when used in conjunction with Memory Management and the Cache Manager will treat the
volume file as a simple mapped file. A variable of type VMCB is used to store the mapping
information and one is needed for every mounted volume.

The main idea behind this package is to allow the user to dynamically read in new disk structure
sectors (e.g., FNODEs). The user assigns the new sector a VBN in the Volume file and has
memory management fault the page containing the sector into memory. To do this Memory
management will call back into the file system to read the page from the volume file passing in
the appropriate VBN. Now the file system takes the VBN and maps it back to its LBN and does
the read.

The granularity of mapping is one a per page basis. That is if a mapping for LBN 8 is added to
the VMCB structure and the page size is 8 sectors then the VMCB routines will actually assign a
mapping for LBNS 8 through 15, and they will be assigned to a page aligned set of VBNS. This
function is needed to allow us to work efficiently with memory management. This means that
some sectors in some pages might actually contain regular file data and not volume information,
and so when writing the page out we must only write the sectors that are really in use by the
volume file. To help with this we provide a set of routines to keep track of dirty volume file
sectors. That way, when the file system is called to write a page to the volume file, it will only
write the sectors that are dirty.

Concurrent access the VMCB structure is control by this package.

The functions provided in this package are as follows:

o FsRtlInitializeVmcb - Initialize a new VMCB structure.

o FsRtlUninitializeVmcb - Uninitialize an existing VMCB structure.

o FsRtlSetMaximumLbnVmcb - Sets/Resets the maximum allowed LBN for the specified
VMCB structure.

o FsRtlAddVmcbMapping - This routine takes an LBN and assigns to it a VBN. If the LBN
already was assigned to an VBN it simply returns the old VBN and does not do a new
assignemnt.

o FsRtlRemoveVmcbMapping - This routine takes an LBN and removes its mapping from the
VMCB structure.

o FsRtlVmcbVbnToLbn - This routine takes a VBN and returns the LBN it maps to.

NT OS/2 File System Support Routines Specification 27

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o FsRtlVmcbLbnToVbn - This routine takes an LBN and returns the VBN its maps to.

o FsRtlSetDirtyVmcb - This routine is used to mark sectors dirty in the volume file.

o FsRtlSetCleanVmcb - This routine is used to mark sectors clean in the volume file.

o FsRtlGetDirtySectorsVmcb - This routine is used to retrieve the dirty sectors for a page in the
volume file.

6.1 FsRtlInitializeVmcb

VOID
FsRtlInitializeVmcb(
 IN PVMCB OpaqueVmcb,
 IN POOL_TYPE PoolType,
 IN ULONG MaximumLbn
)

Routine Description:

This routine initializes a new Vmcb Structure. The caller must supply the memory for the
structure. This must precede all other calls that set/query the volume file mapping.

If pool is not available this routine will raise a status value indicating insufficient resources.

Parameters:

OpaqueVmcb - Supplies a pointer to the volume file structure to initialize.

PoolType - Supplies the pool type to use when allocating additional internal structures.

MaximumLbn - Supplies the maximum Lbn value that is valid for this volume.

Return Value:

None

6.2 FsRtlUninitializeVmcb

VOID
FsRtlUninitializeVmcb(
 IN PVMCB OpaqueVmcb
)

Routine Description:

NT OS/2 File System Support Routines Specification 28

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This routine uninitializes an existing VMCB structure. After calling this routine the input
VMCB structure must be re-initialized before being used again.

Parameters:

OpaqueVmcb - Supplies a pointer to the VMCB structure to uninitialize.

Return Value:

None.

6.3 FsRtlSetMaximumLbnVmcb

VOID
FsRtlSetMaximumLbnVmcb(
 IN PVMCB OpaqueVmcb,
 IN ULONG MaximumLbn
)

Routine Description:

This routine sets/resets the maximum allowed LBN for the specified Vmcb structure. The Vmcb
structure must already have been initialized by calling FsRtlInitializeVmcb.

Parameters:

OpaqueVmcb - Supplies a pointer to the volume file structure to initialize.

MaximumLbn - Supplies the maximum Lbn value that is valid for this volume.

Return Value:

None

6.4 FsRtlAddVmcbMapping

BOOLEAN
FsRtlAddVmcbMapping(
 IN PVMCB OpaqueVmcb,
 IN LBN Lbn,
 IN ULONG SectorCount,
 OUT PVBN Vbn
)

Routine Description:

NT OS/2 File System Support Routines Specification 29

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This routine adds a new LBN to VBN mapping to the VMCB structure. When a new LBN is
added to the structure it does it only on page aligned boundaries.

If pool is not available to store the information this routine will raise a status value indicating
insufficient resources.

Parameters:

OpaqueVmcb - Supplies the VMCB being updated.

Lbn - Supplies the starting LBN to add to VMCB.

SectorCount - Supplies the number of Sectors in the run

Vbn - Receives the assigned VBN

Return Value:

BOOLEAN - TRUE if this is a new mapping and FALSE if the mapping for the LBN already
exists. If it already exists then the sector count for this new addition must already be in the
VMCB structure

6.5 FsRtlRemoveVmcbMapping

VOID
FsRtlRemoveVmcbMapping(
 IN PVMCB OpaqueVmcb,
 IN VBN Vbn,
 IN ULONG SectorCount
)

Routine Description:

This routine removes a Vmcb mapping.

If pool is not available to store the information this routine will raise a status value indicating
insufficient resources.

Parameters:

OpaqueVmcb - Supplies the Vmcb being updated.

Vbn - Supplies the VBN to remove

SectorCount - Supplies the number of sectors to remove.

NT OS/2 File System Support Routines Specification 30

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Return Value:

None.

6.6 FsRtlVmcbVbnToLbn

BOOLEAN
FsRtlVmcbVbnToLbn(
 IN PVMCB OpaqueVmcb,
 IN VBN Vbn,
 IN PLBN Lbn,
 OUT PULONG SectorCount OPTIONAL
)

Routine Description:

This routine translates a VBN to an LBN.

Parameters:

OpaqueVmcb - Supplies the VMCB structure being queried.

Vbn - Supplies the VBN to translate from.

Lbn - Receives the LBN mapped by the input Vbn. This value is only valid if the function result
is TRUE.

SectorCount - Optionally receives the number of sectors corresponding to the run.

Return Value:

BOOLEAN - TRUE if he Vbn has a valid mapping and FALSE otherwise.

6.7 FsRtlVmcbLbnToVbn

BOOLEAN
FsRtlVmcbLbnToVbn(
 IN PVMCB OpaqueVmcb,
 IN LBN Lbn,
 OUT PVBN Vbn,
 OUT PULONG SectorCount OPTIONAL
)

Routine Description:

This routine translates an LBN to a VBN.

NT OS/2 File System Support Routines Specification 31

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Parameters:

OpaqueVmcb - Supplies the VMCB structure being queried.

Lbn - Supplies the LBN to translate from.

Vbn - Recieves the VBN mapped by the input LBN. This value is only valid if the function
result is TRUE.

SectorCount - Optionally receives the number of sectors corresponding to the run.

Return Value:

BOOLEAN - TRUE if the mapping is valid and FALSE otherwise.

6.8 FsRtlSetDirtyVmcb

VOID
FsRtlSetDirtyVmcb(
 IN PVMCB OpaqueVmcb,
 IN ULONG LbnPageNumber,
 IN ULONG Mask
)

Routine Description:

This routine sets the sectors within a page as dirty based on the input mask.

If pool is not available to store the information this routine will raise a status value indicating
insufficient resources.

Parameters:

OpaqueVmcb - Supplies the Vmcb being manipulated.

LbnPageNumber - Supplies the Page Number (LBN based) of the page being modified. For
example, with a page size of 8 a page number of 0 corresponds to LBN values 0 through 7,
a page number of 1 corresponds to 8 through 15, and so on.

Mask - Supplies the mask of dirty sectors to set for the Page (a 1 bit means to set it dirty). For
example to set LBN 9 dirty on a system with a page size of 8 the LbnPageNumber will be
1, and the mask will be 0x00000002.

Return Value:

None.

NT OS/2 File System Support Routines Specification 32

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6.9 FsRtlSetCleanVmcb

VOID
FsRtlSetCleanVmcb(
 IN PVMCB OpaqueVmcb,
 IN ULONG LbnPageNumber
)

Routine Description:

This routine sets all of the sectors within a page as clean. All of the sectors in a page whether
they are dirty or not are set clean by this procedure.

Parameters:

OpaqueVmcb - Supplies the Vmcb being manipulated.

LbnPageNumber - Supplies the Page Number (Lbn based) of page being modified. For example,
with a page size of 8 a page number of 0 corresponds to LBN values 0 through 7, a page
number of 1 corresponds to 8 through 15, and so on.

Return Value:

None.

6.10 FsRtlGetDirtySectorsVmcb

ULONG
FsRtlGetDirtySectorsVmcb(
 IN PVMCB OpaqueVmcb,
 IN ULONG LbnPageNumber
)

Routine Description:

This routine returns to its caller a mask of dirty sectors within a page.

Parameters:

OpaqueVmcb - Supplies the Vmcb being manipulated

LbnPageNumber - Supplies the Page Number (Lbn based) of page being modified. For example,
with a page size of 8 a page number of 0 corresponds to LBN values 0 through 7, a page
number of 1 corresponds to 8 through 15, and so on.

Return Value:

NT OS/2 File System Support Routines Specification 33

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ULONG - Receives a mask of dirty sectors within the specified page. (a 1 bit indicates that the
sector is dirty).

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS/2 Product Description and Implementation Plan

Author: David N. Cutler

Revision 0.1, October 24, 1990

NT OS/2 Product Description and Implementation Plan i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Executive Summary... 1

2. Overall Goals ... 2

3. Major Milestones, Implementation Strategy, and Overall Schedule....................... 3

4. Self Hosted Development Environment .. 4
4.1. ANSI Terminal Based 386/486 Self Hosted System 4
4.2. ANSI Terminal Based MIPS Self Hosted System... 6
4.3. Windows Based Self Hosted 386/486 and MIPS System............................... 7

5. Beta Test SDK ... 8

6. Product Descriptions.. 8
6.1. Power PC Workstation Release ... 8

6.1.1 Deliverables .. 8
6.1.2 Base System .. 8
6.1.3 Windows ... 8
6.1.4 Network... 8
6.1.5 Schedule .. 8
6.1.6 Dependencies .. 9
6.1.7 Issues ... 9

6.2. Multiprocessor Server Release .. 9
6.2.1 Deliverables .. 9
6.2.2 Base System .. 9
6.2.3 Windows ... 9
6.2.4 Network... 9
6.2.5 Schedule .. 9
6.2.6 Dependencies .. 9
6.2.7 Issues ... 9

6.3. Full Workstation Release... 9
6.3.1 Deliverables .. 9
6.3.2 Base System .. 9
6.3.3 Windows ... 9
6.3.4 Network... 9
6.3.5 Schedule .. 9
6.3.6 Dependencies .. 10
6.3.7 Issues ... 10

7. Product/Major Milestone Descriptions and Schedules.. 10

8. Project Goals.. 10

9. Dependencies... 10
9.1. Languages Group... 10

NT OS/2 Product Description and Implementation Plan ii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

9.2. LanMan Group... 11
9.3. Testing Group .. 11
9.4. User Ed Group ... 11

10. Hardware Plans.. 12

NT OS/2 Product Description and Implementation Plan 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Executive Summary

NT OS/2 , here referred to simply as NT, is a new operating system product being developed by
Microsoft which is portable and supports the Windows 32-bit base system APIs, graphical user
interface, and window management software.

This document describes implementation plans for the NT operating system and contains product
descriptions, projected release dates, an overall schedule, a summary of the work items to be
performed, and a list of external dependencies.

Development on NT actually began approximately two years ago and has progressed to the point
where significant system functionality is operational on both 386/486 and MIPS RISC platforms.

In addition to the development of the NT operating system, Microsoft is also developing a reference
implementation for RISC PCs based on the MIPS R4000 microprocessor chip. This hardware
architecture will be the main target for the first NT product release.

The development and product releases of NT will be phased such that new markets are addressed first,
followed by high end server markets, and finally the general workstation market.

NT is aimed at the high end of Microsoft's systems business and, when running on an 386/486
platform, will share a binary compatible 32-bit programming interface with the low end
implementation of the Windows 32-bit operating system environment based on DOS and an extension
of Windows 3.0.

On RISC systems, NT will provide source level compatiblity with the 386/486 versions of the
Windows 32-bit operating system environment, and binary compatibility with other RISC systems of
the same architecture.

Typically NT will service markets requiring larger memories and higher performance (e.g., greater
than 4mb and RISC performance levels), whereas the low end system will service markets requiring
smaller memories, lower performance, and x86 binary compatibility (.e.g, less than 4mb of memory
and up to 486 performance).

Currently four major product releases are planned, although it is likely that one of more of these
releases will be combined.

The first release of NT is planned as a workstation product that will provide a strong competitor to
UN*X based workstations. It will provide the Windows 32-bit operating system environment, a
POSIX compliant execution environment, high integrity, robustnesss, security, and be network enabled
as both a client and a server. The primary target for this release is a MIPS based RISC PC, although a
386/486 system will also be developed in parallel and be ready for deployment.

\A major issue that needs to get resolved is whether DOS and/or Windows 16-bit emulation
needs to be provided on the RISC platform. Another issue relates to whether the 1003.2
tools need to be delivered with the POSIX environment./

NT OS/2 Product Description and Implementation Plan 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The second release of NT is planned as a scalable performance server product and adds multiprocessor
support for 486 systems, LanMan 3.0 functionality, an extensive set of network device drivers, and the
full services needed to replace OS/2 1.x as the primary Microsoft server platform. Its main marketing
goal is to provide strong competitor with Novell for server based systems.

The third release of NT adds full support for 386/486 workstations and includes DOS emulation,
Windows 16-bit emulation, OS/2 32-bit Base APIs, and certified C2 security. It will provide a full PC
workstation environment.

The fourth release of NT adds support for multiprocessor RISC servers. This release will most lilely be
combined with the second release if hardware is available for testing and evaluation.

In addition to the planned product releases, an OAK, DDK, SDK, and source porting kit will be
available at the appropriate times.

2. Overall Goals

The overall long term goals for the NT project are to:

 o Provide Microsoft with a high end Windows 32-bit operating system that is portable, secure,
and provides the base technology to compete with UN*X on the desktop, Novell in the
network, and provides the advanced features necessary to implement "information at your
finger tips".

 o Provide Microsoft with a reference implementation of a RISC platform based on the MIPS
R4000 microporcessor chip that can be used to facilitate the establishment of standards for the
implementation of RISC PCs and servers.

 o Deliver on the above two goals by providing a series of product releases that build
functionality, let Microsoft address new markets, and provide strong compatibility ties to
existing and future low end products.

The specific development goals for NT are:

 o Portability - NT will be written in C and will be portable to RISC, the 386/486, and other
architectures. A typical port to a new architecture should take no longer than six calender
months.

 o Security - NT will be designed to have pervasive security and will be capable of attaining the
"B" levels of security as defined by the U.S. government. Initially it will be certified at the C2
level.

 o Compatibility - NT will provide a high degree of compatiblity with other Microsoft systems.

 - Window 32-bit Environment - Binary compatibility with the low end implementation of
32-bit Windows environment will be provided when running on a 386/486 system. On

NT OS/2 Product Description and Implementation Plan 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

RISC platforms, source level compatibility with 386/486 systems will be provided and
binary compatibiity with other RISC platforms of the same architecture.

 - OS/2 32-bit Base APIs - Binary compatibility will be provided with the OS/2 2.0 32-bit
Base APIs when running on a 386/486 platform. On RISC platforms source level
compatiblity will be provided.

\OS/2 32-bit Base API binary compatibility is predicated on IBM accepting and
implementing all of the NT OS/2 DCRs that were implemented in Cruiser. This
includes the image format, structured exception handling, alignment of arguments,
and changes to the semantics of muxwait.\

 - DOS and Windows 16-bit Environment - Binary compatibility with DOS and 16-bit
Windows will be provided when running on a 386/486 system. On RISC platforms, these
capabilities will be provided via software emulation of the 8086 instruction set.

\It is not clear how extensive these capabilites will be. The simplest and most
straight forward approach is to only run "clean" APPs that do not make arcane use
of hardware resources. If all APPS have to be executed without change, then this
goal becomes more difficult to achieve. Another question is whether network
services need to be available to 16-bit environments.\

 - File Systems - Binary compatible on-disk structures will be provided for the FAT, HPFS,
and CD-ROM file systems on both 386/486 and RISC platforms.

 - Network - LanMan compatible protocols, redirector, server, and network services will be
provided.

 o Multiprocessors - NT will support symmetric multiprocessing and provide scalable
performance on 486 and RISC based platforms.

 o POSIX - NT will provide a POSIX compliant IEEE 1003.1 (FIPS 151-1) POSIX execution
environment for deployment in the government marketplace.

 o Virtual Memory - NT will provide support for a 32-bit flat addressed virtual environment with
demand paging, mapped files, and asynchronous I/O.

The 486 and RISC PC platforms will be fully supported by NT and will provide a robust and high
integrity system. The deficiencies in the 386 memory management architecture, however, will not be
fully masked and will result in a 386 based system that is less secure and does not exhibit the same
level of integrity and robustness as the 486 and RISC systems. In actual practice this should not be a
concern and only represents an exposure in a system under malicious attack.

\386 platforms must contain an i386 B6 stepping or above to be supported. Earlier
steppings will not be supported and an attempt to boot on such a platform will be rejected
by the NT system with an appropriate error message.\

NT OS/2 Product Description and Implementation Plan 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3. Major Milestones, Implementation Strategy, and Overall Schedule

Several major milestones are planned on the road to a the first release of an NT product. These
milestones lead through a progression of functionality and will increase confidence that the
implementation is proceeding according to plan.

Currently NT boots and executes user programs on both 386/486 and MIPS R3000 based DECstation
5000s. However, the network software is not complete, the complete set of development tools are not
in place, the implementation of the Windows 32-bit base system APIs, graphical user interface, and
window management environment are just beginning, and the system is not capable of supporting its
own development. In addition, the Jazz hardware is not yet available for software development.

The first major milestone is the finalization of the implemenation plan, product descriptions, and
development schedule. This is expected to occur before the end of the year with the first draft
completed by November 30, 1990.

The main implementation strategy for NT is to provide a self hosted development environment on NT
as quickly as possible. This will provide more testing, force the focus to a stable system that supports
its own development, and provide a viable system for ISV and hardware OEM development.

Self hosting will first occur on the 386/486 and be followed shortly thereafter on the Jazz MIPS
hardware. The initial self hosted development environment will support network connections to the
source code server, character mode development tools, and will require an additional machine for mail
and producing word documents.

The target date for self hosting on 386/486 systems is March 26, 1991 and the target date for the Jazz
MIPS system is April 25, 1991.

Self hosting with character mode tools will be followed by a windows environment that supports an
ANSI terminal window. This will allow the windowing and graphical user interface software to be
combined into the system that is running on each developer's desktop.

The target date for a self hosted system on both the 386/486 and Jazz MIPS platforms using the
windowing environment is ????.

The next major milestone is a Beta Test SDK that contains a full Windows 32-bit environment on both
386/486 and Jazz platforms. The target date for the Beta Test SDK is ????.

It is envisioned that two major updates to the beta-test SDK will be required before the first real
product release. These updates will occur at approximately 3 month intervals.

The target for the first product release is ????.

NT OS/2 Product Description and Implementation Plan 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4. Self Hosted Development Environment

The self hosted development system provides for the development of NT on NT. There are three self
hosted system milestones described below.

4.1. ANSI Terminal Based 386/486 Self Hosted System

The 386/486 self hosted system will occur first and will contain following tools and components:

 1. A completely functional NT base system with virtual memory, multithreading, process
management, image/DLL loader, file system support (FAT and HPFS), and disk driver
(ST506).

 2. Support for the Windows 32-bit base system API minus the named pipe, sound, and registration
APIs.

 3. ANSI terminal support for character mode APPs in the keyboard, mouse, and display drivers.

 4. A complete C runtime library that uses the Windows 32-bit base system APIs.

 5. A command interpreter (CMD.EXE) and the Z-Tools.

 6. The source language maintenance utility (SLM).

 7. A full screen editor (MEP).

 8. The make utility (NMAKE).

 9. A native profile utility.

 10. A linker that produces executable images and DLLs.

 11. An object module conversion utility to convert from the Microsoft x86 object format to the
COFF format(CVTOMF).

 12. The NT system build utility (BUILD.EXE).

 13. A LanMan redirector that is capable of communicating with and accessing files and printing on
a LanMan 2.0 server.

 14. A NetBeui transport.

 15. The CFRONT C++ preprocessor.

 16. An Etherlink II NDIS driver.

 17. A 386/486 C compiler with structured exception handling.

NT OS/2 Product Description and Implementation Plan 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 18. A 386/486 assembler.

 19. A 386/486 user mode debugger.

 20. An OS/2 hosted 386/486 kernel debugger.

The NT group will deliver all of these components except the last four items which will be delivered
by the Microsoft Languages group.

\A schedule commmitment is required from the languages group for support of an NT OS/2
hosted 386/486 C compiler, 386/486 assembler, and 386/486 user mode debugger.\

Four people from the NT group will be responsible for pulling together the actual system and verifying
its operation over a 6-8 week period. These people are tentatively identified as Bryanwi, Stever,
Garyki, and Davidtr. Kylesh from the testing group will be the offical build resource and will be
responsible for maintaining the build and maintenance trees.

People developing the MIPS self hosted system will not be able to switch their development
environment to the 386/486 NT system since they will have to be able to continue to compile on the
DECstation 5000 systems which are accessed using TCP/IP.

The target data for the self hosted 386/486 system is March 26, 1991.

\A complete set of Windows 32-bit base system API tests should be operatioinal to check
out this system. What other tests should be available?\

\A complete set of network aware file tests should be available.\

\File system and file server stress tests should be available.\

\Are there any doucmentation requirements?\

Documentation will be required for installation and a description of the features that are, and are not,
available in the various utilities.

4.2. ANSI Terminal Based MIPS Self Hosted System

The MIPS self hosted system implementation will proceed in parallel with the 386/486 self hosted
system support but will not occur until after the 386/486 version. It will contain the following
additional tools and components:

 1. A port of the NT base system from the DECstation 5000 to the R3000 based Jazz system. This
requires a new set of device drivers for the SCSI and floopy disks and an update to the original
i860 bootstrap code.

NT OS/2 Product Description and Implementation Plan 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 2. A port of the NT base system from the R3000 based Jazz system to the R4000 base Jazz
system. This requires a rewrite of the trap handling code, an update to the memory management
code, and an update to the interlocked operations.

 3. ANSI terminal support for character mode APPs in the keyboard, mouse, and display drivers.

 4. A port and verification of all the above development utilities and tools to the MIPS
environment. This includes the 386/486 C compiler and 386/486 assembler.

 5. The MIPS C compiler with structured exception handling.

 6. The MIPS assembler.

 7. A MIPS user mode debugger.

 8. An OS/2 hosted MIPS kernel debugger.

 9. A Sonic chip NDIS driver.

 10. A port and verification of the redirector and NetBeui transport.

The NT group will deliver all of these components except the 386/486 C compiler, 386/486 assembler,
the MIPS user mode debugger, and the OS/2 hosted MIPS kernel debugger which are being delivered
by the Microsoft Languages Group.

\A schedule commmitment is required from the languages group for support of an NT OS/2
hosted 386/486 C compiler, 386/486 assembler, and a MIPS user mode debugger.\

Four people from the NT group will be responsible for pulling together the actual system and verifying
its operation over a 6-8 week period. These people are tentatively identified as Markl, Davegi, Tomm,
and Larryo. Kylesh from the testing group will be the offical build resource and will be responsible for
maintaining the build and maintenance trees.

The target data for the self hosted MIPS system is April 25, 1991.

Meeting the target date assumes that a MIPS compiler will be available on the DECstation 5000 by
December 1, 1990 that fully supports structured exception handling and a Microsoft C compatible
packed pragma.

Meeting the target date also assumes that the R3000 based Jazz hardware will be available for use by
the NT software group by December 1, 1990 and that the R4000 based Jazz system will be available
by February 1, 1991.

\We will have to decide how to split the source tree for multiple targets within one
architecture. Currently this is done via conditional compilation, but the differences

NT OS/2 Product Description and Implementation Plan 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

between the R3000 and R4000 based Jazz system will be too great to use this
methodology.\

\A ported set of Windows 32-bit base system API tests should be available for testing this
system. What other tests should be available?\

\A complete set of network aware file tests should be available.\

\File system and file server stress tests should be available.\

4.3. Windows Based Self Hosted 386/486 and MIPS System

The windows based self hosted system adds Windows support for an ANSI terminal window and
allows the phase over from the interim ANSI terminal capabilites to a fully windowed system. This
system will be supported on both 386/486 and MIPS platforms and will form the development
environment for the components and capabilities needed for the Beta Test SDK system.

The Windows based self hosted system will contain the following additional capabilities and
components:

 1. ANSI terminal support in a window.

 2. The GDI subset required for window support.

 3. The user window manager.

 4. The program manager in the shell.

 5. Kernel and DDI level device drivers for the Jazz and 386/486 display, keyboard, and mouse
that have the interim ANSI terminal support removed.

 6. The resource compiler.

\What other tools and capabilities are needed?\

\What is the debugging environment for windows apps? Is it 3.1 compatible? Does it
require a separate terminal?\

\The 32-bit thunks kit would help the development of Windows 32-bit APPs before the full
windowing environment is available.\

The target date for the self hosted windows system is May 1, 1991.

NT OS/2 Product Description and Implementation Plan 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5. Beta Test SDK

The Beta Test SDK will be a formally packaged system that is distributed to a selected set of ISVs and
hardware OEMs wishing to develop device drivers. It will be supported on a selected 486 platform and
the Jazz MIPS platform.

It will contain preliminary installation and configuration management software.

Windows based version of user debugger.

DDK and device driver writers guide.

NDIS driver writers guide.

6. Product Descriptions

This following sections contain a detailed description of the various product releases and schedules.

6.1. Power PC Workstation Release

6.1.1 Deliverables

This section contains a description of the deliverables.

6.1.2 Base System

6.1.3 Windows

6.1.4 Network

6.1.5 Schedule

This section section contains the schedule for major milestones.

6.1.6 Dependencies

This section contains the dependencies on other groups.

User-Ed, Testing, Languages, Lan, Windows-32.

6.1.7 Issues

This section contains any issues that need to be called out.

NT OS/2 Product Description and Implementation Plan 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6.2. Multiprocessor Server Release

6.2.1 Deliverables

This section contains a description of the deliverables.

6.2.2 Base System

6.2.3 Windows

6.2.4 Network

6.2.5 Schedule

This section section contains the schedule for major milestones.

6.2.6 Dependencies

This section contains the dependencies on other groups.

User-Ed, Testing, Languages, Lan, Windows-32.

6.2.7 Issues

This section contains any issues that need to be called out.

6.3. Full Workstation Release

6.3.1 Deliverables

This section contains a description of the deliverables.

6.3.2 Base System

6.3.3 Windows

6.3.4 Network

6.3.5 Schedule

This section section contains the schedule for major milestones.

6.3.6 Dependencies

This section contains the dependencies on other groups.

User-Ed, Testing, Languages, Lan, Windows-32.

NT OS/2 Product Description and Implementation Plan 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6.3.7 Issues

This section contains any issues that need to be called out.

7. Product/Major Milestone Descriptions and Schedules

The development strategy that is being followed is to

The next major milestone in the development of NT OS/2 will be the ability of the operating system to
host its own development. This is planned to be operational on both the x86 and the MIPS RISC PC in
Q1'91.

This milestone will be followed by a beta quality field test SDK that will be available on the MIPS
RISC PC and Compaq 486 systems in Q3'91.

The first retail product will be a MIPS RISC PC that supports the Windows 32-bit APIs, is network
enabled, provides a robust and secure operating environment, and is capable of competing with UN*X
systems. A secondary goal for this product is the support for Compaq 486 systems. The target date for
this product is Q1'92.

The second retail product is aimed at providing a robust and secure platform for scalable performance
LanMan servers. This release will support multi-processor 486 systems (possibly also MIPS RISC
multi-processor systems as well) and will support all the network services and NDIS drivers necessary
to compete with Novell on 386 and 486 systems. The target date for this product is H2'92.

The third retail product is aimed at providing a full workstation capability for 368 and 486 systems that
is certifiably secure, contains support for DOS and Windows 16-bit applications, and also supports the
OS/2 32-bit base system APIs. The target date for this product is somtime in 93.

What products have an OAK? DDK?

8. Project Goals

9. Dependencies

The NT operating system products are dependent on several groups to provide necessary components
for the various product releases.

9.1. Languages Group

The NT effort is dependent on the languages group to deliver the necessary programming tools for the
386, 486, and MIPS platforms to support self hosted development.

Programming tools to be supplied by the languages group are split into two groups; those required for
386 and 486 development, and those required for MIPS development. All tools must be ported to the
NT environment and run under the NT operating system.

NT OS/2 Product Description and Implementation Plan 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The following is a list of the 386 and 486 tools to be delivered by the languages group:

 76. C compiler with structured exception handling.

 77. x86 Assembler.

 78. Linker capable of producing NT format images.

 79. User debugger capable of supporting multi-thread debugging.

 80. Kernel debugger capable of supporting multi-processor debugging.

The following is a list of the MIPS tools to be delivered by the languages group:

 81. User debugger capable of supporting multi-thread debugging.

 82. Kernel debugger capable of supporting multi-processor debugging.

The languages group is also planning to deliver a C compiler for MIPS that supports structured
exception handling. However, this compiler will not be available for use in time to support the self
hosting of NT development. Therefore, the MIPS C compiler, which also supports structured exception
handling, is being ported to the NT environment as a backup.

A linker capable of linking MIPS object modules into an executable image will be provided by the NT
Base System group.

The MIPS assembler is being ported to o the NT OS/2 environment to support self hosting and product
develoment in assembly language.

C++?? C++ seh??

9.2. LanMan Group

Lan group for UI components, RPC stub compiler and runtime, TCP/IP transport and utiltiies.

9.3. Testing Group

Testing group for ??

9.4. User Ed Group

NT system services manual - who does?

Driver writers course?

NDIS driver writers course.

NT OS/2 Product Description and Implementation Plan 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Where will the documentation for the MIPS compiler and assembler come from? Who will do?

10. Hardware Plans

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT I/O System Specification

Author: Darryl E. Havens

Revision 1.7, May 1, 1995

Windows NT I/O Specification i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. INTRODUCTION...1

2. OVERVIEW ..1

3. USER APIS..4

3.1 CREATE/OPEN FILE/DEVICE SERVICES...4
3.1.1 Creating and Opening Files ..4
3.1.2 Opening Files ..14

3.2 FILE DATA SERVICES ...20
3.2.1 Reading Files...20
3.2.2 Writing Files..22

3.3 DIRECTORY MANIPULATION SERVICES ..25
3.3.1 Enumerating Files in a Directory..25
3.3.2 Enumerating Files in an Ole Directory File ...33
3.3.3 Monitoring Directory Modifications ...38

3.4 FILE SERVICES..41
3.4.1 Obtaining Information about a File ..41
3.4.2 Changing Information about a File...52
3.4.3 Obtaining Extended Attributes for a File ..61
3.4.4 Changing Extended Attributes for a File...63
3.4.5 Locking Byte Ranges in Files ..64
3.4.6 Unlocking Byte Ranges in Files ..66

3.5 FILE SYSTEM SERVICES..67
3.5.1 Obtaining Information about a File System Volume ...67
3.5.2 Changing Information about a File System Volume ...72
3.5.3 Obtaining Quota Information about a File System Volume ..74
3.5.4 Changing Quota Information about a File System Volume ..76
3.5.5 Controlling File Systems ...77

3.6 MISCELLANEOUS SERVICES..78
3.6.1 Flushing File Buffers...78
3.6.2 Canceling Pending I/O on a File...79
3.6.3 Miscellaneous I/O Control ..79
3.6.4 Deleting a File...81
3.6.5 Querying the Attributes of a File...81

3.7 I/O COMPLETION OBJECTS ...83
3.7.1 Creating/Opening I/O Completion Objects ...83
3.7.2 Operating on I/O Completion Objects ..87

4. NAMING CONVENTIONS...89

5. APPENDIX A - TIME FIELD CHANGES ..90

5.1 LAST ACCESS TIME ..90
5.2 LAST MODIFY TIME ...90
5.3 LAST CHANGE TIME ...91

6. REVISION HISTORY..92

Windows NT I/O System Specification 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

This specification describes the basic overall API for the I/O system of the Windows NT operating
system. The I/O system is responsible for the management of all input and output operations in the
system and for presenting the remainder of the system with a uniform and device-independent view of
the various devices connected to the system.

The I/O system provides an interface for the user to perform I/O to various devices attached to the
machine. The I/O operations in this API provide the user with a rich set of primitives to manipulate
files and devices in such a way as to hide most of the particulars of how the device actually works.

The I/O system also provides system programmers with the ability to write their own device drivers for
those devices that Windows NT does not support as part of its regular SDK. This part of the I/O
system is documented in the Windows NT Driver Model Specification and is beyond the scope of this
specification.

This specification does not attempt to exhaustively enumerate all error conditions that occur on all
paths or indicate the errors that can occur after calling an API.

2. Overview

The user interface model that Windows NT uses for I/O consists of several different routines that
perform such operations as Open, Read, Write, Close, etc. For other operations that are not included in
the general set of routines, there is an NtDeviceIoControlFile service. This service allows device-
dependent information to be passed to and from the device in a well structured manner. Likewise, the
NtFsControlFile service which allows file-system-dependent information to be passed to and from the
file system in a well structured manner.

The I/O system is designed to support both OS/2 and POSIX I/O operations easily to provide source
code compatibility with those standards. This allows users familiar with those systems to continue to
program using those interfaces without having to learn a new I/O programming model. The OS/2 and
POSIX subsystems emulate the I/O services on top of the Windows NT services.

To perform I/O operations in Windows NT, a file handle must be specified. File handles are obtained
by calling the NtCreateFile or NtOpenFile services. These services either create or open a file and
return a handle to it. Alternatively, they may open a device directly and return a handle to the device.
In each case the handle is still referred to as a "file handle" throughout the description of the APIs in
this specification.

From the point of view of the object management system, a file is a persistent object. That is, a file
object is treated like any other object in the system except that it remains intact across system boots.
Handles to file objects, and therefore devices (depending on how the "file" was opened) are usable in
the object system.

Some of the I/O interfaces in Windows NT are synchronous and others are asynchronous. For the
latter type, it is up to the caller to wait for the I/O operation to complete. This may be done in either an
alertable or a non-alertable manner. A file object in Windows NT is a waitable object and can
therefore be used to synchronize completion of an I/O operation on the file. When a request is made to
perform an operation on a file, the file object is set to the Not-Signaled state. When the operation
completes, the file object is set to the Signaled state.

Windows NT I/O System Specification 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Each asynchronous I/O service also optionally accepts an event and/or the address of an Asynchronous
Procedure Call (APC) to be executed when the operation completes. If an event is specified, the
system sets it to the Not-Signaled state when the I/O operation is requested and sets it to the Signaled
state when the I/O operation completes. The system will not normally set both the File object and the
event to the Signaled state. That is, if an event is specified, then the event should be used for I/O
completion synchronization; otherwise the file object handle should be used.

If an APC is specified, the procedure is invoked when the I/O completes with a parameter that is also
supplied to the service. The procedure is also passed the address of the I/O status block discussed
below.

Likewise, it is also possible to synchronize the completion of I/O operations through the use of I/O
Completion objects. An I/O Completion object may be associated with a file such that a pool of
threads may wait on the completion of all I/O associated with the object.

All service calls include the address of an I/O status block. This variable contains information about
the success or failure of the operation once the operation has been completed. This allows the caller to
determine the status of the operation once the file object or the event has been set to the Signaled state,
or the APC routine has been invoked. Upon completion of the I/O operation the variable may also
contain more information that is service-dependent.

It should be noted that performing multiple operations on a file at the same time requires that each
operation be synchronized. That is, requesting two asynchronous reads from a file and then waiting on
the file object will not guarantee that both operations have completed. In the same manner, using the
same event to synchronize these two operations will not work either. Each operation must have its
own event associated with it, or the caller must set up an APC which will be able to distinguish
between the completion of each request.

Using an I/O system design whose primary data movement operations can be totally asynchronous
makes writing faster programs easier. It frees the programmer from inventing methods of passing I/O
requests to another thread to gain parallelism. This means that the main loop need not be blocked or
concerned with the completion of I/O operations until it absolutely requires the requested data.

This particular design also allows servers and network servers to be written so that it is not necessary
to dedicate a thread in the server to each request or to each client. Because the APC routine can be
executed any time the server thread is ready for it, a single server thread can potentially perform I/O
for an unlimited number of clients using very few system resources.

Since all potentially long I/O operations are asynchronous, a thread that is waiting on an I/O operation
in an alertable manner may fall out of the wait. This allows programs to be written so that rundown
and cleanup are much easier to control. Likewise, because the user has a choice, programs can still be
written to block in a non-alertable manner and simply wait for the I/O operation to complete. More
information on alerts can be found in the Windows NT Process Structure specification.

The Windows NT I/O system provides one optimization that can be used to save extraneous system
calls. If the request for an operation is successfully queued to a driver for completion later, then the
return status from the service is STATUS_PENDING. However, if the operation successfully
completes before the service returns because the driver immediately completed the operation, then a
status of STATUS_SUCCESS is returned.

Windows NT I/O System Specification 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

It is also possible to write an application that ignores the fact that the Windows NT I/O system is
asynchronous by specifying that all I/O calls for a particular file object be performed synchronously.
Further, the I/O operations are selectively alertable or non-alertable. This option is requested when the
file is opened or created. If the I/O is being performed with alerts enabled, then it is possible for the
I/O operation to be interrupted by an alert to the thread. It is also possible to specify that no alerts may
be taken during the I/O operation.

If an application is performing I/O to a file in an alertable manner, then it must be written to be
prepared for the I/O to fail because an alert occurred or an APC was delivered. In either case the I/O
operation must be restarted by invoking the API again.

When the I/O system is performing synchronous I/O on a file object, it also maintains a current file
pointer context for the file. This file pointer may be read or written using APIs provided by the I/O
system. Furthermore, they are automatically updated whenever the file is read or written according to
the number of bytes transferred. It is also possible to set the file pointer context on the read or write
operation.

Performing synchronous I/O on a file object also means that the I/O to the file is serialized. That is, if
Thread A has issued an I/O operation on a file and Thread B issues an I/O operation using the same
file object, then Thread B will wait (alertable or non-alertable, depending on how the file was opened)
until Thread A's I/O completes.

All of these features help the user deal with the system and use it to perform I/O the way that he wants
to work. He can still take advantage of APC routines, for example, even if he is performing
synchronous I/O. However, he doesn't have to if that isn't what he needs.

In order to access a file or a device, the caller must have permission to access the device in the
requested manner. For example, some devices are considered single user devices. This is
accomplished through the object management system in Windows NT. The object that represents a
device is called a device object. Device objects may be created by device drivers using the exclusive
attribute. This attribute indicates that only one process may open the object. Any other attempt to
open a device from a process other than the "owning" process will fail. This implies that it is possible
for a process to "own" a device. Of course, since handles can be inherited by child processes, then
children of the owning process may share the device with the parent process.

A file or a device may specify an Access Control List (ACL). An ACL is a list of Access Control
Entries (ACEs) that specify what access rights a user has to the file or device. The user must have the
requested access in order to successfully perform operations on the object.

Windows NT also provides file sharing among threads within a process and between processes.
Because of the object architecture design used in Windows NT, it is possible for all of the threads
within a process to access a file that one of the threads "opened" by using the returned file handle.
Furthermore, a process that is created by one of the threads may also have access to the file if the file
object is opened so that its handle is inheritable.

Finally, Windows NT provides file sharing by allowing multiple processes to open the same file. A
file can be opened so that other processes may read, write, or perform both or neither operation on the
file.

Windows NT I/O System Specification 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3. User APIs

The following sections present the user interface to the I/O system.

3.1 Create/Open File/Device Services

When a user wishes to access a file or a device, he must create or open it. This causes a handle to be
returned that can then be used to manipulate the file or device in subsequent calls.

File handles are closed via the generic NtClose service. This service is discussed elsewhere in the
Windows NT documentation. It should be noted that, just like all other system objects, a file is not
actually deleted until all of the valid handles to it are closed and no referenced pointers remain.

The user APIs that supports creating and opening files and opening devices is as follows:

NtCreateFile - Create or open a file and return a file handle.
NtOpenFile - Open a file and return a file handle.

3.1.1 Creating and Opening Files

A file can be created or opened using the NtCreateFile service:

NTSTATUS
NtCreateFile(

OUT PHANDLE FileHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PLARGE_INTEGER AllocationSize OPTIONAL,
IN ULONG FileAttributes,
IN ULONG ShareAccess,
IN ULONG CreateDisposition,
IN ULONG CreateOptions,
IN PVOID EaBuffer OPTIONAL,
IN ULONG EaLength
);

Parameters:

FileHandle - A pointer to a variable that receives the file handle value.

DesiredAccess - Specifies the type of access that the caller requires to the file.

DesiredAccess Flags

SYNCHRONIZE - The file handle may be waited on to synchronize with the completion
of the I/O operation.

DELETE - The file may be deleted.

Windows NT I/O System Specification 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

READ_CONTROL - The ACL and ownership information associated with the file may
be read.

WRITE_DAC - The Discretionary ACL associated with the file may be written.

WRITE_OWNER - Ownership information associated with the file may be written.

FILE_READ_DATA - Data may be read from the file.

FILE_WRITE_DATA - Data may be written to the file.

FILE_EXECUTE - Data may be faulted into memory from the file via paging I/O.

FILE_APPEND_DATA - Data may only be appended to the file.

FILE_READ_ATTRIBUTES - File attributes flags may be read.

FILE_WRITE_ATTRIBUTES - File attributes flags may be written.

FILE_READ_EA - Extended attributes associated with the file may be read.

FILE_WRITE_EA - Extended attributes associated with the file may be written.

The three following values are the generic access types that the caller may request. The
mapping to specific access rights is given for each:

GENERIC_READ - Maps to STANDARD_RIGHTS_READ, FILE_READ_DATA,

FILE_READ_ATTRIBUTES, and FILE_READ_EA.

GENERIC_WRITE - Maps to STANDARD_RIGHTS_WRITE, FILE_WRITE_DATA,

FILE_WRITE_ATTRIBUTES, FILE_WRITE_EA, and FILE_APPEND_DATA.

GENERIC_EXECUTE - Maps to STANDARD_RIGHTS_EXECUTE, SYNCHRONIZE,

and FILE_EXECUTE.

For more information about the standard rights accesses, see the Windows NT Local

Security Specification.

If the file being created or opened is a directory file, as specified in the CreateOptions
argument, then the following types of access may be requested:

FILE_LIST_DIRECTORY - Files in the directory may be listed.

FILE_TRAVERSE - The directory may be traversed. That is, it may be in the pathname

of a file.

FILE_READ_DATA, FILE_WRITE_DATA, FILE_EXECUTE, and
FILE_APPEND_DATA accesses are not valid when creating or opening a directory file.

ObjectAttributes - A pointer to a structure that specifies the name of the file, a root directory, a
security descriptor, a quality of service descriptor, and a set of file object attribute flags.

Windows NT I/O System Specification 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ObjectAttributes Structure

ULONG Length - Specifies the length of the object attributes structure. This field must
be equal to the size of an OBJECT_ATTRIBUTES structure.

PUNICODE_STRING ObjectName - The name of the file to be created or opened.

This file specification must be a fully qualified file specification or the name of
a device, unless it is a file relative to the directory specified by the next field.

HANDLE RootDirectory - Optionally specifies a handle to a directory. If specified,

then the name of the file specified by the ObjectName field is a file specification
relative to the directory file supplied by this handle.

PSECURITY_DESCRIPTOR SecurityDescriptor - Optionally specifies the security

descriptor that should be applied to the file. The ACLs specified by the security
descriptor are only applied to the file if it is created. If not supplied and the file
is created, then the ACL placed on the file is file-system-dependent, but most
file systems propagate some part of the ACL from the parent directory file
combined with the caller's default ACL.

PSECURITY_QUALITY_OF_SERVICE SecurityQualityOfService - Specifies the

access a server should be given to the client's security context. This field is only
used when a connection to a protected server is established. It allows the caller
to control which parts of his security context are made available to the server
and whether or not the server may impersonate the caller.

ULONG Attributes - A set of flags that controls the file object attributes.

OBJ_INHERIT - Indicates that the handle to the file is to be inherited by the new
process when an NtCreateProcess operation is performed to create a
new process.

OBJ_CASE_INSENSITIVE - Indicates that the name lookup should ignore the

case of ObjectName rather than performing an exact match search.

IoStatusBlock - A variable to receive the final completion status and information about the

operation. The actual action taken by the system is written to the Information field of
this variable.

AllocationSize - Optionally specifies the initial allocation size of the file in bytes. The size has

no effect unless the file is created, overwritten, or superseded.

FileAttributes - Specifies the file attributes for the file. Any combination of flags is acceptable

except that all other flags override the normal file attribute,
FILE_ATTRIBUTE_NORMAL. File attributes are only applied to the file if it is created,
superseded, or, in some cases, overwritten. See the description in the text below for
more details.

FileAttributes Flags

Windows NT I/O System Specification 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_ATTRIBUTE_NORMAL - A normal file should be created.

FILE_ATTRIBUTE_READONLY - A read-only file should be created.

FILE_ATTRIBUTE_HIDDEN - A hidden file should be created.

FILE_ATTRIBUTE_SYSTEM - A system file should be created.

FILE_ATTRIBUTE_ARCHIVE - The file should be marked so that it will be archived.

FILE_ATTRIBUTE_TEMPORARY - A temporary should be created.

FILE_ATTRIBUTE_COMPRESSED - A compressed file should be created.

FILE_ATTRIBUTE_OFFLINE - An off-line file should be created.

ShareAccess - Specifies the type of share access that the caller would like to the file.

ShareAccess Flags

FILE_SHARE_READ - Other open operations may be performed on the file for read
access.

FILE_SHARE_WRITE - Other open operations may be performed on the file for write

access.

FILE_SHARE_DELETE - Other open operations may be performed on the file for
delete access.

CreateDisposition - Specifies the actions to be taken if the file does or does not already exist.

CreateDisposition Values

FILE_SUPERSEDE - Indicates that if the file already exists then it should be

superseded by the specified file. If it does not already exist then it should be
created.

FILE_CREATE - Indicates that if the file already exists then the operation should fail.

If the file does not already exist then it should be created.

FILE_OPEN - Indicates that if the file already exists it should be opened rather than

creating a new file. If the file does not already exist then the operation should
fail.

FILE_OPEN_IF - Indicates that if the file already exists, it should be opened. If the file

does not already exist then it should be created.

FILE_OVERWRITE - Indicates that if the file already exists it should be opened and

overwritten. If the file does not already exist then the operation should fail.

Windows NT I/O System Specification 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_OVERWRITE_IF - Indicates that if the file already exists it should be opened and
overwritten. If the file does not already exist then it should be created.

CreateOptions - Specifies the options that should be used when creating or opening the file.

CreateOptions Flags

FILE_DIRECTORY_FILE - Indicates that the file being created or opened is a directory

file. The CreateDisposition parameter must be set to one of FILE_CREATE,
FILE_OPEN, or FILE_OPEN_IF.

FILE_NON_DIRECTORY_FILE - Indicate that the file being opened may not be a

directory file.

FILE_WRITE_THROUGH - Indicates that services that write data to the file must

actually write the data to the file before the operation is considered to be
complete.

FILE_SEQUENTIAL_ONLY - Indicates that the file will only be accessed sequentially.

FILE_RANDOM_ACCESS - Indicates that the file will be accessed randomly so no

sequential read ahead operations should be performed on the file.

FILE_NO_INTERMEDIATE_BUFFERING - Indicates that no caching or intermediate

buffering is performed for the file.

FILE_SYNCHRONOUS_IO_ALERT - Indicates that all operations on the file are

performed synchronously. Any wait being performed on behalf of the caller is
subject to premature termination from alerts. This flag also causes the I/O
system to maintain the file position context.

FILE_SYNCHRONOUS_IO_NONALERT - Indicates that all operations on the file are

performed synchronously. Waits in the system to synchronize I/O queueing and
completion are not subject to alerts. This flag also causes the I/O system to
maintain the file position context.

FILE_CREATE_TREE_CONNECTION - Indicates that a tree connection is to be

created.

FILE_COMPLETE_IF_OPLOCKED - Indicates that the operation should complete

immediately with an alternate success code if the target file is oplocked rather
than blocking the caller's thread.

FILE_NO_EA_KNOWLEDGE - Indicates the if the EAs on an existing file being

opened indicate that the caller must understand EAs to properly interpret the
file, then the file open should fail because the caller does not understand how to
deal with EAs.

FILE_DELETE_ON_CLOSE - Indicates that the file should be deleted when the last

handle to it is closed.

Windows NT I/O System Specification 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_OPEN_BY_FILE_ID - Indicates that the file name contains the name of the
device, and a 64-bit ID that is to be used to open the file.

FILE_OPEN_FOR_BACKUP_INTENT - Indicates that the file is being opened for

backup intent, hence, the system should check for SeBackupPrivilege or
SeRestorePrivilege and grant the caller the appropriate accesses to the file
before checking the DesiredAccess against the file's security descriptor.

FILE_TRANSACTED_MODE - Indicates that the file is to be opened in transacted

mode. This specifies that no changes to the file should be visible to other
openers of the file until the transaction is committed.

FILE_RESERVE_OPFILTER - Indicates that a filter oplock should be reserved on the

file if possible. The first I/O operation on the file must be an oplock request so
that the caller can determine whether or not the oplock was granted.

FILE_OPEN_OFFLINE_FILE - Indicates that if the target file has been moved from

primary storage and the target file is an off-line file, then the marker itself is to
be opened rather than retrieving the actual file.

FILE_STORAGE_TYPE_SPECIFIED - Indicates that this CreateOptions parameter

specifies a storage type field.

FILE_STORAGE_TYPE_DEFAULT - Create/open a file of default storage type.

FILE_STORAGE_TYPE_DIRECTORY - Create/open an enumerable directory

file.

FILE_STORAGE_TYPE_FILE - Create/open normal data file.

FILE_STORAGE_TYPE_DOCFILE - Create/open a document file.

FILE_STORAGE_TYPE_JUNCTION_POINT - Create/open a junction point.

FILE_STORAGE_TYPE_CATALOG - Create/open a summary catalogue.

FILE_STORAGE_TYPE_STRUCTURED_STORAGE - Create/open structured

storage.

FILE_STORAGE_TYPE_EMBEDDING - Create/open an embedding.

FILE_STORAGE_TYPE_STREAM - Create/open an alternate data stream on a

file.

EaBuffer - Optionally specifies a list of EAs that should be set on the file if it is created. This
is done as an atomic operation. That is, if an error occurs setting the EAs on the file,
then the file will not be created.

EaLength - Supplies the length of the EaBuffer. If no buffer is supplied then this value should

be zero.

Windows NT I/O System Specification 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The I/O status block specified by the IoStatusBlock parameter has the following type definition:

typedef struct _IO_STATUS_BLOCK {
NTSTATUS Status;
ULONG Information;

} IO_STATUS_BLOCK, *PIO_STATUS_BLOCK;

Field Description
Status Final status of the operation
Information Additional information about the operation

The NtCreateFile service either causes a new file (or directory) to be created, or it opens an existing
file or device. The action taken is dependent on the name of the object being opened, whether the
object already existed, and the specified create disposition value. A file handle is returned that can be
used by subsequent service calls to manipulate the file itself or the data within the file.

There are two basic ways to specify the name of the file that is to be created/opened:

o - A fully qualified pathname. This method simply supplies the full file specification for the
file. This is done using the ObjectName field of the ObjectAttributes structure. No
RootDirectory handle may be specified.

o - A relative pathname. This method supplies the name of the file as a relative pathname. The
path is relative to the directory file represented by the handle in the RootDirectory field of the
ObjectAttributes structure.

Once the I/O operation is complete, the Information field of the I/O status block contains information
about the action actually taken by the system. That is, one of FILE_SUPERSEDED, FILE_CREATED,
FILE_OPENED, or FILE_OVERWRITTEN, is returned in this field.

The SYNCHRONIZE desired-access flag must be set in order for the caller to wait on the file handle to
synchronize I/O completion. If this desired access is not specified, then I/O completion must be
synchronized through the use of an event or an APC routine.

If FILE_EXECUTE is the only desired-access flag specified other than SYNCHRONIZE, then the caller
cannot directly read or write any data in the file using the returned file handle. All operations on the
file occur through the system pager in response to instruction and data accesses.

If FILE_APPEND_DATA is the only desired-access flag specified other than SYNCHRONIZE, then the
caller can only write to the end of the file. Any offset information on writes to the file is ignored. The
file will automatically be extended as necessary for these types of write operations.

Specifying the FILE_WRITE_DATA desired-access flag for a file also allows writes beyond the end of
the file to occur. The file is also automatically extended for these types of writes as well.

Files may be shared among threads within a process, or among a family of processes through
inheritance, by simply opening or creating the file. The file handle can then be used to access the same
file. Note that the OBJ_INHERIT object attribute flag must be specified in the ObjectAttributes
parameter in order for sharing to occur between parent and child processes through use of the file
handle.

Windows NT I/O System Specification 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Access to a file may be shared among separate cooperating processes or threads by requesting that the
file system open the file for shared access. This is accomplished through the flags in the ShareAccess
mode parameter. Provided that both file openers have the privilege to access the file in the specified
manner, the file can be successfully opened and shared. If the caller does not specify
FILE_SHARE_READ, FILE_SHARE_WRITE, or FILE_SHARE_DELETE, then no other open
operations may be performed on the file.

In order for the file to be successfully opened, the requested access mode to the file must be
compatible with the way in which other opens to the file have been made. That is, the desired access
mode to the file must not conflict with the accesses that other openers of the file have disallowed.

The FILE_SUPERSEDE disposition value specifies that if the file does not already exist, it is to be
created. If the file already exists, then it should be superseded. Superseding a file requires that the
accessor have delete access to the existing file. That is, the existing file is effectively deleted and then
recreated. This implies that if someone else already has the file open, they have specified that the file
may be deleted by another file opener. This is done by specifying a ShareAccess parameter with the
FILE_SHARE_DELETE flag set. This type of disposition is consistent with the Unix style of
overwriting files.

The FILE_OVERWRITE_IF disposition value is much like the FILE_SUPERSEDE disposition value.
If the file exists, then it will be overwritten; if it does not already exist then it will be created.
Overwriting a file is semantically equivalent to a supersede operation except that it requires write
access to the file rather than delete access. That is, the requestor must have write access to the file and
if someone else already has the file open, they must have specified that the file may be written by
another file opener. This is done by specifying a ShareAccess parameter with the
FILE_SHARE_WRITE flag set. Another difference between an overwrite and a supersede is that the
specified file attributes are logically OR'd with those already on the file. That is, the caller may not
turn off any flags already set in the attributes but may turn others on. This style of overwriting files is
consistent with DOS and OS/2.

The FILE_OVERWRITE disposition value performs exactly the same operation as a
FILE_OVERWRITE_IF, except that if the file does not already exist the operation will fail.

The FILE_DIRECTORY_FILE option specifies that the file to be created or opened is a directory file.
If this option is specified, then the CreateDisposition parameter must be set to one of FILE_CREATE,
FILE_OPEN, or FILE_OPEN_IF. Likewise, the only create options that may be specified are
FILE_SYNCHRONOUS_IO_ALERT, FILE_SYNCHRONOUS_IO_NONALERT,
FILE_WRITE_THROUGH, FILE_OPEN_FOR_BACKUP_INTENT, and FILE_OPEN_BY_FILE_ID.
When a directory file is created, the file system creates an appropriate structure on the disk to represent
an empty directory for that particular file system's on-disk structure. If this option was specified and
the file being opened is not a directory file, then the API will fail.

Conversely, the FILE_NON_DIRECTORY_FILE option specifies that the target file being opened may
not be a directory file. It must be a data file, device, volume, etc., or the API is to fail.

It is also possible to further control the type of file, directory, structured storage, etc. that one wishes to
create or open by providing the FILE_STORAGE_TYPE_SPECIFIED flag. This flag indicates that
one of the FILE_STORAGE_TYPE_xxx values has been supplied. Note that specifying
FILE_DIRECTORY_FILE is equivalent to specifying FILE_STORAGE_TYPE_SPECIFIED and also
specifying FILE_STORAGE_TYPE_DIRECTORY. Likewise, specifying

Windows NT I/O System Specification 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_NON_DIRECTORY_FILE is equivalent to specifying FILE_STORAGE_TYPE_SPECIFIED and
also specifying FILE_STORAGE_TYPE_FILE.

The FILE_NO_INTERMEDIATE_BUFFER option specifies that the file system should not perform
any intermediate buffering on behalf of the caller. This causes several restrictions to be placed on the
caller's parameters to various service calls.

o - The byte offset parameter to read and write operations must be an integral number of 512-
byte blocks.

o - The length of the read or write operation must be an integral number of 512-byte blocks.
Note that specifying a read operation to a buffer whose length is 512 bytes may result in a
smaller number of significant bytes being transferred to the buffer because the end of the file
was reached, however, the driver may still be able to transfer a whole sector of data directly to
the buffer.

o - Buffers must be aligned to that of the device. The device alignment requirement can be
determined by querying the file.

o - Files opened for this type of access may not be opened for FILE_APPEND_DATA access.

o - The FILE_WRITE_THROUGH option is automatically set when intermediate buffering is
disabled.

o - Calls to set the file position pointer for files opened in this manner may only specify offsets
wto 512-byte sector boundaries.

The FILE_SYNCHRONOUS_IO_ALERT and FILE_SYNCHRONOUS_IO_NONALERT create options
allow the caller to specify that all I/O operations on this file are to be performed synchronously as long
as they occur through the file object referred to by the returned handle. The system also maintains the
current "file pointer context" for the file when the file is opened/created with either of these options.
Likewise, all I/O on the file will be serialized across all threads and processes using the returned
handle or an inherited copy of the handle. The SYNCHRONIZE desired-access flag must also be
specified so that the I/O system can use the file object as a synchronization object. Of course, these
two options are mutually exclusive.

These two options also imply that the I/O system maintain an internal current file position pointer.
This pointer can be used by the read and write services. It can also be set or read by other APIs
described later in this document.

The FILE_CREATE_TREE_CONNECTION option specifies that a tree connection to a remote node is
to be created. For more information, see the Windows NT LAN Manager Software specification.

The FILE_COMPLETE_IF_OPLOCKED option specifies that if the target file is currently oplocked
by another accessor of the file, that the operation should complete immediately anyway without
waiting for the oplock break operation to be completed. The call to NtCreateFile completes once the
oplock break operation has been started, rather than blocking the caller's thread waiting for the break to
complete. An alternate success code is returned to the caller if an oplock break is in progress when the
service completes. This flag is mutually exclusive with the FILE_RESERVE_OPFILTER flag. For
more information on oplocks, see the Windows NT Opportunistic Locking Design Note.

Windows NT I/O System Specification 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Setting the FILE_TRANSACTED_MODE option indicates that the file system and Transaction
Manager should work together to only allow other openers of the file to see changes to the file when
they are fully committed. This means that other openers will not normally see any writes to the file
unless the data has actually been committed.

The FILE_RESERVE_OPFILTER option indicates that the caller would like to reserve a filter oplock
on the file, if possible. This flag is mutually exclusive with the FILE_COMPLETE_IF_OPLOCKED
flag. The first I/O request issued on the file must be an oplock FSCTL to determine whether or not the
oplock was actually reserved. For more information on oplocks, see the Windows NT Opportunistic
Locking Design Note.

A file is considered to have been moved from primary storage and a marker left in its place if the target
file’s FILE_ATTRIBUTE_OFFLINE attribute bit is set. A normal attempt to open such a file causes
the HSM(s) in the system to attempt to retrieve the original file. However, the marker itself can be
opened by specifying the FILE_OPEN_OFFLINE_FILE option.

If a list of EAs is supplied through specifying an EaBuffer, then those EAs are applied to the file as an
atomic operation. Note that the EAs are only set on the file if the file is created (this also includes
supersede and overwrite operations). If setting the EAs on the file incurs an error, then the file is not
created, an appropriate error is returned, and the Information field of the IoStatusBlock variable is set
to the offset into the EA buffer of the EA that caused the error.

The type of the contents of the EaBuffer is FILE_FULL_EA_INFORMATION. This type has the
following definition:

typedef struct _FILE_FULL_EA_INFORMATION {

ULONG NextEntryOffset;
UCHAR Flags;
UCHAR EaNameLength;
USHORT EaValueLength;
CHAR EaName[];

} FILE_FULL_EA_INFORMATION;

Field Description
NextEntryOffset Offset, in bytes, to the next entry in the list
Flags Flags to be associated with the EA
EaNameLength Length of the EA’s name field, excluding null termination character
EaValueLength Length of the EA's value field
EaName The name of the EA

The flags currently defined for EAs are:

FILE_NEED_EA- This flag indicates that the caller must understand EAs in order to understand the
actual meaning or representation of the file. Files who have an EA with this flag set cannot be seen by
callers attempting to access the file with the FILE_NO_EA_KNOWLEDGE CreateOption set.

The value field begins after the end of the EaName field of the structure, including a single null
character. The EaNameLength field does not include the null character in the count Each entry in the
list must be longword aligned. The NextEntryOffset field specifies the number of bytes between the
current entry and the next entry in the buffer. If there are no more entries following the current entry,
then the value of this field is zero.

Windows NT I/O System Specification 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

For more information, refer to the NtSetEaFile system service documented elsewhere in this
specification.

3.1.2 Opening Files

A file can be opened using the NtOpenFile service:

NTSTATUS
NtOpenFile(

OUT PHANDLE FileHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN ULONG ShareAccess,
IN ULONG OpenOptions
);

Parameters:

FileHandle - A pointer to a variable that receives the file handle value.

DesiredAccess - Specifies the type of access that the caller requires to the file.

DesiredAccess Flags

SYNCHRONIZE - The file handle may be waited on to synchronize with the completion
of the I/O operation.

DELETE - The file may be deleted.

READ_CONTROL - The ACL and ownership information associated with the file may

be read.

WRITE_DAC - The Discretionary ACL associated with the file may be written.

WRITE_OWNER - Ownership information associated with the file may be written.

FILE_READ_DATA - Data may be read from the file.

FILE_WRITE_DATA - Data may be written to the file.

FILE_EXECUTE - Data may be faulted into memory from the file via paging I/O.

FILE_APPEND_DATA - Data may only be appended to the file.

FILE_READ_ATTRIBUTES - File attributes flags may be read.

FILE_WRITE_ATTRIBUTES - File attributes flags may be written.

FILE_READ_EA - Extended attributes associated with the file may be read.

Windows NT I/O System Specification 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_WRITE_EA - Extended attributes associated with the file may be written.

FILE_LIST_DIRECTORY - Files in the directory may be listed.

FILE_TRAVERSE - The directory may be traversed. That is, it may be in the pathname

of a file.

The three following values are the generic access types that the caller may request. The
mapping to specific access rights is given for each:

GENERIC_READ - Maps to STANDARD_RIGHTS_READ, FILE_READ_DATA,

FILE_READ_ATTRIBUTES, and FILE_READ_EA.

GENERIC_WRITE - Maps to STANDARD_RIGHTS_WRITE, FILE_WRITE_DATA,

FILE_WRITE_ATTRIBUTES, FILE_WRITE_EA, and FILE_APPEND_DATA.

GENERIC_EXECUTE - Maps to STANDARD_RIGHTS_EXECUTE, SYNCHRONIZE,

and FILE_EXECUTE.

For more information about standard rights accesses, see the Windows NT Local

Security Specification.

ObjectAttributes - A pointer to a structure that specifies the name of the file, a root directory,

and a set of file object attribute flags.

ObjectAttributes Structure

ULONG Length - Specifies the length of the object attributes structure. This field must
be equal to the size of an OBJECT_ATTRIBUTES structure.

PUNICODE_STRING ObjectName - The name of the file to be opened. This file

specification must be a fully qualified file specification or the name of a device,
unless it is a file relative to the directory specified by the next field.

HANDLE RootDirectory - Optionally specifies a handle to a directory. If specified,

then the name of the file specified by the ObjectName field is a file specification
relative to the directory file supplied by this handle.

ULONG Attributes - A set of flags that controls the file object attributes.

OBJ_INHERIT - Indicates that the handle to the file is to be inherited by the new
process when an NtCreateProcess operation is performed to create a
new process.

OBJ_CASE_INSENSITIVE - Indicates that the name lookup should ignore the

case of ObjectName rather than performing an exact match search.

IoStatusBlock - A variable to receive the final completion status and information about the

operation. The actual action taken by the system is written to the Information field of

Windows NT I/O System Specification 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

this variable. For a more information on this parameter see the NtCreateFile system
service description.

ShareAccess - Specifies the type of share access that the caller would like to the file.

ShareAccess Flags

FILE_SHARE_READ - Other open operations may be performed on the file for read
access.

FILE_SHARE_WRITE - Other open operations may be performed on the file for write

access.

FILE_SHARE_DELETE - Other open operations may be performed on the file for
delete access.

OpenOptions - Specifies the options that should be used when opening the file.

OpenOptions Flags

FILE_DIRECTORY_FILE - Indicates that the file being opened must be a directory file.

FILE_NON_DIRECTORY_FILE - Indicate that the file being opened may not be a

directory file.

FILE_WRITE_THROUGH - Indicates that services that write data to the file must

actually write the data to the file before the operation is considered to be
complete.

FILE_SEQUENTIAL_ONLY - Indicates that the file will only be accessed sequentially.

FILE_RANDOM_ACCESS - Indicates that the file will be access randomly so no read

ahead operations should ever be performed on the file.

FILE_NO_INTERMEDIATE_BUFFERING - Indicates that no caching or intermediate

buffering is performed for the file.

FILE_SYNCHRONOUS_IO_ALERT - Indicates that all operations on the file are

performed synchronously. Any wait being performed on behalf of the caller is
subject to premature termination from alerts. This flag also causes the I/O
system to maintain the file position context.

FILE_SYNCHRONOUS_IO_NONALERT - Indicates that all operations on the file are

performed synchronously. Waits in the system to synchronize I/O queueing and
completion are not subject to alerts. This flag also causes the I/O system to
maintain the file position context.

FILE_COMPLETE_IF_OPLOCKED - Indicates that the operation should complete

immediately with an alternate success code if the target file is oplocked rather
than blocking the caller's thread.

Windows NT I/O System Specification 17

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_NO_EA_KNOWLEDGE - Indicates that if the EAs on an existing file being
opened indicate that the caller must understand EAs to properly interpret the
file, then the file open should fail because the caller does not understand how to
deal with EAs.

FILE_DELETE_ON_CLOSE - Indicates that the file should be deleted when the last

handle to it is closed.

FILE_OPEN_BY_FILE_ID - Indicates that the file name contains the name of the

device, and a 64-bit ID that is to be used to open the file.

FILE_OPEN_FOR_BACKUP_INTENT - Indicates that the file is being opened for

backup intent, hence, the system should check for SeBackupPrivilege or
SeRestorePrivilege and grant the caller the appropriate accesses to the file
before checking the DesiredAccess against the file's security descriptor.

FILE_TRANSACTED_MODE - Indicates that the file is to be opened in transacted

mode. This specifies that no changes to the file should be visible to other
openers of the file until the transaction is committed.

FILE_RESERVE_OPFILTER - Indicates that a filter oplock should be reserved on the

file if possible. The first I/O operation on the file must be an oplock request so
that the caller can determine whether or not the oplock was granted.

FILE_OPEN_OFFLINE_FILE - Indicates that if the target file has been moved from

primary storage and the target file is an off-line file, then the marker itself is to
be opened rather than retrieving the actual file.

FILE_STORAGE_TYPE_SPECIFIED - Indicates that this CreateOptions parameter

specifies a storage type field.

FILE_STORAGE_TYPE_DEFAULT - Create/open a file of default storage type.

FILE_STORAGE_TYPE_DIRECTORY - Create/open an enumerable directory

file.

FILE_STORAGE_TYPE_FILE - Create/open normal data file.

FILE_STORAGE_TYPE_DOCFILE - Create/open a document file.

FILE_STORAGE_TYPE_JUNCTION_POINT - Create/open a junction point.

FILE_STORAGE_TYPE_CATALOG - Create/open a summary catalogue.

FILE_STORAGE_TYPE_STRUCTURED_STORAGE - Create/open structured

storage.

FILE_STORAGE_TYPE_EMBEDDING - Create/open an embedding.

FILE_STORAGE_TYPE_STREAM - Create/open an alternate data stream on a

file.

Windows NT I/O System Specification 18

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The NtOpenFile service opens an existing file or device. A file handle is returned that can be used by
subsequent service calls to manipulate the file itself or the data within the file.

There are two basic ways to specify the name of the file that is to be opened:

o - A fully qualified pathname. This method simply supplies the full file specification for the
file to be opened. This is done using the ObjectName field of the ObjectAttributes structure.
No RootDirectory handle may be specified.

o - A relative pathname. This method supplies the name of the file as a relative pathname. The
path is relative to the directory file represented by the handle in the RootDirectory field of the
ObjectAttributes structure.

Once the I/O operation is complete, the Information field of the I/O status block contains information
about the action taken by the system. That is, the Information field will contain FILE_OPENED.

The SYNCHRONIZE desired-access flag must be set in order for the caller to wait on the file handle to
synchronize I/O completion. If this desired access is not specified, then I/O completion must be
synchronized through the use of an event or an APC routine.

If FILE_EXECUTE is the only desired-access flag specified other than SYNCHRONIZE, then the caller
cannot directly read or write any data in the file using the returned file handle. All operations on the
file occur through the system pager in response to instruction and data accesses.

If FILE_APPEND_DATA is the only desired-access flag specified other than SYNCHRONIZE, then the
caller can only write to the end of the file. Any offset information on writes to the file is ignored. The
file will automatically be extended as necessary for these types of write operations.

Specifying the FILE_WRITE_DATA desired-access flag for a file also allows writes beyond the end of
the file to occur. The file is also automatically extended for these types of writes as well.

Files may be shared among threads within a process, or among a family of processes through
inheritance, by simply opening or creating the file. The file handle can then be used to access the same
file. Note that the OBJ_INHERIT object attribute flag must be specified in the ObjectAttributes
parameter in order for sharing to occur between parent and child processes through use of the file
handle.

Access to a file may be shared among separate cooperating processes or threads by requesting that the
file system open the file for shared access. This is accomplished through the flags in the ShareAccess
mode parameter. Provided that both file openers have the privilege to access the file in the specified
manner, the file can be successfully opened and shared. If the caller does not specify
FILE_SHARE_READ, FILE_SHARE_WRITE, or FILE_SHARE_DELETE, then no other open
operations may be performed on the file.

In order for the file to be successfully opened, the requested access mode to the file must be
compatible with the way in which other opens to the file have been made. That is, the desired access
mode to the file must not conflict with the accesses that other openers of the file have disallowed.

Windows NT I/O System Specification 19

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The FILE_DIRECTORY_FILE flag specifies that the file being opened must be a directory file or the
service will fail. Likewise, the FILE_NON_DIRECTORY_FILE flag specifies that the service will fail
if the file being opened is a directory file.

It is also possible to further control the type of file, directory, structured storage, etc. that one wishes to
create or open by providing the FILE_STORAGE_TYPE_SPECIFIED flag. This flag indicates that
one of the FILE_STORAGE_TYPE_xxx values has been supplied. Note that specifying
FILE_DIRECTORY_FILE is equivalent to specifying FILE_STORAGE_TYPE_SPECIFIED and also
specifying FILE_STORAGE_TYPE_DIRECTORY. Likewise, specifying
FILE_NON_DIRECTORY_FILE is equivalent to specifying FILE_STORAGE_TYPE_SPECIFIED and
also specifying FILE_STORAGE_TYPE_FILE.

The FILE_NO_INTERMEDIATE_BUFFER option specifies that the file system should not perform
any intermediate buffering on behalf of the caller. This causes several restrictions to be placed on the
caller's parameters to various service calls.

o - The byte offset parameter to read and write operations must be an integral number of 512-
byte blocks.

o - The length of the read or write operation must be an integral number of 512-byte blocks.
Note that specifying a read operation to a buffer whose length is 512 bytes may result in a
smaller number of significant bytes being transferred to the buffer because the end of the file
was reached, however, the driver may still be able to transfer a whole sector of data directly to
the buffer.

o - Buffers must be aligned to that of the device. The device alignment requirement can be
determined by querying the file.

o - Files opened for this type of access may not be opened for FILE_APPEND_DATA access.

o - The FILE_WRITE_THROUGH option is automatically set when intermediate buffering is
disabled.

o - Calls to set the file position pointer for files opened in this manner may only specify offsets
to 512-byte sector boundaries.

o - All opens of the file must either enable or disable this feature. That is, no mixed opens are
permitted.

The FILE_SYNCHRONOUS_IO_ALERT and FILE_SYNCHRONOUS_IO_NONALERT open options
allow the caller to specify that all I/O operations on this file are to be performed synchronously as long
as they occur through the file object referred to by the returned handle. The system also maintains the
current "file pointer context" for the file when the file is opened with either of these options. Likewise,
all I/O on the file will be serialized across all threads and processes using the returned handle or an
inherited copy of the handle. The SYNCHRONIZE desired access flag must also be specified so that the
I/O system can use the file object as a synchronization object.

These two options also imply that the I/O system maintain an internal current file position pointer.
This pointer can be used by the read and write services. It can also be set or read by other APIs
described later in this document.

Windows NT I/O System Specification 20

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The FILE_COMPLETE_IF_OPLOCKED option specifies that if the target file is currently oplocked
by another accessor of the file, that the operation should complete immediately anyway without
waiting for the oplock break operation to be completed. The call to NtOpenFile completes once the
oplock break operation has been started, rather than blocking the caller's thread waiting for the break to
complete. An alternate success code is returned to the caller if an oplock break is in progress when the
service completes. For more information on oplocks, see the Windows NT Opportunistic Locking
Design Note.

Setting the FILE_TRANSACTED_MODE option indicates that the file system and Transaction
Manager should work together to only allow other openers of the file to see changes to the file when
they are fully committed. This means that other openers will not normally see any writes to the file
unless the data has actually been committed.

The FILE_RESERVE_OPFILTER option indicates that the caller would like to reserve a filter oplock
on the file, if possible. The first I/O request issued on the file must be an oplock FSCTL to determine
whether or not the oplock was actually reserved. For more information on oplocks, see the Windows
NT Opportunistic Locking Design Note.

A file is considered to have been moved from primary storage and a marker left in its place if the target
file’s FILE_ATTRIBUTE_OFFLINE attribute bit is set. A normal attempt to open such a file causes
the HSM(s) in the system to attempt to retrieve the original file. However, the marker itself can be
opened by specifying the FILE_OPEN_OFFLINE_FILE option.

3.2 File Data Services

This section presents those services that read data from and write data to files. They provide the
functionality to perform I/O to files according to the options provided in the open/create services.

The APIs that support reading and writing files are as follows:

NtReadFile - Read data from a file into a specified buffer.
NtWriteFile - Write data to a file from a specified buffer.

3.2.1 Reading Files

Data can be read from a file with the NtReadFile service:

NTSTATUS
NtReadFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID Buffer,
IN ULONG Length,
IN PLARGE_INTEGER ByteOffset OPTIONAL,
IN PULONG Key OPTIONAL
);

Parameters:

Windows NT I/O System Specification 21

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FileHandle - An open file handle to the file to read.

Event - An optional handle to an event to be set to the Signaled state when the operation

completes.

ApcRoutine - An optional procedure to be invoked once the operation completes.

ApcContext - A pointer to pass as an argument to the ApcRoutine, if one was specified, when

the operation completes. This argument is required if an ApcRoutine was specified.

IoStatusBlock - A variable to receive the final completion status and information about the

operation. The number of bytes actually read from the file is returned in the
Information field of this variable. For more information about this parameter see the
NtCreateFile system service description.

Buffer - A pointer to a buffer to receive the bytes read from the file.

Length - The length of the specified Buffer in bytes. This is the number of bytes that are read

from the file unless the end of the file is reached.

ByteOffset - Supplies the starting byte offset within the file where the read begins. An error is

returned if an attempt is made to start the read beyond the end of the file.

See the note below about the semantics of this parameter if the I/O system is
maintaining the current file pointer position.

Key - Optionally specifies a Key that is used to indicate the owner of a byte-range lock. If the

value of the Key and other conditions are met, then the locked range is read.

The routine specified by the ApcRoutine parameter has the following type definition:

typedef
VOID
(*PIO_APC_ROUTINE) (

IN PVOID ApcContext,
IN PIO_STATUS_BLOCK IoStatusBlock
);

Parameters:

ApcContext - This parameter is the value of ApcContext in the call to the I/O system service.

IoStatusBlock - This parameter is the pointer IoStatusBlock passed in the call to the I/O system

service.

The NtReadFile service begins reading from the ByteOffset byte within the file into the specified
Buffer. The read terminates under one of the following conditions:

o - The buffer is full. The number of bytes specified by the Length parameter has been read.
Therefore, no more data can be placed into the buffer without an overflow.

Windows NT I/O System Specification 22

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o - During the read operation the end of the file is reached. There is no more data in the file to
be placed into the buffer.

If the file was opened or created without intermediate buffering by the file system, there are several
restrictions on the parameters supplied to this service. See the descriptions of the NtCreateFile and
NtOpenFile services for more information.

If FILE_SYNCHRONOUS_IO_ALERT or FILE_SYNCHRONOUS_IO_NONALERT are specified as
options when the file is opened/created, then the I/O system maintains the current file position for the
file. The caller may specify that the current file pointer position be used instead of a specific byte
offset within the file in one of two ways:

o - Specifying a ByteOffset parameter whose value is FILE_USE_FILE_POINTER_POSITION
rather than an actual byte offset within the file.

o - Not specifying the ByteOffset parameter at all.

Either of these methods causes the read to occur from the byte offset within the file according to the
value of the current file pointer position. Once the read is complete, the pointer position is updated
according to the number of bytes that were read from the file.

If the current file position is being maintained by the I/O system, then the caller may still read directly
from a location in the file. This automatically changes the current file position to point to that position,
performs the read, and then updates the position according to the number of bytes actually read. This
gives the caller an atomic "seek and read" service. This is done by supplying the actual byte offset
within the file to be read.

The Key parameter can optionally be used to specify a key value that is used to determine whether a
locked range of bytes can be read by the caller. That is, locked ranges of bytes have a key associated
with them using the NtLockFile system service. The Key parameter is one of the values that must
exactly match the key associated with the lock in order to read the locked range of bytes. More
information can be found later in this specification on byte range locking.

The NtReadFile service is also flexible enough to be invoked for most read functions directly by an
RPC stub routine that is emulating a system service on behalf of an emulation subsystem. The OS/2
DosRead and POSIX read functions, for example, can both be emulated by directly invoking this
service.

This service requires FILE_READ_DATA access to the file.

Once the data has been read, the Event, if specified, will be set to the Signaled state. If no Event
parameter was specified, then the file object specified by the FileHandle will be set to the Signaled
state. If an ApcRoutine was specified, it is invoked with the ApcContext and the address of the
IoStatusBlock as its arguments.

3.2.2 Writing Files

Data can be written to a file with the NtWriteFile service:

NTSTATUS

Windows NT I/O System Specification 23

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NtWriteFile(
IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PVOID Buffer,
IN ULONG Length,
IN PLARGE_INTEGER ByteOffset OPTIONAL,
IN PULONG Key OPTIONAL
);

Parameters:

FileHandle - An open file handle to the file to write.

Event - An optional handle to an event to be set to the Signaled state when the operation

completes.

ApcRoutine - An optional procedure to be invoked once the operation completes. For more

information about this parameter see the NtReadFile system service description.

ApcContext - A pointer to pass as an argument to the ApcRoutine, if one was specified, when

the operation completes. This argument is required if an ApcRoutine was specified.

IoStatusBlock - A variable to receive the final completion status and information about the

operation. The number of bytes actually written to the file is returned in the
Information field of this variable. For more information about this parameter see the
NtCreateFile system service description.

Buffer - A pointer to a buffer containing the data that should be written to the file.

Length - The number of bytes to write to the file from the specified Buffer.

ByteOffset - Supplies the starting byte offset within the file where the write begins.

The notes below describe other valid values that this parameter can express.

Key - Optionally specifies a Key that it used to indicate the owner of a byte range lock. If the

value of the Key and other conditions are met, then the locked range is written.

The NtWriteFile service begins writing Length bytes from the specified Buffer to the byte within the
file specified by the ByteOffset parameter.

If the write occurs to a file beyond the current end of file mark, then the file is automatically extended
and the end of file mark is updated. Any bytes not explicitly written between the old end of file mark
and the new end of file mark are defined to be zero.

If the file is opened with only FILE_APPEND_DATA access, then the ByteOffset parameter is
ignored. The data contained in the Buffer, for Length bytes, is written to the current end of the file.

Windows NT I/O System Specification 24

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

If the file was opened or created without intermediate buffering by the file system, there are several
restrictions on the parameters supplied to this service. See the descriptions of the NtCreateFile and
NtOpenFile services for more information.

If FILE_SYNCHRONOUS_IO_ALERT or FILE_SYNCHRONOUS_IO_NONALERT are specified when
the file is opened or created, then the I/O system maintains the current file position pointer. The caller
may specify that the current file pointer position be used instead of a specific byte offset within the file
in one of two ways:

o - Specifying a ByteOffset parameter whose value is FILE_USE_FILE_POINTER_POSITION
rather than an actual byte offset within the file.

o - Not specifying the ByteOffset parameter at all.

Either of these methods causes the write to occur from the byte offset within the file according to the
value of the current file pointer position context. Once the write is complete, the pointer position is
updated according to the number of bytes that were written to the file.

If the current file position is being maintained by the I/O system, then the caller may still write directly
to a location in the file. This automatically changes the current file position to point to that position,
performs the write, and then updates the position according to the number of bytes written. This gives
the user an atomic "seek and write" service. This is done by supplying the actual byte offset within the
file to be written.

It is also possible to cause the write to take place at the current end of file. This can be done regardless
of whether the I/O system is maintaining file position information. Specifying a value of
FILE_WRITE_TO_END_OF_FILE for the ByteOffset parameter causes this to occur.

The Key parameter can optionally be used to specify a key value that determines whether a locked
range of bytes can be written by the caller. That is, locked ranges of bytes have a key associated with
them using the NtLockFile system service. The Key parameter is one of the values that must exactly
match the lock specification associated with the lock in order to be able to write the locked range of
bytes. More information can be found later in this specification on byte range locking.

The NtWriteFile service is also flexible enough to be invoked for most write functions directly by an
RPC stub routine executing on behalf of an operating system emulation subsystem. The OS/2
DosWrite and POSIX write functions, for example, can both be emulated by directly invoking these
services.

This service requires either FILE_WRITE_DATA or FILE_APPEND_DATA access to the file.
Note that having only FILE_APPEND_DATA access to the file does not allow the caller to write
anywhere in the file except at the current end of file mark, while having FILE_WRITE_DATA access
to a file does not preclude the caller from writing to or beyond the end of the file.

Once the data has been written, the Event, if specified, will be set to the Signaled state. If no Event
parameter was specified, then the file object specified by the FileHandle will be set to the Signaled
state. If an ApcRoutine was specified, it is invoked with the ApcContext and the address of the
IoStatusBlock as its arguments.

Windows NT I/O System Specification 25

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.3 Directory Manipulation Services

This section presents those services that manipulate directories within the file system.

The APIs that permit directory manipulation are as follows:

NtQueryDirectoryFile - Enumerate files within a directory.
NtNotifyChangeDirectoryFile - Monitor directory for modifications.
NtQueryOleDirectoryFile - Enumerate streams and embeddings in the OLE name space.

3.3.1 Enumerating Files in a Directory

The files within a directory can be enumerated using the NtQueryDirectoryFile service:

NTSTATUS
NtQueryDirectoryFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID FileInformation,
IN ULONG Length,
IN FILE_INFORMATION_CLASS FileInformationClass,
IN BOOLEAN ReturnSingleEntry,
IN PUNICODE_STRING FileName OPTIONAL,
IN BOOLEAN RestartScan
);

Parameters:

FileHandle - A file handle to an open directory file.

Event - An optional handle to an event to be set to the Signaled state when the operation

completes.

ApcRoutine - An optional procedure to be invoked once the operation completes. For more

information about this parameter see the NtReadFile system service description.

ApcContext - A pointer to pass as an argument to the ApcRoutine, if one was specified, when

the operation completes. This argument is required if an ApcRoutine was specified.

IoStatusBlock - A variable to receive the final completion status and information about the

operation. The number of bytes actually written to the specified Buffer is stored in the
Information field of this variable. For more information about this parameter see the
NtCreateFile system service description.

FileInformation - A pointer to a buffer to receive information about the files in the directory.

The contents of this buffer are defined by the FileInformationClass parameter below.

Length - The length of the specified buffer in bytes.

Windows NT I/O System Specification 26

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FileInformationClass - Specifies the type of information that is returned in the FileInformation

buffer. The type of information in the buffer is defined by the following type codes.

FileInformationClass Values

FileNamesInformation - Specifies that names of files in the directory are written to the
FileInformation buffer.

FileDirectoryInformation - Specifies that basic directory information about the files is

written to the FileInformation buffer.

FileFullDirectoryInformation - Specifies that all of the directory information about the

files is written to the FileInformation buffer.

FileBothDirectoryInformation - Specifies that all of the directory information about the

files is written to the FileInformation buffer, including both of the file's names.

FileOleDirectoryInformation - Specifies that OLE directory information about the files

is written to the FileInformation buffer.

ReturnSingleEntry - A BOOLEAN value that, if TRUE, indicates that only a single entry

should be returned.

FileName - An optional file name within the specified directory. This parameter may only be

specified on the first call to the service. It selects the files in the directory that the query
calls return. The specification may contain wildcard characters.

RestartScan - A BOOLEAN value that, if TRUE, indicates that the scan should be restarted

from the beginning. This causes the directory operation to restart the scan from the
beginning of the directory.

The NtQueryDirectoryFile function operates on a directory file specified by the FileHandle
parameter. The service returns information about files in the specified directory. The
ReturnSingleEntry parameter specifies that only a single entry should be returned rather than filling the
buffer. The actual number of files whose information is returned, is the smallest of the following:

o - One entry, if the ReturnSingleEntry parameter is TRUE.

o - The number of files whose information fits into the specified buffer.

o - The number of files that exist in the directory according to the wildcard file specification.
This defaults to all of the files in the directory.

File systems supported by Windows NT return information about files in directories in either random
or alphabetically ascending order. It is possible to receive information about a specific file by
specifying the name of the file as the FileName parameter without using any wildcard characters.

If information about multiple files is returned, then each entry in the buffer will be aligned on a
longword or quadword boundary, depending on the type of information being returned. Each type of
information class returned begins with the byte offset required to find the next entry in the buffer. If

Windows NT I/O System Specification 27

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

this value is zero, then there are no more entries following the current entry. Note that there are no
entries in the buffer only if the service completes with an error.

The normal operation of this service is to return all of the files in the directory. A wildcard
specification may be supplied the first time the service is called to select a subset of the files in the
directory. This is done by supplying a wildcard file specification in the FileName parameter the first
time the service is invoked once the directory file has been opened. Once a wildcard pattern has been
supplied, all subsequent NtQueryDirectoryFile calls using the same directory handle operate only on
those files which match the pattern. That is, restarting the listing will return the first entry in the
directory that matches the pattern.

A wildcard file specification may only be supplied the first time that the service is invoked. If no
wildcard specification is supplied, the file system assumes all of the files in the directory are selected.
Wildcard file specifications must be consistent with those used in OS/2 V2.0.

Likewise, the FileInformationClass parameter specified the first time indicates the type of information
about the files in the directory that is to be returned. Once an information class is established, it may
not be changed in subsequent calls to the service. That is, all subsequent calls must pass the same
information class as the first call to the service for a given handle.

The information that is returned in the buffer is defined by the following type codes and structures.

FileNamesInformation Format by File Information Class

FileNamesInformation - Data type is FILE_NAMES_INFORMATION.

typedef struct _FILE_NAMES_INFORMATION {
ULONG NextEntryOffset;
ULONG FileIndex;
ULONG FileNameLength;
WCHAR FileName[];

} FILE_NAMES_INFORMATION;

Field Description
NextEntryOffset Offset to the next entry in bytes
FileIndex Index in the directory of this entry
FileNameLength Length of the file name in bytes
FileName Name of the file

The information returned for this information class is returned longword aligned, and the
FileInformation buffer itself must be longword aligned.

FileDirectoryInformation - Data type is FILE_DIRECTORY_INFORMATION.

typedef struct _FILE_DIRECTORY_INFORMATION {
ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;

Windows NT I/O System Specification 28

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
WCHAR FileName[];

} FILE_DIRECTORY_INFORMATION;

Field Description
NextEntryOffset Offset to the next entry in bytes
FileIndex The file index of this file in the directory
CreationTime Date/time that the file was created
LastAccessTime Date/time that the file was last accessed
LastWriteTime Date/time that the file was last written
ChangeTime Date/time that the file was last changed
EndOfFile Offset to first free byte in the default data stream, in bytes
AllocationSize Allocated size of all data streams in the file, in bytes
FileAttributes Attributes of the file
FileNameLength Length of the name of the file
FileName Name of the file

The information returned for this information class is returned quadword aligned, and the
FileInformation buffer itself must be quadword aligned.

All dates and times are returned in the standard Windows NT system-time format.

The file attributes field can be a combination of the following flags:

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

The FILE_ATTRIBUTE_NORMAL flag will never be returned in combination with any
other flag.

FileFullDirectoryInformation - Data type is FILE_FULL_DIR_INFORMATION.

typedef struct _FILE_FULL_DIR_INFORMATION {
ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;

Windows NT I/O System Specification 29

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ULONG FileAttributes;
ULONG FileNameLength;
ULONG EaSize;
WCHAR FileName[];

} FILE_FULL_DIR_INFORMATION;

Field Description
NextEntryOffset Offset to the next entry in bytes
FileIndex The file index of this file in the directory
CreationTime Date/time that the file was created
LastAccessTime Date/time that the file was last accessed
LastWriteTime Date/time that the file was last written
ChangeTime Date/time that the file was last changed
EndOfFile Offset to first free byte in the default data stream, in bytes
AllocationSize Allocated size of all data streams in the file, in bytes
FileAttributes Attributes of the file
FileNameLength Length of the name of the file
EaSize Size of the EA's associated with the file
FileName Name of the file

The information returned for this information class is returned quadword aligned, and the
FileInformation buffer itself must be quadword aligned.

All dates and times are returned in the standard Windows NT system-time format.

The file attributes field can be a combination of the following flags:

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

The FILE_ATTRIBUTE_NORMAL flag will never be returned in combination with any
other flag.

FileBothDirectoryInformation - Data type is FILE_BOTH_DIR_INFORMATION.

typedef struct _FILE_BOTH_DIR_INFORMATION {
ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;

Windows NT I/O System Specification 30

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ULONG FileAttributes;
ULONG FileNameLength;
ULONG EaSize;
CCHAR ShortNameLength;
WCHAR ShortName[12];
WCHAR FileName[];

} FILE_BOTH_DIR_INFORMATION;

Field Description
NextEntryOffset Offset to the next entry in bytes
FileIndex The file index of this file in the directory
CreationTime Date/time that the file was created
LastAccessTime Date/time that the file was last accessed
LastWriteTime Date/time that the file was last written
ChangeTime Date/time that the file was last changed
EndOfFile Offset to first free byte in the default data stream, in bytes
AllocationSize Allocated size of all data streams in the file, in bytes
FileAttributes Attributes of the file
FileNameLength Length of the name of the file
EaSize Size of the EA's associated with the file
ShortNameLength Length of the 8.3 name of the file
ShortName 8.3 name of the file
FileName Name of the file

The information returned for this information class is returned quadword aligned, and the
FileInformation buffer itself must be quadword aligned.

All dates and times are returned in the standard Windows NT system-time format.

The file attributes field can be a combination of the following flags:

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

The FILE_ATTRIBUTE_NORMAL flag will never be returned in combination with any
other flag.

FileOleDirectoryInformation - Data type is FILE_OLE_DIR_INFORMATION.

typedef struct _FILE_OLE_DIR_INFORMATION {
ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;

Windows NT I/O System Specification 31

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
FILE_STORAGE_TYPE StorageType;
GUID OleClassId;
ULONG OleStateBits;
BOOLEAN IsExplorable;
BOOLEAN HasExplorableChildren;
BOOLEAN ApplicationIsExplorable;
BOOLEAN ApplicationHasExplorableChildren;
BOOLEAN ContentIndexDisable;
BOOLEAN InheritContentIndexDisable;
WCHAR FileName[];

} FILE_OLE_DIR_INFORMATION;

Field Description
NextEntryOffset Offset to the next entry in bytes
FileIndex The index of this file on the volume
CreationTime Date/time that the file was created
LastAccessTime Date/time that the file was last accessed
LastWriteTime Date/time that the file was last written
ChangeTime Date/time that the file was last changed
EndOfFile Offset to first free byte in the file
AllocationSize Total allocation size of file, including children
FileAttributes Attributes of the file
FileNameLength Length of the name of the file
StorageType Storage type of the file
OleClassId OLE class ID
OleStateBits OLE state bits
IsExplorable Indicates whether or not object is explorable
HasExplorableChildren Indicates whether or not object has explorable children
ApplicationHasExplorableChildren Application-maintained version of above flag
ContentIndexDisable Indicates whether content indexing has been disabled
InheritContentIndexDisable Indicates whether content indexing disable is inheritable
FileName Name of the entry

The information returned for this information class is returned quadword aligned, and the
FileInformation buffer itself must be quadword aligned.

All dates and times are returned in the standard Windows NT system-time format.

The file attributes field can be a combination of the following flags:

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE

Windows NT I/O System Specification 32

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

The FILE_ATTRIBUTE_NORMAL flag will never be returned in combination with any
other flag.

The possible values for the storage type field are defined by the FILE_STORAGE_TYPE
enumerated type:

typedef enum _FILE_STORAGE_TYPE {

StorageTypeDirectory,
StorageTypeFile,
StorageTypeDocfile,
StorageTypeJunctionPoint,
StorageTypeCatalog,
StorageTypeStructuredStorage,
StorageTypeEmbedding,
StorageTypeStream

} FILE_STORAGE_TYPE;

FILE_LIST_DIRECTORY access to the directory is required in order to obtain the above
information about files in the specified directory.

As in OS/2 today, users should not depend on any preconceived ideas about the length of file names in
Windows NT. Because the system supports multiple file system types and will support more in the
future, it is difficult to tell just what form file names may take. However, this service guarantees that
for Windows NT V3.1, a buffer that is large enough to contain at least one
FILE_BOTH_DIR_INFORMATION structure and has 256 Unicode characters for a file name will be
large enough to receive at least one directory entry of any size.

Likewise, a buffer that is large enough to contain at least one name should be at least 256 Unicode
characters for the file name itself, plus the size of the remainder of the structure.

Notice that it is legal for the caller to specify the RestartScan parameter on a subsequent call to the
NtQueryDirectoryFile service to have the service restart from the beginning of the directory listing.
This causes the scan of the directory to be restarted from the beginning of the list. Notice also that
since the file handle may be shared between separate threads within a process, or in threads across
processes when the handle is inherited, not all of the directory entries may necessarily be seen by a
single thread. That is, the context being maintained to determine which entry should be returned is
common among the threads. Therefore, if one thread obtains a directory entry, then the next thread to
ask for an entry will obtain the next entry, not the same entry as the first thread.

Once the directory operation has completed, the Event, if specified, will be set to the Signaled state. If
no Event parameter was specified, then the file object specified by the FileHandle will be set to the
Signaled state. If an ApcRoutine was specified, it is invoked with the ApcContext and the address of
the IoStatusBlock as its arguments.

Windows NT I/O System Specification 33

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.3.2 Enumerating Files in an Ole Directory File

The files within an Ole directory file can be enumerate using the NtQueryOleDirectoryFile service:

NTSTATUS
NtQueryOleDirectoryFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID FileInformation,
IN ULONG Length,
IN FILE_INFORMATION_CLASS FileInformationClass,
IN BOOLEAN ReturnSingleEntry,
IN PUNICODE_STRING FileName OPTIONAL,
IN BOOLEAN RestartScan
);

Parameters:

FileHandle - A file handle to an open container about which information is to be returned.

Event - An optional handle to an event to be set to the Signaled state when the operation

completes.

ApcRoutine - An optional procedure to be invoked once the operation completes. For more

information about this parameter see the NtReadFile system service description.

ApcContext - A pointer to pass as an argument to the ApcRoutine, if one was specified, when

the operation completes. This argument is required if an ApcRoutine was specified.

IoStatusBlock - A variable to receive the final completion status and information about the

operation. The number of bytes actually written to the specified Buffer is stored in the
Information field of this variable. For more information about this parameter see the
NtCreateFile system service description.

FileInformation - A pointer to a buffer to receive information about the OLE embeddings and

streams in the container. The contents of this buffer are defined by the
FileInformationClass parameter below.

Length - The length of the specified buffer in bytes.

FileInformationClass - Specifies the type of information that is returned in the FileInformation

buffer. The type of information in the buffer is defined by the following type codes.

FileInformationClass Values

FileDirectoryInformation - Specifies that basic information about the OLE embeddings
and streams is written to the FileInformation buffer.

Windows NT I/O System Specification 34

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FileOleDirectoryInformation - Specifies that comprehensive OLE information about
the OLE embeddings and streams is written to the FileInformation buffer.

ReturnSingleEntry - A BOOLEAN value that, if TRUE, indicates that only a single entry

should be returned.

FileName - An optional name within the specified container. This parameter may only be

specified on the first call to the service. It selects the embeddings and streams in the
container that the query calls return. The specification may contain wildcard characters.

RestartScan - A BOOLEAN value that, if TRUE, indicates that the scan should be restarted

from the beginning. This causes the directory operation to restart the scan from the
beginning of the container.

The NtQueryOleDirectoryFile function operates on a container specified by the FileHandle
parameter. The service returns information about OLE embeddings and streams in the specified
container. The ReturnSingleEntry parameter specifies that only a single entry should be returned
rather than filling the buffer. The actual number of files whose information is returned, is the smallest
of the following:

o - One entry, if the ReturnSingleEntry parameter is TRUE.

o - The number of entries whose information fits into the specified buffer.

o - The number of entries that exist in the container according to the wildcard specification.
This defaults to all of the entries in the container.

If information about multiple entries is returned, then each entry in the buffer will be aligned on a
longword or quadword boundary, depending on the type of information being returned. Each type of
information class returned begins with the byte offset required to find the next entry in the buffer. If
this value is zero, then there are no more entries following the current entry. Note that there are no
entries in the buffer only if the service completes with an error.

The normal operation of this service is to return all of the entries in the container. A wildcard
specification may be supplied the first time the service is called to select a subset of the entries in the
container. This is done by supplying a wildcard specification in the FileName parameter the first time
the service is invoked once the container has been opened. Once a wildcard pattern has been supplied,
all subsequent NtQueryOleDirectoryFile calls using the same handle operate only on those entries
which match the pattern. That is, restarting the listing will return the first entry in the container that
matches the pattern.

A wildcard specification may only be supplied the first time that the service is invoked. If no wildcard
specification is supplied, the file system assumes all of the entries in the container are selected.
Wildcard specifications must be consistent with those used in OS/2 V2.0.

Likewise, the FileInformationClass parameter specified the first time indicates the type of information
about the entries in the container that is to be returned. Once an information class is established, it
may not be changed in subsequent calls to the service. That is, all subsequent calls must pass the same
information class as the first call to the service for a given handle.

The information that is returned in the buffer is defined by the following type codes and structures.

Windows NT I/O System Specification 35

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FileNamesInformation Format by File Information Class

FileDirectoryInformation - Data type is FILE_DIRECTORY_INFORMATION.

typedef struct _FILE_DIRECTORY_INFORMATION {
ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
WCHAR FileName[];

} FILE_DIRECTORY_INFORMATION;

Field Description
NextEntryOffset Offset to the next entry in bytes
FileIndex The index of this entry in the container
CreationTime Date/time that the entry was created
LastAccessTime Date/time that the entry was last accessed
LastWriteTime Date/time that the entry was last written
ChangeTime Date/time that the entry was last changed
EndOfFile Offset to first free byte in the default data stream, in bytes
AllocationSize Total allocated size of the OLE embedding or stream in bytes
FileAttributes Attributes of the OLE embedding or stream
FileNameLength Length of the name of the entry
FileName Name of the entry

The information returned for this information class is returned quadword aligned, and the
FileInformation buffer itself must be quadword aligned.

All dates and times are returned in the standard Windows NT system-time format.

The file attributes field can be a combination of the following flags if the object is an
embedding. Otherwise, the file attributes field will be zero.

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

The FILE_ATTRIBUTE_NORMAL flag will never be returned in combination with any
other flag.

Windows NT I/O System Specification 36

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FileOleDirectoryInformation - Data type is FILE_OLE_DIR_INFORMATION.

typedef struct _FILE_OLE_DIR_INFORMATION {
ULONG NextEntryOffset;
ULONG FileIndex;
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER EndOfFile;
LARGE_INTEGER AllocationSize;
ULONG FileAttributes;
ULONG FileNameLength;
FILE_STORAGE_TYPE StorageType;
GUID OleClassId;
ULONG OleStateBits;
BOOLEAN IsExplorable;
BOOLEAN HasExplorableChildren;
BOOLEAN ApplicationIsExplorable;
BOOLEAN ApplicationHasExplorableChildren;
BOOLEAN ContentIndexDisable;
BOOLEAN InheritContentIndexDisable;
WCHAR FileName[];

} FILE_OLE_DIR_INFORMATION;

Field Description
NextEntryOffset Offset to the next entry in bytes
FileIndex The index of this object on the volume
CreationTime Date/time that the entry was created
LastAccessTime Date/time that the entry was last accessed
LastWriteTime Date/time that the entry was last written
ChangeTime Date/time that the entry was last changed
EndOfFile Offset to first free byte in the default data stream, in bytes
AllocationSize Allocated size of the OLE embedding or stream in bytes
FileAttributes Attributes of the OLE embedding or stream
FileNameLength Length of the name of the entry
StorageType Storage type of the entry
OleClassId OLE class ID
OleStateBits OLE state bits
IsExplorable Indicates whether or not object is explorable
HasExplorableChildren Indicates whether or not object has explorable children
ApplicationHasExplorableChildren Application-maintained version of above flag
ContentIndexDisable Indicates whether content indexing has been disabled
InheritContentIndexDisable Indicates whether CI disable should be inherited
FileName Name of the entry

The information returned for this information class is returned quadword aligned, and the
FileInformation buffer itself must be quadword aligned.

All dates and times are returned in the standard Windows NT system-time format.

Windows NT I/O System Specification 37

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The file attributes field can be a combination of the following flags if the object is an
embedding. Otherwise it will be zero.

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

The FILE_ATTRIBUTE_NORMAL flag will never be returned in combination with any
other flag.

The possible values for the storage type field are defined by the FILE_STORAGE_TYPE
enumerated type:

typedef enum _FILE_STORAGE_TYPE {

StorageTypeDirectory,
StorageTypeFile,
StorageTypeDocfile,
StorageTypeJunctionPoint,
StorageTypeCatalog,
StorageTypeStructuredStorage,
StorageTypeEmbedding,
StorageTypeStream

} FILE_STORAGE_TYPE;

FILE_LIST_DIRECTORY access to the container is required in order to obtain the above
information about OLE embeddings and streams in the specified container.

In the case of the NtQueryOleDirectoryFile, users can depend on the maximum length of a file name
being 31 Unicode characters, because that is the maximum length defined by OLE. Therefore, the
name of any stream, property set, embedding, etc., is guaranteed to be a maximum of 31 Unicode
characters because this API only operates on OLE objects.

Likewise, a buffer that is large enough to contain at least one name should be at least 31 Unicode
characters for the file name itself, plus the size of the remainder of the structure.

Notice that it is legal for the caller to specify the RestartScan parameter on a subsequent call to the
NtQueryOleDirectoryFile service to have the service restart from the beginning of the listing. This
causes the scan of the container to be restarted from the beginning of the list. Notice also that since the
file handle may be shared between separate threads within a process, or in threads across processes
when the handle is inherited, not all of the entries may necessarily be seen by a single thread. That is,
the context being maintained to determine which entry should be returned is common among the
threads. Therefore, if one thread obtains an entry, then the next thread to ask for an entry will obtain
the next entry, not the same entry as the first thread.

Windows NT I/O System Specification 38

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Once the operation has completed, the Event, if specified, will be set to the Signaled state. If no Event
parameter was specified, then the file object specified by the FileHandle will be set to the Signaled
state. If an ApcRoutine was specified, it is invoked with the ApcContext and the address of the
IoStatusBlock as its arguments.

3.3.3 Monitoring Directory Modifications

Directory modifications can be monitored using the NtNotifyChangeDirectoryFile service:

NTSTATUS
NtNotifyChangeDirectoryFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID Buffer,
IN ULONG Length,
IN ULONG CompletionFilter,
IN BOOLEAN WatchTree
);

Parameters:

FileHandle - A handle to an open directory file.

Event - An optional handle to an event to be set to the Signaled state when the operation

completes.

ApcRoutine - An optional procedure to be invoked once the operation completes. For more

information about this parameter see the NtReadFile system service description.

ApcContext - A pointer to pass as an argument to the ApcRoutine, if one was specified, when

the operation completes. This argument is required if an ApcRoutine was specified.

IoStatusBlock - A variable to receive the final completion status. For more information about

this parameter see the NtCreateFile system service description.

Buffer - A variable to receive the name(s) of the file(s) that changed in the specified target

directory.

Length - Specifies the length of the Buffer.

CompletionFilter - Specifies a set of flags that indicate the types of operations on the directory

or files in the directory that cause the I/O request to complete. The following are the
valid flags for this parameter:

CompletionFilter Flags

FILE_NOTIFY_CHANGE_FILE_NAME - Specifies that the I/O operation should be
completed if a file is added, deleted, or renamed.

Windows NT I/O System Specification 39

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_NOTIFY_CHANGE_DIR_NAME - Specifies that the I/O operation should be

completed if a subdirectory is added, deleted, or renamed.

FILE_NOTIFY_CHANGE_NAME - Specifies that the I/O operation should be

completed if a file or a subdirectory is added, deleted, or renamed.

FILE_NOTIFY_CHANGE_ATTRIBUTES - Specifies that the I/O operation should be

completed if the attributes of a file or subdirectory is changed.

FILE_NOTIFY_CHANGE_SIZE - Specifies that the I/O operation should be completed

if the allocation size or end of file for a file or subdirectory is changed.

FILE_NOTIFY_CHANGE_LAST_WRITE - Specifies that the I/O operation should be

completed if the last write date/time for a file or subdirectory is changed.

FILE_NOTIFY_CHANGE_LAST_ACCESS - Specifies that the I/O operation should be

completed if the last access date/time for a file or subdirectory is changed.

FILE_NOTIFY_CHANGE_CREATION - Specifies that the I/O operation should be

completed if the creation date/time for a file or subdirectory is changed.

FILE_NOTIFY_CHANGE_EA - Specifies that the I/O operation should be completed if

the EAs for a file or subdirectory are changed.

FILE_NOTIFY_CHANGE_SECURITY - Specifies that the I/O operation should be

completed if the security information for a file or subdirectory is changed.

FILE_NOTIFY_CHANGE_STREAM_NAME - Specifies that the I/O operation should

be completed if the name of an alternate data stream is changed.

FILE_NOTIFY_CHANGE_STREAM_SIZE - Specifies that the I/O operation should be

completed if the size of an alternated data stream is changed.

FILE_NOTIFY_CHANGE_STREAM_WRITE - Specifies that the I/O operation should

be completed if an alternate data stream is changed due to a write operation.

WatchTree - A BOOLEAN value that, if TRUE, specifies that all changes to files below the

directory should also be reported.

The NtNotifyChangeDirectoryFile service notifies the caller when files in the directory or directory
tree specified by the FileHandle are modified. It also returns the name(s) of the file(s) that changed.
All names are specified relative to the directory that the handle represents. The service completes once
the directory or directory tree has been modified based on the supplied CompletionFilter. The service
is a "single shot" and therefore needs to be reinvoked to watch the directory for changes again.

The operation of this service begins by opening a directory for FILE_LIST_DIRECTORY access.
Once the handle is returned, the NtNotifyChangeDirectoryFile service may be invoked to begin
watching files and subdirectories in the specified target for changes. The first time the service is
invoked, the Length parameter supplies the size not only of the user's Buffer, but also the buffer that
will be used by the file system to store names of files that have changed. Likewise, the

Windows NT I/O System Specification 40

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

CompletionFile and WatchTree parameters on the first call indicate how notification should operate for
all calls using the supplied FileHandle. These two parameters are ignored on subsequent calls to the
API.

Once a modification is made that should be reported, the system will complete the service. The names
of the files that have changed since the last time the service was called will be placed into the caller's
output buffer. The Information field of the I/O status block indicates the number of bytes that were
written to the output buffer. If too many files have changed since the last time the service was called,
then zero bytes will be written to the buffer and an alternate status code is returned in the Status field
of the I/O status block. For the latter case, the application must enumerate the files in the directory or
directory tree to note changes.

The format of the data written to the output Buffer is defined by the following structure:

typedef struct _FILE_NOTIFY_INFORMATION {

ULONG NextEntryOffset;
ULONG Action;
ULONG FileNameLength;
WCHAR FileName[];

} FILE_NOTIFY_INFORMATION;

Field Description
NextEntryOffset Offset, in bytes, to the next entry in the list
Action Description of what happened to cause this entry
FileNameLength Length of the file name that changed
FileName Name of the file that changed

The value of the Action field is defined as one of the following:

Value Description
FILE_ADDED The file was added to the directory
FILE_REMOVED The file was removed from the directory
FILE_MODIFIED The file was modified
FILE_RENAMED_OLD_NAME The name of the file that was renamed
FILE_RENAMED_NEW_NAME The new name of the file that was renamed

When a file is renamed within a single directory, then two entries will be placed into the output buffer:
the old name of the file and the new name of the file. If the file is renamed from the directory being
monitored to another directory, then only a single entry will be placed into the output buffer with an
action type of Removed.

This service requires FILE_LIST_DIRECTORY access to the directory file that was actually
modified. If the operation is watching a directory tree, then the caller must have FILE_TRAVERSE
access to all intervening directories from the grandparent of the modified file, to the directory specified
by the FileHandle parameter. It is possible to bypass security checks to all directories if the caller has
the SeNotifyChangePrivilege privilege.

It should be noted that because of the use of both symbolic and hard links within some file systems, the
results of changes to directories within a tree may be unpredictable. That is, some changes may only
be seen because the FileHandle used refers to a point in the tree through which the change was

Windows NT I/O System Specification 41

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

actually made. Changes made to a point lower in the tree may not be seen because the path used to
make the change did not traverse the directory referred to by the FileHandle.

It should also be noted that this API may not be implemented by some older network servers. In this
case, the API will return a status indicating that it is not implemented. Applications using this API
should be prepared to enumerate directories or directory trees in this case.

Once a modification is made to the directory or directory tree, the Event, if specified, will be set to the
Signaled state. If no Event parameter was specified, then the file object specified by the FileHandle
will be set to the Signaled state. If an ApcRoutine was specified, it is invoked with the ApcContext and
the address of the IoStatusBlock as its arguments.

3.4 File Services

This section presents those services that control files and obtain and change information about files.

The APIs that perform these functions are as follows:

NtQueryInformationFile - Obtain information about a file.
NtSetInformationFile - Change information on a file.
NtQueryEaFile - Obtain extended attributes for a file.
NtSetEaFile - Set extended attributes for a file.
NtLockFile - Lock a byte range within a file.
NtUnlockFile - Unlock a byte range within a file.

3.4.1 Obtaining Information about a File

Information about a file may be obtained using the NtQueryInformationFile service:

NTSTATUS
NtQueryInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID FileInformation,
IN ULONG Length,
IN FILE_INFORMATION_CLASS FileInformationClass
);

Parameters:

FileHandle - A handle to an open file.

IoStatusBlock - A variable to receive the final completion status and information about the

operation. The number of bytes actually written to the specified Buffer is stored in the
Information field of this variable. For more information about this parameter see the
NtCreateFile system service description.

FileInformation - A pointer to a buffer to receive the desired information about the file. The

contents of this buffer are defined by the FileInformationClass parameter described
below.

Windows NT I/O System Specification 42

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Length - The length of the FileInformation buffer in bytes.

FileInformationClass - Specifies the type of information that should be returned about the file.

The information returned in the FileInformation buffer is defined by the following type
codes:

FileInformationClass Values

FileBasicInformation - Returns basic information about the specified file.

FILE_READ_ATTRIBUTES access to the file is required. Also see the
NtQueryAttributesFile service description.

FileStandardInformation - Returns standard information about the specified file. No

specific access to the file is required; that is, this information is available as long
as the file is open.

FileInternalInformation - Returns file system internal information about the file. No

specific access to the file is required; that is, this information is available as long
as the file is open.

FileEaInformation - Returns the size of the extended attributes structures associated

with the file. No specific access to the file is required; that is, this information
is available as long as the file is open.

FileAccessInformation - Returns the access that the caller has to the file. No specific

access to the file is required; that is, this information is available as long as the
file is open.

FileNameInformation - Returns the volume-relative name of the file. No specific

access to the file is required; that is, this information is available as long as the
file is open.

FilePositionInformation - Returns the current file position for the file.

FILE_READ_DATA or FILE_WRITE_DATA access to the file is required.

FileModeInformation - Returns information about how the file is open for the specified

file handle. No specific access to the file is required; that is, this information is
available as long as the file is open.

FileAlignmentInformation - Returns information about the alignment requirements for

buffers being read or written to the file. This is useful when the file has been
opened without intermediate buffering enabled. No specific access to the file is
required; that is, this information is available as long as the file is open.

FileAllInformation - Returns all of the above information in one structure.

FILE_READ_ATTRIBUTES access to the file is required to obtain this
information. In order for the file position information to be returned, the
accessor must have either FILE_READ_DATA or FILE_WRITE_DATA
access to the file.

Windows NT I/O System Specification 43

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FileAlternateNameInformation - Returns the DOS format 8.3 alternate name for the file,
if it has one.

FileStreamInformation - Returns the names of the alternate data streams for the file, if

any exist.

FileCompressionInformation - Returns the compression information about a file. No

specific access to the file is required; that is, this information is available as
long as the file is open.

FileOleInformation - Returns the OLE-specific information about a file.

FILE_READ_ATTRIBUTES access to the file is required to obtain this
information.

FileOleAllInformation - Returns the all of the OLE-specific information about a file.

FILE_READ_ATTRIBUTES access to the file is required to obtain this
information. In order for the file position information to be returned, the
accessor must have either FILE_READ_DATA or FILE_WRITE_DATA
access to the file.

The NtQueryInformationFile service returns information about the specified file. The information
returned in the buffer is defined by the following type codes and structures. Note that the fields that
are not supported for a given device or file system are returned as zero. For example, the FAT file
system does not support a creation time, so this field is set to zero.

FileInformation Format by File Information Class

FileBasicInformation - Data type is FILE_BASIC_INFORMATION.

typedef struct _FILE_BASIC_INFORMATION {
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
ULONG FileAttributes;

} FILE_BASIC_INFORMATION;

Field Description
CreationTime Date/time that the file was created
LastAccessTime Date/time that the file was last accessed
LastWriteTime Date/time that the file was last written
ChangeTime Date/time that the file was last changed
FileAttributes Attributes of the file

All dates and times are returned in the standard Windows NT system-time format.

The file attributes field can be a combination of the following flags:

FILE_ATTRIBUTE_NORMAL
FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN

Windows NT I/O System Specification 44

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_DIRECTORY
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

Note that the FILE_ATTRIBUTE_NORMAL attribute will never be returned in combination
with any other attributes, as all other attributes override this attribute. Also see the
NtQueryAttributesFile service description.

FileStandardInformation - Data type is FILE_STANDARD_INFORMATION.

typedef struct _FILE_STANDARD_INFORMATION {
LARGE_INTEGER AllocationSize;
LARGE_INTEGER EndOfFile;
DEVICE_TYPE DeviceType;
ULONG NumberOfLinks;
BOOLEAN DeletePending;
BOOLEAN Directory;

} FILE_STANDARD_INFORMATION;

Field Description
AllocationSize Allocated size of the file in bytes
EndOfFile Offset to the first free byte in the file
DeviceType Device type code
NumberOfLinks Number of hard links to the file
DeletePending Indicates whether the file is marked for deletion
Directory Indicates whether the file is a directory

The end of file field specifies the byte offset to the end of the file. Note that because this value
is zero-based, it actually refers to the first free byte in the file; that is, it is the offset to the next
byte after the last valid byte in the file.

Device types have the following valid values:

FILE_DEVICE_BATTERY
FILE_DEVICE_BEEP
FILE_DEVICE_BUS_EXTENDER
FILE_DEVICE_CD_ROM
FILE_DEVICE_CD_ROM_FILE_SYSTEM
FILE_DEVICE_CONTROLLER
FILE_DEVICE_DATALINK
FILE_DEVICE_DFS
FILE_DEVICE_DISK
FILE_DEVICE_DISK_FILE_SYSTEM
FILE_DEVICE_FILE_SYSTEM
FILE_DEVICE_INPORT_PORT
FILE_DEVICE_KEYBOARD
FILE_DEVICE_MAILSLOT
FILE_DEVICE_MIDI_IN

Windows NT I/O System Specification 45

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_DEVICE_MIDI_OUT
FILE_DEVICE_MOUSE
FILE_DEVICE_MULTI_UNC_PROVIDER
FILE_DEVICE_NAMED_PIPE
FILE_DEVICE_NETWORK
FILE_DEVICE_NETWORK_BROWSER
FILE_DEVICE_NETWORK_FILE_SYSTEM
FILE_DEVICE_NETWORK_REDIRECTOR
FILE_DEVICE_NULL
FILE_DEVICE_PARALLEL_PORT
FILE_DEVICE_PHYSICAL_NETCARD
FILE_DEVICE_PRINTER
FILE_DEVICE_SCANNER
FILE_DEVICE_SCREEN
FILE_DEVICE_SERIAL_MOUSE_PORT
FILE_DEVICE_SERIAL_PORT
FILE_DEVICE_SOUND
FILE_DEVICE_STREAMS
FILE_DEVICE_TAPE
FILE_DEVICE_TAPE_FILE_SYSTEM
FILE_DEVICE_TRANSPORT
FILE_DEVICE_UNKNOWN
FILE_DEVICE_VIDEO
FILE_DEVICE_VIRTUAL_DISK
FILE_DEVICE_WAVE_IN
FILE_DEVICE_WAVE_OUT
FILE_DEVICE_8042_PORT

No specific access is required to obtain this information about the file; that is, this information
is obtainable as long as the file is open.

FileInternalInformation - Data type is FILE_INTERNAL_INFORMATION.

typedef struct _FILE_INTERNAL_INFORMATION {
 LARGE_INTEGER IndexNumber;
} FILE_INTERNAL_INFORMATION;

Field Description
IndexNumber A file system unique file identifier

No specific access to the file is required to obtain this information about the file; that is, this
information is obtainable as long as the file is open.

FileEaInformation - Data type is FILE_EA_INFORMATION.

typedef struct _FILE_EA_INFORMATION {
ULONG EaSize;

} FILE_EA_INFORMATION;

Field Description

Windows NT I/O System Specification 46

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

EaSize Size of file's extended attributes in bytes

No specific access to the file is required to obtain this information about the file; that is, this
information is obtainable as long as the file is open.

FileAccessInformation - Data type is FILE_ACCESS_INFORMATION.

typedef struct _FILE_ACCESS_INFORMATION {
ACCESS_MASK AccessFlags;

} FILE_ACCESS_INFORMATION;

Field Description
AccessFlags Access that the caller has to the file

The valid flags that may be set in the AccessFlags field are as follows:

SYNCHRONIZE
DELETE
READ_CONTROL
WRITE_DAC
WRITE_OWNER
FILE_READ_EA
FILE_WRITE_EA
FILE_READ_ATTRIBUTES
FILE_WRITE_ATTRIBUTES
FILE_READ_DATA
FILE_WRITE_DATA
FILE_EXECUTE
FILE_APPEND_DATA

If the file is a directory, then the FILE_READ_DATA through FILE_APPEND_DATA flags
are invalid. They are replaced by the following valid values:

FILE_LIST_DIRECTORY
FILE_TRAVERSE

No specific access to the file is required to obtain this information about the file; that is, this
information is available as long as the file is open.

FileNameInformation - Data type is FILE_NAME_INFORMATION.

typedef struct _FILE_NAME_INFORMATION {
ULONG FileNameLength;
WCHAR FileName[];

} FILE_NAME_INFORMATION;

Field Description
FileNameLength Length of the file name in bytes
FileName Name of the file

Windows NT I/O System Specification 47

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

No specific access to the file is required to obtain this information about the file; that is, this
information is available as long as the file is open.

FilePositionInformation - Data type is FILE_POSITION_INFORMATION.

typedef struct _FILE_POSITION_INFORMATION {
LARGE_INTEGER CurrentByteOffset;

} FILE_POSITION_INFORMATION;

Field Description
CurrentByteOffset Current byte offset within the file

In order for the information to be valid, the file must have been opened or created specifying
synchronous I/O.

FILE_READ_DATA or FILE_WRITE_DATA access to the file is required to obtain this
information about the file.

FileModeInformation - Data type is FILE_MODE_INFORMATION.

typedef struct _FILE_MODE_INFORMATION {
ULONG Mode;

} FILE_MODE_INFORMATION;

Field Description
Mode Current open mode of file handle to the file

The mode flags that may be returned are as follows:

FILE_WRITE_THROUGH
FILE_SEQUENTIAL_ONLY
FILE_NO_INTERMEDIATE_BUFFERING
FILE_SYNCHRONOUS_IO_ALERT
FILE_SYNCHRONOUS_IO_NONALERT
FILE_DELETE_ON_CLOSE

Note that only one of the synchronous I/O flags will be returned.

No specific access to the file is required to obtain this information about the file; that is, this
information is available as long as the file is open.

FileAlignmentInformation - Data type is FILE_ALIGNMENT_INFORMATION.

typedef struct _FILE_ALIGNMENT_INFORMATION {
ULONG AlignmentRequirement;

} FILE_ALIGNMENT_INFORMATION;

Field Description
AlignmentRequirement Buffer alignment required by device

The value of this field is one of the following:

Windows NT I/O System Specification 48

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_BYTE_ALIGNMENT
FILE_WORD_ALIGNMENT
FILE_LONG_ALIGNMENT
FILE_QUAD_ALIGNMENT
FILE_OCTA_ALIGNMENT
FILE_32_BYTE_ALIGNMENT
FILE_64_BYTE_ALIGNMENT
FILE_128_BYTE_ALIGNMENT
FILE_256_BYTE_ALIGNMENT
FILE_512_BYTE_ALIGNMENT

No specific access to the file is required to obtain this information about the file; that is, this
information is available as long as the file is open.

FileAllInformation - Data type is FILE_ALL_INFORMATION.

typedef struct _FILE_ALL_INFORMATION {
FILE_BASIC_INFORMATION BasicInformation;
FILE_STANDARD_INFORMATION StandardInformation;
FILE_INTERNAL_INFORMATION InternalInformation;
FILE_EA_INFORMATION EaInformation;
FILE_ACCESS_INFORMATION AccessInformation;
FILE_POSITION_INFORMATION PositionInformation;
FILE_MODE_INFORMATION ModeInformation;
FILE_ALIGNMENT_INFORMATION AlignmentInformation;
FILE_NAME_INFORMATION NameInformation;

} FILE_ALL_INFORMATION;

Field Description
BasicInformation Basic information
StandardInformation Standard information
InternalInformation Internal information
EaInformation Extended attributes size information
AccessInformation Access information
PositionInformation Current position information
ModeInformation Mode information
AlignmentInformation Alignment requirement information
NameInformation File name information

Notice that the position information will be valid only if the file was opened or created using
one of the synchronous I/O options.

FILE_READ_ATTRIBUTES access to the file is required to obtain this information. If the
file was opened for synchronous I/O, then the position information will only be valid if the
accessor has either FILE_READ_DATA or FILE_WRITE_DATA access to the file.

FileAlternateNameInformation - Data type is FILE_NAME_INFORMATION.

typedef struct _FILE_NAME_INFORMATION {
ULONG FileNameLength;

Windows NT I/O System Specification 49

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

WCHAR FileName[];
} FILE_NAME_INFORMATION;

Field Description
FileNameLength Length of the file name in bytes
FileName Name of the file

No specific access to the file is required to obtain this information about the file; that is, this
information is available as long as the file is open. Note that some files do not have alternate
names.

FileStreamInformation - Data type is FILE_STREAM_INFORMATION.

typedef struct _FILE_STREAM_INFORMATION {
ULONG NextEntryOffset;
ULONG StreamNameLength;
LARGE_INTEGER StreamSize;
LARGE_INTEGER StreamAllocationSize;
WCHAR StreamName;

} FILE_STREAM_INFORMATION;

Field Description
NextEntryOffset Offset to the next entry in bytes
StreamNameLength Length of the name of the stream in bytes
StreamSize Size of the stream
StreamAllocationSize Allocation size of the stream
StreamName Name of the stream

No specific access to the file is required to obtain this information about the file; that is, this
information is obtainable as long as the file is open.

FileCompressionInformation - Data type is FILE_COMPRESSION_INFORMATION.

typedef struct _FILE_COMPRESSION_INFORMATION {
LARGE_INTEGER CompressedFileSize;
USHORT CompressionFormat;

} FILE_COMPRESSION_INFORMATION;

Field Description
CompressedFileSize Size of the compressed file in bytes
CompressionFormat Compression algorithm code

No specific access to the file is required to obtain this information about the file; that is, this
information is available as long as the file is open. Note that if the file is not compressed, then
the CompressionFormat field is set to zero.

FileOleInformation - Data type is FILE_OLE_INFORMATION.

typedef struct _FILE_OLE_INFORMATION {
FILE_OLE_CLASSID_INFORMATION OleClassIdInformation;
FILE_OBJECTID_INFORMATION ObjectIdInformation;

Windows NT I/O System Specification 50

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_STORAGE_TYPE StorageType;
ULONG OleStateBits;
BOOLEAN ApplicationIsExplorable;
BOOLEAN ApplicationHasExplorableChildren;
BOOLEAN ContentIndexDisable;
BOOLEAN InheritContentIndexDisable;

} FILE_OLE_INFORMATION;

Field Description
OleClassIdInformation OLE class ID for the file
ObjectIdInformation Object ID for the file
OleStateBits OLE state bits for file
ApplicationIsExplorable Application-defined notion of explorability
ApplicationHasExplorableChildren Application-defined notion of children’s explorability
ContentIndexDisable Enable/disable content indexing
InheritContentIndexDisable Enable/disable content indexing of children

The possible values for the storage type field are defined by the FILE_STORAGE_TYPE
enumerated type:

typedef enum _FILE_STORAGE_TYPE {

StorageTypeDirectory,
StorageTypeFile,
StorageTypeDocfile,
StorageTypeJunctionPoint,
StorageTypeCatalog,
StorageTypeStructuredStorage,
StorageTypeEmbedding,
StorageTypeStream

} FILE_STORAGE_TYPE;

FILE_READ_ATTRIBUTES access to the file is required to obtain this information.

FileOleAllInformation - Data type is FILE_OLE_ALL_INFORMATION.

typedef struct _FILE_OLE_ALL_INFORMATION {
FILE_BASIC_INFORMATION BasicInformation;
FILE_STANDARD_INFORMATION StandardInformation;
FILE_INTERNAL_INFORMATION InternalInformation;
FILE_EA_INFORMATION EaInformation;
FILE_ACCESS_INFORMATION AccessInformation;
FILE_POSITION_INFORMATION PositionInformation;
FILE_MODE_INFORMATION ModeInformation;
FILE_ALIGNMENT_INFORMATION AlignmentInformation;
USN Usn;
FILE_OLE_CLASSID_INFORMATION OleClassIdInformation;
FILE_OBJECTID_INFORMATION ObjectIdInformation;
FILE_STORAGE_TYPE StorageType;
ULONG OleStateBits;
ULONG OleId;
ULONG NumberOfStreamReferences;

Windows NT I/O System Specification 51

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ULONG StreamIndex;
BOOLEAN IsExplorable;
BOOLEAN HasExplorableChildren;
BOOLEAN ApplicationExplorable;
BOOLEAN ApplicationHasExplorableChildren;
BOOLEAN ContentIndexDisable;
BOOLEAN InheritContentIndexDisable;
FILE_NAME_INFORMATION NameInformation;

} FILE_OLE_ALL_INFORMATION;

Field Description
BasicInformation Basic information
StandardInformation Standard information
InternalInformation Internal information
EaInformation Extended attributes size information
AccessInformation Access information
PositionInformation Current position information
ModeInformation Mode information
AlignmentInformation Alignment requirement information
Usn Update sequence number
OleClassIdInformation OLE Class ID for the file
ObjectIdInformation Object ID for the file
StorageType Storage type of the file
OleStateBits OLE state flags
OleId OLE ID for the file
NumberOfStreamReferences Reference count for the stream
StreamIndex Volume index for this stream
IsExplorable Indicates whether the file is explorable
HasExplorableChildren Indicates whether the file has explorable children
ApplicationExplorable Application version of explorable
ApplicationHasExplorableChildren Application version of explorable children
ContentIndexDisable Indicates whether content indexing is disabled
InheritContextIndexDisable Indicates whether CI disable state is inherited
NameInformation File name information

The possible values for the storage type field are defined by the FILE_STORAGE_TYPE
enumerated type:

typedef enum _FILE_STORAGE_TYPE {

StorageTypeDirectory,
StorageTypeFile,
StorageTypeDocfile,
StorageTypeJunctionPoint,
StorageTypeCatalog,
StorageTypeStructuredStorage,
StorageTypeEmbedding,
StorageTypeStream

} FILE_STORAGE_TYPE;

Notice that the position information will be valid only if the file was opened or created using
one of the synchronous I/O options.

Windows NT I/O System Specification 52

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_READ_ATTRIBUTES access to the file is required to obtain this information. If the
file was opened for synchronous I/O, then the position information will only be valid if the
accessor has either FILE_READ_DATA or FILE_WRITE_DATA access to the file.

Once the information about the file has been returned, the caller can determine how much information
was actually returned by examining the Information field of the IoStatusBlock variable.

3.4.2 Changing Information about a File

The information about a file may be changed using the NtSetInformationFile service:

NTSTATUS
NtSetInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PVOID FileInformation,
IN ULONG Length,
IN FILE_INFORMATION_CLASS FileInformationClass
);

Parameters:

FileHandle - A handle to an open file.

IoStatusBlock - A variable to receive the final completion status. For more information about

this parameter see the NtCreateFile system service description.

FileInformation - A pointer to a buffer that contains the information about the file to be

changed. The contents of this buffer are defined by the FileInformationClass parameter
described below.

Length - The length of the FileInformation buffer in bytes.

FileInformationClass - Specifies the type of information that is contained in the

FileInformation buffer. The type of information in the buffer is defined by the
following type codes.

FileInformationClass Values

FileBasicInformation - Changes the basic information about the specified file.

FILE_WRITE_ATTRIBUTES access to the file is required to perform this
operation.

FileRenameInformation - Specifies that the name of the file should be changed to a new

name. The caller must be able to remove the directory entry for the file in the
current directory and therefore DELETE access is required to the file. The
caller must also be able to write to the new parent directory. See the notes
below for further information.

Windows NT I/O System Specification 53

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FileLinkInformation - Specifies that a new link be added for the file. The caller must be
able to write to the new directory file. See the notes below for further
information.

FileDispositionInformation - Specifies that the file should be marked for delete. Once

all of the handles to the file have been closed, if the link count for the file is
zero, then the file is deleted. Even if the link count is nonzero, at least the
directory entry will be deleted. DELETE access to the file is required to
perform this operation. Also see the NtDeleteFile service description.

FilePositionInformation - Specifies a new byte offset as the current position in the file.

FILE_READ_DATA or FILE_WRITE_DATA access to the file is required to
perform this operation. The file must also have been opened or created using
one of the synchronous I/O options.

FileModeInformation - Specifies that a new mode for the specified handle be set. See

the notes below for further information.

FileAllocationInformation - Truncates or extends the allocated size of the file.

FILE_WRITE_DATA access to the file is required to perform this operation.
Note that truncating the allocation size of the file may affect the end of file mark
for the file as well.

FileEndOfFileInformation - Truncates or extends the amount of valid data in the file by

moving the current end of file. FILE_WRITE_DATA access to the file is
required to perform this operation.

FileCopyOnWrite - Links two streams together until such time as one is written. No

specific access right is required to set this information on the file; that is, it is
possible to change this information about the file as long as the caller has a valid
handle.

FileCompletionInformation - Associates an I/O completion object with the specified file

object. This allows synchronization of I/O request completions through the use
of an I/O completion object.

FileMoveClusterInformation - Moves data from one file to the end of another file.

FILE_WRITE_DATA access to the file is required to peform this operation

FileOleClassIdInformation - Sets the OLE class ID for the file.

FILE_WRITE_ATTRIBUTES access to the file is required to perform this
operation.

FileOleStateBitsInformation - Sets the OLE state bits for the file.

FILE_WRITE_ATTRIBUTES access to the file is required to perform this
operation.

FileApplicationExplorableInformation - Changes the application view of whether or not

the object is explorable. FILE_WRITE_ATTRIBUTES access to the file is
required to perform this operation.

Windows NT I/O System Specification 54

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FileApplicationExplorableChildrenInformation - Changes the application view of
whether or not the object has explorable children.
FILE_WRITE_ATTRIBUTES access to the file is required to perform this
operation.

FileObjectIdInformation - Changes the object ID for the file.

FILE_WRITE_ATTRIBUTES access to the file is required to perform this
operation.

FileContextIndexInformation - Changes whether or not the file is to be content indexed.

FILE_WRITE_ATTRIBUTES access to the file is required to perform this
operation.

FileInheritContentIndexInformation - Changes whether or not the children of this file

are to be content indexed. FILE_WRITE_ATTRIBUTES access to the file is
required to perform this operation.

FileOleInformation - Change the OLE information about the file.

FILE_WRITE_ATTRIBUTES access to the file is required to perform this
operation.

The NtSetInformationFile service changes information about a file. The information in the buffer is
defined by the following type and structure. Note that the fields that are not supported for a given
device or file system are ignored. For example, the FAT file system does not support a creation time,
so this field is ignored on an NtSetInformationFile service call.

FileInformation Format by File Information Class

FileBasicInformation - Data type is FILE_BASIC_INFORMATION.

typedef struct _FILE_BASIC_INFORMATION {
LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
ULONG FileAttributes;

} FILE_BASIC_INFORMATION;

Field Description
CreationTime Date/time that the file was created
LastAccessTime Date/time that the file was last accessed
LastWriteTime Date/time that the file was last written
ChangeTime Date/time that the file was last changed
FileAttributes Attributes of the file

All dates and times are specified in the standard Windows NT system time format.

The file attributes field can be a combination of the following values:

FILE_ATTRIBUTE_NORMAL

Windows NT I/O System Specification 55

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

Note that the FILE_ATTRIBUTE_NORMAL attribute is overridden by all other file
attributes flags.

If a field is set to zero, NtSetInformationFile does not change the information about the file
for that field.

FILE_WRITE_ATTRIBUTES access to the file is required to perform this operation.

FileRenameInformation - Data type is FILE_RENAME_INFORMATION.

typedef struct _FILE_RENAME_INFORMATION {
BOOLEAN ReplaceIfExists;
HANDLE RootDirectory;
ULONG FileNameLength;
WCHAR FileName[];

} FILE_RENAME_INFORMATION;

Field Description
ReplaceIfExists Replace target file if it exists; else fail
RootDirectory Root directory of target file name
FileNameLength Length of the file name in bytes
FileName Name of the file

This operation requires DELETE access to the current file so that the directory entry may be
removed from the current parent directory. The caller must also have the appropriate access to
create the new entry in the new parent directory file.

The file name may be specified in one of three different ways. No wildcards may ever be
specified.

o - A simple file name. For this case, the file is simply renamed within the same
directory. That is, the name of the file changes but not its location.

o - A fully qualified file name. In this case, the file changes not only its name but its
location as well.

o - A relative file name. In this case, the RootDirectory field contains a handle to the
target directory for the rename operation. The file name itself must be a simple file
name.

FileDispositionInformation - Data type is FILE_DISPOSITION_INFORMATION.

typedef struct _FILE_DISPOSITION_INFORMATION {

Windows NT I/O System Specification 56

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

BOOLEAN DeleteFile;
} FILE_DISPOSITION_INFORMATION;

Field Description
DeleteFile Delete the file on close

DELETE access to the file is required to perform this operation.

It should be noted that if the file is deleted, the only legal subsequent operation on the file
through the open file handle is to close the file using the NtClose system service.

Also see the NtDeleteFile service description.

FileLinkInformation - Data type is FILE_NAME_INFORMATION.

typedef struct _FILE_NAME_INFORMATION {
ULONG FileNameLength;
WCHAR FileName[];

} FILE_NAME_INFORMATION;

Field Description
FileNameLength Length of the file name in bytes
FileName Name of the file

No specific access to the file is required to add a link to the file, the file must simply be open.
However, the caller must be able to create the new link in the specified target directory.

The file name must be a fully qualified file specification.

FilePositionInformation - Data type is FILE_POSITION_INFORMATION.

typedef struct _FILE_POSITION_INFORMATION {
LARGE_INTEGER CurrentByteOffset;

} FILE_POSITION_INFORMATION;

Field Description
CurrentByteOffset Current byte offset within the file

If the file was opened or created with no intermediate buffering, then the new value of the byte
offset must be an integral number of 512 bytes.

FILE_READ_DATA or FILE_WRITE_DATA access to the file is required to change this
information about the file, and the file must be opened for synchronous I/O.

FileModeInformation - Data type is FILE_MODE_INFORMATION.

typedef struct _FILE_MODE_INFORMATION {
ULONG Mode;

} FILE_MODE_INFORMATION;

Field Description

Windows NT I/O System Specification 57

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Mode Current open mode of file handle to the file

The mode flags that may be changed are as follows:

FILE_WRITE_THROUGH
FILE_SEQUENTIAL_ONLY
FILE_SYNCHRONOUS_IO_ALERT
FILE_SYNCHRONOUS_IO_NONALERT

Note that it is only possible to switch between the two different types of synchronous I/O. It is
not possible to either switch to or from synchronous I/O, nor is it possible to specify both types.

If the file has been opened with intermediate buffering disabled, the
FILE_WRITE_THROUGH flag cannot be turned off. That is, it is forced on by the I/O
system. This flag is ignored on a set operation in this case.

Users should be aware that changing this information about the file also changes the access
mode for all handles referring to the same file object. That is, all handles referring to the object
that are duplicated or inherited are also affected by this access change.

No specific access to the file is required to change this information about the file; that is, this
information is available as long as the file is open.

FileAllocationInformation - Data type is FILE_ALLOCATION_INFORMATION.

typedef struct _FILE_ALLOCATION_INFORMATION {
LARGE_INTEGER AllocationSize;

} FILE_ALLOCATION_INFORMATION;

Field Description
AllocationSize The absolute allocation size of the file in bytes

FILE_WRITE_DATA access to the file is required to perform this operation. Setting the
allocation size of the file to some number of bytes less than the current end of file mark causes
the current end of file mark to be moved to the end of the allocated size of the file.

FileEndOfFileInformation - Data type is FILE_END_OF_FILE_INFORMATION.

typedef struct _FILE_END_OF_FILE_INFORMATION {
LARGE_INTEGER EndOfFile;

} FILE_END_OF_FILE_INFORMATION;

Field Description
EndOfFile The absolute new end of file position

Extending the file beyond the current end of file causes pad bytes of zeroes to be written to the
new intermediate bytes.

FILE_WRITE_DATA access to the file is required to perform this operation.

FileCopyOnWrite - Data type is FILE_COPY_ON_WRITE_INFORMATION.

Windows NT I/O System Specification 58

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef struct _FILE_COPY_ON_WRITE_INFORMATION {

BOOLEAN ReplaceIfExists;
HANDLE RootDirectory;
ULONG FileNameLength;
WCHAR FileName[];

} FILE_COPY_ON_WRITE_INFORMATION;

Field Description
ReplaceIfExists Replace the target if it exists, else fail
RootDirectory Root directory of target file name
FileNameLength Length of the file name in bytes
FileName Name of the file

No specific access to the file is required to change this information about the file; that is, it is
possible to change this information about the file as long as the caller has a valid handle to the
file.

FileCompletionInformation - Data type is FILE_COMPLETION_INFORMATION.

typedef struct _FILE_COMPLETION_INFORMATION {
HANDLE Port;
ULONG Key;

} FILE_COMPLETION_INFORMATION;

Field Description
Port Handle to the I/O completion object to associate with the file
Key Caller-defined value to be associated with this completion object

No specific access to the file is required to change this information about the file; that is, it is
possible to change this information about the file as long as the caller has a valid handle to the
file.

FileMoveClusterInformation - Data type is FILE_MOVE_CLUSTER_INFORMATION.

typedef struct _FILE_MOVE_CLUSTER_INFORMATION {
ULONG ClusterCount;
HANDLE RootDirectory;
ULONG FileNameLength;
WCHAR FileName[];

} FILE_MOVE_CLUSTER_INFORMATION;

Field Description
ClusterCount Count of clusters to be moved
RootDirectory Root directory of target file name
FileNameLength Length of the file name in bytes
FileName File name of the target

FILE_WRITE_DATA access to the file is required to perform this operation. Setting the
move cluster information on a file causes moves ClusterCount clusters to the end of the
specified target file.

Windows NT I/O System Specification 59

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FileOleClassIdInformation - Data type is FILE_OLE_CLASS_ID_INFORMATION.

typedef struct _FILE_OLE_CLASS_ID_INFORMATION {
GUID ClassId;

} FILE_OLE_CLASS_ID_INFORMATION;

Field Description
ClassId ID of the code that understands this file’s format

FILE_WRITE_ATTRIBUTES access to the file is required to perform this operation.
Setting the OLE class ID on a file changes the association of application to the file.

FileOleStateBitsInformation - Data type is FILE_OLE_STATE_BITS_INFORMATION.

typedef struct _FILE_OLE_STATE_BITS_INFORMATION {
ULONG StateBits;
ULONG StateBitsMask;

} FILE_OLE_STATE_BITS_INFORMATION;

Field Description
StateBits OLE state bit information
StateBitsMask Mask to be applied to state bits

FILE_WRITE_ATTRIBUTES access to the file is required to perform this operation.
Setting the OLE state bits on a file changes the value of the file’s state bits. The state bits are
treated as opaque data to the file system with the exception of the
FILE_ENABLE_DOCFILE_FORMAT bit which causes a document file to be treated as a single
stream rather than as separately addressible streams.

FileApplicationExplorableInformation - Data type is BOOLEAN.

FILE_WRITE_ATTRIBUTES access to the file is required to perform this operation.
Setting the BOOLEAN flag indicates that the application believes that the object represented
by the file handle is explorable.

FileApplicationExplorableChildrenInformation - Data type is BOOLEAN.

FILE_WRITE_ATTRIBUTES access to the file is required to perform this operation.
Setting the BOOLEAN flag indicates that the application believes that the object represented
by the file handle has explorable children.

FileObjectIdInformation - Data type is FILE_OBJECT_ID_INFORMATION.

typedef struct _FILE_OBJECT_ID_INFORMATION {
OBJECTID ObjectId;

} FILE_OBJECT_ID_INFORMATION;

Field Description
ObjectId Object ID for the file

Windows NT I/O System Specification 60

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_WRITE_ATTRIBUTES access to the file is required to perform this operation.
Setting the Object ID for a file changes the unique ID for the file on the volume.

FileContextIndexInformation - Data type is BOOLEAN.

FILE_WRITE_ATTRIBUTES access to the file is required to perform this operation.
Setting the BOOLEAN flag disables content indexing for the file.

FileInheritContentIndexInformation - Data type is BOOLEAN.

FILE_WRITE_ATTRIBUTES access to the file is required to perform this operation.
Setting the BOOLEAN flag disables content indexing for the children of the file.

FileOleInformation - Data type is FILE_OLE_INFORMATION.

typedef struct _FILE_OLE_INFORMATION {
FILE_OLE_CLASSID_INFORMATION OleClassIdInformation;
FILE_OBJECTID_INFORMATION ObjectIdInformation;
FILE_STORAGE_TYPE StorageType;
ULONG OleStateBits;
BOOLEAN ApplicationIsExplorable;
BOOLEAN ApplicationHasExplorableChildren;
BOOLEAN ContentIndexDisable;
BOOLEAN InheritContentIndexDisable;

} FILE_OLE_INFORMATION;

Field Description
OleClassIdInformation OLE class ID for the file
ObjectIdInformation Object ID for the file
OleStateBits OLE state bits for file
ApplicationIsExplorable Application-defined notion of explorability
ApplicationHasExplorableChildren Application-defined notion of children’s explorability
ContentIndexDisable Enable/disable content indexing
InheritContentIndexDisable Enable/disable content indexing of children

The possible values for the storage type field are defined by the FILE_STORAGE_TYPE
enumerated type:

typedef enum _FILE_STORAGE_TYPE {

StorageTypeDirectory,
StorageTypeFile,
StorageTypeDocfile,
StorageTypeJunctionPoint,
StorageTypeCatalog,
StorageTypeStructuredStorage,
StorageTypeEmbedding,
StorageTypeStream

} FILE_STORAGE_TYPE;

FILE_WRITE_ATTRIBUTES access to the file is required to perform this operation.

Windows NT I/O System Specification 61

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.4.3 Obtaining Extended Attributes for a File

The extended attributes for a file may be obtained using the NtQueryEaFile service:

NTSTATUS
NtQueryEaFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID Buffer,
IN ULONG Length,
IN BOOLEAN ReturnSingleEntry,
IN PVOID EaList OPTIONAL,
IN ULONG EaListLength,
IN PULONG EaIndex OPTIONAL,
IN BOOLEAN RestartScan
);

Parameters:

FileHandle - A handle to an open file.

IoStatusBlock - A variable to receive the final completion status and information about the

operation. The length, in bytes, that were written to the Buffer is returned in the
Information field of this variable. For more information about this parameter see the
NtCreateFile system service description.

Buffer - A pointer to a buffer to receive extended attributes for the file.

Length - The length of the specified buffer in bytes.

ReturnSingleEntry - A BOOLEAN value that, if TRUE, indicates that only a single entry

should be returned.

EaList - An optional list of extended attributes whose name/value pair is returned in the Buffer.

If this parameter is supplied, only those EAs matching the names of the EAs in the list
are returned.

EaListLength - Supplies the length of the EaList, if one was specified. If no EaList was

specified, this parameter should be zero.

EaIndex - An optional index to an EA whose name/value pair is to be returned. The buffer is

filled beginning with the EA associated with the index value.

RestartScan - A BOOLEAN value that indicates, if TRUE, that the scan should be restarted

from the beginning. This causes the query operation to restart the scan from the
beginning of the extended attributes list.

The NtQueryEaFile function obtains extended attributes for the file represented by the file handle.
Only complete extended attribute name/value pairs are returned. No partial attribute, such as only the
name, is ever written into the buffer. The actual number of EAs returned is the smallest of the
following:

Windows NT I/O System Specification 62

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

o - One entry, if the ReturnSingleEntry parameter is TRUE.

o - The number of EAs that fit into the specified buffer.

o - The number of EAs that exist, or the number of EAs that match the list of EAs supplied by
the optional EaList parameter.

NtQueryEaFile may be invoked multiple times to fill the buffer with EAs from the file. It is possible
that the EAs for the file were modified between calls to get more EAs. Due to the sharing semantics
defined by OS/2, with which this API is compatible, it is not possible to guarantee that the EAs were
not modified.

If the optional EaList parameter is specified, then only the information for those EAs specified in the
list is returned. Further, if this parameter is specified, then the EaIndex parameter is ignored.

The EaIndex parameter may optionally be specified to return EAs on the file beginning with an EA
other than the first EA in the list.

If multiple EAs are returned, then the structure for each EA in the buffer will be aligned on a longword
boundary. Each EA in the list begins with a NextEntryOffset field that specifies the number of bytes
from the base of the current entry to the start of the next entry. If there are no more entries following
the current entry, then the value of this field is zero.

The information that is returned in the Buffer is defined by the following structure:

typedef struct _FILE_FULL_EA_INFORMATION {

ULONG NextEntryOffset;
UCHAR Flags;
UCHAR EaNameLength;
USHORT EaValueLength;
CHAR EaName[];

} FILE_FULL_EA_INFORMATION;

Field Description
NextEntryOffset Offset, in bytes, to the next entry in the list
Flags Flags to be associated with the EA
EaNameLength Length of the EA's name field
EaValueLength Length of the EA's value field
EaName The name of the EA

The flags currently defined for EAs are:

FILE_NEED_EA

The value field begins after the end of the EaName field of the structure, including a single null
character. The null character is not included in the EaNameLength field.

The value of the EA can be located then, by adding the length of the EA name to the address of the
EaName field, and adding one.

Windows NT I/O System Specification 63

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The type of the EaList parameter is defined by the following structure:

typedef struct _FILE_GET_EA_INFORMATION {

ULONG NextEntryOffset;
UCHAR EaNameLength;
CHAR EaName[];

} FILE_GET_EA_INFORMATION;

Field Description
NextEntryOffset Offset, in bytes, to the next entry in the list
EaNameLength Length of the EA's name field
EaName The name of the EA to be retrieved

The NextEntryOffset field, like its FILE_FULL_EA_INFORMATION counterpart, is the offset in bytes
from the current entry in the list to the start of the next entry, if there is one. If there are no more
entries in the list, then the value of this field is zero.

The EaList parameter defines the list of the EAs whose information is to be returned. This selects a
proper subset of the EAs and only those EAs are returned.

FILE_READ_EA access to the file is required in order to obtain information about the extended
attributes associated with the file.

If an error, such as an invalid character is found in an EA name field, is encountered, then the
Information field in the I/O status block contains the byte offset from the base of the Buffer to the
offending EA entry that caused the failure.

Once extended attributes for the file have been written to the Buffer, the Information field of the
IoStatusBlock variable can be examined to determine how many bytes of extended attributes
information were actually returned.

3.4.4 Changing Extended Attributes for a File

The extended attributes associated with a file may be changed using the NtSetEaFile service:

NTSTATUS
NtSetEaFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PVOID Buffer,
IN ULONG Length
);

Parameters:

FileHandle - A handle to an open file.

IoStatusBlock - A variable to receive the final completion status. For more information about

this parameter see the NtCreateFile system service description.

Buffer - A pointer to a buffer that contains the extended attributes to be applied to the file.

Windows NT I/O System Specification 64

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Length - The length of the specified buffer in bytes.

The NtSetEaFile service changes the extended attributes on the file using the EAs specified by the
Buffer parameter.

The information specified by the Buffer parameter is defined by the following structure.

typedef struct _FILE_FULL_EA_INFORMATION {

ULONG NextEntryOffset;
UCHAR Flags;
UCHAR EaNameLength;
USHORT EaValueLength;
CHAR EaName[];

} FILE_FULL_EA_INFORMATION;

Field Description
NextEntryOffset Offset, in bytes, to the next entry in the list
Flags Flags to be associated with the EA
EaNameLength Length of the EA's name field
EaValueLength Length of the EA's value field
EaName The name of the EA

The flags currently defined for EAs are:

FILE_NEED_EA

The value field begins after the end of the EaName field of the structure, including a single null
character. The null character is not included in the EaNameLength field.

If multiple EAs are contained in the buffer, then the structure for each entry is longword aligned. The
NextEntryOffset field contains the byte offset to the start of the next entry in the buffer. If there are no
more entries past the current entry, then this field is zero.

EAs are applied to the file such that if the EA does not exist, then it is added. If the EA does exist, it is
replaced. An entry whose EaValueLength field is zero indicates that the EA whose name matches the
entry is to be deleted from the list of EAs on the file.

If an error occurs changing the EAs on the file, then the Information field in the I/O status block
contains the byte offset from the base of the Buffer to the offending EA entry that caused the failure.

FILE_WRITE_EA access to the file is required in order to change the extended attributes associated
with the file.

3.4.5 Locking Byte Ranges in Files

A byte range within a file may be locked using the NtLockFile service:

NTSTATUS
NtLockFile(

IN HANDLE FileHandle,

Windows NT I/O System Specification 65

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PLARGE_INTEGER ByteOffset,
IN PLARGE_INTEGERLength,
IN ULONG Key,
IN BOOLEAN FailImmediately,
IN BOOLEAN ExclusiveLock
);

Parameters:

FileHandle - A handle to an open file.

Event - An optional handle to an event to be set to the Signaled state when the operation

completes.

ApcRoutine - An optional procedure to be invoked once the operation completes. For more

information about this parameter see the NtReadFile system service description

ApcContext - A pointer to pass as an argument to the ApcRoutine, if one was specified, when

the operation completes. This argument is required if an ApcRoutine was specified.

IoStatusBlock - A variable to receive the final completion status. For more information about

this parameter see the NtCreateFile system service description.

ByteOffset - Specifies the starting byte offset of the file where the lock should begin.

Length - The length of the byte range to lock, in bytes.

Key - A value to be associated with the lock range for further identification.

FailImmediately - A BOOLEAN value that indicates whether the service will return

immediately if the lock cannot be obtained (TRUE), or whether the service will wait
indefinitely until the lock is acquired (FALSE).

ExclusiveLock - A BOOLEAN value that indicates the type of lock that is applied to the byte

range. If the value is TRUE, then the lock is exclusive; otherwise, the lock is shared.

The NtLockFile service is used to lock the specified byte range for the file. The range locked is for
the specified file, and is controlled by the following:

o - the ByteOffset of the file

o - the Length of the byte range

o - the Key value associated with the byte range

o - the invoking process

Windows NT I/O System Specification 66

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Locks are not inherited by child processes when they are created. They are owned by the process that
acquired the lock. Locks may be manipulated and "owned" by separate threads within a process as
thread-specific locks by specifying non-zero values for the Key parameter in each thread.

There are two types of locks on files, shared and exclusive. A shared lock allows read-only access by
any process attempting to read the locked range, including the owning process. Shared locks may also
overlap. Exclusive locks allow read/write access by only the owning process and by access to any
other process. Exclusive locks may not overlap either shared locks or other exclusive locks.

Locks owned by a given process are unlocked once all of the handles to the specified file have been
closed by that process. The locks are not released in any particular order.

It is not an error to specify a range that either spans or even begins after the end of the file. These
types of locks can be used to synchronize access to the end of the file or for appending data to the file.

FILE_READ_DATA or FILE_WRITE_DATA access is required to the file to request a lock.

3.4.6 Unlocking Byte Ranges in Files

A byte range within a file may be unlocked using the NtUnlockFile service:

NTSTATUS
NtUnlockFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PLARGE_INTEGER ByteOffset,
IN PLARGE_INTEGER Length,
IN ULONG Key
);

Parameters:

FileHandle - A handle to an open file.

IoStatusBlock - A variable to receive the final completion status. For more information about

this parameter see the NtCreateFile system service description.

ByteOffset - The byte offset of the file whose corresponding lock is released. This value must

exactly match the byte offset of the lock.

Length - The length of the locked byte range that is released. This value must exactly match

the length of the lock.

Key - The value associated with the lock range for further identification. This value must

exactly match the key of the lock.

The NtUnlockFile service is used to unlock the specified byte range for the file. The lock parameters
must exactly match those of the acquired lock. If the parameters exactly match those of the locked
range, then the lock is released.

Only the process that owns the lock may unlock the byte range.

Windows NT I/O System Specification 67

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.5 File System Services

This section presents those services that obtain information about file systems and control them.

The APIs that perform these functions are as follows:

NtQueryVolumeInformationFile - Obtain information about a file system volume.
NtSetVolumeInformationFile - Change information about a file system volume.
NtQueryQuotaInformationFile Obtain quota information about a file system volume.
NtSetQuotaInformationFile - Change quota information about a file system volume.
NtFsControlFile - General file system control interface.

3.5.1 Obtaining Information about a File System Volume

Information about a file system volume may be obtained using the NtQueryVolumeInformationFile
service:

NTSTATUS
NtQueryVolumeInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID FsInformation,
IN ULONG Length,
IN FS_INFORMATION_CLASS FsInformationClass
);

Parameters:

FileHandle - A handle to an open file, device, directory, or volume for which volume

information is returned.

IoStatusBlock - A variable to receive the final completion status and information about the

operation. The length, in bytes, of the data written to the FsInformation buffer is
returned in the Information field of this variable. For more information about this
parameter see the NtCreateFile system service description.

FsInformation - A pointer to a buffer to receive information about the specified volume. The

contents of this buffer are defined by the FsInformationClass parameter described
below.

Length - The length of the FsInformation buffer in bytes.

FsInformationClass - Specifies the type of information that should be returned about the

volume. The information in the FsInformation buffer is defined by the following type
codes.

FsInformationClass Values

Windows NT I/O System Specification 68

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FileFsVolumeInformation - Returns information about the volume that is currently
"mounted" on the specified device. No specific access to the volume is required
to obtain this information.

FileFsSizeInformation - Returns information about the size and the free space on the

volume. No specific access to the volume is required to obtain this information.

FileFsDeviceInformation - Returns information about the device upon which the

volume is actually mounted, or the device to which the handle directly refers.
No specific access to the volume is required to obtain this information.

FileFsAttributeInformation - Returns attribute information about the file system

responsible for the volume. No specific access to the volume is required to
obtain this information.

FileFsControlInformation - Returns file system control information about the volume.

No specific access to the volume is require to obtain this information.

The NtQueryVolumeInformationFile service returns information about the volume specified by the
FileHandle parameter. The information returned in the buffer is defined by the following type codes
and structures.

FsInformation Format by Fs Information Class

FileFsVolumeInformation - Data type is FILE_FS_VOLUME_INFORMATION.

typedef struct _FILE_FS_VOLUME_INFORMATION {
LARGE_INTEGER VolumeCreationTime;
ULONG VolumeSerialNumber;
ULONG VolumeLabelLength;
BOOLEAN SupportsObjects;
WCHAR VolumeLabel[];

} FILE_FS_VOLUME_INFORMATION;

Field Description
VolumeCreationTime Date/time the volume was created
VolumeSerialNumber Serial number of the volume
VolumeLabelLength Length of the name of the volume
SupportsObjects File system supports object-oriented file system objects
VolumeLabel Name of the volume

No specific access to the volume is required to obtain this information about the volume; that
is, this information is available as long as the volume is accessed through an open handle to the
volume or device itself, or to a file or directory on the volume.

FileFsSizeInformation - Data type is FILE_FS_SIZE_INFORMATION.

typedef struct _FILE_FS_SIZE_INFORMATION {
LARGE_INTEGER TotalAllocationUnits;
LARGE_INTEGER AvailableAllocationUnits;
ULONG SectorsPerAllocationUnit;

Windows NT I/O System Specification 69

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ULONG BytesPerSector;
} FILE_FS_SIZE_INFORMATION;

Field Description
TotalAllocationUnits Total allocation units on volume
AvailableAllocationUnits Free allocation units on volume
SectorsPerAllocationUnit Number of sectors in each allocation unit
BytesPerSector Number of bytes in each sector

No specific access to the volume is required to obtain this information about the volume; that
is, this information is available as long as the volume is accessed through an open handle to the
volume or device itself, or to a file or directory on the volume.

FileFsDeviceInformation - Data type is FILE_FS_DEVICE_INFORMATION.

typedef struct _FILE_FS_DEVICE_INFORMATION {
DEVICE_TYPE DeviceType;
ULONG Characteristics;

} FILE_FS_DEVICE_INFORMATION;

Field Description
DeviceType Type of the target device
Characteristics Characteristcs of the target device

Device types have the following valid values:

FILE_DEVICE_BATTERY
FILE_DEVICE_BEEP
FILE_DEVICE_BUS_EXTENDER
FILE_DEVICE_CD_ROM
FILE_DEVICE_CD_ROM_FILE_SYSTEM
FILE_DEVICE_CONTROLLER
FILE_DEVICE_DATALINK
FILE_DEVICE_DFS
FILE_DEVICE_DISK
FILE_DEVICE_DISK_FILE_SYSTEM
FILE_DEVICE_FILE_SYSTEM
FILE_DEVICE_INPORT_PORT
FILE_DEVICE_KEYBOARD
FILE_DEVICE_MAILSLOT
FILE_DEVICE_MIDI_IN
FILE_DEVICE_MIDI_OUT
FILE_DEVICE_MOUSE
FILE_DEVICE_MULTI_UNC_PROVIDER
FILE_DEVICE_NAMED_PIPE
FILE_DEVICE_NETWORK
FILE_DEVICE_NETWORK_BROWSER
FILE_DEVICE_NETWORK_FILE_SYSTEM
FILE_DEVICE_NETWORK_REDIRECTOR
FILE_DEVICE_NULL
FILE_DEVICE_PARALLEL_PORT

Windows NT I/O System Specification 70

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_DEVICE_PHYSICAL_NETCARD
FILE_DEVICE_PRINTER
FILE_DEVICE_SCANNER
FILE_DEVICE_SCREEN
FILE_DEVICE_SERIAL_MOUSE_PORT
FILE_DEVICE_SERIAL_PORT
FILE_DEVICE_SOUND
FILE_DEVICE_STREAMS
FILE_DEVICE_TAPE
FILE_DEVICE_TAPE_FILE_SYSTEM
FILE_DEVICE_TRANSPORT
FILE_DEVICE_UNKNOWN
FILE_DEVICE_VIDEO
FILE_DEVICE_VIRTUAL_DISK
FILE_DEVICE_WAVE_IN
FILE_DEVICE_WAVE_OUT
FILE_DEVICE_8042_PORT

Device characteristics have the following valid flags:

Flag Meaning
FILE_REMOVABLE_MEDIA Device supports removable media
FILE_READ_ONLY_DEVICE Device is a read-only device
FILE_FLOPPY_DISKETTE Media in device is a floppy diskette
FILE_WRITE_ONCE_MEDIA Device supports write once media
FILE_REMOTE_DEVICE Device is a remote device
FILE_DEVICE_IS_MOUNTED Device is currently mounted
FILE_VIRTUAL_VOLUME Device volume is virtual

No specific access to the volume is required to obtain this information about the volume; that
is, this information is available as long as the volume is accessed through an open handle to the
volume or device itself, or to a file or directory on the volume.

FileFsAttributeInformation - Data type is FILE_FS_ATTRIBUTE_INFORMATION.

typedef struct _FILE_FS_ATTRIBUTE_INFORMATION {
ULONG FileSystemAttributes;
LONG MaximumComponentNameLength;
ULONG FileSystemNameLength;
WCHAR FileSystemName;

} FILE_FS_ATTRIBUTE_INFORMATION;

Field Description
FileSystemAttributes Attributes of the volume's owning file system
MaximumComponentNameLength Maximum length of each file name
component
FileSystemNameLength The length of the file system's name
FileSystemName The name of the file system

File system attributes have the following valid flags:

Windows NT I/O System Specification 71

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Flag Meaning
FILE_CASE_SENSITIVE_SEARCH Supports case sensitive searches
FILE_CASE_PRESERVED_NAMES Supports preserving name case on disk
FILE_UNICODE_ON_DISK Stores UNICODE characters on disk
FILE_PERSISTENT_ACLS Stores ACLs on disk
FILE_FILE_COMPRESSION Supports file compression
FILE_VOLUME_IS_COMPRESSED Handle refers to a compressed volume

No specific access to the volume is required to obtain this information about the volume; that
is, this information is available as long as the volume is accessed through an open handle to the
volume or device itself, or to a file or directory on the volume.

FileFsControlInformation - Data type is FILE_FS_CONTROL_INFORMATION {

typedef struct _FILE_FS_CONTROL_INFORMATION {
LARGE_INTEGER FreeSpaceStartFiltering;
LARGE_INTEGER FreeSpaceThreshold;
LARGE_INTEGER FreeSpaceStopFiltering;
LARGE_INTEGER DefaultQuotaThreshold;
LARGE_INTEGER DefaultQuotaLimit;
LARGE_INTEGER DeletionLogSizeLimit;
ULONG FileSystemControlFlags;

} FILE_FS_CONTROL_INFORMATION;

Field Description
FreeSpaceStartFiltering Amount of space required to begin content indexing
FreeSpaceThreshold Amount of space remaining to generate popup
FreeSpaceStopFiltering Amount of space remaining to stop content indexing
DefaultQuotaThreshold Default quota threshold for volume
DefaultQuotaLimit Default quota limit for volume
DeletionLogSizeLimit Size of deletion file log
FileSystemControlFlags Flags to control this volume

File system control flags consist of the following valid flag values:

Flag Meaning
FILE_VC_QUOTA_NONE No quota information maintained
FILE_VC_QUOTA_TRACK Quotas are being tracked on volume
FILE_VC_QUOTA_ENFORCE Quotas are being enforced on volume
FILE_VC_QUOTAS_INCOMPLETE Volume quotas are incomplete
FILE_VC_CONTENT_INDEX_DISABLED Content indexing disabled
FILE_VC_LOG_QUOTA_THRESHOLD Log quota threshold reached event
FILE_VC_LOG_QUOTA_LIMIT Log quota limit reached event
FILE_VC_LOG_VOLUME_THRESHOLD Log volume free space threshold event
FILE_VC_LOG_VOLUME_LIMIT Log volume free space limit event

No specific access to the volume is required to obtain this information about the volume; that
is, this information is available as long as the volume is accessed through an open handle to the
volume or device itself, or to a file or directory on the volume.

Windows NT I/O System Specification 72

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Once the information about the volume has been returned, the Information field of the IoStatusBlock
variable can be examined to determine the number of bytes of volume information actually written to
the FsInformation buffer.

3.5.2 Changing Information about a File System Volume

Information about a file system volume may be changed using the NtSetVolumeInformationFile
service:

NTSTATUS
NtSetVolumeInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PVOID FsInformation,
IN ULONG Length,
IN FS_INFORMATION_CLASS FsInformationClass
);

Parameters:

FileHandle - A handle to an open volume for which information is changed.

IoStatusBlock - A variable to receive the final completion status. For more information about

this parameter see the NtCreateFile system service description.

FsInformation - A pointer to a buffer that contains the information about the file system to be

changed. The contents of this buffer are defined by the FsInformationClass parameter
described below.

Length - The length of the FsInformation buffer in bytes.

FsInformationClass - Specifies the type of information that should be changed about the file

system. The information in the FsInformation buffer is defined by the following type
codes.

FsInformationClass Values

FileFsLabelInformation - Changes the volume label on the volume that is currently

"mounted" on the specified device. FILE_WRITE_DATA access to the device
or volume is required.

FileFsControlInformation - Changes the file system control information for the volume

that is currently “mounted” on the specified device. FILE_WRITE_DATA
access to the device or volume is required.

The NtSetVolumeInformationFile service changes information about the volume "mounted" on the
device specified by the FileHandle parameter. The information to be changed is in the FsInformation
buffer. Its contents are defined by the following type codes and structures.

FsInformation Format by Fs Information Class

Windows NT I/O System Specification 73

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FileFsLabelInformation - Data type is FILE_FS_LABEL_INFORMATION.

typedef struct _FILE_FS_LABEL_INFORMATION {
ULONG VolumeLabelLength;
WCHAR VolumeLabel[];

} FILE_FS_LABEL_INFORMATION;

Field Description
VolumeLabelLength Length of the name of the volume
VolumeLabel Name of the volume

FILE_WRITE_DATA access to the device or volume is required to change this information.

FileFsControlInformation - Data type is FILE_FS_CONTROL_INFORMATION {

typedef struct _FILE_FS_CONTROL_INFORMATION {
LARGE_INTEGER FreeSpaceStartFiltering;
LARGE_INTEGER FreeSpaceThreshold;
LARGE_INTEGER FreeSpaceStopFiltering;
LARGE_INTEGER DefaultQuotaThreshold;
LARGE_INTEGER DefaultQuotaLimit;
LARGE_INTEGER DeletionLogSizeLimit;
ULONG FileSystemControlFlags;

} FILE_FS_CONTROL_INFORMATION;

Field Description
FreeSpaceStartFiltering Amount of space required to begin content indexing
FreeSpaceThreshold Amount of space remaining to generate popup
FreeSpaceStopFiltering Amount of space remaining to stop content indexing
DefaultQuotaThreshold Default quota threshold for volume
DefaultQuotaLimit Default quota limit for volume
DeletionLogSizeLimit Size of deletion file log
FileSystemControlFlags Flags to control this volume

File system control flags consist of the following valid flag values:

Flag Meaning
FILE_VC_QUOTA_NONE No quota information maintained
FILE_VC_QUOTA_TRACK Quotas are being tracked on volume
FILE_VC_QUOTA_ENFORCE Quotas are being enforced on volume
FILE_VC_QUOTAS_INCOMPLETE Volume quotas are incomplete
FILE_VC_CONTENT_INDEX_DISABLED Content indexing disabled
FILE_VC_LOG_QUOTA_THRESHOLD Log quota threshold reached event
FILE_VC_LOG_QUOTA_LIMIT Log quota limit reached event
FILE_VC_LOG_VOLUME_THRESHOLD Log volume free space threshold event
FILE_VC_LOG_VOLUME_LIMIT Log volume free space limit event

FILE_WRITE_DATA access to the volume is required in order to change the file system
control information.

Windows NT I/O System Specification 74

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.5.3 Obtaining Quota Information about a File System Volume

Quota information about a file system volume may be obtained using the
NtQueryQuotaInformationFile service:

NTSTATUS
NtQueryQuotaInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
OUT PVOID Buffer,
IN ULONG Length,
IN BOOLEAN ReturnSingleEntry,
IN PVOID SidList OPTIONAL,
IN ULONG SidListLength,
IN PSID StartSid OPTIONAL,
IN BOOLEAN RestartScan
);

Parameters:

FileHandle - An open handle to an open file, directory, device, or volume whose quota
information is to be returned.

IoStatusBlock - A variable to receive the final completion status and information about the

operation. Service calls that return information, return the length of the data written to
the output buffer in the Information field of this variable. For more information about
this parameter see the NtCreateFile system service description.

Buffer - A pointer to a buffer to receive the requested quota information about the specified

volume.

Length - Specifies the length of the Buffer parameter in bytes.

ReturnSingleEntry - A BOOLEAN value that, if TRUE, indicates that only a single quota entry

should be returned.

SidList - An optional list of entries whose quota entries are returned in the Buffer. If this

parameter is supplied, only those quota entries matching the SIDs in the list are
returned.

SidListLength - Supplies the length of the SidList, if one was specified. If no SidList was

specified, this parameter should be zero.

StartSid - An optional SID that specifies a quota entry to be rewound to during a RestartScan

operation. The first quota entry returned is the entry following the entry specified by
the SID.

RestartScan - A BOOLEAN value that, if TRUE, indicates that the scan should be restarted

from the beginning, or alternately from the entry following the StartSid entry. This
causes the query to restart the scan from the beginning or from the entry following the
quota entry for the specified SID.

Windows NT I/O System Specification 75

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The NtQueryQuotaInformationFile function obtains quota entry information for the volume
represented by the file handle. Only complete quota entries are returned. The actual number of quota
entries returned is the smallest of the following:

o - One entry, if the ReturnSingleEntry parameter is TRUE.

o - One entry, if the only entry visible is the entry for the current thread’s SID.

o - The number of quota entries that fit into the specified buffer.

o - The number of quota entries that exist, or the number of entries that match the list of entries
supplied by the optional SidList parameter.

NtQueryQuotaInformationFile may be invoked multiple times to fill the buffer with quota entries for
the volume. It is possible that the quota entries for the volume were modified between calls to get
more entries, unless the volume is locked.

If the optional SidList parameter is specified, then only the quota information for those SIDs specified
in the list is returned. Specifying a SID which has no corresponding quota information on the volume
causes an entry to be returned with all zeroes for the quota fields. Futher, if this parameter is specified,
then the StartSid parameter is ignored. Finally, if a SidList is specified, the output buffer will be filled
with as many matching entries as possible. If they do not fit, then the caller should invoke the service
again, changing the start of the list to the point where the last service left off.

For example, if the caller passed in a SidList with entries for SIDs A, B, C, D, and E, and the output
buffer was only large enough for the file system to return entries for SIDs A, B, and C, then the caller
should invoke the service again specifying SIDs D and E. Because the list is self-describing, this can
be easily accomplished by simply changing the starting pointer and adjusting the SidListLength
parameter.

The StartSid parameter may optionally be specified to return quota entries for the volume beginning
with an entry other than the first quota entry. If a StartSid is specified, and the RestartScan parameter
is specified, then the quota entries returned will be start with the quota entry for the entry after the one
selected by the StartSid parameter.

If multiple quota entries are returned, then the structure for each entry in the buffer will be aligned on a
longword boundary. Each entry in the list begins with a NextEntryOffset field that specifies the
number of bytes from the base of the current entry to the start of the next entry. If there are no more
entries following the current entry, then the value of this field is zero.

The format of the SidList information buffer is defined by the following structure:

typedef struct _FILE_GET_QUOTA_INFORMATION {

ULONG NextEntryOffset;
ULONG SidLength;
SID Sid;

} FILE_GET_QUOTA_INFORMATION, *PFILE_GET_QUOTA_INFORMATION;

Field Description
NextEntryOffset Offset, in bytes, to the next entry in the list

Windows NT I/O System Specification 76

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

SidLength Length, in bytes, of the SID
Sid SID of entry to be returned

No special access to the volume is required in order to obtain quota information about the volume.
The FileHandle may refer to either the volume, or a file or directory anywhere on the volume to which
the caller has some access.

Once quota entries for the volume have been written to the Buffer, the Information field of the
IoStatusBlock variable can be examined to determine how many bytes of quota information were
actually returned.

3.5.4 Changing Quota Information about a File System Volume

Quota information about a file system volume may be changed using the NtSetQuotaInformationFile
service:

NTSTATUS
NtSetQuotaInformationFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PVOID Buffer,
IN ULONG Length
);

Parameters:

FileHandle - A handle to a volume whose quota entries are to be changed.

IoStatusBlock - A variable to receive the final completion status. For more information about

this parameter see the NtCreateFile system service description.

Buffer - A opinter to a buffer that contains the quota entry information to be applied to the

volume.

Length - The length of the specified buffer in bytes.

The NtSetQuotaInformationFile service changes the quota information on a volume using the quota
entries specified by the Buffer parameter.

The information specified by the Buffer parameter is defined by the following structure:

typedef struct _FILE_QUOTA_INFORMATION {

ULONG NextEntryOffset;
ULONG SidLength;
LARGE_INTEGER ChangeTime;
LARGE_INTEGER QuotaUsed;
LARGE_INTEGER QuotaThreshold;
LARGE_INTEGER QuotaLimit;
SID Sid;

} FILE_QUOTA_INFORMATION, *PFILE_QUOTA_INFORMATION;

Windows NT I/O System Specification 77

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Field Description
NextEntryOffset Offset, in bytes, to the next entry in the list
SidLength Length, in bytes, of the SID
ChangeTime Time that the quota entry was last changed
QuotaUsed Amount of disk space used
QuotaThreshold Amount of disk space useable without incurring an event
QuotaLimit Amount of disk space permitted to be used
Sid SID of this quota entry

If multiple quota entries are contained in the buffer, then the structure for each entry is longword
aligned. The NextEntryOffset field contains the byte offset to the start of the next entry in the buffer.
If there are no more entries past the current entry, then this field is zero.

If an error occurs changing the quotas on the volume, then the Information field in the I/O status block
contains the byte offset from the vase of the Buffer to the offending quota entry that caused the failure.

FILE_WRITE_DATA access to the volume is required in order to change the quota information
associated with the volume.

3.5.5 Controlling File Systems

Information may be passed between applications and file systems using the NtFsControlFile service:

NTSTATUS
NtFsControlFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN ULONG FsControlCode,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OutputBufferLength
);

Parameters:

FileHandle - An open file handle to the file or device to whose file system the control

information should be given.

Event - An optional handle to an event to be set to the Signaled state when the operation

completes.

ApcRoutine - An optional procedure to be invoked once the operation completes. For more

information about this parameter see the NtReadFile system service description.

ApcContext - A pointer to pass as an argument to the ApcRoutine, if one was specified, when

the operation completes. This argument is required if an ApcRoutine was specified.

Windows NT I/O System Specification 78

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

IoStatusBlock - A variable to receive the final completion status and information about the
operation. Service calls that return information, return the length of the data written to
the output buffer in the Information field of this variable. For more information about
this parameter see the NtCreateFile system service description.

FsControlCode - A code that indicates which file system control function is to be executed.

InputBuffer - An optional pointer to a buffer that contains the information to be given to the

target file system. This information is file-system-specific.

InputBufferLength - The length of the InputBuffer in bytes. If the buffer is not supplied, then

this value is ignored.

OutputBuffer - An optional pointer to a buffer that is to receive the file-system-dependent

return information from the target file system.

OutputBufferLength - The length of the OutputBuffer in bytes. If the buffer is not supplied,

then this value is ignored.

The NtFsControlFile service is a file-system-dependent interface that extends the control that
applications have over various components within the system. This API provides a consistent view of
the input and output data to the system while still providing the application and file system drivers a
file-system-dependent method of specifying a communications interface.

The type of access that the caller needs to the file is dependent on the actual operation being
performed.

3.6 Miscellaneous Services

This section presents those service that provide miscellaneous functionality for files and devices.

The APIs that perform these functions are as follows:

NtFlushBuffersFile - Flushes all buffered and cached data out to the file.
NtCancelIoFile - Cancels all I/O operations on a file.
NtDeviceIoControlFile - Miscellaneous device control.

3.6.1 Flushing File Buffers

Buffered data may be flushed out to the file using the NtFlushBuffersFile service:

NTSTATUS
NtFlushBuffersFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock
);

Parameters:

FileHandle - An open file handle to a file.

Windows NT I/O System Specification 79

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

IoStatusBlock - A variable to receive the final completion status. For more information about
this parameter see the NtCreateFile system service description.

The NtFlushBuffersFile service causes all buffered data to be written to the file.

FILE_WRITE_DATA or FILE_APPEND_DATA access to the file is required to perform this
service.

3.6.2 Canceling Pending I/O on a File

Pending I/O operations on a file may be canceled using the NtCancelIoFile service:

NTSTATUS
NtCancelIoFile(

IN HANDLE FileHandle,
OUT PIO_STATUS_BLOCK IoStatusBlock
);

Parameters:

FileHandle - An open file handle to a file.

IoStatusBlock - A variable to receive the final completion status. For more information about

this parameter see the NtCreateFile system service description.

The NtCancelIoFile service causes all pending I/O for the specified file to be marked as canceled.
Most types of operations can be canceled immediately, while others may continue toward completion
before they are actually canceled. For example, once a DMA disk drive has begun a transfer, the
operation cannot be canceled by a device driver, but to the caller it will appear as if the operation had
effectively been canceled.

Only those pending operations that were issued by the current thread using the specified handle are
canceled. Any operations issued for the file by any other thread or any other process continues
normally.

No specific access to the file is required in order to use this service since the caller is only canceling
those operations that he requested in the first place.

All pending I/O operations complete with a status that indicates that the operation was canceled.

3.6.3 Miscellaneous I/O Control

Various operations may be performed on files to control the file, or the device associated with the file,
using the NtDeviceIoControlFile service:

NTSTATUS
NtDeviceIoControlFile(

IN HANDLE FileHandle,
IN HANDLE Event OPTIONAL,
IN PIO_APC_ROUTINE ApcRoutine OPTIONAL,
IN PVOID ApcContext OPTIONAL,

Windows NT I/O System Specification 80

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

OUT PIO_STATUS_BLOCK IoStatusBlock,
IN ULONG IoControlCode,
IN PVOID InputBuffer OPTIONAL,
IN ULONG InputBufferLength,
OUT PVOID OutputBuffer OPTIONAL,
IN ULONG OutputBufferLength
);

Parameters:

FileHandle - An open file handle to the file or device to which the control information should

be given.

Event - An optional handle to an event to be set to the Signaled state when the operation

completes.

ApcRoutine - An optional procedure to be invoked once the operation completes. For more

information about this parameter see the NtReadFile system service description.

ApcContext - A pointer to pass as an argument to the ApcRoutine, if one was specified, when

the operation completes. This argument is required if an ApcRoutine was specified.

IoStatusBlock - A variable to receive the final completion status and information about the

operation. Service calls that return information, return the length of the data written to
the output buffer in the Information field of this variable. For more information about
this parameter see the NtCreateFile system service description.

IoControlCode - A code that indicates which device I/O control function is to be executed.

InputBuffer - An optional pointer to a buffer that contains the information to be given to the

target device. This information is device-dependent.

InputBufferLength - The length of the InputBuffer in bytes. If the buffer is not supplied, then

this value is ignored.

OutputBuffer - An optional pointer to a buffer that is to receive the device-dependent return

information from the target device.

OutputBufferLength - The length of the OutputBuffer in bytes. If the buffer is not supplied,

then this value is ignored.

The NtDeviceIoControlFile service is a device-dependent interface that extends the control that
applications have over various devices within the system. This API provides a consistent view of the
input and output data to the system while still providing the application and the driver a device-
dependent method of specifying a communications interface.

The type of access that the caller needs to the file is dependent on the actual operation being
performed.

Once the service has completed, the Event, if specified, will be set to the Signaled state. If no Event
parameter was specified, then the file object specified by the FileHandle will be set to the Signaled

Windows NT I/O System Specification 81

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

state. If an ApcRoutine was specified, it is invoked with the ApcContext and the address of the
IoStatusBlock as its arguments.

3.6.4 Deleting a File

A file can be deleted using the NtDeleteFile service:

NTSTATUS
NtDeleteFile(

IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters:

ObjectAttributes - A pointer to a structure that specifies the name of the file, a root directory,
and a set of file object attribute flags.

ObjectAttributes Structure

ULONG Length - Specifies the length of the object attributes structure. This field must
be equal to the size of an OBJECT_ATTRIBUTES structure.

PUNICODE_STRING ObjectName - The name of the file to be deleted. This file

specification must be a fully qualified file specification or the name of a device,
unless it is a file relative to the directory specified by the next field.

HANDLE RootDirectory - Optionally specifies a handle to a directory. If specified,

then the name of the file specified by the ObjectName field is a file specification
relative to the directory file supplied by this handle.

ULONG Attributes - A set of flags that controls the file object attributes.

OBJ_CASE_INSENSITIVE - Indicates that the name lookup should ignore the
case of ObjectName rather than performing an exact match search.

The NtDeleteFile service allows the caller to delete a file. DELETE access to the target file is
required. This service is equivalent to calling NtOpenFile, NtSetInformationFile with a file
information class of FileDispositionInformation, and NtClose. However, this service is faster because
less ring transitions are made.

3.6.5 Querying the Attributes of a File

The attributes of a file can be queried using the NtQueryAttributesFile service:

NTSTATUS
NtQueryAttributesFile(

IN POBJECT_ATTRIBUTES ObjectAttributes,
OUT PFILE_BASIC_INFORMATION FileInformation
);

Parameters:

Windows NT I/O System Specification 82

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ObjectAttributes - A pointer to a structure that specifies the name of the file, a root directory,

and a set of file object attribute flags.

ObjectAttributes Structure

ULONG Length - Specifies the length of the object attributes structure. This field must
be equal to the size of an OBJECT_ATTRIBUTES structure.

PUNICODE_STRING ObjectName - The name of the file to be queried. This file

specification must be a fully qualified file specification or the name of a device,
unless it is a file relative to the directory specified by the next field.

HANDLE RootDirectory - Optionally specifies a handle to a directory. If specified,

then the name of the file specified by the ObjectName field is a file specification
relative to the directory file supplied by this handle.

ULONG Attributes - A set of flags that controls the file object attributes.

OBJ_CASE_INSENSITIVE - Indicates that the name lookup should ignore the
case of ObjectName rather than performing an exact match search.

FileInformation - A variable to receive the basic information about the file.

The NtQueryAttributesFile service allows the caller to query the basic information about a file.
FILE_READ_ATTRIBUTES access to the target file is required. This service is equivalent to
calling NtOpenFile, NtQueryInformationFile with a file information class of FileBasicInformation,
and NtClose. However, this service is faster because less ring transitions are made.

The information that is returned in the FileInformation buffer is defined by the following structure:

typedef struct _FILE_BASIC_INFORMATION {

LARGE_INTEGER CreationTime;
LARGE_INTEGER LastAccessTime;
LARGE_INTEGER LastWriteTime;
LARGE_INTEGER ChangeTime;
ULONG FileAttributes;

} FILE_BASIC_INFORMATION;

Field Description
CreationTime Date/time that the file was created
LastAccessTime Date/time that the file was last accessed
LastWriteTime Date/time that the file was last written
ChangeTime Date/time that the file was last changed
FileAttributes Attributes of the file

All dates and times are specified in the standard Windows NT system time format.

The file attributes field can be a combination of the following values:

FILE_ATTRIBUTE_NORMAL

Windows NT I/O System Specification 83

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_TEMPORARY
FILE_ATTRIBUTE_COMPRESSED
FILE_ATTRIBUTE_OFFLINE

3.7 I/O Completion Objects

This section describes the creation and use of completion objects.

3.7.1 Creating/Opening I/O Completion Objects

When a user wishes to synchronize the completion of I/O through the use of completion objects, he
must first create or open an I/O completion object. Creating or opening a completion object causes the
system to return a handle to the specified object.

I/O completion object handles are closed via the generic NtClose service. This service is discussed
elsewhere in the Windows NT documentation. It should be noted that, just like all other system
objects, a completion object is not actually deleted until all of the valid handles to it are closed and no
referenced pointers remain.

The user APIs that support creating and opening completion objects are as follows:

NtCreateIoCompletion - Create or open an I/O completion object and return a handle.
NtOpenIoCompletion - Open an existing I/O completion object and return a handle.

3.7.1.1 Create/Open I/O Completion Objects

An I/O completion object can be created or opened using the NtCreateIoCompletion service:

NTSTATUS
NtCreateIoCompletion(

OUT PHANDLE IoCompletionHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
IN ULONG Count OPTIONAL
);

Parameters:

IoCompletionHandle - A pointer to a variable that receives the I/O completion object handle
value.

DesiredAccess - Specifies the type of access that the caller requires to the completion object.

DesiredAccess Flags

SYNCHRONIZE - The completion object handle may be waited.

Windows NT I/O System Specification 84

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

IO_COMPLETION_QUERY_STATE - The completion object may be queried.

IO_COMPLETION_MODIFY_STATE - The completion object may be modified.

The three following values are the generic access types that the caller may request. The
mapping to specific access rights is given for each:

GENERIC_READ - Maps to STANDARD_RIGHTS_READ and

IO_COMPLETION_QUERY_STATE.

GENERIC_WRITE - Maps to STANDARD_RIGHTS_WRITE and

IO_COMPLETION_MODIFY_STATE.

GENERIC_EXECUTE - Maps to STANDARD_RIGHTS_EXECUTE and

SYNCHRONIZE.

ObjectAttributes - A pointer to a structure that specifies the name of completion object, a root

directory, a security descriptor, a quality of service descriptor, and a set of completion
object attribute flags.

ObjectAttributes Structure

ULONG Length - Specifies the length of the object attributes structure. This field must
be equal to the size of an OBJECT_ATTRIBUTES structure.

PUNICODE_STRING ObjectName - The name of the completion object to be created

or opened. This object name specification must be a fully qualified path, unless
it is relative to the object directory specified by the next field.

HANDLE RootDirectory - Optionally specifies a handle to a directory. If specified,

then the name of the completion object specified by the ObjectName field is a
path specification relative to the directory object supplied by this handle.

PSECURITY_DESCRIPTOR SecurityDescriptor - Optionally specifies the security

descriptor that should be applied to the I/O completion object. The ACLs
specified by the security descriptor are only applied to the object if it is created.
If not supplied and the completion object is created, then the ACL placed on the
completion object is formed from a combination of the ACL on the parent
directory of the object and the current default ACL for the creating process.

PSECURITY_QUALITY_OF_SERVICE SecurityQualityOfService - Specifies the

access a server should be given to the client's security context. This field is only
used when a connection to a protected server is established. It allows the caller
to control which parts of his security context are made available to the server
and whether or not the server may impersonate the caller.

ULONG Attributes - A set of flags that controls the file object attributes.

OBJ_INHERIT - Indicates that the handle to the I/O completion object is to be
inherited by the new process when an NtCreateProcess operation is
performed to create a new process.

Windows NT I/O System Specification 85

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

OBJ_CASE_INSENSITIVE - Indicates that the name lookup should ignore the

case of ObjectName rather than performing an exact match search.

OBJ_EXCLUSIVE - Indicates that the I/O completion object is to be created
such that no other opens to the object may be performed.

OBJ_OPENIF - Indicates that if the I/O completion object already exists then it

is to be opened; otherwise it is to be created.

Count - An optional value that supplies the maximum number of threads that should be
concurrently active. If this parameter is not specified, then the number of processors is
used.

The NtCreateIoCompletion service either causes a new I/O completion object to be created, or it
opens an existing completion object. The action taken is dependent on the name of the object being
opened, and whether the object already existed, and the value of the OBJ_OPENIF ObjectAttributes
flag. If the object is created, then the maximum target concurrent thread count is set to the value
specified by the Count parameter. A handle to the I/O completion object with the DesiredAccess is
returned.

Once the caller has established a handle to an I/O completion object, he can then associate the
completion object with a file, via the NtSetInformationFile system service. As each request for the
file is completed, the I/O system stores a completion message in the I/O completion object.

Each completion message consists of a caller-determined key identifying the target file, a caller-
supplied CompletionContext pointer, which was passed as ApcContext to the asynchronous Nt...File
service when the request was originally issued, and a pointer to the returned I/O status block for the
completed request.

3.7.1.2 Open I/O Completion Objects

An I/O completion object can be opened using the NtOpenIoCompletion service:

NTSTATUS
NtOpenIoCompletion(

OUT PHANDLE IoCompletionHandle,
IN ACCESS_MASK DesiredAccess,
IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters:

IoCompletionHandle - A pointer to a variable that receives the I/O completion object handle
value.

DesiredAccess - Specifies the type of access that the caller requires to the completion object.

DesiredAccess Flags

SYNCHRONIZE - The completion object handle may be waited.

Windows NT I/O System Specification 86

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

IO_COMPLETION_QUERY_STATE - The completion object may be queried.

IO_COMPLETION_MODIFY_STATE - The completion object may be modified.

The three following values are the generic access types that the caller may request. The
mapping to specific access rights is given for each:

GENERIC_READ - Maps to STANDARD_RIGHTS_READ and

IO_COMPLETION_QUERY_STATE.

GENERIC_WRITE - Maps to STANDARD_RIGHTS_WRITE and

IO_COMPLETION_MODIFY_STATE.

GENERIC_EXECUTE - Maps to STANDARD_RIGHTS_EXECUTE and

SYNCHRONIZE.

ObjectAttributes - A pointer to a structure that specifies the name of completion object, a root

directory, a security descriptor, a quality of service descriptor, and a set of completion
object attribute flags.

ObjectAttributes Structure

ULONG Length - Specifies the length of the object attributes structure. This field must
be equal to the size of an OBJECT_ATTRIBUTES structure.

PUNICODE_STRING ObjectName - The name of the completion object to be opened.

This object name specification must be a fully qualified path, unless it is relative
to the object directory specified by the next field.

HANDLE RootDirectory - Optionally specifies a handle to a directory. If specified,

then the name of the completion object specified by the ObjectName field is a
path specification relative to the directory object supplied by this handle.

ULONG Attributes - A set of flags that controls the file object attributes.

OBJ_INHERIT - Indicates that the handle to the I/O completion object is to be
inherited by the new process when an NtCreateProcess operation is
performed to create a new process.

OBJ_CASE_INSENSITIVE - Indicates that the name lookup should ignore the

case of ObjectName rather than performing an exact match search.

The NtOpenIoCompletion service opens an existing I/O completion object and returns a handle to it
through the IoCompletionHandle parameter.

As with the NtCreateIoCompletion service, once the caller has established a handle to an I/O
completion object, he can then associate the completion object with a file, via the
NtSetInformationFile system service. As each request for the file is completed, the I/O system stores
a completion message in the I/O completion object.

Windows NT I/O System Specification 87

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Each completion message consists of a caller-determined key identifying the target file, a caller-
supplied CompletionContext pointer, which was passed as ApcContext to the asynchronous Nt...File
service when the request was originally issued, and a pointer to the returned I/O status block for the
completed request.

3.7.2 Operating on I/O Completion Objects

This section presents those services that manipulate I/O completion objects. The APIs that support
operations on I/O completion objects are as follows:

NtQueryIoCompletion - Query the state of an I/O completion object.
NtSetIoCompletion - Inserts a message onto an I/O completion object.
NtRemoveIoCompletion - Removes an entry from an I/O completion object.

3.7.2.1 Querying Completion Objects

The state of an I/O completion object can be queried using the NtQueryIoCompletion service:

NTSTATUS
NtQueryIoCompletion(

IN HANDLE IoCompletionHandle,
IN IO_COMPLETION_INFORMATION_CLASS IoCompletionInformationClass,
OUT PVOID IoCompletionInformation,
IN ULONG IoCompletionInformationLength,
OUT PULONG ReturnLength OPTIONAL
);

Parameters:

IoCompletionHandle - Supplies a handle to an open I/O completion object to be queried.

IoCompletionInformationClass - Specifies the type of information that should be returned

about the I/O completion object. The information returned in the
IoCompletionInformation buffer is defined by the following type codes:

IoCompletionInformationClass Values

IoCompletionBasicInformation - Returns basic information about the specified I/O
completion object. IO_COMPLETION_QUERY_STATE access to the
object is required.

IoCompletionInformation - A pointer to a buffer to receive the desired information about the

I/O completion object. The contents of this buffer are defined by the
IoCompletionInformationClass parameter described above.

IoCompletionInformationLength - The length of the IoCompletionInformation buffer in bytes.

ReturnLength - An optional pointer to a variable to receive the actual number of bytes of

information returned in the IoCompletionInformation buffer.

Windows NT I/O System Specification 88

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The NtQueryIoCompletion service returns information about the specified I/O completion object.
The information in the buffer is defined by the following type codes and structures.

IoCompletionInformation Format by I/O Completion Information Class

IoCompletionBasicInformation - Data type is IO_COMPLETION_BASIC_INFORMATION.

typedef struct _IO_COMPLETION_BASIC_INFORMATION {
LONG Depth;

} IO_COMPLETION_BASIC_INFORMATION;

Field Description
Depth Depth, in messages, of the I/O completion object

IO_COMPLETION_QUERY_STATE access to the I/O completion object is required to
obtain this information.

Once the information about the object has been returned, the caller can determine how much
information was actually returned by examining the variable passed in as the ReturnLength parameter,
if one was passed.

3.7.2.2 Setting Completion Objects

A completion message can be manually queued to an I/O completion object using the
NtSetIoCompletion service:

NTSTATUS
NtSetIoCompletion(

IN HANDLE IoCompletionHandle,
IN ULONG KeyContext,
IN PVOID ApcContext,
IN NTSTATUS IoStatus,
IN ULONG IoStatusInformation
);

Parameters:

IoCompletionHandle - A handle to the I/O completion port.

KeyContext - Supplies the key contex that is returned during a call to
NtRemoveIoCompletion.

ApcContext - Supplies the APC context that is returned during a call to

NtRemoveIoCompletion.

IoStatus - Supplies the status data that will be returned in the Status field of the I/O status block

during a call to NtRemoveIoCompletion.

IoStatusInformation - Supplies the information data that will be returned in the Information

field of the I/O status block during a call to NtRemoveIoCompletion.

Windows NT I/O System Specification 89

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The NtSetIoCompletion service allows the caller to insert an I/O completion message into the
completion object manually. This allows threads that are waiting on messages to arrive to be
awakened to deal with a particular work item posted by the caller. Note that no I/O was actually
performed to cause the completion message to be read by the remover of the item.

3.7.2.3 Removing Messages from Completion Objects

An I/O completion message can be removed from an I/O completion object using the
NtRemoveIoCompletion service:

NTSTATUS
NtRemoveIoCompletion(

IN HANDLE IoCompletionHandle,
OUT PVOID *KeyContext,
OUT PVOID *ApcContext,
OUT PIO_STATUS_BLOCK IoStatusBlock,
IN PLARGE_INTEGER Timeout OPTIONAL
);

Parameters:

IoCompletionHandle - A handle to the I/O completion port.

KeyContext - Supplies a pointer to a variable to receive the key contex that was specified when

the I/O completion object was associated with a file object.

ApcContext - Supplies a pointer to a variable to receive the context that was specified when the

I/O was issued. This value was passed in as the ApcContext parameter when the I/O
was queued.

IoStatus - Supplies a pointer to a variable that receives the final I/O completion status from the

I/O operation.

Timeout - Supplies a pointer to an optional time out value.

The NtRemoveIoCompletion service removes a single I/O completion message from the completion
object. If an entry is removed, then the KeyContext, ApcContext, and IoStatus variables receive the
information about the I/O operation that was completed. The Status field of the IoStatus variable
indicates whether or not the I/O operation was successfully completed. Note that this is separate from
the return value from this service, which indicates whether or not a completion message was
successfully removed from the completion object.

If there are no entries in the completion object, or if there are already Count threads concurrently ready
and/or running due to other completion messages having been removed, then the calling thread will
wait for another message according to the Timeout parameter. This parameter is treated in the normal
manner of all time-out values in Windows NT.

4. Naming Conventions

Windows NT I/O System Specification 90

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Devices in Windows NT are named according to a very simple set of rules. There are three general
rules:

1) If there can only be one device of the specified type in the system, such as the PC subsystem
keyboard, then the name of the device is simply the device type name.

2) If there can be more than one device of the specified type in the system, such as a floppy,
then the name of the device is the device type name followed by a decimal number that
indicates which device of that type it is.

3) For devices such as disks, which can be partitioned, the name of the partition is the name of
the device followed by \Partition and a decimal number representing which partition on the
disk it is. The first partition on a disk is called \Partition1. The name that refers to the entire
device for partitioned media is \Partition0.

For example, the following are valid Windows NT device names.

o - \Device\Floppy2
o - \Device\Harddisk1\Partition3
o - \Device\Keyboard
o - \Device\Mouse

Note that all of the above device names are in a directory called the \Device directory. All device
names in Windows NT reside in this object directory by convention. Any valid object directory
operations can be used to determine the names of the devices on the system, provided the caller has the
appropriate privileges and access to the object directory.

5. Appendix A - Time Field Changes

This section contains a list of those APIs that implicitly change the various time fields associated with
a file.

5.1 Last Access Time

The Last Access Time field for a file is implicitly changed under the following conditions:

o - NtQueryDirectoryFile - The directory file's time field is updated.

o - NtCreateFile - The file's time field is set if the file was created.

o - NtReadFile - The file's time field is updated.

5.2 Last Modify Time

o - NtCreateFile - If the file was created, superseded, or overwritten, then the file's time field
is updated. If the file was created or superseded then the parent directory's time field is
also updated.

o - NtSetInformationFile

Windows NT I/O System Specification 91

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

- FileLinkInformation - The directory file containing the name of the link's time field
is updated.

- FileDispositionInformation - The time field of the directory that contains the file is

updated.

- FileRenameInformation - The old and the new parent directory file's times are

updated.

o - NtWriteFile - The file's time field is updated.

5.3 Last Change Time

o - NtCreateFile - If the file was created, superseded, or overwritten, then the file's time field
is updated. If the file was created or superseded then the parent directory's time field is
also updated.

o - NtSetInformationFile

- FileLinkInformation - The time field of both the file and the directory containing the
name of the link are updated.

- FileDispositionInformation - The time field of both the file and the directory

containing the file are updated.

- FileRenameInformation - The time field of both the old and the new parent

directories are updated.

- FileAllocationInformation - The file's time field is updated.

- FileEndOfFileInformation - The file's time field is updated.

o - NtWriteFile - The file's time field is updated.

o - NtSetSecurityObject - The file's time field is updated.

Windows NT I/O System Specification 92

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6. Revision History

Original Draft 1.0, March 21, 1989

Revision Draft 1.1, March 31, 1989

- Fixed spelling, grammar and numbering problems.
- Incorporated initial review comments.
- Removed all APIs that didn't use file handles.
- Rewrote overview section dealing with file objects.
- Added access right types to services.
- Redesigned NtCreateFile service.
- Removed NtOpenFile service.
- Revamped NtQueryDirectoryFile service.
- Added more types to NtQueryInformationFile service.
- Added more types to NtSetInformationFile service.
- Performed general fixup on most other services.
- Added description of DISPATCH_LEVEL driver context.
- Changed device work queues to device queues.
- Redesigned communication region protocol.
- Planned section on volume verification.

Revision Draft 1.2, May 12, 1989

- Allow setting of owner in NtSetInformationFile.
- Removed device info from NtQueryFsInformationFile.
- Changed NtQueryFsInformationFile to QueryVolume.
- Changed NtSetFsInformationFile to SetVolume.
- Added ChangeTime to appropriate structures.
- Added I/O provided time-out functions.
- Remove mount entry point from file systems.
- Fleshed out section on volume verification.
- Wrote section on error logging and handling.
- Wrote section on naming conventions.
- Added "subsystem input" section for terminals.
- Wrote section on network service description.
- Added directory access options.
- Fixed access type names.
- Make all byte offsets block/byte offsets.

o Read pointer
o Write pointer
o File allocation size
o End of file marker

- Add new security access types.
- Flesh out Miscellaneous I/O APIs.
- Change FILE_READ and _WRITE back again.

Revision Draft 1.3, October 9, 1989

- Split specification into two separate specs.
- Redo attributes again for security changes (twice).

Windows NT I/O System Specification 93

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

- Add "names" type to NtQueryDirectoryFile since other API was dropped by object
manager.

- Change APC parameter to context and make PVOID.
- Add AscendingDirectories flag to volume info.
- Make file objects waitable objects.
- Make block/byte values zero-based.
- Add synchronous I/O.
- Only signal file handle if no event specified.
- Fix FILEINFO and FSINFO to be like all other APIs.
- Remove nonsensical directory desired accesses.
- Return actual action in Information on create/open.
- Add FILE_SHARE_ NO_DELETE and NO_RENAME.
- Drop FILE_CREATE_TREE_CONNECTION. Will be service.
- Drop FILE_EXECUTE desired access restrictions.
- Drop FILE_APPEND desired access restrictions.
- Drop or change name of privileges.
- Added time field changes appendix.

Revision Draft 1.4, January 21, 1990

- Added NtOpenFile system service.
- Removed NtQueryAclFile and NtSetAclFile APIs.
- Removed documentation on FileAclInformation.
- Added NtLockFile and NtUnlockFile services again.
- Change most services to have synchronous APIs.
- Redo attributes again for security changes.
- Revamped structures around security, especially for directories and subdirectories.
- Added EAs to NtCreateFile.
- Redo EA APIs and EA structures.
- Added rewind capabilities to EA and directory services.
- Added optional key parameter to NtReadFile and NtWriteFile.
- Fixed object attributes structure type name and fields.
- Converted APIs from Block and Byte to LARGE_INTEGER.
- Reversed polarity of shared delete and rename flags.
- Expanded type names out to full names.
- Miscellaneous edits and explanation changes.

Revision Draft 1.5, July 9, 1990

- Add EaListLength parameter to NtQueryEaFile.
- Removed FILE_MAPPED_IO option.
- Removed FILE_SHARE_RENAME share access.
- Document file sharing semantics.
- Add FileFsSizeInformation to NtQueryVolumeInformationFile.
- Removed FileFsBiosInformation from NtQueryVolumeInformationFile.
- Add RemovableMedia and SupportsObjects fields for volumes.
- Add FILE_OVERWRITE, FILE_OVERWRITE_IF to NtCreateFile.
- Document directory wildcarding.
- Document deleting a file is last valid I/O operation.
- Add FileAlignmentInformation to NtQueryInformationFile.
- Replace OBJ_OPEN_LINK with FILE_OPEN_LINK.

Windows NT I/O System Specification 94

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

- Add FILE_TRAVERSE as legal directory access.
- Add FILE_OPEN_UNKNOWN_OBJECT option.
- Add FILE_OPENED_UNKNOWN_OBJECT I/O status block value.
- Replace FILE_DISABLE_CACHING with

FILE_NO_INTERMEDIATE_BUFFERING and add requirement restrictions
description.

- Add FILE_COMPLETE_IF_OPLOCKED option to create and open.
- Add FileRemainingNameInformation query information type.
- Explicitly state that locking beyond EOF is permissible.
- Switch fields in FILE_FULL_EA_INFORMATION to keep compatibility with OS/2.
- Fixed references to IOSB and PIOSB.
- Removed explicit ACL and owner interfaces and converted to the new security

semantics.
- Add ability for synchronous I/O locks to be asynchronous.
- Subsumed NtSetNewSizeFile functionality in NtSetInformationFile.
- Removed FileOwnerInformation from NtQueryInformationFile.
- Removed FileOwnerInformation from NtSetInformationFile.
- Removed FILE_OWNER_INFORMATION structure type declaration.

Revision Draft 1.6, July 15, 1993

- Removed outdated "++" notation for subsystems.
- Updated system name from NT OS/2 to Windows NT.
- Removed error ports from all appropriate APIs.
- Added new file attribute definitions for FILE_ATTRIBUTE_TEMPORARY,

FILE_ATTRIBUTE_ATOMIC_WRITE, and
FILE_ATTRIBUTE_XACTION_WRITE.

- Removed all vestiges of "unknown objects" and all related functionality.
- Replaced old style create/open directory manipulation flags (see next).
- Documented all new Create/Open options:

o FILE_DIRECTORY_FILE
o FILE_NON_DIRECTORY_FILE
o FILE_RANDOM_ACCESS
o FILE_NO_EA_KNOWLEDGE
o FILE_DELETE_ON_CLOSE
o FILE_OPEN_BY_FILE_ID
o FILE_OPEN_FOR_BACKUP_INTENT

- Updated all appropriate CHAR's to WCHAR's in accordance w/Unicode changes.
- Updated all STRING's to UNICODE_STRING's in accordance w/Unicode changes.
- Removed source/target process from NtReadFile and NtWriteFile.
- Removed NtReadTerminalFile API.
- Updated all TIME data types to LARGE_INTEGER's.
- Moved FILE_ATTRIBUTE_DIRECTORY flag into attributes for query operations.
- Added FileBothDirectoryInformation file information class to

NtQueryDirectoryFile.
- Changed Action field of FILE_NOTIFY_INFORMATION to ULONG.
- Added FileAlternateNameInformation to NtQueryInformationFile.
- Added FileStreamInformation to NtQueryInformationFile.
- Changed FileNameInformation to FileRenameInformation for NtSetInformationFile.
- Updated Length parameter to LARGE_INTEGER from ULONG for locking services.

Windows NT I/O System Specification 95

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

- Added FileFsDeviceInformation and FileFsAttributeInformation to
NtQueryVolumeInformation.

Revision Draft 1.7, May 1, 1995

- Added new FILE_OPEN_TRANSACTED and FILE_RESERVE_OPFILTER
create/open options.

- Removed FILE_ATTRIBUTE_ATOMIC_WRITE and
FILE_ATTRIBUTE_XACTION_WRITE and added
FILE_ATTRIBUTE_COMPRESSED and FILE_ATTRIBUTE_OFFLINE..

- Added new STORAGE_TYPE enumerated type as well as new create/open option
fields for storage types.

- Added values for FILE_NOTIFY_CHANGE_STREAM_NAME,
FILE_NOTIFY_CHANGE_STREAM_SIZE, and
FILE_NOTIFY_CHANGE_STREAM_WRITE.

- Added documentation of file system attributes flags, and included new flags
FILE_FILE_COMPRESSED and FILE_VOLUME_IS_COMPRESSED for
compression.

- Added FILE_VIRTUAL_VOLUME device characteristic flag for virtual volumes.
- Added the following query and set information class information values and their

associated structure type definitions:
o FileCompressionInformation
o FileCopyOnWriteInformation
o FileCompletionInformation
o FileMoveClusterInformation
o FileOleClassIdInformation
o FileOleStateBitsInformation
o FileApplicationExplorableInformation
o FileApplicationExplorableChildrenInformation
o FileObjectIdInformation
o FileOleAllInformation
o FileContentIndexInformation
o FileInheritContentIndexInformation
o FileOleInformation

- Added new NtQueryOleDirectoryFile API description.
- Added new FileOleDirectoryInformation directory information class and its associated

structure type definition.
- Added new directory query information class for OLE files.
- Added query and set volume information class information values and its associated

type definitions for FileFsControlInformation
- Added new NtQueryQuotaInformationFile and NtSetQuotaInformationFile API

descriptions.
- Added new data structure types (FILE_GET_QUOTA_INFORMATION and

FILE_QUOTA_INFORMATION) for the above services.
- Added new NtDeleteFile API description.
- Added new NtQueryAttributesFile API description.
- Added new I/O completion object section for APIs, access rights, information class

values, and data structures.
- Removed old NtDeviceIoControlFile and NtFsControlFile appendicies to alleviate

concerns that they weren’t filled in (since they never will be populated).

Windows NT I/O System Specification 96

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

- Added device types for FILE_DEVICE_BATTERY and
FILE_DEVICE_BUS_EXTENDER.

- Removed POSIX and OS/2 subsystem API implementation sections

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS/2 IRP Language Definition

Author: Gary D. Kimura

Revision 1.0x, December 15, 1989

NT OS/2 IRP Language Definition iii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction.. 1

2. Valid IRP combination .. 2
2.1 Disk Driver IRPs... 2
2.2 File System IRPs... 3
2.3 Keyboard Driver IRPs... 5
2.4 Mouse Driver IRPs ... 5
2.5 Network Drivers IRPs... 6
2.6 Sound Driver IRPs .. 6
2.7 Tape Driver IRPs .. 6
2.8 Terminal Driver IRPs.. 6
2.9 Video Driver IRPs... 6

3. IRP Function Descriptions... 8
3.1 Close ... 8
3.2 Create .. 11
3.3 Device Control .. 19
3.4 Directory Control(Notify Change Directory) ... 19
3.5 Directory Control(Query Directory) ... 19
3.6 File System Control(Dismount Volume) .. 19
3.7 File System Control(Lock Volume).. 19
3.8 File System Control(Mount Volume) ... 19
3.9 File System Control(Query Information File System) 19
3.10 File System Control(Set Information File System) .. 19
3.11 File System Control(Unlock Volume) .. 19
3.12 File System Control(Verify Volume) ... 19
3.13 Internal Device Control... 19
3.14 Lock Control(Lock) .. 19
3.15 Lock Control(Unlock All)... 19
3.16 Lock Control(Unlock Single) ... 20
3.17 Query Acl.. 20
3.18 Query Ea ... 20
3.19 Query Information .. 20
3.20 Query Volume Information... 20
3.21 Read .. 20
3.22 Read Terminal... 20
3.23 Set Acl... 20
3.24 Set Ea .. 20
3.25 Set Information ... 20
3.26 Set New Size ... 20
3.27 Set Volume Information ... 20
3.28 Write ... 20

NT OS/2 IRP Language Definition 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

The purpose of this chapter is to define the semantic contents of an I/O Request Packet (IRP). The
information contained here is intended for use mainly by Device Driver and File System developers.
The I/O system sends to the various Device Drivers1 a stream of multiple IRPs that the drivers must
interpret and respond to. Figure 1 shows the relationship between the device driver and the I/O
system. Communication between the I/O system and the Device Driver is through IRPs. This chapter
concentrates on the IRP language.

+--------+ +--------+ +--------+
User	NtCall	I/O	Irp	Device
	---------->	System	---------->	Driver
+--------+ +--------+ +--------+

Figure 1

Logical control flow from user to Device Driver

Each IRP has a well defined format and semantic meaning, and the order in which they are sent must
adhere to certain rules. The ordering of IRPs and responses form a context sensitive language.

Each IRP contains a common header section followed by one or more function specific records (also
called IRP stack locations). From a Device Drivers viewpoint each IRP request is a single record
describing one function to perform. That is, the drivers only interpret one function specific record.
The additional stack locations are for use when a driver issues subsequent IRPs to a lower level driver
and wishes to reuse the original IRP.

Each IRP function is identified by a major and minor function field in the IRP stack location record.
The list of possible function combinations are listed below. Each line lists a major function code
followed (in paranthesis) by a minor function code. Note that some major functions (e.g., CREATE)
do not make use the minor function field.

CLOSE()
CONFIGURATION_CONTROL(...)
CREATE()
DEVICE_CONTROL(...)
DIRECTORY_CONTROL(NOTIFY_CHANGE_DIRECTORY)
DIRECTORY_CONTROL(QUERY_DIRECTORY)
FILE_SYSTEM_CONTROL(DISMOUNT_VOLUME)
FILE_SYSTEM_CONTROL(LOCK_VOLUME)

1For clarity we will use the term Device Driver to refer to both Device Drivers and File systems.

NT OS/2 IRP Language Definition 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_SYSTEM_CONTROL(MOUNT_VOLUME)
FILE_SYSTEM_CONTROL(QUERY_INFO_FILE_SYSTEM)
FILE_SYSTEM_CONTROL(SET_INFO_FILE_SYSTEM)
FILE_SYSTEM_CONTROL(UNLOCK_VOLUME)
FILE_SYSTEM_CONTROL(VERIFY_VOLUME)
INTERNAL_DEVICE_CONTROL(...)
LOCK_CONTROL(LOCK)
LOCK_CONTROL(UNLOCK_ALL)
LOCK_CONTROL(UNLOCK_SINGLE)
QUERY_ACL()
QUERY_EA()
QUERY_INFORMATION()
QUERY_VOLUME_INFORMATION()
READ()
READ_TERMINAL()
SET_ACL()
SET_EA()
SET_INFORMATION()
SET_NEW_SIZE()
SET_VOLUME_INFORMATION()
WRITE()

/* We need to define the minor function codes for the configuration, device, and internal
device function codes. */

Each Device Driver will only receive a combination of the preceding function codes based on the
drivers device type. This means that a file system device driver can expect to receive different
functions than the keyboard device driver, or a disk driver. The possible device driver types are:

Disk Driver,
File System (including network redirector),
Keyboard Driver,
Mouse Driver,
Network Drivers,
Sound Driver,
Tape Driver,
Terminal Driver, and
Video Driver,

/* We will need to futher expand on the different network device drivers */

The remainder of this chapter describes the valid combination of IRP function codes that each different
device driver can expect to receive. This is followed by a section listing every IRP function code
along with a description of the function's parameters, semantics, and I/O completion status codes.

NT OS/2 IRP Language Definition 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2. Valid IRP Function Combinations

The section contains an individual table for each device driver type that lists the set of valid IRP
functions that can be sent to the driver and under what conditions the functions are sent.

2.1 Disk Driver IRPs

The set of possible IRPs that can be sent to a disk driver are:

IRP Function When sent

CLOSE Anytime.

CREATE Anytime.

DEVICE_CONTROL
(...)

Anytime.

READ Anytime.

WRITE Anytime.

2.2 File System IRPs

The set of possible IRPs that can be sent to a file system are:

IRP Function When sent

CLOSE Only after a successful CREATE and then
only on an opened file. This closes the file so
no other operation can be performed on the
file other than CREATE.

CREATE Only after a successful MOUNT_VOLUME
and then only on a mounted volume that is not
locked. If successful the file is considered
opened.

DIRECTORY_CONTROL
(NOTIFY_CHANGE_DIRECTORY)

Only after a successful CREATE and then
only on an opened directory file.

DIRECTORY_CONTROL
(QUERY_DIRECTORY)

Only after a successful CREATE and then
only on an opened directory file.

FILE_SYSTEM_CONTROL
(DISMOUNT_VOLUME)

Only after a successful MOUNT_VOLUME
and then only on a mounted volume. This

NT OS/2 IRP Language Definition 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

dismounts the volume, so no other operation
can be performed on the volume other than
MOUNT_VOLUME.

FILE_SYSTEM_CONTROL
(LOCK_VOLUME)

Only after a successful CREATE and then
only on an opened file. This locks the volume
containing the file such that no other creates
using the same volume will succeed until the
volume is unlocked. To be successful, the file
used to lock the volume must also be the only
opened file on the volume.

FILE_SYSTEM_CONTROL
(MOUNT_VOLUME)

Anytime. If the operation is successful then a
new device object for the volume is created
and the volume is considered mounted and
not locked.

FILE_SYSTEM_CONTROL
(QUERY_INFO_FILE_SYSTEM)

Only after a successful CREATE and then
only on an opened file.

FILE_SYSTEM_CONTROL
(SET_INFO_FILE_SYSTEM)

Only after a successful CREATE and then
only on an opened file.

FILE_SYSTEM_CONTROL
(UNLOCK_VOLUME)

Only after a successful CREATE and then
only on a opened file. The file system must
handle the situation where the user is
attempting to unlock a volume that is not
locked. If successful this operation unlocks a
previously locked volume so that other
creates using the volume can now succeed.

FILE_SYSTEM_CONTROL
(VERIFY_VOLUME)

Only after a successful MOUNT_VOLUME
and then only on a mounted volume.

LOCK_CONTROL
(LOCK)

Only after a successful CREATE and then
only on an opened file. If successful this
operation locks a range of bytes within a file.
The locks remain in affect until they are
explicitly unlocked or the file is closed.

LOCK_CONTROL
(UNLOCK_ALL)

Only after a successful CREATE and then
only on an opened file. The file system must
handle the situation where an unlock is
received even though there are no outstanding
locks for that user.

NT OS/2 IRP Language Definition 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

LOCK_CONTROL
(UNLOCK_SINGLE)

Only after a successful CREATE and then
only on an opened file. The file system must
handle the situation where an unlock is
received even though there is not a
corresponding lock.

QUERY_ACL Only after a successful CREATE and then
only on an opened file.

QUERY_EA Only after a successful CREATE and then
only on an opened file.

QUERY_INFORMATION Only after a successful CREATE and then
only on an opened file.

QUERY_VOLUME_INFORMATION Only after a successful CREATE and then
only on an opened file.

READ Only after a successful CREATE and then
only on an opened file.

SET_ACL Only after a successful CREATE and then
only on an opened file.

SET_EA Only after a successful CREATE and then
only on an opened file.

SET_INFORMATION Only after a successful CREATE and then
only on an opened file.

SET_NEW_SIZE Only after a successful CREATE and then
only on an opened file.

SET_VOLUME_INFORMATION Only after a successful CREATE and then
only on an opened file.

WRITE Only after a successful CREATE and then
only on an opened file.

2.3 Keyboard Driver IRPs

The set of possible IRPs that can be sent to the Keyboard driver are:

IRP Function When sent

NT OS/2 IRP Language Definition 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

CLOSE Anytime.

CREATE Anytime.

DEVICE_CONTROL
(...)

Anytime.

QUERY_INFORMATION Anytime.

READ Anytime.

SET_INFORMATION Anytime.

WRITE Anytime.

2.4 Mouse Driver IRPs

The set of possible IRPs that can be sent to the Mouse driver are:

IRP Function When sent

CLOSE Anytime.

CREATE Anytime.

DEVICE_CONTROL
(...)

Anytime.

QUERY_INFORMATION Anytime.

READ Anytime.

SET_INFORMATION Anytime.

WRITE Anytime.

2.5 Network Drivers IRPs

The set of possible IRPs that can be sent to the Network drivers are:

IRP Function When sent

/* This table needs to be filled in */

2.6 Sound Driver IRPs

The set of possible IRPs that can be sent to the Sound driver are:

NT OS/2 IRP Language Definition 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

IRP Function When sent

/* This table needs to be filled in */

2.7 Tape Driver IRPs

The set of possible IRPs that can be sent to the Tape driver are:

IRP Function When sent

/* This table needs to be filled in */

2.8 Terminal Driver IRPs

The set of possible IRPs that can be sent to the Terminal driver are:

IRP Function When sent

/* This table needs to be filled in */

2.9 Video Driver IRPs

The set of possible IRPs that can be sent to the Video driver are:

IRP Function When sent

CLOSE Anytime.

CREATE Anytime.

DEVICE_CONTROL
(...)

Anytime.

QUERY_INFORMATION Anytime.

READ Anytime.

SET_INFORMATION Anytime.

WRITE Anytime.

NT OS/2 IRP Language Definition 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3. IRP Function Descriptions

This section describes the input parameters and semantics for each IRP function code. It also discusses
the interactions between the parameters and lists possible return status codes.

The parameter descriptions list all the fields that are used within the IRP by the operation being
described. Each parameter is either Read (i.e., used as input to the operation), Set (i.e., used as output
for the operation), or Ignored. To help distinguish the parameters we will also use the two terms
IrpFlags and FunctionFlags to denote the flags field of the IRP header and the I/O stack location
respectively.

In the description of the return status codes we do not include generic values such as
STATUS_PENDING or STATUS_INVALID_PARAMETER which can be returned for any IRP. We
also do not describe values that can be returned by a lower level device drivers such as
STATUS_PARITY_ERROR.

3.1 Close

The close function is used to close a previously opened file or directory. Its two input parameters are a
device object and an IRP. The device object parameter points to a volume previously mounted by the
Device Driver and is where the file opened file exists. The IRP contains the close function parameters
(and are listed below).

Besides closing the file, this function will optionally deletes the file based upon the disposition
specified by the caller (See the SET_INFORMATION operation). If this is the last file object with the
file opened and the disposition is delete on close then the file is removed from the on-disk structure.

Close (
 IN PDEVICE_OBJECT DeviceObject,
 IN PIRP Irp
);

Parameters within the IRP:

Parameter type and name Description

PMDL
MdlAddress

Ignored.

ULONG
IrpFlags

Ignored.

STRING
FileObject->FileName

Ignored.

NT OS/2 IRP Language Definition 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ULONG
FileObject->RelatedFileObject

Ignored.

PVOID
FileObject->FsContext

Read and Set. The driver uses this field to
retrieve any private data (established by the
CREATE function) that needs to be processed
in order to close the file. It is set to NULL
upon return from the close function.

PVOID
FileObject->FsContext2

Read and Set. The driver uses this field to
retrieve any private data (established by the
CREATE function) that needs to be processed
in order to close the file. It is set to NULL
upon return from the close function.

PVOID
FileObject->SectionObjectPointer

Set. The close function must set this field to
NULL.

IO_STATUS_BLOCK
IoStatus

Set. This receives the final return status of
the operation. The possible return status
values are listed later.

PEPROCESS
AlternateProcess

Ignored.

KPROCESSOR_MODE
RequestorMode

Ignored.

PVOID
SystemBuffer

Ignored.

PIO_STATUS_BLOCK
UserIosb

Ignored.

PKEVENT
UserEvent

Ignored.

LARGE_INTEGER
AllocationSize

Ignored.

PVOID
UserBuffer

Ignored.

Parameters within the IRP Stack:

NT OS/2 IRP Language Definition 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Parameter type and name Description

UCHAR
MajorFunction

Read. Must be equal to IRP_MJ_CLOSE.

UCHAR
MinorFunction

Ignored.

UCHAR
FunctionFlags

Ignored.

UCHAR
Control

Ignored.

Iosb Return Status and Information:

The following status codes are used to complete the CLOSE function.

Return status followed by
information field of IOSB

Description

STATUS_SUCCESS
Ignored

Indicates that the opened file has been
closed.

NT OS/2 IRP Language Definition 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.2 Create

The create function is used to create or open a file or a directory. Its two input parameters are a device
object and an IRP. The device object parameter points to a volume previously mounted by the Device
Driver and is where the file will exist. The IRP contains the create function parameters (and are listed
below).

Create (
 IN PDEVICE_OBJECT DeviceObject,
 IN PIRP Irp
);

Parameters within the IRP:

Parameter type and name Description

PMDL
MdlAddress

Ignored.

ULONG
IrpFlags

Ignored.

STRING
FileObject->FileName

Read. This is the name of the file being
opened.

ULONG
FileObject->RelatedFileObject

Read. This field is used for path relative file
names.

 If it is null then the file name is relative to the
root of the volume (e.g., "\CONFIG.SYS" is
the name of the configuration file located in
root directory).

 If is it not null then it points to a previously
opened file object representing a directory on
the volume, and the file name is relative to the
specified directory (e.g., if the related file
object is "\NT\SDK" the file name can be
"INC\NTIOAPI.H"). Note that path relative
file names do not begin with a backslash.

PVOID
FileObject->FsContext

Set. This is used by the Device Driver to
store file object specific information that can
be retrieved later when the driver is called to
perform subsequent operations on the file.

NT OS/2 IRP Language Definition 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 The FAT file system stores in this field a
pointer to an internal File Control Block
(FCB) structure.

PVOID
FileObject->FsContext2

Set. This is used by the Device Driver to
store file object specific information that can
be retrieved later when the driver is called to
perform subsequent operations on the file.

 The FAT file system only uses this field for
directories. It is a pointer to an internal
Context Control Block (CCB) structure.

PVOID
FileObject->SectionObjectPointer

Set. It is set to the longword context for the
file. It is not used for directories. For every
opened file the driver allocates a single
longword of context for exclusive use by the
memory management system. All file objects
that denote the same file point to the same
longword context.

 In FAT this is done by reserving a longword
field in the FCB and having each section
object pointer point to this field.

IO_STATUS_BLOCK
IoStatus

Set. This receives the final return status of
the operation. The possible return status
values are listed later.

PEPROCESS
AlternateProcess

Ignored.

KPROCESSOR_MODE
RequestorMode

Read. This is the mode of the requestor. It is
used for to help decide if the requestor has the
proper access rights to the file.

 /**** We also need to pass in the token of the
requestor ****/

PVOID
SystemBuffer

Read. This field is only used if the file is
being created and then it only specifies the
optional extended attributes for the file. If the
field is null the file will not be created with
extended attributes. The create operation
must complete with an error if there are any

NT OS/2 IRP Language Definition 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

problems with the extended attributes.

 For FAT there is a 64K limit to the size of the
extended attributes (as packed on the disk).
The create operation will complete with an
error if this limit is exceeded.

PIO_STATUS_BLOCK
UserIosb

Ignored.

PKEVENT
UserEvent

Ignored.

LARGE_INTEGER
AllocationSize

Read. This field is only used if the file is
being created and is ignored for directories
and for open operations. It specifies the
initial file allocation in bytes to allocate to the
file. This is not the same as the end-of-file
location.

PVOID
UserBuffer

Ignored.

Parameters within the IRP Stack:

Parameter type and name Description

UCHAR
MajorFunction

Read. Must be equal to IRP_MJ_CREATE.

UCHAR
MinorFunction

Ignored.

UCHAR
FunctionFlags

Ignored.

UCHAR
Control

Ignored.

ULONG
DesiredAccess

Read. This is the access mask that the user is
trying to acquire to the file. If the user is
trying to open a file the mask will be a
combination of the following values:

NT OS/2 IRP Language Definition 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 DELETE,
READ_CONTROL,
WRITE_DAC,
WRITE_OWNER,
SYNCHRONIZE,
FILE_READ_DATA,
FILE_WRITE_DATA,
FILE_APPEND_DATA,
FILE_READ_EA,
FILE_WRITE_EA,
FILE_EXECUTE,
FILE_READ_ATTRIBUTES, and
FILE_WRITE_ATTRIBUTES.

 If the user is trying to open a directory the
mask will be a combination of the following
values:

 DELETE,
READ_CONTROL,
WRITE_DAC,
WRITE_OWNER,
SYNCHRONIZE,
FILE_LIST_DIRECTORY,
FILE_ADD_FILE,
FILE_ADD_SUBDIRECTORY,
FILE_READ_EA,
FILE_WRITE_EA,
FILE_TRAVERSE,
FILE_DELETE_CHILD,
FILE_READ_ATTRIBUTES, and
FILE_WRITE_ATTRIBUTES.

 The driver must ensure that the combination
of the caller's privileges and requestor's mode
grants all of the desired accesses that the user
is trying to acquire.

ULONG
Options

Read. This field contains all of the different
create options and create disposition flags that
the user can specify in an NT call. The valid
flags and their meanings are listed below:

FILE_CREATE_DIRECTORY Read. Indicates that the user is creating a

NT OS/2 IRP Language Definition 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

new directory.

FILE_OPEN_DIRECTORY Read. Indicates that the user is opening an
existing directory.

FILE_WRITE_THROUGH Ignored, but saved away for use by
subsequent read and write operations to
the file object.

FILE_SEQUENTIAL_ONLY Ignored, but saved away for use by
subsequent read and write operations to
the file object.

FILE_MAPPED_IO Ignored, but saved away for use by
subsequent read and write operations to
the file object.

FILE_DISABLE_CACHING Ignored, but saved away for use by
subsequent read and write operations to
the file object.

FILE_SYNCHRONOUS_IO_ALERT Ignored.

FILE_SYNCHRONOUS_IO_NONALERT Ignored.

FILE_CREATE_TREE_CONNECTION Read. Only used by the network.

/**** need a complete description of this
parameter ****/

FILE_SUPERSEDE << 242 Read. Indicates that if the file already
exists it should be superseded, and if the
file does not exist it should be created.

FILE_CREATE << 24 Read. Indicates that if the file already
exists it is an error, and if the file does not
exist it should be created.

FILE_OPEN << 24 Read. Indicates that if the file already
exists it is to be opened, and if the file

2To test if the flags FILE_SUPERSEDE, FILE_OPEN, FILE_CREATE, and FILE_OPEN_IF are in
the options parameter the driver must first shift the flag 24 bits to the left and then do the test (e.g.,
Option & (FILE_SUPERSEDE << 24)).

NT OS/2 IRP Language Definition 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

does not exist it is an error.

FILE_OPEN_IF << 24 Read. Indicates that if the file already
exists it is to be opened, and if the file
does not exist it should be created.

/**** We need a list of the illegal flag
combinations, and state that they will never be
seen in an IRP ****/

USHORT
FileAttributes

Read. This field specifies the DOS file
attributes to use when creating or superseding
a file, and is ignored when opening an
existing file. It is a combination of any of the
following flags:

 FILE_ATTRIBUTE_READONLY
FILE_ATTRIBUTE_HIDDEN
FILE_ATTRIBUTE_SYSTEM
FILE_ATTRIBUTE_ARCHIVE
FILE_ATTRIBUTE_CONTROL, and
FILE_ATTRIBUTE_NORMAL

 The flag FILE_ATTRIBUTE_NORMAL
overrides all other file attribute flags. (i.e., if
the user specifies normal and readonly then
the file is created as a normal file and not
readonly).

USHORT
ShareAccess

Read. This field specifies the share mode
access between processes trying to open the
same file. All users that open a file for shared
access must specify the exact same share
flags. This is separate from their desired
access. For example a file opened shared
read, write, and delete, must be opened by all
users as shared read, write, and delete even
though the desired access might only specify
read access.

 The valid flags and their meanings are listed
below:

FILE_SHARE_READ Read. Indicates that the file can be
opened by others for read access. If the

NT OS/2 IRP Language Definition 17

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

file is already opened for shared read
access then other users can open it for
read access.

FILE_SHARE_WRITE Read. Indicates that the file can be
opened by others for write access. If the
file is already opened for shared write
access then other users can open it for
write access.

FILE_SHARE_DELETE Read. Indicates that the file can be
opened by others for delete access. If the
file is already opened for shared delete
access then other users can open it for
delete access.

FILE_SHARE_RENAME Read. Indicates that the file can be
renamed by others. If the file is already
opened for shared renamed access then
other users can rename the file.

 The test that a user requesting shared read, write,
or delete can be done by the Device Driver during
the create operation (i.e., a user is allowed read
access to a shared file if the shared access flags
match, shared read is specified, and the file's
security protection allows for read access). The
test for rename access must be deferred until the a
rename IRP is processed (see the Set Information
IRP description).

ULONG
EaLength

Read. This parameter is specified only if the
user is creating or superseding a file and has
specified an EA for the file. This parameter is
then the size, in bytes, of the EA set specified
by the user. (i.e., it is the size of the system
buffer parameter).

Iosb Return Status and Information:

The following status codes are used to complete the CREATE function.

Return status followed by

NT OS/2 IRP Language Definition 18

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

information field of IOSB Description

STATUS_SUCCESS
FILE_OPENED

Indicates that an existing file has been
successfully located and opened.

STATUS_SUCCESS
FILE_SUPERSEDED

Indicates that an existing file has been
successfully located and superseded.

STATUS_SUCCESS
FILE_CREATED

Indicates that an existing file (of the same
name) does not exist and that a new file
has been successfully created.

STATUS_ACCESS_DENIED
Ignored

Indicates that because of protection on the
file, parent directory, or volume access
has been denied to the file. This can also
occur if the caller specified options or
share access flags are not compatible with
either the file or the previous share access
that it was opened with.

STATUS_OBJECT_NAME_INVALID
Ignored

Indicates that the last name in the object's file
name field does not contain a syntactically
valid name (e.g., it's too long or contains
invalid characters).

STATUS_OBJECT_NAME_NOT_FOUND
Ignored

Indicates that the last name in the object's file
name field is not the name of an existing file.

STATUS_OBJECT_PATH_INVALID
Ignored

Indicates that a name within the path part of the
object's file name field does not contain a
syntactically valid name.

STATUS_OBJECT_PATH_NOT_FOUND
Ignored

Indicates that a name within the path part of the
object's file name field does not contain the name
of an existing directory.

STATUS_DISK_FULL_ERROR
Ignored

Indicates that because the disk is full the file
cannot be created. This can occur when disk
space cannot be allocated for the directory entry,
file node, or the extended attributes.

STATUS_DISK_FULL_WARNING
FILE_SUPERSEDED

Indicates that the file has been superseded but
because the disk is full the file cannot be given
the user specified file allocation size.

STATUS_DISK_FULL_WARNING Indictes that the file has been created but because

NT OS/2 IRP Language Definition 19

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_CREATED the disk is full the file cannot be given ths user
specified file allocation size.

STATUS_EA_INVALID
Ignored

Indicates that the EA structure passed into this
function is syntactically invalid.

NT OS/2 IRP Language Definition 20

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.3 Device Control

3.4 Directory Control(Notify Change Directory)

3.5 Directory Control(Query Directory)

3.6 File System Control(Dismount Volume)

3.7 File System Control(Lock Volume)

NT OS/2 IRP Language Definition 21

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.8 File System Control(Mount Volume)

The mount function is used mount a new disk volume. Its two input parameters are a device object and
an IRP. The device object parameter points to the Device Drivers original device object that is created
when the driver is initialized.

The mount operation can handle mounting new volume, and remounting a previously mounted
volume. The parameter description that follows assumes that it is processing a new volume. At the
end of the description we cover the updating required for the remount case.

Mount (
 IN PDEVICE_OBJECT DeviceObject,
 IN PIRP Irp
);

Parameters within the IRP:

Parameter type and name Description

PMDL
MdlAddress

Ignored.

ULONG
IrpFlags

Ignored.

PFILE_OBJECT
FileObject

Ignored.

IO_STATUS_BLOCK
IoStatus

Set. This receives the final return status of
the operation. The possible return status
values are listed later.

PEPROCESS
AlternateProcess

Ignored.

KPROCESSOR_MODE
RequestorMode

Ignored.

PVOID
SystemBuffer

Ignored.

PIO_STATUS_BLOCK
UserIosb

Ignored.

PKEVENT Ignored.

NT OS/2 IRP Language Definition 22

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

UserEvent

LARGE_INTEGER
AllocationSize

Ignored.

PVOID
UserBuffer

Ignored.

Parameters within the IRP Stack:

Parameter type and name Description

UCHAR
MajorFunction

Read. Must be equal to
IRP_MJ_FILE_SYSTEM_CONTROL.

UCHAR
MinorFunction

Read. Must be equal to
IRP_MN_MOUNT_VOLUME.

UCHAR
FunctionFlags

Ignored.

UCHAR
Control

Ignored.

PDEVICE_OBJECT
Vpb->DeviceObject

Set. If the mount is successful this field is set
the point to the newly allocated device object
for the volume. If the mount is unsuccessful
or this is a remount then this field is not
updated.

ULONG
Vpb->DeviceObject->Flags

Set. If the mount is successful then the flag
DO_DIRECT_IO is set in the newly created
device objects flags field. Setting this flag
allows the Device Driver to receive
unbuffered I/O requests for this volume.

ULONG
Vpb->SerialNumber

Set. If the mount is successful this field is set
to the serial number found on the volume. It
is ignored if the mount is unsuccessful or in
the case of a remount.

CHAR
Vpb->VolumeName[20]

Set. If the mount is successful this field is set
to the label found on the volume. If the
volume does not have a label then this field

NT OS/2 IRP Language Definition 23

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

should be set to all spaces.

 For FAT the volume label, if present, is found
in the root directory as a special dirent.

PDEVICE_OBJECT
DeviceObject

Read. This is the device object that the
Device Driver is to use when formulating
IRPs to read or write to the volume. It is also
called the target device object. If the volume
is mounted successful this value must be
remembered so the driver can handle
subsequent requests to the volume.

Iosb Return Status and Information:

The following status codes are used to complete the MOUNT function.

Return status followed by
information field of IOSB

Description

STATUS_SUCCESS
Ignored

Indicates that the volume has been
successful mounted.

STATUS_WRONG_VOLUME
Ignored

Indicates that the volume cannot be
mounted either because it does not
recognize the on-disk structure or the on-
disk structure has been currupted.

Mounting a new volume:

The following figure shows the major I/O structures after processing a successful mount request.

NT OS/2 IRP Language Definition 24

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 +---------------+<-------+
 Irp->DeviceObject - - -> | | |
 +---------------+ |
 |
 +---------------+<----+ |
 Irp->Vpb - - - - - - -> | | | |
 | DeviceObject |--+ | | |
 | SerialNumber | | | |
 | VolumeName | | | |
 +---------------+ | | |
 | | |
 +---------------+<-+ | |
 | Newly | | |
 | Allocated | | |
 | Device | | |
 | Object | | |
 |...............| | |
 | | | |
 | Device Driver |-----+ |
 | Private Data |--------+
 | |
 +---------------+

 The I/O structures after a mount operation

In the preceding figure the newly allocated device object has immediately following it a Device Driver
private data record that is for used only by the driver. This technique should be used in the driver to
keep track of the VPB and the device object where it is to send its read and write requests. It should
also be used to link together all of the mounted volumes serviced by the driver.

Remounting a volume:

By using the device driver private data record to maintain a link of all mounted volumes a Device
Driver can determine if a mount request for a volume matches a previously mounted volume (They
match if the both volume have the same serial number and volume label). The following figure shows
the major I/O structure after processing a remount.

NT OS/2 IRP Language Definition 25

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 +---------------+<-------+
 Irp->DeviceObject -> | | |
 +---------------+ |
 |
 +---------------+ |
 Irp->Vpb - - - - -> | | |
 | RealDevice |--------|----> +---+
 +---------------+ | +-> | |
 | | | |
 +---------------+<----+ | | | |
 | | | | | +---+
 | RealDevice |-----|--|--+
 | DeviceObject |--+ | |
 +---------------+ | | |
 | | |
 +---------------+<-+ | |
 | Previously | | |
 | Allocated | | |
 | Device | | |
 | Object | | |
 |...............| | |
 | | | |
 | Device Driver |-----+ |
 | Private Data |--------+
 | |
 +---------------+

 The I/O structures after a remount operation

The remount operation does not allocate any new structures, instead it it performs the following
operations:

 o The Device Drivers Private Data pointer to the target device object is changed to point to the
new target device object.

 o The RealDevice field of the Vpb that we previously mounted is set to the RealDevice field of
the new Vpb that was passed in as a parameter in the IRP.

 o The Irp->Vpb is deallocated from pool by the device driver, and complete the mount request
with STATUS_SUCCESS.

NT OS/2 IRP Language Definition 26

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.9 File System Control(Query Information File System)

3.10 File System Control(Set Information File System)

3.11 File System Control(Unlock Volume)

3.12 File System Control(Verify Volume)

3.13 Internal Device Control

3.14 Lock Control(Lock)

3.15 Lock Control(Unlock All)

3.16 Lock Control(Unlock Single)

3.17 Query Acl

3.18 Query Ea

3.19 Query Information

3.20 Query Volume Information

NT OS/2 IRP Language Definition 27

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.21 Read

3.22 Read Terminal

3.23 Set Acl

3.24 Set Ea

3.25 Set Information

3.26 Set New Size

3.27 Set Volume Information

3.28 Write

NT OS/2 IRP Language Definition 28

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History

Original Draft 1.0, December 15, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS/2 Kernel Specification

Author: David N. Cutler,
 Bryan M. Willman

Original Draft 1.0, March 8, 1989
Revision 1.1, March 16, 1989
Revision 1.2, March 29, 1989
Revision 1.3, April 18, 1989
Revision 1.4, May 4, 1989
Revision 1.5, May 8, 1989
Revision 1.6, August 14, 1989
Revision 1.7, November 15, 1989
Revision 1.8, November 16, 1989
Revision 1.9, November 17, 1989
Revision 1.10, January 6, 1990
Revision 1.11, June 6, 1990
Revision 1.12, September 19, 1990
Revision 1.13, March 11, 1991
Revision 1.14, May 2, 1991
Revision 1.15, May 28, 1991
Revision 1.16, June 18, 1991
Revision 1.17, August 7, 1991
Revision 1.18, August 8, 1991

NT OS/2 Kernel Specification iii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview... 1
1.1 Kernel Execution Environment.. 1
1.2 Kernel Use of Hardware Priority Levels 2
1.3 Primary Kernel Data Structures .. 3
1.4 Multiprocessor Synchronization .. 4

1.4.1 Executive Multiprocessor Synchronization........................ 6
1.4.1.1 Acquire Executive Spin Lock 6
1.4.1.2 Release Executive Spin Lock 7

1.5 Dispatching... 7
1.5.1 Dispatcher Database .. 8
1.5.2 Idle Thread... 8

2. Kernel Objects .. 9
2.1 Dispatcher Objects.. 9

2.1.1 Event Object... 9
2.1.1.1 Initialize Event... 11
2.1.1.2 Pulse Event.. 11
2.1.1.3 Read State Event ... 12
2.1.1.4 Reset Event ... 12
2.1.1.5 Set Event... 12

2.1.2 Mutual Exclusion Objects... 13
2.1.2.1 Mutant Object ... 14
2.1.2.1.1 Initialize Mutant ... 14
2.1.2.1.2 Read State Mutant.. 15
2.1.2.1.3 Release Mutant... 15
2.1.2.2 Mutex Object ... 16
2.1.2.2.1 Initialize Mutex ... 17
2.1.2.2.2 Read State Mutex.. 17
2.1.2.2.3 Release Mutex... 18
2.1.2.2.4 Mutex Contention Data... 19

2.1.3 Semaphore Object .. 19
2.1.3.1 Initialize Semaphore .. 20
2.1.3.2 Read State Semaphore... 20
2.1.3.3 Release Semaphore.. 20

2.1.4 Thread Object... 21
2.1.4.1 Initialize Thread... 24
2.1.4.2 Alert Thread... 26
2.1.4.3 Alert and Resume Thread... 27
2.1.4.4 Confine Thread .. 27
2.1.4.5 Delay Execution .. 28
2.1.4.6 Disable Queuing of APCs ... 29
2.1.4.7 Enable Queuing of APCs .. 29
2.1.4.8 Force Resumption of Thread 30

NT OS/2 Kernel Specification iv

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.1.4.9 Freeze Thread .. 30
2.1.4.10 Query Data Alignment Mode 31
2.1.4.11 Query Base Priority.. 32
2.1.4.12 Read State Thread ... 32
2.1.4.13 Ready Thread... 32
2.1.4.14 Resume Thread.. 33
2.1.4.15 Rundown Thread ... 33
2.1.4.16 Set Affinity Thread ... 34
2.1.4.17 Set Data Alignment Mode... 34
2.1.4.18 Set Base Priority .. 35
2.1.4.19 Set Priority Thread... 35
2.1.4.20 Suspend Thread .. 36
2.1.4.21 Terminate Thread .. 37
2.1.4.22 Test Alert Thread ... 37
2.1.4.23 Unfreeze Thread... 38
2.1.4.24 Thread Performance Data .. 39

2.1.5 Timer Object... 39
2.1.5.1 Initialize Timer... 39
2.1.5.2 Cancel Timer ... 40
2.1.5.3 Read State Timer ... 40
2.1.5.4 Set Timer... 40

2.2 Control Objects ... 41
2.2.1 Asynchronous Procedure Call (APC) Object 41

2.2.1.1 Initialize APC ... 43
2.2.1.2 Flush Queue APC .. 45
2.2.1.3 Insert Queue APC .. 46
2.2.1.4 Remove Queue APC ... 47

2.2.2 Deferred Procedure Call (DPC) Object 47
2.2.2.1 Initialize DPC... 48
2.2.2.2 Insert Queue DPC.. 49
2.2.2.3 Remove Queue DPC... 49

2.2.3 Device Queue Object .. 50
2.2.3.1 Initialize Device Queue... 51
2.2.3.2 Insert Device Queue... 51
2.2.3.3 Insert By Key Device Queue 52
2.2.3.4 Remove Device Queue.. 52
2.2.3.5 Remove Entry Device Queue 53

2.2.4 Interrupt Object ... 54
2.2.4.1 Initialize Interrupt.. 55
2.2.4.2 Connect Interrupt .. 58
2.2.4.3 Disconnect Interrupt.. 58
2.2.4.4 Synchronize Execution .. 59

2.2.5 Power Notify Object .. 60

NT OS/2 Kernel Specification v

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.2.5.1 Initialize Power Notify... 61
2.2.5.2 Insert Power Notify... 61
2.2.5.3 Remove Power Notify.. 62

2.2.6 Power Status Object ... 62
2.2.6.1 Initialize Power Status ... 63
2.2.6.2 Insert Power Status ... 63
2.2.6.3 Remove Power Status... 64

2.2.7 Process Object.. 64
2.2.7.1 Initialize Process .. 65
2.2.7.2 Attach Process ... 66
2.2.7.3 Detach Process .. 67
2.2.7.4 Exclude Process... 67
2.2.7.5 Include Process.. 68
2.2.7.6 Set Priority Process.. 68
2.2.7.7 Process Accounting Data ... 69

2.2.8 Profile Object.. 69
2.2.8.1 Initialize Profile .. 70
2.2.8.2 Start Profile ... 70
2.2.8.3 Stop Profile .. 71
2.2.8.4 Set System Profile Interval ... 71
2.2.8.5 Query System Profile Interval..................................... 72

3. Wait Operations.. 72
3.1 Wait For Multiple Objects.. 73
3.2 Wait For Single Object... 75

4. Miscellaneous Operations ... 77
4.1 Bug Check .. 77
4.2 Context Frame Manipulation... 78

4.2.1 Move Machine State To Context Frame 78
4.2.2 Move Machine State From Context Frame......................... 79

4.3 Fill Entry Translation Buffer.. 80
4.4 Flush Data Cache ... 81
4.5 Flush Entire Translation Buffer... 82
4.6 Flush Instruction Cache.. 82
4.7 Flush I/O Buffers.. 83
4.8 Flush Single Translation Buffer Entry 84
4.9 Freeze Execution... 86
4.10 Get Current APC Environment .. 86
4.11 Get Current IRQL.. 86
4.12 Get Previous Mode .. 86
4.13 Lower IRQL ... 87
4.14 Query System Time ... 87
4.15 Raise IRQL .. 87

NT OS/2 Kernel Specification vi

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4.16 Run Down Thread ... 88
4.17 Set System Time.. 88
4.18 Stall Execution.. 89
4.19 Unfreeze Execution ... 89

5. Intel x86 Specific Functions. ... 90
5.1 Load an Ldt for a process. ... 90
5.2 Set and Entry in a Process's Ldt. ... 90
5.3 Get an Entry from a Thread's Gdt.. 91

NT OS/2 Kernel Specification 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview

This specification describes the kernel layer of the NT OS/2 operating system. The
kernel is responsible for thread dispatching, multiprocessor synchronization,
hardware exception handling, and the implementation of low-level machine
dependent functions.

The kernel is used by the executive layer of the system to synchronize its activities
and to implement the higher levels of abstraction that are exported in user-level
API's.

Generally speaking, the kernel does not implement any policy since this is the
province of the executive. However, there are some places where policy decisions are
made by the kernel. These include the way in which thread priority is manipulated
to maximize responsiveness to dispatching events (e.g., the input of a character
from a keyboard).

The kernel executes entirely in kernel mode and is nonpageable. It guards access to
critical data by raising the processor Interrupt Request Level (IRQL) to an
appropriate level and then acquiring a spin lock.

The primary functions provided by the kernel include:

 o Support of kernel objects

 o Trap handling and exception dispatching

 o Interrupt handling and dispatching

 o Multiprocessor coordination and context switching

 o Power failure recovery

 o Miscellaneous hardware-specific functions

It is estimated that the kernel will be less than 48k bytes of resident nonpageable
code exclusive of the IEEE exception handling code.

1.1 Kernel Execution Environment

The kernel executes in the most privileged processor mode, usually at an Interrupt
Request Level (IRQL) of DISPATCH_LEVEL. The most privileged processor mode is
termed kernel mode.

\ On the N10 and the x86 architectures the most privileged processor mode
is called supervisor mode. However, in other architectures (e.g., MIPS), the

NT OS/2 Kernel Specification 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

most privileged processor mode is not called supervisor mode. Furthermore,
still other architectures include a supervisor mode, but it is not the most
privileged mode. Therefore, since it is intended that NT OS/2 be portable
and capable of running across several architectures, the most privileged
processor mode will be referred to as kernel mode. \

The kernel can execute simultaneously on all processors in a multiprocessor
configuration and synchronize access to critical regions as appropriate.

Software within the kernel is not preemptible and, therefore, cannot be context
switched, whereas all software outside the kernel is almost always preemptible and
context switchable. In general, executive software outside the kernel is not allowed
to raise the IRQL above APC_LEVEL. However, device drivers and executive spin
lock synchronization are exceptions to this rule.

The kernel is not pageable and cannot take page faults.

Software within the kernel is written in C and assembly language. Assembly
language is used for:

 o Trap handling

 o Spin locks

 o Context switching

 o Interval timer interrupt

 o Power failure interrupt

 o Interprocessor interrupt

 o I/O Interrupt dispatching

 o Machine check processing

 o Asynchronous Procedure Call dispatching

 o Deferred Procedure Call dispatching

 o A small piece of thread startup

 o A small piece of system initialization

It is estimated that the number of lines of assembly code within the kernel will be
less than 3k.

NT OS/2 Kernel Specification 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1.2 Kernel Use of Hardware Priority Levels

Hardware Interrupt Request Levels (IRQL's) are used to prioritize the execution of
the various kernel components. IRQL's are hierarchically ordered and each distinct
level disables interrupts on lower levels while the respective level is active. The IRQL
is raised when hardware and software interrupt requests are granted and by the
kernel when synchronization with the possible occurrence of an interrupt is desired.

The kernel uses the hardware Interrupt Request Levels (IRQL's) as follows:

LOW_LEVEL - Thread execution

APC_LEVEL - Asynchronous Procedure Call interrupt

DISPATCH_LEVEL - Dispatch and Deferred Procedure Call interrupt

WAKE_LEVEL - Wake system debugger interrupt

Device levels - Device interrupts

CLOCK2_LEVEL - Interval timer clock interrupt

IPI_LEVEL - Interprocessor interrupt

POWER_LEVEL - Power failure interrupt

HIGH_LEVEL - Machine check and bus error interrupts

The level LOW_LEVEL is reserved for normal thread execution and enables all other
interrupts.

The levels APC_LEVEL and DISPATCH_LEVEL are software interrupts and are
requested only by the kernel itself. They are located below all hardware interrupt
priority levels.

The level WAKE_LEVEL may or may not be present depending on the host hardware
configuration and capabilities. It is intended for use in notifying the kernel
debugger.

Device interrupt levels are generally placed between the levels WAKE_LEVEL and
CLOCK2_LEVEL.

The levels CLOCK2_LEVEL, IPI_LEVEL, POWER_LEVEL, AND HIGH_LEVEL are the
highest priority levels and are the most time critical.

NT OS/2 Kernel Specification 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

\ The exact specification of interrupt levels is dependent on the host system
architecture. The above discussion only defines the importance of the
various levels, and does not attempt to assign a numeric value of each level.
\

1.3 Primary Kernel Data Structures

The primary kernel data structures include:

 o Interrupt Dispatch Table (IDT) - This is a software maintained table that
associates an interrupt source with an Interrupt Service Routine (ISR).

 o Processor Control Registers (PCR's) - This is a set of four registers that appear
in the same physical address on each processor in a multiprocessor
configuration. These registers hold a pointer to the Processor Control Block
(PRCB), a pointer to the current thread's Thread Environment Block (TEB), a
pointer to the currently active thread, and a temporary location used by the
trap handler to save the contents of the stack pointer. On a single processor
implementation the PCR is located in main memory.

 o Processor Control Block (PRCB) - This structure holds per processor
information such as a pointer to the next thread selected for execution on the
respective processor. There is a PRCB for each processor in a multiprocessor
configuration. The address of this structure can always be obtained from a
fixed virtual address on any processor.

 o An array of pointers to PRCB's - This array is used to address the PRCB of
another processor. It is used when another processor must be interrupted to
performed some desired operation.

 o Kernel objects - These are the data abstractions that are necessary to control
processor execution and synchronization (e.g., thread object, mutex object,
etc.). Functions are provided to initialize and manipulate these objects in a
synchronized fashion.

 o Dispatcher database - This is the database that is required to record the
execution state of processors and threads. It is used by the thread dispatcher
to schedule the execution of threads on processors.

 o Timer queue - This is a list of timers that are due to expire at some future
point in time. The timer queue is actually implemented as a splay tree (nearly
balanced binary tree maintained by splay transformations).

 o Deferred Procedure Call (DPC) queue - This is a list of requests to call a
specified procedure when the IRQL falls below DISPATCH_LEVEL.

NT OS/2 Kernel Specification 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Power restoration notify and status queues - These are lists of power notify
and status objects that are to be acted upon if power fails and is later restored
without the contents of volatile memory being lost.

1.4 Multiprocessor Synchronization

At various stages during its execution, the kernel must guarantee that one, and only
one, processor at a time is active within a given critical region. This is necessary to
prevent code executing on one processor from simultaneously accessing and
modifying data that is being accessed and modified from another processor. The
mechanism by which this is achieved is called a spin lock.

Spin locks are used when mutual exclusion must exist across all processors and
context switching cannot take place. A spin lock takes its name from the fact that,
while waiting on the spin lock, software continually tries to gain entry to a critical
region and makes no progress until it succeeds.

Spin locks are implemented with a test and set operation on a lock variable. When
software executes a test and set operation and finds the previous state of the lock
variable free, entry to the associated critical region is granted. If, however, the
previous state of the lock variable is busy, then the test and set operation on the
lock variable is simply repeated until the previous state is found to be free.

\ The exact instructions that are used to implement spin locks are processor
architecture specific. In most architectures the test and set operation is not
repeated continuously, but rather once finding the lock busy, ordinary
instructions are used to poll the lock until it is free. Another test and set
operation is then performed to retest the lock. This guarantees a minimum of
bus contention during spin lock sequences. \

Spin locks can only be operated on from a safe interrupt request level. This means
that any attempt to acquire a particular spin lock must be at the highest IRQL from
which any other attempt to acquire the same spin lock could be made on the same
processor. If this restriction were not followed, then deadlock could occur when code
running at a lower IRQL acquired a spin lock and then was interrupted by a higher-
level interrupt whose Interrupt Service Routine (ISR) also attempted to acquire the
spin lock.

The kernel uses various spin locks to synchronize access to the objects and data
structures it supports. These include:

 o Dispatcher Database - The dispatcher database describes the scheduling state
of the system. Whenever a change is made to the dispatching state of the
system (e.g., the occurrence of an event), the dispatcher database spin lock
must be acquired at IRQL DISPATCH_LEVEL.

NT OS/2 Kernel Specification 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Power Restoration Notify Queue - The power restoration notify queue enables
a device driver to be asynchronously notified when power is restored after a
failure. Whenever an insertion or removal is made to/from this queue, the
power notify queue spin lock must be acquired at IRQL DISPATCH_LEVEL.

 o Power Restoration Status Queue - The power restoration status queue
provides the capability to have a specified boolean variable set to a value of
TRUE when power is restored after a failure. Whenever an insertion or
removal is made to/from this queue, the power status queue spin lock must
be acquired at IRQL POWER_LEVEL.

 o Device Queues - A device queue is used to pass an I/O Request Packet (IRP)
between a thread and a device driver. Whenever an insertion or removal is
made to/from a device queue, the associated device queue spin lock must be
acquired at IRQL DISPATCH_LEVEL.

 o Interrupts - Each connected interrupt object has a spin lock that prevents the
associated Interrupt Service Routine (ISR) from executing at the same time as
other device driver code that accesses the same device resources. Whenever
an interrupt occurs and the ISR executes, the associated spin lock must be
acquired at the IRQL of the interrupting source. Likewise, device driver code
must acquire the associated spin lock at the IRQL of the interrupting source
when synchronization with the ISR is required.

 o Processor Request Queue - Each processor has a request queue that is used
by other processors to signal an action to be performed. Whenever an entry is
inserted into or removed from this queue, the associated processor request
queue spin lock must be acquired at IRQL IPI_LEVEL.

 o Kernel Debugger - The kernel debugger is used to debug the kernel which can
be in execution on several processors simultaneously. Whenever the debugger
is entered, the kernel debugger spin lock must be acquired at IRQL
HIGH_LEVEL.

/ The actual implementation of spin locks may be optimized in a
uniprocessor system. This could be done by either generating the
system specifically for a uniprocessor system with conditionalized
code or by dynamically modifying the code at boot time such that only
IRQL is used to synchronize kernel execution. /

1.4.1 Executive Multiprocessor Synchronization

Executive software outside the kernel also has the requirement to synchronize
access to resources in a multiprocessor environment. Unlike the kernel, however,

NT OS/2 Kernel Specification 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

executive software can use kernel dispatcher objects (e.g., mutexes, semaphores,
events, etc.), as well as spin locks, to implement mutually exclusive access.

Kernel dispatcher objects allow the processor to be redispatched (context switched)
and should be used when the wait or access time to a resource is liable to be
lengthy (e.g. greater than 25 microseconds on an i860). Spin locks should be used
when the wait or access time to a resource is short and does not involve complicated
interactions with other code.

Executive spin locks could cause serious maintenance problems if not used
judiciously. In particular, no deadlock protection is performed and dispatching is
disabled while the executive owns a spin lock. Therefore, certain rules must be
followed by executive software when using spin locks:

 1. The code within a critical region that is guarded by an executive spin lock
must not be pageable and must not make any references to pageable data.

 2. An executive spin lock can only be acquired from IRQL's 0, APC_LEVEL, and
DISPATCH_LEVEL.

 3. The code within a critical region that is guarded by an executive spin lock
cannot call any external procedures, nor can it generate any software
conditions or hardware exceptions.

Programming interfaces that support executive spin locks include:

KeAcquireSpinLock - Acquire an executive spin lock
KeReleaseSpinLock - Release an executive spin lock.

1.4.1.1 Acquire Executive Spin Lock

An executive spin lock can be acquired with the KeAcquireSpinLock function:

VOID
KeAcquireSpinLock (
 IN PKSPIN_LOCK SpinLock,
 OUT PKIRQL OldIrql
);

Parameters:

SpinLock - A pointer to an executive spin lock.

OldIrql - A pointer to a variable that receives the previous IRQL.

NT OS/2 Kernel Specification 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The previous IRQL is saved in the OldIrql parameter, the current IRQL is raised to
DISPATCH_LEVEL, and the specified spin lock is acquired. The previous IRQL value
must be specified when the spin lock is released.

1.4.1.2 Release Executive Spin Lock

An executive spin lock can be released with the KeReleaseSpinLock function:

VOID
KeReleaseSpinLock (
 IN PKSPIN_LOCK SpinLock,
 IN KIRQL OldIrql
);

Parameters:

SpinLock - A pointer to an executive spin lock.

OldIrql - The IRQL at which the executive spin lock was acquired.

The specified spin lock is released and the current IRQL is set to the specified value.

1.5 Dispatching

The kernel dispatches threads for execution according to their software priority
level.

There are 32 levels of thread priority which are split into two classes:

 o Realtime

 o Variable

The priority of threads within the realtime priority class is not altered by the kernel.
However, as quantum end events occur, the threads within a level are round robin
scheduled.

The priority of threads within the variable priority class is altered by the kernel,
dependent on the execution profile of the respective threads. At each quantum end
event, the priority of the executing thread is decremented and a decision is made as
to whether it should be preempted by another thread. If it should be preempted to
execute a higher priority thread, then a context switch occurs. When a thread in the
variable priority class transitions from a Waiting state to a Ready state, it is given a
priority boost that is dependent on the type of event that caused the Wait to be

NT OS/2 Kernel Specification 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

satisifed. If the event was keyboard input, for instance, the thread would get a large
boost. However, if the event was file I/O it would be given a smaller boost.

When a thread is readied for execution, an attempt is made to dispatch the thread
on an idle processor. If an idle processor can be selected, then preference is given to
the last processor on which the thread executed.

If an idle processor is not available, then an attempt is made to find a processor that
should be preempted. This determination is made using the active summary and the
active matrix (these structures are described in the following two sections). If an
appropriate processor is located, then preference is given to the last processor on
which the thread executed.

If no processor can be preempted to execute the ready thread, the thread is inserted
at the end of the ready queue selected by its priority and the ready summary is
updated.

Giving preference to the last processor a thread executed on maximizes the chances
there is still thread data in the respective processor's secondary cache.

1.5.1 Dispatcher Database

The kernel maintains several data structures to aid in choosing which threads
should be active at any instance in time. These structures include:

 o Ready queues - There is a ready queue for each software priority level. Each
queue contains a list of threads that are ready to execute at that level.

 o Ready summary - A set that contains a TRUE member for each ready queue
that contains one or more threads.

 o Active matrix - The active matrix is a two-dimensional array that represents a
set of processors for each of the software priority levels. A member is TRUE in
the matrix if a processor is executing a thread at the corresponding priority
level.

 o Active summary - A set that contains a TRUE member for each priority class
that has one or more processors executing threads at that level.

 o Idle summary - A set that contains a TRUE member for each processor that is
currently idle.

 o Idle thread - A thread that is run when no other thread is available to execute
on a processor.

NT OS/2 Kernel Specification 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The ready summary is used to quickly locate a thread to execute when the currently
executing thread is terminated or transitions to a Waiting state.

The active summary is used to quickly determine if preemption should occur when a
thread transitions to a Ready state.

/ Since this determination is simple in a uniprocessor system, the active
summary and active matrix are only kept up to date and used on
configurations with multiple processors. /

1.5.2 Idle Thread

Each processor has an idle thread that can always execute. The idle thread has a
stack that is capable of nesting all interrupts and a software priority that is below
that of all other thread priority levels.

The idle thread is selected for execution when no other thread is available to
execute. The idle thread executes at DISPATCH_LEVEL and continually loops
looking for work that has been assigned to its processor. This work includes
processing the Deferred Procedure Call (DPC) queue and initiating a context switch
when another thread is selected for execution on the respective processor.

While an idle thread executes, the member in the idle summary selected by its
processor number is TRUE. This enables the kernel to quickly determine which
processors are executing idle threads.

2. Kernel Objects

The kernel exports a set of abstractions to the executive layer which are called
kernel objects. Kernel objects are represented by a control block that describes the
contents of each object. Kernel objects are used by the executive layer to construct
more complex objects that are exported in user level API's.

There are two types of kernel objects:

 1. Dispatcher objects

 2. Control objects

Dispatcher objects have a signal state (Signaled or Not-Signaled) and control the
dispatching and synchronization of system operations. These objects include the
event, mutant, mutex, semaphore, thread, and timer objects. Dispatcher objects can
be specified as arguments to the kernel Wait functions.

NT OS/2 Kernel Specification 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Control objects are used to control the operation of the kernel but do not affect
dispatching or synchronization. These objects include the Asynchronous Procedure
Call (APC), Deferred Procedure Call (DPC), device queue, interrupt, power notify,
power status, process, and profile objects.

The kernel neither allocates nor deallocates kernel object storage. It is the
responsibility of the executive layer to allocate an appropriate data structure and
call the kernel to initialize a specific kernel object type.

The kernel exports kernel object types to the executive layer so the executive can
allocate appropriately sized data structures and can access various read only data
items (e.g., linkage pointers).

The executive is not allowed to manipulate the writeable data portion of kernel
objects directly. Various interfaces are provided by the kernel to perform this type of
operation.

Kernel objects are referenced by pointers to the respective data structures. It is the
responsibility of the executive layer to synchronize the deallocation of kernel object
storage such that the kernel does not access an object after its storage has been
deleted.

2.1 Dispatcher Objects

This section describes the various types of dispatcher objects and the interfaces that
are provided to manipulate these objects.

2.1.1 Event Object

An event object is used to record the occurrence of an event and synchronize it with
some action that is to be performed.

There are two types of event objects:

 o synchronization

 o notification

A synchronization event object is used when it is desirable for a single waiter to
continue execution when the event is set to the Signaled state. The state of a
synchronization event object is automatically reset to the Not-Signaled state when a
Wait for the event object is satisfied.

NT OS/2 Kernel Specification 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Synchronization events provide an optimal way to implement mutual exclusion at
user level. An identical capability can be implemented using binary semaphores, but
requires calling the system each time mutual exclusion is desired.

Synchronization events can also be used to provide synchronization in
producer/consumer relationships where it is otherwise undesirable to use a
counting semaphore.

A notification event is used when it is desirable for all waiters to continue execution
when the event is set to the Signaled state. The state of a notification event object is
not altered when a Wait for the event object is satisfied and remains Signaled until
it is explicitly reset to the Not-Signaled state.

Notification events can be used to implement resource allocators where there is not
a one-to-one relationship between the release of a resource and the allocation of the
resource (e.g. a memory allocator).

Waiting on an event object causes the execution of the subject thread to be
suspended until the event object attains a state of Signaled.

Satisfying the Wait for a synchronization event object automatically causes the state
of the event object to be reset to the Not-Signaled state.

Satisfying the Wait for a notification event object does not cause the state of the
event object to change. Therefore, when a notification event object attains a state of
Signaled, an attempt is made to satisfy as many Waits as possible.

The state of an event object is controlled by a count value that is incremented each
time the event object is set to the Signaled state. Thus, the state of the event object
is Signaled when the count value is nonzero and Not-Signaled when the count value
is zero.

The count value indicates the number of times that the event object has been set to
a Signaled state since the last time it was reset to the Not-Signaled state.

Programming interfaces that support the event object include:

KeInitializeEvent - Initialize an event object
KePulseEvent - Set/reset event object state atomically
KeReadStateEvent - Read state of event object
KeResetEvent - Set event object to Not-Signaled state
KeSetEvent - Set event object to Signaled state

NT OS/2 Kernel Specification 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.1.1.1 Initialize Event

An event object can be initialized with the KeInitializeEvent function:

VOID
KeInitializeEvent (
 IN PKEVENT Event,
 IN EVENT_TYPE EventType,
 IN BOOLEAN State
);

Parameters:

Event - A pointer to a dispatcher object of type event.

EventType - The event type (NotificationEvent or SynchronizationEvent).

State - The initial state of the event.

The event object data structure for the specified event type is initialized with the
specified initial state.

2.1.1.2 Pulse Event

An event object can be atomically set to a Signaled state and then reset to a Not-
Signaled state with the KePulseEvent function:

LONG
KePulseEvent (
 IN PKEVENT Event,
 IN KPRIORITY Increment,
 IN BOOLEAN Wait
);

Parameters:

Event - A pointer to a dispatcher object of type event.

Increment - The priority increment that is to be applied if setting the event
causes a Wait to be satisfied.

Wait - A boolean value that specifies whether the call to KePulseEvent will be
IMMEDIATELY followed by a call to one of the kernel Wait functions.

NT OS/2 Kernel Specification 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The function atomically sets the state of the event object to Signaled, attempts to
satisfy as many Waits as possible for the event object, and then resets the state of
the event object to Not-Signaled.

The previous state of the event object is returned as the function value. If the
previous state of the event object was Signaled, then a nonzero count value is
returned. Otherwise, a value of zero is returned.

If the wait parameter is TRUE, then the return to the caller is executed without
lowering IRQL or releasing the dispatcher database spin lock. Thus the call to
KePulseEvent MUST be IMMEDIATELY followed by a call to one of the kernel Wait
functions. This capability is provided to allow the executive to set an event and Wait
as one atomic operation which prevents a possible superfluous context switch.

2.1.1.3 Read State Event

The current state of an event object can be read with the KeReadStateEvent
function:

LONG
KeReadStateEvent (
 IN PKEVENT Event
);

Parameters:

Event - A pointer to a dispatcher object of type event.

The current state of the event object is returned as the function value. If the current
state of the event object is Signaled, then a nonzero count value is returned.
Otherwise, a value of zero is returned.

2.1.1.4 Reset Event

An event object can be reset to a Not-Signaled state with the KeResetEvent
function:

LONG
KeResetEvent (
 IN PKEVENT Event
);

Parameters:

Event - A pointer to a dispatcher object of type event.

NT OS/2 Kernel Specification 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The previous state of the event object is returned as the function value and the state
of the event object is reset to Not-Signaled (i.e., the count value is set to zero). If the
previous state of the event object was Signaled, then a nonzero count value is
returned. Otherwise, a value of zero is returned.

2.1.1.5 Set Event

An event object can be set to a Signaled state with the KeSetEvent function:

LONG
KeSetEvent (
 IN PKEVENT Event,
 IN KPRIORITY Increment,
 IN BOOLEAN Wait
);

Parameters:

Event - A pointer to a dispatcher object of type event.

Increment - The priority increment that is to be applied if setting the event
causes a Wait to be satisfied.

Wait - A boolean value that specifies whether the call to KeSetEvent will be
IMMEDIATELY followed by a call to one of the kernel Wait functions.

The previous state of the event object is returned as the function value and the state
of the event is set to Signaled (i.e., the count value is incremented). If the previous
state of the event object was Signaled, then a nonzero count value is returned.
Otherwise, a value of zero is returned.

Setting an event object causes the event to attain a Signaled state, and therefore, an
attempt is made to satisfy as many Waits as possible for the event object.

If the Wait parameter is TRUE, then the return to the caller is executed without
lowering IRQL or releasing the dispatcher database spinlock. Thus the call to
KeSetEvent MUST be IMMEDIATELY followed by a call to one of the kernel Wait
functions. This capability is provided to allow the executive to set an event and Wait
as one atomic operation which prevents a possible superfluous context switch.

2.1.2 Mutual Exclusion Objects

The kernel provides two objects for controlling mutually exclusive access to a
resource; the mutant object and the mutex object.

NT OS/2 Kernel Specification 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The mutant object is intended for use in providing a user mode mutual exclusion
mechanism that has ownership semantics, but it can also be used in kernel mode.

The mutex object can only be used in kernel mode and is intended to provide a
deadlock-free mutual exclusion mechanism with ownership and other special
system semantics.

The state of mutant and mutex objects is controlled by a count. When the count is
one, the mutant or mutex object is in the Signaled state, the mutant or mutex object
is not owned, and exclusive access to the corresponding resource can be obtained
by specifying the mutant or mutex object in a kernel Wait function. When the count
is not one, the mutant or mutex object is in the Not-Signaled state and any attempt
to acquire the mutant or mutex object will cause the subject thread to wait until the
mutant or mutex object count is one.

Mutant and mutex objects are similar in that they both provide mutual exclusion
mechanisms with recursive ownership capability. They have significant differences,
however, which dictate the support of two separate object types. These differences
include the following:

 o Mutex objects have a level number which is used to prevent deadlock,
whereas mutant objects have no level number.

 o Mutant objects have an abandoned status and can be released by a thread
other than the owner, whereas mutex objects do not have an abandoned
status and can only be released by the owner thread.

 o Owning a mutex object prevents the owning thread's process from leaving the
balance set, whereas owning a mutant object does not affect the swapability of
the parent process.

 o Owning a mutex object causes the priority of the owning thread to be raised to
the greater of its current priority and the lowest realtime priority, whereas
owning a mutant object does not affect the owner thread's priority in any way.

 o Owning a mutex object prevents the delivery of kernel mode APCs, whereas
owning a mutant object does not affect the delivery of kernel mode APCs.

2.1.2.1 Mutant Object

Waiting on (acquiring) a mutant object causes the execution of the subject thread to
be suspended until the mutant object attains a state of Signaled. Satisfying the Wait
for a mutant object causes the state of the mutant object to become Not-Signaled.

NT OS/2 Kernel Specification 17

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Threads are allowed to recursively acquire mutant objects that they already own. A
recursively acquired mutant object must be released the same number of times it
was acquired before it will again attain the state of Signaled.

Mutant objects can be exported to user mode for providing a mutual exclusion
mechanism with ownership semantics.

Programming interfaces that support the mutant object include:

KeInitializeMutant - Initialize a mutant object
KeReadStateMutant - Read the state of a mutant object
KeReleaseMutant - Release ownership of a mutant object

2.1.2.1.1 Initialize Mutant

A mutant object can be initialized with the KeInitializeMutant function:

VOID
KeInitializeMutant (
 IN PKMUTANT Mutant,
 IN BOOLEAN InitialOwner
);

Parameters:

Mutant - A pointer to a dispatcher object of type mutant.

InitialOwner - A boolean variable that determines whether the current thread is
to be the initial owner of the mutant object.

If the value of the InitialOwner parameter is TRUE, then the mutant object data
structure is initialized with the current thread as the owner and an initial state of
Not-Signaled. Otherwise, the mutant object data structure is initialized as unowned
with an initial state of Signaled.

2.1.2.1.2 Read State Mutant

The current state of a mutant object can be read with the KeReadStateMutant
function:

NT OS/2 Kernel Specification 18

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

LONG
KeReadStateMutant (
 IN PKMUTANT Mutant
);

Parameters:

Mutant - A pointer to a dispatcher object of type mutant.

The current state of the mutant object is returned as the function value. If the
return value is one, then the state of the mutant object is Signaled. Otherwise, the
state of the mutant object is Not-Signaled.

2.1.2.1.3 Release Mutant

A mutant object can be released with the KeReleaseMutant function:

LONG
KeReleaseMutant (
 IN PKMUTANT Mutant,
 IN KPRIORITY Increment,
 IN BOOLEAN Abandoned,
 IN BOOLEAN Wait
);

Parameters:

Mutant - A pointer to a dispatcher object of type mutant.

Increment - The priority increment that is to be applied if releasing the mutant
object causes a Wait to be satisfied.

Abandoned - A boolean value that specifies whether the release of the mutant
object is to be forced.

Wait - A boolean variable that specifies whether the call to KeReleaseMutant
will be IMMEDIATELY followed by a call to one of the kernel Wait
functions.

If the value of the Abandoned parameter is TRUE, then the release of the mutant
object is unconditional and can be requested by a thread other than the owner of
the mutant object. The fact that the mutant object is being abandoned is recorded
in the mutant object and is returned by the kernel Wait services when ownership of
the mutant object is granted to another thread. Once set, the abandoned status of a

NT OS/2 Kernel Specification 19

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

mutant object cannot be cleared and is thereafter always returned by the kernel
Wait services.

If the value of the Abandoned parameter is FALSE, then only the owning thread can
release the mutant object. Any attempt to release the mutant object made by a
thread other than the owner, will cause an exception to be raised. If the mutant
object has previously been abandoned, then the exception STATUS_ABANDONED is
raised. Otherwise, the exception STATUS_MUTANT_NOT_OWNED is raised.

The previous state of the mutant object is returned as the function value.

If the value of the Abandoned parameter is TRUE, then the state of the mutant
object is set to Signaled and the return value is not meaningful.

If the value of the Abandoned parameter is FALSE, then the new state of the mutant
object can be determined by the value returned. If the returned value is zero, then
the mutant object was actually released and attained a state of Signaled. Otherwise,
the mutant object was not released and still has a state of Not-Signaled (i.e., the
mutant object has been recursively acquired and has not yet been released the
proper number of times to cause it to attain a Signaled state).

If the mutant object attains a Signaled state, then an attempt is made to satisfy a
Wait for the mutant object.

If the mutant object attains a Signaled state and was previously owned by a thread,
then the mutant object is removed from the list of mutant objects owned by the
subject thread.

If the value of the Wait parameter is TRUE, then the return to the caller is executed
without lowering IRQL or releasing the dispatcher database spin lock. Thus the call
to KeReleaseMutant MUST be IMMEDIATELY followed by a call to one of the kernel
Wait functions. This capability is provided to allow the executive to release a mutant
object and Wait as one atomic operation which prevents a possible superfluous
context switch.

2.1.2.2 Mutex Object

Waiting on (acquiring) a mutex object causes the execution of the subject thread to
be suspended until the mutex object attains a state of Signaled. Satisfying the Wait
for a mutex object causes the state of the mutex object to become Not-Signaled and
disables the delivery of normal kernel APCs to the subject thread.

If the subject thread did not previously own any mutexes, then the current
execution priority of the thread is saved and then raised to the maximum of its
current priority and the lowest realtime priority. This ensures that the thread will

NT OS/2 Kernel Specification 20

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

have a very high execution priority while it executes in a critical section and
prevents the effects of priority inversion. When the thread releases the last mutex it
owns, its priority is restored to the saved value.

Mutex ownership also prevents the owning thread's process from being removed
from the balance set. If the balance set manager selects the process for removal
from the balance set, all threads within the process that own mutexes will be
allowed to continue execution until they no longer own any mutexes. This ensures
that access to critical resources is not blocked because a thread belonging to a
process that has been removed from the balance set owns one or more mutexes.

Each mutex object has a level number. This level number is used to prevent
possible deadlock. When an attempt is made to acquire a mutex object, the level
number of the mutex object must be higher (numerically) than the highest level
number of any mutex object owned by the subject thread. If this condition is not
met, then a system bug check occurs.

Level number checking is included mainly for debugging the system while it is
under development. It may or may not be conditionalized out in a production
system.

Threads are allowed to recursively acquire mutex objects that they already own. For
this case level number checking does not occur since deadlock is not possible. A
recursively acquired mutex object must be released the same number of times it
was acquired before it will again attain the state of Signaled.

Mutex objects are not exported by the executive to user mode and are only available
for use by the executive layer itself. Furthermore, the executive is not allowed to
acquire a mutex object and then return to user mode while retaining ownership of
the mutex.

Programming interfaces that support the mutex object include:

KeInitializeMutex - Initialize a mutex object
KeReadStateMutex - Read state of mutex object
KeReleaseMutex - Release ownership of mutex object

2.1.2.2.1 Initialize Mutex

A mutex object can be initialized with the KeInitializeMutex function:

NT OS/2 Kernel Specification 21

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
KeInitializeMutex (
 IN PKMUTEX Mutex,
 IN ULONG Level
);

Parameters:

Mutex - A pointer to a dispatcher object of type mutex.

Level - The level number that is to be assigned to the mutex.

The mutex object data structure is initialized with the specified level number and an
initial state of Signaled.

2.1.2.2.2 Read State Mutex

The current state of a mutex object can be read with the KeReadStateMutex
function:

LONG
KeReadStateMutex (
 IN PKMUTEX Mutex
);

Parameters:

Mutex - A pointer to a dispatcher object of type mutex.

The current state of the mutex object is returned as the function value. If the return
value is one, then the state of the mutex object is Signaled. Otherwise, the state of
the mutex object is Not-Signaled.

2.1.2.2.3 Release Mutex

A mutex object can be released with the KeReleaseMutex function:

NT OS/2 Kernel Specification 22

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

LONG
KeReleaseMutex (
 IN PKMUTEX Mutex,
 IN BOOLEAN Wait
);

Parameters:

Mutex - A pointer to a dispatcher object of type mutex.

Wait - A boolean variable that specifies whether the call to KeReleaseMutex
will be IMMEDIATELY followed by a call to one of the kernel Wait
functions.

The previous state of the mutex object is returned as the function value. The state is
returned as an integer value. If the returned value is zero, then the mutex object
was actually released and attained a state of Signaled. Otherwise, the mutex object
was not released and still has a state of Not-Signaled (i.e the mutex object has been
recursively acquired and has not yet been released the proper number of times to
cause it to attain a Signaled state).

If the mutex object attains a Signaled state, then an attempt is made to satisfy a
Wait for the mutex object.

A mutex object can only be released by the subject thread that owns the mutex. If
an attempt is made to release a mutex that is not owned by the subject thread, then
a bug check will occur.

A mutex object can only be released if it is currently owned. An attempt to release a
mutex object whose current state is Signaled, will also cause a bug check to occur.

If the mutex object attains a Signaled state, then the mutex object is removed from
the list of mutexes owned by the subject thread. If the thread's owned mutex list
does not contain any more entries, then the thread's original priority is restored (the
priority that was previously saved) and a kernel APC is requested if the thread's
kernel APC queue contains one or more entries.

If the mutex object attains a Signaled state, the mutex was the last one owned by
the subject thread, and the thread's process has been selected for removal from the
balance set, then a new thread is selected for execution, the subject thread is
inserted into its process's ready queue, and a context switch to the selected thread
is performed. If no other threads in the process own mutexes, then the balance set
event is set in the process object to notify the balance set manager that it can
remove the process from the balance set.

NT OS/2 Kernel Specification 23

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

If the value of the Wait parameter is TRUE, then the return to the caller is executed
without lowering IRQL or releasing the dispatcher database spin lock. Thus the call
to KeReleaseMutex MUST be IMMEDIATELY followed by a call to one of the kernel
Wait functions. This capability is provided to allow the executive to release a mutex
and Wait as one atomic operation which prevents a possible superfluous context
switch.

2.1.2.2.4 Mutex Contention Data

Two counters are maintained for each mutex object to determine the activity level of
the mutex object and any contention that may occur. One of the counters records
the number of times the mutex object has been acquired and the other the number
of times an attempt to acquire the mutex object resulted in the execution of the
subject thread being suspended.

2.1.3 Semaphore Object

A semaphore object is used to control access to a resource, but not necessarily in a
mutually exclusive fashion. A semaphore object acts as a gate through which a
variable number of threads may pass concurrently, up to a specified limit. The gate
is open (Signaled state) as long as there are resources available. When the number
of resources specified by the limit are concurrently in use, the gate is closed (Not-
Signaled state).

The gating mechanism of a semaphore object is controlled by a count. When the
count is greater than zero, the semaphore object is in the Signaled state, and one or
more threads may pass through the gate by specifying the semaphore in a kernel
Wait function. When the count is zero, the semaphore object is in the Not-Signaled
state, the gate is closed, and any attempt to pass through the gate will cause the
subject thread to Wait until the semaphore count is greater than zero.

Waiting on (acquiring) a semaphore object causes the execution of the subject
thread to be suspended until the semaphore object attains a Signaled state.
Satisfying the Wait for a semaphore object causes the semaphore count to be
decremented.

A semaphore object with a limit of one can be used to provide mutual exclusion
semantics since only one thread will be allowed to pass through the gate
concurrently. This is not, however, the same functionality as provided by mutex
objects since there is no ownership (i.e., any thread can release the semaphore),
there is no level number checking (i.e., deadlock is not prevented), and the priority
of the subject thread is not raised (i.e., priority inversion problems can arise).

A semaphore object with a limit of one can also be used as a "synchronization" event
provided the semaphore is never "over Signaled" (i.e., no thread attempts to release

NT OS/2 Kernel Specification 24

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

the semaphore while it is already in the Signaled state). For this case, the
semaphore is normally in a Not-Signaled state and is used to record the occurrence
of an event by releasing the semaphore. Waiting on the semaphore object suspends
the subject thread until the semaphore attains a Signaled state and causes the
semaphore to be immediately set to the Not-Signaled state.

Programming interfaces that support the semaphore object include:

KeInitializeSemaphore - Initialize a semaphore object
KeReadStateSemaphore - Read state of semaphore
KeReleaseSemaphore - Adjust semaphore object count

2.1.3.1 Initialize Semaphore

A semaphore object can be initialized with the KeInitializeSemaphore function:

VOID
KeInitializeSemaphore (
 IN PKSEMAPHORE Semaphore,
 IN LONG Count,
 IN LONG Limit
);

Parameters:

Semaphore - A pointer to a dispatcher object of type semaphore.

Count - The initial count value to be assigned to the semaphore. This value
must be positive.

Limit - The maximum count value that the semaphore can attain. This value
must be positive.

The semaphore object data structure is initialized with the specified initial count
and limit.

2.1.3.2 Read State Semaphore

The current state of a semaphore object can be read with the
KeReadStateSemaphore function:

NT OS/2 Kernel Specification 25

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

LONG
KeReadStateSemaphore (
 IN PKSEMAPHORE Semaphore
);

Parameters:

Semaphore - A pointer to a dispatcher object of type semaphore.

The current signal state of the semaphore object is returned as the function value. If
the return value is zero, then the current state of the semaphore object is Not-
Signaled. Otherwise, the current state of the semaphore object is Signaled.

2.1.3.3 Release Semaphore

A semaphore object can be released with the KeReleaseSemaphore function:

LONG
KeReleaseSemaphore (
 IN PKSEMAPHORE Semaphore,
 IN KPRIORITY Increment,
 IN LONG Adjustment,
 IN BOOLEAN Wait
);

Parameters:

Semaphore - A pointer to a dispatcher object of type semaphore.

Increment - The priority increment that is to be applied if releasing the
semaphore causes a Wait to be satisfied.

Adjustment - The value that is to be added to the current semaphore count.
This value must be positive.

Wait - A boolean value that specifies whether the call to KeReleaseSemaphore
will be IMMEDIATELY followed by a call to one of the kernel Wait
functions.

Releasing a semaphore object causes the semaphore count to be augmented by the
value of the Adjustment parameter. If the resultant value is greater than the limit of
the semaphore object, then the count is not adjusted and the exception
STATUS_SEMAPHORE_COUNT_EXCEEDED is raised.

NT OS/2 Kernel Specification 26

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Augmenting the semaphore object count causes the semaphore to attain a state of
Signaled, and therefore, an attempt is made to satisfy as many Waits as possible for
the semaphore object.

The previous state of the semaphore object is returned as an integer function value.
If the return value is zero, then the previous state of the semaphore object was Not-
Signaled. Otherwise, the previous state of the semaphore object was Signaled.

If the value of the wait parameter is TRUE, then the return to the caller is executed
without lowering IRQL or releasing the dispatcher database spin lock. Thus the call
to KeReleaseSemaphore MUST be IMMEDIATELY followed by a call to one of the
kernel Wait functions. This capability is provided to allow the executive to release a
semaphore and Wait as one atomic operation which prevents a possible superfluous
context switch.

2.1.4 Thread Object

A thread object is the agent that executes program code and is dispatched for
execution by the kernel.

Each thread is associated with a process object which specifies the virtual address
space mapping for the thread and accumulates thread execution time. Several
thread objects can be associated with a single process object which enables the
concurrent execution of multiple threads in a single address space (possibly
simultaneous execution in a multiprocessor system).

A thread executes in kernel and user mode, usually at IRQL 0, and is dispatched for
execution according to its software priority.

Although there is no actual difference, threads are usually referred to as either user
threads or system threads. A user thread executes mostly in user mode and within
the user part of the virtual address space. It enters kernel mode only to execute
system services. System threads execute only in kernel mode and usually within the
system part of the virtual address space. There are some system threads, however,
that also use the user part of the address space to store information and execute
code from. An example of such a thread is a file system.

The context of a thread typically consists of the following:

 o Integer registers

 o Floating point registers

 o Architecture-dependent special registers

NT OS/2 Kernel Specification 27

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o A user stack pointer

 o A kernel stack pointer

 o A program counter

 o A processor status

 o A floating point status

\ The exact context of a thread is host architecture dependent. \

Each thread has a set of processors on which it can execute. This is referred to as
the processor affinity. When a thread is initialized it is given the processor affinity of
its parent process. Thereafter, the affinity of the thread can be set to any proper
subset of the parent process's affinity.

A thread can be in one of six dispatcher, or scheduling, states:

 o Initialized

 o Ready

 o Standby

 o Running

 o Waiting

 o Terminated

A thread enters the Initialized state when its thread object is initialized. A thread in
the Initialized state can transition only to the Ready state.

A thread is in a Ready state when it is eligible to be selected for execution on a
processor. A thread in the Ready state is enqueued on the dispatcher ready queue
selected by its priority and can transition from the Ready state to the Standby state.

A thread is in a Standby state when it has been selected to execute on a processor,
but the actual context switch to the thread has not yet occurred. A thread in the
Standby state can transition to the Ready and Running states.

NT OS/2 Kernel Specification 28

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

A thread is in a Running state when it is currently being executed by a processor. A
thread in the Running state can transition to the Ready, Waiting, and Terminated
states.

A thread is in a Waiting state when it is waiting for one or more dispatcher objects
to attain a state of Signaled. A thread in the Waiting state can transition to the
Ready state.

A thread in the Terminated state has completed its execution and the corresponding
thread object will be deleted by the executive at the appropriate time.

/ Note that is possible to reuse a thread object that has a state of
Terminated by simply reinitializing the thread object which will cause it to
enter the Initialized state. /

A thread's parent process is either in the balance set (Included) or not in the
balance set (Excluded). The balance set is that set of processes and threads that are
currently eligible for being considered for execution. Processes and threads that are
not in the balance set are not considered for execution until they reenter the
balance set.

The balance set is managed by the balance set manager. In a single user system
there will be no balance set manager. Server systems, however, present the problem
of having to manage more processes than there is space for in main memory without
incurring excessive paging. Therefore, the balance set manager is responsible for
determining when excessive paging is occurring and then selecting the appropriate
processes to remove from the balance set.

/ There may not be a balance set manager in the first release of NT OS/2.
We may rely instead on working set trimming to obtain necessary memory
when excessive paging levels are observed. /

A thread is dispatched for execution according to its software priority level. Higher
priority threads are given preference and preempt the execution of lower priority
threads.

There are two classes of priority: 1) realtime, and 2) variable. Each of these classes
contains several levels of thread priority.

In the realtime priority class, a thread executes at a priority level selected by the
user. The system makes no attempt to alter or boost the priority as the thread
executes and enters and leaves wait states. The realtime priority levels are higher
than all the levels in the variable priority class. The realtime priority class is
intended for use by time-critical threads that require a response time that is
guaranteed by application design.

NT OS/2 Kernel Specification 29

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The variable priority class is where most threads execute. As a thread executes and
experiences quantum end events, its priority decays. When a thread enters a
Waiting state and is subsequently awakened, it is given a priority boost that is
commensurate with the importance of the event that caused the Wait to be satisifed
(e.g., a large boost is given for the completion of keyboard input but a small one is
given for completing disk I/O). A thread therefore, runs at a high priority as long as
it is interactive. When it becomes compute bound, its priority rapidly decays, and it
is considered only after other, higher priority threads. In addition, the kernel
arbitrarily boosts the priority of threads that are compute bound and haven't
received any processor time for a given period of time.

As a thread executes, performance and accounting data are collected for the thread
and for the thread's parent process.

Programming interfaces that support the thread object include:

KeInitializeThread - Initialize a thread object
KeAlertThread - Set thread alert for specified mode
KeAlertResumeThread - Alert and resume thread object
KeConfineThread - Confine thread object execution
KeDelayExecutionThread - Delay execution of thread object
KeDisableApcQueuingThread - Disable queuing of APCs
KeEnableApcQueuingThread - Enable queuing of APCs
KeForceResumeThread - Force resumption of thread execution
KeFreezeThread - Freeze thread object execution
KeQueryAutoAlignmentThread - Query alignment mode of thread object
KeQueryBasePriorityThread - Query base priority of thread object
KeReadStateThread - Read state of thread object
KeReadyThread - Ready thread object for execution
KeResumeThread - Resume thread object execution
KeRundownThread - Run down thread object
KeSetAffinityThread - Set thread object processor set
KeSetAutoAlignmentThread - Set alignment mode of thread object
KeSetBasePriorityThread - Set base priority of thread object
KeSetPriorityThread - Set priority of thread object
keSuspendThread - Suspend thread object exection
KeTerminateThread - Terminate thread object execution
KeTestAlertThread - Test if thread alerted for mode
KeUnfreezeThread - Unfreeze thread object execution

2.1.4.1 Initialize Thread

A thread object can be initialized with the KeInitializeThread function:

NT OS/2 Kernel Specification 30

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
KeInitializeThread (
 IN PKTHREAD Thread,
 IN PVOID KernelStack,
 IN PKSYSTEM_ROUTINE SystemRoutine,
 IN PKSTART_ROUTINE StartRoutine OPTIONAL,
 IN PVOID StartContext OPTIONAL,
 IN PCONTEXT ContextFrame OPTIONAL,
 IN PVOID Teb OPTIONAL,
 IN PKPROCESS Process
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

KernelStack - A pointer to the base (highest address) of a kernel stack on which
the initial context for the thread is to be constructed.

SystemRoutine - A pointer to a function that is to called when the thread is
scheduled for execution. This routine performs executive initialization.

StartRoutine - An optional pointer to a function that is to be called after the
executive has finished initializing the thread.

StartContext - A optional pointer to an arbitrary data structure which will be
passed to the StartRoutine function as a parameter.

ContextFrame - An optional pointer to a context frame which contains the
initial user mode state of the thread. This parameter is specified if the
thread will execute in user mode. If this parameter is not specified, then
the Teb parameter is ignored.

Teb - An optional pointer to the user mode thread environment block. This
parameter is ignored if the ContextFrame parameter is not specified.

Process - A pointer to a control object of type process.

The function specified by the SystemRoutine parameter has the following type
definition:

typedef
VOID
(*PKSYSTEM_ROUTINE) (

NT OS/2 Kernel Specification 31

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 IN PKSTART_ROUTINE StartRoutine OPTIONAL,
 IN PVOID StartContext OPTIONAL
);

Parameters:

StartRoutine - An optional pointer to a function that is to be called after the
executive has finished initializing the thread.

StartContext - A optional pointer to an arbitrary data structure which will be
passed to the StartRoutine function as a parameter.

The function specified by the StartRoutine parameter has the following type
definition:

typedef
VOID
(*PKSTART_ROUTINE) (
 IN PVOID StartContext
);

Parameters:

StartContext - A pointer to an arbitrary data structure that was specified when
the thread object was initialized.

The thread object data structure is initialized and the thread's dispatcher state is
set to Initialized. The thread's quantum, affinity, data alignment handling mode,
current priority, and base priority are taken from the parent process object.

A kernel context frame is built on the specified kernel stack which will cause the
thread to begin execution in the kernel thread startup routine. The kernel thread
startup routine will call the specified start routine which is responsible for
initializing the executive state of the thread as necessary. If the thread is a system
thread, then the executive startup routine will call the thread's entry point directly.
If, however, the thread is a user thread, then the executive startup routine returns
control to the kernel thread startup routine which restores the user mode state and
continues execution of the thread in user mode.

A thread begins execution in kernel mode at IRQL APC_LEVEL with the queuing of
APCs enabled. It is the responsibility of the executive to lower IRQL to 0 as soon as
thread initialization is complete.

NT OS/2 Kernel Specification 32

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Once a thread object has been initialized, it can be readied for execution with the
KeReadyThread function.

2.1.4.2 Alert Thread

A thread object can be alerted with the KeAlertThread function:

BOOLEAN
KeAlertThread (
 IN PKTHREAD Thread,
 IN KPROCESSOR_MODE AlertMode
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

AlertMode - The processor mode (UserMode or KernelMode) for which the thread
is to be alerted.

Alerting a thread object causes the alert variable associated with the specified
processor mode to be set to a value of TRUE.

If the thread object is currently in a Wait state, the Wait is alertable, and the
specified processor mode is less than or equal to the Wait mode, then the thread is
Unwaited with a completion status of STATUS_ALERTED and the specified alert
variable is set to a value of FALSE.

Alerts provide a way in which to break into a thread's execution at well-defined
points. These points occur when the thread Waits in an alertable state and when
the thread polls the alerted flag using the KeTestAlertThread function.

The previous value of the alert variable for the specified processor mode is returned
as the function value. If the return value is TRUE, then the subject thread was
already alerted for the specified processor mode. If the return value is FALSE, then
the subject thread was not previously alerted.

2.1.4.3 Alert and Resume Thread

A thread object can be kernel mode alerted and its execution resumed with the
KeAlertResumeThread function:

NT OS/2 Kernel Specification 33

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ULONG
KeAlertResumeThread (
 IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

This function executes the equivalent of a KeAlertThread function for kernel mode
followed by a KeResumeThread function on the specified thread object.

Resuming a thread object checks the suspend count of the subject thread. If the
suspend count is zero, then the thread is not currently suspended and no operation
is performed. Otherwise, the subject thread's suspend count is decremented. If the
resultant value is zero, then the execution of the subject thread is resumed by
releasing its builtin suspend semaphore.

The previous suspend count is returned as the function value. If the return value is
zero, then the subject thread was not previously suspended. If the return value is
one, then the subject thread's execution was resumed. If the returned value is not
zero or one, then the subject thread is still suspended and must be resumed the
number of times specified by the return value minus one before it will actually
resume execution.

2.1.4.4 Confine Thread

The execution of the current thread can be confined to the current processor with
the KeConfineThread function:

KAFFINITY
KeConfineThread (
);

Confining the execution of the current thread to the current processor causes the
thread's affinity to be set such that it can only execute on the current processor.
The previous affinity is returned as the function value and can be used to later
restore the thread's affinity with the KeSetAffinityThread function.

This function is useful when it is desirable to avoid translation buffer flushes across
the entire multiprocessor complex while certain page manipulations are taking
place. For example, the zero page writer selects a page to zero, confines its execution
to the current processor, flushes the current processor's translation buffer, maps
the page into the system part of the virtual address space reserved for zeroing

NT OS/2 Kernel Specification 34

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

pages, and then proceeds to zero the page. If the execution of the zero page writer
was not confined during the page zeroing operation, then the translation buffers of
all processors in the multiprocessor complex would have to be flushed before
mapping and zeroing the page could commence.

2.1.4.5 Delay Execution

The execution of the current thread can be delayed for a specified interval of time
with the KeDelayExecutionThread function:

NTSTATUS
KeDelayExecutionThread (
 IN KPROCESSOR_MODE WaitMode,
 IN BOOLEAN Alertable,
 IN PTIME Interval
);

Parameters:

WaitMode - The processor mode on whose behalf the Wait is occurring.

Alertable - A boolean value that specifies whether the Wait is alertable.

Interval - The absolute or relative time over which the Wait is to occur.

The expiration time is computed and the current thread is put in a Waiting state.
When the specified interval of time has passed, the thread will exit the Waiting state
and continue execution.

The reason for the Wait is set to DelayExecution.

The WaitMode parameter specifies on whose behalf the Wait is occurring (i.e., kernel
or user).

The Alertable parameter specifies whether the thread can be alerted while it is in the
Waiting state. If the value of this parameter is TRUE and the thread is alerted for a
mode that is equal to or more privileged than the Wait mode, then the thread's Wait
will be satisfied with a completion status of STATUS_ALERTED.

If the WaitMode parameter is UserMode and the Alertable parameter TRUE, then the
thread can also be awakened to deliver a user mode APC. Kernel mode APCs always
cause the subject thread to be awakened if the Wait IRQL is zero and no kernel APC
is in progress.

NT OS/2 Kernel Specification 35

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The expiration time of the delay is expressed as either an absolute time at which the
delay is to expire, or time that is relative to the current system time. If the value of
the Interval parameter is negative, then the expiration time is relative. Otherwise,
the expiration time is absolute.

The value returned by KeDelayExecutionThread function determines how the
delay was completed.

A value of STATUS_SUCCESS is returned if the delay was completed because the
specified interval of time elapsed.

A value of STATUS_ALERTED is returned if the delay was completed because the
thread was alerted.

A value of STATUS_USER_APC is returned if a user mode APC is to be delivered.

2.1.4.6 Disable Queuing of APCs

The queuing of APCs to a thread object can be disabled with the
KeDisableApcQueuingThread function:

BOOLEAN
KeDisableApcQueuingThread (
 IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Disabling the queuing of APCs to a thread object causes any attempt to direct an
APC to the thread to be ignored.

During the termination of a thread, the executive must run down and clean up all
thread data structures. When the APC queue itself is processed, the executive first
disables APCs and then flushes the APC queue.

The previous value of the APC queuable state is returned as the function value. If
the return value is TRUE, then APC queuing was previously enabled. Otherwise, a
value of FALSE is returned and APC queuing was disabled.

NT OS/2 Kernel Specification 36

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.1.4.7 Enable Queuing of APCs

The queuing of APCs to a thread object can be enabled with the
KeEnableApcQueuingThread function:

BOOLEAN
KeEnableApcQueuingThread (
 IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Enabling the queuing of APCs to a thread object allows APC objects to be inserted in
the subject thread's APC queue for subsequent delivery when conditions permit.

The previous value of the APC queuable state is returned as the function value. If
the return value is TRUE, then APC queuing was previously enabled. Otherwise, a
value of FALSE is returned and APC queuing was disabled.

2.1.4.8 Force Resumption of Thread

A thread object's execution can be forced to resume with the
KeForceResumeThread function:

ULONG
KeForceResumeThread (
 IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Forcing the resumption of a thread object's execution checks the suspend and freeze
count of the subject thread. If both counts are zero, then the thread is not currently
suspended and no operation is performed. Otherwise, the subject thread's suspend
and freeze counts are both set to zero, and the execution of the subject thread is
resumed by releasing its builtin suspend semaphore.

The sum of the previous suspend and freeze counts is returned as the function
value. If the return value is zero, then the subject thread was not previously

NT OS/2 Kernel Specification 37

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

suspended. Otherwise, the subject thread was suspended and its execution was
resumed.

This function is intended for use by the executive when it wants to terminate the
execution of a thread that may be in a suspended state.

2.1.4.9 Freeze Thread

The execution of a thread object can be frozen with the KeFreezeThread function:

ULONG
KeFreezeThread (
 IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Freezing a thread object causes the thread's freeze count to be incremented. If
incrementing the freeze count would cause it to overflow, then the count is not
incremented and the exception STATUS_SUSPEND_COUNT_EXCEEDED is raised.
Otherwise, the freeze count is incremented. If the resultant value is one and the
suspend count is zero, then the thread's builtin suspend APC object is queued.

When the suspend APC is delivered to the subject thread, a nonalertable Wait on
the thread's builtin semaphore object is executed which freezes thread execution.
The subject thread can be subsequently unfrozen with the KeUnfreezeThread
function.

The previous freeze count is returned as the function value. If the return value is
zero, then the subject thread was not previously frozen. Otherwise, the thread was
previously frozen and must be unfrozen the number of times specified by the return
value plus one before it will actually resume execution.

The freeze and unfreeze functions are similar to the suspend and resume functions,
but are intended for use by system software as opposed to being exported to users.
The freeze and unfreeze functions are used to suspend and resume thread execution
during debugging operations.

2.1.4.10 Query Data Alignment Mode

The data alignment handling mode for the current thread can be queried with the
KeQueryAutoAlignmentThread function:

NT OS/2 Kernel Specification 38

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

BOOLEAN
KeQueryAutoAlignmentThread (
)

The data alignment handling mode for the current thread is returned as the
function value. A value of TRUE is returned if user mode data alignment exceptions
are automatically handled by the kernel and are not raised as exceptions.
Otherwise, user mode data alignment exceptions are not handled by the kernel and
may, or may not, be raised as exceptions depending on host hardware capabilities.
Automatic handling of user mode data alignment exceptions means that the kernel
emulates misaligned data references and completes the offending instructions as if
no misalignment exception had occurred. Misaligned references in kernel mode are
never automatically handled and are always raised as exceptions.

IMPLEMENTATION NOTES:

Certain processors (e.g., the i386) always handle misaligned data in hardware. On
these processors, enabling or disabling the automatic handling of data alignment
exceptions has no effect. On other processors (e.g., i486, MIPS r3000, r4000SP, and
r4000MP) the handling of misaligned data is handled according to the mode
established for the respective thread.

2.1.4.11 Query Base Priority

The base priority of a thread object can be queried with the
KeQueryBasePriorityThread function:

LONG
KeQueryBasePriorityThread (
 IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

The base priority increment of the specified thread is returned as the function value.
The base priority increment is defined as the difference between the specified
thread's base priority and the base priority of the thread's process.

2.1.4.12 Read State Thread

The current state of a thread object can be read with the KeReadStateThread
function:

NT OS/2 Kernel Specification 39

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

BOOLEAN
KeReadStateThread (
 IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

The current state of the thread object is returned as the function value. If the
current state of the thread is Signaled, then a value of TRUE is returned. Otherwise,
a value of FALSE is returned.

2.1.4.13 Ready Thread

A thread object can be readied for execution with the KeReadyThread function:

VOID
KeReadyThread (
 IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Readying a thread object causes the thread to be considered for immediate
execution on a processor.

If the thread's process is not in the balance set, then the thread's dispatching state
is set to Ready and the thread object is inserted in the process' ready queue.
Otherwise, an attempt is made to dispatch the thread on one of the processors in
the multiprocessor complex. If the priority of the subject thread is greater than the
priority of one or more threads running on processors that the subject thread can
also run on, then the thread with the lowest priority is selected for preemption, the
subject thread's dispatching state is set to Standby and an interprocessor interrupt
is sent to the target processor to cause it to redispatch. Otherwise, the subject
thread's dispatching state is set to Ready and the thread is inserted at the tail of the
dispatcher ready queue selected by its priority.

2.1.4.14 Resume Thread

The execution of a thread object can be resumed with the KeResumeThread
function:

NT OS/2 Kernel Specification 40

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ULONG
KeResumeThread (
 IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Resuming a thread object checks the suspend count of the subject thread. If the
suspend count is zero, then the thread is not currently suspended and no operation
is performed. Otherwise, the subject thread's suspend count is decremented. If the
resultant value is zero and the freeze count is also zero, then the execution of the
subject thread is resumed by releasing its builtin suspend semaphore.

The previous suspend count is returned as the function value. If the return value is
zero, then the subject thread was not previously suspended. If the return value is
one, then the subject thread's execution was resumed. If the returned value is not
zero or one, then the subject thread is still suspended and must be resumed the
number of times specified by the return value minus one before it will actually
resume execution.

The suspend and resume functions are similar to the freeze and unfreeze functions,
but are usable from both system and user software. The freeze and unfreeze
functions are used to suspend and resume thread execution during debugging
operations.

2.1.4.15 Rundown Thread

The current thread object can be run down with the KeRundownThread function:

VOID
KeRundownThread (
);

This function runs down thread structures that are guarded by the dispatcher
database lock and which must be processed before actually terminating the thread.
An example of such a data structure is the mutant ownership list that is anchored
in the thread object.

2.1.4.16 Set Affinity Thread

The affinity of a thread object can be set with the KeSetAffinity function:

NT OS/2 Kernel Specification 41

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

KAFFINITY
KeSetAffinityThread (
 IN PKTHREAD Thread,
 IN KAFFINITY Affinity
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Affinity - The new set of processors on which the thread can run.

Setting the affinity of a thread object establishes a new set of processors on which
the thread can execute. The new affinity must be a subset of the parent process's
affinity. If the new affinity is zero, or is not a subset of the parent process's affinity,
then an error condition is raised. Otherwise, the new affinity of the thread is set,
and the previous affinity is returned as the function value.

If the dispatching state of the thread object is Running or Standby and the new
affinity is such that the thread cannot execute on the target processor, then a new
thread is selected for execution and an interprocessor interrupt is sent to the target
processor.

2.1.4.17 Set Data Alignment Mode

The data alignment handling mode for the current thread can be set with the
KeSetAutoAlignmentThread function:

BOOLEAN
KeSetAutoAlignmentThread (
 IN BOOLEAN Enable
)

Parameters:

Enable - A boolean variable that specifies the handling mode for data alignment
exceptions in the current thread.

The Enable parameter specifies the handling mode for data alignment exceptions in
the current thread. If this parameter is TRUE, then user mode data alignment
exceptions are automatically handled by the kernel and are not raised as
exceptions. Otherwise, user mode data alignment exceptions are not handled by the
kernel and may, or may not, be raised as exceptions depending on host hardware
capabilities. Automatic handling of user mode data alignment exceptions means

NT OS/2 Kernel Specification 42

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

that the kernel emulates misaligned data references and completes the offending
instructions as if no misalignment exception had occurred. Misaligned references in
kernel mode are never automatically handled and are always raised as exceptions.

The previous data alignment handling mode is returned as the function value.

IMPLEMENTATION NOTES:

Certain processors (e.g., the i386) always handle misaligned data in hardware. On
these processors, enabling or disabling the automatic handling of data alignment
exceptions has no effect. On other processors (e.g., i486, MIPS r3000, r4000SP, and
r4000MP) the handling of misaligned data is handled according to the mode
established for the respective thread.

2.1.4.18 Set Base Priority

The base priority of a thread object can be set with the KeSetBasePriorityThread
function:

LONG
KeSetBasePriorityThread (
 IN PKTHREAD Thread,
 IN LONG Increment
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Increment - The base priority increment that is to be applied to the specified
thread.

The new base priority is computed by adding the specified priority increment to the
base priority of the specified thread's process. The resultant value is stored as the
base priority of the specified thread.

The new base priority is restricted to the priority class of the specified thread's
process. This means that the base priority is not allowed to cross over from a
realtime priority class to a variable priority class or vice versa.

The previous base priority increment of the specified thread is returned as the
function value. The previous base priority increment is defined as the difference
between the specified thread's old base priority and the base priority of the thread's
process.

NT OS/2 Kernel Specification 43

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.1.4.19 Set Priority Thread

The priority of a thread object can be set with the KeSetPriority function:

KPRIORITY
KeSetPriorityThread (
 IN PKTHREAD Thread,
 IN KPRIORITY Priority
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Priority - The new priority of the thread.

Setting the priority of a thread object causes its eligibility for execution to be
reexamined. The exact action that is taken depends on the current dispatching state
of the thread. If the new priority is greater than the maximum thread priority, then
an error condition is raised.

If the dispatching state of the thread object is Ready and the thread is currently
inserted in the parent process's ready queue, then the priority of the thread is
changed and no further action is taken.

If the dispatching state of the thread object is Ready and the thread is currently
inserted in one of the dispatcher ready queues, then the thread is removed from its
current ready queue, its priority is set to the specified value, and the thread is
readied for execution as if it had just entered the ready state.

If the dispatching state of the thread object is Waiting or Terminated, then the
priority of the thread is changed and no further action is taken.

If the dispatching state of the thread object is Standby or Running and the priority
of the thread is being raised, then the priority of the thread is changed and no
further action is taken.

If the dispatching state of the thread object is Standby or Running and the priority
of the thread is being lowered, then a check is performed to determine if the thread
should be preempted to run a higher priority thread. If a higher priority thread can
execute on the target processor, then it is selected for execution and an
interprocessor interrupt is sent to the target processor. Otherwise, no action is
taken.

The previous priority of the subject thread is returned as the function value.

NT OS/2 Kernel Specification 44

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.1.4.20 Suspend Thread

The execution of a thread object can be suspended with the KeSuspendThread
function:

ULONG
KeSuspendThread (
 IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Suspending a thread object causes the thread's suspend count to be incremented. If
incrementing the suspend count would cause it to overflow, then the count is not
incremented and the exception STATUS_SUSPEND_COUNT_EXCEEDED is raised.
Otherwise, the suspend count is incremented, and if the resultant value is one and
the freeze count is zero, then the thread's builtin suspend APC object is queued.

When the suspend APC is delivered to the subject thread, a nonalertable Wait on
the thread's builtin semaphore object is executed which suspends thread execution.
The subject thread can be subsequently resumed with either the KeResumeThread
or KeAlertResumeThread function.

The previous suspend count is returned as the function value. If the return value is
zero, then the subject thread was not previously suspended. Otherwise, the thread
was previously suspended and must be resumed the number of times specified by
the return value plus one before it will actually resume execution.

The suspend and resume functions are similar to the freeze and unfreeze functions,
but are usable from both system and user software. The freeze and unfreeze
functions are used to suspend and resume thread execution during debugging
operations.

2.1.4.21 Terminate Thread

The execution of the current thread can be terminated with the
KeTerminateThread function:

NT OS/2 Kernel Specification 45

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
KeTerminateThread (
 IN KPRIORITY Increment
);

Parameters:

Increment - The priority increment that is to be applied is terminating the
current thread causes a Wait to be satisfied.

Terminating the current thread causes the dispatching state of the thread to be set
to Terminated and the state of the thread object to be set to Signaled.

An attempt is made to satisfy as many Waits as possible for the current thread
object.

A new thread object is selected for execution on the current processor and a context
switch to the new thread is performed. There is no return from this function.

2.1.4.22 Test Alert Thread

An alert condition for the current thread can be tested for with the
KeTestAlertThread function:

BOOLEAN
KeTestAlertThread (
 IN KPROCESSOR_MODE AlertMode
);

Parameters:

AlertMode - The processor mode (UserMode or KernelMode) which is to be
tested for an alert condition.

This function tests to determine if the current thread's alert variable for the
specified processor mode has a value of TRUE or whether a user mode APC should
be delivered to the current thread.

If the alert variable associated with the specified processor mode is TRUE, then it is
set to a value of FALSE.

If the alert variable associated with the specified processor mode is FALSE and the
specified processor mode is user, then the subject thread's APC queue is examined
to determine whether a user mode APC should be delivered. If the user mode APC

NT OS/2 Kernel Specification 46

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

queue contains one or more entries, then the user APC pending variable is set to a
value of TRUE in the current thread object.

The previous value of the alert variable for the specified processor mode is returned
as the function value. If the return value is TRUE, then the current thread was
alerted. Otherwise, a value of FALSE is returned and the current thread was not
alerted.

2.1.4.23 Unfreeze Thread

The execution of a thread object can be unfrozen with the KeUnfreezeThread
function:

ULONG
KeUnfreezeThread (
 IN PKTHREAD Thread
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

Unfreezing a thread object checks the freeze count of the subject thread. If the
freeze count is zero, then the thread is not currently frozen and no operation is
performed. Otherwise, the subject thread's freeze count is decremented. If the
resultant value is zero and the suspend count is also zero, then the execution of the
subject thread is unfrozen by releasing its builtin suspend semaphore.

The previous freeze count is returned as the function value. If the return value is
zero, then the subject thread was not previously frozen. If the return value is one,
then the subject thread's execution was unfrozen. If the returned value is not zero
or one, then the subject thread is still frozen and must be unfrozen the number of
times specified by the return value minus one before it will actually resume
execution.

The freeze and unfreeze functions are similar to the suspend and resume functions,
but are intended for use by system software as opposed to being exported to users.
The freeze and unfreeze functions are used to suspend and resume thread execution
during debugging operations.

2.1.4.24 Thread Performance Data

Several counters are maintained for each thread object to determine the various
execution characteristics of the thread.

NT OS/2 Kernel Specification 47

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Two of the counters maintain the number of clock ticks that occurred while the
thread was in user mode and while the thread was in kernel mode. These counters
provide a quantitative measure of the distribution of computation time between the
system and the user.

2.1.5 Timer Object

A timer object is used to record the passage of time. A timer object is set to a
specified time and then expires when the time becomes due. When a timer object is
set, its state is set to Not-Signaled and it is inserted in the system timer queue
according to its expiration time. When the timer object expires, it is removed from
the system timer queue and its state is set to Signaled.

A Deferred Procedure Call (DPC) can optionally be executed when a timer expires.
This procedure executes at IRQL DISPATCH_LEVEL in the context of whatever
thread happens to be executing when the timer expires.

Waiting on a timer object causes the execution of the subject thread to be
suspended until the timer object attains a Signaled state. Satisfying the Wait for a
timer object does not cause the state of the timer object to change. Therefore, when
a timer object attains a Signaled state, an attempt is made to Satisfy as many Waits
as possible.

Timer objects can be used to synchronize the execution of specific actions with time.
This execution can occur at fixed points in time or at various intervals.

Programming interfaces that support the thread object include:

KeInitializeTimer - Initialize a timer object
KeCancelTimer - Cancel timer object expiration
KeReadStateTimer - Read state of timer object
KeSetTimer - Set timer object expiration time

2.1.5.1 Initialize Timer

A timer object can be initialized with the KeInitializeTime function:

NT OS/2 Kernel Specification 48

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
KeInitializeTimer (
 IN PKTIMER Timer
);

Parameters:

Timer - A pointer to a dispatcher object of type timer.

The timer object data structure is initialized with a state of Not-Signaled.

2.1.5.2 Cancel Timer

A timer object can be canceled with the KeCancelTimer function:

BOOLEAN
KeCancelTimer (
 IN PKTIMER Timer
);

Parameters:

Timer - A pointer to a dispatcher object of type timer.

If the timer object is currently in the system timer queue, then it is removed from
the queue and a value of TRUE is returned as the function value (a boolean state
variable records whether the timer object is in the system timer queue). Otherwise,
no operation is performed and a value of FALSE is returned as the function value.

2.1.5.3 Read State Timer

The current state of a timer object can be read with the KeReadStateTimer
function:

BOOLEAN
KeReadStateTimer (
 IN PKTIMER Timer
);

Parameters:

Timer - A pointer to a dispatcher object of type timer.

NT OS/2 Kernel Specification 49

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The current state of the timer object is returned as the function value. If the current
state of the timer object is Signaled, then a value of TRUE is returned. Otherwise, a
value of FALSE is returned.

2.1.5.4 Set Timer

A timer object can be set to expire at a specified time with the KeSetTimer function:

BOOLEAN
KeSetTimer (
 IN PKTIMER Timer,
 IN TIME DueTime,
 IN PKDPC Dpc OPTIONAL
);

Parameters:

Timer - A pointer to a dispatcher object of type timer.

DueTime - The absolute or relative time at which the timer is to expire.

Dpc - An optional pointer to a control object of type deferred procedure call.

Setting a timer object causes the absolute expiration time to be computed, the state
of the timer to be set to Not-Signaled, and the timer object to be inserted in the
system timer queue. If the timer object is already in the timer queue, then it is
implicitly canceled before it is set to the new expiration time (a boolean state
variable records whether the timer object is in the system timer queue).

The expiration time of the timer object is expressed as either the absolute time that
the timer is to expire, or a time that is relative to the current system time. If the
value of the DueTime parameter is negative, then the expiration time is relative.
Otherwise, the expiration time is absolute.

The expiration time is expressed in system time units which are 100ns intervals.

If the Dpc parameter is specified, then a DPC object is associated with the timer
object.

If the timer object was previously in the system timer queue, then a value of TRUE
is returned as the function value. Otherwise, a value of FALSE is returned.

When the timer object expires, it is removed from the system timer queue and its
state is set to Signaled. If a DPC object was associated with the timer object when it
was set, then it is inserted in the system DPC queue and will execute as soon as

NT OS/2 Kernel Specification 50

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

conditions permit (a boolean state variable records whether the DPC object is in the
system DPC queue).

2.2 Control Objects

This section describes the various types of control objects and the interfaces that
are provided to manipulate these objects.

2.2.1 Asynchronous Procedure Call (APC) Object

An Asynchronous Procedure Call (APC) object provides the capability to break into
the execution of a specified thread and cause a procedure to be called in a specified
processor mode. Software running in kernel mode can only be interrupted to
execute asynchronous procedures in kernel mode, whereas software running in user
mode can be interrupted to execute asynchronous procedures in both user and
kernel mode.

An asynchronous procedure call occurs in the context of a specified thread and is
triggered by a software interrupt at APC_LEVEL.

There are two types of APC objects:

 1. Special

 2. Normal

Special APC objects cause the execution of a thread to be interrupted to execute a
procedure in kernel mode at IRQL APC_LEVEL. Special APC objects can break into
the execution of a thread at any time the thread is executing at IRQL 0.

Ordinarily, special APC procedures perform a minimal amount of work and return
immediately to the APC dispatcher without calling any external procedures.
However, if code running as part of a special APC procedure acquires a mutex that
is also acquired by code outside the special APC procedure, then the code outside
the special APC procedure must explicitly raise IRQL to APC_LEVEL when it wants
to acquire the mutex.

This convention is required to prevent the special APC procedure from acquiring the
mutex at an inappropriate time, which can happen if the thread that receives the
special APC already owns the mutex when the special APC procedure is executed.

During the execution of a special APC procedure, page faults can be taken and all
the kernel services are available. However, system services are not available, and
care must be taken to ensure that any executive services that are used can be safely
called.

NT OS/2 Kernel Specification 51

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Normal APC objects cause the execution of a thread to be interrupted to execute a
procedure in kernel mode at IRQL APC_LEVEL and, in addition, a procedure in
either kernel or user mode at IRQL 0. The first procedure (executed in kernel mode)
is called just prior to calling the second procedure in the specified mode, and must
adhere to the conventions for special APC procedures.

Normal APC objects can only break into the execution of a thread when the thread
is executing at IRQL 0 and a normal APC for the specified mode is not already
active.

While a normal APC is active for kernel mode, further normal APCs are software
disabled until the active APC completes. The delivery of normal APCs for kernel
mode is also implicitly disabled while a thread owns one or more mutexes (i.e, the
thread does not have to explicitly raise IRQL to APC_LEVEL in order to synchronize
with normal APC procedures).

Normal user mode APCs are only delivered when the subject thread is alertable.
This occurs when a thread waits user-mode alertable and when the thread calls
KeTestAlertThread.

While a normal APC is active for user mode, further normal APCs for user mode are
software disabled by the alert mechanism. Upon completion of a normal APC in user
mode, KeTestAlertThread is automatically called, which enables the delivery of
another user mode APC. Thus, once a thread is user-mode alertable and an APC is
delivered, further APCs are delivered one after the other until there are no APCs
remaining in the user-mode APC queue.

During the execution of a normal APC procedure, all system operations are available
and page faults can be taken.

Programming interfaces that support the APC object include:

KeInitializeApc - Initialize an APC object
KeFlushQueueApc - Flush all APC objects from APC queue
KeInsertQueueApc - Insert APC object into APC queue
KeRemoveQueueApc - Remove APC object from APC queue

2.2.1.1 Initialize APC

An APC object can be initialized with the KeInitializeApc function:

NT OS/2 Kernel Specification 52

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
KeInitializeApc (
 IN PKAPC Apc,
 IN PKTHREAD Thread,
 IN KAPC_ENVIRONMENT Environment,
 IN PKKERNEL_ROUTINE KernelRoutine,
 IN PKRUNDOWN_ROUTINE RundownRoutine OPTIONAL,
 IN PKNORMAL_ROUTINE NormalRoutine OPTIONAL,
 IN KPROCESSOR_MODE ApcMode OPTIONAL,
 IN PVOID NormalContext OPTIONAL
);

Parameters:

Apc - A pointer to a control object of type APC.

Thread - A pointer to a dispatcher object of type thread.

Environment - The environment in which the APC will execute
(OriginalApcEnvironment, AttachedApcEnvironment, or
CurrentApcEnvironment).

KernelRoutine - A pointer to a function that is to be executed at IRQL
APC_LEVEL in kernel mode.

RundownRoutine - An optional pointer to a function that is to be executed if the
APC object is contained in a thread's APC queue when the thread
terminates.

NormalRoutine - An optional pointer to a function that is to be executed at IRQL
0 in the specified processor mode. If this parameter is not specified, then
the ApcMode and NormalContext parameters are ignored.

ApcMode - The processor mode (UserMode or KernelMode) in which the function
specified by the NormalRoutine parameter is to be executed. This
parameter is ignored if the NormalRoutine parameter is not specified.

NormalContext - A pointer to an arbitrary data structure which is to be passed
to the function specified by the NormalRoutine parameter. This parameter
is ignored if the NormalRoutine parameter is not specified.

The function specified by the KernelRoutine parameter has the following type
definition:

NT OS/2 Kernel Specification 53

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef
VOID
(*PKKERNEL_ROUTINE) (
 IN PKAPC Apc,
 IN OUT PKNORMAL_ROUTINE *NormalRoutine,
 IN OUT PVOID *NormalContext,
 IN OUT PVOID *SystemArgument1,
 IN OUT PVOID *SystemArgument2
);

Parameters:

Apc - A pointer to a control object of type APC.

NormalRoutine - A pointer to a pointer to the normal routine function that was
specified when the APC was initialized.

NormalContext - A pointer to a pointer to an arbitrary data structure that was
specified when the APC was initialized.

SystemArgument1, SystemArgument2 - A set of two pointers to two arguments
that contain untyped data.

The function specified by the RundownRoutine parameter has the following type
definition:

typedef
VOID
(*PKRUNDOWN_ROUTINE) (
 IN PKAPC Apc
);

Parameters:

Apc - A pointer to a control object of type APC.

The function specified by the NormalRoutine parameter has the following type
definition:

NT OS/2 Kernel Specification 54

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef
VOID
(*PKNORMAL_ROUTINE) (
 IN PVOID NormalContext,
 IN PVOID SystemArgument1,
 IN PVOID SystemArgument2
);

Parameters:

NormalContext - A pointer to an arbitrary data structure that was specified
when the corresponding APC object was initialized.

SystemArgument1, SystemArgument2 - A set of two arguments that contain
untyped data.

The type of APC object to be initialized is determined by the presence or absence of
the optional NormalRoutine parameter. If the NormalRoutine parameter is present,
then a normal APC object is initialized and the values of the ApcMode and
NormalContext parameters are stored in the APC object. Otherwise, a special APC
object is initialized for execution in kernel mode.

The Environment parameter specifies the execution environment of the specified APC
object. An APC object can be executed in the context of a thread's parent process or
a process to which the thread has attached.

The KernelRoutine parameter specifies the procedure that is to be called in kernel
mode at IRQL APC_LEVEL. This procedure is called with a copy of the parameters
that are specified for the normal routine when the APC is initialized and can modify
these parameters as necessary to alter the execution of the normal routine. If the
normal routine is not specified when the APC is initialized, then any assignment to
these parameters is ignored.

If specified, the RundownRoutine parameter specifies a procedure that is to be called
when a thread terminates with the APC object in its APC queue. The purpose of this
routine is to allow for special disposition of the APC object during thread rundown.

If specified, the NormalRoutine parameter specifies the procedure that is to be
executed in the processor mode specified by the ApcMode parameter. This procedure
will be called with the NormalContext parameter and two additional arguments
provided by the system when the APC queued.

NT OS/2 Kernel Specification 55

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

In order to actually interrupt the execution of a thread, an APC object must be
inserted into one of the thread's APC queues (there is a separate APC queue for user
and kernel mode).

2.2.1.2 Flush Queue APC

All the APC objects in a specified thread's APC queue can be flushed with the
KeFlushQueueApc function:

PLIST_ENTRY
KeFlushQueueApc (
 IN PKTHREAD Thread,
 IN KPROCESSOR_MODE ApcMode
);

Parameters:

Thread - A pointer to a dispatcher object of type thread.

ApcMode - The processor mode (UserMode or KernelMode) of the APC queue
that is to be flushed.

An APC queue is flushed by removing the APC listhead from the list of APC entries,
reinitializing the APC listhead, and returning the list of APC objects as the function
value. If the APC queue is empty, then a NULL pointer is returned. Otherwise, the
address of the list entry for the first APC object is returned as the function value. It
is the responsibility of the caller to scan the list of APC objects and dispense with
each object as appropriate.

The APC objects are linked together by a list entry in each object. Scanning this list
can be accomplished using the CONTAINING_RECORD function to locate the
address of the respective APC object given the address of its list entry.

This function is used by the executive during thread termination to remove
remaining entries from the thread's APC lists.

2.2.1.3 Insert Queue APC

An APC object can be inserted into a thread's APC queue with the
KeInsertQueueApc function:

NT OS/2 Kernel Specification 56

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

BOOLEAN
KeInsertQueueApc (
 IN PKAPC Apc,
 IN PVOID SystemArgument1,
 IN PVOID SystemArgument2,
 IN KPRIORITY Increment
);

Parameters:

Apc - A pointer to a control object of type APC.

SystemArgument1, SystemArgument2 - A set of two arguments that contain
untyped data.

Increment - The priority increment that is to be applied if queuing the APC
causes the target thread's wait to be satisfied.

If the specified APC object is already in an APC queue (a boolean state variable
records whether the APC object is in an APC queue) or APC queuing is disabled for
the subject thread, then no operation is performed and a function value of FALSE is
returned. Otherwise, the APC object is inserted into the APC queue specified by the
ApcMode and Thread parameters that were supplied when the APC object was
initialized and a function value of TRUE is returned.

When proper enabling conditions are present, the APC will be delivered to the
subject thread and the specified procedure(s) will be executed in the specified
processor mode.

A special APC is deliverable whenever the IRQL of the subject thread is zero.

A normal kernel APC is deliverable whenever the IRQL of the subject thread is zero,
a normal kernel APC is not already in progress, and the subject thread does not own
any mutexes.

A normal user APC is deliverable when the subject thread waits user-mode alertable
and when the subject thread calls KeTestAlertThread.

2.2.1.4 Remove Queue APC

An APC object can be removed from an APC queue with the KeRemoveQueueApc
function:

NT OS/2 Kernel Specification 57

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

BOOLEAN
KeRemoveQueueApc (
 IN PKAPC Apc
);

Parameters:

Apc - A pointer to a control object of type APC.

If the specified APC object is not currently in an APC queue (a boolean state variable
records whether the APC object is in an APC queue), then a value of FALSE is
returned and no operation is performed. Otherwise, the specified APC object is
removed from its APC queue and a function value of TRUE is returned.

2.2.2 Deferred Procedure Call (DPC) Object

A Deferred Procedure Call (DPC) object provides the capability to break into the
execution of the current thread and cause a procedure to be executed in kernel
mode at IRQL DISPATCH_LEVEL.

There is one DPC queue for the entire system. When a DPC object is inserted in the
DPC queue, a software interrupt is requested at DISPATCH_LEVEL on the current
processor. As soon as the IRQL falls below DISPATCH_LEVEL, a software interrupt
will be taken which will cause the DPC dispatcher to execute.

The DPC dispatcher removes entries from the DPC queue, calls the specified
procedure, and upon return, removes another entry from the queue. This is
continued until there are no longer any entries in the DPC queue, at which time the
DPC dispatcher checks to determine if another thread has been selected for
execution on the current processor. If a thread has been selected, then a context
switch to that thread is performed. Otherwise, the interrupt is dismissed and
execution of the current thread is continued.

A deferred procedure call occurs at IRQL DISPATCH_LEVEL in the context of
whatever thread was interrupted when the DISPATCH_LEVEL interrupt occurred. A
very limited set of operations can be performed by the DPC procedure.

No system services can be executed by the DPC procedure nor can any page faults
be taken. The kernel services are generally available. However, the Wait functions
can only be called if it is known that they will not actually cause a wait to occur.
(Using an explicit time-out value of zero implements a conditional Wait operation). If
page faults or waits were allowed, then it would be possible to randomly cause an
arbitrary thread to wait in the kernel at IRQL DISPATCH_LEVEL causing possible
deadlocks and data corruption.

NT OS/2 Kernel Specification 58

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Deferred procedure execution is intended mainly for use by device drivers that need
to lower their IRQL to complete an I/O operation. The kernel itself, however, uses
DPC objects to implement timers, quantum end, and power failure recovery.

Programming interfaces that support the DPC object include:

KeInitializeDpc - Initialize a DPC object
KeInsertQueueDpc - Insert DPC object into the DPC queue
KeRemoveQueueDpc - Remove DPC object from the DPC queue

2.2.2.1 Initialize DPC

A DPC object can be initialized with the KeInitializeDpc function:

VOID
KeInitializeDpc (
 IN PKDPC Dpc,
 IN PKDEFERRED_ROUTINE DeferredRoutine,
 IN PVOID DeferredContext
);

Parameters:

Dpc - A pointer to a control object of type DPC.

DeferredRoutine - A pointer to a function that is to be called when the DPC
object is removed from the DPC queue.

DeferredContext - A pointer to an arbitrary data structure that is to be passed
to the function specified by the DeferredRoutine parameter.

The function specified by the DeferredRoutine parameter has the following type
definition:

NT OS/2 Kernel Specification 59

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef
VOID
(*PKDEFERRED_ROUTINE) (
 IN PKDPC Dpc,
 IN PVOID DeferredContext,
 IN PVOID SystemArgument1,
 IN PVOID SystemArgument2
);

Parameters:

Dpc - A pointer to a control object of type DPC.

DeferredContext - A pointer to an arbitrary data structure that was specified
when the DPC was initialized.

SystemArgument1, SystemArgument2 - A set of two arguments that contain
untyped data.

2.2.2.2 Insert Queue DPC

A DPC object can be inserted in the system DPC queue with the KeInsertQueueDpc
function:

BOOLEAN
KeInsertQueueDpc (
 IN PKDPC Dpc,
 IN PVOID SystemArgument1,
 IN PVOID SystemArgument2
);

Parameters:

Dpc - A pointer to a control object of type DPC.

SystemArgument1, SystemArgument2 - A set of two arguments that contain
untyped data.

If the specified DPC object is already in the DPC queue (a boolean state variable
records whether the DPC object is in the DPC queue), then no operation is
performed and a function value of FALSE is returned. Otherwise, the DPC object is
inserted in the DPC queue, a software interrupt is request at IRQL
DISPATCH_LEVEL on the current processor, and a function value of TRUE is
returned.

NT OS/2 Kernel Specification 60

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The deferred procedure will be executed as soon as the IRQL of the current
processor drops below DISPATCH_LEVEL.

2.2.2.3 Remove Queue DPC

A DPC object can be removed from the DPC queue with the KeRemoveQueueDpc
function:

BOOLEAN
KeRemoveQueueDpc (
 IN PKDPC Dpc
);

Parameters:

Dpc - A pointer to a control object of type DPC.

If the specified DPC object is not currently in the DPC queue (a boolean state
variable records whether the DPC object is in the DPC queue), then a value of
FALSE is returned and no operation is performed. Otherwise, the specified DPC
object is removed from the DPC queue and a function value of TRUE is returned.

2.2.3 Device Queue Object

A device queue object is used to record the state of a device driver and to provide a
queue into which I/O requests can be placed for subsequent processing.

A device queue object has a state which is either Busy or Not-Busy.

When the state of a device queue object is Not-Busy, the associated device driver is
idle and therefore not performing any work.

A device queue object transitions to the Busy state when an attempt is made to
insert a device queue entry into a device queue that is empty. For this case, the
device queue entry is not actually placed in the device queue, but rather, the device
queue object is marked Busy and a boolean value of FALSE is returned to signify
that the associated device driver should process the device queue entry immediately.

Once a device queue object is Busy, further I/O requests are placed in the device
queue in either a FIFO or key-sorted order.

A device queue object transitions to a Not-Busy state when an attempt is made to
remove a device queue entry from a device queue object and the corresponding
device queue is empty.

NT OS/2 Kernel Specification 61

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

A device queue entry has the following type definition:

typedef struct _KDEVICE_QUEUE_ENTRY {
 LIST_ENTRY DeviceListEntry;
 ULONG SortKey;
 BOOLEAN Inserted;
} KDEVICE_QUEUE_ENTRY;

Programming interfaces that support the device queue object include:

KeInitializeDeviceQueue - Initialize a device queue
KeInsertDeviceQueue - Insert entry at tail of device queue
KeInsertByKeyDeviceQueue - Insert entry by key into device queue
KeRemoveDeviceQueue - Remove entry from head of device queue
KeRemoveEntryDeviceQueue - Remove entry from device queue

2.2.3.1 Initialize Device Queue

A device queue object can be initialized with the KeInitializeDeviceQueue function:

VOID
KeInitializeDeviceQueue (
 IN PKDEVICE_QUEUE DeviceQueue,
 IN PKSPIN_LOCK SpinLock
);

Parameters:

DeviceQueue - A pointer to a control object of type device queue.

SpinLock - A pointer to an executive spin lock.

The device queue object data structure is initialized and the state of the device
queue is set to Not-Busy.

2.2.3.2 Insert Device Queue

An entry can be inserted at the tail of a device queue with the
KeInsertDeviceQueue function:

NT OS/2 Kernel Specification 62

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

BOOLEAN
KeInsertDeviceQueue (
 IN PKDEVICE_QUEUE DeviceQueue,
 IN PKDEVICE_QUEUE_ENTRY DeviceQueueEntry
);

Parameters:

DeviceQueue - A pointer to a control object of type device queue.

DeviceQueueEntry - A pointer to the device queue entry that is to be inserted at
the tail of the device queue.

The specified device queue spin lock is acquired, and the state of the device queue is
checked.

If the state of the device queue is Not-Busy, then the state of the device queue is set
to Busy, the device queue spin lock is released, and a value of FALSE is returned as
the function value (i.e., the device queue entry is not inserted in the device queue).

If the state of the device queue is Busy, then the specified device queue entry is
inserted at the tail of device queue, the device queue spin lock is released, and a
value of TRUE is returned as the function value.

This function is intended for use by code that queues an I/O request to a device
driver. It must be called from an IRQL of DISPATCH_LEVEL.

2.2.3.3 Insert By Key Device Queue

An entry can be inserted into a device queue according to a key value with the
KeInsertByKeyDeviceQueue function:

BOOLEAN
KeInsertByKeyDeviceQueue (
 IN PKDEVICE_QUEUE DeviceQueue,
 IN PKDEVICE_QUEUE_ENTRY DeviceQueueEntry,
 IN ULONG SortKey
);

Parameters:

DeviceQueue - A pointer to a control object of type device queue.

DeviceQueueEntry - A pointer to the device queue entry that is to be inserted
into the device queue by key.

NT OS/2 Kernel Specification 63

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

SortKey - The sort key value that is to be used to determine the position at
which the device queue entry is to be inserted in the specified device
queue.

The specified device queue spin lock is acquired, and the state of the device queue is
checked.

If the state of the device queue is Not-Busy, then the state of the device queue is set
to Busy, the device queue spin lock is released, and a value of FALSE is returned as
the function value (i.e., the device queue entry is not inserted in the device queue).

If the state of the device queue is Busy, then the specified device queue entry is
inserted into the device queue according to its sort key value, the device queue spin
lock is released, and a value of TRUE is returned as the function value.

Insertion in the device queue is such that the preceding entry in the queue has a
sort key that is less than or equal to the new entry's sort key and the succeeding
entry has a sort key that is greater than the new entry's sort key.

This function is intended for use by code that queues an I/O request to a device
driver. It must be called from an IRQL of DISPATCH_LEVEL.

2.2.3.4 Remove Device Queue

An entry can be removed from the head of a device queue with the
KeRemoveDeviceQueue function:

PKDEVICE_QUEUE_ENTRY
KeRemoveDeviceQueue (
 IN PKDEVICE_QUEUE DeviceQueue
);

Parameters:

DeviceQueue - A pointer to a control object of type device queue.

This function can only be called from an IRQL of DISPATCH_LEVEL and is intended
for use by device driver code that completes one I/O request and starts the next
one.

The specified device queue spin lock is acquired and the state of the device queue is
checked.

If the state of the device queue is Not-Busy, then a bug check will occur (i.e.,
KeRemoveDeviceQueue cannot be called when the device queue is Not-Busy).

NT OS/2 Kernel Specification 64

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

If the state of the device queue is Busy, then an attempt is made to remove an entry
from the head of the device queue. If the device queue is empty, then the state of the
device queue is set to Not-Busy and a NULL pointer is returned as the function
value. Otherwise, the next entry is removed from the head of the device queue, the
inserted status of the entry is set to FALSE, and the address of the entry is returned
as the function value.

The specified device queue spin lock is released.

2.2.3.5 Remove Entry Device Queue

A specific entry can be removed from a device queue with the
KeRemoveEntryDeviceQueue function:

BOOLEAN
KeRemoveEntryDeviceQueue (
 IN PKDEVICE_QUEUE DeviceQueue,
 IN PKDEVICE_QUEUE_ENTRY DeviceQueueEntry
);

Parameters:

DeviceQueue - A pointer to a control object of type device queue.

DeviceQueueEntry - A pointer to the device queue entry that is to be removed
from the specified device queue.

The IRQL is raised to DISPATCH_LEVEL and the specified device queue spin lock is
acquired.

If the specified device queue entry is currently in a device queue (a boolean state
variable records whether a device queue entry is in a device queue), then the device
queue entry is removed from the device queue, the inserted status of the device
queue entry is set to FALSE, and a value of TRUE is returned as the function value.
Otherwise, the specified device queue entry is not in a device queue and a value of
FALSE is returned.

The specified device queue spin lock is released and IRQL is restored to its previous
value.

This function is intended for use in canceling I/O operations and is callable from
any IRQL that is less than or equal to DISPATCH_LEVEL.

NT OS/2 Kernel Specification 65

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.2.4 Interrupt Object

An interrupt object provides the capability to connect an interrupt source to an
interrupt service routine via an entry in an Interrupt Dispatch Table (IDT). Each
processor has an IDT that is used to dispatch interrupts which occur on that
processor.

The IDT is a software-defined table that contains an entry for each of the Interrupt
Request Levels (IRQLs). When an interrupt occurs at one of these levels, the
interrupt dispatcher reads the IRQL of the interrupting source from the interrupt
controller. This value is then used to locate the corresponding entry in the IDT that
is used to dispatch the execution of the associated service routine.

Several of the IDT entries are reserved for use by the kernel and cannot be
connected to interrupt objects. These entries include the following:

 o PASSIVE_LEVEL - Passive release

 o APC_LEVEL - Asynchronous Procedure Call

 o DISPATCH_LEVEL - Dispatch and Deferred Procedure Call

 o WAKE_LEVEL - Wake system debugger

 o CLOCK2_LEVEL - Interval timer

 o IPI_LEVEL - Interprocessor request

 o POWER_LEVEL - Power failure

 o HIGH_LEVEL - Machine check

The remaining levels can be used for device interrupts or bus adapters.

In addition to the 16 entries that are directly associated with the hardware interrupt
request levels, there are 48 more entries in the IDT that are provided to allow
secondary level dispatching of interrupts. These entries can be used by a first-level
service routine (i.e., one connected to IRQLs 0 - 15) to dispatch secondary level
interrupts such as those that might be received from a bus adapter. For example, a
bus adapter might have several devices that can cause interrupts and a mechanism
for identifying which device is requesting service. When a bus adapter interrupt is
received, the service routine connected to the appropriate first level IDT entry is
executed. This service routine reads the adapter register that identifies the
interrupting device and uses the information to locate the appropriate second-level

NT OS/2 Kernel Specification 66

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

IDT entry. The second-level IDT entry must be connected to an interrupt object and
contains the address of the interrupt transfer routine which is called.

An interrupt transfer routine has the following type definition:

typedef
BOOLEAN
(*PKTRANSFER_ROUTINE) (
);

Interrupt sources are classified as either LevelSensitive or Latched. Level sensitive
interrupts request an interrupt whenever the corresponding interrupt request signal
is asserted. The service routine associated with the interrupt source must remove
the cause of the interrupt before the interrupt request is dropped. Latched
interrupts are requested whenever the corresponding interrupt request signal
transitions from the deasserted to the asserted state.

An interrupt object can only be connected to a single IDT entry. If a particular
service routine must be connected to the same interrupt on multiple processors,
then multiple interrupt objects must be used. Multiple interrupt objects can be
connected to a single IDT entry. They must, however, all have the same interrupt
type (i.e., level sensitive or latched).

Interrupt objects are intended for use by device drivers.

\ Kernel code that utilizes interrupts directly does not connect interrupts
using this object. These interrupts include the interval timer, power failure,
machine check, and the two software interrupt levels. The code for these
interrupts is written in assembler since it is small and system dependent. \

Programming interfaces that support the interrupt object include:

KeInitializeInterrupt - Initialize an interrupt object
KeConnectInterrupt - Connect interrupt object to an IDT entry
KeDisconnectInterrupt - Disconnect interrupt object from an IDT entry
KeSynchronizeExecution - Synchronize execution with an interrupt

2.2.4.1 Initialize Interrupt

An interrupt object can be initialized with the KeInitializeInterrupt function:

NT OS/2 Kernel Specification 67

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
KeInitializeInterrupt (
 IN PKINTERRUPT Interrupt,
 IN PKSERVICE_ROUTINE ServiceRoutine,
 IN PVOID ServiceContext,
 IN PKSPIN_LOCK SpinLock,
 IN CCHAR Vector,
 IN KIRQL InterruptIrql,
 IN KIRQL SynchronizeIrql,
 IN KINTERRUPT_MODE InterruptMode,
 IN BOOLEAN ShareVector,
 IN CCHAR ProcessorNumber,
 IN BOOLEAN FloatingSave
);

Parameters:

Interrupt - A pointer to a control object of type interrupt.

ServiceRoutine - A pointer to a function that is to be called when an interrupt
occurs on the specified processor through the specified IDT entry.

ServiceContext - A pointer to an arbitrary data structure which will be passed
to the ServiceRoutine function as a parameter.

SpinLock - A pointer to an spin lock that is to be used to synchronize the
execution of the ServiceRoutine function with the corresponding device
driver.

Vector - The index of the entry in the specified IDT that is to be associated with
ServiceRoutine function.

InterruptIrql - The request priority of the interrupting source.

SynchronizeIrql - The request priority that the interrupt should be synchronzied
with.

InterruptMode - The mode of the interrupt (LevelSensitive or Latched).

ShareVector - A boolean that specifies whether the interrupt vector to which the
object is connected may be shared. If FALSE then the vector may not be
shared, if TRUE it may be.

ProcessorNumber - The number of the processor whose IDT is to used when
connecting the interrupt.

NT OS/2 Kernel Specification 68

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FloatingSave - A boolean variable that specifies whether the floating point
context needs to be saved when a interrupt is received from the interrupt
source.

The function specified by the ServiceRoutine parameter has the following type
definition:

typedef
BOOLEAN
(*PKSERVICE_ROUTINE) (
 IN PKINTERRUPT Interrupt,
 IN PVOID ServiceContext
);

Parameters:

Interrupt - A pointer to a control object of type interrupt which is connected to
the associated interrupt source.

ServiceContext - A pointer to an arbitrary data structure that was specified
when the corresponding interrupt object was initialized.

The interrupt object is initialized with the specified parameters. In order for the
function specified by the ServiceRoutine parameter to actually get called when an
interrupt is received from the interrupt source, the interrupt object must be
connected to the specified IDT entry using the KeConnectInterrupt function.

The spin lock specified by the SpinLock parameter is used to synchronize execution.

If SynchronizeIrql is not equal to InterruptIrql, then the system will raise its priority
level to SynchronizeIrql level before acquiring the lock specified by SpinLock. This
allows support for devices with multiple interrupt sources, since all can be
synchronized with a single spin lock at a single priority level.

It is an error for SynchronizeIrql to be less than InterruptIrql, the system will refuse
to connect such an interrupt object.

An interrupt object can only be connected to a single IDT entry on a single
processor. The Vector parameter specifies the IDT entry and the ProcessorNumber
parameter specifies which IDT is to be used. If a particular service routine must be
connected to the same IDT entry on multiple processors, then multiple interrupt
objects must be used. More than one interrupt object, however, can be connected to
the same IDT entry on the same processor, but all such interrupt objects must have
been initialized with ShareVector set to TRUE. When this happens, appropriate data

NT OS/2 Kernel Specification 69

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

structures are automatically set up to call each connected interrupt service routine
one after the other.

The mode of the interrupt specifies whether the interrupt is a LevelSensitive or
Latched interrupt. Level sensitive interrupts are continually requested as long as the
interrupt signal stays asserted. Therefore, the interrupt service routine must remove
the reason for the interrupt before returning control. Latched interrupts are
requested only on the transition of the interrupt signal from deasserted to asserted.
The function specified by the ServiceRoutine parameter must return a boolean value
that signifies whether the interrupt was handled or not.

The ShareVector parameter declares whether the interrupt object may be connected
to its interrupt vector at the same time as other interrupt objects. All interrupt
objects sharing an interrupt vector must have ShareVector set to TRUE. The system
may disallow sharing of an interrupt vector, even if all interrupt objects for which
connections are attempted have ShareVector set to TRUE. This could happen
because the underlying hardware does not support sharing.

The FloatingSave parameter specifies whether the ServiceRoutine function uses the
floating point registers. If this parameter is TRUE, then the floating context is saved
before calling the specified service routine. Otherwise, it is not saved and a fair
amount of overhead is saved.

\ This parameter is being provided with the hope that a compiler option will
be implemented that allows a module to be compiled such that it will not
use the floating point registers. This option does not currently exist and this
parameter should always be specified as TRUE. \

Initializing an interrupt causes code to be generated that will synchronize execution
with the appropriate interrupt object, call the specified interrupt service routine,
and dismiss the interrupt.

2.2.4.2 Connect Interrupt

An interrupt object can be connected to an IDT entry with the KeConnectInterrupt
function:

BOOLEAN
KeConnectInterrupt (
 IN PKINTERRUPT Interrupt
);

Parameters:

Interrupt - A pointer to a control object of type interrupt.

NT OS/2 Kernel Specification 70

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

If the specified interrupt object is already connected (a boolean state variable
records whether the interrupt object is connected), the specified vector number is
greater than the maximum vector, the specified IRQL is greater than HIGH_LEVEL,
the specified level cannot be connected to (e.g., a reserved level, sharing conflicts), or
the specified processor number is greater than the number of processors in the
configuration, then no operation is performed and a function value of FALSE is
returned. Otherwise, the interrupt object is connected to the IDT entry that was
specified when the interrupt object was initialized and a function value of TRUE is
returned.

Once an interrupt object is connected to an IDT entry, the corresponding service
routine will be called each time an interrupt is received from that interrupt source.
If multiple interrupt objects are connected to a single IDT entry, then the service
routines are called in the order in which they were connected.

2.2.4.3 Disconnect Interrupt

An interrupt object can be disconnected from an IDT entry with the
KeDisconnectInterrupt function:

BOOLEAN
KeDisconnectInterrupt (
 IN PKINTERRUPT interrupt
);

Parameters:

Interrupt - A pointer to a control object of type interrupt.

If the specified interrupt object is not connected (a boolean state variable records
whether the interrupt object is connected), then no operation is performed and a
function value of FALSE is returned. Otherwise, the interrupt object is disconnected
from the IDT entry that was specified when the interrupt object was initialized and a
function value of TRUE is returned.

Further interrupts received from the interrupting source will be logged, but
otherwise ignored.

2.2.4.4 Synchronize Execution

The execution of a device driver function can be synchronized with the execution of
the service routine associated with an interrupt object with the
KeSynchronizeExecution function:

NT OS/2 Kernel Specification 71

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

BOOLEAN
KeSynchronizeExecution (
 IN PKINTERRUPT Interrupt,
 IN PKSYNCHRONIZE_ROUTINE SynchronizeRoutine,
 IN PVOID SynchronizeContext
);

Parameters:

Interrupt - A pointer to a control object of type interrupt.

SynchronizeRoutine - A pointer to a device driver function whose execution is to
be synchronized with the execution of the service routine associated with
the specified interrupt object.

SynchronizeContext - A pointer to an arbitrary data structure which is to be
passed to the function specified by the SynchronizeRoutine parameter.

The function specified by the SynchronizeRoutine parameter has the following type
definition:

typedef
BOOLEAN
(*PKSYNCHRONIZE_ROUTINE) (
 IN PVOID SynchronizeContext
);

Parameters:

ServiceContext - A pointer to an arbitrary data structure that was specified
when the call to KeSynchronizeExecution was executed.

This function is used by a device driver to synchronize execution with a service
routine which may be executing on another processor in a multiprocessor
configuration. Such synchronization is only necessary in those cases where both the
service routine and device driver access the same resources in a way that requires
mutually exclusive access.

When this function is executed, the IRQL is raised to the level specified by the
interrupt source's interrupt object (the higher of InterruptIrql and SynchronizeIrql),
access is synchronized with the corresponding service routine by acquiring the
associated spin lock, and then the specified routine is called. The routine should
access resources as necessary and return a boolean value. Upon return, the IRQL is
restored and the boolean value is returned as the function value.

NT OS/2 Kernel Specification 72

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Routines executed with this function execute at an elevated IRQL and must be very
short in duration. It is intended that these routines be used for such purposes as
loading device registers and should be only a few microseconds in length.

The boolean return value is intended to be attached to the occurrence of a power
failure. A device driver can use a power status object to record the occurrence of a
power failure. The synchronize routine should raise IRQL to POWER_LEVEL and
test the corresponding status variable before loading any device registers. If the
value is TRUE, then power has failed and the device may not be in an appropriate
state. If the value is FALSE, then power has not failed and a sequence of device
register loads can be performed without a power failure since power failure
interrupts are disabled.

2.2.5 Power Notify Object

A power notify object provides the capability to automatically have a specified
function called when power is restored after a power failure.

This object is intended for use by device drivers and other code that needs to be
asynchronously notified via a function call when power is restored after a failure.
The function call can be used to reinitialize device state, restart I/O operations, etc.

A power notify object, when inserted in the power notify queue, is a repeatable
operation. That is, the specified function will be called each time the power is
restored. The kernel guarantees that once called, the specified function will not be
recursively recalled until it has completed its execution and returned to the kernel.

When power is restored after a power failure, the kernel scans the power notify
queue and calls the specified functions in the order in which they were inserted.
Thus layered device drivers can ensure that they are called in the correct order.

If the power fails and is restored during the scan of the power notify queue, then the
scan is immediately restarted at the beginning of the queue.

A power notify object cannot be inserted in, or removed from, the power notify queue
from a function that is called as the result of power restoration (i.e., a power notify
routine).

Programming interfaces that support the power notify object include:

KeInitializePowerNotify - Initialize notify object
KeInsertQueuePowerNotify - Insert power notify object
KeRemoveQueuePowerNotify - Remove power notify object

NT OS/2 Kernel Specification 73

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.2.5.1 Initialize Power Notify

A power notify object can be initialized with the KeInitializePowerNotify function:

VOID
KeInitializePowerNotify (
 IN PKPOWER_NOTIFY PowerNotify,
 IN PKNOTIFY_ROUTINE NotifyRoutine,
 IN PVOID NotifyContext
);

Parameters:

PowerNotify - A pointer to a control object of type power notify.

NotifyRoutine - A pointer to a function that is to be called when power is
restored after a power failure.

NotifyContext - A pointer to an arbitrary data structure which will be passed to
the NotifyRoutine as a parameter.

The function specified by the NotifyRoutine parameter has the following type
definition:

typedef
VOID
(*PKNOTIFY_ROUTINE) (
 IN PVOID NotifyContext
);

Parameters:

NotifyContext - A pointer to an arbitrary data structure that was specified when
the power notify object was initialized.

The power notify object data structure is initialized.

In order to actually have the specified function called when power is restored after a
failure, the power notify object must be inserted in the power notify queue.

2.2.5.2 Insert Power Notify

A power notify object can be inserted in the power notify queue with the
KeInsertQueuePowerNotify function:

NT OS/2 Kernel Specification 74

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

BOOLEAN
KeInsertQueuePowerNotify (
 IN PKPOWER_NOTIFY PowerNotify
);

Parameters:

PowerNotify - A pointer to a control object of type power notify.

If the specified power notify object is already in the power notify queue (a boolean
state variable records whether the power notify object is in the power notify queue),
then no operation is performed and a function value of FALSE is returned.
Otherwise, the power notify object is inserted in the power notify queue and a
function value of TRUE is returned.

When the power is restored after a failure, the kernel scans the power notify queue
and calls the specified function.

2.2.5.3 Remove Power Notify

A power notify object can be removed from the power notify queue with the
KeRemoveQueuePowerNotify function:

BOOLEAN
KeRemoveQueuePowerNotify (
 IN PKPOWER_NOTIFY PowerNotify
);

Parameters:

PowerNotify - A pointer to a control object of type power notify.

If the power notify object is not in the power notify queue (a boolean state variable
records whether the power notify object is in the power notify queue), then no
operation is performed and a function value of FALSE is returned. Otherwise, the
power notify object is removed from the power notify queue and a function value of
TRUE is returned.

2.2.6 Power Status Object

A power status object provides the capability to automatically have a boolean state
variable set to a value of TRUE when power is restored after a power failure.

This object is intended for use by device drivers and other code which needs to
synchronize access to volatile register and device state such that a power failure

NT OS/2 Kernel Specification 75

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

does not leave the registers or device in an indeterminate state. The boolean value
can be interrogated at critical points during driver execution to determine whether a
given operation should be continued or restarted.

A power status object, when inserted in the power status queue, is a one-shot
operation. That is, the boolean variable will be set to a value of TRUE exactly once
after the power is restored. If it is desirable to have the boolean variable set to a
value of TRUE the next time that power fails, then the power status object must be
reinserted in the power status queue.

Programming interfaces that support the power status object include:

KeInitializePowerStatus - Initialize status object
KeInsertQueuePowerStatus - Insert power status object
KeRemoveQueuePowerStatus - Remove power status object

2.2.6.1 Initialize Power Status

A power status object can be initialized with the KeInitializePowerStatus function:

VOID
KeInitializePowerStatus (
 IN PKPOWER_STATUS PowerStatus
);

Parameters:

PowerStatus - A pointer to a control object of type power status.

The power status object data structure is initialized.

In order to actually have a boolean variable set to a value of TRUE when power is
restored after a failure, the power status object must be inserted in the power status
queue.

2.2.6.2 Insert Power Status

A power status object can be inserted in the power status queue with the
KeInsertQueuePowerStatus function:

NT OS/2 Kernel Specification 76

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

BOOLEAN
KeInsertQueuePowerStatus (
 IN PKPOWER_STATUS PowerStatus,
 IN PBOOLEAN Status
);

Parameters:

PowerStatus - A pointer to a control object of type power status.

Status - A pointer to a boolean variable that is to be set to a value of TRUE
when power is restored after a failure.

If the specified power status object is already in the power status queue (a boolean
state variable records whether the power status object is in the power status queue),
then no operation is performed and a function value of FALSE is returned.
Otherwise, the power status object is inserted in the power status queue, the
specified boolean variable is set to a value of FALSE, and a function value of TRUE
is returned.

When the power is restored after a failure, the kernel removes each entry from the
power status queue, sets the specified boolean variable to a value of TRUE, and sets
the inserted state of the power status object to FALSE.

2.2.6.3 Remove Power Status

A power status object can be removed from the power status queue with the
KeRemoveQueuePowerStatus function:

BOOLEAN
KeRemoveQueuePowerStatus (
 IN PKPOWER_STATUS PowerStatus
);

Parameters:

PowerStatus - A pointer to a control object of type power status.

If the power status object is not in the power status queue (a boolean state variable
records whether the power status object is in the power status queue), then no
operation is performed and a function value of FALSE is returned. Otherwise, the
power status object is removed from the power status queue and a function value of
TRUE is returned.

NT OS/2 Kernel Specification 77

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.2.7 Process Object

A process object represents the virtual address space and control information
necessary for the execution of a set of thread objects.

A process object contains a pointer to an address map, a thread ready list to hold
thread objects while the process is not in the balance set, a list of threads that are
children of the process, the total accumulated time for all threads executing within
the process, a base priority, and a default thread affinity.

A process object must be initialized before any thread objects can be initialized that
specify the process as their parent.

A process is either in the balance set (Included) or not in the balance set (Excluded).
When a process is in the balance set, then all threads that are children of the
process are eligible to be considered for execution on a processor. When a process is
not in the balance set, then necessary pages are not locked in memory (e.g. thread
kernel stacks) and threads that are children of the process are not eligible for
execution on a processor.

The balance set is managed by the balance set manager; see also the discussion
under Thread Object.

A process cannot leave the balance set while any of its children threads own
mutexes. Therefore, when a process is selected for removal from the balance set,
any children threads that own mutexes are allowed to continue execution until they
release their last mutex. When this occurs, execution of the thread is suspended
and it is placed in the process ready queue rather than returning to one of the
dispatcher ready queues. When no threads in the process own mutexes, then the
process can actually be removed from the balance set.

Programming interfaces that support the process object include:

KeInitializeProcess - Initialize a process object
KeAttachProcess - Attach process address space
KeDetachProcess - Detach process address space
KeExcludeProcess - Exclude process from balance set
KeIncludeProcess - Include process in balance set
KeSetPriorityProcess - Set priority of process object

2.2.7.1 Initialize Process

A process object can be initialized with the KeInitializeProcess function:

NT OS/2 Kernel Specification 78

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
KeInitializeProcess (
 IN PKPROCESS Process,
 IN KPRIORITY BasePriority,
 IN KAFFINITY Affinity,
 IN ULONG DirectoryTableBase,
 IN BOOLEAN Enable
);

Parameters:

Process - A pointer to a control object of type process.

BasePriority - The base priority of the process.

Affinity - The set of processors on which children threads of the process can
execute.

DirectoryTableBase - The value that is to be loaded into the Directory Table
Base Register when a child thread of the process is dispatched for
execution.

Enable - A boolean variable that specifies the default handling mode for data
alignment exceptions in children threads.

The process object data structure is initialized with the specified base priority,
affinity, directory table base, and default alignment exception handling mode. The
process and thread quantum values are initialized with system default values and
the process is not considered to be in the balance set.

The Enable parameter specifies the default handling mode for data alignment
exceptions in children threads. If this parameter is TRUE, then user mode data
alignment exceptions are automatically handled by the kernel and are not raised as
exceptions. Otherwise, user mode data alignment exceptions are not handled by the
kernel and may, or may not, be raised as exceptions depending on host hardware
capabilities. Automatic handling of user data alignment exceptions means that the
kernel emulates misaligned data references and completes the offending
instructions as if no misalignment exception had occurred. Misaligned references in
kernel mode are never automatically handled and are always raised as exceptions.

IMPLEMENTATION NOTES:

Certain processors (e.g., the i386) always handle misaligned data in hardware. On
these processors, enabling or disabling the automatic handling of data alignment
exceptions has no effect. On other processors (e.g., i486, MIPS r3000, r4000SP, and

NT OS/2 Kernel Specification 79

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

r4000MP) the handling of misaligned data is handled according to the mode
established for the respective thread.

2.2.7.2 Attach Process

A thread can attach to another process's address space with the KeAttachProcess
function:

VOID
KeAttachProcess (
 IN PKPROCESS Process
);

Parameters:

Process - A pointer to a control object of type process.

Attaching to another process's address space causes the subject thread to leave the
parent process's address space and enter the address space of the target process.
This provides the capability for one thread to alter the address space and resources
of another process without having complicated data structures or locking protocols.

All of the resources of the target process can be accessed and manipulated by the
subject thread while the thread is executing in the target process's address space.
This includes the process object table, process private mapping information,
working set, etc.

A thread can only attach to one address space at a time. If an attempt is made to
attach to a second process's address space while the thread is already attached to
another process's address space, then a bug check will occur. In addition, a thread
cannot own any mutexes when it attaches to another process's address space. An
attempt to do will also cause a bug check to occur.

Attaching to another process's address causes the current APC state of the subject
thread to be saved and a new state initialized. While the thread is executing in the
attached process's address space, it can receive APCs that were initiated in that
address space. APCs that were initiated in the parent process's address space are
queued, but not delivered until the thread returns to the parent process's address
space.

Attaching to another process's address space does not cause the kernel stack of the
subject thread to be locked in memory while the target process is in the balance set.
Therefore, both the source and target processes are not allowed to leave the balance
set while a thread has the target process's address space attached. This is
accomplished by incrementing the process mutex count of both the source and

NT OS/2 Kernel Specification 80

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

target processes. Artificially incrementing this count prevents each of the processes
from being removed from the balance set until their respective counts go to zero. In
addition, a thread that has another process's address space attached is allowed to
continue execution as if it owned a mutex, if one of the processes is selected for
removal from the balance set by the balance set manager.

The execution time of a thread that has another process's address space attached is
charged to the target process.

This service will be used by the executive to alter the address map of another
process.

2.2.7.3 Detach Process

A thread can detach from another process's address space with the
KeDetachProcess function:

VOID
KeDetachProcess (
);

Detaching from another process's address space causes the subject thread to return
to the parent process's address space.

If an attempt is made to detach from another process's address space when the
subject thread does not have another process's address space attached, then a bug
check will occur. In addition, if a kernel APC is in progress, the kernel APC queue
contains an entry, the user APC queue contains an entry, or the thread owns one or
more mutexes, then a bug check will also occur.

Detaching from another process's address space causes the saved APC state to be
restored and the process mutex counts to be adjusted. If the kernel APC queue is
not empty, then an APC_LEVEL software interrupt is requested which will cause the
kernel mode APCs to get delivered as appropriate.

2.2.7.4 Exclude Process

A process object can be excluded from the balance set with the KeExcludeProcess
function:

NT OS/2 Kernel Specification 81

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

BOOLEAN
KeExcludeProcess (
 IN PKPROCESS Process
);

Parameters:

Process - A pointer to a control object of type process.

The specified process is excluded from the balance set and its children threads will
be removed from further consideration by the thread dispatcher when they no
longer own any mutexes and do not have another process's address space attached.

A value of TRUE is returned as the function value, if the process can be immediately
removed from the balance set (i.e., none of its children threads own any mutexes or
have any address spaces attached). Otherwise, a value of FALSE is returned and the
caller must wait on the process's balance set event to determine the exact point
when the process can be removed from the balance set.

Processors on which children threads are running (Running state) or about to run
(Standby state) are forced to redispatch if their respective threads do not own any
mutexes and are not attached to another process's address space.

As ready threads are considered for execution, a test is made to determine if the
thread's process is in the balance set. If the thread does not own any mutexes, is
not attached to another process' address space, and its parent process is excluded
from the balance set, then the thread is removed from its dispatcher ready queue
and inserted in the process ready queue. The process ready queue is scanned when
the process reenters the balance set and any threads in the process's ready queue
are rereadied for execution.

This function is intended for use by the balance set manager.

2.2.7.5 Include Process

A process object can be included in the balance set with the KeIncludeProcess
function:

NT OS/2 Kernel Specification 82

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
KeIncludeProcess (
 IN PKPROCESS Process
);

Parameters:

Process - A pointer to a control object of type process.

The specified process is included in the balance set and the process's ready queue is
scanned. The process ready queue is a list of threads that are ready to run, but
which were moved to the process ready queue when they were encountered in one of
the dispatcher ready queues. Each thread in the list is removed and readied for
execution.

This function is intended for use by the balance set manager.

2.2.7.6 Set Priority Process

The base priority of a process object can be set with the KeSetPriorityProcess
function:

KPRIORITY
KeSetPriorityProcess (
 IN PKPROCESS Process,
 IN KPRIORITY BasePriority
);

Parameters:

Process - A pointer to a control object of type process.

BasePriority - The new base priority of the process object.

The base priority of the specified process is set to the specified value and the priority
of all the process's children threads are adjusted as appropriate.

If the new priority is in the realtime class, then the priority of each child thread is
set to the new base priority.

If the new priority is in the variable class, then the priority of each thread is
computed by taking the current priority of the thread, subtracting out the old base
priority, and then adding the new base priority. The computed value is not allowed
to cross into the realtime class or go below a priority of 1.

NT OS/2 Kernel Specification 83

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.2.7.7 Process Accounting Data

As children threads within a process execute, their runtime is accumulated in the
parent process object. The units of this summation are clock ticks.

2.2.8 Profile Object

A profile object provides the capability to measure the distribution of execution time
within a block of code. Both user and system code may be profiled.

Each profile object has three key attributes. First, a profile object applies to an
address range or a set of address ranges. The address range is specified by the
RangeBase, RangeSize, and Process parameters. RangeBase and RangeSize select a
range of bytes (that is, the area of code) on which to collect profile data. This range
is within the address space described by the Process parameter. A given profile
object either profiles a single address range within a single address space (i.e.,
applies to one process) or profiles the same single address range across all
processes in the system.

Second, a profile object divides the address range being profiled into buckets. Each
time a program counter (PC) sample shows the PC to be in one of these buckets, the
corresponding counter is incremented. The BucketSize parameter controls the size
of these buckets.

Third, a profile object reports the number of sampling hits for any given bucket in
the corresponding counter. Counters reside in the buffer associated with the profile
object when it is created.

Profiling works by sampling the processors PC using a periodic interrupt. The
handler for the profiling interrupt searches the list of active profile objects for those
with address ranges that match the PC. (I.e., the sampled PC falls within the
address range associated with the profile object, and the current process matches
the process associated with the profile object.) For each matching profile object, the
bucket is computed, and the counter corresponding to the bucket is updated.

When profiling is off, it consumes no processor cycles, and thus may be present in
any system. When turned on, the burden it places on the system is inversely
proportional to the profiling interval set with KeSetIntervalProfile and proportional
to the number of active (started) profile objects. A small number of profile objects
may be active at any one time.

IMPLEMENTATION NOTE:

NT OS/2 Kernel Specification 84

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

On symmetric MP machines, profiling interrupts occur on all processors (at the
same rate). On asymmetric machines (i.e., the SystemPro) slave processors do NOT
do profiling.

Programming interfaces that support the profile object include:

KeInitializeProfile - Initialize a profile object
KeStartProfile - Start data collection for a profile object
KeStopProfile - Stop data collection for a profile object
KeSetIntervalProfile - Set length of profile interval (globally)
KeQueryIntervalProfile - Query length of profile interval

2.2.8.1 Initialize Profile

A profile object is initialized with KeInitializeProfile.

VOID
KeInitializeProfile (
 IN PKPROFILE Profile,
 IN PKPROCESS Process OPTIONAL,
 IN PVOID RangeBase,
 IN ULONG RangeSize,
 IN ULONG BucketSize
);

Parameters:

Profile - A pointer to a control object of type profile.

Process - If specified, a pointer to a kernel process object that describes the
address space to profile. If not specified, then all address spaces are
included in the profile.

RangeBase - Address of the first byte of the address range for which profiling
information is to be collected.

RangeSize - Size of the address range for which profiling information is to be
collected. The RangeBase and RangeSize parameters are interpreted such
that RangeBase <= address < RangeBase+RangeSize generates a profile
hit.

BucketSize - Log base 2 of the size of a profiling bucket. Thus, BucketSize = 2
yields 4-byte buckets, BucketSize = 7 yields 128-byte buckets. All profile
hits in a given bucket increment the corresponding counter in Buffer.
Buckets cannot be smaller than a ULONG.

NT OS/2 Kernel Specification 85

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The profile object is initialized with the specified parameter values, and its state is
set to stopped. KeStartProfile must be called to actually start profiling.

2.2.8.2 Start Profile

KeStartProfile must be called to start gathering data for a profile object.

BOOLEAN
KeStartProfile (
 IN PKPROFILE Profile,
 IN PULONG Buffer
);

Parameters:

Profile - A pointer to a control object of type profile.

Buffer - Array of ULONGs. Each ULONG is a hit counter, which records the
number of hits in the corresponding bucket. The Buffer must be
accessible at DPC_LEVEL and above.

The value TRUE is returned if the profile object is successfully started. FALSE is
returned if the object is already in the started state. An exception
(STATUS_INSUFFICIENT_RESOURCES) is raised if there are insufficient resources
available to make the profile active.

2.2.8.3 Stop Profile

KeStopProfile is called to stop gathering data for a profile object.

BOOLEAN
KeStopProfile (
 IN PKPROFILE Profile
);

Parameters:

Profile - A pointer to a control object of type profile.

TRUE is returned if the profile is successfully stopped, FALSE if it is not already in
the started state. Once a profile is stopped, no more updates are written into its
buffer.

NT OS/2 Kernel Specification 86

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.2.8.4 Set System Profile Interval

The time interval between profile interrupts (and thus the profiling rate) is set by
calling KeSetIntervalProfile.

VOID
KeSetIntervalProfile (
 IN ULONG Interval
);

Parameters:

Interval - The sampling interval in 100ns units.

The actual interval set by the system is the closest available, but may differ
significantly. KeQueryIntervalProfile returns the actual value in use by the
system.

The value is set globally; it affects all profiles on all processors.

IMPLEMENTATION NOTE:

PC-based i386 and i486 machines offer sampling intervals from about 10,000 units
(1 millisecond) to 300 units (30 microseconds).

2.2.8.5 Query System Profile Interval

KeQueryIntervalProfile returns the current profile sampling interval.

ULONG
KeQueryIntervalProfile (
);

The current profile sampling interval is returned in units of 100ns. This is the value
the system is actually using, and thus may be different from the value set with
KeSetIntervalProfile.

3. Wait Operations

Threads synchronize their access to dispatcher objects with object-specific functions
and the generic kernel Wait functions. When a thread desires to wait until a
dispatcher object attains a Signaled state, it executes one of the kernel Wait
functions specifying the dispatcher object as a parameter. If the dispatcher object is
not currently in a Signaled state, then the kernel puts the thread in a Waiting state
and selects another thread to run on the current processor.

NT OS/2 Kernel Specification 87

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

At some future point, a cooperating thread or system operation will cause the
specified dispatcher object to attain a state of Signaled. When this occurs, the
thread will be given a priority boost and enter the Ready state. The thread will be
dispatched for execution according to its priority.

The kernel Wait functions also allow a thread to wait on more than one dispatcher
object at a time. The conditions under which the Wait will be satisfied can be
specified as WaitAny or WaitAll.

If WaitAny is specified, then the Wait will be satisfied when any of the objects attain
a state of Signaled. If WaitAll is specified, then the Wait will not be satisfied until all
of the objects concurrently attain a state of Signaled.

Each Wait operation can optionally specify a timeout value. If a timeout value is
specified, then the Wait will be automatically satisfied if the timeout period is
exceeded without the Wait being satisfied in the normal manner.

If a timeout value of zero is specified, then no wait will actually occur, but an
attempt will be made to satisfy the Wait immediately. If the Wait can be satisfied,
then all side effects are performed (e.g. acquiring a mutex). Otherwise, no side
effects are performed.

Wait operations can be alertable or nonalertable. If a wait is alertable and the
subject thread is alerted while it is waiting, then the wait will be satisifed with a
completion status of STATUS_ALERTED.

Wait operations also take a processor mode as a parameter which specifies on
whose behalf the Wait is actually occurring. This is required since executive code
itself performs the Wait operation and the previous mode of the processor is not
necessarily the correct mode. This mode determines what happens when the subject
thread is alerted or an APC is queued while the thread is in a Waiting state.

Each Wait operation also takes a Wait reason as a parameter. The Wait reason is an
enumerated type supplied by the kernel and is used for debugging system code and
for system management functions (i.e., it will be possible to display the reason a
thread is in a Waiting state).

Programming interfaces that support wait operations include:

KeWaitForMultipleObjects - Wait for dispatcher objects
KeWaitForSingleObject - Wait for one dispatcher object

NT OS/2 Kernel Specification 88

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.1 Wait For Multiple Objects

A thread can wait for a set of dispatcher objects with the
KeWaitForMultipleObjects function:

NTSTATUS
KeWaitForMultipleObjects (
 IN CCHAR Count,
 IN PVOID Objects[],
 IN WAIT_TYPE WaitType,
 IN KWAIT_REASON WaitReason,
 IN KPROCESSOR_MODE WaitMode,
 IN BOOLEAN Alertable,
 IN PTIME Timeout OPTIONAL,
 IN PKWAIT_BLOCK WaitBlockArray OPTIONAL
);

Parameters:

Count - A count of the number of objects that are to be waited on.

Objects - An array of pointers to dispatcher objects.

WaitType - The type of wait operation that is to be performed (WaitAny or
WaitAll).

WaitReason - The reason for the Wait.

WaitMode - The processor mode on whose behalf the Wait is occurring.

Alertable - A boolean value that specifies whether the Wait is alertable.

Timeout - An optional pointer to timeout value that specifies the absolute or
relative time over which the Wait is to be completed.

WaitBlockArray - An optional pointer to an array of wait blocks that are to be
used to describe the wait operation.

Each thread object has a builtin array of wait blocks that can be used to wait on
multiple objects concurrently. Whenever possible, the builtin array of wait blocks
should be used in a wait multiple operation since no additional wait block storage
need be allocated and later deallocated. However, if the number of objects to be
waited on concurrently is greater than the number of builtin wait blocks, then the
WaitBlockArray parameter can be used to specify an alternate set of wait blocks to
be used in the wait operation.

NT OS/2 Kernel Specification 89

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

If the WaitBlockArray parameter is not specified, then the Count parameter must be
less than or equal to THREAD_WAIT_OBJECTS which defines the number of builtin
wait objects. If the WaitBlockArray parameter is not specified and the Count
parameter is greater than THREAD_WAIT_BLOCKS, then a bug check will occur.

If the WaitBlockArray parameter is specified, then the Count parameter must be less
than or equal to MAXIMUM_WAIT_OBJECTS which is the maximum number of
objects that can be waited on concurrently. If the WaitBlockParameter is specified
and the Count parameter is greater than MAXIMUM_WAIT_OBJECTS, then a bug
check will occur.

The current state for each of the specified objects is examined to determine if the
Wait can be satisfied immediately. If the Wait can be satisfied, then necessary side
effects are performed on the objects and an appropriate value is returned as the
function value. If the Wait cannot be satisfied immediately, and either no timeout
value or a nonzero timeout value is specified, then the current thread is put in a
Waiting state and a new thread is selected for execution on the current processor.

The WaitType parameter specifies the type of wait operation that is to be performed.
If the WaitType is WaitAll, then all of the specified objects must attain a state of
Signaled before the Wait will be satisfied. If the WaitType is WaitAny, then any of the
objects must attain a state of Signaled before the Wait will be satisifed.

The reason for the Wait is set to the value specified by the WaitReason parameter.

The WaitMode parameter specifies on whose behalf the Wait is occurring.

The Alertable parameter specifies whether the thread can be alerted while it is in the
Waiting state. If the value of this parameter is TRUE and the thread is alerted for a
mode that is equal to or more privileged than the Wait mode, then the thread's Wait
will be satisfied with a completion status of STATUS_ALERTED.

If the WaitMode parameter is UserMode and the Alertable parameter TRUE, then the
thread can also be awakened to deliver a user mode APC. Kernel mode APCs always
cause the subject thread to be awakened if the Wait IRQL is zero and there is not a
kernel APC in progress.

The Timeout parameter is optional. If a timeout value is specified, then the Wait will
be automatically satisfied if the timeout occurs before the specified Wait conditions
are met.

If a zero timeout value is specified, then the Wait will not actually Wait regardless of
whether it can be satisfied or not. An explicit timeout value of zero allows for the
testing of a set of Wait conditions, and conditionally performing any side effects if
the Wait can be immediately satisifed (e.g. the acquisition of a mutex).

NT OS/2 Kernel Specification 90

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The expiration time of the timeout is expressed as either an absolute time at which
the Wait is to be automatically satisifed, or a time that is relative to the current
system time. If the value of the Timeout parameter is negative, then the expiration
time is relative. Otherwise, the expiration time is absolute.

The values returned by the KeWaitForMultipleObjects function determine how the
Wait was satisfied.

A value in the range of zero to Count minus one is returned if the Wait is satisfied by
one or more of the dispatcher objects specified by the Objects parameter and none of
the dispatcher objects satisfying the Wait is an abandoned mutant object. The
actual value returned is the index of the object (zero based) in the Objects array that
satisfied the Wait.

A value in the range of STATUS_ABANDONED to STATUS_ABANDONED plus Count
minus one is returned if the Wait is satisfied by one or more of the dispatcher
objects specified by the Objects parameter and one or more of the dispatcher objects
satisfying the Wait is an abandoned mutant object. The actual value returned is the
index of the object (zero based) in the Objects array that satisfied the Wait plus the
value of STATUS_ABANDONED.

A value of STATUS_ALERTED is returned if the Wait was completed because the
thread was alerted.

If a value of STATUS_TIMEROUT is returned, then timeout occurred before the
specified set of wait conditions were met. Note that this value can be returned when
an explicit timeout value of zero is specified and the specified set of wait conditions
cannot be immediately met.

A value of STATUS_USER_APC is returned if a user mode APC is to be delivered.

3.2 Wait For Single Object

A thread can wait for a single dispatcher object with the KeWaitForSingleObject
function:

NT OS/2 Kernel Specification 91

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
KeWaitForSingleObject (
 IN PVOID Object,
 IN KWAIT_REASON WaitReason,
 IN KPROCESSOR_MODE WaitMode,
 IN BOOLEAN Alertable,
 IN PTIME Timeout OPTIONAL
);

Parameters:

Object - A pointer to a dispatcher object.

WaitReason - The reason for the Wait.

WaitMode - The processor mode on whose behalf the Wait is occurring.

Alertable - A boolean value that specifies whether the Wait is alertable.

Timeout - An optional pointer to timeout value that specifies the absolute or
relative time over which the Wait is to be completed.

The current state of the specified object is examined to determine if the Wait can be
satisfied immediately. If the Wait can be satisfied, then necessary side effects are
performed on the object and an appropriate value is returned as the function value.
If the Wait cannot be satisfied immediately, and either no timeout value or a
nonzero timeout value is specified, then the current thread is put in a Waiting state
and a new thread is selected for execution on the current processor.

The reason for the Wait is set to the value specified by the WaitReason parameter.

The WaitMode parameter specifies on whose behalf the Wait is occurring.

The Alertable parameter specifies whether the thread can be alerted while it is in the
Waiting state. If the value of this parameter is TRUE and the thread is alerted for a
mode that is equal to or more privileged than the Wait mode, then the thread's Wait
will be satisfied with a completion status of STATUS_ALERTED.

If the WaitMode parameter is UserMode and the Alertable parameter TRUE, then the
thread can also be awakened to deliver a user mode APC. Kernel mode APCs always
cause the subject thread to be awakened if the Wait IRQL is zero and there is not a
kernel APC in progress.

NT OS/2 Kernel Specification 92

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The Timeout parameter is optional. If a timeout value is specified, then the Wait will
be automatically satisfied if the timeout occurs before the specified Wait conditions
are met.

If a zero timeout value is specified, then the Wait will not actually Wait regardless of
whether it can be satisfied or not. An explicit timeout value of zero allows for the
testing of a set of Wait conditions, and conditionally performing any side effects if
the Wait can be immediately satisifed (e.g. the acquisition of a mutex).

The expiration time of the timeout is expressed as either an absolute time at which
the Wait is to be automatically satisifed, or a time that is relative to the current
system time. If the value of the Timeout parameter is negative, then the expiration
time is relative. Otherwise, the expiration time is absolute.

The values returned by the KeWaitForSingleObject function determine how the
Wait was satisfied.

A value of STATUS_SUCCESS is returned if the dispatcher object specified by the
Object parameter satisfied the Wait.

A value of STATUS_ABANDONED is returned if the dispatcher object specified by
the Object parameter satisfied the Wait and is a mutant object that was previously
abandoned.

A value of STATUS_ALERTED is returned if the Wait was completed because the
thread was alerted.

If a value of STATUS_TIMEOUT is returned, then timeout occurred before the
specified wait condition was met. Note that this value can be returned when an
explicit timeout value of zero is specified and the specified set of wait conditions
cannot be immediately met.

A value of STATUS_USER_APC is returned if a user mode APC is to be delivered.

4. Miscellaneous Operations

Several miscellaneous functions are provided to perform hardware-related
operations and to provide the operations necessary to debug a multiprocessor
operating system.

The exact implementation for some of these operations varies, depending on the
particular host architecture. Implementation notes have been provided for these
functions.

Programming interfaces that support miscellaneous operations include:

NT OS/2 Kernel Specification 93

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

KeBugCheck - Generate bug check halt
KeContextFromKframes - Move machine state to context frames
KeContextToKframes - Move machine state from context frames
KeFillEntryTb - Fill translation buffer entry
KeFlushDcache - Flush data cache
KeFlushEntireTb - Flush entire translation buffer
KeFlushIcache - Flush instruction cache
KeFlushIoBuffers - Flush I/O buffers from the data cache
KeFlushSingleTb - Flush single translation buffer entry
KeFreezeExecution - Freeze processor execution
KeGetCurrentApcEnvironment - Get the current APC environment
KeGetCurrentIrql - Get the current IRQL
KeGetPreviousMode - Get previous processor mode
KeLowerIrql - Lower the current IRQL to the specified value
KeQuerySystemTime - Query the current system time
KeRaiseIrql - Raise the current IRQL to the specified value
KeRundownThread - Run down thread before termination
KeSetSystemTime - Set the current system time
KeStallExecutionProcessor - Stall processor execution
KeUnFreezeExecution - Unfreeze processor execution

4.1 Bug Check

A bug check halt can be generated with the KeBugCheck function:

VOID
KeBugCheck (
 IN ULONG BugCheckCode
);

Parameters:

BugCheckCode - A value that specifies the reason for the bug check.

A bug check is a system-detected error that causes a controlled shutdown of the
system. The various kernel mode components of the system perform online
consistency checking. When an inconsistency is discovered, a bug check is
generated.

NT OS/2 Kernel Specification 94

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4.2 Context Frame Manipulation

The kernel trap handler is responsible for saving and restoring machine state when
an interrupt, exception, system call, or other trapping condition is detected by
system hardware.

Depending on the type of trapping condition, the trap handler may save only the
volatile register state, or may save both the volatile and the nonvolatile register
state. In addition, the previous processor state and floating point status are also
saved.

This state information is saved on the kernel stack in the form of a call frame.
Separate call frames are used to store the volatile and the nonvolatile register state.
These frames are called the trap frame and exception frame respectively.

A third structure, called a context frame, is constructed from the information
contained in the trap and exception frames. This structure contains the complete
machine state for a thread of execution.

A context frame is used to specify the initial machine state of a thread, to save the
previous machine state when an exception handler is invoked, and to continue the
execution of a thread after an exception has been handled.

The kernel supplies two routines to marshal information to/from a context frame.

4.2.1 Move Machine State To Context Frame

Saved machine state can be moved from a trap frame and/or an exception frame to
a context frame with the KeContextFromKframes function:

VOID
KeContextFromKframes (
 IN PKTRAP_FRAME TrapFrame,
 IN PKEXCEPTION_FRAME ExceptionFrame,
 IN OUT PCONTEXT ContextFrame
);

Parameters:

TrapFrame - A pointer to a trap frame.

ExceptionFrame - A pointer to an exception frame.

ContextFrame - A pointer to a context frame.

NT OS/2 Kernel Specification 95

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Saved machine state is moved from the specified trap frame and/or the specified
exception frame to the specified context frame. The ContextFlags field of the context
frame controls the information that is moved.

ContextFlags Field

CONTEXT_CONTROL - Specifies that the processor state information from
the trap frame is to be moved to the context frame.

CONTEXT_FLOATING_POINT - Specifies that the floating point register
state from the trap and exception frames is to be moved to the
context frame.

CONTEXT_INTEGER - Specifies that the integer register state from the trap
and exception frames is to be moved to the context frame.

CONTEXT_PIPELINE - Specifies that the floating point pipe state is to be
moved from the trap frame to the context frame.

CONTEXT_FULL - Specifies that all of the state information from the trap
and exception frames is to be moved to the context frame.

4.2.2 Move Machine State From Context Frame

Saved machine state can be moved from a context frame to a trap frame and/or an
exception frame with the KeContextToKframes function:

VOID
KeContextToKframes (
 IN OUT PKTRAP_FRAME TrapFrame,
 IN OUT PKEXCEPTION_FRAME ExceptionFrame,
 IN PCONTEXT ContextFrame,
 IN ULONG ContextFlags,
 IN KPROCESSOR_MODE PreviousMode
);

Parameters:

TrapFrame - A pointer to a trap frame.

ExceptionFrame - A pointer to an exception frame.

ContextFrame - A pointer to a context frame.

NT OS/2 Kernel Specification 96

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ContextFlags - A set of flags that specifies the state information that is to be
moved from the specified context frame to the specified trap frame and/or
the specified exception frame.

ContextFlags Flags

CONTEXT_CONTROL - Specifies that the processor state information from
the context frame is to be moved to the trap frame.

CONTEXT_FLOATING_POINT - Specifies that the floating point register
state from the context frame is to be moved to the trap and exception
frames.

CONTEXT_INTEGER - Specifies that the integer register state from the
context frame is to be moved to the trap and exception frames.

CONTEXT_PIPELINE - Specifies that the floating point pipe state is to be
moved from the context frame to the trap frame.

CONTEXT_FULL - Specifies that all of the state information from the
context frame is to be moved to the trap and exception frames.

PreviousMode - The processor mode for which the context frame is specified.

Saved machine state is moved from the specified context frame to the specified trap
frame and/or the specified exception frame. The ContextFlags parameter specifies
the information that is to be moved. The PreviousMode parameter determines which
bits the caller may specify if the processor state information is being moved to the
trap frame.

4.3 Fill Entry Translation Buffer

A page table entry can be inserted into the translation buffer of the current
processor with the KeFillEntryTb function:

NT OS/2 Kernel Specification 97

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
KeFillEntryTb (
 IN HARDWARE_PTE Pte[1],
 IN PVOID Virtual,
 IN BOOLEAN Invalid
);

Parameters:

Pte - A pointer to a page table entry, or a pair of page table entries, that are to
be inserted into the translation buffer of the current processor.

Virtual - The virtual address that corresponds to the first page table entry.

Invalid - A boolean value that determines whether a translation buffer entry
should be invalidated if the host architecture does not provide a software-
managed translation buffer.

This function is intended for use by memory management software for the following
cases:

 1. A page table entry transitions from the invalid to the valid state.

 2. A page table entry transitions from the unmodified (clean) to the modified
(dirty) state.

 3. A page table entry transitions from the unaccessed to the accessed state.

None of these transitions affects other processors in the configuration; however,
they provide the opportunity to optimize the filling of the translation buffer on
systems that have a software-managed translation buffer.

If the page table entry is transitioning from the invalid to the valid state, then the
Invalid parameter should be FALSE. Otherwise, the Invalid parameter should be
TRUE.

If the specified virtual address is already mapped by the translation buffer, then the
contents of the specified page table entry(s) replace the page table entry in the
translation buffer. Otherwise, a new translation buffer entry is created that maps
the specified virtual address.

IMPLEMENTATION NOTES:

The Intel i860 does not have a software-managed translation buffer. It also cannot
invalidate a single translation buffer entry. Therefore, if the Invalid parameter is

NT OS/2 Kernel Specification 98

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

TRUE, then the entire translation buffer is invalidated. Otherwise, no operation is
performed.

The Intel i386 and i486 do not have a software-managed translation buffer. Also
neither of these processors can invalidate a single translation buffer entry.
Therefore, if the Invalid parameter is TRUE, the entire translation buffer is
invalidated. Otherwise, no operation is performed.

\ The i486 can invalidate a single translation buffer entry, but it is not yet
supported. \

The MIPS r3000, r4000SP, and r4000MP have software-managed translation
buffers. Therefore, the specified page table entry either replaces the current
translation buffer entry or a new translation buffer entry is created to map the
specified virtual address.

4.4 Flush Data Cache

The data cache can be flushed on all processors, or only that set of processors that
are currently executing threads that belong to the current thread's process with the
KeFlushDcache function:

VOID
KeFlushDcache (
 IN BOOLEAN AllProcessors
);

Parameters:

AllProcessors - A boolean value that determines which data caches are to be
flushed.

This function is intended for use by memory management and device driver software
to keep the data cache coherent with DMA I/O operations.

If the AllProcessors parameter is TRUE, then the data cache is flushed on all
processors in the system. Otherwise, only the data caches on processors running
threads that belong to the current thread's process are flushed.

IMPLEMENTATION NOTES:

The Intel i860 employs a writeback data cache with virtual tags that does not
maintain coherency with DMA I/O operations. Therefore, this function must flush
the data cache.

NT OS/2 Kernel Specification 99

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The Intel i386 and i486 employ data caches that maintain coherency with I/O
operations. Therefore, this function performs no operation.

The MIPS r3000 and r4000SP employ data caches that do not maintain coherency
with I/O operations. Therefore, the data cache must be flushed for this function.

The MIPS r4000MP employs a data cache that maintains coherency with I/O
operations. Therefore, this function performs no operation.

4.5 Flush Entire Translation Buffer

The entire translation buffer can be flushed on all processors, or only that set of
processors that are currently executing threads that belong to the current thread's
process with the KeFlushEntireTb function:

VOID
KeFlushEntireTb (
 IN BOOLEAN Invalid,
 IN BOOLEAN AllProcessors
);

Parameters:

Invalid - A boolean value that specifies why the translation buffer is being
flushed.

AllProcessors - A boolean value that determines which translation buffers are to
be flushed.

This function is intended for use by memory management software when virtual
pages are deleted, removed from the process working set, or their protection is
changed. Normally, the entire translation buffer is not flushed when virtual pages
are removed from the process working set. However, when a number of pages are
removed all at once, it is more efficient to simply flush the entire translation buffer
rather than flush individual entries.

If the value of the Invalid parameter is TRUE, then the translation buffer is being
flushed because one or more pages have become invalid and not present in memory.
If the value of the Invalid parameter is FALSE, then the translation buffer is being
flushed because the protection on one or more pages has been changed.

If the AllProcessors parameter is TRUE, then the entire translation buffer is flushed
on all processors in the system. Otherwise, only the translation buffers on
processors running threads that belong to the current thread's process are flushed.

NT OS/2 Kernel Specification 100

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

IMPLEMENTATION NOTE:

The Intel i860 employs a data cache with virtual tags. It also cannot flush the
translation buffer without also flushing the instruction cache. If the Invalid
parameter is TRUE, then the data cache is flushed in addition to flushing the
instruction cache and invalidating the translation buffer. Otherwise, the instruction
cache is flushed and the translation buffer is invalidated.

The Intel i386 and i486 flush the translation buffer for this function.

The MIPS r3000, r4000SP, and r4000MP flush the random part of the software-
managed translation buffer for this function. The fixed part of the translation buffer
is not affected.

4.6 Flush Instruction Cache

The instruction cache can be flushed on all processors, or only that set of
processors that are currently executing threads that belong to the current thread's
process with the KeFlushIcache function:

VOID
KeFlushIcache (
 IN BOOLEAN AllProcessors
);

Parameters:

AllProcessors - A boolean value that determines which instruction caches are to
be flushed.

This function is intended for use by system debuggers. When a breakpoint is
inserted in system code, the instruction caches of all processors in the system must
be flushed. If a breakpoint is placed in process code, then only the instruction
caches of processors executing threads that belong to current thread's process need
to be flushed.

The executive also exports this function for use by code that modifies the
instruction stream. After each such modification, and before attempting to execute
the modified instructions, the instruction cache must be flushed.

If the AllProcessors parameter is TRUE, then the instruction cache is flushed on all
processors in the system. Otherwise, only the instruction caches on processors
running threads that belong to the current thread's process are flushed.

IMPLEMENTATION NOTES:

NT OS/2 Kernel Specification 101

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The Intel i860 does not maintain coherency between the data and instruction
caches. It also cannot flush the instruction cache without invalidating the
translation buffer. Therefore, the instruction cache is flushed and the translation
buffer is invalidated for this function.

The Intel i386 and i486 maintain coherency between the data and instruction
caches. Therefore, no operation is performed for this function.

The MIPS r3000, r4000SP, and r4000MP do not maintain coherency between the
instruction and data caches. Therefore, the instruction cache is flushed for this
function.

4.7 Flush I/O Buffers

The memory region occupied by an I/O buffer can be flushed from both the
instruction and data caches of all processors in the system with the
KeFlushIoBuffers function:

VOID
KeFlushIoBuffers (
 IN PMDL Mdl,
 IN BOOLEAN ReadOperation
);

Parameters:

Mdl - A pointer to a memory descriptor list that describes the areas of memory
occupied by the I/O buffer.

ReadOperation - A boolean value that determines whether the flush is being
performed for a read operation.

This function is intended for use by device drivers and affects all processors in the
system.

If the ReadOperation parameter is TRUE, then the I/O operation is reading
information into memory that may be valid in the instruction and data caches. If the
ReadOperation parameter is FALSE, then the I/O operation is writing data from
memory to a device and information may be present in the data cache and not in
memory.

IMPLEMENTATION NOTES:

The Intel i860 employs a writeback data cache and an instruction cache that do not
maintain coherency with I/O operations. Therefore, the data cache must be flushed

NT OS/2 Kernel Specification 102

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

for both read and write operations. The Intel i860 also cannot flush the instruction
cache without invalidating the translation buffer. Therefore, if the ReadOperation
parameter is TRUE, then the instruction cache is flushed and the translation buffer
is also invalidated for this function.

The Intel i386 and i486 maintain data and instruction cache coherency with I/O
operations. Therefore, no operation is performed for this function.

\ The i486 has a write buffer which may have to be flushed before all I/O
operations. \

The MIPS r3000 employs a write-through data cache and does not maintain
coherency with I/O operations for either of the instruction or data caches.
Therefore, if the ReadOperation parameter is TRUE, then both the instruction and
data caches must be flushed. Otherwise, no operation is performed for this function.

\ The r3000 has a write buffer which must be flushed before all I/O
operations. \

The MIPS r4000SP employs a writeback data cache and an instruction cache that
do not maintain coherency with I/O operations. Therefore, the data cache must be
flushed for both read and write operations. In addition, if the ReadOperation
parameter is TRUE, then the instruction cache is also flushed for this function.

The MIPS r4000MP employs a writeback data cache that maintains coherency with
I/O operations. However, cache coherency is not maintained for the instruction
cache with I/O operations. Therefore, if the ReadOperation parameter is TRUE, then
the instruction cache is flushed. Otherwise, no operation is performed for this
function.

4.8 Flush Single Translation Buffer Entry

A single entry can be flushed from the translation buffer of all processors, or only
that set of processors that are currently executing threads that belong to the
current thread's process with the KeFlushSingleTb function:

NT OS/2 Kernel Specification 103

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

HARDWARE_PTE
KeFlushSingleTb (
 IN PVOID Virtual,
 IN BOOLEAN Invalid,
 IN BOOLEAN AllProcessors,
 IN PHARDWARE_PTE PtePointer,
 IN HARDWARE_PTE PteValue
);

Parameters:

Virtual - A virtual address that is within the page whose translation buffer
entry is to be flushed.

Invalid - A boolean value that specifies why the translation buffer is being
flushed.

AllProcessors - A boolean value that determines which translation buffers are to
be flushed.

PtePointer - A Pointer to a page table entry which is to be updated with the new
PteValue.

PteValue - The new Pte value.

Return Value:

The contents of the page table entry PtePointer refers to before the entry is set
to PteValue.

This function is intended for use by virtual memory management software when a
virtual page is deleted, removed from the process working set, or its protection is
changed. If several virtual pages are removed from a process's address space at once
or their protection is changed, then it may be more efficient to use the
KeFlushEntireTb function.

If the value of the Invalid parameter is TRUE, then the translation buffer is being
flushed because a page has become invalid and is not present in memory. If the
value of the Invalid parameter is FALSE, then the translation buffer is being flushed
because the protection on a page has been changed.

If the AllProcessors parameter is TRUE, then the specified translation buffer entry is
flushed on all processors in the system. Otherwise, only the specified translation

NT OS/2 Kernel Specification 104

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

buffer entry on process running threads that belong to the current thread's
processor are flushed.

IMPLEMENTATION NOTE:

The Intel i860 employs a data cache with virtual tags. It also cannot invalidate a
single entry from the translation buffer nor can it invalidate the translation buffer
without also flushing the instruction cache. If the Invalid parameter is TRUE, then
the data cache is flushed in addition to flushing the instruction cache and
invalidating the translation buffer. Otherwise, the instruction cache is flushed and
the translation buffer is invalidated.

The Intel i386 and i486 cannot flush a single entry from the translation buffer.
Therefore, the entire translation buffer is invalidated for this function.

\ The i486 can invalidate a single translation buffer entry, but it is not yet
supported. \

The MIPS r3000, r4000SP, and r4000MP provide the capability to flush a single
entry from the random part of the software-managed translation buffer. Therefore, a
single translation buffer entry is invalidated for this function.

4.9 Freeze Execution

The execution of all other processors in the system, excluding the current processor,
can be frozen with the KeFreezeExecution function:

KIRQL
KeFreezeExecution (
);

The IRQL is raised to the highest level, the execution of all other processors in the
host configuration is frozen, and the previous IRQL is returned as the function
value.

This function does not return control to the caller until the execution of all other
processors has been frozen. It is intended for use by system debuggers and should
be called whenever the debugger is entered so that a consistent picture of the
multiprocessor system can be examined and modified.

4.10 Get Current APC Environment

The APC execution environment for the current thread can be obtained with the
KeGetCurrentApcEnvironment function:

NT OS/2 Kernel Specification 105

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

KAPC_ENVIRONMENT
KeGetCurrentApcEnvironment (
);

The APC execution environment is obtained from the current thread and returned
as the function value.

Possible values that can be returned by this function include:

 o OriginalApcEnvironment - The current APC environment is the thread's
parent process.

 o AttachedApcEnvironment - The current APC environment is a process that
has been attached by the current thread.

4.11 Get Current IRQL

The current IRQL can be obtained with the KeGetCurrentIrql function:

KIRQL
KeGetCurrentIrql (
);

The current IRQL is returned as the function value.

4.12 Get Previous Mode

The previous processor mode can be obtained with the KeGetPreviousMode
function:

KPROCESSOR_MODE
KeGetPreviousMode (
);

The previous processor mode is obtained from the processor status. This function
can be used to determine the previous processor mode during a system service.

4.13 Lower IRQL

The current IRQL can be lowered with the KeLowerIrql function:

NT OS/2 Kernel Specification 106

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
KeLowerIrql (
 IN KIRQL NewIrql
);

Parameters:

NewIrql - The new IRQL value.

If the new IRQL is greater than the current IRQL, then a bug check will occur.
Otherwise, the current IRQL is set to the specified value.

4.14 Query System Time

The current system time can be queried with the KeQuerySystemTime function:

VOID
KeQuerySystemTime (
 OUT PTIME CurrentTime
);

Parameters:

CurrentTime - A pointer to a variable that receives the current system time.

This function returns the current system time in 100ns units. It is the responsibility
of the executive to maintain the correspondence between system time and external
time as seen by a user of the system.

4.15 Raise IRQL

The current IRQL can be raised with the KeRaiseIrql function:

KIRQL
KeRaiseIrql (
 IN KIRQL NewIrql
);

Parameters:

NewIrql - The new IRQL value.

NT OS/2 Kernel Specification 107

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

If the new IRQL is less than the current IRQL, then a bug check will occur.
Otherwise, the current IRQL is set to the specified value.

4.16 Run Down Thread

Data structures for the current thread that must be guarded by the dispatcher
database lock can be run down with the KeRundownThread function:

VOID
KeRundownThread (
);

This function is intended for use just prior to terminating a thread. It run downs
appropriate data structures and performs operations necessary to terminate the
thread.

Operations performed include:

 1. Processing of the mutant ownership list which causes each mutant object
owned by the current thread to be released with an abandoned status.

4.17 Set System Time

The current system time can be set with the KeSetSystemTime function:

VOID
KeSetSystemTime (
 IN PTIME NewTime,
 OUT PTIME OldTime,
);

Parameters:

NewTime - A pointer to a variable that specifies the new system time.

OldTime - A pointer to a variable that receives the previous system time.

This function returns the previous system time in 100ns units and sets the system
time to the specified value. It is the responsibility of the executive to maintain the
correspondence between system time and external time as seen by a user of the
system.

NT OS/2 Kernel Specification 108

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4.18 Stall Execution

The execution of the current processor can be stalled with the
KeStallExecutionProcessor function:

VOID
KeStallExecutionProcessor (
 IN ULONG MicroSeconds
);

Parameters:

MicroSeconds - The number of microseconds for which execution is to be
stalled.

This function stalls the execution of the current processor by executing a processor-
dependent routine that busy waits at least the specified number of microseconds,
but not significantly longer.

This routine is intended for use by device drivers and other software that must wait
a short interval which is less than a clock tick, but larger than a few instructions.

IMPLEMENTATION NOTES:

This function is guaranteed to busy wait for at least the number of specified
microseconds and is calibrated at system initialization. Long intervals tend to be
very accurate, whereas, short intervals may busy wait for a period that is slightly
longer than the specified number of microseconds.

4.19 Unfreeze Execution

The execution of all other processors in a host configuration, excluding the current
processor, can be resumed with the KeUnfreezeExecution function:

VOID
KeUnfreezeExecution (
 IN KIRQL Irql
);

Parameters:

Irql - The previous IRQL value that is to be restored.

NT OS/2 Kernel Specification 109

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The execution of all processors in the system, excluding the current processor, is
unfrozen, the previous IRQL is restored, and the instruction cache of each processor
in the configuration is flushed.

This function is intended for use by system debuggers and should be called when
execution is to be continued after entering the debugger and calling
KeFreezeExecution function. Before the execution of an unfrozen processor is
continued, its instruction cache and translation buffer are flushed.

5. Intel x86 Specific Functions.

There is a small set of special functions peculiar to the Intel x86 family of
processors, which are necessary to fully exploit those processors. These functions
are used primarily to manipulate x86 specific control structures, such as the Ldt.

Programming interfaces:

Ke386SetLdtProcess - Set Ldt for a process
Ke386SetDescriptorProcess - Set entry in Ldt a process

5.1 Load an Ldt for a process.

An Ldt (Local Descriptor Table) can be made the active Ldt for a process with
Ke386SetLdtProcess:

VOID
Ke386SetLdtProcess (
 PKPROCESS Process,
 PLDT_ENTRY Ldt[],
 ULONG Limit
);

Parameters:

Process - Pointer to KPROCESS object describing the process for which the Ldt
is to be set.

Ldt - Pointer to an array of LDT_ENTRYs (that is, a pointer to an Ldt.

Limit - Ldt limit (must be 0 mod 8)

The specified LDT (which may be null) will be made the active Ldt of the specified
process, for all threads thereof, on whichever processors they are running. The
change will take effect before the call returns.

NT OS/2 Kernel Specification 110

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

An Ldt address of NULL or a Limit of 0 will cause the process to receive the NULL
Ldt.

This function only exists on i386 and i386 compatible processors.

No checking is done on the validity of Ldt entries.

IMPLEMENATION NOTES:

While a single Ldt structure can be shared among processes, any edits to the Ldt of
one of those processes will only be synchronized for that process. Thus, processes
other than the one the change is applied to may not see the change correctly.

5.2 Set and Entry in a Process's Ldt.

An individual entry in the Ldt of a process may be edited with
Ke386SetDescriptorProcess:

VOID
Ke386SetDescriptorProcess (
 PKPROCESS Process,
 ULONG Offset,
 LDT_ENTRY LdtEntry
);

Parameters:

Process - Pointer to KPROCESS object describing the process for which the
descriptor edit is to be performed.

Offset - Byte offset into the Ldt of the descriptor to edit. Must be 0 mod 8.

LdtEntry - Value to edit into the descriptor in hardware format. No checking is
done on the validity of this item.

The specified LdtEntry (which could be 0, not present, etc) will be edited into the
specified Offset in the Ldt of the specified Process. This will be synchronized across
all the processors executing the process. The edit will take affect on all processors
before the call returns.

NT OS/2 Kernel Specification 111

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Get an Entry from a Thread's Gdt.

Get an Entry from a Thread's Gdt.

5.3 Get an Entry from a Thread's Gdt.

An individual entry in the Gdt of a thread may be obtained using
Ke386GetGdtEntryThread:

VOID
Ke386GetGdtEntryThread (
 IN PKTHREAD Thread,
 IN ULONG Offset,
 IN PGDT_ENTRY Descriptor
);

Parameters:

Thread —— Supplies a pointer to the thread from whose Gdt the entry is to
come.

Offset —— Supplies the descriptor number of the descriptor to return. This
value must be 0 mod 8.

Descriptor —— Returns the descriptor contents

The Gdt entry specified by Selector will be copied from the specified thread's Gdt,
into Descriptor.

For descriptors that don't exist when the thread is not running (KGDT_R3_TEB, and
KGDT_LDT), the descriptor values will be "materialized".

For descriptors that are processor specific, rather than thread specific, the current
processor's value will be returned.

For all other Gdt descriptors, the descriptor will be copied from the Gdt.

NT OS/2 Kernel Specification 112

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History:

Original Draft 1.0, March 8, 1989

Revision 1.1, March 16, 1989

 1. Add text to describe the muxwait object.

 2. Add text to describe the interrupt object.

 3. Add text to describe the power notify object.

 4. Add text to describe the power status object.

 5. Add text to describe the generic wait functions.

 6. Addition of text to describe the miscellaneous functions.

 7. Add text to overview of document.

Revision 1.2, March 29, 1989

 1. Change KeDelayExecution to return a wait completion value.

 2. Complete section on multiprocessor synchronization.

 3. Complete section on device queue object.

 4. Delete muxwait object and replace with a wait multiple function that takes
an array of pointer to dispatcher objects as a parameter.

Revision 1.3, April 18,1989

 1. Alphabetically order section on miscellaneous functions.

 2. Add KeBugCheck, KeLowerIrql, and KeRaiseIrql miscellaneous
functions.

 3. A thread will start execution at IRQL APC_LEVEL rather than with APCs
disabled.

 4. Returning from the executive thread start up routine will cause a thread
to enter user mode provide that a user mode context was supplied when
the thread was initialized.

NT OS/2 Kernel Specification 113

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 5. Add three parameters to thread initialization to optionally describe user
mode context.

 6. Delete builtin user mode alert APC. Alerting a thread that is waiting
alertable causes a wait completion status of ALERTED to be returned.

 7. Replace all reference to DPC_LEVEL with DISPATCH_LEVEL.

 8. Put interrupt level names in hardware interrupt table.

 9. Add pointers to the PRCB which point to the time expiration and power
notify DPC's that are system wide.

 10. Change thread context to include ten pipeline state registers rather than
six.

 11. Change KeResumeThread and KeSuspendThread to return a CHAR
rather than a UCHAR.

 12. Delete voluntary and preemption wait counters from thread object.

 13. Reduce number of APC and DPC system parameters to two.

 14. If a device is Not-Busy, then release device queue spin lock but do not
lower IRQL before returning.

 15. Allow interrupt service routine to user the floating point registers for block
moves and graphics functions.

 16. If a thread is awakened to deliver a user mode APC, then return a status
of USER_APC.

Revision 1.4, May 4, 1989

 1. Delete increment parameter from KeReleaseMutex.

 2. Change Count and Limit parameters of KeInitializeSemaphore from
ULONG to LONG.

 3. Change KeReadStateSemaphore to return a LONG rather than a ULONG.

 4. Change KeReleaseSemaphore to return a LONG rather than a ULONG
and change the type of the Adjustment parameters from ULONG to LONG.

 5. Set the value of a semaphore to the maximum value if an attempt is made
to adjust the count of a semaphore above the limit.

NT OS/2 Kernel Specification 114

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 6. Add system startup routine to KeInitializeThread for executive level
initialization.

 7. Change the wait functions to return NTSTATUS rather than ULONG.

 8. Change the type of the WaitType parameter from KWAIT_TYPE to
WAIT_TYPE.

Revision 1.5, May 8, 1989

 1. Change data type of the KeBugCheck parameter to ULONG.

 2. Add Invalid parameter to KeFlushEntireTb and KeFlushSingleTb to
allow specification of why the flush is being performed.

Revision 1.6, August 14, 1989

 1. General correction of typos and grammatical errors as suggested by
Helenc review. Clarification and rewrite of several sections.

 2. Reorganization of section 1.0 with the deletion of redundant information.

 3. Added miscellaneous functions to get the previous processor mode, get the
current IRQL, and to set the current IRQL.

 4. The interrupt object section was extensively rewritten to match the actual
implementation.

 5. The time parameter in the KeDelayExecution function was changed to a
pointer to a time value.

Revision 1.7, November 15, 1989

 1. Delete KeSetCurrentIrql function which was an optimization of the
KeRaiseIrql function that didn't require saving the old IRQL.

 2. Add functions KeContextToKframes and KeContextFromKframes to
move information in the trap frame and the exception frame to/from the
context frame.

 3. Add priority increment parameter to the KeInsertQueueApc function.

 4. Change KeInitializeThread function to replace the optional trap and
exception frame parameters with an optional context frame argument. If
the context frame parameter is specified, then it is assumed that the
thread will execute in user mode.

NT OS/2 Kernel Specification 115

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 5. Change KeAcquireSpinlock function to return the old IRQL as an output
parameter and delete the Wait parameter from the KeReleaseSpinlock
function.

 6. Change KeInsertDeviceQueue and KeInsertByKeyDevice functions to
neither raise nor lower IRQL.

 7. Split the event object into two types of event objects: synchronization and
notification.

 8. Change the definition of the state of an event object to be a count.

 9. Add a parameter to the KeInitializeApc function to specify the APC
execution environment. Add a function (KeGetApcEnvironment) that
returns the current APC environment.

Revision 1.8, November 16, 1989

 1. Add optional parameter to KeWaitForMultipleObjects that allows more
than the builtin number of objects to be waited on concurrently.

 2. Add abandoned return status from KeWaitForMultipleObjects when one
or more of the dispatcher objects satisfying the Wait is an abandoned
mutant object.

 3. Add new mutant object which provides for user level mutexes. Add the
functions KeInitializeMutant, KeReadStateMutant, and
KeReleaseMutant to manipulate the mutant object.

Revision 1.9, November 17, 1989

 1. Add KeRundownThread function to provide kernel thread rundown when
a thread is deleted.

 2. Minor edits and corrections.

Revision 1.10, January 6, 1990

 1. Change name of KeReadSystemTime to KeQuerySystemTime.

 2. Add miscellaneous kernel function (KeSetSystemTime) to set the system
time.

Revision 1.11, June 6, 1990

NT OS/2 Kernel Specification 116

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 1. Change text that explains how a binary semaphore can be used like a
synchronization event to include a statement that the semaphore cannot
be over Signaled.

 2. Change the definition of KeInitializeSemaphore to omit any checks on
the limit and initial value of the semaphore.

 3. Change the semantics of release semaphore such that an attempt to over
Signal the semaphore does not cause the current count to be set to the
maximum value. The current count remains unchanged and the exception
STATUS_SEMAPHORE_COUNT_EXCEEDED is raised.

 4. Once set, the abandoned status of a mutant object cannot be cleared and
will continually be returned by the kernel wait services. The mutant
object, however, will continue to function and ownership can be requested
and released.

 5. If an attempt is made to release a mutant object by a nonowner with the
Abandoned parameter FALSE, then either the exception
STATUS_ABANDONED or STATUS_MUTANT_NOT_OWNED will be raised.

 6. Remove the hard assignment of Interrupt Request Levels (IRQL's) to kernel
functions and replace with symbolic assignments. Explain that IRQL's are
hierarchically ordered by priority.

 7. Change the return type of KeResumeThread and KeSuspendThread to
ULONG.

 8. An attempt to suspend a thread more than MAXIMUM_SUSPEND_COUNT
times causes the exception STATUS_SUSPEND_COUNT_EXCEEDED to be
raised.

 9. Add KeFreezeThread and KeUnfreezeThread functions to suspend and
resume a thread on behalf of the system. These functions are identical to
suspend and resume, but are not exported to user mode.

 10. Add KeRundownThread function to run down appropriate kernel data
structures before thread termination.

 11. Add KeStallExecution function to enable executive software to stall
execution for short periods of time.

 12. Add KeFlushIoBuffers function to flush the memory region occupied by
an I/O buffer from the data and instruction caches.

NT OS/2 Kernel Specification 117

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 13. Remove text that described the KeFlushIcache and KeFlushDcache
functions as intended for use in systems in which DMA I/O operations do
not invalidate caches.

 14. Add KeFillEntryTb function to update TB entries in systems with
software-managed translation buffers.

 15. Make explanation of thread context more general and not specific to the
Intel i860.

Revision 1.12, September 19, 1990 (Bryan Willman)

 1. Add Profile object section.

Revision 1.13, March 11, 1991

 1. Change the operation of the power notify object so that a DPC object is not
required and make the operation repeatable.

 2. Add parameter to KeInitializeProcess to specific the default data
alignment handling mode for children threads.

 3. Add KeSetAutoAlignmentThread and KeQueryAutoAlignmentThread
functions to set and query the data alignment handling mode of the
current thread.

 4. Change the name of the KeDelayExecution function to
KeDelayExecutionThread and move the explanatory text to the section
on thread objects.

 5. Change the name of the KeStallExecution function to
KeStallExecutionProcessor.

 6. Change REQUEST_LEVEL with IPI_LEVEL.

 7. Add KeQueryBasePriorityThread and KeSetBasePriorityThread
functions to set and query the base priority of a thread object.

Revision 1.14, May 2, 1991

 1. Add x86 specific section, Ke386SetLdtProcess and
Ke386SetDescriptorProcess.

Revision 1.15, May 28, 1991 (daveh)

 1. Added Ke386GetThreadGdt

NT OS/2 Kernel Specification 118

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision 1.16, June 18, 1991 (bryanwi)

 1. Added ShareVector parameter to KeInitializeInterrupt.

 2. Applied spelling checker to document.

Revision 1.17, August 7, 1991 (shielint)

 1. Made KeFlushSingleTb spec match reality

Revision 1.18, August 8, 1991 (bryanwi)

 1. Removed coordinator, added SynchronizeIrql to KeInitializeInterrupt.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS/2 Mailslot Specification

Author: Manny Weiser

Original Draft December 28, 1990
Revision 1.1, January 10, 1991
Revision 1.2, March 11, 1991

i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction..1

2. Goals ..1

3. Overview of OS/2 Mailslots ...1

4. Overview of NT OS/2 Mailslots..3
4.1 Implementation Alternatives..3
4.2 Read/Write Buffering Strategy...4

4.2.1 OS/2 Read/Write Buffering Strategy4
4.2.2 NT OS/2 Read/Write Buffering Strategy4

5. NT OS/2 Mailslot I/O Operations..7
5.1 Create Mailslot ..7
5.2 Create File ..9
5.3 Open File ..9
5.4 Read File...9
5.5 Write File ..10
5.6 Read Terminal File ..10
5.7 Query Directory Information..10
5.8 Notify Change Directory ..10
5.9 Query File Information ..10

5.9.1 Basic Information ...11
5.9.2 Standard Information ...11
5.9.3 Internal Information ...11
5.9.4 Extended Attribute Information ..11
5.9.5 Access Information ...11
5.9.6 Name Information...11
5.9.7 Position Information ...11
5.9.8 Mode Information ...11
5.9.9 Alignment Information..11
5.9.10 All Information ...12
5.9.11 Mailslot Information ...12

5.10 Set File Information...12
5.10.1 Basic Information ...12
5.10.2 Disposition Information ..13
5.10.3 Link Information...13
5.10.4 Position Information ...13
5.10.5 Mode Information ...13
5.10.6 Mailslot Information ...13

5.11 Query Extended Attributes ..13
5.12 Set Extended Attributes ..13
5.13 Lock Byte Range..13
5.14 Unlock Byte Range ..14
5.15 Query Volume Information ..14
5.16 Set Volume Information...14
5.17 File Control Operations ...14

5.17.1 Peek ...14
5.18 Flush Buffers ..15
5.19 Set New File Size ...15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5.20 Cancel I/O Operation ..15
5.21 Device Control Operations...15
5.22 Close Handle...15

6. Win32 API Emulation..15
6.1 CreateMailslot ...15
6.2 GetMailslotInfo..16
6.3 SetMailslotInfo ..16

NT OS/2 Mailslot Specification 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

This specification discusses the mailslot facilities of NT OS/2. Mailslots are a form
of interprocess communication (IPC). They provide a facility for unidirectional
message passing. The creator of a mailslot is the only process that can read from
the mailslot. Other processes can only write messages to the mailslot.

The real value of mailslots is their usefulness in a network context. Mailslots can be
used to send messages to either a single machine, or to all machines in a LAN
Manager domain. More importantly, the network server needn't be running to
support remote mailslots. The NT OS/2 LAN Manager redirector can receive
second class mailslot messages. The LAN Manager server must be running in order
to receive first class mailslot messages. The second class mailslot allows simple
peer-to-peer communication without the memory burden of running the server.
Remote mailslots are described in greater detail in the NT OS/2 LAN Manager
Redirector Specification. Mailslot send classes are described later in this document.

In addition to describing the NT OS/2 mailslot facilities, this specification also
discusses the way in which the Win32 mailslot APIs are emulated.

2. Goals

The major goals for the mailslot capabilities of NT OS/2 are the following:

 1. Provide the basic primitives necessary to compatibly emulate the OS/2 LAN
Manager mailslot capabilities.

 2. Provide protection and security attributes for mailslots that are comparable to
the capabilities provided for files and other NT OS/2 objects.

 3. Provide for LAN Manager server and client redirection of mailslots without
having to enter the OS/2 subsystem.

 4. Provide a fully qualified name space for mailslots that fits into the NT OS/2
name structure in a straightforward manner.

3. Overview of OS/2 Mailslots

OS/2 mailslots provide a unidirectional IPC facility. Used locally (unnetworked)
mailslots are analogous to a unidirectional-message mode-blocking named pipe.

Mailslot messages consist of a message buffer and a priority. The priority is an
integer number in the range 0 to 9. Zero is the lowest priority. The OS/2
implementation treats mailslot messages as having only 2 priorities: zero and non-
zero. Priority zero messages are written onto the end of the message buffer. Higher
priority messages are copied to the front of the circular message buffer if their
priority is higher than the message at the head of the buffer.

A mailslot is created by calling the DosMakeMailslot API. The creator of the
mailslot receives a handle to the server side of the mailslot. Only the owner of a
server side handle may read messages from the mailslot.

NT OS/2 Mailslot Specification 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Under OS/2, mailslots are not part of the file system in any sense. A process
cannot obtain a handle to a mailslot using DosOpen, nor can it use the handle
obtained from DosMakeMailslot and pass it to a file system API such as DosRead
or DosWrite.

The only way to read a mailslot is to use the DosReadMailslot or the
DosPeekMailslot API. The DosReadMailslot API supplies a buffer for the data, but
does not supply a buffer size. The buffer supplied must be at least as large as the
buffer size defined by DosMakeMailslot. DosReadMailslot also returns size and
priority information about the next message in the mailslot, but there is no
guarantee that this message will be the next message that is read. The API takes a
timeout parameter, which is the maximum time to wait for a message to become
available to read if there are no messages waiting to be read when the call is issued.

DosPeekMailslot reads the next message from the mailslot but does not remove it
from the mailslot buffer. It does not wait for a message to become available.

DosMailslotInfo returns configuration and status information about the mailslot
and the current first message in the mailslot.

DosDeleteMailslot closes and deletes the mailslot and discards all unread
messages.

The only action that can be performed on a mailslot by a process that does not have
a server side handle is to write to the mailslot using the DosWriteMailslot API. This
API, takes the name of the mailslot, rather than a handle, as a parameter. The
mailslot name has one of the following forms:

 o \Mailslot\Name. The target is a local mailslot.

 o \\Server\Mailslot\Name. The target is a remote mailslot.

 o \\Domain\Mailslot\Name. The target is the set of remote mailslots with
this name in the domain Domain.

 o *\Mailslot\Name. The target is the set of remote mailslots with this
name in the workstation's primary domain.

In addition to multiple mailslot name formats DosWriteMailslot also supports two
classes of mailslot: first class and second class. A first class mailslot write
guarantees delivery, while a second class mailslot write does not.

A second class write to a local mailslot is identical to a first class write. A first class
write can be used to write a message to a remote machine running as a server.
However, in order to write to a remote workstation only machine, or to do a
broadcast write to a domain of machines, only a second class write can be used.

DosWriteMailslot allows specification of a timeout. This is the maximum time to
wait for enough space to become available in the mailslot buffer to complete the
write.

NT OS/2 Mailslot Specification 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4. Overview of NT OS/2 Mailslots

4.1 Implementation Alternatives

Mailslots, as defined by OS/2 LAN Manager, are not a perfect fit for an NT file
system. Special semantics exist for creating, reading and writing to mailslots.

There are two ways to implement NT OS/2 mailslots:

 1. Implement the mailslot capabilities as a separate object with its own complete
set of APIs.

 2. Implement the mailslot capabilities as a file system.

The first alternative is attractive because mailslot APIs can be designed to directly
support OS/2 LAN Manager semantics. However, using this approach would
complicate the security and networking implementations.

The second alternative has the advantage that it allows mailslots to use the built-in
file system features of the NT I/O system. However, some allowance must be made
to adapt to mailslot semantics.

There are several ways to implement mailslots as a file system.

 1. Extend or bend the currently existing I/O system APIs, by adding new
parameters, or by redefining old parameters that are not needed by the
mailslot file system.

 2. Use extended attributes as the means of defining the mailslot attributes
required by OS/2.

 3. Create a new API for creating a mailslot, and use a combination of existing
APIs and the NtFsControlFile sub-APIs to implement the desired features.

The first alternative does not add any new APIs to the system but requires either
adding special case code to the I/O system or adding parameters to NtReadFile and
NtWriteFile. This is clearly unacceptable.

The second alternative also requires special case code for dealing with extended
attributes on a mailslot.

The third alternative requires the addition of a new mailslot only API.

Mailslots will be implemented as a file system with a new API to create the mailslot
and existing APIs for all other mailslot functions. This will be the easiest to
implement and will yield an efficient implementation.

NT OS/2 will not support priorities or mailslot send classes. Priorities as
implemented in OS/2 are essentially useless. The absence of a first class mailslot
write may be noticed, but this is unlikely, as there are no known applications that
use first class mailslots.

NT OS/2 Mailslot Specification 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4.2 Read/Write Buffering Strategy

4.2.1 OS/2 Read/Write Buffering Strategy

OS/2 implements mailslots using a synchronous I/O model with a single circular
buffer. The buffer must fit in a single 64KB segment. For each write/read
operation there are always 2 data copies. Write data is copied from the user buffer
to the mailslot buffer. Read data is copied from the mailslot buffer to the user
buffer.

The read and write operations are controlled by four semaphores. Two signaling
semaphores are used to signal waiting readers or writers that data is available to be
read or that space is now available to write into the mailslot buffer. The other two
semaphores are used to restrict reading or writing to a single thread at one time.

When a write begins the writer obtains the write lock. If there is no space available
in the mailslot buffer the writer waits on the write semaphore for the timeout period
specified by the caller. If there is space in the mailslot buffer, or space becomes
available, the writer copies its data onto the end of the mailslot buffer.

If the write message is a high priority message (priority greater than zero) and its
priority is greater than the priority of the message at the head of the mailslot
message queue, then the writer must also obtain the read lock, copy the message
ahead of the first message in the buffer, update the next-message-to-read pointer
and release the read lock.

When the write has completed, it signals the read semaphore, indicating that write
data is available and releases the write lock.

When a read operation begins the reader obtains the read lock. If there is no
message available to read, the reader waits on the read semaphore for the time
period specified by the caller. If a message is available to be read, the reader copies
the message and updates the next message available pointer.

When the read is complete, the reader signals the write semaphore, indicating that
there is space in the mailslot buffer, and releases the read lock.

4.2.2 NT OS/2 Read/Write Buffering Strategy

NT OS/2 supports an asynchronous I/O model and uses the concept of quotas to
control the allocation of system buffers.

The mailslot buffer is not actually allocated to real memory in NT OS/2. Instead, the
creator of a mailslot is simply charged memory quota for the buffer. Writers can use
up to the quota charged to the creator without having any quota charged against
themselves. If the quota charged to the creator is exhausted then the writer is
charged for any additional memory that is required. Likewise, a reader is charged
quota, equal to the size of the user's read buffer, if no data is available, the quota
charged to the creator is exhausted, and the read request is queued rather than
completed immediately.

NT OS/2 Mailslot Specification 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The following is a somewhat simplified discussion of the buffering scheme used for
mailslots in NT OS/2. The exact behavior of the NT OS/2 mailslot buffering
depends on whether a read occurs before a write or vice versa.

When a write operation occurs the writer's output buffer is probed for read
accessibility in the requesting mode. A system buffer is allocated that is the required
size to hold the write data and memory quota is charged to the writer if and only if
the quota charged to the creator of the mailslot instance has been exhausted (e.g.,
because of a previous read or write request). A buffer header is initialized at the
front of the system buffer, the write data is copied into the system buffer, and the
buffer header is inserted into the prioritized list of writers. The writer's I/O request
is always completed immediately. The system buffer will be deallocated and the
creator's quota returned when a matching read arrives.

At this point the write has been completed and control is returned to the caller. If
another write request is received before the first write message is read, then the
same operations are performed and the new request is placed at the appropriate
place in the pending queue.

At some subsequent point in time, a read request arrives and it is determined that
write data is available. The caller's input buffer is probed for write accessibility in
the requesting mode. The read then proceeds to "pull" (copy) data directly from the
system buffer that was previously allocated for the write data into the user's input
buffer. At the completion of the copy, the read I/O request is completed.

Completion of the read request involves writing the I/O status block and setting the
completion event. The system buffer for the original write request is deallocated and
memory quota is returned for mailslot write buffering.

If an access violation occurs during a copy from the output buffer to a system
buffer, then the write operation is immediately terminated. This has no effect on the
integrity of the system. A malicious writer could easily accomplish the same effect
by simply writing a shortened message. The write I/O status is set to access
violation, the write I/O request is completed, and successful completion is returned
as the service status.

If a read operation occurs before a write, then the reader's input buffer is probed for
write accessibility in the requesting mode. A system buffer is allocated that is the
required size to hold the input data and memory quota is charged to the reader if
and only if the quota charged to the creator of the mailslot instance has been
exhausted (e.g., because of a previous read request). A buffer header is initialized at
the front of the system buffer and the header is inserted in a first-in-first-out list of
readers. The read request type is converted to a buffered request so that upon
completion, the I/O system will copy the received data from the system buffer into
the reader's input buffer, deallocate the system buffer, and return memory quota as
appropriate.

At this point, the I/O operation is pending and control is returned to the caller. If
another read request is received before the first read is completed, then the same
operations are performed and the new request is placed at the end of the pending
queue.

NT OS/2 Mailslot Specification 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

At some subsequent point in time, a write request arrives and it is determined that
a read is pending. The caller's output buffer is probed for read accessibility in the
requesting mode. The write then proceeds to "push" (copy) data directly from the
output buffer into the system buffer that was previously allocated for the read
operation. At the completion of the copy, the read and write I/O requests are both
completed.

When a read operation is queued, a timer is started and set for the timeout specified
by the read operation. A pointer to the timer object is saved in the header of the
read buffer. If the read operation is dequeued for completion before the timer
expires then the timer is cancelled, and the operation completes normally.

If the timeout DPC is called, the queue of pending reads is searched for the read
corresponding to the expired timer. If it is not found the read is assumed to have
completed and there is no need to take any action. If the read is found it is
dequeued from the pending queue and completed with an error status.

If the buffer supplied by the reader is not large enough to read the entire mailslot
message the read operation fails.

Completion of the write request involves writing the I/O status block and setting the
completion event, whereas completion of the read request requires copying the read
data from the system buffer to the reader's input buffer, deallocating the system
buffer and returning the memory quota as appropriate, writing the I/O status block,
and setting the completion event.

If an access violation occurs during a copy from a system buffer to the input buffer,
then the read operation is immediately terminated. Previously completed write I/O
requests are not backed out. This has no effect on the integrity of the system. A
malicious reader could easily accomplish the same effect by simply reading and
discarding information. The read I/O status is set to access violation and the read
I/O request is completed with an error status.

NT OS/2 Mailslot Specification 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5. NT OS/2 Mailslot I/O Operations

The following subsections describe the NT OS/2 I/O operations with respect to
mailslots. Additional information can be found in the NT OS/2 I/O System
Specification.

5.1 Create Mailslot

A server end handle to a mailslot is obtained by calling the NtCreateMailslotFile
function:

NTSTATUS
NtCreateMailslotFile (
 OUT PHANDLE FileHandle,
 IN ULONG DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes,
 OUT PIO_STATUS_BLOCK IoStatusBlock,
 IN ULONG CreateOptions,
 IN ULONG MailslotQuota,
 IN ULONG MaximumMessageSize,
 IN PTIME ReadTimeout
);

Parameters:

FileHandle - A pointer to a variable that receives the file handle value.

DesiredAccess - Specifies the type of access that the caller requires to the
mailslot.

DesiredAccess Flags:

SYNCHRONIZE - The file handle may be waited on to synchronize with
the completion of I/O operations.

READ_CONTROL - The ACL and ownership information associated with
the mailslot may be read.

WRITE_DAC - The discretionary ACL associated with the mailslot may be
written.

WRITE_OWNER - Ownership information associated with the mailslot
may be written.

FILE_READ_DATA - Data may be read from the mailslot.

FILE_WRITE_DATA - Data may be written to the mailslot.

FILE_READ_ATTRIBUTES - Mailslot attributes flags may be read.

FILE_WRITE_ATTRIBUTES - Mailslot attribute flags may be written.

NT OS/2 Mailslot Specification 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The three following values are the generic access types that the caller may
request along with their mapping to specific access rights:

GENERIC_READ - Maps to FILE_READ_DATA and
FILE_READ_ATTRIBUTES.

GENERIC_WRITE - Maps to FILE_WRITE_DATA and
FILE_WRITE_ATTRIBUTES.

GENERIC_EXECUTE - Maps to SYNCHRONIZE.

ObjectAttributes - A pointer to a structure that specifies the object attributes;
refer to the I/O System Specification for details.

IoStatusBlock - A pointer to a structure that receives the final completion
status. The actual action taken by the system is written into the
Information field of this structure.

CreateOptions - Specifies the options that should be used when creating the
mailslot.

CreateOptions Flags:

FILE_SYNCHRONOUS_IO_ALERT - Indicates that all operations on the
mailslot are to be performed synchronously. Any wait that is
performed on behalf of the caller is subject to premature termination
by alerts.

FILE_SYNCHRONOUS_IO_NONALERT - Indicates that all operations on the
mailslot are to be performed synchronously. Any wait that is
performed on behalf of the caller is not subject to premature
termination by alerts.

MailslotQuota - Specifies the pool quota that is reserved for the mailslot. If set
to MAILSLOT_SIZE_AUTO to file system will set the pool quota to zero.
This means that all mailslot quota will come from readers or writers.

MaximumMessageSize - Specifies the maximum size message that can be
written to the mailslot.

ReadTimeout - If specified, specifies the maximum amount of time that a read
operation can block waiting for a mailslot message to become available.
The default setting is MAILSLOT_WAIT_FOREVER.

This service creates a mailslot. The Access Control List (ACL) from the object
attributes parameter defines the discretionary access control for the mailslot.

The create options, and share access are set to their specified values.

NT OS/2 Mailslot Specification 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The actual pool quota that is reserved for the mailslot is either the system default,
the system minimum, the system maximum, or the specified quota rounded up to
the next allocation boundary.

The name of the mailslot is taken from the object attributes parameter, which must
be specified.

The mailslot is deleted, along with any unread message, when the last reference to
the creation handle is closed.

If STATUS_SUCCESS is returned as the service status, then the mailslot was
successfully created.

If STATUS_INVALID_PARAMETER is returned as the service status, then an invalid
value was specified for one or more of the input parameters.

5.2 Create File

The NtCreateFile function can be used to open a client end handle to an instance of
a specified mailslot.

In order to use this function to open a mailslot, the mailslot must already exist and
the CreateDisposition value must be specified as either FILE_OPEN or FILE_OPEN_IF.

ShareAccess should be set to FILE_SHARE_WRITE | FILE_SHARE_READ.

If a mailslot of the specified name cannot be found, then
STATUS_OBJECT_PATH_NOT_FOUND is returned as the service status.

5.3 Open File

The NtOpenFile function can be used to open a client end handle to an instance of
a specified mailslot.

ShareAccess should be set to FILE_SHARE_WRITE | FILE_SHARE_READ.

If a mailslot of specified name cannot be found, then
STATUS_OBJECT_PATH_NOT_FOUND is returned as the service status.

5.4 Read File

The NtReadFile function can be used to read data from the server end of a mailslot.
Priority information for the message is discarded. If the mailslot is empty, the
operation will be queued. The operation will complete when either of the following is
true:

 1. A write operation occurs and data becomes available to be read.

 2. The mailslot file handle is closed.

NT OS/2 Mailslot Specification 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The byte offset and key parameters of the NtReadFile function are ignored by the
mailslot file system.

If STATUS_PENDING is returned as the service status, then the read I/O operation is
pending and its completion must be synchronized using the standard NT OS/2
mechanisms. Any other service status indicates that the read I/O operation has
already been completed or will never complete. If a success status is returned, then
the I/O status block contains the I/O completion information. Otherwise, the
service status determines any error that may have occurred.

If the I/O status STATUS_ACCESS_VIOLATION is returned, then part of the read
buffer became inaccessible after it was probed for write access.

If the I/O status STATUS_BUFFER_OVERFLOW is returned, then the read I/O
operation was completed successfully, but the size of the input buffer was not large
enough to hold the entire input message. A full buffer of data is returned; additional
data can be read from the message using the NtReadFile function. The I/O status
block contains the number of bytes that were read.

If the I/O status STATUS_SUCCESS is returned, then the read I/O operation was
completed successfully and the I/O status block contains the number of bytes that
were read.

5.5 Write File

The NtWriteFile function can be used to write data to a mailslot.

The byte offset and key parameters of the NtWriteFile function are ignored by the
mailslot file system.

If a success status is returned, then the I/O status block contains the I/O
completion information. Otherwise, the service status determines any error that
may have occurred.

If the size of the message buffer is larger then the maximum message size specified
by the caller of NtCreateMailslotFile, then the operation will complete with the I/O
status STATUS_BUFFER_TOO_SMALL and no data is written to the mailslot.

If the I/O status STATUS_ACCESS_VIOLATION is returned, then part of the write
buffer became inaccessible after it was probed for read access.

If the I/O status STATUS_SUCCESS is returned, then the write I/O operation was
completed successfully and the I/O status block contains the number of bytes that
were written.

5.6 Read Terminal File

This function is not supported by the mailslot file system.

NT OS/2 Mailslot Specification 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5.7 Query Directory Information

The NtQueryDirectoryFile function can be used to enumerate files within the root
mailslot file system directory (i.e., "\Device\Mailslot\"). All the standard NT OS/2
information classes are supported. NtOpenFile is used to open the root mailslot
directory.

5.8 Notify Change Directory

The NtNotifyChangeDirectoryFile function can be used to monitor modifications to
the root mailslot file system directory. The standard NT OS/2 capabilities are
supported.

5.9 Query File Information

Information about a mailslot can be obtained with the NtQueryInformationFile
function. Most information classes, not including extended attribute information,
are supported for mailslots with special interpretation of the returned data as
appropriate. An additional information class is also provided to return information
that is specific to mailslots.

Information is returned by the mailslot file system for mailslots and for the mailslot
root directory. The following subsections describe the information that is returned
for mailslot entries. The information returned for the root directory is identical to
the information that is returned by other file systems and is described in the NT
OS/2 I/O System Specification.

5.9.1 Basic Information

Basic information about a mailslot includes the creation time, the time of the last
access, the time of the last write, the time of the last change, and the attributes of
the mailslot. The file attribute value for a mailslot is FILE_ATTRIBUTE_NORMAL.

5.9.2 Standard Information

Standard information about a mailslot includes the allocation size, the end of file
offset, the device type, the number of hard links, whether a delete is pending, and
the directory indicator.

The allocation size is the amount of pool quota charged to the creator. The end of
file offset is the number of bytes that are available in the buffer. The device type is
FILE_DEVICE_MAILSLOT, the number of hard links is one, delete pending is
TRUE, and the directory indicator is FALSE.

5.9.3 Internal Information

Internal information about a mailslot includes a mailslot file-system-specific
identifier.

NT OS/2 Mailslot Specification 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5.9.4 Extended Attribute Information

The extended attribute information size is always returned as zero by the mailslot
file system.

5.9.5 Access Information

Access information about a mailslot includes the granted access flags.

5.9.6 Name Information

Name information about a mailslot includes the name of the mailslot.

5.9.7 Position Information

Position information about a mailslot includes the current byte offset. The current
byte offset is the number of bytes that are available to be read in the mailslot buffer.

5.9.8 Mode Information

Mode information about a mailslot includes the I/O mode of the mailslot.

5.9.9 Alignment Information

The alignment information class is not supported by the mailslot file system.

5.9.10 All Information

The all information class includes information that can be returned by all file
systems and is described above under each of the individual subsections.

5.9.11 Mailslot Information

Mailslot information on a mailslot includes: The quota charged for the mailslot
buffer, the maximum message size. An access of FILE_READ_ATTRIBUTE is
required to query the mailslot information of a mailslot.

FileMailslotQueryInformation - Data type is FILE_MAILSLOT_QUERY_INFORMATION.

typedef struct _FILE_MAILSLOT_QUERY_INFORMATION {
 ULONG MaximumMessageSize;
 ULONG MailslotQuota;
 ULONG NextMessageSize;
 ULONG MessagesAvailable;
 TIME ReadTimeout;
} FILE_MAILSLOT_QUERY_INFORMATION;

FILE_MAILSLOT_QUERY_INFORMATION:

MaximumMessageSize - The size, in bytes, of the largest message than can be
written to the mailslot.

NT OS/2 Mailslot Specification 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

MailslotQuota - The amount of pool quota that is reserved for the mailslot
buffer.

NextMessageSize - The size of the next message avaible in the mailslot. If no
message is available a value of MAILSLOT_NO_MESSAGE is returned.

MessagesAvailable - The number of messages currently available at the
mailslot.

ReadTimeout - The current read timeout for the mailslot. See
NtCreateMailslotFile for a full description.

5.10 Set File Information

Information about a mailslot can be changed with the NtSetInformationFile
function. Most information classes are supported for mailslots with the exception of
link and position information.

Information can be set for mailslots. The following subsections describe the
information that can be set for mailslots.

5.10.1 Basic Information

Basic information about a mailslot that can be set includes the creation time, the
time of the last access, the time of the last write, the time of the last change, and
the attributes of the mailslot.

The associated times included in this class can be set to any appropriate value. The
file attribute field can only be set to FILE_ATTRIBUTE_NORMAL.

5.10.2 Disposition Information

The disposition information class is not supported by the mailslot file system.

Mailslots are always considered temporary and are deleted when the creator of the
mailslot closes all of its handles.

5.10.3 Link Information

This information class is not supported by the mailslot file system.

5.10.4 Position Information

This information class is not supported by the mailslot file system.

5.10.5 Mode Information

Mode information about a mailslot that can be set includes the I/O mode of the
mailslot.

NT OS/2 Mailslot Specification 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5.10.6 Mailslot Information

Maislot information on a maillot that can be set includes: The read timeout.

FileMailslotSetInformation - Data type is FILE_MAILSLOT_SET_INFORMATION.

typedef struct _FILE_MAILSLOT_SET_INFORMATION {
 PTIME ReadTimeout;
} FILE_MAILSLOT_SET_INFORMATION;

FILE_MAILSLOT_SET_INFORMATION:

ReadTimeout - The read timeout for the mailslot. See NtCreateMailslotFile for
more information.

5.11 Query Extended Attributes

This function is not supported by the mailslot file system.

5.12 Set Extended Attributes

This function is not supported by the mailslot file system.

5.13 Lock Byte Range

This function is not supported by the mailslot file system.

5.14 Unlock Byte Range

This function is not supported by the mailslot file system.

5.15 Query Volume Information

This function is not supported by the mailslot file system.

5.16 Set Volume Information

This function is not supported by the mailslot file system.

5.17 File Control Operations

The following subsections describe file control operations that can be performed
using a handle that is open to mailslot. The peek function can only be executed
using a handle that is open to the server end of a mailslot.

5.17.1 Peek

The peek file control operation reads data from a mailslot but does not actually
remove the data. This operation may performed only using a server side handle to
the mailslot.

NT OS/2 Mailslot Specification 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The control code for this operation is FSCTL_MAILSLOT_PEEK.

This operation returns two buffers. The "input" buffer contains the parameter
buffer for the peek operation. This buffer must be large enought to contain the
strcuture specified below. The "output" buffer specifies the the data buffer. The
parameter buffer has the following format:

typedef struct _FILE_MAILSLOT_PEEK_BUFFER {
 ULONG ReadDataAvailable;
 ULONG NumberOfMessages;
 ULONG MessageLength;
} FILE_MAILSLOT_PEEK_BUFFER;

FILE_MAILSLOT_PEEK_BUFFER:

ReadDataAvailable - The number of bytes of read data that are available in the
mailslot buffer.

NumberOfMessages - The number of messages that are currently in the
mailslot.

MessageLength - The number of bytes that are contained in the first message in
the mailslot.

This function is similar to the NtReadFile function for a mailslot; however, no data
is actually removed from the mailslot and the operation is always completed
immediately, i.e., it never causes an I/O operation to be queued.

If the I/O status STATUS_ACCESS_VIOLATION is returned, then part of the output
buffer became inaccessible after it was probed for write access.

If the I/O status STATUS_BUFFER_OVERFLOW is returned, then the peek I/O
operation was completed successfully, but the size of the output buffer was not
large enough to hold the entire input message. A full buffer of data is returned; the
actual message size can be determined from information placed in the output
buffer. The I/O status block contains the number of bytes that were read including
the mailslot information.

If the I/O status STATUS_SUCCESS is returned, then the peek I/O operation was
completed successfully and the I/O status block contains the number of bytes that
were read including the mailslot information.

5.18 Flush Buffers

This function is not supported by the mailslot file system.

5.19 Set New File Size

This function is not supported by the mailslot file system.

NT OS/2 Mailslot Specification 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5.20 Cancel I/O Operation

The NtCancelIoFile function can be used to cancel all I/O operations that were
issued by the subject thread for the specified mailslot. Both read and write
operations initiated by the subject thread are canceled.

5.21 Device Control Operations

No device control operations are supported by the mailslot file system.

5.22 Close Handle

The NtClose function can be used to close a handle to the specified mailslot.

If the specified handle is the last handle that is open to the server side of the
specified mailslot, then the state of the mailslot is set to closing. Read and write
operations that are pending are completed with an I/O status of
STATUS_PIPE_CLOSED.

6. Win32 API Emulation

The following subsections discuss the emulation of the Win32 mailslot facilities
using the capabilities provided by NT OS/2. Only those Win32 functions which
require special handling with respect to mailslots are included.

6.1 CreateMailslot

This Win32 API creates a mailslot and opens a server side handle to the newly
created object.

This API can be emulated with the NtCreateMailslotFile service.

The Win32 inheritance bit of the security attributes is the same as the NT OS/2
handle attributes field of the object attributes parameter.

The Win32 access bits of the open mode are the same as the NT OS/2 desired
access parameter.

The Win32 message size is the same as the NT OS/2 maximum message size.

The Win32 mailslot size is the same as the NT OS/2 mailslot quota parameter.

6.2 GetMailslotInfo

This Win32 API obtains configuration and status information about the mailslot.

This API can be emulated with the NtQueryInformationFile service, with the
information class FileMailslotQueryInformation.

NT OS/2 Mailslot Specification 17

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6.3 SetMailslotInfo

This Win32 API set configuration information about the mailslot.

This API can be emulated with the NtSetInformationFile service, with the
information class FileMailslotSetInformation.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History:

Original Draft, December 28, 1990

Revision 1.1, January 5, 1991

 1. Removed default read timeout and write send class.

 2. Changed NtFsControlFile function FSCTL_MAILSLOT_WRITE to use
separate input buffers for parameters and data.

 3. Changed discussion of OS/2 API implementation to a discussion of Win32
API implementation.

 4. Several editorial changes.

Revision 1.2, March 11, 1990

 1. Added read timeout to NtCreateMailslotFile and made it queryable and
settable.

 2. Added new information class, FileMailslotSetInformation.

 3. Removed message priorities, and the file system control function
FSCTL_MAILSLOT_WRITE and FSCTL_MAILSLOT_READ.

 4. Changed file system control function FSCTL_MAILSLOT_PEEK to use
separate buffers to return parameters and data.

 5. Update Win32 API discussion to conform with updated Win32 mailslot
APIs.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS Memory Management Guide For I/O

Author: Lou Perazzoli

Original Draft 1.0, December 15, 1990
Revision 1.1, January 8, 1991
Revision 1.2, January 28, 1991

NT OS Memory Management Guide For I/O

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

i

1. Introduction.. 1

2. Overview.. 1

3. Processes and Working Sets .. 2

4. Probe and lock pages ... 2

5. Mapping Locked Pages.. 3

6. Mapping I/O space... 4

7. Physically Contiguous Memory .. 4

8. Non Cached Memory... 4

9. Obtaining physical addresses... 5

10. Paged and NonPaged Pool... 5

NT OS Memory Management Guide For I/O

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1

1. Introduction

This specification describes the memory management support routines available to I/O drivers, their
usage and limitations.

2. Overview

The typical device driver has to deal with a number of memory management related issues - allocating
buffers, working with MDL's, mapping device registers, etc. By properly designing the interaction
between the driver and the memory management support routines, drivers will perform better in
throughput, latency and system impact. Architectural differences between various architectures should
be considered such that drivers are written to be as portable as possible.

Memory management supports a 4-gigabyte virtual address space. It is important to understand the
differences between virtual addresses and physical addresses (and on MIPS how physical addresses
appear in the virtual address space).

The 4 GB address space is divided into 3 regions:

 o User space - Consists of 2 gigabytes which is unique for each address space. The page
ownership for this region is user mode.

 o Hyper space - Consists of 8 megabytes with a page ownership of kernel mode and is unique for
each address space. Page table pages, working set lists, PTEs reserved for temporary
mappings, and other address space unique structures reside in this region.

 o System space - Consists of almost 2 gigabyte which is shared among all address spaces and has
a page ownership of kernel mode.

The page ownership (user mode or kernel mode) is used for access checks for operations on virtual
addresses.

NT OS Memory Management Guide For I/O

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2

 Layout of Virtual Address Space:
 +--------------------------+ 00000000
 | |
 | |
 | User Space |
 | |
 +--------------------------+ 80000000
 | Kseg0 and Kseg1 on MIPS |
 | |
 +--------------------------+ C0000000
 | Hyper Space |
 +--------------------------+ C0800000
 | |
 | System Space |
 | |
 +--------------------------+ FFFFFFFF

System space contains a paged and a non-paged area. The paged area starts at the low addresses and
grows upward, while the nonpaged area starts at the high addresses and grows downward.

3. Processes and Working Sets

Each process has a unique virtual address space which is independent from all other processes in both
user space and hyper space. However, the system space portions have identical page translations and
the non-paged portion of the system space can be referenced in any process at any IRQL. These items
are very important for device drivers because when an interrupt occurs the processor could be
executing in any thread's context.

As a thread executes and accesses non-valid virtual addresses (addresses that have no corresponding
physical address) the pages are made valid (i.e., translated to a physical address), and are placed into
the process's working set. Each process has a unique working set which consists of the set of all
pageable addresses which are currently valid in the process. This includes both user space and system
space addresses. This is important to note since a pageable system address that is resident in one
process may not be valid in another process and a reference to that address may cause a page-fault to
make the reference valid.

The working set has a minimum and maximum size. As the thread executes and faults more pages into
the working set, the working set may exceed its minimum at which time the page fault routine
determines if the working set is allowed to grow or if a page is to be removed from the working set.
Hence, the working set acts as a process-specific quota.

4. Probe and lock pages

The MmProbeAndLockPages function takes as input an MDL which has the StartVa, ByteOffset, and
ByteCount fields initialized. The function checks the specified range for access (read or write) and
locks the physical memory corresponding the the virtual addresses and puts the "page frame numbers"

NT OS Memory Management Guide For I/O

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3

for the physical addresses into the MDL. In addition, the Process field of the MDL is initialized to the
current process.

The MmProbeAndLockPages function keeps track of the number of pages in user-space each process
has locked in memory and refuses to lock pages (it raises the exception STATUS_NO_MEMORY) if
the total number of locked pages would exceed the working set minimum minus some small constant.

 /Darryl should MmBuildMdlForNonPagedPool and MmMapLockedPages fill in the system VA field
of the MDL if it is NULL?/

Another important aspect of MmProbeAndLockPages is that when the virtual address specified in the
MDL is in the user's portion of the address space, when MmProbeAndLockPages returns the
completed MDL, the user may change the address space. This means that the virtual address in the
MDL may no longer correspond to the physical pages in the MDL. This causes no problem as long as
the device never accesses the buffers through both the MDL (either physically or by mapping them in
the system address space) and by the user's virtual address. This is a very important point.

To unlock the pages that were locked by MmProbeAndLockPages invoke the MmUnlockPages
function specifying the same MDL that was used in the MmProbeAndLockPages call. This will cause
the pages to be unlocked and the locked count to be decremented in the process.

If the buffer resides in the non-paged portion of system space and I/O completion is not invoked to
unlock the buffer, the routine MmBuildMdlForNonPagedPool can be used to complete the MDL.
This routine does not increment any reference counts or checks to ensure pages are resident, it merely
updates the MDL with the corresponding page frame numbers.

5. Mapping Locked Pages

Certain devices, such as the standard AT disk, require the buffer to be accessed virtually rather than
physically at high IRQL. But the pager, which is invoked when a virtual address does not have a
corresponding physical address, can only be called at an IRQL of APC_LEVEL and below and at a
mutex level below MUTEX_LEVEL_WORKING_SET.

To create virtual addresses that "map" the user's buffer and can be accessed at high IRQLs use the
combination of MmProbeAndLockPages and MmMapLockedPages. The MmProbeAndLockPages
function will complete the MDL and the MmMapLockedPages function will create a range of non-
paged virtual addresses which map the physical buffer.

When invoking MmMapLockedPages the AccessMode argument should always be KernelMode.
When the argument is specified as UserMode the buffer specified by the MDL is mapped into the user-
mode portion of the current process and hence can only be referenced in the context of that process.
This feature is used only by File System Processes (FSPs).

The MmUnmapLockedPages function deletes the mapping to the buffer. It is called with the
BaseAddress that was returned by MmMapLockedPages and the same MDL that was passed into
MmMapLockedPages.

NT OS Memory Management Guide For I/O

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4

The MmMapLockedPages and MmUnmapLockedPages have a cost which increases dramatically on a
multi-processor system. When the pages are locked, the non-paged portion of system space is
searched for an empty range to contain the buffer. The time for this search varies based on the number
of pages in the MDL. Single page requests complete immediately, whereas multi-page requests may
take slightly longer to locate a suitable range. When unmapping the pages, the addresses are marked
as unused and returned and the translation buffer is invalidated on all processors. Note that if the
request is for a single page then only a single address is invalidated if the underlying hardware
supports single invalidation. Note that the 386 does not support single invalidation, but the 486 and
the R4000 do.

The bottom line is that if the device supports DMA operations the driver should be designed such that
MmUnmapLockedPages is never invoked.

6. Mapping I/O space

Most devices have control registers which reside in the I/O portion of the physical address space. In
order to access these registers a corresponding non-pageable virtual address must be created which
refers to the physical I/O address. This is accomplished using the MmMapIoSpace service. The
returned address is the virtual address which corresponds to the specified physical I/O address. This
virtual address is created either cached or non-cached depending on an argument. Note that only
certain processors support non-cached memory via the translation hardware (MIPS and 486).

When the driver is being unloaded MmMapIoSpace is invoked to return the reserved address space
back to the system.

7. Physically Contiguous Memory

On certain archaic systems, devices require the buffers to be physically contiguous in memory. On NT
the memory management system has no support for memory compaction or other mechanisms to
obtain physically contiguous pages. Hence a simple solution is required; when the system is
initialized and non-paged pool created, all physical pages used for non-paged pool are contiguous.

Therefore during system initialization any allocation from non-paged pool is most likely physically
contiguous. However, as the demand for nonpaged pool increases and non-paged pool is automatically
expanded, the pages added are NOT physically contiguous. This means that after the system has been
operating for a some period of time there is a possibility that no non-paged contiguous memory can be
allocated.

Drivers that require physically contiguous memory should allocate their memory at driver initialization
using the MmAllocateContiguousMemory function. The driver should then copy the user's buffer
into or out of the physically contiguous area during its operation. Note depending on how the driver is
designed, the copy may not require building a MDL for the user's buffer, rather it can use a simple
RtlMoveMemory inside of a try/except block.

When the driver is being unloaded or the need for physically contiguous memory is no longer present,
the memory should be deallocated with the MmDeallocateContiguousMemory function.

NT OS Memory Management Guide For I/O

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5

8. Non Cached Memory

Certain devices require that buffers be shared between the device and the driver. These may be ring
buffers which present a list of transfers to the device and a protocol is followed to insert and remove
from the list, or other types of buffers. But the key thing about these buffers is that reads from and
writes to the buffers must go directly to memory and not to the processor's cache where the device
cannot see the changes.

The MmAllocateNonCachedMemory function allocates a range of nonpaged memory within system
space and makes that memory non-cached. If insufficient memory is available, NULL is returned.

Currently, full pages are allocated to the request, so a request for 8 bytes allocates a full page. This is
to avoid putting another pool type in the system and having the overhead of managing the pool as
allocating noncached memory should be an infrequent function. It is anticipated that certain drivers
will obtain some non cached pages at initialization and use only those pages for the life of the driver.

The MmDeallocatedNonCachedMemory function returns the non-cached memory back to the
system pool.

9. Obtaining Physical Addresses

The MmGetPhysicalAddress function returns the physical address for a corresponding virtual
address. This function should only be used to obtain the physical address of a virtual address that is in
the non-pageable portion of the system.

10. Paged and NonPaged Pool

Paged and NonPaged pool requests have the following characterists:

 o requests of PAGE_SIZE or less are always physically contiguous and do not cross a page
boundary

 o the returned address is aligned on a quadword boundary (low order 3 bits of virtual address are
zero)

 o pool allocations do not share cache lines with any other pool allocations.

11. Determining Non-Paged System Space Addresses

The MmIsNonPagedSystemAddressValid function allows the caller to determine if a given virtual
address is within the non-paged portion of the system space and is currently mapped (valid). This
includes such regions as non-paged pool, kernel stacks, and mapped locked pages.

12. Useful Macros

The following macros are also provided to aid in dealing with virtual addresses and buffer sizes:

NT OS Memory Management Guide For I/O

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6

 o ROUND_TO_PAGES

 - Given a size, round the size up to the next page multiple.

 o BYTES_TO_PAGES

 - Given a size, compute the number of pages required to contain a buffer of that size.

 o BYTE_OFFSET

-Given a virtual address, return the byte offset for that virtual address.

 o PAGE_ALIGN

-Given a virtual address, return the corresponding page aligned virtual address.

 o MM_IS_SYSTEM_VIRTUAL_ADDRESS

-Given a virtual address, return TRUE if the virtual address is within system space.

NT OS Memory Management Guide For I/O

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7

Revision History:

Original Draft 1.0, December 15, 1990.

Revision 1.1, January 8, 1991

 1. Added MmIsAddressInNonPagedSystemSpace.

 2. Editorial changes.

 3. Added useful macros.

Revision 1.2, January 28, 1991

 1. Added CacheEnable argument to MmMapIoSpace.

 2. Changed MmIsAddressinNonPagedSystemSpace to MmIsNonPagedSystemAddressValid
to more reflect the actions.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT Mutant Specification

Author: David N. Cutler

Original Draft 1.0, October 19, 1989
Revision 1.1, November 12, 1989
Revision 1.2, November 28, 1989
Revision 1.3, January 5, 1990

Windows NT Mutant Specification i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction.. 1
1.1 Create Mutant Object .. 1
1.2 Open Mutant Object.. 2
1.3 Query Mutant Object... 3
1.4 Release Mutant Object .. 3

Windows NT Mutant Specification 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

This specification describes the Windows NT mutant object which is used to emulate
OS/2 2.0 Semaphore Mutexes. Although Windows NT provides other, more
straightforward, capabilites to synchronize access to critical sections, this object has
been included to enable more efficient emulation of the OS/2 2.0 capabilities.

Threads acquire ownership of a mutant object using the Windows NT wait services.
Only one thread can own a mutant object at a time; however, the owner thread can
recursively acquire the mutant object after first gaining ownership. If a thread
terminates without releasing ownership of a mutant object, then the mutant object
enters the abandoned state. The next thread that gains ownership of the mutant
object will receive a return status that indicates that the mutant object was
previously abandoned. Assigning ownership of an abandoned mutant object to
another thread also clears the abandoned state of the mutant object.

Waiting for a mutant object causes the execution of the subject thread to be
suspended until the thread can gain ownership of the mutant object. Satisfying the
wait for a mutant object assigns ownership to the subject thread.

The following APIs are supported for the mutant object:

NtCreateMutant - Create mutant object and open handle
NtOpenMutant - Open handle to existing mutant object
NtQueryMutant - Get information about mutant object
NtReleaseMutant - Release ownership of a mutant object

1.1 Create Mutant Object

A mutant object can be created and a handle opened for access to the object with
the NtCreateMutant function:

NTSTATUS
NtCreateMutant (
 OUT PHANDLE MutantHandle,
 IN ULONG DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
 IN BOOLEAN InitialOwner
);

Parameters:

MutantHandle - A pointer to a variable that receives the mutant object handle
value.

Windows NT Mutant Specification 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

DesiredAccess - The desired types of access to the mutant object. The following
object type specific access flags can be specified in addition to the
STANDARD_ACCESS_REQUIRED flags described in the Object
Management Specification.

DesiredAccess Flags

MUTANT_QUERY_STATE - Query access to the mutant object is desired.

SYNCHRONIZE - Synchronization access (wait or release) to the mutant
object is desired.

MUTANT_ALL_ACCESS - All possible types of access to the mutant object
are desired.

ObjectAttributes - An optional pointer to a structure that specifies the object
attributes; refer to Object Management Specification for details.

InitialOwner - A boolean value that determines whether the creator of the object
desires immediate ownership of the mutant object.

If the OBJ_OPENIF flag is specified and a mutant object with the specified name
already exists, then a handle to the existing object is opened and the InitialOwner
parameter is ignored, provided the desired access can be granted. Otherwise, a new
mutant object is created and a handle opened to the object with ownership as
determined by the InitialOwner parameter. The status of the newly created mutant
object is set to not abandoned.

1.2 Open Mutant Object

A handle can be opened to an existing mutant object with the NtOpenMutant
function:

NTSTATUS
NtOpenMutant (
 OUT PHANDLE MutantHandle,
 IN ULONG DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters:

MutantHandle - A pointer to a variable that receives the mutant object handle
value.

Windows NT Mutant Specification 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

DesiredAccess - The desired types of access to the mutant object. The following
object type specific access flags can be specified in addition to the
STANDARD_ACCESS_REQUIRED flags described in the Object
Management Specification.

DesiredAccess Flags

MUTANT_QUERY_STATE - Query access to the mutant object is desired.

SYNCHRONIZE - Synchronization access (wait or release) to the mutant
object is desired.

MUTANT_ALL_ACCESS - All possible types of access to the mutant object
are desired.

ObjectAttributes - A pointer to a structure that specifies the object attributes;
refer to Object Management Specification for details.

If the desired types of access can be granted, then a handle is opened to the
specified mutant object.

1.3 Query Mutant Object

The state of a mutant object can be queried with the NtQueryMutant function:

NTSTATUS
NtQueryMutant (
 IN HANDLE MutantHandle,
 IN MUTANTINFOCLASS MutantInformationClass,
 OUT PVOID MutantInformation,
 IN ULONG MutantInformationLength,
 OUT PULONG ReturnLength OPTIONAL
);

Parameters:

MutantHandle - An open handle to a mutant object.

MutantInformationClass - The mutant information class for which information
is to be returned.

MutantInformation - A pointer to a buffer that receives the specified
information. The format and content of the buffer depend on the specified
information class.

Windows NT Mutant Specification 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

MutantInformation Format by Information Class:

MutantBasicInformation - Data type is MUTANTBASICINFO.

MUTANTBASICINFO Structure

LONG CurrentCount - The current ownership count of the mutant
object.

BOOLEAN AbandonedState - The current abandoned state of the
mutant object.

MutantInformationLength - Specifies the length in bytes of the mutant
information buffer.

ReturnLength - An optional pointer to a variable that receives the number of
bytes placed in the mutant information buffer.

This function provides the capability to determine the ownership and abandoned
state of a mutant object.

1.4 Release Mutant Object

Ownership of a mutant object can be released with the NtReleaseMutant function:

NTSTATUS
NtReleaseMutant (
 IN HANDLE MutantHandle,
 OUT PLONG PreviousCount OPTIONAL
);

Parameters:

MutantHandle - An open handle to a mutant object.

PreviousCount - An optional pointer to a variable that receives the previous
ownership count of the mutant object.

A mutant object can only be released by a thread that currently owns the mutant
object. When the mutant is released, the current count of the mutant object is
incremented by one. If the resultant count is one, then the mutant object is no
longer owned. Any threads that are waiting for the mutant object are examined to
see if their wait can be satisfied.

Windows NT Mutant Specification 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History:

Original Draft 1.0, October 18, 1989

Revision 1.1, November 12, 1989

 1. Added initial ownership parameter to NtCreateMutant.

Revision 1.2, November 28, 1989

 1. Change access right required for wait access to be only SYNCHRONIZE
access.

Revision 1.3, January 5, 1990

 1. Change type name of object attributes parameter and refer to the Object
Management Specification for the definition of this parameter.

 2. Change the description of the desired access flags to include standard
rights, object specific rights, and generic rights.

 3. Delete the handle flags and object names parameters from the
NtOpenMutant service and replace with a pointer to an object attributes
structure.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS/2 Named Pipe Specification

Author: David N. Cutler & Gary D. Kimura

Original Draft February 16, 1990
Revision 1.1, March 8, 1990
Revision 1.2, August 14, 1990
Revision 1.3, September 27, 1990
Revision 1.4, October 17, 1990
Revision 1.5, January 23, 1991

NT OS/2 Named Pipe Specification i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction 1
2. Goals 1
3. Overview of OS/2 Named Pipes 1
4. Overview of NT OS/2 Named Pipes 3

4.1 Implementation Alternatives 3
4.2 Named Pipe Directories 4
4.3 Read/Write Buffering Strategy 5

4.3.1 OS/2 Read/Write Buffering Strategy 5
4.3.2 NT OS/2 Read/Write Buffering Strategy 8

4.4 Internal Read/Write Operations 13
4.4.1 Special Read/Write Buffering 13

4.5 Named Pipe States 13
5. NT OS/2 Named Pipe I/O Operations 16

5.1 Create Named Pipe 16
5.2 Create File 20
5.3 Open File 20
5.4 Read File 21
5.5 Write File 22
5.6 Read Terminal File 22
5.7 Query Directory Information 22
5.8 Notify Change Directory 22
5.9 Query File Information 23

5.9.1 Basic Information 23
5.9.2 Standard Information 23
5.9.3 Internal Information 23
5.9.4 Extended Attribute Information 23
5.9.5 Access Information 23
5.9.6 Name Information 23
5.9.7 Position Information 24
5.9.8 Mode Information 24
5.9.9 Alignment Information 24
5.9.10 All Information 24
5.9.11 Pipe Information 24
5.9.12 Local Pipe Information 24
5.9.13 Remote Pipe Information 26

5.10 Set File Information 26
5.10.1 Basic Information 26
5.10.2 Disposition Information 26
5.10.3 Link Information 27
5.10.4 Position Information 27
5.10.5 Mode Information 27
5.10.6 Pipe Information 27
5.10.7 Remote Pipe Information 27

5.11 Query Extended Attributes 28

NT OS/2 Named Pipe Specification ii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5.12 Set Extended Attributes 28
5.13 Lock Byte Range 28
5.14 Unlock Byte Range 28
5.15 Query Volume Information 28
5.16 Set Volume Information 28
5.17 File Control Operations 28

5.17.1 External File Control Operations 28
5.17.1.1 Assign Event 29
5.17.1.2 Disconnect 29
5.17.1.3 Listen 30
5.17.1.4 Peek 31
5.17.1.5 Query Event Information 32
5.17.1.6 Transceive 33
5.17.1.7 Wait For Named Pipe 34
5.17.1.8 Impersonate 35

5.17.2 Internal File Control Operations 36
5.17.2.1 Internal Read 36
5.17.2.2 Internal Write 36
5.17.2.3 Internal Transceive 36

5.18 Flush Buffers 36
5.19 Set New File Size 36
5.20 Cancel I/O Operation 37
5.21 Device Control Operations 37
5.22 Close Handle 37

6. OS/2 API Emulation 37
6.1 DosCallNmPipe 37
6.2 DosConnectNmPipe 37
6.3 DosDisconnectNmPipe 38
6.4 DosMakeNmPipe 38
6.5 DosPeekNmPipe 38
6.6 DosQNmPHandState 39
6.7 DosQNmPipeInfo 39
6.8 DosQNmPipeSemState 39
6.9 DosRawReadNmPipe 39
6.10 DosRawWriteNmPipe 39
6.11 DosSetNmPHandState 40
6.12 DosSetNmPipeSem 40
6.13 DosTransactNmPipe 40
6.14 DosWaitNmPipe 40

NT OS/2 Named Pipe Specification 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

This specification discusses the named pipe facilities of NT OS/2. Named pipes provide a full duplex
interprocess communication (IPC) mechanism that can be used locally or across a network to access
application servers. Named pipes provide the transport medium that is used for the Microsoft remote
procedure call (RPC) capabilities.

Named pipes are used extensively by the OS/2 and LAN Manager components of the NT OS/2 system,
and therefore, must be implemented as efficiently as possible.

There are two manifestations of named pipes, those that are local to a system and those that are remote.
This specification addresses both types of named pipes.

In addition to describing the NT OS/2 named pipe facilities, this specification also discusses the way
in which the OS/2 named pipe APIs are emulated.

2. Goals

The major goals for the named pipe capabilities of NT OS/2 are the following:

 1. Provide the basic primitives necessary to compatibly emulate the OS/2 named pipe capabilities.

 2. Provide protection and security attributes for named pipes that are comparable to the
capabilities provided for files and other NT OS/2 objects.

 3. Provide for LAN Manager server and client redirection of named pipes without having to enter
the OS/2 subsystem.

 4. Provide a fully qualified name space for named pipes that fits into the NT OS/2 name structure
in a straightforward manner.

 5. Provide a high performance design and implementation of named pipes.

Although it is a major temptation, it is not a goal to "fix" the semantics of OS/2 named pipes. Minor
discrepancies, however, will exist between OS/2 and NT OS/2 named pipes where OS/2 capabilities or
semantics are incompatible with those of NT OS/2, e.g., the named pipe naming and the asynchronous
I/O model.

3. Overview of OS/2 Named Pipes

A named pipe provides a full duplex channel that can be used to implement an interprocess
communication (IPC) mechanism between two processes. OS/2 uses named pipes to implement
location-independent remote procedure call (RPC) capabilities and for communicating with servers on
a remote system.

NT OS/2 Named Pipe Specification 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Named pipes have two ends: 1) a client end, and 2) a server end. Both ends are full duplex——data
written from one end can be read from the other end and vice versa.

The server end of a named pipe is created when a new instance of a named pipe is created, or when a
previously created instance is reused. A new instance of a named pipe is created with the
DosMakeNmPipe API in OS/2.

Before either the client or the server ends of a named pipe can be used, the server end must be
connected. In OS/2 this is accomplished with the DosConnectNmPipe API.

Once an instance of a named pipe is created and the server end is connected, then the client end of the
named pipe can be created using the OS/2 DosOpen API.

When both the server end of a named pipe is connected and the client end is opened, information can
flow over the pipe using the OS/2 DosRead and DosWrite APIs.

Named pipes are created with five attributes:

 1. A pipe type which is either message or byte stream.

 2. A count that limits the maximum number of simultaneous instances of the named pipe that can
be created.

 3. An input buffer size that specifies the size of the buffer that is used for inbound data on the
server side of the named pipe.

 4. An output buffer size that specifies the size of the buffer that is used for outbound data from the
server side of the named pipe.

 5. A default timeout value that is to be used if a timeout value is not specified when the
DosWaitNmPipe API is executed.

The type of a named pipe determines how information is written into the named pipe. If the named
pipe is a message pipe, then information is written into the pipe in the form of messages which include
the byte count and the data of the message. If the named pipe is a byte stream pipe, then only the data
is written into the named pipe.

The maximum instance count is established when the first instance of a specific named pipe is created
(i.e., one of a given name) and cannot later be modified. Thereafter, up to the maximum instance
count of simultaneous instances of the named pipe can be created to provide an IPC mechanism
between any pair of processes.

The input and output buffer sizes are considered hints to the system for the sizes of the buffers that are
needed to buffer inbound and outbound data. The actual buffer sizes may be either the system default
or the specified buffer sizes rounded up to the next allocation boundary.

NT OS/2 Named Pipe Specification 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The default timeout value specifies a default for the amount of time that a client can wait for an
available instance of a named pipe.

Once the first instance of a named pipe is created subsequent instances of an identically named pipe
are subject to the maximum instances parameter. In addition, the type of pipe and the default timeout
value are ignored and cannot be set when subsequent instances of the named pipe are created.

In addition to the five attribute parameters, two mode parameters can be specified when an instance of
a named pipe is created or opened:

 1. The read mode, which can be either message mode or byte stream mode, but which must be
compatible with the type of the named pipe.

 2. The blocking mode, which can be either blocking or nonblocking.

The read mode of a named pipe determines how data will be read from the pipe. If the named pipe is a
message pipe, then data can be read in either message mode or byte stream mode. However, if the
named pipe is a byte stream pipe, then data can only be read in byte stream mode.

The blocking mode determines what happens when a request cannot be satisfied immediately. If the
mode is blocking, then an implied wait occurs until an operation is completed. Otherwise, the
operation returns immediately with an error status.

Standard open parameters can also be specified when an instance of a named pipe is created or opened
which define the access that is desired to the named pipe (e.g., read only, write only, or read/write
access), whether the named pipe handle is inherited when a child process is created, and whether write
behind is allowed on writes to the named pipe.

The open access parameters also specify the configuration of the named pipe when the first instance of
a named pipe is created. A named pipe can have a full duplex or a simplex configuration. A full duplex
named pipe allows data to flow in both directions, whereas a simplex named pipe only allows data to
flow in one direction. The direction of data flow and configuration are determined by the read only
(outbound), write only (inbound), and read/write (full duplex) open access parameters specified by the
server when the first instance of a named pipe is created.

The server end of a named pipe can be reused by disconnecting the client end. In OS/2, this is
accomplished using the DosDisconnectNmPipe API. The server end of a named pipe can also be
disconnected by closing the respective file handle, but this deletes the instance of the named pipe and it
cannot be reused.

The client end of a named pipe is disconnected by simply closing the respective file handle.

OS/2 supplies 14 APIs that are specific to named pipes. These APIs are intended mainly for use by a
server. In addition, eleven standard OS/2 I/O system APIs can be executed using a file handle to a
named pipe.

NT OS/2 Named Pipe Specification 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4. Overview of NT OS/2 Named Pipes

4.1 Implementation Alternatives

Named pipes must be integrated into the NT OS/2 I/O system such that standard read and write
requests can be used to read data from and write data to a named pipe. It also must be possible to
accomplish LAN Manager server and client redirection of named pipes without having to call the OS/2
subsystem.

There are several ways of integrating named pipes into NT OS/2 that meet these requirements:

 1. Implement the named pipe capabilities as an installable file system and extend NtCreateFile so
that the named pipe attributes required by OS/2 can be specified directly in the NT OS/2
system service call.

 2. Implement the named pipe capabilities as an installable file system and use extended attributes
as the means of defining the named pipe attributes required by OS/2.

 3. Implement named pipes as a separate object that is created with its own API, but which can be
opened via a pipe driver.

 4. Implement the named pipe capabilities as an installable file system and add an NT OS/2 I/O
system API that specifically creates an instance of a named pipe.

The first alternative requires an already complicated API to be further extended to accommodate yet
another special case.

The second alternative overloads the use of extended attributes to have a special meaning for named
pipes. Extended attributes are not the most efficient or convenient way of specifying the attribute
values and would require special rules about when they could be read and written.

The third alternative would create a nonstandard object whose API was partly buried in the I/O system
and partly in object-specific APIs.

The fourth alternative adds an additional API to the NT OS/2 I/O system that has special meaning and
is only applicable to named pipes.

The fourth alternative has been chosen as the means of implementing the named pipe capabilities in
NT OS/2. Although this provides an additional I/O system API that is specific to named pipes, it is the
most straightforward and efficient implementation.

4.2 Named Pipe Directories

In OS/2, named pipes have a rigid name syntax with the following form:

 \PIPE\pipe-name

NT OS/2 Named Pipe Specification 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This syntax is recognized by the OS/2 DosOpen API and is routed to the appropriate system
component. The LAN Manager redirector is also capable of recognizing names of the following form:

 \\server-name\PIPE\pipe-name

The redirector transforms the request into a tree connection to a server and then performs the
appropriate SMB generation.

The NT OS/2 named pipe driver will also implement a flat name space. The syntax for an NT OS/2
named pipe is of the following form:

 \Device\NamedPipe\pipe-name1

\The object name space in NT OS/2 is more general and hierarchical, and we would like
named pipes to follow that scheme; however, because of issues involving persistent named
pipes, and guaranteeing proper behavior given reparse the first named pipe driver will use
a flat name space. Once the issues are resolved named pipes can be extended to existing
file systems as a special file using reparse or by maintaining a named pipe database in a
system file.\

The syntax for a remote NT OS/2 named pipe is of the following form:

 \Device\LanmanRedirector\server-name\Pipe\pipe-name

4.3 Read/Write Buffering Strategy

4.3.1 OS/2 Read/Write Buffering Strategy

The OS/2 named pipe capabilities use a two circular buffers for buffering inbound and outbound writes
to a named pipe. This design is dictated by the synchronous I/O model of OS/2 and it controls the
amount of system buffering space that is consumed. The data is copied twice for each write and read of
a named pipe. One copy occurs when the data is written from a user buffer into a named pipe and
another copy occurs when the data is read out of the named pipe into a user buffer.

An OS/2 named pipe can be either a message or byte stream pipe, which determines how write data is
stored in the pipe buffers. Message pipes can be read in either message mode or byte stream mode.
Byte stream pipes can only be read in byte stream mode. In addition, a blocking mode can be specified
for each open of an instance of a named pipe. The blocking mode determines whether reads from, and
writes to the named pipe block if sufficient data or space is not available in the named pipe.

1The string "\Device\NamedPipe" refers to the named pipe driver, while the string
"\Device\NamedPipe\" represents the root directory of the named pipe file system.

NT OS/2 Named Pipe Specification 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

A message named pipe stores the size of a message and the data for the message. A byte stream named
pipe simply stores the data and no additional information. Reads from a message named pipe attempt
to read a complete message from the pipe in either message mode or byte stream mode. If the complete
message does not fit in the supplied read buffer, then a full buffer is returned along with an error status
that signifies that there is more data in the message. Reads from a byte stream named pipe can only be
made in byte stream mode and return the data that is currently in the pipe up to the size of the supplied
buffer.

Each inbound and outbound buffer for a named pipe has a read lock, a write lock, a read semaphore,
and a write semaphore. These are used to synchronize the reading and writing of data to and from the
buffer.

NT OS/2 Named Pipe Specification 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

When a write to a named pipe buffer begins, the write lock is acquired to prevent any other writer from
writing into the buffer until the current write is finished. If the write must block because of a lack of
available space in the buffer, then the reader semaphore is signaled, the writer lock is not released, and
the writer waits for a reader to signal the write semaphore. The write lock is released at the completion
of the write operation.

The following describes the OS/2 named pipe write logic.

if (message pipe) then
 if (blocking mode) then
 write message to pipe, synchronize with reader
 return size of message written
 else
 if (space for message header plus one byte) and
 (data buffer size greater than pipe buffer size) then
 write data to pipe, synchronize with reader
 return size of message written
 else
 if (space for data buffer and message header) then
 write data to pipe
 return size of message written
 else
 return buffer overflow error
 endif
 endif
 endif
else
 if (blocking mode) then
 write data to pipe, synchronize with reader
 return count of bytes written
 else
 if (space available in pipe buffer) then
 write data to pipe (minimum data buffer/pipe space)
 return count of bytes written
 else
 return buffer overflow error
 endif
 endif
endif

NT OS/2 Named Pipe Specification 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

When a read from a named pipe buffer begins, the read lock is acquired to prevent any other reader
from reading from the buffer until the current read is finished. If the read must block because of a lack
of available data in the buffer, then the writer semaphore is signaled, the reader lock is not released,
and the reader waits for the read semaphore to be signaled. The read lock is released at the completion
of the read operation.

The following describes the OS/2 named pipe read logic.

while (data not available in pipe) do
 if (blocking mode) then
 wait for available data in pipe
 else
 return no data available error
 endif
endwhile

if (message pipe) then
 if (data buffer size greater or equal message size) then
 if (message mode) then
 read message from pipe, synchronize with writer
 return size of message read
 else
 read available data or message from pipe
 if (complete message read) then
 return size of message read
 else
 reduce size of message by available data bytes
 return count of data bytes read
 endif
 endif
 else
 if (message mode) then
 read data from pipe, synchronize with writer
 reduce size of message by data buffer size
 return more data error
 else
 read available data from pipe
 reduce size of message by available data bytes
 return count of data bytes read
 endif
 endif
else
 read available data from pipe
 return count of data bytes read
endif

NT OS/2 Named Pipe Specification 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4.3.2 NT OS/2 Read/Write Buffering Strategy

NT OS/2 supports an asynchronous I/O model and uses the concept of quotas to control the allocation
of system buffers. In addition, NT OS/2 supports I/O transfers that are buffered by the system rather
than requiring buffers to be locked down and nonswappable. Therefore, the buffering scheme used for
the NT OS/2 implementation of named pipes differs markedly from that of OS/2.

The blocking mode of OS/2 is emulated in NT OS/2 with a completion mode. The completion mode
can be specified such that read and write operations are completed immediately or they are queued and
subject to completion when space is available or data is present.

The inbound and outbound buffers for a named pipe are not actually allocated to real memory in NT
OS/2. Instead, the creator of an instance of a named pipe is simply charged memory quota for these
buffers. Writers and readers can use up to the quota charged to the creator without having any quota
charged against themselves. If the quota charged to the creator is exhausted and a write request is
queued rather than completed immediately, then the writer is charged for any additional quota that is
required. Likewise, a reader is charged quota if no data is available, the quota charged to the creator is
exhausted, and the read request is queued rather than completed immediately.

The named pipe capabilities of NT OS/2 requires that the data be copied twice. However, reads can
"pull" data from write buffers and writes can "push" data into read buffers.

The following is a somewhat simplified discussion of the buffering scheme used for named pipes in
NT OS/2. Boundary conditions and differing pipe types and modes are not considered. The pipe type
is assumed to be message, the read mode is assumed to be message, and the completion mode is
assumed to be queued operation.

The exact behavior of the NT OS/2 named pipe buffering depends on whether a read occurs before a
write or vice versa.

If a write operation occurs before a read operation, then the writer's output buffer is probed for read
accessibility in the requesting mode. A system buffer is allocated that is the required size to hold the
write data and memory quota is charged to the writer if and only if the quota charged to the creator of
the named pipe instance has been exhausted (e.g., because of a previous read or write request). A
buffer header is initialized at the front of the system buffer, the write data is copied into the system
buffer, and the buffer header is inserted into the first-in-first-out list of writers. If quota was not
charged to the writer, then the writer's I/O request can be completed immediately. The system buffer
will be deallocated and the creator's quota returned when a matching read arrives. Otherwise, the write
request type is converted to a buffered request so that upon completion, the I/O system will deallocate
the system buffer and return memory quota as appropriate.

At this point, the I/O operation is either pending or has been completed and control is returned to the
caller. If another write request is received before the first set of write data is read, then the same
operations are performed and the new request is placed at the end of the pending queue.

NT OS/2 Named Pipe Specification 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

At some subsequent point in time, a read request arrives at the read end of the pipe and it is determined
that write data is available at the write end of the pipe. The input buffer is probed for write accessibility
in the requesting mode. The read then proceeds to "pull" (copy) data directly from the system buffer
that was previously allocated for the write data into the user's input buffer. At the completion of the
copy, the read I/O request is completed.

Completion of the read request involves writing the I/O status block and setting the completion event.
If the original write I/O request was completed at the time of the write, then the system buffer is
deallocated and memory quota is returned for named pipe write buffering. However, if the write I/O
was not completed at the time of the write, then completion of the write requires writing the I/O status
block, setting the completion event, deallocating the system buffer, and returning quota to the writer.

If an access violation occurs during a copy from the output buffer to a system buffer, then the write
operation is immediately terminated. Previously completed read I/O requests, if any, are not backed
out. This has no effect on the integrity of the system. A malicious writer could easily accomplish the
same effect by simply writing a shortened message. The write I/O status is set to access violation, the
write I/O request is completed, and successful completion is returned as the service status.

NT OS/2 Named Pipe Specification 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The following describes the NT OS/2 named pipe write logic.

probe output buffer for read access
while (read pending) and (output buffer size not zero) do
 copy data from output buffer to read buffer
 if (read buffer greater or equal output buffer) then
 reduce output buffer size to zero
 set read I/O status to successful completion
 else
 reduce output buffer by read buffer size
 if (message mode read) then
 set read I/O status to buffer overflow
 else
 set read I/O status to successful completion
 endif
 endif
 remove read request from read pending list
 complete read I/O operation, return quota
endwhile
if (output buffer size not zero) then
 if (pipe quota available) then
 allocate write buffer, charge quota to pipe
 copy data from output buffer to write buffer
 insert write request in write pending list
 set write I/O status to successful completion
 complete write I/O operation
 return successful completion
 else
 if (queued operation) or ((message pipe) and
 (output buffer not original size)) then
 allocate write buffer, charge quota to writer
 copy data from output buffer to write buffer
 insert write request in write pending list
 return operation pending
 else
 if (output buffer not original size) then
 set write I/O status to successful completion
 complete write I/O request
 return successful completion
 else
 abort write I/O operation
 return no space available
 endif
 endif
 endif
else
 set write I/O status to successful completion
 complete write I/O request
 return successful completion
endif

NT OS/2 Named Pipe Specification 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

If a read operation occurs before a write, then the reader's input buffer is probed for write accessibility
in the requesting mode. A system buffer is allocated that is the required size to hold the input data and
memory quota is charged to the reader if and only if the quota charged to the creator of the named pipe
instance has been exhausted (e.g., because of a previous read or write request). A buffer header is
initialized at the front of the system buffer and the header is inserted in a first-in-first-out list of
readers. The read request type is converted to a buffered request so that upon completion, the I/O
system will copy the received data from the system buffer into the reader's input buffer, deallocate the
system buffer, and return memory quota as appropriate.

At this point, the I/O operation is pending and control is returned to the caller. If another read request
is received before the first read is completed, then the same operations are performed and the new
request is placed at the end of the pending queue.

At some subsequent point in time, a write request arrives at the write end of the pipe and it is
determined that a read is pending at the read end of the pipe. The output buffer is probed for read
accessibility in the requesting mode. The write then proceeds to "push" (copy) data directly from the
output buffer into the system buffer that was previously allocated for the read operation. At the
completion of the copy, the read and write I/O requests are both completed.

Completion of the write request involves writing the I/O status block and setting the completion event,
whereas completion of the read request requires copying the read data from the system buffer to the
reader's input buffer, deallocating the system buffer and returning the memory quota as appropriate,
writing the I/O status block, and setting the completion event.

If an access violation occurs during a copy from a system buffer to the input buffer, then the read
operation is immediately terminated. Previously completed write I/O requests are not backed out. This
has no effect on the integrity of the system. A malicious reader could easily accomplish the same effect
by simply reading and discarding information. The read I/O status is set to access violation, the read
I/O request is completed, and successful completion is returned as the service status.

NT OS/2 Named Pipe Specification 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The following describes the NT OS/2 named pipe read logic.

probe input buffer for write access
if (write not pending) then
 if (queued operation) then
 if (pipe quota available) then
 allocate read buffer,charge quota to pipe
 else
 allocate read buffer, charge quota to reader
 endif
 insert read request in read pending list
 return operation pending
 else
 abort read I/O operation
 return no data available
 endif
else
 set read I/O status to successful completion
 while (write pending) and (input buffer size not zero) do
 copy data from write buffer to input buffer
 if (input buffer greater or equal write buffer) then
 if (message mode read) then
 reduce input buffer size to zero
 else
 reduce input buffer by write buffer size
 endif
 set write I/O status to successful completion
 remove write request from write pending list
 complete write I/O operation, return quota
 else
 reduce write buffer by input buffer size
 reduce input buffer size to zero
 if (message mode read) then
 set read I/O status to buffer overflow
 endif
 endif
 endwhile

 complete read I/O operation
 return successful completion
endif

NT OS/2 Named Pipe Specification 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4.4 Internal Read/Write Operations

4.4.1 Special Read/Write Buffering

In addition to the above buffering method provided for local named pipe clients and servers, NT OS/2
provides another buffering method that can be used internally by the NT OS/2 LAN Manager server.
This method allows read and write requests to proceed such that no buffer allocation is needed for
either the read or the write.

The NT OS/2 LAN Manager server supplies the necessary system buffers directly and only one copy
of the data is needed for a read or write operation. Typically, these buffers are the buffers that are used
to receive and transmit data over the network. Thus, server side redirection can be performed with
minimal overhead.

4.5 Named Pipe States

Named pipes can be in one of four states:

 1. Disconnected

 2. Listening

 3. Connected

 4. Closing

The initial state of a named pipe is disconnected. When the pipe is in this state, no client is connected
to the pipe and a listen operation can be performed.

Performing a listen operation on a disconnected named pipe causes the pipe to transition to the
listening state.

An open request performed by a client causes a named pipe in the listening state to enter the connected
state. When a named pipe is in the connected state, data can flow through the pipe.

A named pipe that is in the connected state can transition to either the disconnected state or the closing
state.

The disconnected state is entered when a disconnect operation is performed on the server end of a
named pipe and causes both the input buffer and the output buffer to be flushed. No further access is
allowed to the client end of the named pipe; however, the client end must still be closed.

The closing state is entered if a close operation is performed on either end of a named pipe and causes
the input buffer of the closing end to be flushed. Any remaining data in the output buffer can be read
from the opposite end of the named pipe with a read operation. When no data remains in the output
buffer, an end of file indication is returned.

NT OS/2 Named Pipe Specification 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

A named pipe that is in the closing state because the client end of the pipe was closed can transition to
the disconnected state by performing a disconnect operation on the server end of the pipe.

A named pipe that is in the closing state because the server end of the pipe was closed is deleted when
the client end of the pipe is also closed.

NT OS/2 Named Pipe Specification 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Named Pipe State Transition Diagram

 Nonexistent

 │ (make pipe server end)
 ┌──────────────────────────>│
 │┌─────────────────────────>│
 ││┌────────────────────────>│
 │││ V
 │││ ┌─────────────────────────────┐
 │││ │ │─────────────────────┐
 │││ │ Disconnected │ (server end closed) │
 │││ └──────────────┬──────────────┘ │
 │││ │ │
 │││ │ (listen server end) │
 │││ V │
 │││ ┌─────────────────────────────┐ │
 │││ │ │─────────────────────│
 │││ │ Listening │ (server end closed) │
 │││ └──────────────┬──────────────┘ │
 ││└─────────────────────────┤ │
 ││(server end disconnected) │ (open client end) │
 ││ V │
 ││ ┌─────────────────────────────┐ │
 ││ │ │ │
 ││ │ Connected │ │
 ││ └──────────────┬──────────────┘ │
 │└──────────────────────────┤ │
 │ (server end disconnected) │ (close server or client end) │
 │ V │
 │ ┌─────────────────────────────┐ │
 │ │ │ │
 │ │ Closing │ │
 │ └──────────────┬──────────────┘ │
 └───────────────────────────┤ │
 (server end disconnected) │ (server end closed) │
 V │
 │
 Deleted <───────────────────────────────┘

NT OS/2 Named Pipe Specification 17

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5. NT OS/2 Named Pipe I/O Operations

The following subsections describe the NT OS/2 I/O operations with respect to named pipes.
Additional information can be found in the NT OS/2 I/O System Specification.

5.1 Create Named Pipe

The first instance of a specific named pipe or another instance of an existing named pipe can be
created, and a server end handle opened with the NtCreateNamedPipeFile function. This function is
only for creating local named pipes and not remote ones.

NTSTATUS
NtCreateNamedPipeFile (
 OUT PHANDLE FileHandle,
 IN ULONG DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes,
 OUT PIO_STATUS_BLOCK IoStatusBlock,
 IN ULONG ShareAccess,
 IN ULONG CreateDisposition,
 IN ULONG CreateOptions,
 IN ULONG NamedPipeType,
 IN ULONG ReadMode,
 IN ULONG CompletionMode,
 IN ULONG MaximumInstances,
 IN ULONG InboundQuota,
 IN ULONG OutboundQuota,
 IN PTIME DefaultTimeout OPTIONAL
);

Parameters:

FileHandle - A pointer to a variable that receives the file handle value.

DesiredAccess - Specifies the type of access that the caller requires to the named pipe.

DesiredAccess Flags:

SYNCHRONIZE - The file handle may be waited on to synchronize with the completion
of I/O operations.

READ_CONTROL - The ACL and ownership information associated with the named
pipe may be read.

WRITE_DAC - The discretionary ACL associated with the named pipe may be written.

NT OS/2 Named Pipe Specification 18

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

WRITE_OWNER - Ownership information associated with the named pipe may be
written.

FILE_READ_DATA - Data may be read from the named pipe.

FILE_WRITE_DATA - Data may be written to the named pipe.

FILE_CREATE_PIPE_INSTANCE - This access is needed to create subsequent instances
of the named pipe.

FILE_READ_ATTRIBUTES - Named pipe attributes flags may be read.

FILE_WRITE_ATTRIBUTES - Named pipe attribute flags may be written.

The three following values are the generic access types that the caller may request along
with their mapping to specific access rights:

GENERIC_READ - Maps to FILE_READ_DATA and FILE_READ_ATTRIBUTES.

GENERIC_WRITE - Maps to FILE_WRITE_DATA and FILE_WRITE_ATTRIBUTES.

GENERIC_EXECUTE - Maps to SYNCHRONIZE.

ObjectAttributes - A pointer to a structure that specifies the object attributes; refer to the I/O
System Specification for details.

IoStatusBlock - A pointer to a structure that receives the final completion status. The actual
action taken by the system is written into the Information field of this structure. For
example, it indicates if a new named pipe and instance was created or just a new instance.

ShareAccess - Specifies the share access and configuration of the named pipe.

ShareAccess Flags:

FILE_SHARE_READ - Indicates that client end handles can be opened for read access to
the named pipe.

FILE_SHARE_WRITE - Indicates that client end handles can be opened for write access to
the named pipe.

CreateDisposition - Specifies the action to be taken if the named pipe does or does not already
exist.

CreateDisposition Values:

NT OS/2 Named Pipe Specification 19

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_CREATE - Indicates that if the named pipe already exists, then the operation should
fail. If the named pipe does not already exist, then the first instance of the named
pipe should be created.

FILE_OPEN - Indicates that if the named pipe already exists, then another instance of the
named pipe should be created. If the named pipe does not already exist, then the
operation should fail.

FILE_OPEN_IF - Indicates that if a named pipe already exists, then another instance of the
named pipe should be created. If the named pipe does not already exist, then the first
instance of the named pipe should be created.

CreateOptions - Specifies the options that should be used when creating the first instance or a
subsequent instance of a named pipe.

CreateOptions Flags:

FILE_SYNCHRONOUS_IO_ALERT - Indicates that all operations on the named pipe are
to be performed synchronously. Any wait that is performed on behalf of the caller is
subject to premature termination by alerts.

FILE_SYNCHRONOUS_IO_NONALERT - Indicates that all operations on the named pipe
are to be performed synchronously. Any wait that is performed on behalf of the
caller is not subject to premature termination by alerts.

NamedPipeType - Specifies the type of the named pipe. This parameter is only meaningful when
the first instance of a named pipe is created.

NamedPipeType Values:

FILE_PIPE_MESSAGE_TYPE - Indicates that the named pipe is a message pipe. Data
written to the pipe is stored such that message boundaries are maintained. Message
named pipes can be read in message mode or in byte stream mode.

FILE_PIPE_BYTE_STREAM_TYPE - Indicates that the named pipe is a byte stream pipe.
Data written to the pipe is stored as a continuous stream of bytes. Byte stream pipes
can only be read in byte stream mode.

ReadMode - Specifies the mode in which the named pipe is read.

ReadMode Values:

FILE_PIPE_MESSAGE_MODE - Indicates that data is read from the named pipe a
message at a time. This value may not be specified unless the named pipe is a
message pipe.

NT OS/2 Named Pipe Specification 20

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FILE_PIPE_BYTE_STREAM_MODE - Indicates that data is read from the named pipe as a
continuous stream of bytes. This value may be specified regardless of the type of the
named pipe.

CompletionMode - Specifies whether I/O operations are to be queued or completed immediately
when conditions are such that the I/O operation cannot be completed without being
deferred for subsequent processing, e.g., a read operation on a named pipe that contains no
write data.

CompletionMode Values:

FILE_PIPE_QUEUE_OPERATION - Indicates that I/O operations are to be queued
pending completion at a later time if they cannot be immediately completed when the
I/O operation is issued.

FILE_PIPE_COMPLETE_OPERATION - Indicates that I/O operations are not to be
queued if they cannot be completed immediately when the I/O operation is issued.

MaximumInstances - Specifies the maximum number of simultaneous instances of the named
pipe. This parameter is only meaningful when the first instance of a named pipe is created.

InboundQuota - Specifies the pool quota that is reserved for writes to the inbound side of the
named pipe.

OutboundQuota - Specifies the pool quota that is reserved for writes to the outbound side of the
named pipe.

DefaultTimeout - Specifies an optional pointer to a timeout value that is to be used if a timeout
value is not specified when waiting for an instance of a named pipe. This parameter is only
meaningful when the first instance of a named pipe is created.

This service either creates the first instance of a specific named pipe and establishes its basic attributes
or creates a new instance of an existing named pipe which inherits the attributes of the first instance of
the named pipe. If creating a new instance of an existing named pipe the user must have
FILE_CREATE_PIPE_INSTANCE access to the named pipe object.

If a new named pipe is being created, then the Access Control List (ACL) from the object attributes
parameter defines the discretionary access control for the named pipe. If a new instance of an existing
named pipe is created, then the ACL is ignored.

If a new named pipe is created, then the configuration of the named pipe is determined from the
FILE_SHARE_READ and FILE_SHARE_WRITE flags of the share access parameter. If both flags are
specified, then the named pipe is a full duplex pipe and can be read and written by clients. If either one
or the other is specified, but not both, then the named pipe is a simplex pipe and can only be read
(outbound) or written (inbound) by clients. If neither one is specified, then

NT OS/2 Named Pipe Specification 21

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

STATUS_INVALID_PARAMETER is returned. If a new instance of an existing named pipe is created,
then the share access parameter is ignored.

If a new named pipe is created, then the type of the named pipe, the maximum instances, and the
default timeout value are taken from their corresponding parameters. If a new instance of an existing
named pipe is created, then these parameters are ignored.

The create options, completion mode, and read mode are set to their specified values.

The actual pool quota that is reserved for each side of the named pipe is either the system default, the
system minimum, the system maximum, or the specified quota rounded up to the next allocation
boundary.

The name of the named pipe is taken from the object attributes parameter, which must be specified.

An instance of a named pipe is always deleted when the last handle to the instance of the named pipe is
closed.

If STATUS_SUCCESS is returned as the service status, then a new instance of a named pipe was
successfully created. The Information field of the I/O status block indicates if this is the first instance
of the named pipe (FILE_CREATED) or a new instance of an existing named pipe (FILE_OPENED).

If STATUS_INVALID_PARAMETER is returned as the service status, then an invalid value was
specified for one or more of the input parameters.

If STATUS_INSTANCE_NOT_AVAILABLE is returned as the service status, the named pipe already
exists and creating another instance would cause the maximum number of instances to be exceeded.

5.2 Create File

The NtCreateFile function can be used to open a client end handle to an instance of a specified named
pipe.

In order to use this function to open a named pipe, the named pipe must already exist and the
CreateDisposition value must be specified as either FILE_OPEN or FILE_OPEN_IF.

When a named pipe is opened, a search is conducted for an available instance of the specified named
pipe. If an instance of the named pipe is found that has a state of listening, then the state of the named
pipe is set to connected, the read mode is set to byte stream, the completion mode is set to queued
operation, and the open I/O request is completed. If one or more listen I/O requests are pending for the
server end of the named pipe, then the listen I/O requests are completed with a status of
STATUS_SUCCESS.

If a named pipe of specified name cannot be found, then STATUS_OBJECT_NAME_NOT_FOUND is
returned as the service status.

NT OS/2 Named Pipe Specification 22

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

If an instance of the named pipe cannot be found with a state of listening, then
STATUS_PIPE_NOT_AVAILABLE is returned as the service status.

5.3 Open File

The NtOpenFile function can be used to open a client end handle to an instance of a specified named
pipe.

When a named pipe is opened, a search is conducted for an available instance of the specified named
pipe. If an instance of the named pipe is found that has a state of listening, then the state of the named
pipe is set to connected, the read mode is set to byte stream, the completion mode is set to queued
operation, and the open I/O request is completed. If one or more listen I/O requests are pending for the
server end of the named pipe, then the listen I/O requests are completed with a status of
STATUS_SUCCESS.

If a named pipe of specified name cannot be found, then STATUS_OBJECT_NAME_NOT_FOUND is
returned as the service status.

If an instance of the named pipe cannot be found with a state of listening, then
STATUS_PIPE_NOT_AVAILABLE is returned as the service status.

5.4 Read File

The NtReadFile function can be used to read data from a named pipe. Data is read according to the
read mode of the specified named pipe and I/O operations are completed according to the completion
mode of the specified named pipe.

The byte offset and key parameters of the NtReadFile function are ignored by the named pipe file
system.

The specified named pipe must be in the connected or closing state in order to read information from
the pipe.

If STATUS_PENDING is returned as the service status, then the read I/O operation is pending and its
completion must be synchronized using the standard NT OS/2 mechanisms. Any other service status
indicates that the read I/O operation has already been completed. If a success status is returned, then
the I/O status block contains the I/O completion information. Otherwise, the service status determines
any error that may have occurred.

If the specified handle is not open to a named pipe that is in the connected or closing state, then
STATUS_INVALID_PIPE_STATE is returned as the service status.

If the I/O status STATUS_ACCESS_VIOLATION is returned, then part of the read buffer became
inaccessible after it was probed for write access and the I/O status block contains the number of bytes
that were read.

NT OS/2 Named Pipe Specification 23

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

If the I/O status STATUS_END_OF_FILE is returned, then there is no data in the pipe and the write
end of the pipe has been closed.

The I/O status STATUS_PIPE_EMPTY is returned when there is no data in the pipe but the write end
of the pipe is still opened and the pipe is opened for complete operations.

If the I/O status STATUS_BUFFER_OVERFLOW is returned, then the read I/O operation was
completed successfully, but the size of the input buffer was not large enough to hold the entire input
message. A full buffer of data is returned; additional data can be read from the message using the
NtReadFile function. The I/O status block contains the number of bytes that were read.

If the I/O status STATUS_SUCCESS is returned, then the read I/O operation was completed
successfully and the I/O status block contains the number of bytes that were read.

If an event is associated with the write end of the specified named pipe and any data is actually read
from the pipe, then the event is set to the Signaled state. Writers can use this information to
synchronize their access to the named pipe.

5.5 Write File

The NtWriteFile function can be used to write data to a named pipe. Data is written according to the
type of the specified named pipe and I/O operations are completed according to the completion mode
of the specified named pipe.

The byte offset and key parameters of the NtWriteFile function are ignored by the named pipe file
system.

The specified named pipe must be in the connected state in order to write information to the pipe.

If STATUS_PENDING is returned as the service status, then the write I/O operation is pending and its
completion must be synchronized using the standard NT OS/2 mechanisms. Any other service status
indicates that the write I/O operation has already been completed. If a success status is returned, then
the I/O status block contains the I/O completion information. Otherwise, the service status determines
any error that may have occurred.

If the specified handle is not open to a named pipe that is in the connected state, then
STATUS_INVALID_PIPE_STATE is returned as the service status.

If the I/O status STATUS_ACCESS_VIOLATION is returned, then part of the write buffer became
inaccessible after it was probed for read access and the I/O status block contains the number of bytes
that were written.

If the I/O status STATUS_SUCCESS is returned, then the write I/O operation was completed
successfully and the I/O status block contains the number of bytes that were written.

NT OS/2 Named Pipe Specification 24

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

If an event is associated with the read end of the specified named pipe and any data is actually written
to the pipe, then the event is set to the Signaled state. Readers can use this information to synchronize
their access to the named pipe.

A zero length write to a message type pipe adds a logical EOF to the to the pipe.

5.6 Read Terminal File

This function is not supported by named pipes.

5.7 Query Directory Information

The NtQueryDirectoryFile function can be used to enumerate files within the root named pipe file
system directory (i.e., "\Device\NamedPipe\"). All the standard NT OS/2 information classes are
supported. NtOpenFile is used to open the root named pipe directory. This function is not supported
for remote named pipes.

5.8 Notify Change Directory

The NtNotifyChangeDirectoryFile function can be used to monitor modifications to the root named
pipe file system directory. The standard NT OS/2 capabilities are supported. This function is not
supported for remote named pipes.

5.9 Query File Information

Information about a file can be obtained with the NtQueryInformationFile function. All information
classes, with the exception of extended attribute information, are supported for named pipes with
special interpretation of the returned data as appropriate. An additional information class is also
provided to return information that is specific to named pipes.

Information is returned by the named pipe file system for named pipes and for the named pipe root
directory. The following subsections describe the information that is returned for named pipe entries.
The information returned for the root directory is identical to the information that is returned by other
file systems and is described in the NT OS/2 I/O System Specification.

5.9.1 Basic Information

Basic information about a named pipe includes the creation time, the time of the last access, the time of
the last write, the time of the last change, and the attributes of the named pipe. The file attribute value
for a named pipe is FILE_ATTRIBUTE_NORMAL. This function is only supported by local named
pipes.

NT OS/2 Named Pipe Specification 25

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5.9.2 Standard Information

Standard information about a named pipe includes the allocation size, the end of file offset, the device
type, the number of hard links, whether a delete is pending, and the directory indicator. This function
is only supported by local named pipes.

The allocation size is the amount of pool quota charged to the creator of an instance of a named pipe.
This is the sum of the quota charged for the inbound and outbound buffers. The end of file offset is the
number of bytes that are available in the inbound buffer. The device type is
FILE_DEVICE_NAMED_PIPE, the number of hard links is one, delete pending is TRUE, and the
directory indicator is FALSE.

5.9.3 Internal Information

Internal information about a named pipe includes a named pipe file-system-specific identifier. This
value is unique for each instance of a named pipe.

5.9.4 Extended Attribute Information

The extended attribute information size is always returned as zero by the named pipe file system. This
function is only supported by local named pipes.

5.9.5 Access Information

Access information about a named pipe includes the granted access flags. This function is only
supported by local named pipes.

5.9.6 Name Information

Name information about a named pipe includes the name of the named pipe. This function is only
supported by local named pipes.

5.9.7 Position Information

Position information about a named pipe includes the current byte offset. The current byte offset is the
number of bytes that are available in the input buffer. This function is only supported by local named
pipes.

5.9.8 Mode Information

Mode information about a named pipe includes the I/O mode of the named pipe. This function is only
supported by local named pipes.

NT OS/2 Named Pipe Specification 26

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5.9.9 Alignment Information

The alignment information class is not supported by the named pipe file system. This function is only
supported by local named pipes.

5.9.10 All Information

The all information class includes information that can be returned by all file systems and is described
above under each of the individual subsections. This function is only supported by local named pipes.

5.9.11 Pipe Information

Pipe information for both local and remote named pipes include the read and completion mode for the
specified end of the named pipe. An access of FILE_READ_ATTRIBUTE is required to query the
pipe information of a named pipe.

FilePipeQueryInformation - Data type is FILE_PIPE_INFORMATION.

typedef struct _FILE_PIPE_INFORMATION {
 ULONG ReadMode;
 ULONG CompletionMode;
} FILE_PIPE_INFORMATION;

FILE_PIPE_INFORMATION:

ReadMode - The mode in which the named pipe is being read (FILE_PIPE_MESSAGE_MODE
or FILE_PIPE_BYTE_STREAM_MODE).

CompletionMode - The mode in which I/O operations are handled
(FILE_PIPE_QUEUE_OPERATION or FILE_PIPE_COMPLETE_OPERATION).

5.9.12 Local Pipe Information

Information for a local named pipe includes the type of the pipe, the maximum number of instances of
the named pipe that can be created, the current number of instances of the named pipe, the quota
charged for the input buffer, the number of bytes of data available in the input buffer, the quota
charged for the output buffer, the quota available for writing into the output buffer, the state of the
named pipe, and the end of the named pipe. An access of FILE_READ_ATTRIBUTE is required to
query the local pipe information of a named pipe. This function is only supported by local named
pipes.

FilePipeQueryInformation - Data type is FILE_PIPE_LOCAL_INFORMATION.

NT OS/2 Named Pipe Specification 27

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef struct _FILE_PIPE_LOCAL_INFORMATION {
 ULONG NamedPipeType;
 ULONG NamedPipeConfiguration;
 ULONG MaximumInstances;
 ULONG CurrentInstances;
 ULONG InboundQuota;
 ULONG ReadDataAvailable;
 ULONG OutboundQuota;
 ULONG WriteQuotaAvailable;
 ULONG NamedPipeState;
 ULONG NamedPipeEnd;
} FILE_PIPE_LOCAL_INFORMATION;

FILE_PIPE_LOCAL_INFORMATION:

NamedPipeType - The type of the named pipe (FILE_PIPE_MESSAGE_TYPE or
FILE_PIPE_BYTE_STREAM_TYPE).

NamedPipeConfiguration - The configuration of the named pipe (FILE_PIPE_INBOUND,
FILE_PIPE_OUTBOUND, FILE_PIPE_FULL_DUPLEX).

MaximumInstances - The maximum number of simultaneous instances of the named pipe that are
allowed.

CurrentInstances - The current number of instances of the named pipe. For a remote named pipe
this field is set to MAXULONG.

InboundQuota - The amount of pool quota that is reserved for buffering writes to the inbound
side of the named pipe. For a remote named pipe this field is set to MAXULONG.

ReadDataAvailable - The number of bytes of read data that are available in the input buffer. For
a remote named pipe this field is set to MAXULONG.

OutboundQuota - The amount of pool quota that is reserved for buffering writes to the outbound
side of the named pipe. For a remote named pipe this field is set to MAXULONG.

WriteQuotaAvailable - The number of bytes of pool quota that are available for writing data. For
a remote named pipe this field is set to MAXULONG.

NamedPipeState - The current state of the named pipe (FILE_PIPE_DISCONNECTED_STATE,
FILE_PIPE_LISTENING_STATE, FILE_PIPE_CONNECTED_STATE, or
FILE_PIPE_CLOSING_STATE).

NamedPipeEnd - The end of the pipe that is referred to by the specified open file handle
(FILE_PIPE_CLIENT_END or FILE_PIPE_SERVER_END).

NT OS/2 Named Pipe Specification 28

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5.9.13 Remote Pipe Information

Information for a remote named pipe includes the collect data time and the maximum collection count
for the specified named pipe. An access of FILE_READ_ATTRIBUTE is required to query the pipe
information of a named pipe. This function is only supported by remote named pipes.

FilePipeQueryInformation - Data type is FILE_PIPE_REMOTE_INFORMATION.

typedef struct _FILE_PIPE_REMOTE_INFORMATION {
 TIME CollectDataTime;
 ULONG MaximumCollectionCount;
} FILE_PIPE_REMOTE_INFORMATION;

FILE_PIPE_REMOTE_INFORMATION:

CollectDataTime - Specifies the amount of time that the workstation collects data to send to the
remote named pipe before it sends it.

MaximumCollectionCount - Specifies the maximum number of bytes that the workstation stores
before it sends data to the remote named pipe.

5.10 Set File Information

Information about a file can be changed with the NtSetInformationFile function. Most information
classes are supported for local named pipes with the exception of link and position information.

Information can be set for named pipes. The following subsections describe the information that can be
set for named pipes.

5.10.1 Basic Information

Basic information about a named pipe that can be set includes the creation time, the time of the last
access, the time of the last write, the time of the last change, and the attributes of the named pipe. This
function is only supported by local named pipes.

The associated times included in this class can be set to any appropriate value. The file attribute field
can only be set to FILE_ATTRIBUTE_NORMAL.

5.10.2 Disposition Information

The disposition information class is not supported by named pipes.

Named pipes are always considered temporary and are deleted when the last handle is closed (i.e.,
when the last instance of a named pipe is closed and deleted the named pipe, itself, is also deleted.

NT OS/2 Named Pipe Specification 29

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5.10.3 Link Information

This information class is not supported by named pipes.

5.10.4 Position Information

This information class is not supported by named pipes.

5.10.5 Mode Information

Mode information about a named pipe that can be set includes the I/O mode of the named pipe.

5.10.6 Pipe Information

Pipe information about a named pipe that can be set includes the read mode and completion mode of
the named pipe. No special access is required to set the pipe information.

FilePipeSetInformation - Data type is FILE_PIPE_INFORMATION.

typedef struct _FILE_PIPE_INFORMATION {
 ULONG ReadMode;
 ULONG CompletionMode;
} FILE_PIPE_INFORMATION;

FILE_PIPE_INFORMATION:

ReadMode - The mode in which the named pipe is to be read (FILE_PIPE_MESSAGE_MODE
or FILE_PIPE_BYTE_STREAM_MODE).

CompletionMode - The mode in which I/O operations are to be handled
(FILE_PIPE_QUEUE_OPERATION or FILE_PIPE_COMPLETE_OPERATION).

If the type of the specified named pipe is a byte stream pipe and the new read mode is message mode,
then STATUS_INVALID_PARAMETER is returned as the service status.

If the new completion mode for the specified named pipe is complete operations, the current
completion mode is queue operations, and one or more I/O operations are currently queued to the
specified end of the named pipe, then STATUS_PIPE_BUSY is returned as the service status and no
pipe information is changed.

If the new read mode and the new completion mode are compatible with the current state of the
specified named pipe, then the set information I/O request is completed with a status of
STATUS_SUCCESS and STATUS_SUCCESS is returned as the service status.

NT OS/2 Named Pipe Specification 30

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5.10.7 Remote Pipe Information

Information about a remote named pipe that can be set includes the collect data time and the maximum
collection count. No special access is required to set the pipe information.

FilePipeSetInformation - Data type is FILE_PIPE_REMOTEINFORMATION.

typedef struct _FILE_PIPE_REMOTE_INFORMATION {
 TIME CollectDataTime;
 ULONG MaximumCollectionCount;
} FILE_PIPE_REMOTE_INFORMATION;

FILE_PIPE_REMOTE_INFORMATION:

CollectDataTime - Sets the amount of time that the workstation can collect before sending it to
the remote named pipe.

MaximumCollectionCount - Sets the maximum number of bytes that the workstation stores
before sending data to the remote named pipe.

5.11 Query Extended Attributes

This function is not supported by named pipes.

5.12 Set Extended Attributes

This function is not supported by named pipes.

5.13 Lock Byte Range

This function is not supported by named pipes.

5.14 Unlock Byte Range

This function is not supported by named pipes.

5.15 Query Volume Information

This function is not supported by named pipes.

5.16 Set Volume Information

This function is not supported by named pipes.

NT OS/2 Named Pipe Specification 31

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5.17 File Control Operations

The following subsections describe file control operations that can be performed using a handle that is
open to an instance of a named pipe. Certain functions can only be executed using a handle that is open
to the server end of a named pipe. These functions are not legal for a handle that is open to the client
end of a named pipe. The wait for named pipe instance function and the query event information
function both require a handle that is open to the named pipe file system itself.

5.17.1 External File Control Operations

External file control operations can be executed by all users of the NT OS/2 named pipe facilities and
do not require any special privileges.

5.17.1.1 Assign Event

The assign event file control operation associates or disassociates an event object with either the client
or server end of a named pipe. This function is only supported by local named pipes.

The control code for this operation is FSCTL_PIPE_ASSIGN_EVENT. The input buffer parameter
specifies the event handle and key value that are to be associated with the respective end of the named
pipe. The input buffer has the following format:

typedef struct _FILE_PIPE_ASSIGN_EVENT_BUFFER {
 HANDLE EventHandle;
 ULONG KeyValue;
 } FILE_PIPE_ASSIGN_EVENT_BUFFER;

FILE_PIPE_ASSIGN_EVENT_BUFFER:

EventHandle - A handle to an event object that is to be associated with the respective end of the
named pipe, or null if the currently associated event object is to be disassociated.

KeyValue - The key value that is to be associated with the respective end of the named pipe. If
the event handle is null, then this parameter is ignored.

If the event handle is null, then any event object that is currently associated with the respective end of
the named pipe is disassociated and the key value is ignored.

If the event handle is not null, then WRITE access to the event is required. Any previously associated
event object is disassociated and the specified event and key value are associated with the respective
end of the named pipe.

This operation is always completed immediately and never causes an I/O operation to be queued.

Assigning an event object to either the client or server end of a named pipe provides additional
synchronization capabilities when I/O operations are completed immediately rather than being queued.

NT OS/2 Named Pipe Specification 32

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Once an event object is assigned, the event will be set to the Signaled state every time information is
read from, or written to, the opposite end of the named pipe, or the opposite end of the named pipe is
closed. The event object associated with the client end of the named pipe is also set to the Signaled
state when a disconnect operation is performed on the server end of the pipe.

5.17.1.2 Disconnect

The disconnect file control operation disconnects an instance of a named pipe from a client and causes
the named pipe to enter the disconnected state. Disconnecting a named pipe causes all data in the pipe
to be discarded and no further access to the named pipe is allowed until a listen operation is performed.
The function is only valid from the server end of a named pipe.

The control code for this operation is FSCTL_PIPE_DISCONNECT. The input and output parameter
buffers are not used.

If the specified handle is not open to the server end of a named pipe, then
STATUS_ILLEGAL_FUNCTION is returned as the service status.

If the named pipe associated with the specified handle is in the disconnected state, then
STATUS_PIPE_DISCONNECTED is returned as the service status.

If the named pipe associated with the specified handle is in the listening state, then the state of the
named pipe is set to disconnected. If one or more listen I/O requests are waiting for a companion client
open request, then the listen I/O requests are completed with a status of
STATUS_PIPE_DISCONNECTED. The disconnect I/O request is completed with a status of
STATUS_SUCCESS and STATUS_SUCCESS is returned as the service status.

If the named pipe associated with the specified handle is in the connected state, then the state of the
named pipe is set to disconnected, all data in the input and output buffers is discarded, and outstanding
client and server read and write I/O requests are completed with a status of
STATUS_PIPE_DISCONNECTED. If an event object is associated with the client end of the named
pipe, then the event is set to the Signaled state. The disconnect I/O request is completed with a status
of STATUS_SUCCESS and STATUS_SUCCESS is returned as the service status.

If the named pipe associated with the specified handle is in the closing state, then the state of the
named pipe is set to disconnected, all data in the input buffer is discarded, and outstanding server read
I/O requests are completed with a status of STATUS_PIPE_DISCONNECTED. The disconnect I/O
request is completed with a status of STATUS_SUCCESS and STATUS_SUCCESS is returned as the
service status.

5.17.1.3 Listen

The listen file control operation is used to transition a named pipe from a disconnected state to a
listening state. When a named pipe is in the listening state, client open requests can be satisfied and
cause the named pipe to transition to the connected state. This function is only supported by local
named pipes.

NT OS/2 Named Pipe Specification 33

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The control code for this operation is FSCTL_PIPE_LISTEN. The input and output parameter buffers
are not used.

If the specified handle is not open to the server end of a named pipe, then
STATUS_ILLEGAL_FUNCTION is returned as the service status.

If the named pipe associated with the specified handle is in the closing state, then
STATUS_PIPE_CLOSING is returned as the service status.

If the named pipe associated with the specified handle is in the connected state, then
STATUS_PIPE_CONNECTED is returned as the service status.

If the named pipe associated with the specified handle is in the listening state and the completion mode
associated with the server end handle is queue operations, then the listen I/O request is queued
awaiting a companion client open request and STATUS_PENDING is returned as the service status.
Otherwise (the completion mode is complete operations), STATUS_PIPE_LISTENING is returned as
the service status.

If the named pipe associated with the specified handle is in the disconnected state, then the state of the
pipe is set to listening and any outstanding wait for named pipe I/O requests are completed with a
status of STATUS_SUCCESS.

If the completion mode associated with the server end handle is complete operations, then the listen
I/O request is completed with an I/O status of STATUS_PIPE_LISTENING and STATUS_SUCCESS is
returned as the service status.

If the completion mode associated with the server end handle is queue operations, then the listen I/O
request is queued awaiting a companion client open request and STATUS_PENDING is returned as the
service status. When a client open is performed, the listen I/O request is completed with an I/O status
of STATUS_PIPE_CONNECTED.

5.17.1.4 Peek

The peek file control operation reads data from a named pipe in either byte stream or message mode,
but does not actually remove the data from the pipe.

The control code for this operation is FSCTL_PIPE_PEEK. The output buffer parameter specifies the
read buffer for the peek operation. The output buffer has the following format:

NT OS/2 Named Pipe Specification 34

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef struct _FILE_PIPE_PEEK_BUFFER {
 ULONG NamedPipeState;
 ULONG ReadDataAvailable;
 ULONG NumberOfMessages;
 ULONG MessageLength;
 CHAR Data[];
 } FILE_PIPE_PEEK_BUFFER;

FILE_PIPE_PEEK_BUFFER:

NamedPipeState - The current state of the named pipe (FILE_PIPE_DISCONNECTED_STATE,
FILE_PIPE_LISTENING_STATE, FILE_PIPE_CONNECTED_STATE, or
FILE_PIPE_CLOSING_STATE).

ReadDataAvailable - The number of bytes of read data that are available in the input buffer.

NumberOfMessages - The number of messages that are currently in the named pipe. If the named
pipe is a message pipe, then this field contains the number of messages. Otherwise, this
field contains zero.

MessageLength - The number of bytes that are contained in the first message in the named pipe.
If the named pipe is a message type pipe, then this field contains the size of the first
message. Otherwise, this field contains zero.

Data - A buffer that receives data read from the named pipe. The number of bytes of data that
were read from the named pipe can be calculated from the I/O status block.

The specified named pipe must be in the connected or closing state in order to read information from
the pipe.

This function is nearly identical to the NtReadFile function for a named pipe; however, no data is
actually removed from the pipe and the operation is always completed immediately, i.e., it never
causes an I/O operation to be queued.

If the specified handle is not open to a named pipe that is in the connected or closing state, then
STATUS_INVALID_PIPE_STATE is returned as the service status.

If the I/O status STATUS_ACCESS_VIOLATION is returned, then part of the output buffer became
inaccessible after it was probed for write access and the I/O status block contains the number of bytes
that were read.

If the I/O status STATUS_END_OF_FILE is returned, then there is no data in the pipe and the write
end of the pipe has been closed.

If the I/O status STATUS_BUFFER_OVERFLOW is returned, then the peek I/O operation was
completed successfully, but the size of the output buffer was not large enough to hold the entire input

NT OS/2 Named Pipe Specification 35

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

message. A full buffer of data is returned; the actual message size can be determined from information
placed in the output buffer. The I/O status block contains the number of bytes that were read including
the named pipe information.

If the I/O status STATUS_SUCCESS is returned, then the peek I/O operation was completed
successfully and the I/O status block contains the number of bytes that were read including the named
pipe information.

5.17.1.5 Query Event Information

The query event information file control operation returns information about each named pipe that a
specified event object is associated with in the current process. It does not return information about
named pipes that are associated with the specified event object in other processes. This function can
only be executed using a handle that is open to the named pipe file system itself. This function is only
supported by local named pipes.

The control code for this operation is FSCTL_PIPE_QUERY_EVENT. The input buffer specifies the
handle for the event object that is to be queried. The output buffer parameter specifies the information
buffer for the query operation. Each entry returned in the output buffer has the following format:

typedef struct _FILE_PIPE_EVENT_BUFFER {
 ULONG NamedPipeState;
 ULONG EntryType;
 ULONG ByteCount;
 ULONG KeyValue;
 ULONG NumberRequests;
 } FILE_PIPE_EVENT_BUFFER;

FILE_PIPE_EVENT_BUFFER:

NamedPipeState - The current state of the named pipe (FILE_PIPE_DISCONNECTED_STATE,
FILE_PIPE_LISTENING_STATE, FILE_PIPE_CONNECTED_STATE, or
FILE_PIPE_CLOSING_STATE).

EntryType - The type of entry (FILE_PIPE_READ_DATA or FILE_PIPE_WRITE_SPACE).

ByteCount - The number of bytes of read data that are available (entry type is
FILE_PIPE_READ_DATA) or the number of bytes of available write space (entry type is
FILE_PIPE_WRITE_SPACE).

KeyValue - The key value that is associated with the named pipe.

NumberRequests - The number of read I/O requests that are queued (entry type is
FILE_PIPE_WRITE_SPACE) or the number of write I/O requests that are queued (entry
type is FILE_PIPE_READ_DATA) to the opposite end of the named pipe.

NT OS/2 Named Pipe Specification 36

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This operation is always completed immediately and never causes an I/O operation to be queued.

If a named pipe that is associated with the specified event has both read data available and write space
available, then two entries are returned in the output buffer.

If the specified handle is not an event object, then STATUS_INVALID_PARAMETER is returned as the
service status.

If the I/O status STATUS_ACCESS_VIOLATION is returned, then part of the information buffer
became inaccessible after it was probed for write access and the I/O status block contains the number
of bytes of information that were returned.

If the I/O status STATUS_SUCCESS is returned, then the query event I/O operation was completed
successfully and the I/O status block contains the number of bytes of information that were returned.

5.17.1.6 Transceive

The transceive file control operation performs a write operation followed by a read operation on a
named pipe such that no other operation can occur between the write and read operations on the
corresponding end of the pipe.

The control code for this operation is FSCTL_PIPE_TRANSCEIVE. The output buffer parameter
specifies the read buffer and the input buffer parameter specifies the data to be written.

The specified named pipe must be in the connected state in order to perform a transceive operation on
the pipe. The named pipe must also be a message pipe, and the read mode of the named pipe must be
message mode. The completion mode is ignored for the transceive operation and operations are always
queued.

If STATUS_PENDING is returned as the service status, then the transceive I/O operation is pending
and its completion must be synchronized using standard NT OS/2 mechanisms. Any other service
status indicates that the transceive I/O operation has already been completed. If a success status is
returned, then the I/O status block contains the I/O completion information. Otherwise, the service
status determines any error that may have occurred.

If the specified handle is not open to a named pipe that is in the connected state, then
STATUS_INVALID_PIPE_STATE is returned as the service status.

If the read mode associated with the specified handle is not message mode, then
STATUS_INVALID_READ_MODE is returned as the service status.

If a read I/O operation is already pending for the inbound side of the specified named pipe, or there is
currently available data in the inbound side of the named pipe, then STATUS_PIPE_BUSY is returned
as the service status.

NT OS/2 Named Pipe Specification 37

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

If the I/O status STATUS_ACCESS_VIOLATION is returned, then part of the read buffer or the write
buffer became inaccessible after it was probed for write access (read buffer) or read access (write
buffer) and the I/O status block contains the number of bytes that were read.

If the I/O status STATUS_BUFFER_OVERFLOW is returned, then the transceive I/O operation was
completed successfully, but the size of the output buffer was not large enough to hold the entire input
message. A full buffer of data is returned; additional data can be read from the message using the
NtReadFile function. The I/O status block contains the number of bytes that were read.

If the I/O status STATUS_SUCCESS is returned, then the transceive I/O operation was completed
successfully and the I/O status block contains the number of bytes that were read.

If an event is associated with the opposite end of the specified named pipe, then the event is set to the
Signaled state when the write part of the transceive operation is completed and when the read part of
the transceive operation is completed. Readers and writers can use this information to synchronize
their access to the named pipe.

5.17.1.7 Wait For Named Pipe

The wait for named pipe file control operation waits for an instance of a named pipe with a specified
name to attain a state of listening. This function can only be executed using a handle that is open to the
named pipe file system root directory (i.e., "\Device\NamedPipe\") or redirector (i.e.,
"\Device\LanmanRedirector").

The control code for this operation is FSCTL_PIPE_WAIT. The input buffer parameter specifies the
device relative name of the named pipe, and an optional timeout value. The input buffer has the
following format:

typedef struct _FILE_PIPE_WAIT_FOR_BUFFER {
 TIME Timeout;
 ULONG NameLength;
 BOOLEAN TimeoutSpecified;
 CHAR Name[]
 } FILE_PIPE_WAIT_FOR_BUFFER;

FILE_PIPE_WAIT_FOR_BUFFER:

Timeout - Supplies a new timeout value is use other than the default timeout for the named pipe.
This value is only read if TimeoutSpecified is TRUE. A minimum large integer value (i.e.,
0x8000000000000000) means to wait indefinitely.

NameLength - Supplies the length of the name of the named pipe found in this buffer.

TimeoutSpecified - Indicates if an overriding timeout value has been specified.

NT OS/2 Named Pipe Specification 38

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Name - Supplies the name of the named pipe. The name does not include the
"\Device\NamedPipe\" or "\Device\LanmanRedirector\" prefix.

If an instance of a named pipe with the specified name is currently in the listening state, then the wait
for named pipe I/O function is completed with a status of STATUS_SUCCESS and STATUS_SUCCESS
is returned as the service status. Otherwise, the wait for named pipe I/O request is placed in the wait
queue of the specified named pipe and STATUS_PENDING is returned as the service status.

If an instance of the specified named pipe does not attain a listening state within the specified timeout
period (either the optional one supplied in this function or the default timeout period specified when
the original instance of the named pipe was created). then the wait for named pipe I/O request is
completed with a status of STATUS_PIPE_WAIT_TIMEOUT.

5.17.1.8 Impersonate

The impersonate file control operation allows the server end of the pipe to impersonate the client end.
Whenever this function is called the named pipe file system changes the caller's thread to start
impersonating the context of the last message read from the pipe. Only the server end of the pipe is
allowed to invoke this function. This function is only supported by local named pipes.

The control code for this operation is FSCTL_PIPE_IMPERSONATE. The output and input parameter
buffers are not used.

If the specified handle is not open to the server end of a named pipe, then
STATUS_ILLEGAL_FUNCTION is returned as the service status.

If the named pipe associated with the specified handle is in the disconnected state, then
STATUS_PIPE_DISCONNTECTED is returned as the service status.

If a read operation has never been completed to the server end of the named pipe, then
STATUS_CANNOT_IMPERSONATE is returned as the service status.

If the impersonation is successful then the I/O function is completed with a status of
STATUS_SUCCESS and STATUS_SUCCESS is returned as the service status.

5.17.2 Internal File Control Operations

Internal file control operations can only be executed by components that execute in kernel mode and
directly build and submit I/O requests to the named pipe file system. These functions are only
supported by local named pipes.

5.17.2.1 Internal Read

The internal read file control operation provides the capability to perform a read operation directly into
a system buffer. No quota is charged nor are any buffers allocated by the named pipe file system.

NT OS/2 Named Pipe Specification 39

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The control code for this operation is FSCTL_PIPE_INTERNAL_READ. The output buffer parameter
specifies the system buffer into which information is to be read

5.17.2.2 Internal Write

The internal write file control operation provides the capability to perform a write operation directly
from a system buffer. No quota is charged nor are any buffers allocated by the named pipe file system.

The control code for this operation is FSCTL_PIPE_INTERNAL_WRITE. The input buffer parameter
specifies the system buffer from which information is to be written.

5.17.2.3 Internal Transceive

The internal transceive control operation provides the capability to perform a transceive operation
directly into a system buffer. No quota is charged nor are any buffers allocated by the named pipe file
system.

The control code for this operation is FSCTL_PIPE_INTERNAL_TRANSCIEVE. The input buffer
parameter specifies the buffer from which information is to be written, while the output buffer
parameter specifies the system buffer into which information is to be read.

5.18 Flush Buffers

The NtFlushBuffersFile function can be used to wait until all currently buffered write data is read
from the opposite end of the specified named pipe.

5.19 Set New File Size

This function is not supported by named pipes.

5.20 Cancel I/O Operation

The NtCancelIoFile function can be used to cancel all I/O operations that were issued by the subject
thread for the specified named pipe. Both read and write operations initiated by the subject thread are
canceled.

5.21 Device Control Operations

No device control operations are supported by the named pipe file system.

5.22 Close Handle

The NtClose function can be used to close a handle to the specified named pipe.

If the specified handle is the last handle that is open to the corresponding end of the specified named
pipe, then the state of the named pipe is set to closing. Read and write operations that are pending for
the inbound side of the named pipe are completed with an I/O status of STATUS_PIPE_CLOSED.

NT OS/2 Named Pipe Specification 40

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Write operations that are pending for the outbound side of the named pipe are allowed to complete and
cause the close operation to remain pending until the opposite end of the named pipe is closed,
disconnected, or the information is read from the pipe.

If an event is associated with the opposite end of the specified named pipe, then the event is set to the
Signaled state. Readers and writers can use this information to synchronize their access to the named
pipe.

6. OS/2 API Emulation

The following subsections discuss the emulation of the OS/2 named pipe facilities using the
capabilities provided by NT OS/2. Only those OS/2 functions which require special handling with
respect to named pipes are included.

6.1 DosCallNmPipe

This OS/2 API combines the function of an open, write, read, and a close of a named pipe.

This service can be emulated with the NtOpen, NtFsControlFile (FSCTL_PIPE_TRANSCEIVE), and
NtClose services. There is no NT OS/2 facility that will perform this function in a single operation.

6.2 DosConnectNmPipe

This OS/2 API causes an instance of a named pipe that is in the disconnected state to transition to the
listening state and continues the execution of any clients that are waiting for an available instance of
the specified named pipe. This function can only be executed using a handle that is associated with the
server end of a named pipe.

This API can be emulated with the NtFsControlFile service by specifying a function code of
FSCTL_PIPE_LISTEN. The OS/2 subsystem or client DLL issues the listen I/O request. If the
completion mode associated with the specified named pipe handle is queue operations and the request
cannot be immediately satisfied, then STATUS_PENDING is returned. For this case, the OS/2
subsystem or client DLL must wait for the I/O operation to complete.

6.3 DosDisconnectNmPipe

This OS/2 API causes an instance of a named pipe to enter the disconnected state. All data in the input
and output buffers of the pipe are discarded and any outstanding read or write I/O requests are
completed with an error status. This function can only be executed using a handle that is associated
with the server end of a named pipe.

This API can be emulated with the NtFsControlFile service by specifying a function code of
FSCTL_PIPE_DISCONNECT. The OS/2 subsystem or client DLL issues the disconnect I/O request.

NT OS/2 Named Pipe Specification 41

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6.4 DosMakeNmPipe

This OS/2 API creates an instance of a named pipe and opens a server side handle to the newly created
instance. If the newly created instance is the first instance of the named pipe, then the attributes of the
named pipe are also defined.

This API can be emulated with the NtCreateNamedPipeFile service.

The OS/2 inheritance bit of the open mode is the same as the NT OS/2 handle attributes field of the
object attributes parameter.

The OS/2 write-behind bit of the open mode is the opposite of the NT OS/2
FILE_WRITE_THROUGH flag of the create options parameter. Therefore, a particular OS/2-
compatible behavior can be specified with the NT OS/2 parameter.

The OS/2 access bits of the open mode are the same as the NT OS/2 desired access parameter.

The NT OS/2 share access flags are used to determine the configuration of the named pipe (i.e., full
duplex or simplex).

The OS/2 wait bit of the pipe mode is the same as the NT OS/2 completion mode parameter.

The OS/2 read bit of the pipe mode is the same as the NT OS/2 read mode parameter.

The OS/2 pipe type bit of the pipe mode is the same as the NT OS/2 pipe type parameter.

The OS/2 maximum instances field of the pipe mode is the same as the NT OS/2 maximum instances
parameter.

The OS/2 outbound buffer size is the same as the NT OS/2 outbound quota parameter.

The OS/2 inbound buffer size is the same as the NT OS/2 inbound quota parameter.

The OS/2 default timeout is the same as the NT OS/2 default timeout parameter.

6.5 DosPeekNmPipe

This OS/2 API allows information to be read from a named pipe without actually removing the data
from the pipe.

This API can be emulated with NtFsControlFile service by specifying a function code of
FSCTL_PIPE_PEEK. The OS/2 subsystem or client DLL issues the peek I/O request. The request is
completed immediately and the information returned in the output buffer and I/O status block can be
used to generate the output values required by the OS/2 API.

NT OS/2 Named Pipe Specification 42

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6.6 DosQNmPHandState

This OS/2 API returns information about the instance of a named pipe that is open to the specified
handle.

This API can be emulated with the NtQueryInformationFile service by specifying the
FilePipeQueryInformation information class.

6.7 DosQNmPipeInfo

This OS/2 API returns information about the instance of a named pipe that is open to the specified
handle.

This API can be emulated with the NtQueryInformationFile service by specifying the
FilePipeQueryInformation and FileNameInformation information classes.

6.8 DosQNmPipeSemState

This OS/2 API returns information about all named pipes that are associated with a specified
semaphore handle.

This API can be emulated with NtFsControlFile service by specifying a function code of
FSCTL_PIPE_QUERY_EVENT. The OS/2 subsystem or client DLL issues the query event I/O request.
The request is completed immediately and the information returned in the output buffer and I/O status
block can be used to generate the output values required by the OS/2 API.

6.9 DosRawReadNmPipe

This OS/2 API provides the capability to read all the available data, including message headers, from a
named pipe.

This is an undocumented function in OS/2 and will not be implemented as a user-visible function by
the OS/2 subsystem.

There seems to be no real use for this function.

6.10 DosRawWriteNmPipe

This OS/2 API provides the capability to write data, including message headers, to a named pipe.

This is an undocumented function in OS/2 and will not be implemented as a user-visible function by
the OS/2 subsystem.

The only known user-level need for this function is to enable the writing of a zero length message to a
message pipe. This capability will be provided in a different manner by the NT OS/2 name pipe file
system.

NT OS/2 Named Pipe Specification 43

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6.11 DosSetNmPHandState

This OS/2 API sets information about the instance of a named pipe that is open to the specified handle.

This API can be emulated with the NtSetInformationFile service by specifying the
FilePipeSetInformation information class.

6.12 DosSetNmPipeSem

This API associates a semaphore and key value with a named pipe.

This API can be emulated with NtFsControlFile service by specifying a function code of
FSCTL_PIPE_ASSIGN_EVENT.

6.13 DosTransactNmPipe

This OS/2 API combines the function of a write operation and a read operation on a named pipe. The
transact operation is performed on the named pipe such that no other operation can occur between the
write and read operations.

This API can be emulated with the NtFsControlFile service by specifying a function code of
FSCTL_PIPE_TRANSCEIVE and then waiting for the I/O request to complete.

6.14 DosWaitNmPipe

This OS/2 API provides the ability for a client to wait until an instance of a named pipe with a
specified name attains a state of listening.

This API can be emulated with the NtFsControlFile service by specifying a function code of
FSCTL_PIPE_WAIT and then waiting for the I/O request to complete.

The I/O request will automatically be completed if the default timeout interval that was specified when
the original instance of the named pipe was created is exceeded. If a timeout value is specified by the
user, then the overriding timeout period should be used in the FSCTL pipe wait call.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History:

Original Draft, February 16, 1990

Revision 1.1, March 8, 1990

 1. Incorporate technical and editorial changes from internal review.

Revision 1.2, August 14, 1990

 1. Removed directory hierarchy.

 2. Removed raw mode read and write.

 3. Added optionally timeout parameter to wait for named pipe.

 4. Removed all references to EAs and symbolic links.

 5. Minor editoral changes.

Revision 1.3, September 27, 1990

 1. Removed owner information query/set operation.

 2. Changed unbuffered read/write to internal read/write.

 3. Added internal transceive operation.

 4. Minor editoral changes.

Revision 1.4, October 17, 1990

 1. Added impersonation.

Revision 1.5, January 23, 1991

 1. Clarify that NtCreateNamedPipeFile and directory query are for local pipes only.

 2. In query Pipe information state which fields remote pipes returns as MAXULONG.

 3. Remove FILE_WRITE_THROUGH option in NtCreateNamedPipeFile.

 4. Change wait for named pipe to take a handle to the root directory and not the file system
itself.

 5. Add remote named pipes.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS/2 Subsystem Design Rationale

Author: Mark H. Lucovsky

Revision 1.3, June 1, 1989
Original Draft, May 26, 1989

NT OS/2 Subsystem Design Rationale 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. The NT OS/2 Mission

The NT OS/2 group was formed with a clear mission:

 o To design and implement an OS/2-compatible operating system for non-x86 hardware
platforms

 o To support the APIs required by POSIX (IEEE Std 1003.1-1988) at a level required to pass
government validation

 o To support symmetric multiprocessing

 o To provide C2 security features with a path to B1 and beyond

 o To provide easy portability to other 32-bit architectures

 o To design and implement the first functional system by the 3rd quarter of 1990

 o To target the system for a Microsoft-designed i860 PC hardware platform, followed shortly
thereafter by an i860mp or N11 multi-processor server system

Conclusions from the January 1989 System Retreat indicated that NT OS/2 is critical to the long-term
growth of Microsoft. The design of the system must accommodate current and future needs of
Microsoft. The design must be maintainable, and easily extensible.

2. Design Goals

In order to achieve our mission, the following set of prioritized goals was established:

 1. Robustness. The highest priority for NT OS/2 is robustness. The inner workings of the system
should be straightforward and well defined. A complete and formal design on all components
of the system must be produced and interfaces and behavior must be well specified. The
system must be designed without "magic".

 2. Extensibility and maintainability. NT OS/2 must be designed with the future in mind. It
should be easily extensible to meet the needs of our OEM customers and our own needs over
time. The system should also be designed for maintainability.

Given the state of the API sets that NT OS/2 must support, its design must accommodate
changes and future additions to those sets.

 3. Portability. NT OS/2 must be designed for portability. The system architecture must be
portable across a number of platforms. There are portions of the actual implementation that
will require a port when moving from platform to platform. The effort required to port NT
OS/2 from one platform to another must be less than, or equal to, an equivalent port of a UNIX
or Mach system.

NT OS/2 Subsystem Design Rationale 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 4. Performance. Superior performance in NT OS/2 is important. Algorithms and data structures
that will lead to a high level of performance and that will provide us with the flexibility needed
to achieve our other goals must be incorporated into the design. The granularity of locking, the
various types of locks used in the system, the amount of time spent at an elevated interrupt
level or with interrupts completely disabled must be carefully designed so that NT OS/2 is a
responsive system which can compete in a number of markets.

In addition to these goals, compatibility with OS/2 APIs and POSIX compliance are system constraints
in NT OS/2.

3. Design Alternatives Investigated

Several design alternatives for NT OS/2 were considered during the design phase.

The first design layered the POSIX API set on top of a slightly extended OS/2 API set. As the design
progressed, it became apparent that this design would lead to a system that could not achieve the goals
of robustness, maintainability, or extensibility. Problems encountered with a similar attempt in OS/2
led to considerable change in the base system capabilities, which further strengthened the belief that
this was a poor alternative.

The next design implemented both OS/2 and POSIX API sets directly in the NT OS/2 executive. This
was an improvement on the previous design, but the large number of "chicken wire" and "voodoo"
interfaces required by this design threatened the goals of extensibility and maintainability.

The third design implemented OS/2 and POSIX as protected subsystems outside the NT OS/2
executive. Success with this type of client/server architecture in the academic community and at other
research sites provides strong evidence that this design will allow NT OS/2 to meet its goals of
robustness, extensibility, maintainability, portability, and performance, and thus, achieve its mission.
Therefore, this design was chosen for NT OS/2.

(The final section of this document examines the three NT OS/2 design alternatives in greater detail.)

4. The NT OS/2 Design

The NT OS/2 system design consists of a highly functional executive, which executes in kernel mode,
and exports a native API (a set of system services). Operating system environments such as OS/2 and
POSIX are implemented as protected subsystems outside the executive.

A protected subsystem executes in user mode as a regular (native) process. The subsystem may have
amplified privileges, but it is not considered a part of the executive and, therefore, cannot bypass the
system security architecture, or in any other way corrupt the system. Subsystems communicate with
their clients and each other using a high-performance local (cross-process) procedure call, or LPC,
mechanism. (A round-trip LPC completes in approximately 100usec on the i860.)

This NT OS/2 design satisfies each of the goals for the system. The following attributes of the design
ensure the primary goal of robustness:

NT OS/2 Subsystem Design Rationale 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o The kernel mode portion of the system exports well-defined APIs that, in general, do not have
mode parameters or other "magical flags". Therefore, the APIs are simple to implement, easy
to test, and easy to document.

 o A formal design is being produced for all portions of the NT OS/2 system prior to coding. This
effort has led to well-documented interfaces for native services and internal functions.

 o The partitioning of major components, such as PM, OS/2, and POSIX, into separate subsystems
is resulting in simple, elegant designs in the subsystems. Each subsystem is optimized to
implement only those features needed to provide its API set.

 o With the prevalent use of frame-based exception handlers, NT OS/2 and its subsystems are
able to catch programming errors and filter bad or inaccessible parameters in an efficient and
reliable manner.

The NT OS/2 design also meets its goals of maintainability and extensibility through the following
features:

 o The NT OS/2 design is simple and well documented. This, coupled with a common coding
standard used throughout the system, should enable a programmer to work on any piece of the
system without having to consult the "gurus" to learn about hidden rules, side effects, or
"magical" programming tricks.

 o By using subsystems to implement major portions of the system, NT OS/2 isolates and controls
dependencies. For example, the only piece of the NT OS/2 system affected by the changing
Cruiser design is the OS/2 subsystem. The design of the process structure, memory
management, synchronization primitives, and so on, does not have to be put on hold. The same
holds true for the evolving POSIX standards.

 o As the needs of Microsoft grow, the NT OS/2 system is prepared to accommodate those needs.
Subsystems that provide additional functionality can be added to the system without impacting
the base system. New subsystems can be added without having to modify the NT OS/2
executive or release a new version of the system.

Subsystems such as DOS, Windows, or Xenix can be added to the system if necessary. OEMs
could continue to provide limited support for operating system environments other than the
Microsoft-provided OS/2 and POSIX environments.

 o Using the subsystem or "building block" approach, it is possible to envision a configuration that
includes only the OS/2 subsystem. POSIX could be a revenue-producing, licensable option. If
the option were not used, no system resources would be sacrificed.

 o Subsystems need not bypass the security features present in NT OS/2. Rather, they can use the
security features to their fullest extent.

NT OS/2 portability is ensured by the following:

NT OS/2 Subsystem Design Rationale 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Except for small, well-isolated sections of code, NT OS/2 is written in C. The system is being
developed on prototype compilers with limited functionality, and still, the design has yielded
portable code.

 o Using the UNIX and Mach porting experience of engineers on the project, the group has
established that the NT OS/2 will port to other platforms at least as easily as the UNIX or Mach
operating systems. The effort involved in porting NT OS/2 to another 32-bit, paged
architecture, using readily available compilers, is small.

NT OS/2 is a high-performance system designed to run on high-performance hardware. We believe
that the system will perform better than any system providing equivalent functionality on equivalent
hardware. The following attributes of the system promote high performance:

 o Algorithms and execution paths through the system have been carefully optimized to increase
performance. Also, the modular nature of the system allows performance optimization by
replacing entire components.

 o System calls, exceptions (page faults), LPC, thread creation, and I/O have undergone scrutiny
to ensure their speed. The round-trip time for a null system call is currently on the order of
3usec (on a 40Mhz i860). Given this number, NT OS/2 performs better than most systems
even after equalizing processor speeds.

 o Ensuring high performance is an ongoing activity in the implementation of NT OS/2.

5. Performance in the Subsystem Model

Before committing the NT OS/2 design to a subsystem, or client/server model, time was spent
analyzing the Presentation Manager. One of the deficiencies in the current implementation of PM is
that it must manage global state without having any way to protect the state. We worked with one of
the designers and implementors of PM to develop a solution to this problem by making PM a protected
subsystem (which executes in its own process context rather than in the context of the thread that
called a PM entry point).

Before proceeding with the PM design, the NT OS/2 LPC mechanism was designed. We felt that if
the LPC design were solid, it could be modeled, and we could determine whether or not PM
performance would be acceptable using a subsystem design model.

Ideas present in several high-performance LPC mechanisms were incorporated into the NT OS/2
design:

 o The ability to efficiently pass small amounts of data, as was done in Stanford's V system, is
included.

 o The idea of mapping large messages or passing large parameters "out-of-band" is similar to the
mechanism used in Carnegie Mellon's Mach system.

NT OS/2 Subsystem Design Rationale 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o The ability to pass message data through memory shared between the client application and the
subsystem is similar to the technique used in an experimental system under development at the
University of Washington, and which also appears in DEC's Topaz system.

With the design of the NT OS/2 LPC mechanism complete, a model was created to measure the
performance impact of running PM as a protected subsystem.

The model consisted of the following pieces of modified system software:

 o OS/2 Kernel Modifications. A special version of OS/2 1.1 was built. This version of the
system had an additional system service that simulated a context switch from the calling thread
back to the calling thread.* All of the work involved in switching address spaces was simulated
as well.

 o pmwin.dll and pmgpi.dll. A new version of each of these libraries was created. For each entry
point, the cost of marshalling its parameters into and out of a message buffer was simulated;
two calls to the new context switch routine were done; and finally, a call was made to the
original version of the entry point.

By running PM applications using the modified system software, we were able to determine exactly
how much overhead PM would incur when run as a subsystem.

Several test cases were run on the model. These included running the PMBENCH benchmark suite,
running PMDRAW and drawing complicated pictures, running various configurations of PM Excel
and scrolling, drawing charts, and performing other screen manipulations, and finally, running a
journaled interactive session with multiple PM applications doing different tasks, including menu and
dialog box operations.

Before running our tests, we did not know what to expect. We felt that if the system did not feel
sluggish, then the subsystem approach might be acceptable. After running all of our tests, we were
surprised. The system performed so well that we could not tell the difference between the subsystem
version of PM and the normal version of PM.

The following table shows a condensed listing of our benchmark results:

 LPC PM Standard Subsystem

 Overhead PM Time PM Time Difference

* This simulation involved invalidating mapping information, saving and restoring registers, and saving
and restoring the mapping information.

NT OS/2 Subsystem Design Rationale 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

PMBENCH Test Suite 5.14% *** *** ***

PMDRAW monticello 16.88% 12.403s 14.497s 2.094s

PMDRAW fish 8.80% 11.887s 12.940s 1.053s

Excel Scroll 1's 3.25% 30.880s 31.885s 1.005s

Excel Scroll Big 0.84% 63.060s 63.590s 0.530s

Excel Chart 9.65% 12.900s 14.145s 1.245s

Interactive 1.20% 335.510s 339.670s 4.160s

 =======

Average Overhead 2.16% 466.640s 476.727s 10.087s

From the results of our study, we felt that the additional overhead imposed by running PM as a
protected subsystem was acceptable given the benefits of such a design. While there is measurable
overhead, it is not detectable when sitting in front of a machine running interactive or graphics-
intensive applications.

After determining that PM could be run as a protected subsystem without incurring unacceptable
performance degradation, we looked at other areas of the system that would be cleaner to implement as
a separate subsystem but would not impact overall system performance.

Given that OS/2 and POSIX had to be treated as partitioned code within the executive, they were
natural candidates for implementation as protected subsystems. We believe that real OS/2 (and
POSIX) applications will be more dependent on the performance of PM than any other portion of the
system. The ratio of PM to operating system service calls is likely to range from 10:1 to 100:1. If PM
is a good candidate for implementation as a protected subsystem, then operating system environments
such as OS/2 or POSIX are also good (if not better) candidates.

6. Standards

During the initial design phase of NT OS/2, a great deal of time was spent examining ways to design a
system that could support both the OS/2 and POSIX API sets. This job was complicated by the fact
that both of the API sets we planned to support were moving targets. In fact, the Cruiser specification
was not yet available; it is still evolving.

NT OS/2 Subsystem Design Rationale 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6.1 OS/2 Standards

Our initial OS/2 API set centers around the evolving 32-bit Cruiser, or OS/2 2.0 API set. (The design
of Cruiser APIs is being done in parallel with the NT OS/2 design.) In some respects, this standard is
harder to deal with than the POSIX standards. OS/2 is tied to the Intel x86 architecture and these
dependencies show up in a number of APIs. Given the nature of OS/2 design (the joint development
agreement), we have had little success in influencing the design of the 2.0 APIs so that they are
portable and reasonable to implement on non-x86 systems. In addition, the issue of binary
compatibility with OS/2 arises when the system is back-ported to an 80386 platform. This may
involve 16-bit as well as 32-bit binary compatibility.

6.2 POSIX Standards

Our initial POSIX efforts center around the IEEE Std 1003.1-1988 (or Draft 13). The spec is vague in
several areas and contains several optional features.

In order to sell in certain federal government markets, a POSIX implementation must be compliant
with FIPS 151. This FIPS requires that certain optional features of POSIX be implemented, and also
requires portions of other POSIX standards (1003.2, "Applications and Utilities"). In addition, the
FIPS requires a certification of conformance. This certificate can be obtained by passing a certified
POSIX test suite. The current set of test suites are developed by third parties, and do test for
compliance with the POSIX spec. Unfortunately for us, the test suites were developed on UNIX
systems that claim POSIX compliance. The test suites end up testing a lot of UNIX folklore that
happens to be permissible under an interpretation of the POSIX spec.

To further complicate POSIX compliance, additional drafts of 1003.1, which are close to approval,
have been proposed. The effects of approval are unknown. It is not clear if future additions to POSIX
will be required under future FIPS, or if additions will be made optional. The government standards
body that is issuing the FIPS is apparently ready to add any approved POSIX drafts to its FIPS. The
latest draft under consideration (1003.1a), would add a number of features from Berkeley UNIX 4.3 to
POSIX. It is anticipated that a new FIPS will be issued which requires these features in order to
participate in certain government markets.

7. An Analysis of the Design Alternatives

Once the mission and goals of NT OS/2 were clear, the design work was started. The most difficult
portion of the design centered around the issue of how to provide OS/2 and POSIX compliance on the
same system without failing to achieve our mission or compromising our goals.

Combining the APIs of multiple operating systems in a single system is always a difficult task. It does
not matter whether the APIs are similar or different. The most striking example of this problem is the
poor integration of UNIX variants found in the current UNIX market.

In the beginning (1982-1984), there were basically two branches in the UNIX tree. The BSD branch
with Berkeley UNIX 4.2 and 4.3, and the AT&T System V branch with System V.2 and V.3.

NT OS/2 Subsystem Design Rationale 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Companies that offered pure systems in either camp were the norm. Companies in the scientific and
engineering markets supported BSD while business-oriented companies supported System V:

 o Sun 1.0-2.x was pure BSD

 o DEC's ULTRIX was pure BSD

 o Sequent was pure System V

 o Altos was pure System V

After some time, companies began to offer systems with mixed features. This began with systems
advertising "System V with BSD networking." Soon, nearly all companies offered systems with some
features from both environments. Applications could call APIs from either set. If the API specified
different behavior for a System V or a BSD implementation, it was usually a tossup as to which
semantics were followed.

The current state of System V and BSD integration is the root of nearly all the confusion in the current
UNIX marketplace. To port an application that was originally BSD to a system that is "System V with
BSD features" requires elaborate configuration files that "pick and choose" the APIs. With each port
to a new system, the configuration options and combinations must be expanded to accommodate the
new system. The popular UNIX editor, emacs, is a perfect example of this. The emacs editor comes
with nearly 50 configuration files. Each file describes a derivative of UNIX that has different features
and supports a certain mix of BSD and System V APIs.

A major design issue in NT OS/2 is to avoid the integration-of-features problem present in the current
UNIX marketplace. Microsoft cannot afford to present POSIX and OS/2 integration as poorly as most
of the UNIX vendors have.

In the selected NT OS/2 design, an application that uses OS/2 APIs may only use OS/2 APIs. The
POSIX API set is not available to the application. The reverse restriction is also true. POSIX
applications may not call OS/2 APIs.

7.1 POSIX Layered on OS/2

The first alternative examined the feasibility of layering the POSIX API set as a runtime package on
top of a native system service interface based on an OS/2 API set.

Using this approach, the NT OS/2 executive would export an OS/2 2.0 API set. If there were
functions that required extensions in order to make this work, we were prepared to make those
extensions. An example of this approach is supporting POSIX fork() and exec() using OS/2's
DosExecPgm().

We proposed adding a flag to DosExecPgm that would take one of the following values:

NT OS/2 Subsystem Design Rationale 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 1. The API should work exactly as the current DosExecPgm function works (that is, a new
process is created and its address space is initialized so that it maps the image specified as the
program name parameter).

 2 The API should create a process and the address space should be an image of the address space
of the calling process. Thread 1 should be created in the new process and its initial context
should be identical to the context of the calling thread at the time of the call. The only
exception is that thread 1 in the new process must return with a different return value than that
returned by the calling thread.

 3 The API should clean the address space of the process, terminate any threads in the process,
create a new address space such that it maps the specified program image file, and create thread
1 so that it begins execution at the entry point specified in the image.

To implement OS/2 DosExecPgm, the API would be called with flag value 1. POSIX's fork() and
exec() would be implemented using flag values 2 and 3.

On the surface, the above technique seems to work, but it is complicated. Complications arise in the
following areas:

 o File descriptors owned by a process would be dealt with differently in all three variations of
DosExecPgm().

 o File locks held by the process at the time of the API call would be handled differently for all
three cases. In fact, since file locking itself is different, the case is really an 8-way case.

 o Outstanding timers or process alarms have at least three different actions.

 o Signals pending, or the state of a process's signal or exception handlers, is affected by the
various API options.

The list of problems with this API is large, as should be clear from the above list. More important, the
problem seems to scale exponentially. Simple operations like opening or creating files, establishing
signal or exception handlers, reading from and writing to the terminal, or even manipulating regular
files all have problems and virtually all require a mode argument.

One of the other serious problems with this design alternative is that it presents a poor integration of
OS/2 and POSIX. It would be difficult to separate OS/2 calls from POSIX calls. Multi-threaded OS/2
applications that, either on purpose or as a result of a programming error, call DosExecPgm specifying
a POSIX-oriented option would have disastrous effects. We could always say that this could not
happen, but in order to achieve the robustness goals of the NT OS/2 system, the executive would have
to be coded so that it could handle all possible incorrect parameter combinations.

After determining that layering POSIX on top of OS/2 would bury much of POSIX in the executive,
and would cause most of the overlapping APIs to require a mode parameter, we looked at ways of
implementing the POSIX API set directly inside the NT OS/2 executive.

NT OS/2 Subsystem Design Rationale 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7.2 OS/2 and POSIX in the Executive

By implementing both the OS/2 and POSIX API sets directly within the executive, we were able to
work on a layered, controllable design. The system would yield two API layers, one layer exporting
OS/2 APIs and the other layer exporting POSIX APIs. The API layers would be implemented on top
of an executive support layer.

The executive support layer would implement basic executive services such as process and address
space management, thread creation/deletion/control, security, an I/O system and a file system. The
executive support layer would control, create, and delete all state in the system. The API layers would
simply call the executive support layer with appropriate parameters. They would not maintain state.

As we progressed with this design, it became clear that it was nearly identical to our initial design.
Our proposals for the design of the process structure were not much different from the extensions that
we had planned for DosExecPgm(). The primary difference was that the parameter combinations
passed to the executive layer were controllable. Since the parameters came from the system code that
implemented the API layers, we were able to make rules and declare that certain parameter
combinations could not occur. This made the executive layer somewhat easier to write, but the rules
for calling the executive became rather elaborate.

For NT OS/2 to remain a product that could carry Microsoft through the 1990's, maintainability,
extensibility, and robustness had to be ensured. It seemed that almost everything became an exception.
The well-defined interfaces within the process structure became littered with exceptions and kludges
needed to support the demands of POSIX's job control option or OS/2's complex process/command
subtree relationships. Simple functions, such as waiting on a child process (common to both OS/2 and
POSIX), became difficult to implement because the executive had to manage two slightly different
cases.

As each new issue arose, the solution always seemed to have a common theme...

The terminal driver could look to see if the application writing to the terminal was a POSIX
application. If so, then if the terminal was not the controlling terminal for the process, but the process
was not ignoring SIGSTOP, then the process could be signaled and its parent notified.

or...

When a process terminates, look to see if it was an OS/2 application or if it was a POSIX application.
If it was an OS/2 application that was exec'd using EXEC_SYNC, then after termination is complete,
the process ID is available for re-use. If it was a POSIX application, then if the parent was not PID 1,
signal it. If the process was a session group leader, then generate a SIGHUP signal to all members of
the session group with the same controlling terminal, and possibly free the controlling terminal.

The more the design progressed, the more the system started to look like a bowl of spaghetti.
Problems arose due to subtle differences between OS/2 and POSIX in almost all areas. The following
are a few examples of the problems:

NT OS/2 Subsystem Design Rationale 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Process ID (PID). The POSIX job control option (required by FIPS 151) is difficult to
implement correctly even on a BSD UNIX system. Process relationships and the lifetime of a
PID are complex. A POSIX PID has nothing in common with an OS/2 PID other than sharing
the same acronym.

The standard solution to this sort of problem usually involved a "table off to the side" that could
keep track of the differences. We had "tables off to the side" for POSIX and OS/2 process IDs,
POSIX sessions, job control sessions, controlling terminal IDs, file and file system serial
numbers (device, inode pairs, etc.), and others.

 o Exception handling. POSIX requires an exception handling mechanism based on signals that
are similar to signals found in Berkeley UNIX 4.3. This architecture is drastically different
from the current 16-bit OS/2 exception architecture and even more different than portions of
the proposed OS/2 2.0 exception architecture.

The exception architectures of both systems involve large portions of the entire system. The
keyboard, video, and terminal drivers are involved, as is the process structure, system service
dispatcher, trap handler, and so on.

Trying to tie together these different pieces of the system in a way in which they could all
participate in exception handling was seriously compromising the design of the system.

The solution to this sort of problem usually involved adding fields to the process or thread
structures to keep track of this. It became clear that our process and thread structures were
going to be large. Much of the overhead was due to link words and pointers to the "tables off
to the side," or to fields that were needed only if the process or thread represented a POSIX
application (or OS/2 application).

 o Security. POSIX security impacts major pieces of the system. As the design progressed, it
became clear that POSIX security was at odds with the Cruiser-like security scheme being
designed for NT OS/2. Many features of the security scheme would have to be bypassed in
order to implement the "hodge podge" of security features/APIs that appear in POSIX.

The list of chicken wire fixes is endless. Nearly all areas of the system are involved, including timers,
time-of-day format, file locks, pipes, and many others.

The only advantage that this solution had over the previous one was that the API layer could call the
executive support layer with a known set of parameter combinations. The executive support layer did
not have to deal with illegal parameter combinations.

NT OS/2 had to explore some new alternatives. What we needed was a mechanism that would allow
the OS/2 API layer to manage and control all state for all of the OS/2 applications in the system, and to
allow the POSIX API layer to do the same for all of its applications. It was this realization that
brought us to the current design strategy for NT OS/2.

NT OS/2 Subsystem Design Rationale 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7.3 POSIX and OS/2 as Subsystems

The system architecture chosen for NT OS/2 allows it to achieve its goals and, therefore, fulfill its
mission. NT OS/2 is designed with a small, non-preemptible kernel, which executes in kernel mode.
A small but highly functional, preemptible, interruptible, and reentrant executive, which also executes
in kernel mode and which exports a number of system service APIs, is layered on top of the kernel.

The APIs exported by the executive do not implement either the OS/2 or POSIX API sets. Instead,
they export a set of APIs that allow both an OS/2 API set and a POSIX API set to be implemented
entirely in user mode as separate processes running as protected subsystems. Using this approach, an
OS/2 or POSIX API is emulated using the following sequence:

 o An application calls the local stub for an API function.

 o The stub packages the arguments into a message and transmits the message to either an OS/2 or
POSIX subsystem using the NT OS/2 local procedure call mechanism.

 o The subsystem receives the message, implements the API, and replies to the application using
LPC.

 o The local stub receives the reply and returns the results to the application.

The APIs exported by the NT OS/2 executive are powerful, but at the same time, are simple and
straightforward. There are no cases in which a single flag parameter changes the entire meaning of an
API. This design technique allows NT OS/2 to achieve its goals of robustness, extensibility, and
maintainability.

Implementing OS/2 and POSIX as subsystems allows each subsystem to implement only the set of
semantics required by that subsystem. The requirements of the subsystems do not translate into "tables
off to the side" or extra fields in data structures managed by the executive. When a subsystem needs to
keep track of additional state associated with an object, it does so in its own data structures managed in
the address space of the subsystem. This technique leads to more elegant solutions to problems posed
by OS/2's process relationships or by POSIX's job control data structures.

Rather than having to bypass most of the security features present in NT OS/2, subsystems are able to
use the security features to their fullest extent. The security architecture, along with the high
performance LPC mechanism and powerful process structure and memory management APIs allow the
subsystems to increase the robustness, extensibility and maintainability of the system while at the same
time decreasing the demands on system resources.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS/2 Object Management Specification

Author: Steven R. Wood

Revision 1.6, May 24, 1991
Original Draft February 17, 1989

NT OS/2 Object Management Specification i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview.. 1
1.1 What is an Object? .. 1
1.2 Object Management Goals.. 1
1.3 Object Data Structures .. 1
1.4 Object Header ... 1
1.5 Object Types ... 2
1.6 Object Handles.. 3
1.7 Object Attributes Structure ... 4
1.8 Resource Quotas and Objects ... 5
1.9 Object Retention ... 6
1.10 Exclusive Object Handles ... 6
1.11 Object Name Space... 7
1.12 Preventing Deadlock... 8

2. Object Executive APIs... 9
2.1 Creating Object Types .. 9
2.2 Object Type Procedure Templates.. 11

2.2.1 Object Dump Procedure.. 12
2.2.2 Object Open Procedure ... 12
2.2.3 Object Close Procedure... 13
2.2.4 Object Delete Procedure ... 14
2.2.5 Object Parse Procedure ... 15
2.2.6 Object Security Procedure... 17

2.3 Creating An Object ... 18
2.4 Creating an Instance of an Object... 20
2.5 Open Object by Name... 23
2.6 Open Object by Pointer... 24
2.7 Referencing An Object ... 26
2.8 Reference Object by Name ... 27
2.9 Reference Object by Pointer ... 29
2.10 Making an Object Temporary... 30
2.11 Dereferencing an Object ... 30
2.12 Object Management during Process Creation and Deletion 31

2.12.1 Process Creation Hook.. 31
2.12.2 Process Deletion Hook.. 31

2.13 Dump Object Support ... 32
2.14 Check Traverse Access ... 34
2.15 Check Create Instance access ... 35
2.16 Check Create Object Access... 36
2.17 Check Implicit Object Access... 37
2.18 Checking Access for Object Reference .. 38
2.19 Locking a security descriptor.. 39
2.20 Unlocking a security descriptor .. 39
2.21 Query an object's Security Descriptor field .. 39

NT OS/2 Object Management Specification ii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.22 Set an object's Security Descriptor field ... 40
2.23 Query an object's Security information .. 41
2.24 Release an object's Security information .. 41
2.25 Set Security Quota Charged for object ... 42
2.26 Validate security information against quota ... 43

3. Object System Services ... 43
3.1 Create Directory Object .. 43
3.2 Open Object Directory.. 45
3.3 Query Object Directory... 46
3.4 Create Symbolic Link ... 48
3.5 Open Symbolic Link ... 49
3.6 Query Symbolic Link.. 50
3.7 Wait For Single Object ... 50
3.8 Wait for Multiple Objects ... 51
3.9 Duplicate Handle .. 53
3.10 Close Handle... 54
3.11 Making an Object Temporary... 55
3.12 Query Object... 56
3.13 Set Security Descriptor for an Object ... 58
3.14 Query Security Descriptor for an Object .. 59

NT OS/2 Object Management Specification 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview

This specification describes the Object Management for the NT OS/2 system. Object Management is
provided by a set of routines that are available within the NT OS/2 executive and invoked from kernel
mode. This specification also describes generic object management user level NT routines and support
for directories.

1.1 What is an Object?

An object is an opaque data structure that defines a protected entity that is implemented and
manipulated by the operating system. A particular object type is described by the set of operations that
may be performed upon it (wait, create, clear, set, cancel,...) and its relationship to other objects. All
objects have the same standard set of rules for creation, deletion, protection, access, management, and
naming.

1.2 Object Management Goals

 o Provide an extensible, well defined mechanism for the definition and manipulation of executive
data structures.

 o Provide uniform rules for object retention. This is especially important in a multiprocessor
system.

 o Provide uniform security and protection that allows certification at C2 and beyond without
modification.

 o Provide a mechanism to add new object types to the system without modifying existing system
code. This means that only the object type specific routines should have knowledge of the
internal structure of a particular object type.

 o Provide orthogonal specification of APIs which operate on objects.

 o Provide attributes on objects to support POSIX compatibility.

 o Provide a naming hierarchy which is integrated with the file system and mimics the OS/2 and
POSIX file system directory hierarchy.

1.3 Object Data Structures

An instance of an object type is represented by a data structure which contains a standard object header
and an object type specific object body. The object management routines operate on the object header,
while the object type's specific routines operate on the object body.

NT OS/2 Object Management Specification 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1.4 Object Header

The object header contains information used by the object management routines to manipulate the
object. The following items are maintained in the object header:

 o Pointer to the name of the object, if any.

 o Pointer to the directory object which contains this object's name, if any.

 o Pointer to the SecurityDescriptor for the object, if any.

 o AccessMode of the object, either KernelMode only or UserMode and KernelMode.

 o Pointer to the Owner Process of the object for exclusive objects, if any.

 o Retention counts for the object.

 o Pointer to an optional handle count data base, that maintains a per process handle count for a
given object.

 o Pointer to the object type structure that defines the type of the object.

 o Permanent / temporary attribute.

 o Paged and nonpaged pool quota charges associated with the object.

 o Structure control linking all objects of the same type together.

1.5 Object Types

Every object has an object type. The object type is defined by an Object Type Descriptor structure.
An object type is nothing more than an object whose object body contains the following information:

 o Type specific mutex.

 o Structure control linking all objects of the same type together.

 o Dispatcher object offset.

 o Pool type to use when allocating space for objects of this type.

 o Invalid object attribute bits.

 o Mapping vector to map generic access bits into standard and/or specific access bits.

 o Valid access bits.

NT OS/2 Object Management Specification 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Pointer to a type specific dump procedure, if any.

 o Pointer to a type specific delete procedure, if any.

 o Pointer to a type specific open procedure, if any.

 o Pointer to a type specific close procedure, if any.

 o Pointer to a type specific parse procedure, if any.

 o Pointer to a type specific security procedure, if any.

These items are used to manage type specific attributes of each object. The type specific mutex is
acquired whenever an object of that type is being created, deleted, or having its security descriptor
examined or modified. This prevents race conditions between object creation and deletion.

The SecurityDescriptor associated with an object type descriptor is examined for
OBJECT_TYPE_CREATE access by the ObCreateObject function every time an object of the
corresponding object type is created. This provides a mechanism to grant or deny the ability to create
objects of a specific type on an individual identifier basis using the SecurityDescriptor associated with
the object type descriptor structure.

The name is used to uniquely identify the type. All type names are stored in the \ObjectTypes object
directory.

The pool type determines whether the object header and object body are allocated from paged pool or
non-paged pool.

The dispatcher offset is used to implement a generic wait function. Waiting on an object waits on the
offset within the object body specified by the dispatcher offset. This allows a program to wait on
multiple objects of different types or a single object of unknown type, without having to know the
object type.

The six type specific procedures are called whenever a type specific action must be performed from
within the context of the object manager.

1.6 Object Handles

An object handle is a 32-bit opaque pointer to an object. There may be more than one handle for a
given object, as a result of sharing via inheritance or naming. Associated with each handle is a pointer
to the object, a granted access mask that was computed at the time the handle was created and handle
attributes such as where the handle should be inherited on child process creation.

Object handles are created by inserting an object into an object table. An object table consists of an
array of object table entries. An object handle is an index into an object table to the object table entry
for that handle. The object table entry contains the information associated with the handle (i.e. the

NT OS/2 Object Management Specification 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

pointer to the object, the granted access mask and the handle attributes). There is an object table
associated with each process. Thus handles are process specific, and meaningless outside of the
context in which the handle was created. All object handles associated with a process are
automatically "closed" upon that process terminating.

Each object table has a mutex associated with it. This mutex is acquired any time the object table is
examined or modified.

The low order 2 bits of a 32-bit object handle are set to zero by the system when a handle is created
and are ignored by all system services that accept a handle. This allows applications to encode
application specific type information in the low order two bits.

In the debugging version of the system, part of each 32-bit object handle is reserved for a serial
number that is also stored in the associated object table entry. When an object handle is used to
reference an object, the serial number in the 32-bit handle is compared with that in the object table
entry and an error is returned if they don't match. This will catch cases when an old handle is reused
inadvertantly.

When creating a handle to an object, the caller may specify a DesiredAccess parameter. The Object
Manager probes the security descriptor associated with an object with the DesiredAccess parameter. If
all requested access bits are allowed by the security descriptor then the access is granted, and the
DesiredAccess parameter is stored in the object table entry as the granted access mask.

Some objects may require a more sophisticated access control scheme than simply checking the bits in
the security descriptor. For example, a particular kind of access to an object may be granted by being
given explicit permission via the security descriptor, or by having a privilege, or by having a particular
kind of access to the object's container. In order to accomodate access schemes such as these, the
caller may create an AccessState structure (via SeCreateAccessState). An AccessState structure
contains the desired access mask, a record of the currently granted access mask, and room for a set of
privileges. The caller performs whatever kind of access checking is necessary to suit it's needs,
clearing bits in the imbedded DesiredAccess mask as appropriate. When all of the object specific logic
is complete, the structure is then passed to the object manager for whatever security processing
remains.

When referencing an object via an object handle, the caller also specifies a DesiredAccess parameter.
However, in this case, the test for access is nothing more than a bit test against the granted access mask
stored in the associated object table entry. Thus object handle creation encapsulates the security check
for NT OS/2. Please refer to the Local Security chapter for a description of the bits defined for
DesiredAccess, and for a description of the AccessState structure.

1.7 Object Attributes Structure

When a handle to an object is created, the object is specified with an Object Attributes structure. The
structure identifies the object by name, specifies attributes about the object and/or handle being created
and specifies an optional security descriptor to associate with the created object.

NT OS/2 Object Management Specification 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef struct _OBJECT_ATTRIBUTES {
 ULONG Length;
 HANDLE RootDirectory;
 PSTRING ObjectName;
 ULONG Attributes;
 PVOID SecurityDescriptor;
 PVOID SecurityQualityOfService; \par} OBJECT_ATTRIBUTES,
*typedefOBJECT_ATTRIBUTES

OBJECT_ATTRIBUTES Structure:

Length ——Specifies the length of this structure. Must be set to sizeof(OBJECT_ATTRIBUTES
).

RootDirectory ——An optional handle to a directory object that specifies where to start the name
lookup. If this field is specified, then the ObjectName field must also be specified.

If this field is not specified and the ObjectName field is specified, then the name lookup
begins in the root directory of the object name space.

ObjectName ——A pointer to an object name string. The form of the name is:

[\name...\name]\object_name

The name must begin with a leading path separator character (\) if the RootDirectory field
is NOT specified. If the RootDirectory field is specified, then it must NOT begin
with a leading path separator as the name is relative to that directory.

Attributes ——A set of flags that control attributes about the object and the handle.

Attributes Flags:

OBJ_INHERIT ——The open handle is to be inherited by child process's whenever the
calling process creates a new process.

OBJ_EXCLUSIVE ——The object is to be accessed exclusively by the current process.
Invalid if OBJ_INHERIT also specified.

OBJ_PERMANENT ——The object is to be created as a permanent object.

OBJ_CASE_INSENSITIVE ——Indicates that the name lookup should be performed in a
manner which ignores the case of ObjectName rather than performing an exact
match search.

NT OS/2 Object Management Specification 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

OBJ_OPENIF ——Return a handle to an already existing object if an object by the same
name already exists. If the name does not exist, and the call is a create, then create
the name.

SecurityDescriptor ——An optional pointer to a security descriptor to associate with this object.
See the Local Security Specification for a description of a Security Descriptor. If an object
is created without a security descriptor, then access to the object will be uncontrolled.

SecurityQualityOfService ——An optional pointer to the security quality of service parameters
specified by the client for this communication session.

1.8 Resource Quotas and Objects

Objects are allocated from system memory, either paged or nonpaged pool. When an object is created
the resource charges are specified and stored in the object's header. When a process creates a handle
for an object, the resource charges stored in the object's header are levied against the process. This
occurs whenever any handle is created to an object. So if process A creates an object and a handle to
go with it, it gets charged quota for that object. If process A then creates process B, such that process
B inherits a handle to the object, then process B is also charged quota for the same object. The same is
true if process A creates a second handle to the same object.

The resource charge is removed whenever a handle is closed. The resource charge includes the space
for the object header, the object body, the handle table entry, the object name, if any and the security
descriptor, if any. If there is no security descriptor, then a fixed amount is charged (256 bytes) in case
the process later attaches a security descriptor to the object with the NtSetSecurityObject system
service.

1.9 Object Retention

Once an instance of an object has been created, two fields and the permanent flag contained within the
object's header, control retention. The fields are named HandleCount and PointerCount.

The HandleCount represents the number of references to this object from various object tables. This
count is incremented each time an object is inserted into an object table. It is decremented each time a
handle is closed, either with NtClose or as a result of process termination. If this count becomes zero,
a check is made to determine if an attempt should be made to delete the object's name. If the
permanent flag in the object's header is false and the object has a name, then an attempt is made to
delete the object's name by conditionally removing its directory entry. Conditional deletion means that
the necessary mutexes are released, the directory mutex is acquired, the directory entry is located and
the HandleCount is checked again. If the count is still zero, the object's name is deleted. This is done
because the object was declared as temporary and the last handle to the object has been closed.

Once the conditional deletion of the object's name has occurred, the PointerCount for the object is
decremented.

NT OS/2 Object Management Specification 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The PointerCount represents the number of pointers in existence which refer to the object. When an
object is first created with the ObCreateObject function, this count is set to one to account for the
reference returned to the caller. In addition, if the object has a name, the count is set to two to account
for the pointer from the directory object which contains the name. This count is incremented for each
object table that refers to the object.

The PointerCount is also updated as the object is referenced and dereferenced. When the
PointerCount is decremented to zero, the object is deleted as there are no pointers outstanding. The
PointerCount is never allowed to be decremented below the value of the HandleCount.

1.10 Exclusive Object Handles

Exclusive object handles provide a method of obtaining exclusive access to a system wide resource
such as a tape drive. The semantics provided by exclusive handles cannot be provided by access
protection because access protection determines who can access an object, while an exclusive handle
essentially "reserves" an object.

Exclusive object handles are provided by specifying OBJ_EXCLUSIVE in the object attributes
structure.

Exclusive object creation has the following rules:

 o Any instance of an object whose type allows exclusion, may be opened or created for exclusion
provided the HandleCount is zero.

 o Any instance of an object which has a non-zero HandleCount and is not marked as exclusive
cannot be opened for exclusion.

 o Any instance of an object which has a non-zero HandleCount and is marked as exclusive can
only be opened for exclusion from the owning process. This allows the owning process to open
an exclusive object multiple times.

Finally, exclusive object handles may not be inherited by other processes. This means that an error
will be returned if both OBJ_EXCLUSIVE and OBJ_INHERIT are specified in the object attributes
structure.

1.11 Object Name Space

The Object Manager manages the global name space for NT OS/2. This name space is used to access
all named objects that are contained in the local machine environment. Some of the objects that can
have names are:

directory objects

object type objects

NT OS/2 Object Management Specification 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

symbolic link objects

semaphore and event objects

process and thread objects

section and segment objects

port objects

device objects

file system objects

file objects

The object name space is modelled after OS/2 file naming convention, where directory names in a path
are separated by a backslash (\). Case insensitivity is optional whenever a name lookup is performed.
Case is always preserved when a name is inserted into a directory.

During system initialization, the Object Manager creates the root directory of the object name space.
The NtCreateDirectoryObject system service can be used to create other directories within the object
name space. The ObInsertObject function can be used to create object names within a directory
object.

The entire object name space is guarded by a single mutex. This mutex is acquired whenever an
portion of the directory structure is examined or modified.

A name lookup occurs whenever a new object is being inserted or an existing object is being opened
by name. The name lookup is accomplished by searching in the root directory for the first name in the
path. If no matching name is found, an error is returned.

The root directory defaults to the actual root directory of the global name space. However, then
specifying an object name, a root directory handle may also be specified. This is the only form of
relative name lookup supported by the Object Manager.

If a matching name is found and there are more tokens left in the name string, the corresponding object
header is examined. If the object is not a directory object, its corresponding object type structure is
examined for a parse routine. If no parse routine exists, an error status code is returned. Otherwise,
the directory mutex is released, and the parse routine is called.

The parse routine can return one of three values: STATUS_SUCCESS to indicate that the object was
found, STATUS_REPARSE to indicate that a reparse should occur or an error status code to indicate
that the name was not found or invalid.

NT OS/2 Object Management Specification 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The parse procedure is passed pointers to both the complete name string and the remaining portion of
the name string. If the parse routine returns reparse it should deallocate the original string and allocate
the new string to parse, or modify the original string.

After the Object Manager's system initialization, the object name space looks like:

\ - Root Directory
\ObjectTypes - Object Type Name Directory
\ObjectTypes\Type - Type Object Type
\ObjectTypes\Directory - Directory Object Type
\ObjectTypes\SymbolicLink - Symbolic Link Object Type

Other components of system initialization will create additional type, directory and object names
within the object name space.

1.12 Preventing Deadlock

To detect deadlock, the kernel associates a level number with each mutex. If an attempt is made to
acquire a mutex with a level number less than a currently owned mutex a system bugcheck occurs.
Associated with the Object Management routines are three levels of mutex.

 o The lowest level is the object table mutex.

 o The next higher level is the directory mutex.

 o The highest level is the type specific mutex.

2. Object Executive APIs

2.1 Creating Object Types

New object types can be added to the system with the ObCreateObjectType function:

NTSTATUS
ObCreateObjectType(
 IN PSTRING TypeName,
 IN POBJECT_TYPE_INITIALIZER ObjectTypeInitializer,
 IN PULONG DispatcherObjectOffset OPTIONAL,
 IN PSECURITY_DESCRIPTOR SecurityDescriptor OPTIONAL,
 OUT POBJECT_TYPE *ObjectType
)

Parameters:

TypeName ——A required pointer to a name string. This name must not contain the path separator
character (OBJ_NAME_PATH_SEPARATOR), otherwise the
STATUS_INVALID_OBJECT_NAME error status code is returned.

NT OS/2 Object Management Specification 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ObjectTypeInitializer ——A required pointer to a structure that specifies type specific information
about the new object type being created.

OBJECT_TYPE_INITIALIZER Structure:

ULONG Length ——Specifies the size of this data structure in bytes.

ULONG InvalidAttributes ——Specifies object attributes that are invalid for objects of this
type. An attempt to specify any these attributes when creating an object of this type
will result in the STATUS_INVALID_PARAMETER error status code being
returned. This field may not specify any bits that are not contained in
OBJ_VALID_ATTRIBUTES.

GENERIC_MAPPING GenericMapping ——Specifies the mapping of the
GENERIC_READ, GENERIC_WRITE and GENERIC_EXECUTE access rights for
this object type.

ULONG ValidAccessMask ——Specifies the valid access bits that may be specified with the
DesiredAccess parameter when creating a handle to an object of this type. The mask
is only used to remove unsupported access bits and does not cause an error if an
unsupported access bit is specified. Thus specifying a DesiredAccess of -1 (all ones)
will result in requesting a DesiredAccess equal to the ValidAccessMask for the type
of object being created.

POOL_TYPE PoolType ——Specifies the type of pool, one of NonPagedPool or
PagedPool. This parameter must specify NonPagedPool if the
DispatcherObjectOffset parameter is specified. The
STATUS_INVALID_PARAMETER error status code is returned if the later
condition is not met.

BOOLEAN MaintainHandleCount ——Specifies whether a handle count data base should
be maintained. If TRUE, then for each object of this type, a data base is kept that
keeps track of how many handles to that object each process currently has. This
allows the Open/Close object type procedures to implement special logic when the
first handle to an object is created and when the last handle to an object within a
process is closed. If this field is TRUE then at least one of the OpenProcedure or
CloseProcedure fields must be non-NULL, otherwise the
STATUS_INVALID_PARAMETER error status code is returned.

OB_DUMP_METHOD DumpProcedure ——An optional pointer to the procedure to
invoke on object dumping. This procedure is useful for the debugging version of NT
OS/2 to allow a uniform way to dump the contents of an object in human readable
form.

If this field is NULL, no routine is called when an object is dumped.

NT OS/2 Object Management Specification 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

OB_OPEN_METHOD OpenProcedure ——An optional pointer to the procedure to invoke
whenever a handle to an object of this type is created.

If this field is NULL, no routine is called when a handle to an object of this type is
created.

OB_CLOSE_METHOD CloseProcedure ——An optional pointer to the procedure to
invoke whenever a handle to an object of this type is destroyed.

If this field is NULL, no routine is called when a handle to an object of this type is
destroyed.

OB_DELETE_METHOD DeleteProcedure ——An optional pointer to the procedure to
invoke on object deletion. This procedure is responsible for deallocating any pool
which was allocated by object type specific routines and performing any "cleanup"
operations. When the DeleteProcedure returns, the object management routines
deallocate the object structure, unlinks the object from its object type structure, etc.

If this field is NULL, no routine is called before deallocating the object structure.

OB_PARSE_METHOD ParseProcedure ——An optional pointer to the parse routine for
this object type. If, during name parsing, an object of this type is encountered and
additional parse tokens exist, this routine is invoked.

OB_SECURITY_METHOD SecurityProcedure ——An optional pointer to the procedure
to invoke whenever the SecurityDescriptor associated with an object is set or queried
via the NtSetSecurityObject and NtQuerySecurityObject system services. Note
that another procedure (SeAssignSecurity) and not this procedure is used to insert an
original security descriptor on an object.

If this field is NULL, then the SeDefaultObjectMethod will be called instead.

SecurityDescriptor ——An optional pointer to a Security Descriptor. This descriptor will be
attached to the type object. Any attempt to create an object of this type will require the
OBJECT_TYPE_CREATE access right.

DispatcherObjectOffset ——An optional pointer to the offset into the object body of a kernel
dispatcher object for wait operations. If this value is not specified then an object of this
type cannot be used as an argument to the NtWaitForSingleObject and
NtWaitForMultipleObjects system services.

ObjectType ——A pointer to a variable which receives the location of the object type structure
created.

NT OS/2 Object Management Specification 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Return Value:

Status code that indicates whether or not the operation was successful.

The create object type function creates an object type structure. This function returns a pointer to the
object type structure via the ObjectType parameter.

The TypeName is inserted into the \ObjectTypes object directory. If the name already exists, then this
function will return an error.

This function returns one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_INVALID_PARAMETER ——one of the parameters was invalid.

 o STATUS_OBJECT_NAME_INVALID ——the type name string contained a path separator
character (OBJ_NAME_PATH_SEPARATOR).

 o STATUS_NO_MEMORY ——unable to allocate NonPagedPool for the object type structure.

2.2 Object Type Procedure Templates

This section describes the six different procedure types that can be associated with an object type.
These procedures are called whenever certain actions are performed upon an object whose object type
structure contains the addresses of these procedures.

2.2.1 Object Dump Procedure

VOID
typedef
(*OB_DUMP_METHOD)(
 IN PVOID Object,
 IN POB_DUMP_CONTROL DumpControl OPTIONAL
)

Parameters:

Object ——A pointer to the object's body.

DumpControl ——An optional pointer to a dump control structure. This structure specifies the
output stream and the detail level. If not specified then output should be sent to the
standard output stream. Default detail level is 1.

OB_DUMP_CONTROL Structure:

NT OS/2 Object Management Specification 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

PVOID Stream ——an opaque pointer to an output stream.

ULONG DetailLevel ——level of detail to show, along with some modifiers. See
ObDumpObject description for values.

This function is called whenever one of the ObDumpObject functions is called for an object of this
type. This procedure is free to write to the output stream an ASCII representation of its contents. The
content is governed by the DetailLevel parameter.

2.2.2 Object Open Procedure

VOID
typedef
(*OB_OPEN_METHOD)(
 IN OB_OPEN_REASON OpenReason,
 IN PEPROCESS Process,
 IN PVOID Object,
 IN ACCESS_MASK GrantedAccess,
 IN ULONG HandleCount OPTIONAL
)

Parameters:

OpenReason ——Indicates one of four specific reasons for the handle being created. These are:

OpenReason Values:

ObCreateHandle ——a handle to a new object is being created via the ObInsertObject
interface.

ObOpenHandle ——a handle to an existing object is being created via the ObInsertObject,
ObOpenObjectByName or the ObOpenObjectByPointer interface.

ObDuplicateHandle ——a handle to an existing object is being created via the
NtDuplicateObject system service.

ObInheritHandle ——a handle to an existing object is being created a a result of object
inheritence during process creation.

Process ——Specifies a pointer to the process for which the handle has been created.

Object ——Specifies a pointer to the object for which the handle has been created.

GrantedAccess ——Specifies the granted access mask associated with the newly created handle.

NT OS/2 Object Management Specification 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

HandleCount ——Optional parameter, that is non-zero if the MaintainHandleCount in the
associated object type structure is TRUE. If non-zero then represents the number of
handles to the specified Object that have been created in the object table associated with
the specified Process. Interesting value is 1, which means this is the first handle to the
specified Object for the specified Process.

This function is called whenever a handle to an object is created. The OpenReason parameter specifies
the reason the handle is being created.

This function is called after the handle has actually been inserted in the object table for the specified
process, but before the object type mutex has been released. This means that the function must not
attempt to manipulate any object handles itself, as it my result in an attempt to recusively acquire the
object type mutex.

2.2.3 Object Close Procedure

VOID
typedef
(*OB_CLOSE_METHOD)(
 IN PEPROCESS Process OPTIONAL,
 IN PVOID Object,
 IN ACCESS_MASK GrantedAccess,
 IN ULONG HandleCount
)

Parameters:

Process ——Specifies a pointer to the process for which the handle has been destroyed.

Object ——Specifies a pointer to the object for which the handle is been destroyed.

GrantedAccess ——Specifies the granted access mask that was associated with the destroyed
handle.

HandleCount ——Optional parameter, that is non-zero if the MaintainHandleCount in the
associated object type structure is TRUE. If non-zero then represents the number of
handles to the specified Object that have been created in the object table associated with
the specified Process, including the handle that has just been destroyed. Interesting value
is 1, which means this is the last handle to the specified Object for the specified Process.

This function is called whenever a handle to an object is destroyed.

This function is called after the handle has actually been deleted from the object table for the specified
process, but before the object type mutex has been released. This means that the function must not
attempt to manipulate any object handles itself, as it my result in an attempt to recusively acquire the
object type mutex. Also, the object name, if any, is still valid when this function is called.

NT OS/2 Object Management Specification 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.2.4 Object Delete Procedure

VOID
typedef
(*OB_DELETE_METHOD)(
 IN PVOID Object
)

Parameters:

Object ——A pointer to the object's body.

This function is called whenever the PointerCount associated with the object is decremented to zero,
and the object is a temporary object. See the section on Object Retention for a description of how the
PointerCount can become zero.

2.2.5 Object Parse Procedure

NTSTATUS
typedef
(*OB_PARSE_METHOD)(
 IN PVOID ParseObject,
 IN POBJECT_TYPE ObjectType,
 IN OUT PACCESS_STATE AccessState,
 IN KPROCESSOR_MODE AccessMode,
 IN ULONG Attributes,
 IN OUT PSTRING CompleteName,
 IN OUT PSTRING RemainingName,
 IN OUT PVOID Context OPTIONAL,
 IN PSECURITY_QUALITY_OF_SERVICE SecurityQos OPTIONAL,
 OUT PVOID *Object
)

Parameters:

ParseObject ——a pointer to the object, whose type contains this procedure as its
ParseProcedure.

ObjectType ——A pointer that supplies the type of object being referenced.

AccessState ——A pointer to a structure that contains a record of desired types of access, already
granted access types, and a list of privileges that may have been used to obtain some of the
granted access types. If privileges are passed, a control flag in the argument indicates
whether any of the privileges or all of the privileges are needed to open the object.

NT OS/2 Object Management Specification 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

AccessMode ——Indicates the access mode to use for the access check. One of UserMode or
KernelMode.

Attributes ——A set of flags that control the object attributes.

OBJ_CASE_INSENSITIVE ——Indicates that the name lookup should be performed in a
manner which ignores the case of the ObjectName rather than performing an exact
match search.

CompleteName ——A pointer to the complete path name being parsed.

RemainingName ——A pointer to the portion of the complete path name that remains to be parsed.

Context ——An optional pointer that is passed uninterpreted to the ParseProcedure. It is the same
Context parameter that was passed to the routine that triggered the name lookup.

SecurityQos ——An optional pointer to the security quality of service parameters specified by the
client for this communication session.

Object ——A pointer to a variable which receives the address of the object that the remaining
name parsed to.

Return Value:

Status code that indicates whether or not the operation was successful.

CompleteName and RemainingName both point to the same string, with RemainingName describing a
suffix of the CompleteName. Storage for the name string is from paged or nonpaged pool. This allows
parse routines to allocate storage for a new name, copy any information necessary into the newly
allocated storage, and deallocate the storage containing the previous name string. The Buffer fields in
the CompleteName and RemainingName structures would then be updated to point to the newly
allocated string and the Length fields would be updated as appropriate.

This function is called whenever an object is looked up by name. See the Object Name Space section
for a description about how name lookup is performed.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_REPARSE ——a success status code that tells the object manager to start the parse
over at the beginning of the CompleteName string. The assumption being that the function
modified the CompleteName string to point to a new name, such as the target of a symbolic
link.

NT OS/2 Object Management Specification 17

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o STATUS_OBJECT_PATH_SYNTAX_BAD ——if the parse failed because of an ill formed
path name.

 o STATUS_OBJECT_PATH_NOT_FOUND ——if the parse was terminated because a path
component was not found and there were characters remaining to parse.

 o STATUS_OBJECT_NAME_NOT_FOUND ——if the parse was terminated because a path
component was not found and there were no more characters remaining to parse.

 o STATUS_OBJECT_PATH_INVALID ——if the parse succeeded and matched an object, but
there were more characters remaining to be parsed.

 o STATUS_ACCESS_DENIED ——if any of the access tests involved in creating the object
failed.

2.2.6 Object Security Procedure

NTSTATUS
typedef
(*OB_SECURITY_METHOD)(
 IN PVOID Object,
 IN SECURITY_OPERATION_CODE OperationCode,
 IN PSECURITY_INFORMATION SecurityInformation,
 IN OUT PSECURITY_DESCRIPTOR SecurityDescriptor,
 IN OUT PULONG CapturedLength,
 IN OUT PSECURITY_DESCRIPTOR *ObjectsSecurityDescriptor,
 IN POOL_TYPE PoolType,
 IN PGENERIC_MAPPING GenericMapping
)

Parameters:

Object ——A pointer to an object

OperationCode ——Indicates one of three specific operations that the method can perform.

OperationCode Values:

SetSecurityDescriptor ——used to alter the security descriptor protecting an operation. The
security method will take the input security descriptor and apply the portions of it
specified by the SecurityInformation argument to the object.

QuerySecurityDescriptor ——used to return to the caller a copy of the portions of object's
security descriptor requested by the SecurityInformation argument. The information
will be returned in the form of a security descriptor in the SecurityDescriptor buffer.

NT OS/2 Object Management Specification 18

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

DeleteSecurityDescriptor ——used when an instance of an object is being deleted. The
method will cleanup (and delete as necessary) any storage associated with the
object's security descriptor.

AssignSecurityDescriptor ——used when an instance of an object is being created and
security is being assigned to the object for the first time. The method will take the
contents of the SecurityDescriptor field and assign it to the object.

SecurityInformation ——Specifies which security information is being set or queried.

SecurityDescriptor ——Points to buffer to either set or read the security descriptor from. This
buffer will be probed and captured as necessary by this procedure. This parameter is
ignored for the delete operation.

This parameter is ignored for the delete operation.

CapturedLength ——For a query operation this specifies the size, in bytes, of the output security
descriptor buffer and on return contains the number of bytes needed to store the complete
security descriptor. If the length needed is greater than the length supplied the operation
will fail. This parameter is ignored for the set and delete operations. It is expected to be
point into kernel space, ie, it need not be probed and it will not change.

ObjectsSecurityDescriptor ——This supplies the address of a variable pointing to the current
object's security descriptor. This parameter will be used if the object's security descriptor
is stored as part of the object header (this occurs as the default method). If this parameter
is used then the procedure will deallocate and reallocate pool as necessary to hold the
object's security descriptor. Alternate methods (e.g., the file system) will not use this
parameter and instead will have the underlying file system store the descriptor (this means
that system wide file object handles are not allowed).

This parameter is ignored for the assign operation.

PoolType ——Specifies the type of pool to allocate for the object's security descriptor if needed.
This parameter is ignored for the query and delete operations.

Return Value:

Status code that indicates whether or not the operation was successful.

Before calling this procedure the object manager will have determined that the requested action is
allowed according to the granted access rights and privileges of the caller.

NT OS/2 Object Management Specification 19

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.3 Creating An Object

The data structures for an object are created with the ObCreateObject function:

NTSTATUS
ObCreateObject(
 IN KPROCESSOR_MODE ProbeMode,
 IN POBJECT_TYPE ObjectType,
 IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
 IN KPROCESSOR_MODE OwnershipMode,
 IN OUT PVOID ParseContext OPTIONAL,
 IN ULONG ObjectBodySize,
 IN ULONG PagedPoolCharge,
 IN ULONG NonPagedPoolCharge,
 OUT PVOID *Object
)

Parameters:

ProbeMode ——Specifies one of UserMode or KernelMode. This is the mode used when probing
the ObjectAttributes structure.

ObjectType ——An pointer to the object type structure describing the type of object to create.

ObjectAttributes ——An optional pointer to an Object Attributes structure. Refer to the Object
Attributes discussion for details.

OwnershipMode ——Specifies one of UserMode or KernelMode. For existing objects, this
parameter is ignored.

The OwnershipMode controls the interpretation of the SecurityDescriptor. If the
OwnershipMode is KernelMode and the object does not have a SecurityDescriptor
then no access to the object with an AccessMode of UserMode is allowed. If the
OwnershipMode is KernelMode and the AccessMode is KernelMode then the
SecurityDescriptor is examined to determine access.

If the OwnershipMode is UserMode and the AccessMode is KernelMode then the access is
always allowed. If the OwnershipMode is UserMode and the AccessMode is
UserMode then the SecurityDescriptor is examined to determine access.

ParseContext ——An optional pointer that is passed uninterpreted to any ParseProcedure that is
called during the course of performing the name lookup.

ObjectBodySize ——Size of the object body in bytes.

PagedPoolCharge ——The number of bytes of paged pool to charge to the current process.

NT OS/2 Object Management Specification 20

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NonPagedPoolCharge ——The number of bytes of nonpaged pool to charge to the current
process.

Object ——A pointer to a variable which receives the address of the newly created object.

Return Value:

Status code that indicates whether or not the operation was successful.

Creating an object causes a block of storage from pool to be allocated. The size of the block is the sum
of the object header size and the object body size. The object header is initialized and the
PointerCount is set to 1 and the HandleCount is set to zero.

The address of the uninitialized object body is returned via the Object parameter. It is the
responsibility of the object type specific creation routine to initialize the object body.

The ObjectAttributes parameter is considered unprobed and thus is probed by this function, using the
mode specified in the ProbeMode parameter.

The Attributes field of the ObjectAttributes parameter is validated and stored in the object header.

The RootDirectory field of the ObjectAttributes parameter is captured into the object header at this
time. The handle is not referenced at this time. It will be referenced when ObInsertObject is called
to insert the object into an object table.

If specified, any string structure specified by the ObjectName field of the ObjectAttributes parameter is
captured into the object header at this time. The actual buffer pointer to by the string structure is not
probed at this time. Instead it is probed when ObInsertObject is called to insert the object into an
object table.

The SecurityDescriptor field of the ObjectAttributes parameter is captured into the object header at this
time. The pointer is not probed until ObInsertObject is called to insert the object into an object table.
If for some reason the attempt to insert the object fails, ObInsertObject will clear the field in the
object header before attempting to dereference the object.

The SecurityQualityOfService field of the ObjectAttributes parameter is captured into the object header
at this time. The purpose of capturing it into the object header is to facilitate passing the QOS
information to ObInsertObject. Rather than put a pointer to the QOS information into the Object
header, the SecurityQos field is temporarily used to hold the pointer to the QOS structure. Note that in
the case of an error, this field must be zero'd out before the object is freed, to prevent the pointer from
being interpreted as a quantity of pool memory to be freed.

The ParseContext parameter is also captured into the object header for later use when ObInsertObject
is called.

NT OS/2 Object Management Specification 21

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Memory for the object header and object body is allocated from the pool type specified in the object
type descriptor. The amount of quota to charge is calculated. Quota includes the memory for the
object header and body, plus any additional quota specified by the PagedPoolCharge and
NonPagedPoolCharge parameters. The total quota to charge is remembered in the object header. This
will allow the quota to be charged each time a handle is created for this object, using the either
ObOpenObjectByName function or the ObInsertObject function.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_INVALID_PARAMETER ——one of the parameters was invalid.

 o STATUS_OBJECT_NAME_INVALID ——an object name was specified in the
ObjectAttributes structure, but it has a zero length.

 o STATUS_NO_MEMORY ——no memory to allocate the object.

 o STATUS_ACCESS_VIOLATION ——Either the ObjectAttributes pointer or the
ObjectAttributes->ObjectName pointer or the ObjectAttributes->ObjectName->Buffer pointer
were invalid.

 o STATUS_DATATYPE_MISALIGNMENT ——Either the ObjectAttributes pointer or the
ObjectAttributes->ObjectName pointer were not aligned on a 4 byte boundary.

2.4 Creating an Instance of an Object

An instance of an object is created by inserting the new created object into the calling process's object
table and obtaining an object handle. This is accomplished with the ObInsertObject function:

NTSTATUS
ObInsertObject(
 IN PVOID Object,
 IN PACCESS_STATE PassedAccessState OPTIONAL,
 IN ACCESS_MASK DesiredAccess OPTIONAL,
 IN ULONG ObjectPointerBias,
 OUT PVOID *NewObject OPTIONAL,
 OUT PHANDLE Handle
)

Parameters:

Object ——A pointer to the object's body. The object must be one that was returned by
ObCreateObject.

NT OS/2 Object Management Specification 22

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

PassedAccessState ——An optional pointer to a structure that contains a record of desired types of
access, already granted access types, and a list of privileges that may have been used to
obtain some of the granted access types. If privileges are passed, a control flag in the
argument indicates whether any of the privileges or all of the privileges are needed to open
the object.

DesiredAccess ——An optional parameter describing the desired types of access to the object.
The interpretation of this field is object type dependent. Simple access requests (ie, those
that intend to compare the desired access to the Dacl on the object) need only pass a
DesiredAccess mask, rather than constructing an AccessState structure.

ObjectPointerBias ——Value to increment the PointerCount by. This occurs whether or not the
object is successfully inserted into the object table.

NewObject ——An optional pointer to a variable that will will receive the pointer to the referenced
object's body. A pointer to the referenced object's body is returned only if the
ObjectPointerBias field is not zero and the argument is present. If the argument is
supplied and the ObjectPointerBias is zero, then NULL is returned in the pointer.

Handle ——A pointer to a variable that will receive the object handle value.

Return Value:

Status code that indicates whether or not the operation was successful.

Inserting the object into a table causes an object handle to be allocated from the appropriate table
thereby making the object visible. If the object was given a name, the name is visible to all threads
that have "read" or "execute" access to the directory path that contains the name.

The ObjectName field of the ObjectAttributes parameter to ObCreateObject is extracted from the
object header and probed for accessiblility. Storage is then allocated for a copy of the string, so that
any parse procedures called can reallocate the string for reparse operations. The Attributes and
ParseContext fields that were captured into the object header are used along with the captured
ObjectName as additional parameters to the name lookup procedure.

During the creation of a new object's instance, checks are performed to ensure that the name of the
object, if any, is unique within the specified directory. If the name is not unique, the newly created
object is deleted and the OBJ_OPENIF option is used to determine the appropriate action.

If OBJ_OPENIF was specified, the object instance with the collided name is examined to see if the
desired access can be granted. If so, a handle is created to the collided object. If OBJ_OPENIF was
not specified, an error status is returned to the caller.

In the process of creating or opening a named object, several different security operations may be
performed. For each subdirectory in the object's path, the current subject must have TRAVERSE
access to that subdirectory in order for the name search to continue. The interface to perform this test

NT OS/2 Object Management Specification 23

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

is ObCheckTraverseAccess. ObCheckTraverseAccess will be called by the object manager as
appropriate if the object does not have an object-specific parse routine. For those objects that do
specify parse routines, it is the responsiblity of the parse routine to check traverse access to each
subdirectory. ObCheckTraverseAccess may generate audit messages.

If the object is being created, it is necessary to check to make sure that the subject has the ability to
create an object in the specified directory. Note that this is a different access type than the ability to
traverse the parent directory. The interface that performs this test is ObCheckCreateObjectAccess.
Like ObCheckTraverseAccess, this routine will be called by the object manager unless there exists an
object-specific parse routine, in which case it is the responsibility of the parse routine to make the call.

Finally, a new handle to the object is created, and the count of outstanding handles to the object is
incremented in the object header. Depending on whether the object is being created or simply opened,
the parse routine must call either ObCheckCreateInstanceAccess or ObpCheckObjectAccess
respectively.

The ObInsertObject function automatically dereferences the specified object, even if the operation
fails for any reason. This means that the Object value is no longer usable when this function returns.
This is due to the fact that at the completion of the ObInsertObject function, the object handle could
now be deleted by another thread of execution causing the storage for the object to be deallocated or
the name could have collided, causing the original object to be deleted.

The ObjectPointerBias parameter provides a mechanism for ensuring a pointer to the object can be
utilized. When the ObjectPointerBias is not zero, the value is added to the PointerCount in the object
header referenced by the handle. This prevents the object from being deleted. The NewObject
parameter receives the pointer to the object body referred to by the object. This may be a different
object then the one which was inserted due to name collisions.

This is typically the last operation that is performed when an instance of an object is created, and the
handle and status value are returned to the caller.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_OBJECT_NAME_EXISTS ——the object name already existed and OBJ_OPENIF
was specified. This is a warning status code.

 o STATUS_OBJECT_TYPE_MISMATCH ——the object name already existed, but was a
different type than specified by the ObjectType parameter.

 o STATUS_OBJECT_NAME_COLLISION ——the object name already existed and
OBJ_OPENIF was not specified.

 o STATUS_OBJECT_PATH_SYNTAX_BAD ——if the parse failed because of an ill formed
path name.

NT OS/2 Object Management Specification 24

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o STATUS_OBJECT_PATH_NOT_FOUND ——if the parse was terminated because a path
component was not found and there were characters remaining to parse.

 o STATUS_OBJECT_NAME_NOT_FOUND ——if the parse was terminated because a path
component was not found and there were no more characters remaining to parse.

 o STATUS_OBJECT_PATH_INVALID ——if the parse succeeded and matched an object, but
there were more characters remaining to be parsed.

 o STATUS_ACCESS_DENIED

 o STATUS_QUOTA_EXCEEDED

 o STATUS_NO_MEMORY

2.5 Open Object by Name

An object can be opened by name with the ObOpenObjectByName function:

NTSTATUS
ObOpenObjectByName(
 IN POBJECT_ATTRIBUTES ObjectAttributes,
 IN POBJECT_TYPE ObjectType OPTIONAL,
 IN KPROCESSOR_MODE AccessMode,
 IN OUT PACCESS_STATE PassedAccessState OPTIONAL,
 IN ACCESS_MASK DesiredAccess OPTIONAL,
 IN OUT PVOID ParseContext OPTIONAL,
 OUT PHANDLE Handle
)

Parameters:

ObjectAttributes ——A pointer to a structure that specifies the object's attributes. Refer to the
Object Attributes discussion for details.

ObjectType ——A optional pointer to the object type structure for the object's type.

AccessMode ——Indicates the access mode to use for the access check. One of UserMode or
KernelMode.

ParseContext ——An optional pointer that is passed uninterpreted to any ParseProcedure that is
called during the course of performing the name lookup.

PassedAccessState ——An optional pointer to a structure that contains a record of desired types of
access, already granted access types, and a list of privileges that may have been used to
obtain some of the granted access types. If privileges are passed, a control flag in the

NT OS/2 Object Management Specification 25

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

argument indicates whether any of the privileges or all of the privileges are needed to open
the object.

DesiredAccess ——The desired types of access to the object. The interpretation of this field is
object type dependent. Simple access requests (ie, those that intend to compare the desired
access to the Dacl on the object) need only pass a DesiredAccess mask, rather than
constructing an AccessState structure.

Handle ——A pointer to a variable that will receive the object handle.

Return Value:

Status code that indicates whether or not the operation was successful.

Opening an object by name causes a name search to be performed. If this function completes
successfully, a pointer to the named object's body is inserted into the specified object table.

Successful opening of an object by name causes the HandleCount and PointerCount for the specified
object to be incremented.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_OBJECT_TYPE_MISMATCH ——the object name was found, but was a different
type than specified by the ObjectType parameter.

 o STATUS_OBJECT_PATH_SYNTAX_BAD ——if the parse failed because of an ill formed
path name.

 o STATUS_OBJECT_PATH_NOT_FOUND ——if the parse was terminated because a path
component was not found and there were characters remaining to parse.

 o STATUS_OBJECT_NAME_NOT_FOUND ——if the parse was terminated because a path
component was not found and there were no more characters remaining to parse.

 o STATUS_OBJECT_PATH_INVALID ——if the parse succeeded and matched an object, but
there were more characters remaining to be parsed.

 o STATUS_ACCESS_DENIED

 o STATUS_QUOTA_EXCEEDED

 o STATUS_NO_MEMORY

NT OS/2 Object Management Specification 26

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.6 Open Object by Pointer

A handle to an object can be opened by pointer with the ObOpenObjectByPointer function:

NTSTATUS
ObOpenObjectByPointer(
 IN PVOID Object,
 IN ULONG HandleAttributes,
 IN PACCESS_STATE PassedAccessState OPTIONAL,
 IN ACCESS_MASK DesiredAccess OPTIONAL,
 IN POBJECT_TYPE ObjectType OPTIONAL,
 IN KPROCESSOR_MODE AccessMode,
 OUT PHANDLE Handle
)

Parameters:

Object ——A pointer to the object that is being opened.

HandleAttributes ——The attributes to associated with the handle. Same as the Attributes field in
the ObjectAttributes structure. Refer to the Object Attributes discussion for details.

PassedAccessState ——An optional pointer to a structure that contains a record of desired types of
access, already granted access types, and a list of privileges that may have been used to
obtain some of the granted access types. If privileges are passed, a control flag in the
argument indicates whether any of the privileges or all of the privileges are needed to open
the object.

DesiredAccess ——The desired types of access to the object. The interpretation of this field is
object type dependent. Simple access requests (ie, those that intend to compare the desired
access to the Dacl on the object) need only pass a DesiredAccess mask, rather than
constructing an AccessState structure.

ObjectType ——A optional pointer to the object type structure for the object's type.

AccessMode ——Indicates the access mode to use for the access check. One of UserMode or
KernelMode.

Handle ——A pointer to a variable that will receive the object handle.

Return Value:

Status code that indicates whether or not the operation was successful.

Opening an object by pointer the HandleCount and PointerCount for the specified object to be
incremented and a handle to the object created.

NT OS/2 Object Management Specification 27

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_OBJECT_TYPE_MISMATCH

 o STATUS_ACCESS_DENIED

 o STATUS_QUOTA_EXCEEDED

 o STATUS_NO_MEMORY

2.7 Referencing An Object

A user mode routine refers to an instance of an object through an object handle. In order for the
executive to operate upon the object, access validation must be performed on the object handle, and the
object handle must be converted to a pointer to the desired object's body. This is accomplished with
the ObReferenceObjectByHandle function:

NTSTATUS
ObReferenceObjectByHandle(
 IN HANDLE Handle,
 IN ACCESS_MASK DesiredAccess,
 IN POBJECT_TYPE ObjectType OPTIONAL,
 IN KPROCESSOR_MODE AccessMode,
 OUT PVOID *Object,
 OUT POBJECT_HANDLE_INFORMATION HandleInformation OPTIONAL
)

Parameters:

Handle ——An open handle to an object.

DesiredAccess ——The desired types of access to the object. The interpretation of this field is
object type dependent.

ObjectType ——An optional pointer to the object type structure for the object's type. If this value
is omitted, no type check is performed.

AccessMode ——Indicates the access mode to use for the access check. One of UserMode or
KernelMode.

Object ——A pointer to a variable that will receive a pointer to the object's body.

HandleInformation ——An optional pointer to XXXXXXXXXX

NT OS/2 Object Management Specification 28

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Return Value:

Status code that indicates whether or not the operation was successful.

This function uses the specified object handle as an index into the process object table. The index is
validated against the object table bounds and converted into a pointer to a specific entry in the object
table.

If the AccessMode is KernelMode, the desired access is always allowed.

If the AccessMode is UserMode, the desired access is compared to the granted access field stored
within the table. If all of the bits in the DesiredAccess mask are set in the granted access mask, then
access is granted. Otherwise the STATUS_ACCESS_DENIED error status code is returned.

If the desired access is allowed, a pointer to the object header is obtained from the table. If the
specified ObjectType is supplied, it is compared to the object type field within the object header, and if
they are equal a pointer to the object body is returned to the caller as the function value, and the
PointerCount field in the object header is incremented.

Incrementing the PointerCount field prevents the object from being deleted while it is being operated
upon.

A pointer to the object body is retreived from the object table entry and returned to the caller via the
Object parameter.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_OBJECT_TYPE_MISMATCH

 o STATUS_ACCESS_DENIED

 o STATUS_INVALID_HANDLE

2.8 Reference Object by Name

An object can be referenced by name with the ObReferenceObjectByName function:

NT OS/2 Object Management Specification 29

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
ObReferenceObjectByName(
 IN PSTRING ObjectName,
 IN ULONG Attributes,
 IN PACCESS_STATE PassedAccessState OPTIONAL,
 IN ACCESS_MASK DesiredAccess OPTIONAL,
 IN POBJECT_TYPE ObjectType,
 IN KPROCESSOR_MODE AccessMode,
 IN OUT PVOID ParseContext OPTIONAL,
 OUT PVOID *Object
)

Parameters:

ObjectName ——A pointer to a string which specifies the name of the object to open.

Attributes ——A set of flags that control the object attributes.

OBJ_CASE_INSENSITIVE ——Indicates that the name lookup should be performed in a
manner which ignores the case of the ObjectName rather than performing an exact
match search.

PassedAccessState ——An optional pointer to a structure that contains a record of desired types of
access, already granted access types, and a list of privileges that may have been used to
obtain some of the granted access types. If privileges are passed, a control flag in the
argument indicates whether any of the privileges or all of the privileges are needed to open
the object.

DesiredAccess ——The desired types of access to the object. The interpretation of this field is
object type dependent. Simple access requests (ie, those that intend to compare the desired
access to the Dacl on the object) need only pass a DesiredAccess mask, rather than
constructing an AccessState structure.

ObjectType ——A pointer to the object type structure for the object's type.

AccessMode ——Indicates the access mode to use for the access check. One of UserMode or
KernelMode.

ParseContext ——An optional pointer that is passed uninterpreted to any ParseProcedure that is
called during the course of performing the name lookup.

Object ——A pointer to a variable that will receive a pointer to the object's body.

Return Value:

Status code that indicates whether or not the operation was successful.

NT OS/2 Object Management Specification 30

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Referencing an object by name causes a name search to be performed. If this function completes
successfully, a pointer to the named object's body is returned as the function value. The name search is
accomplished by acquiring the directory mutex, and searching in the root directory for the first name in
the path. If no matching name is found, an error status code is returned.

If a matching name is found and there are more tokens left in the name string, the corresponding object
header is examined. If the object is not a directory object, its corresponding object type structure is
examined for a parse routine. If no parse routine exists, an error status code is returned. Otherwise,
the directory mutex is released, and the parse routine is called.

The parse routine is responsible for either returning a pointer to an object, which can be referenced as a
result of the parse, or returning a unique value, OBJ_REPARSE to indicate that the name lookup
should start over from the beginning of the string.

If the value returned is OBJ_REPARSE, the directory mutex is acquired and name parsing beings
using the complete string as the name. This requires the parse routine to deallocate the previous string
and allocate the new string to parse, or modify the original string.

Successful referencing of an object by name causes the PointerCount for the specified object to be
incremented.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_OBJECT_TYPE_MISMATCH ——the object name was found, but was a different
type than specified by the ObjectType parameter.

 o STATUS_OBJECT_PATH_SYNTAX_BAD ——if the parse failed because of an ill formed
path name.

 o STATUS_OBJECT_PATH_NOT_FOUND ——if the parse was terminated because a path
component was not found and there were characters remaining to parse.

 o STATUS_OBJECT_NAME_NOT_FOUND ——if the parse was terminated because a path
component was not found and there were no more characters remaining to parse.

 o STATUS_OBJECT_PATH_INVALID ——if the parse succeeded and matched an object, but
there were more characters remaining to be parsed.

 o STATUS_ACCESS_DENIED

 o STATUS_NO_MEMORY

NT OS/2 Object Management Specification 31

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.9 Reference Object by Pointer

NTSTATUS
ObReferenceObjectByPointer(
 IN PVOID Object,
 IN ACCESS_MASK DesiredAccess,
 IN POBJECT_TYPE ObjectType,
 IN KPROCESSOR_MODE AccessMode
)

Parameters:

Object ——A pointer to the object's body.

DesiredAccess ——A mask representing the desired access to the object.

ObjectType ——A pointer to the object type structure for the object.

AccessMode ——Indicates the access mode to use for the access check. One of UserMode or
KernelMode.

Return Value:

Status code that indicates whether or not the operation was successful.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_OBJECT_TYPE_MISMATCH

2.10 Making an Object Temporary

An object can be made temporary with the ObMakeTemporaryObject function:

VOID
ObMakeTemporaryObject(
 IN PVOID Object
)

Parameters:

Object ——A pointer to an object.

This is a generic function and operates on any type of object.

NT OS/2 Object Management Specification 32

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Making an object temporary causes the permanent flag of the associated object to be cleared. A
temporary object has a name as long as its HandleCount is greater than zero. When the HandleCount
becomes zero, the name is deleted and the PointerCount adjusted appropriately.

2.11 Dereferencing an Object

A referenced object is dereferenced with the ObDereferenceObject function:

VOID
ObDereferenceObject(
 IN PVOID Object
)

Parameters:

Object ——A pointer to the object's body.

When an object is dereferenced, its PointerCount is decremented and retention checks are performed.

2.12 Object Management during Process Creation and Deletion

The Process Structure component uses these function during process creation and deletion to initialize
and cleanup the object table associated with a process.

2.12.1 Process Creation Hook

The Process Structure component calls the Object Management component at process creation time
via the ObInitProcess function.

NTSTATUS
ObInitProcess(
 PEPROCESS ParentProcess OPTIONAL,
 PEPROCESS NewProcess
)

Parameters:

ParentProcess ——An optional pointer to the process to inherit any handles from.

NewProcess ——A pointer to the process that is being created.

Return Value:

Status code that indicates whether or not the operation was successful.

NT OS/2 Object Management Specification 33

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This functions creates an object table for the NewProcess. It then scans the object table associated
with the ParentProcess, if any, and creates copies of all handles that were created with the
OBJ_INHERIT attribute.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_QUOTA_EXCEEDED

 o STATUS_NO_MEMORY

2.12.2 Process Deletion Hook

The Process Structure component calls the Object Management component at process deletion time
via the ObKillProcess function.

VOID
ObKillProcess(
 PEPROCESS Process
)

Parameters:

Process ——A pointer to the process that is being destroyed.

This function scans the object table associated with the process being destroyed and calls NtClose for
each valid handle.

2.13 Dump Object Support

Objects are displayed using the ObDumpObjectByHandle, ObDumpObjectByName and
ObDumpObjectByPointer functions. These functions display the contents of an object or objects to a
specified output stream with a specified level of information. The default output stream is standard
output.

NTSTATUS
ObDumpObjectByHandle(
 IN HANDLE Handle,
 IN POB_DUMP_CONTROL DumpControl OPTIONAL
)

Parameters:

Handle ——An open handle to an object.

NT OS/2 Object Management Specification 34

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

DumpControl ——An optional pointer to a dump control structure. This structure specifies the
output stream and the detail level. If not specified then output should be sent to the
standard output stream. Default detail level is 1.

OB_DUMP_CONTROL Structure:

PVOID Stream ——an opaque pointer to an output stream.

ULONG DetailLevel ——level of detail to show, along with some modifiers.

Return Value:

Status code that indicates whether or not the operation was successful.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_ACCESS_DENIED

 o STATUS_INVALID_HANDLE

NTSTATUS
ObDumpObjectByName(
 IN PSTRING ObjectName,
 IN ULONG Attributes,
 IN POB_DUMP_CONTROL DumpControl OPTIONAL
)

Parameters:

ObjectName ——A pointer to a string which specifies the name of the object to open.

Attributes ——A set of flags that control the object attributes.

OBJ_CASE_INSENSITIVE ——Indicates that the name lookup should be performed in a
manner which ignores the case of the ObjectName rather than performing an exact
match search.

DumpControl ——See ObDumpObjectByHandle description for meaning of this parameter.

Return Value:

Status code that indicates whether or not the operation was successful.

This function may return one of the following status codes:

NT OS/2 Object Management Specification 35

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_ACCESS_DENIED

NTSTATUS
ObDumpObjectByPointer(
 IN PVOID Object,
 IN POB_DUMP_CONTROL DumpControl OPTIONAL
)

Parameters:

Object ——A pointer to the object's body.

DumpControl ——See ObDumpObjectByHandle description for meaning of this parameter.

Return Value:

Status code that indicates whether or not the operation was successful.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_ACCESS_DENIED

2.14 Check Traverse Access

A parse routine calls ObCheckTraverseAccess for each section of a pathname to see if the caller has
Traverse access to that directory.

BOOLEAN
ObCheckTraverseAccess(
 IN PVOID DirectoryObject,
 IN ACCESS_MASK TraverseAccess,
 IN PACCESS_STATE AccessState,
 IN BOOLEAN TypeMutexLocked,
 IN KPROCESSOR_MODE PreviousMode,
 OUT PNTSTATUS AccessStatus
)

Parameters:

DirectoryObject ——The object header of the object being examined.

TraverseAccess ——The access mask corresponding to traverse access for this directory type.

NT OS/2 Object Management Specification 36

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

AccessState ——Checks for traverse access will typically be incidental to some other access
attempt. Information on the current state of that access attempt is required so that the
constituent access attempts may be associated with each other in the audit log.

TypeMutexLocked ——Supplies a boolean indicating whether or not the object's type mutext is
locked.

AccessMode ——The previous processor mode.

AccessStatus ——Pointer to a variable to return the status code of the access attempt. In the case
of failure this status code must be propagated back to the user.

Return Value:

BOOLEAN ——TRUE if access is allowed and FALSE otherwise. AccessStatus contains the
status code to be passed back to the caller. It is not correct to simply pass back
STATUS_ACCESS_DENIED, since this will have to change with the advent of mandatory
access control.

This routine is to be called by Object parse methods as they parse the component subdirectories of a
path. On each subdirectory, they must call ObCheckTraverseAccess, which will examine the security
descriptors on the object to determine if it is legal to traverse that directory. If it returns failure, the
value returned in AccessStatus must be propogated back to the user.

This routine will generate audit records as appropriate.

2.15 Check Create Instance access

A parse routine calls ObCheckCreateInstance to determine if the caller is allowed to create an instance
of an object.

BOOLEAN
ObCheckCreateInstanceAccess(
 IN PVOID Object,
 IN ACCESS_MASK CreateInstanceAccess,
 IN PACCESS_STATE AccessState OPTIONAL,
 IN BOOLEAN TypeMutexLocked,
 IN KPROCESSOR_MODE PreviousMode,
 OUT PNTSTATUS AccessStatus
)

Parameters:

Object ——The object header of the object being examined.

CreateInstanceAccess ——The access mask corresponding to create access for this object type.

NT OS/2 Object Management Specification 37

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

AccessState ——Checks for create access will typically be incidental to some other access attempt.
Information on the current state of that access attempt is required so that the constituent
access attempts may be associated with each other in the audit log.

TypeMutexLocked ——Indicates whether the type mutex for this object's type is locked. The type
mutex is used to protect the object's security descriptor from being modified while it is
being accessed.

AccessMode ——The previous processor mode.

AccessStatus ——Pointer to a variable to return the status code of the access attempt. In the case
of failure this status code must be propagated back to the user.

Return Value:

BOOLEAN ——TRUE if access is allowed and FALSE otherwise. AccessStatus contains the
status code to be passed back to the caller.

Routine Description:

Parse routines must call this routine to check for Create Instance access to the object. If the attempt
fails, the caller must propagate the result returned in AccessStatus back to the user, rather than simply
returning STATUS_ACCESS_DENIED.

Note that checking for the ability to create an object of a given type is different from creating the
object itself. This attempt may be audited, even if the attempt to create the object ultimately fails.

2.16 Check Create Object Access

A parse routine calls ObCheckCreateObjectAccess to see if it may create an object in the passed
directory.

BOOLEAN
ObCheckCreateObjectAccess(
 IN PVOID DirectoryObject,
 IN ACCESS_MASK CreateAccess,
 IN PACCESS_STATE AccessState OPTIONAL,
 IN BOOLEAN TypeMutexLocked,
 IN KPROCESSOR_MODE PreviousMode,
 OUT PNTSTATUS AccessStatus
)

Parameters:

DirectoryObject ——The object header of the object being examined.

NT OS/2 Object Management Specification 38

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

CreateAccess ——The access mask corresponding to create access for this directory type.

AccessState ——Checks for traverse access will typically be incidental to some other access
attempt. Information on the current state of that access attempt is required so that the
constituent access attempts may be associated with each other in the audit log.

TypeMutexLocked ——Indicates whether the type mutex for this object's type is locked. The type
mutex is used to protect the object's security descriptor from being modified while it is
being accessed.

AccessMode ——The previous processor mode.

AccessStatus ——Pointer to a variable to return the status code of the access attempt. In the case
of failure this status code must be propagated back to the user.

Return Value:

BOOLEAN ——TRUE if access is allowed and FALSE otherwise. AccessStatus contains the
status code to be passed back to the caller.

Routine Description:

This routine checks to see if we are allowed to create an object in the given directory. If the attempt
fails, the caller must propagate the result returned in AccessStatus back to the user, rather than simply
returning STATUS_ACCESS_DENIED.

This routine may generate audit messages as appropriate.

2.17 Check Implicit Object Access

Check object access when there will be no handle allocated.

BOOLEAN
ObCheckImplicitObjectAccess(
 IN PVOID Object,
 IN OUT PACCESS_STATE AccessState,
 IN BOOLEAN TypeMutexLocked,
 IN KPROCESSOR_MODE AccessMode,
 OUT PNTSTATUS AccessStatus
)

Parameters:

ObjectHeader ——The object header of the object being examined.

NT OS/2 Object Management Specification 39

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

AccessState ——The ACCESS_STATE structure containing accumulated information about the
current access attempt.

TypeMutexLocked ——Indicates whether the type mutex for this object's type is locked. The type
mutex is used to protect the object's security descriptor from being modified while it is
being accessed.

AccessMode ——The previous processor mode.

AccessStatus ——Pointer to a variable to return the status code of the access attempt. In the case
of failure this status code must be propagated back to the user.

Return Value:

BOOLEAN ——TRUE if access is allowed and FALSE otherwise

Routine Description:

This routine is used to perform access validation for reasons other than opening or creating an object.
For example, a file system may want to determine of a subject has FILE_LIST_DIRECTORY access
to a directory as part of some other access validation. For access operations on objects that are being
opened or created, use ObpCheckObjectAccess.

The routine performs access validation on the passed object. The remaining desired access mask is
extracted from the AccessState parameter and passed to the appropriate security routine to perform the
access check.

Note that the RemainingDesiredAccess field in the AccessState parameter is not modified.

2.18 Checking Access for Object Reference

This routine is to be used to determine if a reference by name should be permitted.

BOOLEAN
ObCheckObjectReference(
 IN PVOID Object,
 IN OUT PACCESS_STATE AccessState,
 IN BOOLEAN TypeMutexLocked,
 IN KPROCESSOR_MODE AccessMode,
 OUT PNTSTATUS AccessStatus
)

Parameters:

ObjectHeader ——The object header of the object being examined.

NT OS/2 Object Management Specification 40

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

AccessState ——The ACCESS_STATE structure containing accumulated information about the
current attempt to gain access to the object.

TypeMutexLocked ——Indicates whether the type mutex for this object's type is locked. The type
mutex is used to protect the object's security descriptor from being modified while it is
being accessed.

AccessMode ——The previous processor mode.

AccessStatus ——Pointer to a variable to return the status code of the access attempt. In the case
of failure this status code must be propagated back to the user.

Return Value:

BOOLEAN ——TRUE if access is allowed and FALSE otherwise

Routine Description:

The routine performs access validation on the passed object. The remaining desired access mask is
extracted from the AccessState parameter and passes to the appropriate security routine to perform the
access check.

If the access attempt is successful, SeAccessCheck returns a mask containing the granted accesses.
The bits in this mask are turned on in the PreviouslyGrantedAccess field of the AccessState, and are
turned off in the RemainingDesiredAccess field.

This routine differs from ObpCheckObjectAccess in that it calls a different audit routine.

2.19 Locking a security descriptor

Call ObLockSecurityDescriptor before reading or writing an object's security descriptor.

VOID
ObLockSecurityDescriptor(
 IN PVOID Object
)

Parameters:

Object ——supplies a pointer to the object whose security descriptor is being examined.

Return Value: None.

Routine Description:

NT OS/2 Object Management Specification 41

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This function acquires the object type mutex for the passed object, which will protect the object's
security descriptor from modification by another thread.

2.20 Unlocking a security descriptor

Call ObLockSecurityDescriptor before reading or writing an object's security descriptor.

VOID
ObUnlockSecurityDescriptor(
 IN PVOID Object
)

Parameters:

Object ——supplies a pointer to the object whose security descriptor is being examined.

Return Value: None.

Routine Description:

This function releases the object type mutex for the passed object, which has been protecting the
object's security descriptor from modification by another thread.

2.21 Query an object's Security Descriptor field

This routine allows components outside of OB to retrieve the Security Descriptor pointer in an object's
header. The contents of this pointer does not necessarily reflect the actual security descriptor attached
to an object.

VOID
ObQueryObjectSecurityDescriptor(
 IN PVOID Object,
 OUT PSECURITY_DESCRIPTOR *SecurityDescriptor
)

Parameters:

Object ——Supplies a pointer to the object

SecurityDescriptor ——Returns the contents of the object header's SecurityDescriptor field, which
may be NULL.

Routine Description:

Takes a pointer to an object and returns a pointer to the security descriptor contained in the header.

NT OS/2 Object Management Specification 42

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.22 Set an object's Security Descriptor field

This routine permits components outside of OB to set the security descriptor field in an object's header.

VOID
ObAssignObjectSecurityDescriptor(
 IN PVOID Object,
 IN PSECURITY_DESCRIPTOR SecurityDescriptor,
 IN POOL_TYPE PoolType
)

Parameters:

Object ——Supplies a pointer to the object

SecurityDescriptor ——Supplies a pointer to the security descriptor to be assigned to the object.

PoolType ——Supplies the type of pool memory used to allocate the security descriptor.

Routine Description:

Takes a pointer to an object and sets the SecurityDescriptor field in the object's header. Performs
security quota calculations and places the security quota for this object into the object's header.

2.23 Query an object's Security information

This routine will return a copy of the passed object's security descriptor, regardless of where the
security descriptor is stored.

NTSTATUS
ObGetObjectSecurity(
 IN PVOID Object,
 OUT PSECURITY_DESCRIPTOR *SecurityDescriptor,
 OUT PBOOLEAN MemoryAllocated
)

Parameters:

Object ——Supplies the object being queried.

SecurityDescriptor ——Returns a pointer to the object's security descriptor.

MemoryAllocated ——indicates whether we had to allocate pool memory to hold the security
descriptor or not. This should be passed back into ObReleaseObjectSecurity.

NT OS/2 Object Management Specification 43

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Return Value:

STATUS_SUCCESS ——The operation was successful. Note that the operation may be
successful and still return a NULL security descriptor.

STATUS_INSUFFICIENT_RESOURCES ——Insufficient memory was available to satisfy the
request.

Routine Description:

Given an object, this routine will find its security descriptor. It will do this by calling the object's
security method.

It is possible for an object not to have a security descriptor at all. Unnamed objects such as events that
can only be referenced by a handle are an example of an object that does not have a security descriptor.

2.24 Release an object's Security information

This routine frees the memory allocated by a previous call to ObGetObjectSecurity.

VOID
ObReleaseObjectSecurity(
 IN PSECURITY_DESCRIPTOR SecurityDescriptor,
 IN BOOLEAN MemoryAllocated
)

Parameters:

SecurityDescriptor ——Supplies a pointer to the security descriptor to be freed.

MemoryAllocated ——Supplies whether or not we should free the memory pointed to by
SecurityDescriptor.

Routine Description:

This function will free up any memory associated with a queried security descriptor.

2.25 Set Security Quota Charged for object

Each object, when it is created, is alloted a certain amount of pool memory for security information.
The amount is a function of the size of the Group and Dacl information in the object's security
descriptor. The sum of the sizes of these items is passed to this routine, which will calculate the
amount of pool memory to charge based on that sum, and place the resultant quantity into the object's
header.

NT OS/2 Object Management Specification 44

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
ObSetSecurityQuotaCharged(
 IN PVOID Object,
 IN OUT PULONG SecurityQuotaCharged,
 IN POOL_TYPE PoolType
)

Parameters:

Object ——Supplies the object to be updated.

SecurityQuotaCharged ——Supplies the proposed amount of quota to be charged for security
information for each handle to this object. Will return the actual amount charged.

PoolType ——The type of pool memory that will be allocated to hold the security information for
this object.

Routine Description:

Sets the SecurityQuotaCharged field for the passed object. Updates the PagedPoolCharge or
NonPagedPoolCharge with the new amount, depending on the value of PoolType.

2.26 Validate security information against quota

Any attempt to grow the security information on an object must have the resulting size checked against
the maximum amount of pool memory that may be used for the object's security information.

NTSTATUS
ObValidateSecurityQuota(
 IN PVOID Object,
 IN ULONG NewSize
)

Parameters:

Object ——Supplies a pointer to the object whose information is to be modified.

NewSize ——Supplies the size of the proposed new security information.

Return Value:

STATUS_SUCCESS ——New size is within alloted quota.

STATUS_QUOTA_EXCEEDED ——The desired adjustment would have exceeded the permitted
security quota for this object.

NT OS/2 Object Management Specification 45

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Routine Description:

This routine will check to see if the new security information is larger than is allowed by the object's
pre-allocated quota.

3. Object System Services

The following routines provide an interface for user mode applications to manipulate and query
objects.

3.1 Create Directory Object

Directory objects are created with the NtCreateDirectoryObject function:

NTSTATUS
NtCreateDirectoryObject(
 OUT PHANDLE DirectoryHandle,
 IN ULONG DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes
)

Parameters:

DirectoryHandle ——A pointer to a variable that will receive the directory object handle.

DesiredAccess ——The desired types of access to the directory. The following object type
specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED flags described in the Object Attributes section.

DesiredAccess Flags:

DIRECTORY_QUERY ——Query access to the directory is desired.

DIRECTORY_TRAVERSE ——Name lookup access to the directory is desired.

DIRECTORY_CREATE_OBJECT ——Name creation access to the directory is desired.

DIRECTORY_CREATE_SUBDIRECTORY ——Subdirectory creation access to the directory
is desired.

ObjectAttributes ——A pointer to a structure that specifies the object's attributes. Refer to the
Object Attributes discussion for details.

Return Value:

Status code that indicates whether or not the operation was successful.

NT OS/2 Object Management Specification 46

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Directory objects are an integral part of the object management functions and as such are manipulated
indirectly as a result of other operations. For example, when an object is created, its name, if any, is
"inserted" in a directory object and the PointerCount fields of both the directory object and the named
object are incremented. The named object's header contains a pointer to the directory object which
contains the name.

A single mutex is utilized to guard the directory structure. It must be acquired any time a directory is
accessed for examination or manipulation.

The directory object's body contains the information necessary to translate an object name to a pointer
to the object. Incrementing the PointerCount field in the directory object's header for each name in the
directory prevents the directory object from being "deallocated" with outstanding names.

If a directory object is temporary and the HandleCount becomes zero, then an attempt is made to delete
the directory object's name by conditionally removing its directory entry. Conditional deletion means
that the necessary mutexes are released, the directory mutex is acquired, the directory entry which
contains the directory object is located and the HandleCount is checked again. If the count is still zero,
the directory object's name is deleted. This is done because the directory object was declared as
temporary and the last handle to the object has been closed.

If the directory's name is deleted, the PointerCount has not yet been decremented to account for the
lack of a name. Any names which still reside within the directory object are deleted. This is
accomplished by acquiring the directory mutex and finding a valid name within the directory. From
the valid name, the corresponding object is located and its name field and backpointer are removed, its
PointerCount is decremented, and the permanent flag is set false. If the resulting PointerCount of the
named object is now zero, the directory mutex is released and the object type specific delete routine is
invoked.

This procedure is repeated until all valid names within the directory have been deleted, at which time
the directory mutex is released, and the PointerCount for the directory is decremented.

Even though a directory object's name has been removed, the directory object remains until all names
contained within it have been removed. This means that certain objects which had names will no
longer have names once the directory object's name has been removed. This condition is detected by a
NULL backpointer in the path of directory objects.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_ACCESS_DENIED

 o STATUS_ACCESS_VIOLATION ——Either the ObjectAttributes pointer or the
ObjectAttributes->ObjectName pointer or the ObjectAttributes->ObjectName->Buffer pointer
were invalid. Or the DirectoryHandle pointer was invalid.

NT OS/2 Object Management Specification 47

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o STATUS_DATATYPE_MISALIGNMENT ——Either the ObjectAttributes pointer or the
ObjectAttributes->ObjectName pointer were not aligned on a 4 byte boundary. Or the
DirectoryHandle pointer was not aligned on a 4 byte boundary.

3.2 Open Object Directory

NTSTATUS
NtOpenDirectoryObject(
 OUT PHANDLE DirectoryHandle,
 IN ACCESS_MASK DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes
)

Parameters:

DirectoryHandle ——A pointer to a variable that will receive the directory object handle.

DesiredAccess ——The desired types of access to the directory. The following object type
specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED flags described in the Object Attributes section.

DesiredAccess Flags:

DIRECTORY_QUERY ——Query access to the directory is desired.

DIRECTORY_TRAVERSE ——Name lookup access to the directory is desired.

DIRECTORY_CREATE_OBJECT ——Name creation access to the directory is desired.

DIRECTORY_CREATE_SUBDIRECTORY ——Subdirectory creation access to the directory
is desired.

ObjectAttributes ——A pointer to a structure that specifies the object's attributes. Refer to the
Object Attributes discussion for details.

Return Value:

Status code that indicates whether or not the operation was successful.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_ACCESS_DENIED

NT OS/2 Object Management Specification 48

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o STATUS_ACCESS_VIOLATION ——Either the ObjectAttributes pointer or the
ObjectAttributes->ObjectName pointer or the ObjectAttributes->ObjectName->Buffer pointer
were invalid. Or the DirectoryHandle pointer was invalid.

 o STATUS_DATATYPE_MISALIGNMENT ——Either the ObjectAttributes pointer or the
ObjectAttributes->ObjectName pointer were not aligned on a 4 byte boundary. Or the
DirectoryHandle pointer was not aligned on a 4 byte boundary.

3.3 Query Object Directory

The names in a directory object can be queried using the NtQueryDirectoryObject function:

NTSTATUS
NtQueryDirectoryObject(
 IN HANDLE DirectoryHandle,
 OUT PVOID Buffer,
 IN ULONG Length,
 IN BOOLEAN ReturnSingleEntry,
 IN BOOLEAN RestartScan,
 IN OUT PULONG Context,
 OUT PULONG ReturnLength OPTIONAL
)

Parameters:

DirectoryHandle ——handle of directory object being queried.

Buffer ——pointer to where directory entries are to be returned. The format is array of structures
containing the following fields:

OBJECT_DIRECTORY_INFORMATION Structure:

STRING Name ——Name of an object in the directory

STRING TypeName ——Type name of the object

The Buffer fields of each name string point to memory allocated at the end of the storage
pointed to by the Buffer parameter. This the array of Directory Entries grows down
and the actual characters for each string grow up and if they meet in the middle, then
the operation stops and this function returns to the caller.

Length ——maximum number of bytes that can be stored in the location pointed to by the Buffer
parameter.

ReturnSingleEntry ——TRUE forces the query to stop after a single entry has been returned.
Otherwise the query will return as many entries as there is room for in the output buffer.

NT OS/2 Object Management Specification 49

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

RestartScan ——TRUE forces the query to start with the first name in the directory. Otherwise
the query picks up with the next name after the last name returned by the previous call to
NtQueryDirectoryObject for this directory object.

Context ——A pointer to a context value. This value is used by this system service to remember
its position within a directory object. The input value is ignored if the RestartScan
parameter is TRUE.

ReturnLength ——optional pointer to a variable that will receive the actual number of bytes stored
in the location pointed to by the Buffer parameter.

Return Value:

Status code that indicates whether or not the operation was successful.

This function returns one or more entries from the directory object specified by the DirectoryHandle
parameter.

This function remembers its current position across calls by storing a 32-bit number into the location
pointed to by the Context parameter. This number is a logical index into the directory. It is not a
pointer. This will prevent deletions that happen between calls from turning a Context value into a
garbage quantity. It may become inaccurate due to insertions and deletions, but it will not bug check
the system.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_ACCESS_DENIED

 o STATUS_INVALID_HANDLE

3.4 Create Symbolic Link

NTSTATUS
NtCreateSymbolicLinkObject(
 OUT PHANDLE LinkHandle,
 IN ULONG DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes,
 IN PSTRING LinkTarget
)

Parameters:

LinkHandle ——Supplies a pointer to a variable that will receive the symbolic link object handle.

NT OS/2 Object Management Specification 50

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

DesiredAccess ——The desired types of access to the symbolic link object. The following object
type specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED flags described in the Object Attributes section.

DesiredAccess Flags:

SYMBOLIC_LINK_QUERY ——Query access to the symbolic link is desired.

ObjectAttributes ——A pointer to a structure that specifies the object's attributes. Refer to the
Object Attributes discussion for details.

LinkTarget ——Supplies the target name for the symbolic link object.

Return Value:

Status code that indicates whether or not the operation was successful.

This function creates a symbolic link object, sets its initial value to value specified in the LinkTarget
parameter, and opens a handle to the object with the specified desired access.

The symbolic link object type has a parse procedure that implements the symbolic link semantics.
Basically if the parse procedure is called and if the remaining string is not null, then the remaining
string value is concatenated with the target name string stored in the symbolic link object, separated by
a path separator character. The result replaces the complete string and the OBJ_REPARSE is returned
to trigger the reparse.

If the remaining string is null, then it assumes the caller is trying to open the symbolic link and returns
a pointer to the symbolic link object body. This will fail with
STATUS_OBJECT_TYPE_MISMATCH if the caller did not specify the symbolic link object type.

Otherwise the symbolic link parse procedure returns NULL to indicate an error.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_ACCESS_DENIED

 o STATUS_ACCESS_VIOLATION ——Either the ObjectAttributes pointer or the
ObjectAttributes->ObjectName pointer or the ObjectAttributes->ObjectName->Buffer pointer
were invalid. Or the LinkTarget, LinkTarget->Buffer or the LinkHandle pointer were invalid.

 o STATUS_DATATYPE_MISALIGNMENT ——Either the ObjectAttributes pointer or the
ObjectAttributes->ObjectName pointer were not aligned on a 4 byte boundary. Or the
LinkTarget or LinkHandle pointer were not aligned on a 4 byte boundary.

NT OS/2 Object Management Specification 51

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.5 Open Symbolic Link

NTSTATUS
NtOpenSymbolicLinkObject(
 OUT PHANDLE LinkHandle,
 IN ULONG DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes
)

Parameters:

LinkHandle ——Supplies a pointer to a variable that will receive the symbolic link object handle.

DesiredAccess ——The desired types of access to the symbolic link object. The following object
type specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED flags described in the Object Attributes section.

DesiredAccess Flags:

SYMBOLIC_LINK_QUERY ——Query access to the symbolic link is desired.

ObjectAttributes ——A pointer to a structure that specifies the object's attributes. Refer to the
Object Attributes discussion for details.

Return Value:

Status code that indicates whether or not the operation was successful.

This function opens a handle to a symbolic link object with the specified desired access.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_ACCESS_DENIED

 o STATUS_ACCESS_VIOLATION ——Either the ObjectAttributes pointer or the
ObjectAttributes->ObjectName pointer or the ObjectAttributes->ObjectName->Buffer pointer
were invalid. Or the LinkHandle pointer was invalid.

 o STATUS_DATATYPE_MISALIGNMENT ——Either the ObjectAttributes pointer or the
ObjectAttributes->ObjectName pointer were not aligned on a 4 byte boundary. Or the
LinkHandle pointer was not aligned on a 4 byte boundary.

NT OS/2 Object Management Specification 52

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.6 Query Symbolic Link

NTSTATUS
NtQuerySymbolicLinkObject(
 IN HANDLE LinkHandle,
 OUT PSTRING LinkTarget
)

Parameters:

LinkHandle ——Supplies a handle to a symbolic link object.

LinkTarget ——Supplies a pointer to a record that is to receive the target name of the symbolic
link object.

Return Value:

Status code that indicates whether or not the operation was successful.

This function queries the state of an symbolic link object and returns the requested information in the
string pointed to by the LinkTarget parameter.

3.7 Wait For Single Object

A wait operation on a waitable object is accomplished with the NtWaitForSingleObject function:

NTSTATUS
NtWaitForSingleObject(
 IN HANDLE Handle,
 IN BOOLEAN Alertable,
 IN PTIME TimeOut OPTIONAL
)

Parameters:

Handle ——An open handle to a waitable object.

Alertable ——A boolean value that specifies whether the wait is alertable.

TimeOut ——An optional pointer to a time-out value that specifies the absolute or relative time
over which the wait is to be completed.

Return Value:

Status code that indicates whether or not the operation was successful.

NT OS/2 Object Management Specification 53

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Waiting on an object checks the current state of the object. If the current state of the object allows
continued execution, any adjustments to the object state are made (for example, decrementing the
semaphore count for a semaphore object) and the thread continues execution. If the current state of the
object does not allow continued execution, the thread is placed into the wait state pending the change
of the object's state or time-out.

This function requires SYNCHRONIZE access to the passed handle.

This function may return one of the following success status codes that indicates how the wait was
satisfied:

 o A value of STATUS_TIME_OUT indicates that the wait was terminated due to the TimeOut
conditions.

 o A value of STATUS_SUCCESS indicates the specified object attained a Signaled state thus
completing the wait.

 o A value of STATUS_ABANDONED indicates the specified object attained a Signaled state but
was abandoned.

This function may return one of the following error status codes if the wait was not satisfied:

 o STATUS_ALERTED

 o STATUS_USER_APC

 o STATUS_HANDLE_NOT_WAITABLE

 o STATUS_ACCESS_DENIED

 o STATUS_INVALID_HANDLE

 o STATUS_ACCESS_VIOLATION ——The Timeout pointer was invalid.

 o STATUS_DATATYPE_MISALIGNMENT ——The Timeout pointer was not aligned on a 4
byte boundary.

3.8 Wait for Multiple Objects

A wait operation on multiple waitable objects (up to MAXIMUM_WAIT_OBJECTS) is accomplished
with the NtWaitForMultipleObjects function:

NT OS/2 Object Management Specification 54

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtWaitForMultipleObjects(
 IN ULONG Count,
 IN HANDLE Handles[],
 IN WAIT_TYPE WaitType,
 IN BOOLEAN Alertable,
 IN PTIME TimeOut OPTIONAL
)

Parameters:

Count ——A count of the number of objects that are to be waited on.

Handles ——An array of object handles. An error status is returned if more than one of the
handles refers to the same object. This can occur even if two handle values are different
but both refer to the same object.

WaitType ——The type of operation that is to be performed (WaitAny or WaitAll).

Alertable ——A boolean value that specifies whether the wait is alertable.

TimeOut ——An optional pointer to a time-out value that specifies the absolute or relative time
over which the wait is to be completed.

Return Value:

Status code that indicates whether or not the operation was successful.

This function requires SYNCHRONIZE access to the passed handle.

This function may return one of the following success status codes that indicates how the wait was
satisfied:

 o A value of STATUS_TIME_OUT indicates that the wait was terminated due to the TimeOut
conditions.

 o A value from 0 to MAXIMUM_WAIT_OBJECTS - 1, indicates, in the case of wait for any
object, the object number which satisfied the wait. In the case of wait for all objects, the value
only indicates that the wait was completed successfully.

 o A value from STATUS_ABANDONED to STATUS_ABANDONED +
(MAXIMUM_WAIT_OBJECTS - 1), indicates, in the case of wait for any object, the object
number which satisfied the event, and that the object which satisfied the event was abandoned.
In the case of wait for all objects, the value indicates that the wait was completed successfully
and at least one of the objects was abandoned.

NT OS/2 Object Management Specification 55

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This function may return one of the following error status codes if the wait was not satisfied:

 o STATUS_ALERTED

 o STATUS_USER_APC

 o STATUS_INVALID_PARAMETER

 o STATUS_HANDLE_NOT_WAITABLE

 o STATUS_ACCESS_DENIED

 o STATUS_INVALID_HANDLE

 o STATUS_QUOTA_EXCEEDED

 o STATUS_NO_MEMORY

 o STATUS_INVALID_PARAMETER_MIX ——One or more of the handle values in the Handles
array referenced the same object.

 o STATUS_ACCESS_VIOLATION ——The Handles or Timeout pointer was invalid.

 o STATUS_DATATYPE_MISALIGNMENT ——The Handles or Timeout pointer was not
aligned on a 4 byte boundary.

3.9 Duplicate Handle

A duplicate handle can be created with the NtDuplicateObject function:

NTSTATUS
NtDuplicateObject(
 IN HANDLE SourceProcessHandle,
 IN HANDLE SourceHandle,
 IN HANDLE TargetProcessHandle,
 OUT PHANDLE TargetHandle,
 IN ACCESS_MASK DesiredAccess,
 IN ULONG HandleAttributes,
 IN ULONG Options
)

Parameters:

SourceProcessHandle ——An open handle to a process object or NtCurrentProcess().

SourceHandle ——An open handle valid in the context of the source process.

NT OS/2 Object Management Specification 56

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

TargetProcessHandle ——An open handle to a process object or NtCurrentProcess().

TargetHandle ——A pointer to a variable which receives the new handle that points to the same
object as SourceHandle does.

DesiredAccess ——The access requested to for the new handle. This access must be equal to or a
proper subset of the granted access associated with the SourceHandle. This parameter is
ignored if the DUPLICATE_SAME_ACCESS option is specified.

HandleAttributes ——The attributes to associated with the new handles. Only OBJ_INHERIT is
relevant.

Options ——Specifies optional behaviors for the caller.

Options Flags:

DUPLICATE_CLOSE_SOURCE ——The SourceHandle will be closed by this server prior
to returning to the caller. This occurs regardless of any error status returned.

DUPLICATE_SAME_ACCESS ——The DesiredAccess parameter is ignored and instead the
GrantedAccess associated with SourceHandle is used as the DesiredAccess when
creating the TargetHandle.

Return Value:

Status code that indicates whether or not the operation was successful.

This is a generic function and operates on any type of object.

This function requires PROCESS_DUP_ACCESS to both the SourceProcessHandle and the
TargetProcessHandle.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_ACCESS_DENIED

 o STATUS_INVALID_HANDLE

 o STATUS_QUOTA_EXCEEDED

 o STATUS_NO_MEMORY

 o STATUS_ACCESS_VIOLATION ——The TargetHandle pointer was invalid.

NT OS/2 Object Management Specification 57

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o STATUS_DATATYPE_MISALIGNMENT ——The TargetHandle pointer was not aligned on a
4 byte boundary.

3.10 Close Handle

An open handle to any object can be closed with the NtClose function:

NTSTATUS
NtClose(
 IN HANDLE Handle
)

Parameters:

Handle ——An open handle to an object.

Return Value:

Status code that indicates whether or not the operation was successful.

This is a generic function and operates on any type of object.

Closing an open handle to an object causes the handle to become invalid and the HandleCount of the
associated object to be decremented and object retention checks to be performed.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_INVALID_HANDLE

3.11 Making an Object Temporary

An object can be made temporary with the NtMakeTemporaryObject function:

NTSTATUS
NtMakeTemporaryObject(
 IN HANDLE Handle
)

Parameters:

Handle ——An open handle to an object.

NT OS/2 Object Management Specification 58

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Return Value:

Status code that indicates whether or not the operation was successful.

This is a generic function and operates on any type of object.

Making an object temporary causes the permanent flag of the associated object to be cleared. A
temporary object has a name as long as its HandleCount is greater than zero. When the HandleCount
becomes zero, the name is deleted and the PointerCount adjusted appropriately.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_ACCESS_DENIED

 o STATUS_INVALID_HANDLE

3.12 Query Object

Information about an opened object can be obtained with the NtQueryObject function:

NTSTATUS
NtQueryObject(
 IN HANDLE Handle,
 IN OBJECT_INFORMATION_CLASS ObjectInformationClass,
 OUT PVOID ObjectInformation,
 IN ULONG Length,
 OUT ULONG *ReturnLength OPTIONAL
)

Parameters:

Handle ——Specifies the object that information is being requested from.

ObjectInformationClass ——Specifies the type of information to retrieve from the specified
object.

ObjectInformationClass Values:

ObjectBasicInformation ——Returns the basic information about the specified object.

ObjectNameInformation ——Returns the complete path name of the object referred to by the
Object.

ObjectTypeInformation ——Returns the name of the object type associated with the object.

NT OS/2 Object Management Specification 59

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ObjectInformation ——A pointer to a buffer which receives the specified information. The format
and content of the buffer depend on the specified object information class.

ObjectInformation Format by Information Class:

ObjectBasicInformation ——Data type is POBJECT_BASIC_INFORMATION

OBJECT_BASIC_INFORMATION Structure:

ULONG Attributes ——The attributes associated with this object. Only
OBJ_INHERIT, OBJ_PERMANENT and OBJ_EXCLUSIVE are relevant after
an object handle has been created.

ACCESS_MASK GrantedAccess ——The access mask bits that were granted to the
current process with the passed handle.

ULONG PagedPoolCharge ——How much PagedPool is charged against a process
when it creates a handle to this object.

ULONG NonPagedPoolCharge ——How much NonPagedPool is charged against a
process when it creates a handle to this object.

ULONG NameInfoSize ——The size needed to store a copy of the name associated
with this object. Zero if no name.

ULONG TypeInfoSize ——The size needed to store a copy of the type name
associated with this object.

ULONG SecurityDescriptorSize ——The size needed to store a copy of the
SecurityDescriptor associated with this object. See the
NtQuerySecurityObject for a description of how to get the actual copy of the
security descriptor.

ObjectNameInformation ——Data type is POBJECT_NAME_INFORMATION

OBJECT_NAME_INFORMATION Structure:

STRING Name ——The name associated with this object, if any.

ObjectTypeInformation ——Data type is POBJECT_TYPE_INFORMATION

OBJECT_TYPE_INFORMATION Structure:

STRING TypeName ——The name of the object type associated with this object.

Length ——Specifies the length in bytes of the ObjectInformation buffer.

NT OS/2 Object Management Specification 60

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ReturnLength ——An optional parameter that receives the number of bytes placed in the
ObjectInformation buffer.

Return Value:

Status code that indicates whether or not the operation was successful.

This function requires READ_CONTROL access to the passed handle.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_INVALID_INFO_CLASS ——The ObjectInformationClass parameter did not specify
a valid value.

 o STATUS_INFO_LENGTH_MISMATCH ——The value of the ObjectInformationLength
parameter did not match the length required for the information class requested by the
ObjectInformationClass parameter.

 o STATUS_ACCESS_DENIED

 o STATUS_INVALID_HANDLE

3.13 Set Security Descriptor for an Object

The function NtSetSecurityObject takes a well formed Security Descriptor provided by the caller and
assigns specified portions of it to an object. Based on the flags set in the Security Information
parameter and the caller's access rights, this procedure will replace any or all of the security
information associated with an object.

This is the only function available to users and applications for changing security information,
including the owner ID, group ID, and the discretionary and system ACLs of an object. The caller
must have WRITE_OWNER access to the object to change the owner or primary group of the object.
The caller must have WRITE_DAC access to the object to change the discretionary ACL. The caller
must have the "SeSecurityPrivilege" privilege to assign a system ACL to an object.

NT OS/2 Object Management Specification 61

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtSetSecurityObject(
 IN HANDLE Handle,
 IN SECURITY_INFORMATION SecurityInformation,
 IN PSECURITY_DESCRIPTOR SecurityDescriptor
)

Parameters:

Handle ——A handle to an existing object.

SecurityInformation ——Indicates which security information is to be applied to the object. The
value(s) to be assigned are passed in the SecurityDescriptor parameter.

The security information is specified using the following boolean flag fields:

SecurityInformation.Owner (Object's Owner SID) SecurityInformation.Group
(Object's Group SID) SecurityInformation.Dacl (Object's Discretionary
ACL) SecurityInformation.Sacl (Object's System ACL)

SecurityDescriptor ——A pointer to a well formed Security Descriptor.

Return Value:

Status code that indicates whether or not the operation was successful.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_ACCESS_DENIED

 o STATUS_PRIVILEGE_NOT_HELD

 o STATUS_INVALID_HANDLE

3.14 Query Security Descriptor for an Object

The function NtQuerySecurityObject returns to the caller requested security information currently
assigned to an object.

Based on the caller's access rights and privileges this procedure will return a security descriptor
containing any or all of the object's owner ID, group ID, discretionary ACL or system ACL. To read
the owner ID, group ID, or the discretionary ACL the caller must be granted READ_CONTROL
access to the object. To read the system ACL the caller must have "SeSecurityPrivilege" privilege.

NT OS/2 Object Management Specification 62

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtQuerySecurityObject(
 IN HANDLE Handle,
 IN SECURITY_INFORMATION SecurityInformation,
 OUT PSECURITY_DESCRIPTOR SecurityDescriptor,
 IN ULONG Length,
 OUT PULONG LengthNeeded
)

Parameters:

Handle ——A handle to an existing object.

SecurityInformation ——Supplies a value describing which pieces of security information are
being queried. The values that may be specified are the same as those defined in the
NtSetSecurityObject API section.

SecurityDescriptor ——A pointer to the buffer to receive a copy of the requested security
information. This information is returned in the form of a security descriptor.

Length ——The size, in bytes, of the Security Descriptor buffer.

LengthNeeded ——A pointer to the variable to receive the number of bytes needed to store the
complete security descriptor. If LengthNeeded is less than or equal to Length then the
entire security descriptor is returned in the output buffer, otherwise none of the descriptor
is returned.

Return Value:

Status code that indicates whether or not the operation was successful.

This function may return one of the following status codes:

 o STATUS_SUCCESS ——normal, successful completion.

 o STATUS_BUFFER_TOO_SMALL ——The value of the Length parameter did not specify
enough memory for the requested information. The LengthNeeded variable will be filled in
with the amount of memory needed.

 o STATUS_ACCESS_DENIED

 o STATUS_PRIVILEGE_NOT_HELD

 o STATUS_INVALID_HANDLE

x

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS/2 Opportunistic Locking Design Note

Authors: Darryl E. Havens, Chuck Lenzmeier and Brian Andrew

Revision 0.4, June 12, 1991

NT OS/2 Opportunistic Locking Design Note i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction 1
2. Background 1

2.1. What is an Oplock 1
2.2. Current LAN Manager Product Features 1
2.3. Future LAN Manager Product Features 3

3. NT OS/2 Overview 8
4. NT OS/2 Oplock Implementation 10

4.1. Obtaining an Oplock 10
4.2. Opening an Oplocked File 11
4.3. Accessing an Oplocked File 12
4.4. Releasing an Oplock 13

5. Design Issues 14
5.1. Timeouts 14
5.2. Batch Oplocks 14

6. Revision History 16

NT OS/2 Opportunistic Locking Design Note 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

This design note describes the current implementation of oplocks in the LAN Manager product for
Microsoft, its future plans, and the design and implementation of the support for this feature in the NT
OS/2 product.

2. Background

This section describes what an oplock is, its purpose, and the types of oplocks that exist today. Also
explained are the features that are being planned for future LAN Manager products.

2.1. What is an Oplock

An oplock is an opportunistic lock. It gives client machines the ability to assume certain information
about files that it has open on remote machines for the purposes of buffering information on the client
machine. Because information can be buffered on the local client, the amount of network traffic is
reduced. That is, the client does not have to write information into a file on the remote server if it
knows that no other process is accessing the file because, by definition, no one else needs to see the
data.

Likewise, the client can buffer readahead data from the file because, by definition, no one else can
change the data that has been read.

Once a file is no longer locked by the client, due to someone else opening the file, for example,
readahead data must be flushed and any write data or locks must be applied to the file. This keeps the
file in a consistent state. This is referred to as breaking the oplock.

2.2. Current LAN Manager Product Features

The current LAN Manager product provides two different types of oplocks:

 o Exclusive oplocks ——This type of locking allows a client to open a file for exclusive access.

 o Batch oplocks ——This type of locking allows a client to keep a file open on the server even
though the local accessor on the client machine has closed the file.

Exclusive oplocks are used to buffer lock information, readahead data, and write data on a client
machine because the client knows that it is the only accessor to a file on a remote node. The basic
protocol is that the redirector on the client opens the file on the remote node requesting that an oplock
be given to the client. If the file is open by anyone else, then the client is refused the oplock and no
local buffering may be performed on the local client. Notice that this also means that no readahead
may be performed to the file, unless the redirector knows that a particular range of the file is locked by
the client. Today, no readahead buffering is performed on locked ranges either.

If the client is the only accessor of the file, then the server grants the client an oplock on the file. This
informs the client redirector that it is the file's only accessor. This means that the client can perform

NT OS/2 Opportunistic Locking Design Note 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

certain optimizations for the file such as buffering lock and read/write data. This potentially greatly
reduces the amount of network traffic between the client and the server.

Batch oplocks are designed to be used where common programs on a client behave in such a way that
causes the amount of network traffic on a wire to go beyond an acceptable level for the functionality
provided by the program.

For example, the command processor today executes commands from within a command procedure by
performing the following steps:

 o Opening the command procedure.

 o Seeking to the "next" line in the file.

 o Reading the line from the file.

 o Closing the file.

 o Executing the command.

This process is repeated for each command that is to be executed from the command procedure file.
As is obvious, this type of programming model causes an inordinate amount of processing of files,
thereby creating a lot of network traffic that could otherwise be curtailed if the program were to simply
open the file, read a line, execute the command, and then read the next line.

Batch oplocking is designed to curtail the amount of network traffic by opening the command
procedure file with an oplock. By having an oplock on the file, the local client redirector can simply
skip the extraneous open and close requests. This is done by keeping the file open once it has been
opened. When the command processor then asks for the next line in the file, the redirector can either
ask for the next line from the server, or it may have already read the data from the file as readahead
data. In either case, the amount of network traffic from the client is greatly reduced.

Once the server receives either a rename or a delete request for the file that is oplocked, it must inform
the client that the oplock is to be broken if the client redirector's caller actually believes that the file has
been closed. This keeps the semantics of the view of the system consistent with what would normally
happen where the client redirector had actually closed the file each time its caller closed it.

2.3. Future LAN Manager Product Features

Future LAN Manager products will support several different types of oplocking. The five different
types that have been seriously proposed are described in this section. Of these five, the first four have
been agreed upon as the set that will be implemented in the future. Whatever design the NT OS/2
system uses, however, must take into account the desire to perhaps one day implement all of the
following types of oplocks.

NT OS/2 Opportunistic Locking Design Note 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Each of the proposed oplocks is either the same, or builds on, those features currently in the LAN
Manager product. These features are designed to further curtail the amount of network traffic on the
wire for common situations.

The types of oplocks are:

Exclusive - The same exclusive oplocks that are part of LANMAN today.
Batch - The same batch-mode oplocks that are part of LANMAN today.
Level II - Level II oplocks allow multiple readers to a file.
Restoring - This feature allows broken oplocks to be restored.
Distributed - This feature allows distributed oplocks in the network.

2.3.1. Exclusive Oplocks

The exclusive oplocks proposed for future LAN Manager products is the same functionality that is in
the current product. The protocol, in picture format, appears as follows:

 Client Server

 A ────────── open ───────────>
 <───────── oplocked ───────

 B ────────── open ───────────>

 A <───────── oplock break ───
 ────────── lock & x ───────>
 ────────── write data ─────>
 ────────── close | done ───>

 B <───────── open OK ────────

As can be seen, when client A opens the file, it can request an oplock. Provided no one else has the
file open on the server, then the oplock is granted to client A.

If, at some point in the future, another client, such as client B, requests an open to the same file, then
the server must have client A break its oplock. Breaking the oplock involves client A sending the
server any lock or write data that it has buffered, and then letting the server know that it has
acknowledged that the oplock has been broken. This synchronization message informs the server that
it is now permissible to allow client B to complete its open.

It should be noted that client A must also purge any readahead buffers that it has for the file. This is
not shown in the above diagram since no network traffic is needed to do this. Future products may
wish to continue to buffer any readahead data that client A knows is locked in the file for its caller.

NT OS/2 Opportunistic Locking Design Note 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

It is also possible for client A to complete the oplock break synchronization sequence with a close
operation rather than a done. This simply short-circuits the logic in the server to allow it to optimize
client B's open request and give it an oplock, provided that client B requested one.

2.3.2. Batch Oplocks

The batch oplock feature proposed for future LAN Manager products is very close to the functionality
that is in the current product. The protocol, in picture format, appears as follows:

 Client Server

 A ────────── open ───────────>
 <───────── oplocked ───────
 ────────── read ───────────>
 <───────── data ───────────

 <close>
 <open>
 <seek>

 ────────── read ───────────>
 <───────── data ───────────

 <close>

 B ────────── open ───────────>

 A <───────── oplock break ───
 ────────── close ──────────>

 B <───────── open OK ────────

As can be seen, when client A opens the file, it can request an oplock. Provided no one else has the
file open on the server, then the oplock is granted to client A.

Client A, in this case, keeps the file open for its caller across multiple open/close operations. Data may
be read ahead for the caller and other optimizations, such as buffering locks, can also be performed.

When another client requests an open, rename, or delete operation to the server for the file, however,
client A must cleanup its buffered data and synchronize with the server. Most of the time this involves
actually closing the file, provided that client A's caller actually believes that he has closed the file.
Once the file is actually closed, client B's open request can be completed.

The difference between this functionality and the feature as it is currently implemented is that in the
future client A will be able to specify that it would like to have client B's open request fail. That is,
client A would not drop the oplock to the file, so client B's operation should not be allowed to

NT OS/2 Opportunistic Locking Design Note 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

continue. In some senses, this is exactly as if client A had opened the file exclusively or in some mode
that is incompatible with client B's request.

2.3.3. Level II Oplocks

A level II oplock is a new feature being proposed for future LAN Manager products. This feature
allows multiple clients to have the same file open, providing that no client is performing write
operations to the file. This is important for many environments because most compatibility mode
opens from down-level clients map to an open request for shared read/write access to the file. While it
makes sense to do this, it also tends to break oplocks for other clients even though neither machine
actually intends to write to the file.

The protocol, in picture format, appears as follows:

 Client Server

 A ────────── open ───────────>
 <───────── oplock ─────────

 B ────────── open ───────────>

 A <───────── break to II ────
 ────────── lock & x ───────>
 ────────── done ───────────>

 B <───────── oplock II ──────

It should be noted that this sequence of events is very much like an exclusive oplock. The basic
difference is that the server informs the client that it should break to a level II lock when no one has
been writing the file. That is, client A, for example, may have opened the file for a desired access of
READ, and a share access of READ/WRITE. This means, by definition, that client A has not
performed any writes to the file.

When client B opens the file, the server must synchronize with client A in case client A has any
buffered locks. Once it is synchronized, client B's open request may be completed. Client B, however,
is informed that he has a level II oplock, rather than an exclusive oplock to the file.

In this case, no client that has the file open with a level II oplock may buffer any lock information on
the local client machine. This allows the server to guarantee that if any write operation is performed, it
need only notify the level II clients that the lock should be broken without having to synchronize all of
the accessors of the file.

\\ It would seem that a truly correct implementation of level II oplocks would require the
oplock to be broken whenever anyone took out a byte-range lock. This would prevent
clients from satisfying reads from previously obtained readahead data that may currently

NT OS/2 Opportunistic Locking Design Note 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

be locked. Perhaps the best approach here is heuristic that allows level II oplocks to be
retained in the face of locks until the first write. \\

The level II oplock may be broken to none, meaning that some client that had the file opened has now
performed a write operation to the file. Because no level II client may buffer lock information, the
server is in a consistent state. The writing client, for example, could not have written to a locked
range, by definition. Read ahead data may be buffered in the client machines, however, thereby
cutting down on the amount of network traffic required to the file. Once the level II oplock is broken,
however, the buffering client must flush its buffers and degrade to performing all operations on the file
across the network.

2.3.4. Restoring Oplocks

Restoring oplocks to a file once they have been broken is a feature being proposed for future LAN
Manager products. This feature allows an oplock to be reenabled to a file once it has been broken. To
cut down on the amount of network traffic required, this request is piggy-backed on top of other
requests that are normally being sent to the server. It will most likely be implemented in the SMB
protocol as a simple flag in the SMB header.

The protocol, in picture format, appears as follows:

 Client Server

 A ────────── open ───────────>
 <───────── oplock ─────────

 B ────────── open ───────────>

 A <───────── break oplock ───
 ────────── done ───────────>

 B <───────── close ──────────

 A ────────── read (oplock) ──>

The protocol for requesting that an oplock be taken out for a file is exactly the same as it is for the
previous cases. In the case of restoring oplocks, however, once the oplock has been broken, the client,
in this case client A, can request that the oplock be restored. Once client B closes the file, then the
oplock can actually be restored to client A by the server.

In the above example, then, should the server determine that the conditions are right to restore client
A's oplock, it can simply grant the oplock by sending client A an "oplock gained" message, just as it
did when client A opened the file.

Note, as well, that if client A closes the file, and client B attempts to take out an oplock on the file,
then the server can choose to give the oplock to client B.

NT OS/2 Opportunistic Locking Design Note 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.3.5. Distributed Oplocks

Distributed oplocks refer to the ability to have multiple clients accessing the same file, but giving an
oplock to the "active" client. For example, in an airline reservation system, many reservation terminals
open the central database file first thing in the morning. However, once the file is opened, the
terminals are rarely used. This means that each time a terminal operator wishes to make a transaction,
he must assume that someone else is accessing the file as well.

\\ The idea of distributed oplocks has been examined by the various individuals in both the
LAN and NT groups. To date, no plans have been agreed upon to implement this type of
oplocking. It is included herein to give the reader a broad picture of all of the possible
oplocks that have been considered.\\

If a distributed oplocking feature were added to the system, then the oplock could be given to the
"active" terminal, if no other terminals were active and hadn't been for some period of time. (Of
course, selecting the right "inactive" time is an issue.) This means that if all of the terminals were idle,
and one operator started a transaction, that terminal would be given an oplock. It would own this
oplock until it went inactive or until some other terminal attempted to access the database at the same
time.

This would reduce the network traffic and the processing involved on the oplocked client machine
because it would appear to the client as if it was the only accessor of the database file.

3. NT OS/2 Overview

The NT OS/2 product provides users of the system with the ability to perform oplocking on either a
remote node or on the local machine. That is, there are no "back doors" or hidden hacks in the system
that are needed to support the oplocking functionality. All users can oplock files. Implementing this
functionality in this manner is consistent with the design of the entire system. This also implies that no
special code need be added to allow either redirectors or network servers to provide this functionality.

Oplocking functionality in NT OS/2 is provided through the use of the NtFsControlFile system
service. This service allows a user to pass file system specific requests to the file system that is
servicing the file represented by the user's handle to it. The requests used to oplock a file are standard,
non-privileged requests.

Because the NT OS/2 I/O system is asynchronous by nature, the ability to make a request and then
have it completed at a later time makes it natural for implementing oplocks. Further, because
synchronization is required by the file system to determine when the caller has completed its oplock
update transfers, the file system can use this feature to block open requests to a file by queueing the I/O
Request Packet (IRP) to its internal file control structure until the oplock owner lets it know that it is
finished.

The user requests an oplock by submitting a request to the file system. If the return status from the
system service is failure, then the oplock is not owned. If, on the other hand, the service return status
is STATUS_PENDING, then the oplock is owned until the I/O operation is completed. At that time,

NT OS/2 Opportunistic Locking Design Note 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

the oplock may have been broken completely, or just to another level. This is indicated by the contents
of the Information field of the I/O status block.

If synchronization is required by the file system because an oplock was broken to a level which
requires this, then the user must flush his buffers, locks, etc. to the file system and then submit another
I/O request that specifies that the operation that caused the oplock to break may now be continued.

Given this simple, straightforward design, all of the oplock types can be implemented. Note that
because the user actually asks for the oplock after the file is open, rather than at the time the file is
opened, oplock restoring falls out.

Implementing a redirector using this design is also straightforward. The redirector always requests an
oplock when it attempts to perform an open operation on a remote file. It must also remember whether
or not it has gotten the oplock (so it can perform the appropriate local buffering, etc.) When the local
user asks for an oplock to the file, the redirector simply completes the request accordingly.

Implementing a server is done in much the same way. If the remote redirector requests an oplock to
the file, then the server opens the file and requests an oplock. It then relays whether or not it gained
the oplock to the remote redirector.

When it receives a request to open a file that is oplocked, the file system blocks the open request and
begins the process of breaking the oplock. Because opening a file in NT OS/2 is a synchronous
operation, this means that the opener's thread is blocked while the oplock is broken. Openers can
avoid having their thread blocked by specifying an option on their call to NtCreateFile or
NtOpenFile. If this option is specified, and the file is oplocked, the file system starts the oplock break,
then immediately releases the opener's thread, specifying the status code for the open operation and the
opener receives a handle to the file. A distinguished success code of
STATUS_OPLOCK_BREAK_IN_PROGRESS is used in this case. When this handle is used to
access the file, the operation will block or return STATUS_PENDING if the requested operation
cannot complete immediately due to the state of the oplock.

4. NT OS/2 Oplock Implementation

The NT OS/2 I/O system provides users with the ability to oplock files by using three FS control
functions to the file system servicing the open file, in addition to a file open option.

4.1. Obtaining an Oplock

All oplocks are requested on the open file by invoking the NtFsControlFile service with the handle to
the open file and one of the following request codes. For more information on the NtFsControlFile
system service, see the NT OS/2 I/O System Specification.

 o Request level I oplock. ——This function requests that an exclusive oplock to the file be granted.
This type of request is consistent with the exclusive oplock discussed in previous sections. If
the I/O request service status is an error, then the oplock was not granted. Otherwise, the

NT OS/2 Opportunistic Locking Design Note 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

request was granted and is held by the requestor until the file is closed or the I/O request
completes later, indicating that the oplock has been broken to a level II oplock or no oplock.

 The file system control code for this function is FSCTL_REQUEST_OPLOCK_LEVEL_1.
The input and output buffers are not used. If the oplock was granted, then when the I/O request
completes, the Information field of the I/O status block indicates whether the oplock has been
broken to level II (FILE_OPLOCK_BROKEN_TO_LEVEL_2) or to none
(FILE_OPLOCK_BROKEN_TO_NONE).

 o Request level II oplock. ——This function requests that a Level II oplock to the file be granted.
Again, if the I/O request service status is an error, then the oplock was not granted. Otherwise,
the request was granted and is held by the requestor until the file is closed or the I/O request
completes at a later date. If the latter occurs, then the oplock has been broken to none.

 The file system control code for this function is FSCTL_REQUEST_OPLOCK_LEVEL_2.
The input and output buffers are not used.

 o Request batch oplock. ——This function requests that a Batch Oplock to the file be granted. The
semantics of a batch oplock are the same as for level I oplocks except that a subsequent open of
the file will initiate the oplock break before the access sharing check is made. Unless specified,
all references to level I oplocks will also refer to batch oplocks.

 The file system control code for this function is FSCTRL_REQUEST_BATCH_OPLOCK. If
the oplock was granted, then when the I/O request completes, the Information field of the I/O
status block indicates whether the oplock has been broken to level II
(FILE_OPLOCK_BROKEN_TO_LEVEL_2) or to none
(FILE_OPLOCK_BROKEN_TO_NONE).

If the NtFsControlFile service (not the I/O request) completes with a status other than
STATUS_PENDING, then the oplock was not granted. If the status is STATUS_PENDING, then the
caller owns an oplock on the file. In this case, the I/O request does not complete unless and until the
oplock is broken.

If a level I oplock is requested, but the file is already oplocked (at any level), the request is rejected. If
a level II oplock is requested, but the file is already oplocked at level I, the request is rejected. If a
level II oplock is request on a file that is already oplocked at level II, the request is accepted.

If the owner of a level I oplock requests a level II oplock, the request is rejected.

If the owner of a level II oplock requests a level I oplock and no one else has the file open, then the
level II oplock will be broken and the level I oplock will be granted. The level II oplock is broken by
completing the Irp used in granting the level II oplock.

NT OS/2 Opportunistic Locking Design Note 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4.2. Opening an Oplocked File

When an oplocked file is opened again, the file system initiates an oplock break. This involves
completing the FS control request(s) that created the oplock. The file system normally blocks the
second open request (and subsequent opens) while the oplock is being broken.

For a level I oplock, the oplock is not considered broken until the owner of the lock issues an Accept
Oplock Break FS control (see next section). This allows the owner to flush writebehind data and byte-
range locks to the file before releasing the oplock.

For a level II oplock, the oplock is considered broken immediately; the owner has no writebehind data
or locks to flush, so there is no need to wait for acknowledgement. The owner need not issue an
Accept Oplock Break request, but the file system should not consider it an error if one is issued.

An opener can avoid having its thread blocked while waiting for a level I oplock to be broken by
specifying the FILE_COMPLETE_IF_OPLOCKED option on the call to NtCreateFile or
NtOpenFile. If this option is specified, and the file is oplocked at level I, the file system starts the
oplock break, then immediately releases the opener's thread by completing the I/O request. The status
of the I/O is STATUS_OPLOCK_BREAK_IN_PROGRESS, and the Information field of the I/O status
block is determined by the result of the open, disregarding the oplock state of the file. The opener
receives a handle to the file and may access the file using this handle. If the file is accessed and the
operation cannot complete until the oplock break is completed, then the calling thread will block or
STATUS_PENDING will be returned based on whether the operation is synchronous or
asynchronous.

Batch oplocks present a problem in that a remote user may have opened a file with restricted share
access (read-only). A batch oplock is obtained on this open file. The remote user may call to close the
file, but the redirector holds the file open in anticipation of future open and read calls. When the
remote user attempts to reopen the file with more liberal access (read-write), the open will fail unless
the redirector acknowledges the oplock break and closes the file. The share access check for any
subsequent opens of a file with a batch oplock will be blocked until the owner of the oplock has
acknowledged the oplock break and closed the file (if it intends to do so). This subsequent open may
elect not to block by specifying FILE_COMPLETE_IF_OPLOCKED, but this may cause the open to
fail due to performing the share access check prematurely.

4.3. Accessing an Oplocked File

If an opener specifies that the open operation is not to block due to the oplock state of a file, then it is
possible that the file may be accessed via a handle created in this way prior to the completion of the
oplock break. This has no effect on files with a level 2 oplock, as they are broken immediately.
Breaking a level 1 oplock requires an acknowledgement from the owner of the oplock after locally
buffered data and lock requests are flushed. An operation requested on the file during the oplock break
operation will be blocked pending the completion of the oplock break. If the requested operation is a
synchronous operation, the thread will block pending the completion of the oplock break. Otherwise

NT OS/2 Opportunistic Locking Design Note 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

STATUS_PENDING is returned and the IRP is completed when the oplock break acknowledgement is
received.

The above conditions apply to the following operations:

 o NtReadFile -- All read operations on the file will be blocked.

 o NtLockFile -- All byte range lock requests on the file will be blocked.

 o NtUnlockFile -- All byte range unlock requests on the file will be blocked.

 o NtQueryInformationFile -- Any query operation involving the following file information
classes will be blocked: FileBasicInformation, FileStandardInformation or
FileAllInformation.

 o NtSetInformationFile -- Any set informtion operation involving the following file information
classes will be blocked: FileBasicInformation, FileAllocationInformation or
FileEndOfFileInformation.

 o NtWriteFile -- All write operations on the file will be blocked.

4.4. Releasing an Oplock

In response to the breaking of a level I oplock, the owner of the lock must flush any pending write
behind data and lock requests. The owner then issues the following NtFsControlFile request:

 o Accept oplock break. ——This function is used to synchronize with the file system once an
oplock has been broken. When this request is issued, the file system restarts any pending open
requests and any operations blocked pending the completion of the oplock break. The file
system control code for this function is FSCTL_OPLOCK_BREAK_ACKNOWLEDGE.

 If the level 1 oplock is being broken to level 2, then the IRP used to acknowledge the oplock
break is treated as a request for a level 2 oplock. If the level 2 oplock can be granted at this
time, then STATUS_PENDING is returned. Any other return code indicates that the level 2
oplock is not granted. The IRP will be completed when the level 2 oplock is later broken.

 o Releasing a Batch Oplock. ——When a batch oplock break is initiated, the original Irp is is
completed with a status indicating whether the oplock is being broken to none or to level II.
The owner of the oplock will need to update the file with any locally buffered changes and then
acknowledge the oplock break. The file system control code in this case is
FSCTL_OPLOCK_BREAK_ACKNOWLEDGE.

 In many cases the oplock break acknowledgement is followed immediately by a close call. In
this case, it is desirable to hold off any opens of the file until the close is performed. If the
oplock break is acknowledged with the file system control code

NT OS/2 Opportunistic Locking Design Note 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

FSCTL_OPBATCH_ACK_CLOSE_PENDING, then the in-process open and any subsequent
opens will be blocked until remote close operation has been completed.

An oplock break may be initiated by the owner of either a level 1 or level 2 oplock by calling NtClose
on the handle used to request the oplock. In the case of a level 1 oplock, the close operation also
serves as the acknowledgement of the oplock break. The IRPs for the oplocks are completed and any
operations pending due to the oplock state are continued. NOTE -- This action occurs in the "Cleanup"
operation in the file systems, not the "Close" operation.

5. Design Issues

This section presents the issues that need to be resolved before the oplock design herein can be fully
implemented.

5.1. Timeouts

In the LAN Manager product today, timeouts are implemented on the server once it has broken an
oplock for a client redirector. The redirector has 45 seconds (or so) to cleanup its buffered data, flush
its locks, etc., and then submit the packet that specifies that it is okay to continue. If this doesn't occur
within the specified timeout period, then the redirector's session is closed.

The issue here is two-fold:

 1. Should the local machine attempt to timeout a user in the same manner, and if so, what should
the timeout value be and how does the file system efficiently implement this?

 2. If the local file system times out users, what should the action be? In the remote case the
redirector's session is lost. This is unfortunate because this means that the file is left in an
inconsistent state. Perhaps in the local case the original accessor should be given exclusive
access to the file?

5.2. Batch Oplocks

It's not clear whether NT OS/2 needs to implement specific support for batch oplocks. The distinction
is made in OS/2 because open files in that system cannot be deleted or renamed. In NT OS/2, the
target file must be open in order to be deleted and renamed. The ability to delete or rename a file that
someone else has open is controlled by sharing modes.

This implies that exclusive vs. batch oplocks can be implemented in the following way:

 o An application can obtain OS/2 semantics for exclusive oplocks by not specifying
FILE_SHARE_DELETE. Attempts to open the file for delete or rename will fail, and the
oplock will be retained.

NT OS/2 Opportunistic Locking Design Note 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o An application can obtain OS/2 semantics for batch oplocks by specifying
FILE_SHARE_DELETE. An attempt to open the file for delete or rename will cause the oplock
to be broken.

The NT OS/2 LAN Manager server could implement batch oplocks in this manner. The server
normally opens files without FILE_SHARE_DELETE, in order to obtain the sharing semantics
required by the SMB protocol. However, if a file is opened with a batch oplock requested, the server
could allow sharing for delete and rename.

This leads to a potential problem:

If the server allows delete sharing, but is then unable to obtain the oplock, then we have a situation in
which the normal sharing rules are not being obeyed ——the file can be deleted or renamed out from
under the client. Perhaps this is not a problem; perhaps it is a small price to pay. On the other hand, to
maintain the sharing rules, perhaps the server should close the file and reopen it without delete sharing.

Now suppose that we do obtain the oplock, but it is subsequently broken. Again, we have the file open
with delete allowed, and the questions above apply. This problem may not be important, however,
because the response to a batch oplock break should be to close the file.

NT OS/2 Opportunistic Locking Design Note 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6. Revision History

Original Draft Revision 0.1, April 2, 1990

Revision 0.2, August 15, 1990 -- Implementation details added

Revision 0.3, January 2, 1991 -- Implementation details of initial implementation added.
Corrections to initial implementation details made.

Revision 0.4, June 12, 1991 -- Interface extended to support batch oplocks.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

OS/2 Emulation Subsystem Specification

Author: Steven R. Wood

Revision 1.0, January 19, 1990
Original Draft August 15, 1989

OS/2 Emulation Subsystem Specification i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview.. 1
1.1 OS/2 DLL State... 1
1.2 OS/2 Server State.. 1
1.3 OS/2 Kernel Extension State .. 2
1.4 Process Structure... 2
1.5 Name Processing... 4
1.6 File Handle Processing ... 4
1.7 32 Bit OS/2 API Summary ... 5
1.8 Rationale for Not Implemented OS/2 API Calls... 8

OS/2 Emulation Subsystem Specification 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview

This specification describes the design and implementation of the OS/2 Emulation Subsystem for NT
OS/2. The subsystem consists of a dynamic link library (DLL) that resides in the OS/2 application's
address space, a server process that maintains global state across all OS/2 applications and an NT OS/2
Kernel Extension that runs in Kernel Mode and implements the OS/2 Semaphore primitives.

The DLL exports as entry points all of the 32 bit Dos32 API's defined by OS/2 Version 2.0 (Cruiser).
Some of the entry points, that only manipulate process private state are implemented entirely in the
DLL. Others call the OS/2 Subsystem server to access and/or modify the global state it maintains.
Finally, the 32 bit Dos Semaphore API's call the OS/2 Subsystem Kernel Extension.

For the remainder of this document, these three components will be referred to as: the OS/2 Server, the
OS/2 DLL and the OS/2 Kernel Extension.

1.1 OS/2 DLL State

The OS/2 DLL maintains the following information for each OS/2 process:

 o Current drive

 o Current directory for each drive

 o Environment variables

 o Command line

 o OS/2 File handle table

 o Hard Error and Verify flags

 o Thread Information Block (TIB) for each thread

1.2 OS/2 Server State

The OS/2 Server maintains the following state:

 o Hierarchy of OS/2 processes

 o List of threads for each process

 o Exit list procedures for each process

 o Shadow of file handle table for each process

 o Queues, Pipes and Shared memory objects

OS/2 Emulation Subsystem Specification 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Keyboard buffer for Dos32Read calls to Standard Input

 o Listen Thread that listens for connection requests from OS/2 applications.

 o Keyboard Thread that is waiting on a Presentation Manager message queue for keyboard
events. This message queue is associated with any character mode window. In the current
OS/2 1.1 implementation, this thread runs in the task manager process.

 o Request Threads. The number of request threads will vary dynamically based on the number of
outstanding connections to OS/2 applications. The exact ratio will be determined during
performance analysis.

 o Exception Port Thread that is waiting for exceptions for OS/2 application threads that were not
handled.

 o Session Manager Thread that is dedicated to servicing requests from the NT OS/2 Session
Manager

1.3 OS/2 Kernel Extension State

The OS/2 Kernel Extension maintains the following state:

 o OS/2 Event Semaphore objects

 o OS/2 Mutex Semaphore objects

 o OS/2 MuxWait Semaphore objects

1.4 Process Structure

The OS/2 Server is responsible for creating all OS/2 processes and maintain a process tree structure
that describes the relationship between OS/2 processes. For each process the following information is
maintained:

 o OS/2 PID value

 o NT OS/2 Process Handle

 o Parent process

 o Sibling process list

 o Child process list

 o Thread Table

 o File Handle Table

OS/2 Emulation Subsystem Specification 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Process creation is the result of one of several external events:

 o an OS/2 application calls Dos32ExecPgm

 o an OS/2 application calls Dos32StartSession

 o the NT OS/2 Session Manager calls the OS/2 Server to start an OS/2 application.

 o opens the image file

 o creates a process with that image file mapped

 o extracts the entry address and program type from the image header

 o allocates a stack and fills in the TEB with the stack bounds

 o creates a suspended thread with an initial context that points to the correct entry address and
stack

 o Client Id

 o Process and Thread handles

 o Type of image file

If the type of the image is not OS/2, then the OS/2 Server will pass the information returned by
SmCreateImageFileProcess back to the Session Manager and allow it to communicate the information
to the appropriate subsystem (e.g. Posix). When this happens, a node is still created in the OS/2
process structure so that the foreign process has a valid process Id in the OS/2 world.

Finally, the OS/2 Server can be called by the Session Manager with an OS/2 process that was created
by another subsystem calling the SmCreateImageFileProcess routine. In this case the OS/2 Server will
add the process as a top level OS/2 process whose parent process is the dummy process at the root of
the OS/2 process tree.

Threads within an OS/2 process are also created and managed by the OS/2 Server. The server will
maintain a doubly linked list of all the threads created by the client calling the Dos32CreateThread API
within a given OS/2 process. For each thread, the following information will be maintained:

 o Thread list pointers

 o Client Id

 o OS/2 TID value

 o NT OS/2 Thread Handle

OS/2 Emulation Subsystem Specification 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Address of OS/2 TIB in client's address space

 o Address of NT OS/2 TEB in client's address space

1.5 Name Processing

All file name parsing occurs in the OS/2 DLL. It maintains the following information in the address
space of each OS/2 process:

 o Current Drive

 o Current Directory for each drive

\OS2\Drives\A: => \Device\Floppy1
\OS2\Drives\B: => \Device\Floppy2
\OS2\Drives\C: => \Device\SCSI0
\"LogonDirectory"\OS2\Drives\A: => \OS2\Drives\A:
\"LogonDirectory"\OS2\Drives\B: => \OS2\Drives\B:
\"LogonDirectory"\OS2\Drives\C: => \OS2\Drives\C:
\"LogonDirectory"\OS2\Drives\D: => \"LogonDirectory"\Net\Portasys

The double level of indirection is to allow separation of network connections between logon sessions.
In order to map an OS/2 file name, into an NT OS/2 file name, the following logic will be performed
by the OS/2 DLL:

 o If no drive letter, supply current drive from process state.

 o If first character after drive letter, colon is not a path separator, then supply current directory for
the drive letter from process state.

 o Scan the remainder of the file name, removing any relative path specifiers (. and ..) by shifting
file name characters left and removing path separators.

 o At the same time convert any forward slash (/) path separators to back slashes (\).

 o Finally, insert the \"LogonDirectory"\OS2\Drives\ string at the front of the file name.

When querying a name from NT OS/2, a reverse of some of the logic above needs to be performed.
Since the only API calls that return path names are the FindFirst and FindNext, the FindFirst code can
cache the user specified path name so that it and FindNext can use it to format the return buffer. This
prevents the OS/2 DLL from having to decode the reverse symbolic link path that leads from
\Device\SCSI0 to C:

1.6 File Handle Processing

The OS/2 Server will maintain the OS/2 File Handle table in its process state. The file handle table
will be indexed by OS/2 File Handles, which are small integers, starting from 0 and going to some
maximum amount. The OS/2 DLL will impose no limit on the number of file handles, other than
available memory for the file handle table. The OS/2 DLL will allocate chunks of memory that hold

OS/2 Emulation Subsystem Specification 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

64 file handles. If more than 64 file handles are created, then two chunks will be allocated, one to hold
the second group of file handles and another to act as a layer of indirection that leads to either the first
or second chunks of file handles.

For each file handle, the following information is maintained:

 o NT OS/2 File Handle

 o Flags

 o Handler

The handler associated with each file handle will enable the API stubs to dispatch to the appropriate
code based on the type of the file handle (NT OS/2 File Handle, OS/2 Pipe Handle, etc.).

1.7 32 Bit OS/2 API Summary

Below is a complete list of all the 32-Bit OS/2 API calls supported by OS/2 2.0 (aka Cruiser). For
each call, it is identified whether the call is implemented in the OS/2 Server, the OS/2 DLL, the OS/2
Kernel Extension or not implemented. In the case of calls implemented in the OS/2 Server, there is
also work done in the OS/2 DLL to prepare the parameters for the server and to process the results
from the call to the server.

OS/2 Emulation Subsystem Specification 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Dos32QuerySysInfo DLL
Dos32Error DLL
Dos32CreateThread Server
Dos32WaitChild Server
Dos32WaitThread Server
Dos32EnterCritSec Server
Dos32ExitCritSec Server
Dos32ExecPgm Server
Dos32Exit Server
Dos32ExitList Server
Dos32GetThreadInfo DLL
Dos32SetPriority DLL
Dos32KillProcess Server
Dos32ResumeThread Server
Dos32SuspendThread Server
Dos32CreatePipe Server
Dos32CallNPipe Server
Dos32ConnectNPipe Server
Dos32DisConnectNPipe Server
Dos32CreateNPipe Server
Dos32PeekNPipe Server
Dos32QueryNPHState Server
Dos32QueryNPipeInfo Server
Dos32QueryNPipeSemState Server
Dos32RawReadNPipe Server
Dos32RawWriteNPipe Server
Dos32SetNPHState Server
Dos32SetNPipeSem Server
Dos32TransactNPipe Server
Dos32WaitNPipe Server
Dos32CreateQueue Server
Dos32OpenQueue Server
Dos32CloseQueue Server
Dos32PeekQueue Server
Dos32PurgeQueue Server
Dos32QueryQueue Server
Dos32ReadQueue Server
Dos32WriteQueue Server
Dos32CreateEventSem Kernel Extension
Dos32OpenEventSem Kernel Extension
Dos32CloseEventSem Kernel Extension
Dos32ResetEventSem Kernel Extension
Dos32PostEventSem Kernel Extension
Dos32WaitEventSem Kernel Extension
Dos32QueryEventSem Kernel Extension
Dos32CreateMutexSem Kernel Extension
Dos32OpenMutexSem Kernel Extension
Dos32CloseMutexSem Kernel Extension
Dos32RequestMutexSem Kernel Extension
Dos32ReleaseMutexSem Kernel Extension
Dos32QueryMutexSem Kernel Extension
Dos32CreateMuxWaitSem Kernel Extension
Dos32OpenMuxWaitSem Kernel Extension
Dos32CloseMuxWaitSem Kernel Extension
Dos32WaitMuxWaitSem Kernel Extension
Dos32AddMuxWaitSem Kernel Extension
Dos32DeleteMuxWaitSem Kernel Extension
Dos32QueryMuxWaitSem Kernel Extension
Dos32GetDateTime DLL
Dos32SetDateTime DLL
Dos32Sleep DLL
Dos32AsyncTimer DLL
Dos32StartTimer DLL
Dos32StopTimer DLL

OS/2 Emulation Subsystem Specification 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Dos32AliasMem not implemented
Dos32AllocMem DLL
Dos32AllocSharedMem Server
Dos32GetNamedSharedMem Server
Dos32GetSharedMem Server
Dos32GiveSharedMem Server
Dos32FreeMem DLL
Dos32SetMem DLL
Dos32QueryMemState not implemented
Dos32QueryMem DLL
Dos32SubAlloc DLL
Dos32SubFree DLL
Dos32SubSet DLL
Dos32LoadModule Server
Dos32FreeModule Server
Dos32QueryProcAddr Server
Dos32QueryModuleHandle Server
Dos32QueryModuleName Server
Dos32GetResource Server
Dos32QueryAppType Server
Dos32Beep DLL
Dos32DevConfig DLL
Dos32PhysicalDisk not implemented
Dos32ScanEnv DLL
Dos32SearchPath DLL
Dos32QueryVerify DLL
Dos32SetVerify DLL
Dos32SetMaxFH DLL
Dos32Open Server
Dos32SetFHState DLL
Dos32QueryFHState DLL
Dos32QueryHType DLL
Dos32QueryFileMode DLL
Dos32SetFileMode DLL
Dos32SetFileInfo DLL
Dos32QueryFileInfo DLL
Dos32ResetBuffer DLL
Dos32SetFilePtr DLL
Dos32Read DLL
Dos32Write DLL
Dos32Close Server
Dos32DevIOCtl not implemented
Dos32DupHandle Server
Dos32FileIO DLL
Dos32SetFileLocks DLL
Dos32SetFileSize DLL
Dos32FindFirst DLL
Dos32FindNext DLL
Dos32FindClose DLL
Dos32FindNotifyFirst DLL
Dos32FindNotifyNext DLL
Dos32FindNotifyClose DLL
Dos32SetDefaultDisk DLL
Dos32QueryCurrentDisk DLL
Dos32SetCurrentDir DLL
Dos32QueryCurrentDir DLL
Dos32Delete DLL
Dos32EditName DLL
Dos32QueryPathInfo DLL
Dos32SetPathInfo DLL
Dos32SetCurrentDir DLL
Dos32CreateDir DLL
Dos32DeleteDir DLL
Dos32Move DLL

OS/2 Emulation Subsystem Specification 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Dos32Copy DLL
Dos32FSAttach not implemented
Dos32FSCtl not implemented
Dos32QueryFSAttach not implemented
Dos32SetFSInfo not implemented
Dos32QueryFSInfo not implemented
Dos32GetMessage DLL
Dos32InsertMessage DLL
Dos32PutMessage DLL
Dos32SetProcessCp DLL
Dos32QueryCp DLL
Dos32QueryCtryInfo DLL
Dos32QueryDBCSEnv DLL
Dos32QueryCollate DLL
Dos32MapCase DLL
Dos32StartSession Server
Dos32SetSession Server
Dos32SelectSession Server
Dos32StopSession Server
Dos32SetExceptionHandler DLL
Dos32UnsetExceptionHandler DLL
Dos32RaiseException DLL
Dos32UnwindException DLL
Dos32SendException eliminated(D658)
Dos32FlagProcess eliminated(D658)
Dos32ErrClass DLL

1.8 Rationale for Not Implemented OS/2 API Calls

Dos32QueryMemState is an internal API added for Component Test and performance testing. It is not
part of the OS/2 2.0 API, even though it appears in BSEDOS.H.

Dos32AliasMem is an internal API added to support the 32 to 16 bit thunk code. It is not part of the
OS/2 2.0 API, even though it appears in BSEDOS.H.

The five Installable File System calls: Dos32FSAttach, Dos32FSCtl, Dos32QueryFSAttach,
Dos32SetFSInfo and Dos32QueryFSInfo are not implemented because Portable OS/2 is not
compatible with existing IFS implementations.

Dos32DevIOCtl is not implemented because Portable OS/2 is not compatible with existing OS/2
device drivers. In addition, the Dos32DevIOCtl API in OS/2 V2.0 is only specified to work with 16
bit device drivers.

Dos32PhysicalDisk is not implemented because it provides a means for accessing the physical media
via Dos32DevIOCtl calls, which is not implemented for Portable OS/2. We made need to support the
ability of the Dos32PhysicalDisk API to return partition information for a drive, but for now there is no
plan to do so.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT Prefix Table Specification

Author: Gary D. Kimura

Revision 1.2, August 2, 1989

Windows NT Prefix Table Specification i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction..1

2. Initializing a Prefix Table...1

3. Adding a New Prefix ..2

4. Removing a Prefix ...2

5. Locating a Prefix ...2

6. Enumerating a Prefix Table...3

Windows NT Prefix Table Specification 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

This specification describes the Windows NT routines that implement a prefix table
package. The Windows NT prefix table package is designed for storing and
matching path name prefixes.

The prefix table package exports two opaque types, one is a prefix table used to
denote a collection of prefixes, and the other is a prefix table entry used to denote a
prefix. A user of this package first initializes a prefix table variable and then either
inserts or deletes prefixes, or finds the longest matching prefix in the table.

To utilize this package, the caller needs to define a local structure to contain a prefix
table entry. When inserting a new prefix, the caller then supplies a prefix table,
prefix string, and a prefix table entry.

To look up a prefix the caller supplies a prefix table and a full path name. If a prefix
match is found, the look up procedure returns a pointer to the prefix table entry
corresponding to the located prefix. The programmer can then use the
CONTAINING_RECORD macro to associate the prefix table entry with the local data
structures.

Only prefixes that match whole logical parts of a path name are returned. For
example, if a table contains the prefix "\Alpha\Beta" then a look up on "\Alpha\",
"\Alpha\Bet" and "\Alpha\BetaGamma" will be unsuccessful, but a look up on
"\Alpha\Beta" and "\Alpha\Beta\Gamma" will be successful.

The APIs that implement the prefix table package are the following:

PfxInitialize - Initialize a prefix table.
PfxInsertPrefix - Add a new prefix to a prefix table.
PfxRemovePrefix - Remove an existing prefix from a prefix table.
PfxFindPrefix - Search a prefix table for the longest matching prefix.
PfxNextPrefix - Enumerate all of the prefixes stored in a prefix table.

2. Initializing a Prefix Table

A prefix table is initialized with the PfxInitialize procedure.

Windows NT Prefix Table Specification 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
PfxInitialize (
 IN PPREFIX_TABLE PrefixTable
);

Parameters:

PrefixTable - A pointer to the prefix table variable being initialized

A prefix variable cannot be used by the other procedures until it has been
initialized.

3. Adding a New Prefix

A user adds a new prefix to a prefix table with the PfxInsertPrefix procedure. The
prefix is only added if it is not already in the table.

BOOLEAN
PfxInsertPrefix (
 IN PPREFIX_TABLE PrefixTable,
 IN PSTRING Prefix,
 IN PPREFIX_TABLE_ENTRY PrefixTableEntry
);

Parameters:

PrefixTable - A pointer to the prefix table being modified

Prefix - The string to add to the prefix table

PrefixTableEntry - A pointer to the prefix table entry to use to denote the prefix

This procedure has a return value of TRUE if the prefix was not already in the table,
and FALSE otherwise.

The prefix table keeps a reference to the input Prefix string, so once a prefix is added
the input string must not be changed by the user.

4. Removing a Prefix

A user removes an existing prefix from a prefix table with the PfxRemovePrefix
procedure.

Windows NT Prefix Table Specification 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
PfxRemovePrefix (
 IN PPREFIX_TABLE PrefixTable,
 IN PPREFIX_TABLE_ENTRY PrefixTableEntry
);

Parameters:

PrefixTable - A pointer to the prefix table being modified

PrefixTableEntry - A pointer to the prefix table entry to remove from the prefix
table

5. Locating a Prefix

A user searches a prefix table for the longest matching prefix with the
PfxFindPrefix procedure.

PPREFIX_TABLE_ENTRY
PfxFindPrefix (
 IN PPREFIX_TABLE PrefixTable,
 IN PSTRING FullString,
 IN BOOLEAN CaseInsensitive
);

Parameters:

PrefixTable - A pointer to the prefix table being queried

FullString - A pointer to the string to use as the key in searching the prefix
table

CaseInsensitive - Indicates if the prefix look up should be preformed in a
manner that ignores the case (CaseInsensitive is TRUE) or expects an
exact, case sensitive, match (CaseInsensitive is FALSE)

This procedure returns a pointer to the prefix table entry corresponding to the
longest prefix that matches the input string if one exists and NULL otherwise.

6. Enumerating a Prefix Table

A user can enumerate all of the elements of a prefix table with the PfxNextPrefix
procedure.

Windows NT Prefix Table Specification 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

PPREFIX_TABLE_ENTRY
PfxNextPrefix (
 IN PPREFIX_TABLE PrefixTable,
 IN BOOLEAN Restart
);

Parameters:

PrefixTable - A pointer to the prefix table being enumerated

Restart - Indicates if the enumeration should start over

This procedure returns a pointer to the next prefix stored in the prefix table, or
NULL if there are no more entries. The following code fragment illustrates how a
programmer uses this procedure to enumerate all of the elements of a prefix table.

for (PfxTableEntry = PfxNextPrefix(PrefixTable, TRUE);
 PfxTableEntry != NULL;
 PfxTableEntry = PfxNextPrefix(PrefixTable, FALSE)) {

 LocalRecord = CONTAINING_RECORD(PfxTableEntry,
 LOCAL_RECORD,
 PrefixTableEntry);
 ...
}

Windows NT Prefix Table Specification 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History:

Original Draft 1.0, August 1, 1989

Revision 1.1, August 2, 1989

1. Added statement concerning how the prefix table keeps a pointer back
to the input prefix string.

2. Changed PfxAddPrefix to PfxInsertPrefix.

3. Dropped PrefixLength from PfxFindPrefix, and added CaseInsensitive
parameter.

4. Changed PfxNextPrefix prototype and added example of its use.

Revision 1.2, August 3, 1989

1. Changed PfxFindPrefix to return a pointer to the table entry if one is
found instead of an OUT parameter.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT Process Structure

Author: Mark Lucovsky

Revision 1.27, January 14, 1992

Windows NT Process Structure i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview.. 1

2. Process Structure Objects .. 1

3. Process Object APIs .. 1
3.1 Access Type And Privilege Information... 2
3.2 NtCreateProcess.. 4
3.3 NtTerminateProcess.. 5
3.4 NtCurrentProcess .. 6
3.5 NtCurrentPeb .. 7
3.6 NtOpenProcess.. 8
3.7 NtQueryInformationProcess ... 8
3.8 NtSetInformationProcess .. 12

4. Thread Object APIs ... 14
4.1 Access Type And Privilege Information... 14
4.2 NtCreateThread... 16
4.3 NtTerminateThread... 19
4.4 NtCurrentThread ... 20
4.5 NtCurrentTeb .. 20
4.6 NtSuspendThread.. 21
4.7 NtResumeThread .. 22
4.8 NtGetContextThread... 22
4.9 NtSetContextThread ... 23
4.10 NtOpenThread... 24
4.11 NtQueryInformationThread .. 25
4.12 NtSetInformationThread ... 27
4.13 NtImpersonateThread ... 28
4.14 NtAlertThread ... 29
4.15 NtTestAlert ... 29
4.16 NtAlertResumeThread .. 30
4.17 NtRegisterThreadTerminationPort ... 30
4.18 NtImpersonateThread ... 32

5. System Information API .. 33
5.1 NtQuerySystemInformation.. 33

6. Executive APIs .. 35
6.1 PsCreateSystemProcess .. 36
6.2 PsCreateSystemThread ... 37
6.3 PsLookupProcessThreadByCid .. 37
6.4 PsChargePoolQuota .. 38
6.5 PsReturnPoolQuota... 38
6.6 PsGetCurrentThread ... 39

Windows NT Process Structure ii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6.7 PsGetCurrentProcess... 39
6.8 KeGetPreviousMode... 39
6.9 PsRevertToSelf ... 39
6.10 PsReferencePrimaryToken ... 40
6.11 PsDereferencePrimaryToken .. 40
6.12 PsReferenceImpersonationToken ... 41
6.13 PsDereferenceImpersonationToken.. 41
6.14 PsOpenTokenOfProcess ... 42
6.15 PsOpenTokenOfThread .. 43
6.16 PsImpersonateClient ... 44

Windows NT Process Structure 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview

This specification describes the Windows NT process structure.

The Windows NT system is designed to support both an OS/2 and a POSIX operating system
environment. Rather than packaging all of the capabilities of these operating system environments into
the Windows NT kernel and executive, the system has been designed so that robust, protected
subsystems can be built to provide the necessary API emulation.

The Windows NT approach is very similar to the approach taken in Carnegie Mellon's MACH
operating system. The MACH system design is based on a simple process structure, IPC mechanism,
and virtual memory system. Using these primitives, MACH is able to implement both POSIX and
Unix 4.3BSD operating system environments as protected subsystems.

Like MACH, the Windows NT process structure provides a very basic set of services. The system
does not provide a hierarchical process tree structure, global process names (PIDs), process grouping,
job control, complex process or thread termination semantics, or other more traditional process
structures. It does provide a complete set of services that subsystems can use to provide the set of
semantics that are required by a particular operating system environment.

Using this set of services, vendors and users can develop applications based on either the OS/2 or
POSIX APIs (implemented as protected subsystems by Microsoft). An alternative to this is to develop
applications using the native Windows NT system services or to develop custom subsystems and have
the applications use these subsystems.

2. Process Structure Objects

The process structure is based on two types of objects. A process object represents an address space, a
set of objects (resources) visible to the process, and a set of threads that executes in the context of the
process. A thread object represents the basic schedulable entity in the system. It contains its own set of
machine registers, its own kernel stack, a thread environment block (TEB), and user stack in the
address space of its process.

The Windows NT process structure works with the overall Windows NT security architecture. Each
process is assigned an access token, called the primary token of the process. The primary token is used
by default by the process's threads when referencing a Windows NT object.

In addition to the primary token, each thread may have an impersonation token associated with it.
When this is done, the impersonation token, rather than the process's primary token, is used for access
validation purposes. This is done to allow efficient impersonation of clients in a client-server model.

3. Process Object APIs

The following programming interfaces support the process object:

NtCreateProcess - Creates a process object.

Windows NT Process Structure 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NtTerminateProcess - Terminates a process object.
NtCurrentProcess - Identifies the currently executing process.
NtCurrentPeb - Returns the address of the current processes Process Environment Block (PEB).
NtOpenProcess - Creates a handle to a process object.
NtQueryInformationProcess - Returns information about the process.
NtSetInformationProcess - Sets information about the process.

3.1 Access Type And Privilege Information

Object type-specific access types:

The object type-specific access types are defined below.

PROCESS_TERMINATE - Required to terminate a process.

PROCESS_CREATE_THREAD - Required to create a thread in a process.

PROCESS_VM_OPERATION - Required to manipulate the address space of a process. This
does not include reading and writing the memory of a process.

PROCESS_VM_READ - Required to read the virtual memory of a process (through Windows
NT APIs).

PROCESS_VM_WRITE - Required to write the virtual memory of a process (through
Windows NT APIs).

PROCESS_DUP_HANDLE - Required to duplicate an object handle visible to a process.

PROCESS_CREATE_PROCESS - Required to create a process.

PROCESS_SET_QUOTA - Required to modify the quota limits of a process.

PROCESS_SET_INFORMATION - Required to modify certain attributes of a process.

PROCESS_QUERY_INFORMATION - Required to read certain attributes of a process. This
access type is also needed to open the primary token of a process (using
NtOpenProcessToken()).

PROCESS_SET_PORT - Required to set the debug or exception port of a process.

Generic Access Masks:

The object type-specific mapping of generic access types to non-generic access types for this
object type are:

Windows NT Process Structure 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

GENERIC_READ STANDARD_READ |
 PROCESS_VM_READ |
 PROCESS_QUERY_INFORMATION

GENERIC_WRITE STANDARD_WRITE |
 PROCESS_TERMINATE |
 PROCESS_CREATE_THREAD |
 PROCESS_VM_OPERATION |
 PROCESS_VM_WRITE |
 PROCESS_DUP_HANDLE |
 PROCESS_CREATE_PROCESS |
 PROCESS_SET_QUOTA |
 PROCESS_SET_INFORMATION |
 PROCESS_SET_PORT

GENERIC_EXECUTE STANDARD_EXECUTE |
 SYNCHRONIZE

Standard Access Types:

This object type supports the optional SYNCHRONIZE standard access type. All required access
types are supported by the object manager.

The mask of all supported access types for this object is:

PROCESS_ALL_ACCESS STANDARD_RIGHTS_REQUIRED |
 SYNCHRONIZE |
 PROCESS_TERMINATE |
 PROCESS_CREATE_THREAD |
 PROCESS_VM_OPERATION |
 PROCESS_VM_READ |
 PROCESS_VM_WRITE |
 PROCESS_DUP_HANDLE |
 PROCESS_CREATE_PROCESS |
 PROCESS_SET_QUOTA |
 PROCESS_SET_INFORMATION |
 PROCESS_QUERY_INFORMATION |
 PROCESS_SET_PORT

Privileges Defined Or Used:

This object type defines or uses the following privileges:

Windows NT Process Structure 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

SeAssignPrimaryTokenPrivilege - This privilege is needed to assign a new primary token for a
process.

3.2 NtCreateProcess

A process object can be created and a handle opened for access to the process with the
NtCreateProcess function:

NTSTATUS
NtCreateProcess(
 OUT PHANDLE ProcessHandle,
 IN ACCESS_MASK DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
 IN HANDLE ParentProcess,
 IN BOOLEAN InheritObjectTable,
 IN HANDLE SectionHandle OPTIONAL,
 IN HANDLE DebugPort OPTIONAL,
 IN HANDLE ExceptionPort OPTIONAL
);

Parameters:

ProcessHandle - A pointer to a variable that will receive the process object handle value.

DesiredAccess - The desired types of access to the created process.

ObjectAttributes - An optional pointer to a structure that specifies the object's attributes. Refer to
the Object Management Specification for details. Note that OBJ_PERMANENT,
OBJ_EXCLUSIVE, OBJ_OPEN_IF, and OBJ_OPEN_LINK are not valid attributes for a
process object.

ParentProcess - An open handle to a process object. The new process is created using some of
the attributes of the specified parent process. PROCESS_CREATE_PROCESS access to
this process is required.

InheritObjectTable - A flag which determines whether or not the new process will be created
with an object table whose initial contents come from the specified parent process. A value
of false causes the new process to be created with an empty object table. A value of true
causes the new process to be created by cloning the parent process's object table. All
objects in the parent process's object table marked with the OBJ_INHERIT attribute appear
in the new process's object table with exactly the same handle values, attributes, and
granted access.

Windows NT Process Structure 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

SectionHandle - An optional open handle to a section object. If the value of the argument is not
null, then it specifies a handle to a section object backed by an image file the process is
being created to run. SECTION_MAP_EXECUTE access to the section object is required.

DebugPort - An optional open handle to a port object. If specified, the port is assigned as the
process's debugger port; otherwise, the process is created without a debugger port.
PORT_WRITE and PORT_READ access to the port object are required.

ExceptionPort - An optional open handle to a port object. If specified, the port is assigned as the
process's exception port; otherwise, the process is created without an exception port.
PORT_WRITE and PORT_READ access to the port object are required.

Creating a process object causes a new process to be created. The new process shares some of its initial
attributes with the specified parent process.

 o The new process is created with an object table. The table is either an empty table, or a clone of
the parent process's object table. This is a function of the InheritObjectTable parameter.

 o The access token of the new process is identical to the access token of the parent process.

 o The quota limits of the new process are identical to the quota limits of the parent process.

 o The base priority of the new process is identical to the base priority of the parent process.

The address space of the new process is defined by the specified section handle or the address space of
the specified parent process. If the section handle is not null, the section object must be backed by an
image file. The address space of the new process is created by mapping a view of the entire section
object. Otherwise, the address space of the process is created by copying or sharing those pieces of the
parent process's address space marked as PAG_COPY/PAG_SHARE into the address space of the
new process.

The new process is created without any threads.

Each process is created with a Process Environment Block (PEB). The PEB is readable and writeable
by the application, but can only be deleted by the system. The PEB is partially initialized by the system
and is placed in the address space of the. If the process is created without a section handle, then the
new processes PEB is shared "copy on write" with the parent process PEB.

The PEB contains process global context such as startup parameters, image base address, a Mutant
object handle for process wide synchronization, and loader data structures.

The function NtCurrentPeb returns the address of the current processes PEB. Access to PEB
locations must be made through this API.

Windows NT Process Structure 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The process object is a waitable object. A wait performed on a process object is satisfied when the
process becomes signaled. A process becomes signaled when its last thread terminates, or if a process
without a thread is terminated with NtTerminateProcess.

Both the debugger and exception ports are used by the exception handling system within Windows
NT. The role that these ports play in exception handling is described in another document.

3.3 NtTerminateProcess

A process can be terminated with the NtTerminateProcess function:

NTSTATUS
NtTerminateProcess(
 IN HANDLE ProcessHandle OPTIONAL,
 IN NTSTATUS ExitStatus
);

Parameters:

ProcessHandle - An optional parameter, that if specified, supplies an open handle with
PROCESS_TERMINATE access to the process to terminate. If this parameter is not
supplied, then PROCESS_TERMINATE access is required to the current process and the
API terminates all threads in the process except for the calling thread.

ExitStatus - A value that specifies the exit status of the process to be terminated.

Terminating a process causes the specified process and all of its threads to terminate. Any threads in
the process that are suspended are resumed by this service so that they can begin termination. The
handles of the process's threads are not explicitly closed by this service. The handle to the process
being terminated is also not closed by this service. If any thread in the process was suspended and
resumed by this API and informational status code of STATUS_THREAD_WAS_SUSPENDED is
returned.

In order to terminate a process, the calling thread must have PROCESS_TERMINATE access to the
specified process.

After all of the process's threads are terminated (and set to the signaled state), the process's object table
is processed by closing all open handles.

The process object is signaled upon termination, and its exit status is updated to reflect the value of the
exit status argument. Once a process object becomes signaled, no more threads can be created in the
process.

Windows NT Process Structure 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The process's address space remains valid until the process object itself is deleted (the last handle to
the process object is closed).

3.4 NtCurrentProcess

An object handle to the current process can be fabricated with the NtCurrentProcess function:

HANDLE
NtCurrentProcess();

The NtCurrentProcess function returns a pseudo handle to the currently executing process. The
handle can be used whenever a handle to a process object is required (e.g. NtTerminateProcess).

When the system is asked to translate an object handle into an object pointer, the object type is a
process object, and the object handle is the pseudo handle returned by NtCurrentProcess, the
following occurs.

 o The SECURITY_DESCRIPTOR of the current process is checked against the desired access
specified in the object translation call. If access is denied a failure status is returned to the
caller.

 o If access is allowed, the appropriate reference count in the current process object is adjusted
and a pointer to the current process object is returned.

This function is designed mainly for the use of native applications so that they can refer to their own
process in process termination calls, thread creation calls, and address space modification calls without
having to explicitly open their process by name or otherwise obtain a handle to their own process. A
similar function exists to reference the currently executing thread.

3.5 NtCurrentPeb

The address of the current processes PEB can be located with the NtCurrentPeb function:

PPEB
NtCurrentPeb()

The NtCurrentPeb function returns the address of the current processes PEB. The PEB consists of a
single page in the address space of the process. The page is allocated and deallocated by the system at
process creation/process termination. Only the system may delete a processes PEB. The PEB contains
the following:

Peb Structure

BOOLEAN InheritedAddressSpace - A flag set by the system to indicate that the
processes initial address space was from inheritance rather than from a mapping a
section.

Windows NT Process Structure 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

HANDLE Mutant - Contains a handle to a mutant object. Various portions of the system
use this mutant to synchronize within the process. The functions
RtlAcquirePebLock and RtlReleasePebLock may be used to access this field.

PCOFF_HEADERS ImageBaseAddress - Contains the address of the image header of the
processes initial image.

PPEB_LDR_DATA Ldr - Contains the address of the loaders per-process data. The value
of this pointer is null until the first thread of a process initialzes the loader.

PEB_SM_DATA Sm - Contains Session Manager specific information.

PRTL_USER_PROCESS_PARAMETERS ProcessParameters - Contains the address
of the processes startup parameters.

PVOID SubsystemData - Contains the address of subsystem specific data.

PPEB_FREE_BLOCK FreeList - Contains the address of a dynamic area in the PEB.
Calls to RtlAllocateFromPeb and RtlFreeToPeb are satisfied from this area.

3.6 NtOpenProcess

A handle to a process object can be created with the NtOpenProcess function:

NTSTATUS
NtOpenProcess(
 OUT PHANDLE ProcessHandle,
 IN ACCESS_MASK DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes,
 IN PCLIENT_ID ClientId OPTIONAL
);

Parameters:

ProcessHandle - A pointer to a variable that will receive the process object handle value.

DesiredAccess - The desired types of access to the opened process. For a complete description of
desired access flags, refer to the NtCreateProcess API description.

ObjectAttributes - An pointer to a structure that specifies the object's attributes. Refer to the
Object Management Specification for details. Note that OBJ_PERMANENT,
OBJ_EXCLUSIVE, OBJ_OPEN_IF, and OBJ_OPEN_LINK are not valid attributes for a
process object.

Windows NT Process Structure 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ClientId - An optional parameter that if specified, supplies the client ID of a thread whose
process is to be opened. It is an error to specify this parameter along with the an
ObjectAttributes variable that contains a process name.

Opening a process object causes a new handle to be created. The access that the new handle has to the
process object is a function of the desired access and any SECURITY_DESCRIPTOR on the process
object

3.7 NtQueryInformationProcess

Selected information about a process can be retrieved using the NtQueryInformationProcess
function.

NTSTATUS
NtQueryInformationProcess(
 IN HANDLE ProcessHandle,
 IN PROCESSINFOCLASS ProcessInformationClass
 OUT PVOID ProcessInformation,
 IN ULONG ProcessInformationLength,
 OUT PULONG ReturnLength OPTIONAL
);

Parameters:

ProcessHandle - A variable that specifies the handle to a process from which to retrieve
information.

ProcessInformationClass - A variable that specifies the type of information to retrieve from the
specified process object.

ProcessInformationClass Values

ProcessBasicInformation - Returns the basic information about the specified process. This
information class value requires PROCESS_QUERY_INFORMATION access to the
process.

ProcessQuotaLimits - Returns the quota limits of the specified process. This information
class requires PROCESS_QUERY_INFORMATION access to the process.

ProcessIoCounters - Returns the input/output counters of the specified process. This
information class requires PROCESS_QUERY_INFORMATION access to the
process.

ProcessVmCounters - Returns the virtual memory counters of the specified process. This
information class requires PROCESS_QUERY_INFORMATION access to the
process.

Windows NT Process Structure 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ProcessTimes - Returns the cpu time usage of the specified process. This information class
requires PROCESS_QUERY_INFORMATION access to the process.

ProcessLdtInformation - Returns the contents of the Ldt for the process. Requires
PROCESS_VM_READ access to the process. Returns STATUS_NOT_SUPPORTED
on non i386 (and compatible) processors.

ProcessInformation - A pointer to a buffer that will receive information about the specified
process. The format and contents of the buffer depend on the specified information class
being queried.

ProcessInformation Format by Information Class

ProcessBasicInformation - Data type is PPROCESS_BASIC_INFORMATION.

PROCESS_BASIC_INFORMATION Structure

NTSTATUS ExitStatus - Specifies the exit status of the process. This field only
contains meaningful information if the process is in the signaled state;
otherwise, it contains a value of "exit status pending".

PPEB PebBaseAddress - Specifies the base address of the processes PEB.

KPRIORITY BasePriority - Specifies the base priority of the process.

KAFFINITY AffinityMask - Specifies the default affinity mask assigned to each
thread in the process during thread creation.

ProcessQuotaLimits - Data type is PQUOTA_LIMITS.

QUOTA_LIMITS Structure

ULONG PagedPoolLimit - Specifies the maximum amount of paged pool (in bytes)
that can be used by the process.

ULONG NonPagedPoolLimit - Specifies the maximum amount of nonpaged pool
(in bytes) that can be used by the process.

ULONG MinimumWorkingSetSize - Specifies the minimum working set size (in
bytes) for the process.

ULONG MaximumWorkingSetSize - Specifies the maximum working set size (in
bytes) for the process.

ULONG PagefileLimit - Specifies the maximum amount of pagefile space (in bytes)
that can be used by the process.

Windows NT Process Structure 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

TIME TimeLimit - Specifies the maximum number of 100ns units that the process
can execute for.

ProcessIoCounters - Data type is PIO_COUNTERS.

IO_COUNTERS Structure

ULONG ReadOperationCount - Specifies the number of read I/O operations
performed by the process.

ULONG WriteOperationCount - Specifies the number of write I/O operations
performed by the process.

ULONG OtherOperationCount - Specifies the number of other I/O operations (not
read or write) performed by the process.

LARGE_INTEGER ReadTransferCount - Specifies the number of bytes transferred
through read I/O operations.

LARGE_INTEGER WriteTransferCount - Specifies the number of bytes
transferred through write I/O operations.

LARGE_INTEGER OtherTransferCount - Specifies the number of bytes
transferred through other I/O operations.

ProcessVmCounters - Data type is PVM_COUNTERS.

VM_COUNTERS Structure

ULONG PeakVirtualSize - Specifies the largest virtual address space size (in bytes)
that the process has reached.

ULONG VirtualSize - Specifies the current virtual address space size (in bytes) of
the process.

ULONG PageFaultCount - Specifies the number of pagefaults incurred by the
process.

ULONG PeakWorkingSetSize - Specifies the largest working set size (in bytes) that
the process has reached.

ULONG WorkingSetSize - Specifies the current working set size (in bytes) of the
process.

ULONG QuotaPeakPagedPoolSize - Specifies the largest amount of paged pool (in
bytes) that the process has used and has been charged quota for.

Windows NT Process Structure 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ULONG QuotaPagedPoolSize - Specifies the current amount of paged pool (in
bytes) in use by the process and being charged to the process.

ULONG QuotaNonPeakPagedPoolSize - Specifies the largest amount of nonpaged
pool (in bytes) that the process has used and has been charged quota for.

ULONG QuotaNonPagedPoolSize - Specifies the current amount of nonpaged pool
(in bytes) in use by the process and being charged to the process.

ULONG PagefileUsage - Specifies the current amount of pagefile space (in bytes)
in use by the process.

ProcessTimes - Data type is PKERNEL_USER_TIMES.

KERNEL_USER_TIMES Structure

TIME UserTime - Specifies the number of 100ns units that the process has spent
executing in user mode.

TIME KernelTime - Specifies the number of 100ns units that the process has spent
executing in kernel mode.

TIME CreateTime - Specifies the time that the process was created.

TIME ExitTime - Specifies the time that the process terminated.

ProcessLdtInformation - Data type is PPROCESS_LDT_INFORMATION.

PROCESS_LDT_INFORMATION Structure

ULONG Start - Specifies the starting offset in the LDT to return descriptors from. It
must be 0 mod 8. If this value is larger than the current size of the LDT, no
information will be put into the LdtEntries field.

ULONG Length - Supplies the length of the section of the LDT to return. Must be 0
mod 8. Returns the length of the Ldt. Will always be set.

LDT_ENTRY LdtEntries[1] - Variable size array of LDT_ENTRYs, is the actual
Ldt data in hardware format.

ProcessInformationLength - Specifies the length in bytes of the process information buffer (i.e.
size of the information structure).

ReturnLength - An optional parameter that if specified, receives the number of bytes placed in
process information buffer.

Windows NT Process Structure 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3.8 NtSetInformationProcess

Selected information can be set in a process using the NtSetInformationProcess function.

NTSTATUS
NtSetInformationProcess(
 IN HANDLE ProcessHandle,
 IN PROCESSINFOCLASS ProcessInformationClass,
 IN PVOID ProcessInformation,
 IN ULONG ProcessInformationLength
);

Parameters:

ProcessHandle - A variable that specifies the handle to a process to set information into.

ProcessInformationClass - A variable that specifies the type of information to set into the
specified process object.

ProcessInformationClass Values

ProcessBasePriority - Sets the base priority of the specified process. This information
class value requires PROCESS_SET_INFORMATION access to the process.

ProcessQuotaLimits - Sets the quota limits associated with the process. This information
class value requires PROCESS_SET_QUOTA access to the process. If an attempt is
made to increase quota, a privilege check is done to ensure that the calling process
has TBD privilege.

ProcessAccessToken - Sets the primary access token of the specified process. This
information class requires PROCESS_SET_INFORMATION access to the process.
Furthermore, the caller must have SeAssignPrimaryTokenPrivilege privilege.

Since the process access token is inherited during process creation, this operation
only needs to be performed when a process is being created for a new user or for a
privileged application.

ProcessDebugPort - Sets the debug port of the specified process. If the process already has
a debug port either through process creation, or a previous call to
NtSetInformationProcess then an error is returned. This information class requires
PROCESS_SET_PORT access to the process.

ProcessExceptionPort - Sets the exception port of the specified process. If the process
already has an exception port either through process creation, or a previous call to
NtSetInformationProcess then an error is returned. This information class requires
PROCESS_SET_PORT access to the process.

Windows NT Process Structure 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ProcessLdtInformation - Returns the contents of the Ldt for the process. Requires
PROCESS_VM_WRITE access to the process. Returns
STATUS_NOT_SUPPORTED on non i386 (and compatible) processors.

ProcessLdtSize - Returns the size of the Ldt for the process. PROCESS_VM_WRITE
access required. Returns STATUS_NOT_SUPPORTED on non i386 (and
compatible) processors.

ProcessInformation - A pointer to a buffer that contains the information to set in the specified
process. The format and contents of the buffer depend on the specified information class
being queried.

ProcessInformation Format by Information Class

ProcessBasePriority - Data type is KPRIORITY.

KPRIORITY BasePriority - Specifies the base priority of the process.

ProcessQuotaLimits - Data type is PQUOTA_LIMITS.

QUOTA_LIMITS Structure

ULONG PagedPoolLimit - Specifies the maximum amount of paged pool (in bytes)
that can be used by the process.

ULONG NonPagedPoolLimit - Specifies the maximum amount of nonpaged pool
(in bytes) that can be used by the process.

ULONG MinimumWorkingSetSize - Specifies the minimum working set size (in
bytes) for the process.

ULONG MaximumWorkingSetSize - Specifies the maximum working set size (in
bytes) for the process.

ULONG PagefileLimit - Specifies the maximum amount of pagefile space (in bytes)
that can be used by the process.

TIME TimeLimit - Specifies the maximum number of 100ns units that the process
can execute for.

ProcessAccessToken - Data type is PHANDLE. The handle is expected to be to a Token
object. The handle must have been opened to provide
TOKEN_ASSIGN_PRIMARY access.

ProcessDebugPort - Data type is PHANDLE.

Windows NT Process Structure 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ProcessExceptionPort - Data type is PHANDLE.

ProcessLdtInformation - Data type is PPROCESS_LDT_INFORMATION.

PROCESS_LDT_INFORMATION Structure

ULONG Start - Offset in Ldt of first entry to set. Must be 0 mod 8.

ULONG Length - Length of section of Ldt to set. Must be 0 mod 8.

LDT_ENTRY LdtEntries[1] - Variable size array of LDT_ENTRYs, is the actual
Ldt data in hardware format.

ProcessLdtSize - Data type is PPROCESS_LDT_SIZE.

PROCESS_LDT_SIZE Structure

ULONG Length - Size to set Ldt to. Setting 0 sets a null Ldt. Can be used to
truncate the Ldt. Must be 0 mod 8.

ProcessInformationLength - Specifies the length in bytes of the process information buffer.

4. Thread Object APIs

The following programming interfaces support the thread object:

NtCreateThread - Creates a thread object.
NtTerminateThread - Terminates a thread object.
NtCurrentThread - Identifies the currently executing thread.
NtCurrentTeb - Returns the address of the current thread's Thread Environment Block (TEB).
NtSuspendThread - Suspends user-mode execution of a thread.
NtResumeThread - Resumes user-mode execution of a thread.
NtGetContextThread - Returns the user-mode context of a thread.
NtSetContextThread - Sets the user-mode context of a thread.
NtOpenThread - Returns a handle to a thread object.
NtQueryInformationThread - Returns information about the thread.
NtSetInformationThread - Sets information about the thread.
NtImpersonateThread - Set one thread to be impersonating another thread.
NtAlertThread - Alerts the specified thread.
NtTestAlert - Tests for an alert condition.
NtAlertResumeThread - Alerts and resumes the specified thread.
NtRegisterThreadTerminationPort - Adds a port notification descriptor to the specified

thread.

Windows NT Process Structure 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4.1 Access Type And Privilege Information

Object type-specific access types:

The object type-specific access types are defined below.

THREAD_TERMINATE - Required to terminate a thread.

THREAD_SUSPEND_RESUME - Required to suspend or resume a thread.

THREAD_ALERT - Required to alert a thread using either NtAlertThread or
NtAlertResumeThread.

THREAD_GET_CONTEXT - Required to read a thread's context (using
NtGetContextThread).

THREAD_SET_CONTEXT - Required to modify a thread's context (using
NtSetContextThread).

THREAD_SET_INFORMATION - Required to modify certain attributes of a thread.

THREAD_QUERY_INFORMATION - Required to read certain attributes of a thread. This
access type is also needed to open the impersonation token of a thread (using
NtOpenThreadToken()).

THREAD_SET_THREAD_TOKEN - Required to explicitly assign an impersonation token to
the thread. In some cases, impersonation will happen automatically (e.g., as a result of a
call from a client via LPC). However, to explicitly assign an impersonation token (via a
handle) to a thread (also via a handle), requires this access to the thread.

THREAD_IMPERSONATE - Required to directly impersonate a thread. In some instances
this access is not required to impersonate a thread. In particular, when a thread calls a
server using an communication session layer that supports security quality of service(1),
then the server does not need to directly access the thread to impersonate. However, in
some cases it is desireable to allow a server to impersonate a thread without using a
communication session layer to impersonate a client. In that case, the target client thread
may be opened for this access, and then a call made to NtImpersonateThread().

Generic Access Masks:

The object type-specific mapping of generic access types to non-generic access types for this
object type are:

1 See the Windows NT Local Security Specification for more on security quality of service.

Windows NT Process Structure 17

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

GENERIC_READ STANDARD_READ |
 THREAD_GET_CONTEXT |
 THREAD_QUERY_INFORMATION

GENERIC_WRITE STANDARD_WRITE |
 THREAD_TERMINATE |
 THREAD_SUSPEND_RESUME |
 THREAD_THREAD_ALERT |
 THREAD_SET_CONTEXT |
 THREAD_SET_INFORMATION

GENERIC_EXECUTE STANDARD_EXECUTE |
 THREAD_SET_THREAD_TOKEN |
 SYNCHRONIZE

Standard Access Types:

This object type supports the optional SYNCHRONIZE standard access type. All required access
types are supported by the object manager.

The mask of all supported access types for this object is:

THREAD_ALL_ACCESS STANDARD_RIGHTS_REQUIRED |
 SYNCHRONIZE |
 THREAD_GET_CONTEXT |
 THREAD_QUERY_INFORMATION |
 THREAD_TERMINATE |
 THREAD_SUSPEND_RESUME |
 THREAD_THREAD_ALERT |
 THREAD_SET_CONTEXT |
 THREAD_SET_INFORMATION |
 THREAD_SET_THREAD_TOKEN |
 THREAD_IMPERSONATE |
 THREAD_DIRECT_IMPERSONATION

4.2 NtCreateThread

A thread object can be created and a handle opened for access to the thread with the NtCreateThread
function:

Windows NT Process Structure 18

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtCreateThread(
 OUT PHANDLE ThreadHandle,
 IN ACCESS_MASK DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
 IN HANDLE ProcessHandle,
 OUT PCLIENT_ID ClientId,
 IN PCONTEXT ThreadContext,
 IN PINITIAL_TEB InitialTeb,
 IN BOOLEAN CreateSuspended
);

Parameters:

ThreadHandle - A pointer to a variable that will receive the thread object handle value.

DesiredAccess - The desired types of access to the created thread.

ObjectAttributes - An optional pointer to a structure that specifies the object's attributes. Refer to
the Object Management Specification for details. Note that OBJ_PERMANENT,
OBJ_EXCLUSIVE, OBJ_OPEN_IF, and OBJ_OPEN_LINK are not valid attributes for a
thread object.

ProcessHandle - An open handle to the process object that the thread is to run in. The subject
thread must have PROCESS_CREATE_THREAD access to this process. The value of this
argument may be the value returned by NtCurrentProcess to specify that the new thread
is to be created in the context of the current process.

ClientId - A pointer to a structure that will receive the client identifier of the new thread. Each
thread in the system is assigned a client identifier value. A client identifier remains valid
from the time the thread is created until it is terminated. The value of the client identifier is
unique for each thread in the system. The client identifier contains two fields. One field is
unique for each process in the system, and one field is unique for each thread in the
system.

ClientId Structure

ULONG UniqueProcess - Unique value for each process in the system.

ULONG UniqueThread - Unique value for each thread in the system.

ThreadContext - A pointer to the structure that contains the new thread's initial user mode
context.

InitialTeb - A pointer to a structure that specifies initial values for portions of the thread's TEB.

Windows NT Process Structure 19

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

InitialTeb Structure

PVOID StackBase - Contains the base address of the thread's stack.

PVOID StackLimit - Contains the stack limit for the thread.

PVOID EnvironmentPointer - Unspecified.

CreateSuspended - A parameter that specifies whether or not the thread is to be created
suspended. If the value of this parameter is TRUE, then the thread is created in a
suspended state. The thread will not begin executing until it is explicitly resumed using
NtResumeThread. If the value of this parameter is FALSE, then the thread begins
execution in user-mode using the specified context.

Creating a thread object causes a new thread to be created. The new thread is assigned some of its
initial attributes from the process object it is being created to run in.

 o The new thread's priority is the same as its process's base priority.

 o The new thread's processor affinity mask is the same as its process's default processor affinity
mask.

 o The new thread's access token is the same as its process's.

All threads begin execution with a user-mode APC to system code that is part of each processes
address space. This code optionally initializes the loaders data structures and resolves dynamic link
library references. When the APC routine returns, the thread's context is restored. Normally, this
context is the same as that specified during thread creation.

The thread object is a waitable object. A wait performed on a thread object is satisfied when the thread
becomes signaled. A thread becomes signaled when it terminates.

Each thread is created with a Thread Environment Block (TEB). The TEB is readable and writeable by
the application, but can only be deleted by the system. The TEB is partially initialized by the system
and is placed in the address space of the specified process.

The TEB contains thread local context such as stack base and bounds, environment pointer (used by
subsystems/dll's), thread local storage descriptors, and the thread's client id. The thread's creator is
responsible for initializing the TEB's stack base and bounds since it is also responsible for creating the
thread's stack.

The function NtCurrentTeb returns the address of the current thread's TEB. Access to TEB locations
must be made through this API. The TEB of each thread is located at a different address. The system
will guarantee that TEB access of the form:

Windows NT Process Structure 20

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

foo = NtCurrentTeb()->StackBase;
NtCurrentTeb()->EnvironmentPointer = &PsxEnvironment;

will cause locations in the current thread's TEB to be referenced.

Windows NT Process Structure 21

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4.3 NtTerminateThread

A thread can be terminated with the NtTerminateThread function:

NTSTATUS
NtTerminateThread(
 IN HANDLE ThreadHandle OPTIONAL,
 IN NTSTATUS ExitStatus
);

Parameters:

ThreadHandle - An optional parameter, that if specified, supplies an open handle with
THREAD_TERMINATE access to the thread to terminate. If this parameter is not
supplied, then THREAD_TERMINATE access is required to the current thread and the
API terminates the current thread in the process except for the case where the current
thread is the last thread in the current process. In this case, a status code of
STATUS_CANT_TERMINATE_SELF is returned.

ExitStatus - A value that specifies the exit status of the thread to be terminated.

Terminating a thread causes the specified thread to terminate its execution. If the target thread is
currently suspended, it will be resumed so that it can begin termination. Once termination begins, the
thread will no longer execute in either user mode or kernel mode. The handle to the thread being
terminated is not closed by this service. If the thread was suspended and resumed by this API an
informational status code of STATUS_THREAD_WAS_SUSPENDED is returned.

In order to terminate a thread, the calling thread must have THREAD_TERMINATE access to the
specified thread.

Once a thread has become the target thread in a valid call to NtTerminateThread (i.e. the calling
thread has THREAD_TERMINATE access to the target thread), the target thread will terminate without
executing another instruction in user-mode. This is accomplished by queueing a special kernel-mode
APC to the thread which queues a user-mode APC to the target thread and user-mode alerts the thread.
The kernel routine associated with the user-mode APC will cause the thread to terminate itself. To
guarantee the delivery of the user-mode APC (i.e. to bypass the alert mechanism), the user APC
pending bit in the target thread is set during the execution of the special kernel-mode APC.

During thread termination, the terminating thread's port notification list is processed. For each entry in
the list, a thread termination datagram is sent to the port. The system blindly ignores any errors sending
this datagram (e.g. port disconnect...).

Windows NT Process Structure 22

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

After the thread is terminated (and set to the signaled state), the thread's TEB is deallocated from the
address space of the thread's process and its exit status is updated to reflect the value of the exit status
argument. The system does not delete the thread's user-mode stack.

Once terminated, the thread's client identifier is available for re-use.

If the terminating thread is the last thread in its process, its process is terminated (via an internal call to
NtTerminateProcess(NtCurrentProcess(), ExitStatus);). There is no mechanism that a subsystem
can use to prevent this from happening.

4.4 NtCurrentThread

An object handle to the current thread can be fabricated with the NtCurrentThread function:

HANDLE
NtCurrentThread();

The NtCurrentThread function returns a pseudo handle to the currently executing thread. The handle
can be used whenever a handle to a thread object is required (e.g. NtTerminateThread).

When the system is asked to translate an object handle into an object pointer, the object type is a thread
object, and the object handle is the pseudo handle returned by NtCurrentThread, the following
occurs.

 o The SECURITY_DESCRIPTOR of the current thread is checked against the desired access
specified in the object translation call. If access is denied, a failure status is returned to the
caller.

 o If access is allowed, the appropriate reference count in the current thread object is adjusted and
a pointer to the current thread object is returned.

This function is designed mainly for the use of native applications so that they can refer to their own
thread in thread termination calls, thread creation calls, and thread control calls without having to
explicitly open their thread by name or otherwise obtain a handle to their own thread.

4.5 NtCurrentTeb

The address of the current thread's TEB can be located with the NtCurrentTeb function:

PTEB
NtCurrentTeb()

The NtCurrentTeb function returns the address of the current thread's TEB. The TEB consists of a
single page in the address space of the thread's process. The page is allocated and deallocated by the
system at thread creation/thread termination. Only the system may delete a thread's TEB. The TEB
contains the following:

Windows NT Process Structure 23

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Teb Structure

PEXCEPTION_REGISTRATION_RECORD ExceptionRegistrationRecord - Contains
the base address of the thread's exception handler chain. This field is only used on
implementations that require this sort of exception handler registration.

PVOID StackBase - Contains the base address of the thread's stack.

PVOID StackLimit - Contains the stack limit for the thread.

PVOID EnvironmentPointer - Unspecified.

ULONG Version - Unspecified.

PVOID ArbitraryUserPointer - Unspecified.

CLIENT_ID ClientId - Contains the client identifier of the thread.

PVOID ActiveRpcHandle - Reserved for use by the Microsoft Remote Procedure Call
Runtime Package.

PVOID ThreadLocalStoragePointer - Reserved for runtime support.

PPEB ProcessEnvironmentBlock - Contains the base address of the thread's PEB.

PVOID UserReserved[USER_RESERVED_TEB] - TEB locations reserved for
applications.

PVOID SystemReserved[SYSTEM_RESERVED_TEB] - TEB locations reserved for
Microsoft system software.

4.6 NtSuspendThread

A thread can be suspended with the NtSuspendThread function:

NTSTATUS
NtSuspendThread(
 IN HANDLE ThreadHandle,
 OUT PULONG PreviousSuspendCount OPTIONAL
);

Parameters:

ThreadHandle - A handle to the thread to be suspended.

Windows NT Process Structure 24

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

PreviousSuspendCount - A pointer to the variable that receives the thread's previous suspend
count.

Suspending a thread causes the thread to stop executing in user-mode. If the thread is resumed without
altering its context and its previous suspend count is one, then the thread resumes execution at the
point that it was suspended. If the specified thread is either terminated or is currently terminating, an
error status of STATUS_THREAD_IS_TERMINATING is returned.

The suspension of a thread is controlled by a suspend count. This count has a maximum value. If an
attempt is made to suspend a thread whose suspend count is at its maximum, an error is returned When
an attempt is made to suspend a thread, the thread's suspend count is incremented. If the previous value
of the suspend count was zero, then a kernel mode APC is queued to the thread. When the APC
executes, it causes the thread to wait on its built-in suspend semaphore (the wait is not alertable). The
previous value of the thread's suspend count is returned to the caller. A non-zero value indicates that
the thread was previously suspended. The value plus 1 specifies the number of calls to
NtResumeThread that must be made in order to bring the thread out of the suspend state.

This service requires THREAD_SUSPEND_RESUME access to the specified thread.

4.7 NtResumeThread

A thread can be resumed with the NtResumeThread function:

NTSTATUS
NtResumeThread(
 IN HANDLE ThreadHandle,
 OUT PULONG PreviousSuspendCount OPTIONAL
);

Parameters:

ThreadHandle - A handle to the thread to be resumed.

PreviousSuspendCount - A pointer to the variable that receives the thread's previous suspend
count.

Resuming a thread reverses the effects of a previous call to NtSuspendThread.

When an attempt is made to resume a thread, the thread's suspend count is examined. If the count is
zero, then the service returns the suspend count. Otherwise, the count is decremented and if the count
reaches zero, the thread resumes. In either case, the previous value of the thread's suspend count is
returned. A non-zero value indicates that the thread was previously suspended. The value minus 1
specifies the number of calls to NtResumeThread that must be made in order to bring the thread out
of the suspend state.

This service requires THREAD_SUSPEND_RESUME access to the specified thread.

Windows NT Process Structure 25

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4.8 NtGetContextThread

A thread's user-mode machine context can be read using the NtGetContextThread function:

NTSTATUS
NtGetContextThread(
 IN HANDLE ThreadHandle,
 IN OUT PCONTEXT ThreadContext
);

Parameters:

ThreadHandle - An open handle to the thread object from which to retrieve context information.

ThreadContext - A pointer to the structure that will receive the user mode context of the
specified thread. The initial value of the context flags field indicates the type and amount
of context returned by this function.

The NtGetContextThread function is designed to facilitate the implementation of debuggers, and to
allow subsystems to control the execution flow of their threads (e.g.; emulate signal delivery or APC
delivery).

The NtGetContextThread function is absolutely NOT PORTABLE! The layout, contents, and length
of the PCONTEXT structure depend on the processor and system architecture of the system servicing
the NtGetContextThread function.

This service requires THREAD_GET_CONTEXT access to the specified thread.

The NtGetContextThread function is implemented by:

 o Validating its arguments and translating the thread handle.

 o Assuming everything is valid, it allocates a buffer for the thread's user-mode context. It then
queues a special kernel-mode APC to the thread, and waits on an event located in the allocated
buffer.

 o When the APC executes, the thread dumps its user-mode context into the buffer and sets an
event (located in the allocated buffer) indicating that the context dump is complete.

\ The APC is actually a special kernel mode APC, so that it can work even on a
thread that is stuck in a suspend. \

 o The target thread returns to whatever it was doing, and the thread calling
NtGetContextThread copies the user-mode context from the allocated buffer into the thread
context buffer passed in the system service. The allocated buffer is freed and the
NtGetContextThread service completes.

Windows NT Process Structure 26

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The specified thread does not need to be in a suspend state in order to call NtGetContextThread
(subsystems and debuggers must explicitly do this if that is what is required). There is nothing to
prevent a thread from calling NtGetContextThread on itself.

4.9 NtSetContextThread

A thread's user-mode machine context can be altered using the NtSetContextThread function:

NTSTATUS
NtSetContextThread(
 IN HANDLE ThreadHandle,
 IN OUT PCONTEXT ThreadContext
);

Parameters:

ThreadHandle - An open handle to the thread whose context is to be set.

ThreadContext - A pointer to the structure that contains the user-mode context to be restored into
the specified thread. The initial value of the context flags field indicates the type and
amount of context that will be restored by this function.

The NtSetContextThread function is designed to facilitate the implementation of debuggers, and to
allow subsystems to control the execution flow of their threads (e.g.; emulate signal delivery).

The NtSetContextThread function is absolutely NOT PORTABLE! The layout, contents, and length
of the PCONTEXT structure depend on the processor and system architecture of the system servicing
the NtSetContextThread function. Some fields of the PCONTEXT structure contain registers that
contain both user-mode and kernel-mode context. Setting kernel-mode portions of these registers is not
an error, but is ignored.

This service requires THREAD_SET_CONTEXT access to the specified thread.

The NtSetContextThread function is implemented by:

 o Validating its arguments and translating the thread handle.

 o Any kernel-mode only portions of fields in the PCONTEXT structure are set to a benign value.

 o Assuming everything is valid, it allocates a buffer for the thread's user-mode context and copies
the contents of the ThreadContext parameter into this buffer. It then queues a kernel-mode APC
to the thread, and waits on an event located in the allocated buffer.

 o When the APC executes, it writes the thread's user-mode context using the contents of the
buffer and sets an event (located in the allocated buffer) indicating it is done with the buffer.

Windows NT Process Structure 27

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

\ The APC is actually a special kernel mode APC, so that it can work even on a
thread that is stuck in a suspend. \

 o The target thread returns to whatever it was doing. When the target thread transitions into user-
mode, its user-mode context will be restored using the context passed in during the call.

 o The thread calling NtSetContextThread frees the allocated buffer and completes the service.

The specified thread does not need to be in a suspend state in order to call NtSetContextThread
(subsystems and debuggers must explicitly do this if that is what is required). There is also nothing that
prevents the thread making the call to NtSetContextThread from being the target thread in the call.

4.10 NtOpenThread

A handle to a thread object can be created with the NtOpenThread function:

NTSTATUS
NtOpenThread(
 OUT PHANDLE ThreadHandle,
 IN ACCESS_MASK DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes,
 IN PCLIENT_ID ClientId OPTIONAL
);

Parameters:

ThreadHandle - A pointer to a variable that will receive the thread object handle value.

DesiredAccess - The desired types of access to the opened thread. For a complete description of
desired access flags, refer to the NtCreateThread API description.

ObjectAttributes - An pointer to a structure that specifies the object's attributes. Refer to the
Object Management Specification for details. Note that OBJ_PERMANENT,
OBJ_EXCLUSIVE, OBJ_OPEN_IF, and OBJ_OPEN_LINK are not valid attributes for a
thread object.

ClientId - An optional parameter that if specified, supplies the client identifier of the thread to be
opened. It is an error to specify this parameter along with an ObjectAttributes variable that
contains a thread name.

Opening a thread object causes a new handle to be created. The access that the new handle has to the
thread object is a function of the desired access and any SECURITY_DESCRIPTOR on the thread
object.

Windows NT Process Structure 28

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4.11 NtQueryInformationThread

Selected information about a thread can be retrieved using the NtQueryInformationThread function.

NTSTATUS
NtQueryInformationThread(
 IN HANDLE ThreadHandle,
 IN THREADINFOCLASS ThreadInformationClass
 OUT PVOID ThreadInformation,
 IN ULONG ThreadInformationLength,
 OUT PULONG ReturnLength OPTIONAL
);

Parameters:

ThreadHandle - An open handle to the thread object from which to retrieve information.

ThreadInformationClass - A variable that specifies the type of information to retrieve from the
specified thread object.

ThreadInformationClass Values

ThreadBasicInformation - Returns the basic information about the specified thread. This
information class value requires THREAD_QUERY_INFORMATION access to the
thread.

ThreadTimes - Returns the cpu time usage of the specified thread. This information class
requires THREAD_QUERY_INFORMATION access to the thread.

ThreadDescriptorTableEntry - Returns a descriptor from appropriate descriptor table for
the thread. This information class will return a descriptor from either the Ldt, or the
Gdt for the thread. This information class is only available on x86 processors, and
returns STATUS_NOT_IMPLEMENTED on other processors. This information
class requires THREAD_QUERY_INFORMATION access to the thread.

ThreadInformation - A pointer to a buffer that will receive information about the specified
thread. The format and contents of the buffer depend on the specified information class
being queried.

ThreadInformation Format by Information Class

ThreadBasicInformation - Data type is PTHREAD_BASIC_INFORMATION.

THREAD_BASIC_INFORMATION Structure

Windows NT Process Structure 29

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ULONG ExitStatus - Specifies the exit status of the thread. This field only contains
meaningful information if the thread is in the signaled state; otherwise, it
contains a value of "exit status pending".

PTEB TebBaseAddress - Specifies the virtual address of the thread's TEB.

CLIENT_ID ClientId - Specifies the thread's client identifier.

KPRIORITY Priority - Specifies the current priority of the thread.

KAFFINITY AffinityMask - Specifies the current processor affinity mask of the
thread.

ThreadTimes - Data type is PKERNEL_USER_TIMES.

KERNEL_USER_TIMES Structure

TIME UserTime - Specifies the number of 100ns units that the thread has spent
executing in user mode.

TIME KernelTime - Specifies the number of 100ns units that the thread has spent
executing in kernel mode.

TIME CreateTime - Specifies the time that the thread was created.

TIME ExitTime - Specifies the time that the thread terminated.

ThreadDescriptorTableEntry - Data type is PDESCRIPTOR_TABLE_ENTRY

DESCRIPTOR_TABLE_ENTRY Structure

ULONG Selector - Specifies the number of the descriptor to return.

LDT_ENTRY Descriptor - Returns the descriptor contents.

ThreadInformationLength - Specifies the length in bytes of the thread information buffer (i.e.:
the size of the information structure).

ReturnLength - An optional parameter that if specified, receives the number of bytes placed in
thread information buffer.

4.12 NtSetInformationThread

Selected information can be set in a thread using the NtSetInformationThread function.

Windows NT Process Structure 30

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtSetInformationThread(
 IN HANDLE ThreadHandle,
 IN THREADINFOCLASS ThreadInformationClass,
 IN PVOID ThreadInformation,
 IN ULONG ThreadInformationLength
);

Parameters:

ThreadHandle - A variable that specifies the handle to the thread to set information into.

ThreadInformationClass - A variable that specifies the type of information to set into the
specified thread object.

ThreadInformationClass Values

ThreadPriority - Sets the priority of the specified thread. This information class value
requires THREAD_SET_INFORMATION access to the thread.

ThreadAffinityMask - Sets the processor affinity mask of the specified thread. This
information class requires THREAD_SET_INFORMATION access to the thread.

ThreadImpersonationToken - A handle to an impersonation token to be assigned as the
impersonation token of the thread. This requires
THREAD_SET_THREAD_TOKEN to the thread object and
TOKEN_IMPERSONATE access to the token object. If the handle value is null,
then any impersonation already in progress is discontinued.

ThreadInformation - A pointer to a buffer that contains the information to set in the specified
thread. The format and contents of the buffer depend on the specified information class
being queried.

ThreadInformation Format by Information Class

ThreadPriority - Data type is PKPRIORITY.

KPRIORITY Priority - Specifies the priority of the thread.

ThreadAffinityMask - Data type is PKAFFINITY.

KAFFINITY AffinityMask - Specifies the affinity mask assigned to the specified
thread. The specified mask is anded with the process' default affinity mask and
with the system wide affinity mask (which specifies the entire set of active
processors in the system). The net effect is to limit a threads allowable affinity
mask such that it is a subset of the maximum affinity mask in the current

Windows NT Process Structure 31

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

configuration, and is also a subset of the affinity allowed to the process.
Attempting to set an affinity that specifies no processors is an error condition.

ThreadImpersonationToken - Data type is PHANDLE. The handle value is that of an
impersonation token, or may be null to indicate impersonation is to be discontinued.

ThreadInformationLength - Specifies the length in bytes of the thread information buffer.

4.13 NtImpersonateThread

Sets a server thread to be impersonating a client thread.

NTSTATUS
NtImpersonateThread(
 IN HANDLE ServerThread,
 IN HANDLE ClientThread
);

Parameters:

ServerThread - A handle to the thread which is to be set to impersonate the client thread. This
handle must be open for THREAD_SET_THREAD_TOKEN access.

ClientThread - A handle to the thread to be impersonated. This handle must be open for
THREAD_IMPERSONATE access.

This service causes the thread specified by the ServerThread argument to impersonate the thread
specified by the ClientThread argument. The impersonation will have the following security quality of
service parameters:

 o Delegation Level.

 o Dynamic Tracking.

 o Not EffectiveOnly.

4.14 NtAlertThread

A thread can be alerted with the NtAlertThread function:

Windows NT Process Structure 32

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtAlertThread(
 IN HANDLE ThreadHandle
);

Parameters:

ThreadHandle - A handle to the thread to be alerted.

This function provides a mechanism that can be used to interrupt thread execution in the caller's
previous mode (if this service is called from user mode the alert mode is user; otherwise, the alert
mode is kernel) at well defined points.

Each thread has an alerted flag for each of the processor modes user and kernel. These flags are set by
calling the NtAlertThread function.

If NtAlertThread is called and the target thread is in a wait state, then several additional tests are
performed to determine the correct action to take.

If the mode of the wait is user (e.g. NtWait was called from user mode), and the alert mode is user,
then a thread specific user mode APC is queued to the thread and the thread's wait will complete with
a status of "alerted". When the APC executes it will raise the "alerted" condition.

If the mode of the wait is user or kernel, and the wait is alertable, then the thread's wait will complete
with a status of "alerted".

If the target thread is not in a wait state, then the appropriate alerted bit in the target thread is set.
Executing an NtTestAlert, or an alertable NtWait will clear the bit, return a status, and possibly queue
a user mode APC.

This service requires THREAD_ALERT access to the specified thread.

4.15 NtTestAlert

A thread can test its alerted flag using the NtTestAlert function.

NTSTATUS
NtTestAlert();

The NtTestAlert function tests the calling thread's alerted flag for the thread's previous processor
mode (i.e. if this function is called from user mode, the user mode alerted flag is tested; otherwise, the
kernel mode alerted flag is tested). If the appropriate alerted flag is set, then the status value "alerted"
is returned and the alerted flag is cleared; otherwise, a "normal" status value is returned. If the alerted
flag was set and the previous mode is user, then a user APC is queued to the thread. When the APC
executes, it will raise the "alerted" condition.

Windows NT Process Structure 33

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

In addition, NtTestAlert tests whether a user APC should be delivered. If the previous mode is user
and the user APC queue contains an entry, then APC pending is set in the thread (this will cause an
APC to be delivered to the thread on a transition from kernel mode into user mode).

4.16 NtAlertResumeThread

A thread can be alerted and resumed with the NtAlertResumeThread function:

NTSTATUS
NtAlertResumeThread(
 IN HANDLE ThreadHandle,
 OUT PULONG PreviousSuspendCount OPTIONAL
);

Parameters:

ThreadHandle - A handle to the thread to be alerted and resumed.

PreviousSuspendCount - A pointer to the variable that receives the thread's previous suspend
count.

Resuming and alerting a thread reverses the effects of a previous call to NtSuspendThread and causes
the thread to be interrupted out of an alertable kernel mode wait with a status of "alerted". This
function is provided to allow a subsystem to resume a thread and interrupt it out of an interruptible
system service.

When an attempt is made to resume and alert a thread, the thread is alerted with a kernel mode alert,
and its suspend count is examined. If the count is zero, then the service returns the suspend count.
Otherwise, the count is decremented and if the count reaches zero, the thread resumes. In either case,
the previous value of the thread's suspend count is returned. A non-zero value indicates that the thread
was previously suspended. The value minus 1 specifies the number of calls to NtResumeThread that
must be made in order to bring the thread out of the suspend state.

If the thread was waiting in a kernel mode alertable wait, its wait completes with a status of alerted.

This service requires THREAD_SUSPEND_RESUME and THREAD_ALERT access to the specified
thread.

4.17 NtRegisterThreadTerminationPort

A thread can arrange for a port to be notified when it terminates using
NtRegisterThreadTerminationPort.

Windows NT Process Structure 34

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtRegisterThreadTerminationPort(
 IN HANDLE PortHandle
);

Parameters:

ULONG PortHandle - A handle to the port object that is to be notified when the subject thread
terminates.

The NtRegisterThreadTerminationPort function is designed to allow a thread to specify a port
object that is to be send a thread termination datagram when the subject thread terminates. Multiple
calls to this service cause multiple ports to be notified when the thread terminates.

Each thread has a list of ports that are to be notified via a thread termination datagram when the thread
terminates. When a thread terminates, the list is scanned and for each entry in the list, a thread
termination datagram specifying the thread's client identifier and exit status is sent to the port. If during
the send operation any errors occur (e.g. the port's connection was broken...) the system skips to the
next entry in the list.

\ There is no need to provide this type of service at the process level since all of the
process's port objects are closed during process termination. When a port object is
closed (for the last time) its connections are broken, and the port that it was
connected to is notified. \

The service is useful for subsystems that maintain per thread state (e.g. The Presentation Manager
(PM) Subsystem). During the subsystem initialization that occurs in the client thread (e.g. calling
WinInitialize), a call can be made to NtRegisterThreadTerminationPort specifying the port to the
subsystem. When the thread terminates, the subsystem will receive a thread termination datagram. This
datagram can be used as a signal to the subsystem that allows it to free up any thread specific
resources.

Another use of this service is to allow a process to be notified when one of its own threads terminates.
In order to do this, a multithreaded process creates a port to itself. A monitor thread monitors this port
for thread termination datagrams. Each thread (in its startup routine) calls
NtRegisterThreadTerminationPort specifying the port. Whenever a thread in the process terminates,
the monitor thread is notified via the termination datagram. The monitor thread can use this event to
perform appropriate actions.

Windows NT Process Structure 35

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4.18 NtImpersonateThread

NTSTATUS
NtImpersonateThread(
 IN HANDLE ServerThreadHandle,
 IN HANDLE ClientThreadHandle,
 IN PSECURITY_QUALITY_OF_SERVICE SecurityQos
)

Arguments:

ServerThreadHandle - Is a handle to the server thread (the impersonator, or doing the
impersonation). This handle must be open for THREAD_IMPERSONATE access.

ClientThreadHandle - Is a handle to the Client thread (the impersonatee, or one being
impersonated). This handle must be open for THREAD_DIRECT_IMPERSONATION
access.

SecurityQos - A pointer to security quality of service information indicating what form of
impersonation is to be performed.

Return Value:

STATUS_SUCCESS - Indicates the call completed successfully.

Routine Description:

This routine is used to cause the server thread to impersonate the client thread. The impersonation is
done according to the specified quality of service parameters.

Windows NT Process Structure 36

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5. System Information API

The following programming interface provide support for querying information about the system:

NtQuerySystemInformation - Returns information about the system.

5.1 NtQuerySystemInformation

Information about the system can be retreived using the NtQuerySystemInformation system service.

NTSTATUS
NtQuerySystemInformation(
 IN SYSTEM_INFORMATION_CLASS SystemInformationClass,
 OUT PVOID SystemInformation,
 IN ULONG SystemInformationLength,
 OUT PULONG ReturnLength OPTIONAL
)

Parameters:

SystemInformationClass - The system information class about which to retrieve information.

SystemInformation - A pointer to a buffer which receives the specified information. The format
and content of the buffer depend on the specified system information class.

SystemInformation Format by Information Class:

SystemBasicInformation - Data type is PSYSTEM_BASIC_INFORMATION

SYSTEM_BASIC_INFORMATION Structure

ULONG OemMachineId - An OEM specific bit pattern that identifies the machine
configuration.

ULONG TimerResolutionInMicroSeconds - The resolution of the hardware time.
All time values in Windows NT are specified as 64-bit LARGE_INTEGER
values in units of 100 nanoseconds. This field allows an application to
understand how many of the low order bits of a system time value are
insignificant.

ULONG PageSize - The physical page size for virtual memory objects. Physical
memory is committed in PageSize chunks.

Windows NT Process Structure 37

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ULONG AllocationGranularity - The logical page size for virtual memory objects.
Allocating 1 byte of virtual memory will actually allocate
AllocationGranularity bytes of virtual memory. Storing into that byte will
commit the first physical page of the virtual memory.

ULONG MinimumUserModeAddress - The smallest valid user mode address. The
first AllocationGranullarity bytes of the virtual address space are reserved.
This forces access violations for code the dereferences a zero pointer.

ULONG MaximumUserModeAddress - The largest valid used mode address. The
next AllocationGranullarity bytes of the virtual address space are reserved.
This allows system service routines to validate user mode pointer parameters
quickly.

KAFFINITY ActiveProcessorsAffinityMask - The system wide affinity mask that
specifies the set of processors configured into the system. This set represents
the maximum allowable affinity of any thread within the system.

CCHAR NumberOfProcessors - The number of processors in the current hardware
configuration.

SystemProcessorInformation - Data type is SYSTEM_PROCESSOR_INFORMATION

SYSTEM_PROCESSOR_INFORMATION Structure

ULONG ProcessorType - The processor type.

ProcessorType Values:

PROCESSOR_INTEL_386

PROCESSOR_INTEL_486

PROCESSOR_INTEL_860

PROCESSOR_MIPS_R2000

PROCESSOR_MIPS_R3000

PROCESSOR_MIPS_R4000

ULONG ProcessorStepping - The processor stepping. The high order 16 bits
specify the stepping letter (0==A, 1==B, etc.) and the low order 16 bits specify
the stepping level (e.g. 0, 1, 2, etc.).

Windows NT Process Structure 38

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ULONG ProcessorOptions - Flags that specify processor options that may or may
not be present. The flags are processor specific.

ProcessOptions flags for PROCESSOR_INTEL_386:

PROCESSOR_OPTION_387 - A 387 co-processor chip is present.

PROCESSOR_OPTION_WEITEK - A Weitek floating pointer co-processor
chip is present.

SystemInformationLength - Specifies the length in bytes of the system information buffer.

ReturnLength - An optional pointer which, if specified, receives the number of bytes
placed in the system information buffer.

Return Value:

NTSTATUS - STATUS_SUCCESS if the operation is successful and an appropriate error value
otherwise.

The following status values may be returned by the function:

 o STATUS_SUCCESS - successful completion.

 o STATUS_INVALID_INFO_CLASS - The SystemInformationClass parameter did not specify a
valid value.

 o STATUS_INFO_LENGTH_MISMATCH - The value of the SystemInformationLength parameter
did not match the length required for the information class requested by the
SystemInformationClass parameter.

 o STATUS_ACCESS_VIOLATION - Either the SystemInformation buffer pointer or the
ReturnLength pointer value specified an invalid address.

6. Executive APIs

The following programming interfaces are available from within the Windows NT executive:

PsCreateSystemProcess - Creates a system process.
PsCreateSystemThread - Creates a system thread.
PsLookupProcessThreadByCid - Locates the process and thread using the specified CID.
PsChargePoolQuota - Charges pool quota to the specified process.
PsReturnPoolQuota - Returns pool quota to the specified process.
PsGetCurrentThread - Returns the address of the currently executing thread's thread object.

Windows NT Process Structure 39

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

PsGetCurrentProcess - Returns the address of the process object that the currently executing
thread is attached to.

ExGetPreviousMode - Returns the processor mode that the thread was executing in prior to the
last trap.

PsRevertToSelf - Reverts the calling thread's access token to its original value.
PsReferencePrimaryToken - This function returns a pointer to the primary token of a process.

The reference count of that primary token is incremented to protect the pointer returned.
PsDereferencePrimaryToken - This function releases a pointer to a primary token obtained

using PsReferencePrimaryToken().
PsReferenceImpersonationToken - This function returns a pointer to the impersonation token

of a thread. The reference count of that impersonation token is incremented to protect the
pointer returned.

PsDereferenceImpersonationToken - This function releases a pointer to a primary token
obtained using PsReferenceImpersonationToken().

PsOpenTokenOfProcess - This function does the thread specific processing of an
NtOpenThreadToken() service.

PsOpenTokenOfThread - This function does the thread specific processing of an
NtOpenThreadToken() service.

PsImpersonateClient -This routine sets up the specified thread so that it is impersonating the
specified client.

6.1 PsCreateSystemProcess

A system process can be created using PsCreateSystemProcess.

NTSTATUS
PsCreateSystemProcess(
 OUT HANDLE ProcessHandle,
 IN ACCESS_MASK DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
);

Parameters:

ProcessHandle - A pointer to a variable that will receive the process object handle value.

DesiredAccess - The desired types of access to the created process. For a complete description of
desired access flags, refer to the NtCreateProcess API description.

ObjectAttributes - An pointer to a structure that specifies the object's attributes. Refer to the
Object Management Specification for details. Note that OBJ_PERMANENT,
OBJ_EXCLUSIVE, OBJ_OPEN_IF, and OBJ_OPEN_LINK are not valid attributes for a
process object.

Windows NT Process Structure 40

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Creating a system process creates a process object whose address space is initialized so that the "user"
portion of the address space is empty, and the "system" portion of the address space maps the system.
This option is not available from user-mode via NtCreateProcess. The process inherits its access
token and quotas from the initial system process. It is created with an empty handle table. The
process's debug and exception ports are NULL.

The system does not treat a process created through this API any differently than any other process.
Any Windows NT API that requires a handle to a process object may specify a process created
through this API.

6.2 PsCreateSystemThread

A system thread that executes in kernel mode can be created and a handle opened for access to the
thread with the PsCreateSystemThread function:

NTSTATUS
PsCreateSystemThread(
 OUT PHANDLE ThreadHandle,
 IN ACCESS_MASK DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
 IN HANDLE ProcessHandle OPTIONAL,
 OUT PCLIENT_ID ClientId OPTIONAL,
 IN PKSTART_ROUTINE StartRoutine,
 IN PVOID StartContext
);

Parameters:

ThreadHandle - A pointer to a variable that will receive the thread object handle value.

DesiredAccess - The desired types of access to the created thread. For a complete description of
desired access flags, refer to the NtCreateThread API description.

ObjectAttributes - An pointer to a structure that specifies the object's attributes. Refer to the
Object Management Specification for details. Note that OBJ_PERMANENT,
OBJ_EXCLUSIVE, OBJ_OPEN_IF, and OBJ_OPEN_LINK are not valid attributes for a
thread object.

ProcessHandle - An open handle to the process object that the thread is to run in. The subject
thread must have PROCESS_CREATE_THREAD access to this process. If this parameter
is not supplied, then the thread will be created in the initial system process.

ClientId - A pointer to a structure that will receive the client identifier of the new thread.

StartRoutine - Supplies the address of a function in system space that the thread begins execution
at. A return from this function causes the thread to terminate.

Windows NT Process Structure 41

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

StartContext - Supplies a single argument passed to the thread when it begins execution.

Creating a system thread begins a separate thread of execution within the system. System threads may
only execute in kernel-mode. A system thread has no TEB, or user-mode context. It is not possible to
terminate a system thread using NtTerminateThread unless the thread is terminating itself.

6.3 PsLookupProcessThreadByCid

A process and thread can be located by client id using the PsLookupProcessThreadByCid function:

NTSTATUS
PsLookupProcessThreadByCid(
 IN PCID Cid,
 OUT PEPROCESS Process OPTIONAL,
 OUT PETHREAD Thread
);

Parameters:

Cid - A pointer to the client id whose thread and process are to be located.

Process - An optional parameter that if specified receives a referenced pointer to the process
object associated with the specified client id.

Thread - A parameter that receives a referenced pointer to the thread object associated with the
specified client id.

6.4 PsChargePoolQuota

Pool quota can be charged to the specified process using the PsChargePoolQuota function:

VOID
PsChargePoolQuota(
 IN PEPROCESS Process,
 IN POOL_TYPE PoolType,
 IN ULONG Amount
);

Parameters:

Process - Supplies the address of a process to charge pool quota to.

PoolType - Supplies the pool type to charge the quota for.

Amount - Supplies the amount of quota to charge to the process.

Windows NT Process Structure 42

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The PsChargePoolQuota function is designed to charge pool quota to a process subject to the quota
limits of that process. If the quota charge would cause the process to exceed its quota limit for the
specified pool type, then an STATUS_QUOTA_EXCEEDED exception is raised and the charge is not
made. Otherwise, the quota pool usage of the specified process is adjusted (incremented) to account for
the quota being charged to the process.

6.5 PsReturnPoolQuota

Pool quota can be returned to the specified process using the PsReturnPoolQuota function:

VOID
PsReturnPoolQuota(
 IN PEPROCESS Process,
 IN POOL_TYPE PoolType,
 IN ULONG Amount
);

Parameters:

Process - Supplies the address of a process to return pool quota to.

PoolType - Supplies the pool type to return the quota for.

Amount - Supplies the amount of quota to return to the process.

The PsReturnPoolQuota function is designed to return pool quota to a process to reverse the effects
of a previous call to PsChargePoolQuota. The system will catch attemps to return more quota to the
process than the process has been charged for and bug check. Otherwise, the quota pool usage of the
specified process is adjusted (decremented) to account for the quota being returned to the process.

6.6 PsGetCurrentThread

The address of the thread object of the currently executing thread is returned using the
GetCurrentThread function:

PETHREAD
PsGetCurrentThread();

6.7 PsGetCurrentProcess

The address of the process object that the currently executing thread is attached to is returned using the
PsGetCurrentProcess function:

Windows NT Process Structure 43

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

PEPROCESS
PsGetCurrentProcess();

6.8 KeGetPreviousMode

The processor mode that the current thread was running in prior to the last trap or interrupt can be
determined using the KeGetPreviousMode function:

KPROCESSOR_MODE
KeGetPreviousMode();

The KeGetPreviousMode function is used mainly inside Windows NT system services to determine
the processor mode that the thread was executing in prior to the system service.

6.9 PsRevertToSelf

The current can switch to its original access token using the PsRevertToSelf function:

VOID
PsRevertToSelf();

The PsRevertToSelf function switches the access token used by the calling thread back to its original
value. This is the same token that would have been in effect if the thread had never called
PsImpersonateThread.

6.10 PsReferencePrimaryToken

PACCESS_TOKEN
PsReferencePrimaryToken(
 IN PEPROCESS Process
)

Arguments:

Process - Supplies the address of the process whose primary token is to be referenced.

Return Value:

A pointer to the specified process's primary token.

Routine Description:

This function returns a pointer to the primary token of a process. The reference count of that primary
token is incremented to protect the pointer returned.

Windows NT Process Structure 44

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

When the pointer is no longer needed, it should be freed using PsDereferencePrimaryToken().

6.11 PsDereferencePrimaryToken

VOID
PsDereferencePrimaryToken(
 IN PACCESS_TOKEN PrimaryToken
)

Arguments:

PrimaryToken - Pointer to a token obtained using PsReferencePrimaryToken().

Return Value:

None.

Routine Description:

This function causes the referenced primary token to be dereferenced. This token is expected to have
been referenced using PsReferencePrimaryToken().

6.12 PsReferenceImpersonationToken

PACCESS_TOKEN
PsReferenceImpersonationToken(
 IN PETHREAD Thread,
 OUT PBOOLEAN CopyOnOpen,
 OUT PBOOLEAN EffectiveOnly,
 OUT PSECURITY_IMPERSONATION_LEVEL ImpersonationLevel,
)
Arguments:

Thread - Supplies the address of the thread whose impersonation token is to be referenced.

CopyOnOpen - The current value of the Thread->CopyOnOpen field.

EffectiveOnly - The current value of the Thread->EffectiveOnly field.

ImpersonationLevel - The current value of the Thread->ImpersonationLevel field.

Return Value:

A pointer to the specified thread's impersonation token.

If the thread is not currently impersonating a client, then NULL is returned.

Windows NT Process Structure 45

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Routine Description:

This function returns a pointer to the impersonation token of a thread. The reference count of that
impersonation token is incremented to protect the pointer returned.

If the thread is not currently impersonating a client, then a null pointer is returned.

If the thread is impersonating a client, then information about the means of impersonation are also
returned (ImpersonationLevel).

If a non-null value is returned, then PsDereferenceImpersonationToken() must be called to
decrement the token's reference count when the pointer is no longer needed.

6.13 PsDereferenceImpersonationToken

VOID
PsDereferenceImpersonationToken(
 IN PACCESS_TOKEN ImpersonationToken
)

Arguments:

ImpersonationToken - Pointer to a token obtained using PsReferenceImpersonationToken().

Return Value:

None.

Routine Description:

This function causes the referenced impersonation token to be dereferenced. This token is expected to
have been referenced using PsReferenceImpersonationToken().

6.14 PsOpenTokenOfProcess

NTSTATUS
PsOpenTokenOfProcess(
 IN HANDLE ProcessHandle,
 OUT PACCESS_TOKEN *Token
)

Arguments:

ProcessHandle - Supplies a handle to a process object whose primary token is to be opened.

Windows NT Process Structure 46

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Token - If successful, receives a pointer to the process's token object.

Return Value:

STATUS_SUCCESS - Indicates the call completed successfully.

Status may also be any value returned by an attemp the reference the process object for
PROCESS_QUERY_INFORMATION access.

Routine Description:

This function does the process specific processing of an NtOpenProcessToken() service.

The service validates that the handle has appropriate access to referenced process. If so, it goes on to
reference the primary token object to prevent it from going away while the rest of the
NtOpenProcessToken() request is processed.

NOTE: If this call completes successfully, the caller is responsible for decrementing the
reference count of the target token. This must be done using the
PsDereferencePrimaryToken() API.

6.15 PsOpenTokenOfThread

NTSTATUS
PsOpenTokenOfThread(
 IN HANDLE ThreadHandle,
 OUT PACCESS_TOKEN *Token,
 OUT PBOOLEAN CopyOnOpen,
 OUT PBOOLEAN EffectiveOnly,
 OUT PSECURITY_IMPERSONATION_LEVEL ImpersonationLevel
)

Arguments:

ThreadHandle - Supplies a handle to a thread object.

Token - If successful, receives a pointer to the thread's token object.

CopyOnOpen - The current value of the Thread->CopyOnOpen field.

EffectiveOnly - The current value of the Thread->EffectiveOnly field.

ImpersonationLevel - The current value of the Thread->ImpersonationLevel field.

Return Value:

Windows NT Process Structure 47

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

STATUS_SUCCESS - Indicates the call completed successfully.

STATUS_NO_TOKEN - Indicates the referenced thread is not currently impersonating a client.

STATUS_CANT_OPEN_ANONYMOUS - Indicates the client requested anonymous
impersonation level. An anonymous token can not be openned.

status may also be any value returned by an attemp the reference the thread object for
THREAD_QUERY_INFORMATION access.

Routine Description:

This function does the thread specific processing of an NtOpenThreadToken() service.

The service validates that the handle has appropriate access to reference the thread. If so, it goes on to
increment the reference count of the token object to prevent it from going away while the rest of the
NtOpenThreadToken() request is processed.

NOTE: If this call completes successfully, the caller is responsible for decrementing the
reference count of the target token. This must be done using
PsDereferenceImpersonationToken().

6.16 PsImpersonateClient

VOID
PsImpersonateClient(
 IN PETHREAD Thread,
 IN BOOLEAN CopyOnOpen,
 IN BOOLEAN EffectiveOnly,
 IN SECURITY_IMPERSONATION_LEVEL ImpersonationLevel
)

Arguments:

Thread - points to the thread which is going to impersonate a client.

CopyOnOpen - If TRUE, indicates the token is considered to be private by the assigner and
should be copied if opened. For example, a session layer may be using a token to represent
a client's context. If the session is trying to synchronize the context of the client, then user
mode code should not be given direct access to the session layer's token.

This field is ANDed with the DirectAccess field of the ClientContext to establish the
CopyOnOpen value actually assigned to the impersonation.

Windows NT Process Structure 48

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

CopyOnOpen - If TRUE, indicates the token is considered to be private by the assigner and
should be copied if opened. For example, a session layer may be using a token to represent
a client's context. If the session is trying to synchronize the context of the client, then user
mode code should not be given direct access to the session layer's token.

Basically, session layers should always specify TRUE for this, while tokens assigned by
the server itself (handle based) should specify FALSE.

EffectiveOnly - Is a boolean value to be assigned as the Thread->EffectiveOnly field value for
the impersonation. A value of FALSE indicates the server is allowed to enable currently
disabled groups and privileges.

ImpersonationLevel - Is the impersonation level that the server is allowed to access the token
with.

Return Value:

STATUS_SUCCESS - Indicates the call completed successfully.

Routine Description:

This routine sets up the specified thread so that it is impersonating the specified client. This will result
in the reference count of the token representing the client being incremented to reflect the new
reference.

If the thread is currently impersonating a client, that token will be dereferenced.

Windows NT Process Structure 49

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History

Revision 1.2

 1. Simplify Create Thread.

 2. Remove create if, permanent, and other object options that are only there for orthoganality.

 3. Add port notification handlers.

 4. Add 32 bit exit status for process and thread termination.

 5. Add NtAlertThread/NtAlertResumeThread.

 6. Add get thread info.

 7. Add debugger port and subsystem port to process creation.

 8. Add process get/set info place holders.

Revision 1.3

 1. Complicate create thread

 2. Reorganize considerations

Revision 1.15, August 20, 1990, Jim Kelly

 1. Eliminated previous token query information levels. This is done using NtOpenProcessToken()
and NtOpenThreadToken().

 2. Added information level allowing the setting of a primary token.

 3. Added PsReferenceImpersonationToken() and PsDereferenceImpersonationToken().

 4. Added PsReferencePrimaryToken() and PsDereferencePrimaryToken().

 5. Added PsImpersonateClient().

 6. Added PsOpenTokenOfProcess() and PsOpenTokenOfThread().

 7. Eliminated PsLockToken(), PsUnlockToken(), and PsImpersonateThread().

 8. Minor grammatical and spelling corrections.

 9. Removed TokenLength field from THREAD_BASIC_INFORMATION structure.

Windows NT Process Structure 50

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision 1.22, February 7, 1991, Jim Kelly.

 1. Changed THREAD_IMPERSONATE_CLIENT access type to be
THREAD_SET_THREAD_TOKEN.

 2. Added the ability to directly impersonate a thread. This resulted in a new API
(NtImpersonateThread()) and a new access type (THREAD_IMPERSONATE).

 3. Corrected minor typos.

Revision 1.24, February 28, 1991, Mark Lucovsky.

 1) ???

Revision 1.24, April 21, 1991, Jim Kelly (JimK).

 1. Added NtImpersonateThread() service.

Revision 1.25, May 2, 1991, Bryan Willman (bryanwi).

 1. Added ProcessLdtInformation and ProcessLdtSize to set of data types for
NtQueryInformationProcess and NtSetInformationProcess.

Revision 1.26, May 24, 1991, Dave Hastings (daveh).

 1. Added ThreadDescriptorTableEntry to NtQueryInformationThread.

 2. Allowed querying of specific regions of the LDT for ProcessLdtInformation.

Revision 1.27, January 14, 1992, Jim Kelly (JimK).

 1. Eliminated PROCESS_SET_ACCESS_TOKEN as an access type. Changing the primary
token of a process will be protected by PROCESS_SET_INFORMATION followed by a
privilege test at the time the change is requested (rather than at open time).

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT Shared Resource Specification

Author: Gary D. Kimura

Revision 1.5, May 15, 1990

Windows NT Shared Resource Specification i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction 1
2. Initializing a Resource Variable 1
3. Acquiring a Resource for Shared Access 2
4. Acquiring a Resource for Exclusive Access 2
5. Releasing a Resource 2
6. Changing from Shared Access to Exclusive Access 3
7. Changing from Shared Access to Exclusive Access 3
8. Deleting a Resource Variable 4

Windows NT Shared Resource Specification 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

This specification describes the Windows NT routines that implement multiple-
readers, single-writer access to a shared resource. Access is controlled via a shared
resource variable and a set of routines to acquire the resource for shared access
(also commonly known as read access) or to acquire the resource for exclusive
access (also called write access).

A resource is logically in one of three states:

 o Acquired for shared access

 o Acquired for exclusive access

 o Released (i.e., not acquired for shared or exclusive access)

Initially a resource is in the released state, and can be acquired for either shared or
exclusive access by a user.

A resource that is acquired for shared access can be acquired by other users for
shared access. The resource stays in the acquired for shared access state until all
users that have acquired it have released the resource, and then it becomes
released. Each resource, internally, maintains a count of the number of users
granted shared access.

A resource that is acquired for exclusive access cannot be acquired by other users
until the single user that has acquired the resource for exclusive access releases the
resource. However, a thread can recursively acquire exclusive access to the same
resource without blocking.

The routines described in this specification do not return to the caller until the
resource has been acquired. or the user has the option of having the procedure
return immediately to the caller if the resource cannot be acquired with blocking.
The procedure's return value then indicates if the resource has been acquired.

To help avoid starvation of a user requesting exclusive access to a resource, the
procedures do not allow additional users shared access to a resource if there is a
user waiting for exclusive access to the resource.

Also, when a user releases exclusive access to a resource, priority is given to those
waiting for exclusive access over those waiting for shared access.

The APIs that implement a shared resource are the following:

ExInitializeResource - Initialize a resource and set its state to released

Windows NT Shared Resource Specification 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ExAcquireResourceShared - Acquire shared access to a resource
ExAcquireResourceExclusive - Acquire exclusive access to a resource
ExReleaseResource - Release a resource (shared or exclusive)
ExConvertSharedToExclusive - Convert from shared to exclusive access
ExConvertExclusiveToShared - Convert from exclusive to shared access
ExDeleteResource - Deletes (i.e., uninitializes) a resource

2. Initializing a Resource Variable

A resource variable can be initialized and its state set to released with the
ExInitializeResource procedure.

VOID
ExInitializeResource (
 IN PERESOURCE Resource
);

Parameters:

Resource — A pointer to the resource variable being initialized

A resource variable cannot be used by the other procedures until it has been
initialized.

3. Acquiring a Resource for Shared Access

A user can acquire shared access to a resource with the ExAcquireResourceShared
procedure.

BOOLEAN
ExAcquireResourceShared (
 IN PERESOURCE Resource,
 IN BOOLEAN Wait
);

Parameters:

Resource - A pointer to the resource variable to be acquired for shared access

Wait - Indicates if the call is allowed to block in order to acquire the resource.
A value of TRUE indicates that the call is allowed to wait for the resource
and FALSE indicates that control is to return immediately even if the
resource cannot be acquired.

Windows NT Shared Resource Specification 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Return Value:

BOOLEAN - Returns TRUE if the access to the resource has been acquired and
FALSE otherwise. If the Wait input parameter is TRUE then this function
will always return a value of TRUE. If the Wait input parameter is FALSE
then this function will return TRUE if the resource was acquired without
blocking and FALSE if the resource cannot be acquired without blocking.

If the Wait parameter is TRUE, then this procedure does not return to the caller
until the resource has been acquired for shared access. When the user acquires the
resource, the count of the number of shared access users is incremented by one.

If the caller's thread has previously acquired exclusive access to the resource then
the call to ExAcquireResourceShared will automatically succeed.

4. Acquiring a Resource for Exclusive Access

A user can acquire exclusive access to a resource with the
ExAcquireResourceExclusive procedure.

BOOLEAN
ExAcquireResourceExclusive (
 IN PERESOURCE Resource,
 IN BOOLEAN Wait
);

Parameters:

Resource - A pointer to the resource variable to be acquired for exclusive access

Wait - Indicates if the call is allowed to block in order to acquire the resource.
A value of TRUE indicates that the call is allowed to wait for the resource
and FALSE indicates that control is to return immediately even if the
resource cannot be acquired.

Return Value:

BOOLEAN - Returns TRUE if the access to the resource has been acquired and
FALSE otherwise. If the Wait input parameter is TRUE then this function
will always return a value of TRUE. If the Wait input parameter is FALSE
then this function will return TRUE if the resource was acquired without
blocking and FALSE if the resource cannot be acquired without blocking.

If the Wait parameter is TRUE, then this procedure does not return to the caller
until the resource has been acquired for exclusive access.

Windows NT Shared Resource Specification 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

If the caller's thread has previously acquired exclusive access to the resource then
subsequent calls to ExAcquireResourceExclusive will automatically succeed.

5. Releasing a Resource

A user can release access to a resource with the ExReleaseResource procedure.
This procedure is for releasing either exclusive access or shared access to a
resource.

VOID
ExReleaseResource (
 IN PERESOURCE Resource
);

Parameters:

Resource - A pointer to the resource variable to be released

If the resource is acquired for shared access, the number of users with shared
access to the resource is decremented by one. If the count is now zero, the resource
is released and next user waiting for exclusive access to the resource acquires it.

If the resource is acquired for exclusive access then the count of the number of
times it has been recursively acquired is decremented by one. If the count is now
zero, the resource is released and the next user waiting for access to the resource
acquires it.

6. Changing from Shared Access to Exclusive Access

A user that has shared access to a resource can change to exclusive access with the
ExConvertSharedToExclusive procedure.

VOID
ExConvertSharedToExclusive (
 IN PERESOURCE Resource
);

Parameters:

Resource - A pointer to the resource variable to be acquired for exclusive access

This procedure does not return to the caller until the resource has been acquired for
exclusive access. This procedure is similar in function to releasing a shared
resource and then acquiring it for exclusive access; however, in the case where only

Windows NT Shared Resource Specification 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

one user has the resource acquired with shared access, the conversion to exclusive
access with ExConvertSharedToExclusive is more efficient.

It is an error to try to covert a resource to exclusive access that is not currently
acquired for either shared or exclusive access.

7. Changing from Shared Access to Exclusive Access

A user that has exclusive access to a resource can change to shared access with the
ExConvertExclusiveToShared procedure.

VOID
ExConvertExclusiveToShared (
 IN PERESOURCE Resource
);

Parameters:

Resource - A pointer to the resource variable to be converted to shared access

This procedure does not return to the caller until the resource has been acquired for
shared access. This procedure is similar in function to releasing an exclusive
resource and then acquiring it for shared access; however the user calling
ExConvertExclusiveToShared does not relinquish access to the resource as the
two step operation does.

It is an error to try to convert a resource to shared access that is not currently
acquired for exclusive access, or has been acquired recusively.

8. Deleting a Resource Variable

A resource variable can be deleted (i.e., uninitialized) with the ExDeleteResource
procedure.

VOID
ExDeleteResource (
 IN PERESOURCE Resource
);

Parameters:

Resource — A pointer to the resource variable being deleted

Windows NT Shared Resource Specification 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The programmer is responsible for ensuring that no one is actively using the
resource. After calling this procedure the resource cannot be used again unless it is
reinitialized.

Windows NT Shared Resource Specification 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History:

Original Draft 1.0, June 23, 1989

Revision 1.1, June 26, 1989

1. Added explanation regarding who gets priority when releasing a
resource

2. Changes PEXRESOURCE to PERESOURCE

Revision 1.2, June 27, 1989

1. Changed ExChangeSharedToExclusive to
ExConvertSharedToExclusive.

2. Added ExConvertExclusiveToShared.

Revision 1.3, July 10, 1989

1. Added ExDeleteResource

Revision 1.4, March 21, 1990

1. Changed ExAcquireResourceShared and
ExAcquireResourceExclusive to take an additional Wait input parameter
and to return a BOOLEAN function value.

Revision 1.5, May 15, 1990

1. Added recusive exclusive resource acquisition.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT Session Management and Control

Author: Mark Lucovsky

Revision 1.9, January 7, 1990

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1

1. Introduction ...2
1.1 NT Sessions..2
1.3 Windows NT System Structure..4

2. General Sm Services...8
2.1 SmConnectToSm ..8
2.2 SmGetLogonObjectDirectory ...8

3. Logon Process Support ...9
3.1 Logon Process Philosophy ...9
3.2 SmRegisterLogonProcess ..12
3.3 SmExecLogonShell ...13

4. System Subsystems Support ..15
4.1 Session Control Services...15

4.1.1 SmCreateForeignSession..15
4.1.2 SmSessionComplete...16
4.1.3 SmTerminateForeignSession ..17

4.2 Piper...18
4.2.1 PiperCreatePipe..18
4.2.2 PiperJoinPipe...19
4.2.3 PiperLeavePipe ...20
4.2.4 PiperReadPipe..20
4.2.5 PiperWritePipe ...20

5. Emulation Subsystems...22
5.1 PSX++ ..22
5.2 OS/2++ ..22
5.3 NT++ ..23
5.4 Emulation Subsystem APIs...23

5.4.1 SbCreateSession ..24
5.4.2 SbTerminateSession...25
5.4.3 SbForeignSessionComplete ..26

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2

1. Introduction

The Windows NT operating system is designed to support multiple
concurrent application execution environments. The initial application
execution environments that will be supported under Windows NT
include POSIX (IEEE Std 1003.1-1988), and 32-Bit Cruiser OS/2.

Users will see Windows NT as a system that lets them execute both
POSIX and OS/2 applications concurrently. There is no need to reboot
the system to gain access to a particular execution environment.

Multiple concurrent application execution environments are made
possible by implementing these environments as Emulation Subsystems.
An Emulation Subsystem implements the APIs of a given operating
system as a protected subsystem. Each application program image file
header contains a description of the operating system environment that
it has been designed to run in (e.g., cmd.exe is marked as an OS/2
application and ed is marked as a POSIX application). During the
process initialization of an application, an LPC connection is made
between the application and the Emulation Subsystem that it has been
designed to run with. Each system service API call that the application
makes is translated into a Local Procedure Call (LPC) to the Emulation
Subsystem. The subsystem implements the respective APIs using native
Windows NT services.

The structure of an application program with respect to an Emulation
Subsystem and the Native Windows NT System Services is depicted
below.

 Ö-------Ì Ö-------Ì
 °Port ° °Port °
 °Memory ° °Memory °
 ÛÚ-----Úì ÛÚ-----Úì
 ° ° ° °
 ° ° ° °
Ö-------------À û-----------À û---------Ì
°Emulation ° °Application° °User32 °
°Subsystem °<- - ûÌ ÖÀ - ->°Subsystem°
°OS/2 or POSIX° °° °° ° °
Û---Ú---------ì Ûé---------éì Û------Ú--ì
 ° ° ° °
 V ° ° ° ° V
Ö------é-------------é---------é-----------é-----Ì
° Û---IPC Port--ì Û-IPC Port--ì °
° °
° Windows NT Executive °

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3

1.1 NT Sessions

Windows NT provides a mechanism that allows an application in one
environment to execute an application designed to run in another
environment. For example, the OS/2 command line interpreter cmd.exe
can start the POSIX editor ed as follows.

 - cmd.exe, an OS/2 application calls DosExecPgm passing it
the program name ed.- The OS/2 subsystem creates a process
ready to execute the ed program.

 - After creating the process, the image type is examined.

 - Since the image type indicates that it is not an OS/2
application, the OS/2 subsystem issues an LPC to Sm asking it
to forward the process off to an appropriate Emulation
Subsystem. Sm exports an API named
SmCreateForeignSession that performs this function.

 - Sm examines the image type passed as part of the
SmCreateForeignSession call. The image type indicates that
ed is a POSIX application.

 - Sm issues an LPC to the POSIX subsystem passing it the
process (originally created by the OS/2 subsystem). Each
Emulation Subsystem exports an API named SbCreateSession
that performs this function.

 - When the ed application terminates, the POSIX subsystem
issues an LPC to Sm indicating that the process has completed
with the specified termination status. Sm exports an API
named SmSessionComplete that performs this function.

 - Upon receipt of the call, Sm issues an LPC to the OS/2
subsystem indicating that ed has terminated with the specified
termination status. Each Emulation Subsystem exports an API
named SbForeignSessionComplete that performs this
function.

In addition to starting an application in a different environment,
Windows NT allows an application in one environment to pass
information through a pipe stream to a process in another environment.
The Pipe Stream Subsystem (Piper) exports a set of APIs used by
Emulation Subsystems that make this possible.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4

1.2 NT Logon Sessions

To tie all related NT sessions together, a logon session is used. A logon
session serves as a parent to all sessions related to a single logon.

Associated with a logon session, and all the sessions related to it, is an
object directory refered to as the Logon Object Directory. This object
directory may be used to house objects related to processes related to all
sessions of the logon session. The name of the logon object directory
may be obtained using the SmGetLogonObjectDirectory() service.

Throughout this document, the term session typically referes to an NT
session. When a higher level logon session is being refered to, it will
explicitly be called out as a logon session.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5

1.3 Windows NT System Structure

Before going any further, the following diagram is presented to show the
overall structure of the subsystems and system processes that
implement the session management and control portion of the Windows
NT operating system.

Windows NT System Structure

 Ö-------Ì Ö-------Ì Ö-------Ì
 °Logon ° °Logon ° °Logon °
 °Process° °Process° °Process°
 Û---Ú---ì Û---Ú---ì Û---Ú---ì
 Û-------Ì ° Ö-------ì
 v v v
 Ö---------Ì
 °Sm °
 °Subsystem°
 Û--Ú--Ú---ì
 ^ ° ° ^
 ° ° ° °
 Ö---ì ° ° °
 ° Ö---ì ° °
 ° v v °
Ö-----Ì Ö------Ù--Ì Ö--Ù------Ì Ö----Ì
°Posixû>°Posix ° °OS/2 °<-ÀOS/2°
°App ° °SubsystemûÌ ÖÀSubsystem°<Ì°App °
Û-----ì Û-Ú-------ì° °Û-------Ú-ì °Û----ì
 ° ^ v v ^ ° ° .
 ° ° Ö---------Ì ° ° °Ö----Ì
 ° ° °Piper ° ° ° ÛÀOS/2°
 ° ° °Subsystem° ° ° °App °
 ° ° Û---------ì ° ° Û----ì
 ° Û------Ì Ö-----ì °
 Û------Ì ° ° Ö-----ì
 v ° ° v
 Ö--Ù---Ù--Ì Ö--------------Ì
 °Dbg °<---ÀDebug °
 °Subsystem°<-Ì °User Interface°
 Û---------ì ° Û--------------ì
 ° .
Client ------> Server ° Ö--------------Ì
End End Û-ÀDebug °
 °User Interface°
 Û--------------ì

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6

The above diagram shows the structure of a Windows NT system. Most
of the structure is static and is created at system boot time. The purpose
of each component is described below.

Logon Processes - A logon process is created for each class of
devices that can accept and process logon requests. Each logon
process exists as a client process served by Sm. The LPC
connection between a logon process and Sm is trusted and
relatively static (created when each logon process initializes). A
logon process is responsible for detecting logon requests from
the devices it manages, authenticating the user (using the
Local Security Authority), and calling Sm to activate the logon
shell for the newly logged on user.

Sm Subsystem - The Sm subsystem is created during system
initialization as the initial user mode process. It is responsible
for building the structure presented in the above diagram. After
the structure is built, Sm acts as the system session manager.
In this role it is responsible for activating new logon shell
programs and for fielding process creation requests from the
various Emulation Subsystem and forwarding them on to the
appropriate Emulation Subsystem.

This occurs when a subsystem is instructed to execute a
program image, and the image file header describes an image
designed to run in a different environment. Sm acts as a server
to both logon processes and Emulation Subsystems.

As a server, Sm exports the following APIs over a trusted LPC
connection between an Emulation Subsystem and itself:

 o - SmConnectToSm - Called by an Emulation Subsystem
to create an LPC connection to Sm.

 o - SmCreateForeignSession - Called by an Emulation
Subsystem when it detects an image file designed to
execute in a different environment.

 o - SmTerminateForeignSession - Called by an Emulation
Subsystem when it wants to terminate a session that it
has asked Sm to create.

 o - SmSessionComplete - Called by an Emulation
Subsystem when a session it has been asked to create
completes.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7

 o - SmGetLogonObjectDirectory - Called by an Emulation
Subsystem to determine the logon object directory
associated with a session.

As a server, Sm exports the following APIs over a trusted LPC
connection between a Logon Process and itself:

 o - SmConnectToSm - Called by an Logon Process to
create an LPC connection to Sm.

 o - SmRegisterLogonProcess - Called by a Logon Process
to identify itself as a logon process. This is called after
connecting to Sm using SmConnectToSm.

 o - SmExecLogonShell - Called by a Logon Process to
activate a user interface shell program for a new
interactive logon session. This is used after the user
has been authenticated, and a token obtained from the
Local Security Authority.

Sm acts as a client of the Emulation Subsystems. As a client,
Sm makes the following API calls over trusted LPC connections
between an Emulation Subsystem and itself:

 o - SbCreateSession - Sm calls this API to implement a
portion of SmCreateForeignSession. After examining
the image type, Sm directs this call to the appropriate
Emulation Subsystem.

 o - SbTerminateSession - Sm calls this API to implement a
portion of SmTerminateForeignSession. After locating
the Emulation Subsystem responsible for the specified
session ID, Sm makes this call to the Emulation
Subsystem.

 o - SbForeignSessionComplete - Sm calls this API to
implement a portion of SmSessionComplete. After
locating the Emulation Subsystem responsible for the
specified session ID, Sm makes this call to the
Emulation Subsystem.

Emulation Subsystems - Emulation Subsystems implement the
operating system service APIs for a given operating system
environment. In this role, Emulation Subsystems act as "system
service servers" exporting system service APIs between
themselves and the applications that run in a particular
environment. The LPC connections between an application and

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

8

its Emulation Subsystem are not trusted. When an Emulation
Subsystem is called it can determine if it created the calling
thread and can fail the call if appropriate.

Emulation Subsystems maintain connections to other
subsystems as well. These connections are static connections
created at system initialization time and are trusted. Each
Emulation Subsystem maintains the following static
connections:

 o - A pair of connections is maintained between each
Emulation Subsystem and Sm. One connection is used
when the Emulation Subsystem is acting as a server to
export the Sb... APIs to Sm. The other connection is
used when the Emulation Subsystem is acting as a
client calling the Sm... APIs.

 o - A single connection is maintained between each
Emulation Subsystem and Piper. This connection allows
the subsystem to pass pipe stream input and output
between itself and another Emulation Subsystem. The
Emulation Subsystem is responsible for determining
when I/O needs to be serviced using APIs available over
this connection. The Windows NT I/O system is not
involved in this decision.

 o - A pair of connections is maintained between each
Emulation Subsystem and the Debugger Subsystem
(Dbg). One connection is used when the Emulation
Subsystem is acting as a server to export the
SbDebugSupport API to Dbg. This API lets Dbg read
and write the memory and context associated with the
specified thread, and to control the execution (start,
stop, terminate) of the specified thread. The other
connection is used by the Emulation Subsystem to
notify Dbg of significant events occuring in a "debugged"
thread or process (e.g., encountering an exception,
process or thread creation, process or thread
termination).

 o - A pair of implicit connections are maintained between
each Emulation Subsystem and the Windows NT
executive. These connections can act as the "DebugPort
and ExceptionPort" values specified in a call to
NtCreateProcess. Upon receipt of an exception, the
Windows NT executive examines the process of the
thread in which the exception occured. If the process

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

9

was created with either a DebugPort or an ExceptionPort,
then the Emulation Subsystem is notified of the
exception over this connection.

Piper Subsystem - Piper is implemented as a server subsystem that
views Emulation Subsystems as its clients. Piper only maintains
trusted LPC connections between itself and the Emulation
Subsystems. Piper is responsible for maintaining read/write
data streams. Piper exports the following APIs:

 o - PiperCreatePipe - This API causes the Piper to create a
pipe stream accessible to processes in the specified
sessions. The data in the stream is only available by
having the process' Emulation Subsystem call Piper.

 o - PiperJoinPipe - This API causes the Piper to bind to a
pipe stream so that data can flow over the pipe.

 o - PiperLeavePipe - This API causes the Piper to close one
end of a pipe stream. Once both ends of a pipe stream
are closed, the pipe and any remaining data become
inaccesible.

 o - PiperReadPipe - This API causes the Piper to return
data stored in the pipe stream making room for new
data.

 o - PiperWritePipe - This API causes the Piper to store data
in the specified pipe stream.

Dbg Subsystem - The Dbg Subsystem implements the machine
dependent facilities needed to debug an application thread.
For more information on the Dbg Subsystem, refer to the
Windows NT Debug Architecture document.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10

2. General Sm Services

The Sm has several classes of client, and provides services tailored to
each class. The services that are used by more than one class of client
are:

 SmConnectToSm
SmGetLogonObjectDirectory

These services are described in the following subsections.

2.1 SmConnectToSm

NTSTATUS
SmConnectToSm(

IN PSTRING SbApiPortName OPTIONAL,
IN HANDLE SbApiPort OPTIONAL,
OUT PHANDLE SmApiPort
);

Parameters:

SbApiPortName - An optional string that if supplied specifies the
name of a connection port that Sm will use to connect back to
the Emulation Subsystem. This parameter is only used by
Emulation Subsystems that are known to Sm.

SbApiPort - A optional handle that if supplied specifies a handle to a
port named by the SbApiPortName parameter. This parameter
is only used by Emulation Subsystems that are known to Sm.

SmApiPort - An output variable that returns a handle to a
communication port connected to Sm, and over which the
Sm... APIs may be made.

The SmConnectToSm API is provided so that Emulation Subsystem's
and Logon Processes can connect to Sm. For Emulation Subsystem's, the
SbApiPortName, and SbApiPort parameters must be supplied. This is
because in addition to creating a connection to Sm (over which the Sm...
APIs are exported), a connection is made to the Emulation Subsystem
over which the Sb... APIs are exported.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

11

2.2 SmGetLogonObjectDirectory

NTSTATUS
SmGetLogonObjectDirectory(

IN ULONG SessionId OPTIONAL,
OUT PSTRING LogonObjectDirectoryName
);

Parameters:

SessionId - An optioanl variable that supplies the session id whose
associated logon object directory name is to be found. If this
optional parameter is not provided, then the caller's logon
object directory name is returned.

LogonObjectDirectoryName - A variable that returns the name of the
session's associated logon object directory.

The name of the logon object directory associated with a session can be
determined using the SmGetLogonObjectDirectory function.

3. Logon Process Support

Before a user can make use of the Windows NT system, that user must
first "logon" to the system. Device-specific logon processes are
responsible for collecting information about the user and authenticating
the user. The authentication is performed using services of the Local
Security Authority. Following authentication, a logon process may
decide to activate a user interface shell program to interact with the
user.(1) This is done using Sm services.

The Sm services provided to support logon processes are:

 SmRegisterLogonProcess
SmExecLogonShell

These services are described in following subsections. Before these API
descriptions, some background/philosophy informtion is provided on
logon processes.

1 Note that this is not always the case. The LAN Manager logon process, for instance, authenticates
users as part of session setup, but no shell process is activated.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

12

3.1 Logon Process Philosophy

The general philosophy and logic of logon processes, from the perspective
of the Sm is:

 o Some set of logon process are activated by configuration control or
other means. For the standard Windows NT devices (windows,
terminals, LAN Manager), the logon processes will be started as
part of device/network initialization. Other logon processes, such
as automated teller device, or cash-register device logon processes
may be started either via configuration control, or other
mechanisms, such as operator actions.

 Note that there is nothing special about a logon process except
that it has the SeTcbPrivilege privilege. Note also that a logon
process does not have to be an independent process running
nothing but logon process code. For example, the windows server
(User32 server) could include logon processing code within it.

 o Each logon process connects to the session manager using
SmConnectToSm(). The SbApiPortName is left null in this call to
indicate that something other than an emulation subsystem is
connecting. At this time, the session manager doesn't yet know
that the connected client is a logon process.

 o The logon process then identifies itself as a logon process. This is
done using the SmRegisterLogonProcess() API. This allows the
session manager to authenticate the caller as having the
SeTcbPrivilege.

 As part of SmRegisterLogonProcess() processing, the session
manager opens the client process for PROCESS_DUP_HANDLE
access. Note that all calls from this logon process must originate
from this same process. That is, the port object handles used to
communicate with the session manager can not be shared with a
third process who will also act as a logon process.

 o When a user attempts to log on, the logon process collects
identification and authentication information and calls the Local
Security Authority (LSA) directly to authenticate the user. If the
authentication is successful, the logon process will be given a
handle to a primary token representing the new logon session.

 o Once a user has been successfully authenticated, the logon
process may activate a root process for the user by calling
SmExecLogonShell(). This call takes as parameters:

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

13

 - The name of the shell (image) to activate,

 - A handle to the primary token to assign to the new
process,

 - Memory quota information for the new process,

 - A GUID representing the new logon session (which the
session manager will use to create a logon object
directory),

 - (optional) environment variables that are to be passed to
the new logon shell process.

 o The session manager attempts to create a new process running the
logon shell image. The session manager sets the process's primary
token to be that supplied by the logon process. The initial thread
of this process is created, but left in a suspended state. It is the
logon process's responsibility to resume the thread when desired.

 If the process creation is successful, then handles to the newly
created shell process and thread are returned to the logon process.
The process handle will be open for SYNCHRONIZE access. The
thread handle will be open for THREAD_SUSPEND_RESUME
access. Logon processes are expected to close these handles when
no longer needed.

This allows logon processes to:

 1) Specify UI shell initialization parameters (via environment
variables). For example, the User32 logon process will specify the
name of the window station the user has logged on from using
environment variables.

 2) Wait on the newly logged on process to exit unexpectedly. For
example, a windows32 logon shell is expected to open a desktop
object in the window station the user logged on from. If the shell
process exits before openning a desktop, then the User32 logon
process assumes something has gone wrong and treats the
condition as a logoff, making the window station available for
another logon.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

14

3.2 SmRegisterLogonProcess

NTSTATUS
SmRegisterLogonProcess(
 IN HANDLE SmApiPort,
 IN PSTRING LogonProcessName
);

Parameters:

SmApiPort - A variable that supplies an handle to a communcation
port connected to Sm.

LogonProcessName - A name string that identifies the logon process.
This should be a printable name suitable for display to
administrators. For example, "User32LogonProcess" might be
used for the windows logon process name. No check is made to
determine whether the name is already in use.

Return Value:

STATUS_SUCCESS - The call completed successfully.

STATUS_PRIVILEGE_NOT_HELD - Indicates the caller does not
have the privilege necessary to act as a logon process.
SeTcbPrivilege is needed.

Before being able to use the SmExecLogonShell() service, a logon
process must identify itself as a logon process. This is done using the
SmRegisterLogonProcess() service.

This service verifies that the caller is a legitimate logon process. This is
done by ensuring the caller has SeTcbPrivilege. It also opens the
caller's process for PROCESS_DUP_HANDLE. This information is cached
for future use.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

15

3.3 SmExecLogonShell

NTSTATUS
SmExecLogonShell(
 IN HANDLE SmApiPort,
 IN GUID LogonGuid,
 IN PSTRING ShellImageName,
 IN HANDLE PrimaryToken,
 IN QUOTA_LIMITS Quotas,
 IN RTL_USER_PROCESS_PARAMETERS ProcessParameters,
 OUT PHANDLE Process,
 OUT PHANDLE Thread
);

Parameters:(2)

SmApiPort - A variable that supplies an handle to a communcation
port connected to Sm.

LogonGuid - A GUID uniquelly assigned to represent this logon
session.

ShellImageName - Provides the path name of the shell program to
execute.

PrimaryToken - Provides a handle to the primary token to assign to
the new process. This handle must be open for
TOKEN_ASSIGN_PRIMARY access.

Quotas - Provides quota values to be assigned to the new process.

ProcessParameters - Provides parameters to be passed to the new
process.

Process - Receives a handle to the new process. The handle will be
open for SYNCHRONIZE access.

Thread - Receives a handle to the initial thread of the process. The
handle will be open for THREAD_SUSPEND_RESUME access.
The thread will not yet have been activated.

2 Loup, DaveC, DarrylH: Do we need a CaptiveAccount parameter too?

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

16

Return Value:

STATUS_SUCCESS - The call completed successfully.

STATUS_NOT_LOGON_PROCESS - The caller has not registered as
a logon process.

STATUS_LOGON_SESSION_EXISTS - Indicates the GUID assigned
to this logon session is already in use.

In addition to these, the following general classes of errors may be
returned:

 o Errors related to creation of a process or thread, including
attempts to access the image file.

 o Attempts to duplicate and assign the primary token.

This service is used by logon processes to activate a user interface shell
program for a newly logged on interactive user. The logon process may
pass information to the new shell program via environment variables.

The session manager:

 1) Creates a new logon session to run the logon shell program in,

 2) Creates a logon object directory for the new logon session,

 3) creates the logon program and the initial thread in that
program (but leaves the thread in a suspended state).

Handles to the new process and its initial thread are passed back to the
requesting logon process. The process handle will be open for
SYNCHRONIZE access. The thread handle will be open for
THREAD_SUSPEND_RESUME access. The logon process is expected to
close these handles when no longer needed.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

17

4. System Subsystems Support

System subsystems are logical extensions of the operating system. They
provide privileged and protected operating system support, but are
implemented as separated processes that execute in user mode.

4.1 Session Control Services

The Sm subsystem is responsible for coordinating the creation and
management of sessions. It is responsible for coordinating the creation of
sessions when Emulation Subsystems encounter an image file designed
to operate in a different API environment.

Sm tends to act as an intermediary between Emulation Subsystems. It is
responsible for allocating session ID's, and for associating a session ID
with its controlling Emulation Subsystem.

Sm is also responsible for associating an image file with the Emulation
Subsystem it is designed to run with.

Sm exports the following APIs to support Emulation subsystem
operations:

 SmCreateForeignSession
SmSessionComplete
SmTerminateForeignSession

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

18

4.1.1 SmCreateForeignSession

A request to create a foreign session can be made using the
SmCreateForeignSession function.

NTSTATUS
SmCreateForeignSession(

IN HANDLE SmApiPort,
OUT PULONG ForeignSessionId,
IN ULONG SourceSessionId,
IN PRTL_USER_PROCESS_INFORMATION ProcessInformation,
IN PCID DebugUiClientId OPTIONAL,
IN HANDLE StandardInput OPTIONAL,
IN HANDLE StandardOutput OPTIONAL,
IN HANDLE StandardError OPTIONAL
);

Parameters:

SmApiPort - A variable that supplies an handle to a communcation
port connected to Sm.

ForeignSessionId - A variable whose return value specifies the
session ID of the created session. The session ID is assigned by
the session manager. The session ID is used in the session
control APIs to identify the target foreign session.

SourceSessionId - A variable that specifies the session ID of the
application that is creating (through its Emulation Subsystem)
the foreign session. This session ID is used by Sm to determine
a user profile for the new session.

ProcessInformation - A structure that describes the process to be
run as a foreign session. This data structure contains a
complete description of the process including handles to the
process and its initial thread. Using NtDupObject, Sm makes
these handles available to the Emulation Subsystem
responsible for the process. Regardless of the outcome of this
call, the calling process looses its handles to the process and
thread.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

19

DebugUiClientId - An optional parameter that specifies the client ID
of the debugger user interface that is debugging the session. If
this parameter is specified, then the session is a "debug
session".

StandardInput - An optional handle that specifies the standard
input stream associated with the session. Using NtDupObject,
Sm makes this handle available to the Emulation Subsystem
responsible for the process. Regardless of the outcome of this
call, the calling process' version of this handle is closed.

StandardOutput - An optional handle that specifies the standard
output stream associated with the session. Using
NtDupObject, Sm makes this handle available to the Emulation
Subsystem responsible for the process. Regardless of the
outcome of this call, the calling process' version of this handle
is closed.

StandardError - An optional handle that specifies the standard error
output stream associated with the session. Using
NtDupObject, Sm makes this handle available to the Emulation
Subsystem responsible for the process. Regardless of the
outcome of this call, the calling process' version of this handle
is closed.

Emulation Subsystems use this service whenever they are instructed to
execute an image whose type is not supported by the subsystem (e.g. an
OS/2 application executes a DosExecPgm specifying an image file that is
a POSIX application).

Sm implements this API by associating the image file type with an
appropriate Emulation Subsystem, allocating a new session ID,
transfering the handles (Thread, Process, StandardInput,
StandardOutput, and StandardError) into the appropriate Emulation
Subsystem's handle table, and calling the Emulation Subsystem at its
SbCreateSession entry point. Assuming that the call to
SbCreateSession succeeds, the session ID of the new session is returned
to the caller.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

20

4.1.2 SmSessionComplete

Sm is notified that a session has completed through the
SmSessionComplete function.

NTSTATUS
SmSessionComplete(

IN HANDLE SmApiPort,
IN ULONG SessionId,
IN NTSTATUS CompletionStatus
);

Parameters:

SmApiPort - A variable that supplies an handle to a communcation
port connected to Sm.

SessionId - A parameter that specifies the session ID of the foreign
session that has completed.

CompletionStatus - A parameter that specifies the completion status
of the session.

The SmSessionComplete API is provided so that an Emulation
Subsystem can notify Sm that one of its sessions has completed.

Once Sm receives this call, it locates the Emulation Subsystem that
created the foreign session using the specified session ID, and calls the
subsystem at its SbForeignSessionComplete entry point.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

21

4.1.3 SmTerminateForeignSession

A request that a foreign session be terminated can be made through the
SmTerminateForeignSession function.

NTSTATUS
SmTerminateForeignSession(

IN HANDLE SmApiPort,
IN ULONG ForeignSessionId,
IN NTSTATUS TerminationStatus
);

Parameters:

SmApiPort - A variable that supplies an handle to a communcation
port connected to Sm.

ForeignSessionId - A parameter that specifies the session ID of the
foreign session being terminated.

TerminationStatus - A parameter that specifies the reason that the
foreign session should be terminated.

The SmTerminateForeignSession API is provided so that an Emulation
Subsystem can request the termination of a foreign session that it
created.

Sm implements this call by locating the appropriate Emulation
Subsystem using the specified foreign session ID, and then calling the
subsystem at its SbTerminateSession entry point.

The SmTerminateForeignSession call returns before the session is
actually terminated. When the session terminates Sm will be notified.

4.2 Piper

The Piper subsystem is responsible for providing pipe stream input and
output between threads in different sessions (under the supervision of
Emulation Subsystems).

This capability is provided to support transfering information between
applications that are of a different class (e.g foo | bar where foo is a
POSIX application and bar is and OS/2 application).

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

22

Piper requires coordination between the Emulation Subsystem involved in
the data piping, and the application runtime libraries that provide
stream input and output through the STDIN, STDOUT, and STDERR I/O
streams. All application input and output through these streams must be
handled by the application's Emulation Subsystem. Only the subsystem
knows the session that the application is part of, and the "file names" of
its input, output, and error streams.

Piper exports the following APIs:

 PiperCreatePipe
PiperJoinPipe
PiperLeavePipe
PiperReadPipe
PiperWritePipe

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

23

4.2.1 PiperCreatePipe

An Emulation Subsystem creates the potential for pipe stream
communication between the application threads in one of its sessions,
and application threads in a "foreign" session that it asked Sm to create
using the PiperCreatePipe function.

NTSTATUS

PiperCreatePipe(

IN ULONG ForeignSessionId,
IN ULONG SourceSessionId
);

Parameters:

ForeignSessionId - Specifies the session ID of the foreign session
that makes up the other end of the pipe.

SourceSessionId - Specifies the session ID of the local session that is
creating the pipe.

Creating a pipe causes the potential for pipe stream communication to
occur between the two specified sessions. Pipes provide a full duplex byte
stream communication path between application threads in the specified
sessions.

Data written by application threads within the local session is made
available (to satisfy pipe reads) to threads within the foreign session.
Reads to the pipe by application threads within the local session are
satisfied by corresponding pipe writes made by threads within the foreign
session.

After this call completes, application threads within the local session may
attempt to read data from the pipe, and write data to the pipe. Until the
foreign session joins the pipe using the PiperJoinPipe API, data that
they write will remain in the pipe, and their pipe reads will block.

There is no need to synchronize this call with a corresponding
PiperJoinPipe call specifying the foreign session. These calls may be
issued in either order.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

24

4.2.2 PiperJoinPipe

An Emulation Subsystem joins a pipe so that it can participate in pipe
stream communication between the application threads in one of its
sessions, and application threads in the session that created it using the
PiperJoinPipe function.

NTSTATUS
PiperJoinPipe(

IN ULONG SessionId
);

Parameters:

SessionId - Specifies the session ID of the local session that is
joining a pipe.

Joining a pipe allows the threads within the specified local session to
begin pipe stream communication over a pipe created in a corresponding
call to PiperCreatePipe.

After this call completes, application threads within the local session may
read data from the pipe, and write data to the pipe.

This call completes when a corresponding call to PiperCreatePipe is
issued specifying the local session in its ForeignSessionId parameter.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

25

4.2.3 PiperLeavePipe

An Emulation Subsystem leaves a pipe which informs Piper that it no
longer wants to participate in pipe stream communication using the
PiperLeavePipe function.

NTSTATUS

PiperLeavePipe(

IN ULONG SessionId
);

Parameters:

SessionId - Specifies the session ID of the local session that is
leaving the pipe.

Leaving a pipe causes application threads within the local session to
disassociate themselves with the pipe. All data destined for the local
session is flushed, and further pipe writes to the local session fail.

When both sessions that make up a pipe leave the pipe, the pipe is
deleted. All data within or destined for the pipe is deleted.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

26

4.2.4 PiperReadPipe

An Emulation Subsystem can read data from a pipe stream that it has
either joined or created using the PiperReadPipe function.

NTSTATUS

PiperReadPipe(

IN ULONG SessionId,
OUT PUCHAR DataReadBuffer,
IN ULONG DataReadLength,
OUT PULONG DataActuallyReadLength
);

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

27

4.2.5 PiperWritePipe

An Emulation Subsystem can write data to a pipe stream that it has
either joined or created using the PiperWritePipe function.

NTSTATUS

PiperWritePipe(

IN ULONG SessionId,
IN PUCHAR DataWriteBuffer,
IN ULONG DataWriteLength,
OUT PULONG DataActuallyWrittenLength
);

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

28

5. Emulation Subsystems

The primary role of an Emulation Subsystem is to emulate a set of system
services using native Windows NT system services. Applications written
to a particular API use the appropriate Emulation Subsystem to
implement that particular system API.

Each application contains in its image file header, a description of the
Emulation Subsystem that the application requires (e.g. OS/2
applications like cmd.exe describe the OS/2++ subsystem). In addition to
providing operating system API emulation, the subsystem is responsible
for managing the session to which the application belongs. The
subsystem also acts as an intermediary between the Dbg protected
subsystem and the application when the application is being "debugged".

Each Emulation Subsystem exports three Windows NT connection ports.
An LPC connection to an Emulation Subsystem is established by
specifying one of these ports in a call to NtConnectPort. Each
connection port is associated with a class of services implemented by the
Emulation Subsystem. The three classes of services are:

- Sm to Emulation Subsystem APIs. The connection port associated
with this class of services is protected such that only the Sm
subsystem can access the port. Once a connection has been
established, the Emulation Subsystem does not respond to
connection requests arriving on this port. The connection
between Sm and each Emulation Subsystem is a trusted
connection.

- Dbg to Emulation Subsystem APIs. The connection port associated
with this class of services is protected such that only the Dbg
subsystem can access the port. Once a connection has been
established, the Emulation Subsystem does not respond to
connection requests arriving on this port. The connection
between Dbg and each Emulation Subsystem is a trusted
connection.

- Operating System APIs emulated by the subsystem. The
connection port associated with this class of services does not
have to be protected. Each application that is using the APIs
exported over this connection establishes a connection during
its process initialization sequence (crt0 equivalent). Emulation
Subsystem must authenticate each call (associate the caller's
CID with a CID created by the subsystem) to ensure that the
thread making the call is one of its threads. The connection

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

29

between and application and its Emulation Subsystem is not a
trusted connection.

5.1 PSX++

The PSX++ protected subsystem implements the APIs described in the
IEEE P1003.1/Draft 13 August 22, 1988 specification. It is responsible for
managing all applications written to this API.

5.2 OS/2++

The OS/2++ protected subsystem implements the Cruiser OS/2 V2.0
APIs. It is responsible for managing all applications written to this API.

5.3 NT++

The NT++ protected subsystem implements a very small set of APIs. Its
primary purpose is to implement the set of APIs needed to manage and
control sessions, and to provide a DosExecPgm like API that a native
debugger user interface or application can use to create and manage a
session or to execute an image designed to run with one of the other
Emulation Subsystems.

5.4 Emulation Subsystem APIs

Each Emulation Subsystem exports a set of APIs designed to manage and
control sessions. These APIs are called by the Sm, Dbg, or by the
Windows NT executive.

Emulation Subsystems export the following APIs:

 SbCreateSession
SbTerminateSession
SbForeignSessionComplete

Emulation Subsystems see the APIs in their raw form. The subsystems
must provide their own "API Loops" that receive and reply using LPC
messages. The subsystem APIs are all called (by their own API loops) with
a pointer to a subsystem API message (SBAPIMSG) the format of the
message is given below:

SbApiMsg Structure

PORTMSG h - This field contains a standard LPC port message. The
ClientId of the sender, message type, and length information
are all placed in this area by the system.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

30

SBAPINUMBER ApiNumber - This field specifies the API number of
the call. Values are:

ApiNumber Enumeration

SbCreateSessionApi - The message specifies the

SbCreateSession API.

SbTerminateSessionApi - The message specifies the

SbTerminateSession API.

SbForeignSessionCompleteApi - The message specifies the

SbForeignSessionComplete API.

NTSTATUS ReturnedStatus - This field is used to pass the return
status of the Sb... API back to the caller of the API. This field is
designed to be modified by the "API loop".

union u - This union contains one field for each of the API types.

u Union

SBCREATESESSION CreateSession - This field contains

information specific to the SbCreateSession API.

SBTERMINATESESSION TerminateSession - This field

contains information specific to the
SbTerminateSession API.

SBFOREIGNSESSIONCOMPLETE ForeignSessionComplete -

This field contains information specific to the
SbForeignSessionComplete API.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

31

5.4.1 SbCreateSession

A session is created and placed under the control of an Emulation
Subsystem through the SbCreateSession function.

NTSTATUS
SbCreateSession(

IN OUT PSBAPIMSG SbApiMsg
);

Parameters:

SbApiMsg - A variable that supplies an LPC message that contains
information necessary to allow the subsystem to create a
session capable of running the process described in the
message.

The ApiNumber associated with this call is SbCreateSessionApi. The
CreateSession field of the API message contains the following:

CreateSession Structure

ULONG SessionId - A variable that specifies the session ID to be
associated with the session being created. The session ID is
assigned by the session manager. The session ID is used in the
session control APIs to identify the target session.

RTL_USER_PROCESS_INFORMATION ProcessInformation - A
structure that describes the process to be run as a new
session. This data structure contains a complete description of
the process including handles to the process and its initial
thread. The subsystem is responsible for the process and
thread even if it fails the create session request. It must
terminate and close the process and thread at the appropriate
time (even if it fails the session creation).

CID DebugUiClientId - An optional parameter that specifies the
client ID of the debugger user interface that is debugging the
session. If this parameter is specified, then the session is
created as a "debug session". Debug sessions are created in a
suspended state (i.e., the initial thread of the process is left
suspended). In addition, the subsystem servicing this call must
call into the Dbg subsystem to report the new debug session

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

32

and the CID of the debugger user interface that is debugging
the session.

// All Windows NT threads are created in a suspended state.
Most Emulation Subsystems create an application
thread by creating a Windows NT thread and then
resuming the thread. This parameter instructs the
Emulation Subsystem to not resume the application
thread. The Emulation Subsystem will be instructed to
resume the thread through a DebugUi -> Dbg ->
Emulation Subsystem transaction. //

The value of this parameter originates in the system. When a
DebugUi issues a call to an API that creates a "debug process"
the CID of the DebugUi is captured by the DebugUi's Emulation
Subsystem from the message header of the message associated
with the process creation call. If the process is foreign to the
DebugUi's subsystem, the CID passes from the DebugUi's
Emulation Subsystem to Sm, and then from Sm to the
Emulation Subsystem that should run the process.

HANDLE StandardInput - An optional handle that specifies the
standard input stream associated with the session. Regardless
of the outcome of this call, the subsystem is responsible for
closing the handle at the appropriate time (even if it fails the
session creation).

HANDLE StandardOutput - An optional handle that specifies the
standard output stream associated with the session.
Regardless of the outcome of this call, the subsystem is
responsible for closing the handle at the appropriate time (even
if it fails the session creation).

HANDLE StandardError - An optional handle that specifies the
standard error output stream associated with the session.
Regardless of the outcome of this call, the subsystem is
responsible for closing the handle at the appropriate time (even
if it fails the session creation).

The Sm subsystem uses the SbCreateSession API to create a session to
run the specified process. This call is made as part of the logon sequence
(part of SmLogonUser), or when Sm is asked (by another subsystem,
termed the "source subsystem") to create a session to run an image
whose format is not understood by the source subsystem.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

33

5.4.2 SbTerminateSession

A session can be terminated through the SbTerminateSession function.

NTSTATUS
SbTerminateSession(

IN OUT PSBAPIMSG SbApiMsg
);

Parameters:

SbApiMsg - A variable that supplies an LPC message that contains
information necessary to allow the subsystem to terminate the
specified session.

The ApiNumber associated with this call is SbTerminateSessionApi. The
TerminateSession field of the API message contains the following:

TerminateSession Structure

ULONG SessionId - A value that specifies the session ID of the
session being terminated.

NTSTATUS TerminationStatus - A that specifies the reason that the
session should be terminated.

The SbTerminateSession API is provided so that a session can be
terminated. This call is made by the Sm subsystem in response to a
request by the Emulation Subsystem that indirectly created the session.

The SbTerminateSession call returns before the session is actually
terminated. When the session terminates, the Sm subsystem will be
notified through an RPC from the session's controlling Emulation
Subsystem to Sm at its SmSessionComplete entry point.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

34

5.4.3 SbForeignSessionComplete

An Emulation Subsystem is notified that a foreign session has completed
through the SbForeignSessionComplete function.

NTSTATUS
SbForeignSessionComplete(

IN OUT PSBAPIMSG SbApiMsg
);

Parameters:

SbApiMsg - A variable that supplies an LPC message that contains
information which notifies the subsystem that a foreign session
that it started has completed.

The ApiNumber associated with this call is SbForeignSessionCompleteApi.
The ForeignSessionComplete field of the API message contains the
following:

ForeignSessionComplete Structure

ULONG SessionId - A value that specifies the session ID of the
session that has completed.

NTSTATUS CompletionStatus - A value that specifies the completion
status of the session.

The SbForeignSessionComplete API is provided so that a subsystem
can be notified that a foreign session that it created has completed. The
subsystem that services this call is the subsystem that originally
requested that the foreign session be created.

Once this call returns, the session ID is available for re-use.

Windows NT Session Manager and Control

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

35

Revision History

Revision 1.9, January 7, 1990. Jim Kelly (JimK)

 1) Eliminated all references to Presentation Manager.

 2) Changed logon so that logon processes authenticate directly with
the Local Security authority (LSA) and then interact with the NT
Session Manager to activate the logon shell process. This
obsoleted the SmLogonUser() API and caused the introduction of
the SmRegisterLogonProcess() and SmExecLogonShell() APIs.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT Event - Semaphore Specification

Author: Lou Perazzoli

Original Draft 1.0, January 5, 1989
Revision 1.3, May 11, 1989
Revision 1.4, August 8, 1989
Revision 1.5, October 23, 1989
Revision 1.6, December 1, 1989
Revision 1.7, January 3, 1990
Revision 1.8, January 23, 1990

Windows NT Event/Semaphore Specification i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction.. 1

2. Event Objects ... 1
2.1 Create Event Object .. 1
2.2 Open Event Object .. 2
2.3 Set Event .. 3
2.4 Reset Event... 4
2.5 Pulse Event... 4
2.6 Query Event.. 4

3. Semaphore Objects ... 5
3.1 Create Semaphore Object .. 5
3.2 Open Semaphore Object.. 6
3.3 Release Semaphore Object .. 7
3.4 Query Semaphore ... 8

4.0 Delay Execution.. 9

Windows NT Event/Semaphore Specification 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

This specification describes the Windows NT event and semaphore objects and the
wait services. A definition and an explanation of operation is given for each API. No
attempt has been made, however, to fully explain all error conditions and their
consequences.

The APIs described include:

NtCreateEvent - create event and open handle
NtOpenEvent - open handle to existing event
NtSetEvent - set event to Signal state
NtResetEvent - set event to Not-Signaled state
NtPulseEvent - set / reset event state atomically
NtQueryEvent - get information about event
NtCreateSemaphore - create semaphore and open handle
NtOpenSemaphore - open handle to existing semaphore
NtReleaseSemaphore - release semaphore
NtQuerySemaphore - get information about semaphore
tDelayExecution - delay execution for the specified time
NtClose - close an object handle

2. Event Objects

There are two types of event objects, notification events and synchronization events.
Notification event objects provide a mechanism for notification. Notification events
are either Signaled (TRUE) or Not-Signaled (FALSE). An event may be set multiple
times, yet the state remains Signaled. Notification events provides no ownership
capability. If multiple threads are waiting on a notification event, then when the
event becomes Signaled, all threads waiting for the event are made "runnable". A
notification event becomes Not-Signaled only when explicitly reset.

Synchronization event objects have the property that when the event is set, the
event attains a state of Signaled, which releases a single thread currently waiting on
the event, and then the event immediately attains a state of Not-Signaled. If there
are no threads waiting on the event, the state of the event remains Signaled. This
allows threads to "synchronize" on the signaling of the event. Like notification
events, synchronization events provide no ownership capability.

A synchronization event attains a state of Not-Signaled when explicitly reset or when
the first wait operation is satisfied on the event. Note that any time an event attains
a state of Not-Signaled, the event count for the state of the event is set to zero.

Windows NT Event/Semaphore Specification 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.1 Create Event Object

An event object is created and a handle opened for access to the object with the
NtCreateEvent function:

NTSTATUS
NtCreateEvent (
 OUT PHANDLE EventHandle,
 IN ULONG DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
 IN EVENT_TYPE EventType,
 IN BOOLEAN InitialState
);

Parameters:

EventHandle - A pointer to a variable that receives the event object handle
value.

DesiredAccess - The desired types of access for the event. The following object
type specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED flags described in the Object Management
Specification.

DesiredAccess Flags

EVENT_QUERY_STATE - Query access to the event is desired.

EVENT_MODIFY_STATE - Modify state access (set and reset) to the event is
desired.

SYNCHRONIZE - Synchronization access (wait) to the event is desired.

ObjectAttributes - An optional pointer to a structure that specifies the object's
attributes. Refer to the Object Management Specification for details.

EventType - The type of event object to be created. One of NotificationEvent or
SynchronizationEvent.

InitialState - The initial state of the event object, one of TRUE or FALSE. If the
InitialState is specified as TRUE, the event's current state value is set to
one, otherwise it is set to zero.

The NtCreateEvent function creates an event object with the specified initial state.
If an event is in the Signaled state (TRUE), a wait operation on the event does not

Windows NT Event/Semaphore Specification 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

block. If the event is in the Not-Signaled state (FALSE), a wait operation on the
event blocks until the specified event attains a state of Signaled, the timeout value
is exceeded, or an alert is delivered.

2.2 Open Event Object

A handle can be opened to an existing event object with the NtOpenEvent function:

NTSTATUS
NtOpenEvent (
 OUT PHANDLE EventHandle,
 IN ULONG DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes,
);

Parameters:

EventHandle - A pointer to a variable that receives the value of the event object
handle value.

DesiredAccess - The desired types of access to the event. The following object
type specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED flags described in the Object Management
Specification.

DesiredAccess Flags

EVENT_QUERY_STATE - Query access to the event is desired.

EVENT_MODIFY_STATE - Modify state access (set and reset) to the event is
desired.

SYNCHRONIZE - Synchronization access (wait) to the event is desired.

ObjectAttributes - A pointer to a structure that specifies the object's attributes.
Refer to the Object Management Specification for details.

2.3 Set Event

An event can be set to the signaled state (TRUE) with the NtSetEvent function:

Windows NT Event/Semaphore Specification 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtSetEvent (
 IN HANDLE EventHandle,
 OUT PLONG PreviousState OPTIONAL
);

Parameters:

EventHandle - An open handle to an event object.

PreviousState - An optional pointer to a variable that receives the previous state
of the event. Zero is Not-Signaled, non-zero is Signaled. The value
indicates the number of times the event has been set since the last reset.

Setting the event causes the event to attain a state of Signaled, which releases all
threads currently waiting on the event. Any threads which issue a wait operation on
the event do not block and continue to execute. It also increments the event count
for the state of the event.

2.4 Reset Event

The state of an event is set to the Not-Signaled state (FALSE) using the
NtResetEvent function:

NTSTATUS
NtResetEvent (
 IN HANDLE EventHandle,
 OUT PLONG PreviousState OPTIONAL
);

Parameters:

EventHandle - An open handle to an event object.

PreviousState - An optional pointer to a variable that receives the previous state
of the event. Zero is Not-Signaled, non-zero is Signaled. The value
indicates the number of times the event has been set since the last reset.

Once the event attains a state of Not-Signaled, any threads which wait on the event
block, awaiting the event to become Signaled. The reset event service sets the event
count to zero for the state of the event.

Windows NT Event/Semaphore Specification 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.5 Pulse Event

An event can be set to the Signaled state and reset to the Not-Signaled state
atomically with the NtPulseEvent function:

NTSTATUS
NtPulseEvent (
 IN HANDLE EventHandle,
 OUT PLONG PreviousState OPTIONAL
);

Parameters:

EventHandle - An open handle to an event object.

PreviousState - An optional pointer to a variable that receives the previous state
of the event. Zero is Not-Signaled, non-zero is Signaled. The value
indicates the number of times the event has been set since the last reset.

Pulsing the event causes the event to attain a state of Signaled, which releases all
threads currently waiting on the event, and then attain a state of Not-Signaled. The
pulse event service sets the event count to zero for the state of the event.

2.6 Query Event

The state of an event can be queried with the NtQueryEvent function:

NTSTATUS
NtQueryEvent (
 IN HANDLE EventHandle,
 IN EVENT_INFORMATION_CLASS EventInformationClass,
 OUT PVOID EventInformation,
 IN ULONG EventInformationLength,
 OUT PULONG ReturnLength OPTIONAL
);
Parameters:

EventHandle - An open handle to an event object.

EventInformationClass - The event information class about which to retrieve
information.

EventInformation - A pointer to a buffer that receives the specified information.
The format and content of the buffer depend on the specified event class.

Windows NT Event/Semaphore Specification 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

EventInformation Format by Information Class:

EventBasicInformation - Data type is EVENT_BASIC_INFORMATION.

EVENT_BASIC_INFORMATION Structure

EVENT_TYPE EventType - The type of the event.

LONG EventState - The current state of the event.

EventInformationLength - Specifies the length in bytes of the event information
buffer.

ReturnLength - An optional pointer which, if specified, receives the number of
bytes placed in the event information buffer.

This function provides the capability to determine the state and granted access of
an event object.

3. Semaphore Objects

Semaphore objects provide a mechanism for resource gates. When a semaphore is
created, it is provided an initial count and maximum count. When a thread waits
on a semaphore, if the current count is greater than zero, then the current count is
decremented and the thread continues to execute. If the current count is zero, the
thread blocks until the count becomes greater than zero. When a thread releases a
semaphore, the current count is augmented. Semaphores do not provide
ownership; multiple threads can be waiting and releasing the same semaphore.

3.1 Create Semaphore Object

A semaphore object is created and a handle opened for access to the object with the
NtCreateSemaphore function:

Windows NT Event/Semaphore Specification 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtCreateSemaphore (
 OUT PHANDLE SemaphoreHandle,
 IN ULONG DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
 IN LONG InitialCount,
 IN LONG MaximumCount
);

Parameters:

SemaphoreHandle - A pointer to a variable that receives the value of the
semaphore object handle.

DesiredAccess - The desired types of access for the semaphore. The following
object type specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED flags described in the Object Management
Specification.

DesiredAccess Flags

SEMAPHORE_QUERY_STATE - Query access to the semaphore is desired.

SEMAPHORE_MODIFY_STATE - Modify state access (release) to the
semaphore is desired.

SYNCHRONIZE - Synchronization access (wait) to the semaphore is
desired.

ObjectAttributes - An optional pointer to a structure that specifies the object's
attributes. Refer to the Object Management Specification for details.

InitialCount - The initial count for the semaphore, this value must be positive
and less than or equal to the maximum count.

MaximumCount - The maximum count for the semaphore, this value must be
greater than zero..

The NtCreateSemaphore function causes a semaphore object to be created which
contains the specified initial and maximum counts.

3.2 Open Semaphore Object

A handle can be opened to an existing semaphore object with the
NtOpenSemaphore function:

Windows NT Event/Semaphore Specification 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtOpenSemaphore (
 OUT PHANDLE SemaphoreHandle,
 IN ULONG DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters:

SemaphoreHandle - A pointer to a variable that receives the semaphore object
handle value.

DesiredAccess - The desired types of access to the semaphore. The following
object type specific access flags can be specified in addition to the
STANDARD_RIGHTS_REQUIRED flags described in the Object Management
Specification.

DesiredAccess Flags

SEMAPHORE_QUERY_STATE - Query access to the semaphore is desired.

SEMAPHORE_MODIFY_STATE - Modify state access (release) to the
semaphore is desired.

SYNCHRONIZE - Synchronization access (wait) to the semaphore is
desired.

ObjectAttributes - A pointer to a structure that specifies the object's attributes.
Refer to the Object Management Specification for details.

3.3 Release Semaphore Object

A semaphore object can be released with the NtReleaseSemaphore function:

NTSTATUS
NtReleaseSemaphore (
 IN HANDLE SemaphoreHandle,
 IN LONG ReleaseCount,
 OUT PLONG PreviousCount OPTIONAL
);

Parameters:

SemaphoreHandle - An open handle to a semaphore object.

Windows NT Event/Semaphore Specification 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ReleaseCount - The release count for the semaphore. The count must be
greater than zero and less than the maximum value specified for the
semaphore.

PreviousCount - An optional pointer to a variable that receives the previous
count for the semaphore.

When the semaphore is released, the current count of the semaphore is
incremented by the ReleaseCount. Any threads that are waiting for the semaphore
are examined to see if the current semaphore value is sufficient to satisfy their wait.

If the value specified by ReleaseCount would cause the maximum count for the
semaphore to be exceeded, then the count for the semaphore is not affected and an
error status is returned.

3.4 Query Semaphore

The state of a semaphore can be queried with the NtQuerySemaphore function:

NTSTATUS
NtQuerySemaphore (
 IN HANDLE SemaphoreHandle,
 IN SEMAPHORE_INFORMATION_CLASS SemaphoreInformationClass,
 OUT PVOID SemaphoreInformation,
 IN ULONG SemaphoreInformationLength,
 OUT PULONG ReturnLength OPTIONAL
);
Parameters:

SemaphoreHandle - An open handle to a semaphore object.

SemaphoreInformationClass - The semaphore information class about which to
retrieve information.

SemaphoreInformation - A pointer to a buffer which receives the specified
information. The format and content of the buffer depend on the specified
semaphore class.

SemaphoreInformation Format by Information Class:

SemaphoreBasicInformation - Data type is
SEMAPHORE_BASIC_INFORMATION.

SEMAPHORE_BASIC_INFORMATION Structure

Windows NT Event/Semaphore Specification 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

LONG CurrentCount - The current count of the semaphore.

LONG MaximumCount - The maximum count that may be obtained
by the semaphore.

SemaphoreInformationLength - Specifies the length in bytes of the semaphore
information buffer.

ReturnLength - An optional pointer which, if specified, receives the number of
bytes placed in the semaphore information buffer.

This function provides the capability to determine the state and granted access of a
semaphore object

4.0 Delay Execution

The execution of the current thread can be delayed for a specified interval of time
with the NtDelayExecution function:

NTSTATUS
NtDelayExecution (
 IN BOOLEAN Alertable,
 IN PTIME DelayInterval
);

Parameters:

Alertable - A boolean value that specifies whether the wait is alertable.

DelayInterval - The absolute or relative time over which the wait is to occur.

The NtDelayExecution function causes the current thread to enter a waiting state
until the specified interval of time has passed. If Alertable is specified as TRUE, the
wait service completes and a condition of STATUS_ALERTED is raised. If an APC is
delivered while the thread is waiting alertable, the APC is invoked and the wait
operation re-executed.

Revision History:

Original Draft 1.0, January 5, 1989

Revision 1.2, March 12, 1989

Windows NT Event/Semaphore Specification 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 1. Removed Muxwait object and Mutex object.

Revision 1.3, May 11, 1989

 1. Added wait for multiple objects.

 2. Added NtDelayExecution

Revision 1.4, August 8, 1989

 1. Make return parameters for PreviousState and CurrentState optional.

Revision 1.5, October 23, 1989

 1. Changed EventName/SemaphoreName in OBJA structure to ObjectName.

 2. Added description of notification and synchronization events.

 3. Changed PreviousState to return a count that indicates the number of
times the event was set since the last reset.

 4. Added the EventType to the query event call.

 5. Changed wait services to describe the abandoned state.

Revision 1.6, December 1, 1989

 1. Changed desciption of NtCreateSemaphore, NtCreateEvent,
NtOpenSemaphore and NtOpenEvent to use OBJECT_ATTRIBUTES and
reference Object Management Specification for detials.

 2. Changed PULONG to PLONG for PreviousState argument in NtSetEvent,
NtResetEvent, and NtPulseEvent.

Windows NT Event/Semaphore Specification 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision 1.7, January 3, 1990

 1. Clarified the behavior of sychronzation events and the state of the event
count.

 2. Changed desired access flags for NtCreateEvent, NtOpenEvent,
NtCreateSemaphore, and NtOpenSemaphore.

 3. Removed NtWait description. This is now in the Object Management
Specification.

Revision 1.8, January 23, 1990

 1. Changed NtReleaseSemaphore to return a failure if the ReleaseCount is
greater than the maximum count.

 2. Changed NtReleaseSemaphore to require the ReleaseCount to be greater
than 0.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS/2 System Startup Design Note

Author: Mark Lucovsky

Revision 1.2, July 26, 1990
Original Draft May 31, 1990

NT OS/2 System Startup Design Note i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview.. 1
1.1 System Initialization ... 1
1.2 System Startup .. 1

1.2.1 Executive Level System System Startup .. 1
1.2.2 Session Manager System Startup .. 1

1.2.2.1 First Phase SM system startup .. 2
1.2.2.1.1 Link Keyword .. 2
1.2.2.1.2 PagingFile Keyword... 3
1.2.2.2 Second Phase SM system startup .. 3
1.2.2.2.1 Subsystem Keyword... 3
1.2.2.2.2 Start Keyword .. 4
1.2.2.2.3 Run Keyword ... 5
1.2.2.2.4 Debug Keyword ... 5
1.2.2.2.5 LibPath Keyword ... 5
1.2.2.2.6 Short Term Keywords .. 6

2. Configuration File APIs... 7
2.1 Configuration File Data Structures ... 9

2.1.1 CONFIG_FILE ... 9
2.1.2 CONFIG_SECTION... 9
2.1.3 CONFIG_KEYWORD ... 9
2.1.4 Configuration File APIs .. 10

2.1.4.1 RtlOpenConfigFile .. 10
2.1.4.2 RtlCloseConfigFile.. 10
2.1.4.3 RtlLocateSectionConfigFile.. 11
2.1.4.4 RtlLocateKeywordConfigFile ... 11
2.1.4.5 RtlEnumerateSectionConfigFile ... 12
2.1.4.6 RtlEnumerateKeywordConfigFile .. 12

NT OS/2 System Startup Design Note 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview

This design note describes system startup for NT OS/2. For the purposes of this paper, system startup
begins after phase 1 system initialization completes.

This paper does not describe an agreed to, long term strategy. It describes an interim startup sequence
that will be used until the system installation and system configuration plans solidify.

1.1 System Initialization

This paper does not describe system initialization in any great level of detail. System initialization
occurs in three phases. After boot loading the system image, the kernel is called at KiSystemStartup.
After kernel initialization, the executive is called to perform phase 0 initialization. This causes
memory management, the object manager, and the process architecture to initialize. During phase 0, a
thread is created to perform phase 1 initialization. Upon completion of phase 0 initialization, a context
switch to the thread occurs and it proceeds with phase 1 initialization. The bulk of NT OS/2 is
initialized during this phase. Upon completion of phase 1 initialization, system startup begins.

1.2 System Startup

System startup occurs in the NT OS/2 executive, and in the NT OS/2 Session Manager (SM).

1.2.1 Executive Level System System Startup

The executive's role in system startup is very simple. It simple creates a process to run SM. This is
done using RtlCreateUserProcess with an image name of "\BootDevice\smss.exe". If the executive
fails to create a process to run SM, then system startup fails. If this occurs on debug systems
(compiled with DBG set), the NT OS/2 Command Line Interpreter (CLI) is started; otherwise, the
system is halted with a bug check.

1.2.2 Session Manager System Startup

If executive level system startup is successful, then SM starts. SM begins by initializing itself. This
includes:

 o Creating ports for session manager, and subsystem APIs.

 o Creating listen and API threads for session manager, and subsystem APIs.

 o Enabling all connection requests and APIs.

Once SM is initialized, it begins system startup. Session Manager level system startup is driven from
the NT OS/2 system configuration file located in "\BootDevice\ntos2.cfg". The file is a standard
configuration file operated on by the "RtlxxxxConfigFile" APIs (described later in this paper).

NT OS/2 System Startup Design Note 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Session Manager level system startup occurs in two phases. During the first phase, the "soft", or
"configurable" portion of the NT OS/2 executive is configured. During the second phase, the session
manager starts and initializes various protected subsystems.

1.2.2.1 First Phase SM system startup

First phase SM system startup begins with an open of the NT OS/2 system configuration file. This is
done using RtlOpenConfigFile with a pathname of "\BootDevice\ntos2.cfg". If the open fails, then
SM system startup does not occur. The system will run, but system level subsystems, and other
portions of the system normally controlled by SM startup will not occur.

Once the configuration file is opened, the "ntos2" section is located using
RtlLocateSectionConfigFile with a section name of "ntos2". If this section can not be located, then
first phase SM system startup terminates and second phase SM system startup begins.

If the "ntos2" section is located, then all of the keywords in the section are enumerated and processed.
Keywords are processed in configuration file order. Multiple keywords (keywords with the same
keyword name) are processed in configuration file order.

SM reckognizes a small set of "ntos2" section keywords. The following sections describe the set of
supported keywords.

1.2.2.1.1 Link Keyword

The "Link" keyword causes SM to create a symbolic link object accessible to all processes in the
system. Link keywords are processed in configuration file order. The syntax of the link keyword is as
follows:

Link = NAME-OF-LINK NAME-OF-LINK-TARGET

The "standard" set of symbolic link objects can be created by including the following in the "ntos2"
section of your configuration file. Note that system initialization no longer creates these symbolic link
objects. It only creates the "\BootDevice" symbolic link.

[ntos2]
//
// MIPS Links
//
// Link = \A: \Device\SaDisk
// Link = \C: \Device\HardDisk // for 3240
// Link = \C: \Device\SaDisk // for sable
//
//
// Simulator Links
//
// Link = \A: \Device\Floppy1
// Link = \B: \Device\Floppy2
// Link = \C: \Device\Filesystem
// Link = \D: \Device\Filesystem // ddfs
// Link = \C: \Device\HardDisk1 // pinball
//
//

NT OS/2 System Startup Design Note 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

// Standard Links
//
Link = \A: \Device\Floppy0
Link = \C: \Device\HardDisk0\Partition1
Link = \D: \Device\HardDisk1\Partition1
Link = \E: \Device\HardDisk2
Link = \SystemDisk \C:

1.2.2.1.2 PagingFile Keyword

The "PagingFile" keyword causes SM to create a system wide file used by the modified page writer. If
a paging file keyword does not exist in your system configuration file, then the amount of virtual
memory available on the system is limited. System initialization no longer creates a paging file. The
syntax of the pagingfile keyword is as follows:

PagingFile = NAME-OF-PAGING-FILE MAXIMUM-SIZE-OF-PAGING-FILE-MEGABYTES

The following example causes the system to use a 10Mb paging file called pagefile.sys in the "\Nt"
directory of the system disk.

[ntos2]
//
// Create a 10Mb Paging File
//
PagingFile = \SystemDisk\Nt\pagefile.sys 10

Note that since the previous example uses the "\SystemDisk" symbolic link, it must occur after the
appropriate link keyword.

1.2.2.2 Second Phase SM system startup

Second phase SM system startup begins after first phase SM startup completes. If first phase SM fails
to open the NT OS/2 system configuration file, then this phase is skipped.

This phase begins by locating the "sm" section of the configuration file. This is done using
RtlLocateSectionConfigFile with a section name of "sm". If this section can not be located, then
second phase SM system startup terminates.

If the "sm" section is located, then all of the keywords in the section are enumerated and processed.
Keywords are processed in configuration file order. Multiple keywords (keywords with the same
keyword name) are processed in configuration file order.

SM reckognizes a small set of "sm" section keywords. The following sections describe the set of
supported keywords.

1.2.2.2.1 Subsystem Keyword

The "SubSystem" keyword causes SM to start the specified system service emulation subsystem as a
registerd subsystem. The subsystem must conform to the subsystem/SM connection protocol, and
must accept appropriate proceses.

NT OS/2 System Startup Design Note 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

When SM encounters a subsystem keyword, it creates a process to run the subsystem, and waits for the
subsystem to complete the connection protocol.

The syntax of the subsystem keyword is as follows:

SubSystem = [debug] PATHNAME-OF-SUBSYSTEM [, OPTIONAL-COMMAND-LINE]

Note that processes created through the SubSystem keyword must be marked as
COFF_TARGET_SUBSYSTEM_NATIVE images.

The debug prefix is optional and if present invokes the subsystem with the DebugFlag passed to main
set to 1. If the optional command line test is specified, then a pointer to the text after the comma will
be passed in argv[1] to the main procedure of the subsystem.

The following example shows the subsystem keyword needed to start the OS/2 subsystem.

[sm]
//
// Start the os2 subsystem
//
SubSystem = \SystemDisk\Nt\SubSys\os2ss.exe

1.2.2.2.2 Start Keyword

The "Start" keyword causes SM to create and start a process. SM then waits for the initial thread in the
process to terminate. Using this mechanism, you can write a server program whose initial thread
performs all initialization then creates its worker threads. When the server is fully initialized and all
worker threads are ready, the initial thread in the process could terminate. This allows SM to begin
processing other keywords.

The syntax of the start keyword is as follows:

Start = [debug] PATHNAME-OF-PROGRAM-TO-START [, OPTIONAL-COMMAND-LINE]

Note that processes created through the start keyword must be marked as
COFF_TARGET_SUBSYSTEM_NATIVE images.

The debug prefix is optional and if present invokes the process with the DebugFlag passed to main set
to 1. If the optional command line test is specified, then a pointer to the text after the comma will be
passed in argv[1] to the main procedure of the process.

The following example causes SM to start the Presentation Manager (PM) and security servers.

[sm]
//
// Start PM
//
Start = \SystemDisk\Nt\SubSys\pmsrv.exe
//
// Start SAM
//
start = \SystemDisk\Nt\SubSys\samsrv.exe

NT OS/2 System Startup Design Note 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1.2.2.2.3 Run Keyword

The "Run" keyword causes SM to create and start a process. SM does not wait for the process. It is
simply created and set free to run. This keyword is useful to start logon processes and shells, and
various "leaf" system processes.

The syntax of the run keyword is as follows:

Run = [debug] PATHNAME-OF-PROGRAM-TO-RUN [, OPTIONAL-COMMAND-LINE]

Note that processes created through the run keyword must be marked as
COFF_TARGET_SUBSYSTEM_NATIVE images.

The debug prefix is optional and if present invokes the process with the DebugFlag passed to main set
to 1. If the optional command line test is specified, then a pointer to the text after the comma will be
passed in argv[1] to the main procedure of the process.

The following example causes SM to run the PM Shell and NT OS/2 Error Logger.

[sm]
//
// Start PM Shell
//
Run = \SystemDisk\Nt\Bin\pmshell.exe
//
// Start Error Logger
//
Run = \SystemDisk\Nt\Bin\errlog.exe

1.2.2.2.4 Debug Keyword

The "Debug" keyword causes SM to start the debug subsystem and enable debugging.

The syntax of the debug keyword is as follows:

Debug = PATHNAME-OF-DEBUG-SUBSYSTEM

The following example causes SM to start the debug subsystem.

[sm]
//
// Start DBG
//
Debug = \SystemDisk\Nt\SubSys\dbgss.exe

1.2.2.2.5 LibPath Keyword

The "LibPath" keyword causes SM to establish a default DLL search path. This path is made available
to the loader subsystem and is used to locate DLLs.

The syntax of the LibPath keyword is as follows:

NT OS/2 System Startup Design Note 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

LibPath = DLL-SEARCH-PATH

The following example illustrates the use of the LibPath keyword:

[sm]
//
// Establish a DLL search path
//
LibPath = \BootDevice;\SystemDisk\Nt\Dll

1.2.2.2.6 Short Term Keywords

There are a number of keywords that are currently supported by SM, but are only supported due to
shortcomings in the rest of the system. These keywords will remain until the appropriate components
are complete and they are no longer needed. The following sections describe keywords that are
supported, but have a limited lifetime.

1.2.2.2.6.1 GlobalFlag Keyword

The "GlobalFlag" keyword causes SM to set the value of NtGlobalFlag. This flag controls various
debug portions of the system.

The syntax of the GlobalFlag keyword is as follows:

GlobalFlag = VALUE-FOR-NTGLOBALFLAG

The following example illustrates the use of the GlobalFlag keyword:

[sm]
//
// Setup NtGlobalFlag to display object deletion messages
// and to stop on first chance exceptions
//
GlobalFlag = 3

1.2.2.2.6.2 Path Keyword

The "Path" keyword causes SM to establish a default search path used when running programs from
the NT SM> CLI.

The syntax of the Path keyword is as follows:

Path = DEFAULT-SEARCH-PATH

The following example illustrates the use of the Path keyword:

[sm]
//
// Setup a search path used at the NT SM> prompt
//
Path = \BootDevice;\SystemDisk\Nt\Bin

NT OS/2 System Startup Design Note 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1.2.2.2.6.3 Quota Keywords

The quota keywords establish a default quota for processes started from the NT SM> CLI. Quota
keywords can be used to establish:

 o Non-paged pool limit

 o Paged pool limit

 o Minimum working set size

 o Maximum working set size

 o Pagefile limit

If a configuration file does not specify a quota keyword, then the defult for that resource is unlimited.
Quota keywords have the following syntax:

PagedPoolLimit = AMOUNT-OF-PAGED-POOL-QUOTA
NonPagedPoolLimit = AMOUNT-OF-PAGED-POOL-QUOTA
MinimumWorkingSetSize = MINIMUM-WORKING-SET-SIZE-IN-PAGES
MaximumWorkingSetSize = MAXIMUM-WORKING-SET-SIZE-IN-PAGES
PagefileLimit = MAXIMUM-PAGE-FILE-USAGE

The following example illustrates the use of the quota keywords:

[sm]
//
// Setup Quota
//
PagedPoolLimit = 1048576
NonPagedPoolLimit = 1048576
MinimumWorkingSetSize = 45
MaximumWorkingSetSize = 75

2. Configuration File APIs

The NT OS/2 user-mode DLL (udll.dll) contains a set of APIs used to manage configuration files.
Configuration files are very similar to existing Microsoft configuration files (tools.ini, win.ini...).

Configuration files consist of sections. Within sections, there are keywords that have optional values.
The following describes the format of a configuration file (note that "#", or "//" begin line comments).

//
// Section names are enclosed in "[" and "]". Section names are
// any valid C identifier. Section names are case insensitive.
//
[NAME-OF-SECTION]
// Keywords appear within sections. Keyword names are any
// valid C identifier and are case insensitive. Keywords
// may optionally contain a value. A keyword's value is all
// characters to the right of the "=" character. Leading
// and trailing whitespace is trimmed. If a line comment
// occurs on a keyword line, the keyword's value ends at

NT OS/2 System Startup Design Note 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

// the start of the line comment with trailing whitspace
// trimmed.
NAME-OF-KEYWORD // keyword without a value
NAME-OF-KEYWORD = VALUE-OF-KEYWORD // keyword with a value

The following sample shows a standard NT OS/2 configuration file.

[ntos2]
//
// Standard Links
//
Link = \A: \Device\Floppy0
Link = \C: \Device\HardDisk0\Partition1
Link = \D: \Device\HardDisk1\Partition1
Link = \E: \Device\HardDisk2
Link = \SystemDisk \C:
//
// Create a 10Mb Paging File
//
PagingFile = \SystemDisk\Nt\pagefile.sys 10
[sm]
//
// Set up global flag to show exceptions,
// LibPath to search hard disk, and Path
// to search BootDevice and HardDisk
//
GlobalFlag = 8
LibPath = \BootDevice;\SystemDisk\Nt\Dll
Path = \BootDevice;\SystemDisk\Nt\Bin
//
// Start the debug subsystem
//
Debug = \SystemDisk\Nt\SubSys\dbgss.exe
//
// Start the os2 subsystem
//
SubSystem = \SystemDisk\Nt\SubSys\os2ss.exe
//
// Setup Quota
//
PagedPoolLimit = 1048576
NonPagedPoolLimit = 1048576
MinimumWorkingSetSize = 45
MaximumWorkingSetSize = 75

NT OS/2 System Startup Design Note 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.1 Configuration File Data Structures

The configuration file APIs export several data structures that are visible to it's users.

2.1.1 CONFIG_FILE

The CONFIG_FILE data structure is a "handle" to a configuration file. This data structure is opaque
as far as it's users are concerned.

2.1.2 CONFIG_SECTION

The CONFIG_SECTION data structure is a "handle" to a configuration file section. It is used to
enumerate and locate keywords within a section. This data structure is opaque as far as it's users are
concerned.

2.1.3 CONFIG_KEYWORD

The CONFIG_KEYWORD is the only data structure that is not opaque. This data structure contains
strings for the keyword's name and value. It also contains a pointer to the next keyword whose
keyword value is the same.

typedef struct _CONFIG_KEYWORD {
 STRING Keyword;
 STRING Value;
 struct_CONFIG_KEYWORD *NextKeyword;
 struct_CONFIG_KEYWORD *LastKeyword;
} CONFIG_KEYWORD, *PCONFIG_KEYWORD;

CONFIG_KEYWORD Structure:

Keyword ——Supplies the name of the keyword as a counted string. The Keyword.Buffer field is
a NULL terminated string.

Value ——Supplies the value of the keyword as a counted string. If the keyword has no value,
then the Length and MaximumLength fields are zero, and the Buffer filed is NULL.
Otherwise, Value.Buffer is a NULL terminated string.

NextKeyword ——Supplies the address of the next keyword having the same keyword name. The
end of the list contains a value of NULL. Keywords in this chain are in configuration file
order.

LastKeyword ——Opaque.

NT OS/2 System Startup Design Note 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.1.4 Configuration File APIs

There are several Configuration File APIs.

2.1.4.1 RtlOpenConfigFile

A configuration file is opened using the following API:

NTSTATUS
RtlOpenConfigFile(
 IN PSTRING ConfigFilePathname,
 OUT PCONFIG_FILE *ConfigFile
)

Parameters:

ConfigFilePathname ——Supplies the name of the configuration file to open.

ConfigFile ——Returns a handle to a configuration file.

Return Value:

SUCCESS() ——The configuration file was opened successfully.

!SUCCESS() ——A failure occured opening the configuration file, or the configuration file could
not be properly parsed.

This function opens the specified configuration file and initializes all associated data structures.
Configuration files are broken up into sections, each section contains keywords and associated values.

Sections are identified by a section name enclosed in braces appearing alone on a line. Each section
contains zero or more keywords where a keyword is a keyword=value string.

2.1.4.2 RtlCloseConfigFile

VOID
RtlCloseConfigFile(
 IN PCONFIG_FILE ConfigFile
)

Parameters:

ConfigFile ——Supplies the address of the configuration file to close.

NT OS/2 System Startup Design Note 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.1.4.3 RtlLocateSectionConfigFile

PCONFIG_SECTION
RtlLocateSectionConfigFile(
 IN PCONFIG_FILE ConfigFile,
 IN PSTRING SectionName
)

Parameters:

ConfigFile ——Supplies the address of the configuration file to search for the specified section
name.

SectionName ——Supplies the section name to locate in the configuration file.

Return Value:

NULL ——A matching section name was not found.

NON-NULL ——Returns a pointer to the specified section.

This function locates the named section in the specified configuration file.

2.1.4.4 RtlLocateKeywordConfigFile

PCONFIG_KEYWORD
RtlLocateKeywordConfigFile(
 IN PCONFIG_SECTION ConfigSection,
 IN PSTRING KeywordName
)

Parameters:

ConfigSection ——Supplies the address of the configuration file section to search for the specified
keyword name.

KeywordName ——Supplies the keyword name to locate in the configuration file section.

Return Value:

NULL ——A matching keyword name was not found.

NON-NULL ——Returns a pointer to the specified keyword.

NT OS/2 System Startup Design Note 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This function locates the named keyword in the the specified configuration file section. If multiple
values of the same keyword exist, the NextKeyword field of the returned keyword points to the list of
duplicate keywords.

2.1.4.5 RtlEnumerateSectionConfigFile

PCONFIG_SECTION
RtlEnumerateSectionConfigFile(
 IN PCONFIG_FILE ConfigFile,
 IN BOOLEAN Restart
)

Parameters:

ConfigFile ——Supplies the address of the configuration file whose sections are to be enumerated.

Restart ——Supplies a value that causes the enumeration to start at the beginning of the section
list (TRUE), or continue from the last returned section (FALSE).

Return Value:

NULL ——All sections have been returned.

NON-NULL ——Returns a pointer to the next section.

This function enumerates all of the sections in the specified configuration file. To start at the
beginning of the configuration file the Restart parameter is specified as TRUE, subsequent sections are
returned with a Restart value of FALSE. A value of NULL is returned when all of the sections have
been returned.

To enumerate the sections in a loop:

for(p=RtlEnumerateSectionConfigFile(ConfigFile,TRUE);
p;
p=RtlEnumerateSectionConfigFile(ConfigFile,FALSE))

NT OS/2 System Startup Design Note 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.1.4.6 RtlEnumerateKeywordConfigFile

PCONFIG_KEYWORD
RtlEnumerateKeywordConfigFile(
 IN PCONFIG_SECTION ConfigSection,
 IN BOOLEAN Restart
)

Parameters:

ConfigSection ——Supplies the address of the configuration file section whose keywords are to be
enumerated.

Restart ——Supplies a value that causes the enumeration to start at the beginning of the keyword
list (TRUE), or continue from the last returned keyword (FALSE).

Return Value:

NULL ——All keywords have been returned.

NON-NULL ——Returns a pointer to the next keyword.

This function enumerates all of the keywords in the specified configuration file section. To start at the
beginning of the configuration file section the Restart parameter is specified as TRUE, subsequent
keywords are returned with a Restart value of FALSE. A value of NULL is returned when all of the
keywords have been returned.

Keywords having the same name are linked through the NextKeyword field. This function does not
walk these links. For each keyword returned by this function, the caller must traverse the
NextKeyword list to enumerate keywords with the same name.

To enumerate the sections in a loop:

for(p=RtlEnumerateKeywordConfigFile(ConfigFile,TRUE);
p;
p=RtlEnumerateKeywordConfigFile(ConfigFile,FALSE))

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT Status Code Specification

Author: Darryl E. Havens

Revision 1.0, June 11, 1989

Windows NT Status Code Specification i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview... 1

2. Definition.. 1

3. Use of Status Codes.. 2

4. Programming Interfaces .. 3
4.1 Obtaining Information for Status Codes 3
4.2 Determining Success or Failure... 5
4.3 Determining Success Severity.. 5
4.4 Determining Information Severity .. 5
4.5 Determining WARNING Severity .. 5
4.6 Determining ERROR Severity .. 5
4.7 Obtaining the Facility from a Status Code 6

Windows NT Status Code Specification 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview

This specification describes the purpose, structure, and use of status codes for the
Windows NT system.

In its simplest form, a status code is a value that is used to indicate whether an
operation was successfully completed. If this were its only purpose, however, then
all functions that returned a status indicator might simply return a boolean value of
TRUE or FALSE. One of the values would indicate that the operation was
successful, and the other would indicate that something went wrong. Which value
was assigned which meaning would probably be arbitrary.

Systems today do not generally take this oversimplified approach when dealing with
success and failure. Most systems are at least concerned with why a function
incurred an error. Hence, systems generally have a "success" code, indicating that
everything worked properly, and multiple failure codes, each indicating that an error
occurred as well as providing some hint or clue as to what went wrong.

Windows NT takes this concept one step further and adds multiple success codes
as well as multiple error codes. This allows the system to provide more information
about what actually happened, rather than simply indicate that the function
worked. For example, rather than just returning "success" with reason information,
an information status code may be used. Likewise, rather than just returning
"error" with reason information associated with it, Windows NT provides the ability
to express a warning as well.

These types of status codes do not adversely affect the efficiency of the system;
rather, they provide robustness. A programmer can still ask the basic question,
"Was the function successful or not?"

Windows NT provides a common architecture for its status codes, which it uses
throughout the native part of the system. That is, all functions that return status
return the same type of status code. This common treatment of status values
makes them easy to use and easy to understand.

Finally, Windows NT provides a mechanism to allow status codes to be local to a
given facility, such as the kernel or the Session Manager. That is, each component
has a separate facility code. In this way, message codes used by one facility will not
be confused with codes used by another facility.

Having different facility codes also provides more useful information to the caller
when it is important to determine exactly which part of the system encountered an
error. For example, if the C runtime library incurs an error when opening a file, was
it the runtime library itself that incurred the error, a subsystem that the runtime

Windows NT Status Code Specification 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

called, the operating system, the file system, or a disk driver? This information is
sometimes important.

2. Definition

A status code in Windows NT contains four fields. The following is the format of a
status code:

 3 3 2 2 1 1
 1 0 9 8 6 5 0
 ┌───┬─┬───────────────────┬──────────────────────┐
 │ S │C│ Facility │ Code │
 └───┴─┴───────────────────┴──────────────────────┘

where:

S ——Severity field. This field represents the severity of the status code. The
following values are defined:

00 ——Success. This value means that the function was successful.

01 ——Information. This value means that the function was successful and
additional information about what happened is supplied.

10 ——Warning. This value means that the function incurred an error that
was not necessarily fatal.

11 ——Error. This value means that the function incurred an error.

C ——Customer field. This field is reserved to customers of Microsoft Corporation
to allow them to define their own facility codes.

Facility ——Facility field. This field indicates the facility from which the status
code was issued.

Code ——Code field. This field describes what actually took place.

All system-defined status codes are defined in the file NTSTATUS.H. Each status
code has the format STATUS_xxx, where xxx is a short identifier that describes the
meaning of the code. For example, the status code STATUS_BUFFER_OVERFLOW
indicates, as the name suggests, that an overflow occurred while writing a buffer.

Windows NT Status Code Specification 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Names are chosen to be as descriptive as possible, making source code easier to
read.

3. Use of Status Codes

Status codes in Windows NT are used throughout the system. They are returned
by all system services to indicate whether the service completed successfully. In
some cases, the service returns an alternate success code. That is, rather than
return STATUS_SUCCESS, the normal success status code, another code may be
used. An example of this is an I/O service that returns STATUS_PENDING. This
indicates that the request was successfully made to the system, but it has not yet
completed. While this code indicates that the request was successful, it also
provides pertinent information about exactly what was successful.

All library routines in Windows NT that can return a success indicator also use
status codes. They return status codes in the same format as the rest of the
system.

Status codes may also be used in a call to the NtRaiseException service, provided
the status code represents a warning or error. Information and success codes may
not be raised. It should also be noted that if a warning status is raised, and no
exception handler handles the exception, the default action is to continue. The
default action for an unhandled error condition, however, is to terminate the thread.
For more information, see the Windows NT Exception Handling Specification.

The following is an example utilization of the various types of status codes in a
common search utility. For example, the following status codes might be used to
indicate various completion statuses:

 o STATUS_SUCCESS ——This code, a SUCCESS code, might be used to indicate
that all matches were successfully located and displayed.

 o STATUS_NO_MATCHES ——This code, an INFORMATION code, might be used
to indicate that while no errors occurred, no strings were located that
matched the search pattern string.

 o STATUS_BUFFER_OVERFLOW ——This code, a WARNING code, might be used
to indicate that while a match was found, a buffer overflow occurred and the
entire matching string could not be displayed. Notice that this is certainly a
problem from which the utility can recover and therefore should not terminate
the search.

 o STATUS_FILE_NOT_FOUND ——This code, an ERROR code, might be used to
indicate that no files were found on which to perform the search. This is not
a recoverable error condition. The program can do nothing but terminate.

Windows NT Status Code Specification 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4. Programming Interfaces

Windows NT provides the following services and C language macros to use with
status codes:

NtQueryStatusCode ——Return text associated with a specified status code.
SUCCESS ——Return boolean value based on success or failure.
IS_SUCCESS ——Return boolean TRUE if status code severity is success.
IS_INFORMATION ——Return boolean TRUE if status code severity is

information.
IS_WARNING ——Return boolean TRUE if status code severity is warning.
IS_ERROR ——Return boolean TRUE if status code severity is error.
FACILITY ——Returns the facility code associated with a status value.

4.1 Obtaining Information for Status Codes

The message text associated with a status code may be obtained using the
NtQueryStatusCode service:

NTSTATUS
NtQueryStatusCode (
 IN NTSTATUS StatusCode,
 OUT PVOID MessageBuffer,
 IN ULONG MessageLength,
 OUT PULONG MessageReturnLength OPTIONAL,
 OUT PSEVERITY SeverityLevel,
 OUT PVOID FacilityBuffer OPTIONAL,
 IN ULONG FacilityLength OPTIONAL,
 OUT PULONG FacilityReturnLength OPTIONAL
);

Parameters:

StatusCode ——Supplies the status code value whose associated text should be
returned.

MessageBuffer ——Supplies a buffer into which the text for the status code is
stored.

MessageLength ——Supplies the number of bytes in the MessageBuffer.

MessageReturnLength ——Optionally supplies a variable in which to return the
length of the text that was written into MessageBuffer.

Windows NT Status Code Specification 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

SeverityLevel ——Supplies a pointer to a variable that is to receive an
enumerated type code representing the severity of the status code.

SeverityLevel Values

Success ——Indicates that the severity of StatusCode is SUCCESS.

Information ——Indicates that the severity of StatusCode is INFORMATION.

Warning ——Indicates that the severity of StatusCode is WARNING.

Error ——Indicates that the severity of StatusCode is ERROR.

FacilityBuffer ——Optionally supplies a buffer into which the facility name
associated with the status code is written.

FacilityLength ——Optionally supplies the length of the FacilityBuffer. If the
FacilityBuffer parameter is supplied, then this parameter must also be
supplied.

FacilityReturnLength ——Optionally supplies a variable in which to return the
length of the text that was written into FacilityBuffer.

The NtQueryStatusCode service fetches the text associated with a specified status
code and writes it into the supplied buffer. This allows programs to output explicit
information about what happened during the execution of a function.

If no message text can be found for the specified status code, then the message text
buffer will be set to the string, "NO MESSAGE TEXT", and an information status
code of STATUS_NO_MESSAGE is returned. Likewise, if no text for the facility of the
specified status code can be located, the string, "NOFACILITY", is written to the
facility buffer, if one was supplied. If the country code of the process is non-
English, the message text appears in the designated language.

The message text for all status codes defined for Windows NT can be obtained using
the NtQueryStatusCode service. Text for user-defined status codes can also be
obtained provided that the codes and text have been "added" to the system. For
more information, see the Windows NT Status Code Design Note.

4.2 Determining Success or Failure

Whether a status code represents success or failure can be determined using the C
macro, SUCCESS:

Windows NT Status Code Specification 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 SUCCESS(Status)

This macro returns a BOOLEAN value of TRUE if the status code specified by Status
represents a success or information severity. Otherwise the macro returns a
BOOLEAN value of FALSE.

4.3 Determining Success Severity

Whether a status code represents success can be determined using the C macro,
IS_SUCCESS:

 IS_SUCCESS(Status)

This macro returns a BOOLEAN value of TRUE if the severity of the status code
specified by Status is success. Otherwise the macro returns a BOOLEAN value of
FALSE.

4.4 Determining Information Severity

Whether a status code represents information severity can be determined using the
C macro, IS_INFORMATION:

 IS_INFORMATION(Status)

This macro returns a BOOLEAN value of TRUE if the severity of the status code
specified by Status is information. Otherwise the macro returns a BOOLEAN value
of FALSE.

4.5 Determining WARNING Severity

Whether a status code represents warning severity can be determined using the C
macro, IS_WARNING:

 IS_WARNING(Status)

This macro returns a BOOLEAN value of TRUE if the severity of the status code
specified by Status is warning. Otherwise the macro returns a BOOLEAN value of
FALSE.

4.6 Determining ERROR Severity

Whether a status code represents error severity can be determined using the C
macro IS_ERROR:

Windows NT Status Code Specification 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 IS_ERROR(Status)

This macro returns a BOOLEAN value of TRUE if the severity of the status code
specified by Status is error. Otherwise the macro returns a BOOLEAN value of
FALSE.

4.7 Obtaining the Facility from a Status Code

Obtaining the facility number from a status code may be done using the C macro,
FACILITY:

 FACILITY(Status)

This macro returns a ULONG value which contains the Facility field of the status
code specified by Status.

Windows NT Status Code Specification 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History:

Original Draft 1.0, June 11, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Interlocked Support Routines Specification

Author: David N. Cutler

Original Draft 1.0, June 7, 1989Revision 1.1, June 8, 1989Revision 1.2, July 15,
1989Revision 1.3, January 15, 1990
Revision 1.4, June 9, 1990

Interlocked Support Routines Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

i

1. Introduction.. 1
1.1 Interlocked Add Functions .. 1

1.1.1 Interlocked Add Unsigned Large Integer............................ 1
1.1.2 Interlocked Add Unsigned Long .. 1
1.2.3 Interlocked Add Unsigned Short 2

1.2 Interlocked Doubly Linked List Functions 2
1.2.1 Interlocked Insert Head Doubly Linked List 3
1.2.2 Interlocked Insert Tail Doubly Linked List........................ 3
1.2.3 Interlocked Remove Doubly Linked List 4

1.3 Interlocked Singly Linked List Functions 4
1.3.1 Interlocked Insert Head Singly Linked List 4
1.3.2 Interlocked Remove Singly Linked List 5

Interlocked Support Routines Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1

1. Introduction

This specification describes the interlocked support routines that are available for
general use within the Windows NT executive. These routines can be used to
provide properly synchronized access to nonpaged shared variables in a
multiprocessor system.

These routines execute in kernel mode, raise IRQL to the highest level, synchronize
with other processors using a spin lock, perform their operation, release the spin
lock, and lower IRQL to its original value.

These routines cannot operate on paged data and are noninterruptable.

1.1 Interlocked Add Functions

Interlock add functions are provided to add unsigned short, long, and large integer
values.

The addition is performed using a lock sequence so that access to the Addend
variable is synchronized in a multiprocessor system.

1.1.1 Interlocked Add Unsigned Large Integer

An interlocked add operation can be performed on an integer of type
ULARGE_INTEGER with the ExInterlockedAddUlargeInteger function:

ULARGE_INTEGER
ExInterlockedAddUlargeInteger (
 IN PULARGE_INTEGER Addend,
 IN ULARGE_INTEGER Increment,
 IN PKSPIN_LOCK Lock
);

Parameters:

Addend - A pointer to a variable whose value is to be adjusted by the specified
Increment value.

Increment - The increment value to be added to the specified Addend variable.

Lock - A pointer to a spin lock to be used to synchronize access to the Addend
variable.

Interlocked Support Routines Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2

This function performs an interlocked add of an Increment value to an Addend
variable, and stores the result in the Addend variable. The initial value of the
Addend variable is returned as the function value.

1.1.2 Interlocked Add Unsigned Long

An interlocked add operation can be performed on an integer of type ULONG with
the ExInterlockedAddUlong function:

ULONG
ExInterlockedAddUlong (
 IN PULONG Addend,
 IN ULONG Increment,
 IN PKSPIN_LOCK Lock
);

Parameters:

Addend - A pointer to a variable whose value is to be adjusted by the specified
Increment value.

Increment - The increment value to be added to the specified Addend variable.

Lock - A pointer to a spin lock to be used to synchronize access to the Addend
variable.

This function performs an interlocked add of an Increment value to an Addend
variable, and stores the result in the Addend variable. The initial value of the
Addend variable is returned as the function value.

1.2.3 Interlocked Add Unsigned Short

An interlocked add operation can be performed on an integer of type USHORT with
the ExInterlockedAddUshort function:

USHORT
ExInterlockedAddUshort (
 IN PUSHORT Addend,
 IN USHORT Increment,
 IN PKSPIN_LOCK Lock
);

Parameters:

Interlocked Support Routines Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3

Addend - A pointer to a variable whose value is to be adjusted by the specified
Increment value.

Increment - The increment value to be added to the specified Addend variable.

Lock - A pointer to a spin lock to be used to synchronize access to the Addend
variable.

This function performs an interlocked add of an Increment value to an Addend
variable, and stores the result in the Addend variable. The initial value of the
Addend variable is returned as the function value.

1.2 Interlocked Doubly Linked List Functions

Interlocked functions are provided to insert at the head of a doubly linked list, to
insert at the tail of a doubly linked list, and to remove from the head of a doubly
linked list. The list head for an interlocked doubly linked list can be initialized with
the standard InitializeListHead function.

1.2.1 Interlocked Insert Head Doubly Linked List

An entry can be inserted at the head of an interlocked doubly linked list with the
ExInterlockedInsertHeadList function:

VOID
ExInterlockedInsertHeadList (
 IN PLIST_ENTRY ListHead,
 IN PLIST_ENTRY ListEntry,
 IN PKSPIN_LOCK Lock
);

Parameters:

ListHead - A pointer to the head of the doubly linked list into which an entry is
to be inserted.

ListEntry - A pointer to the list entry to be inserted at the head of the list.

Lock - A pointer to a spin lock to be used to synchronize access to the
interlocked list.

This function inserts an entry at the head of a doubly linked list so that access to
the list is synchronized in a multiprocessor system.

Interlocked Support Routines Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4

1.2.2 Interlocked Insert Tail Doubly Linked List

An entry can be inserted at the tail of an interlocked doubly linked list with the
ExInterlockedInsertTailList function:

VOID
ExInterlockedInsertTailList (
 IN PLIST_ENTRY ListHead,
 IN PLIST_ENTRY ListEntry,
 IN PKSPIN_LOCK Lock
);

Parameters:

ListHead - A pointer to the head of the doubly linked list into which an entry is
to be inserted.

ListEntry - A pointer to the list entry to be inserted at the tail of the list.

Lock - A pointer to a spin lock to be used to synchronize access to the
interlocked list.

This function inserts an entry at the tail of a doubly linked list so that access to the
list is synchronized in a multiprocessor system.

1.2.3 Interlocked Remove Doubly Linked List

An entry can be removed from the head of an interlocked doubly linked list with the
ExInterlockedRemoveHeadList function:

PLIST_ENTRY
ExInterlockedRemoveHeadList (
 IN PLIST_ENTRY ListHead,
 IN PKSPIN_LOCK Lock
);

Parameters:

ListHead - A pointer to the head of the doubly linked list from which an entry is
to be removed.

Lock - A pointer to a spin lock to be used to synchronize access to the
interlocked list.

Interlocked Support Routines Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5

This function removes an entry from the head of a doubly linked list so that access
to the list is synchronized in a multiprocessor system. If there are no entries in the
list, then a value of NULL is returned. Otherwise, the address of the entry that is
removed from the list is returned as the function value.

1.3 Interlocked Singly Linked List Functions

Interlocked functions are provided to insert and remove from the head of a singly
linked list. The list head for an interlocked singly linked list can be initialized by
simply placing a value of NULL in the link pointer.

1.3.1 Interlocked Insert Head Singly Linked List

An entry can be inserted at the head of an interlocked singly linked list with the
ExInterlockedPushEntryList function:

VOID
ExInterlockedPushEntryList (
 IN PSINGLE_LIST_ENTRY ListHead,
 IN PSINGLE_LIST_ENTRY ListEntry,
 IN PKSPIN_LOCK Lock
);

Parameters:

ListHead - A pointer to the head of the singly linked list into which an entry is
to be inserted.

ListEntry - A pointer to the list entry to be inserted at the head of the list.

Lock - A pointer to a spin lock to be used to synchronize access to the
interlocked list.

This function inserts an entry at the head of a singly linked list so that access to the
list is synchronized in a multiprocessor system.

1.3.2 Interlocked Remove Singly Linked List

An entry can be removed from the head of an interlocked singly linked list with the
ExInterlockedPopEntryList function:

Interlocked Support Routines Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6

PSINGLE_LIST_ENTRY
ExInterlockedPopEntryList (
 IN PSINGLE_LIST_ENTRY ListHead,
 IN PKSPIN_LOCK Lock
);

Parameters:

ListHead - A pointer to the head of the singly linked list from which an entry is
to be removed.

Lock - A pointer to a spin lock to be used to synchronize access to the
interlocked list.

This function removes an entry from the head of a singly linked list so that access to
the list is synchronized in a multiprocessor system. If there are no entries in the list,
then a value of NULL is returned. Otherwise, the address of the entry that is
removed from the list is returned as the function value.

Interlocked Support Routines Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7

Revision History:

Original Draft 1.0, June 7, 1989

Revision 1.1, June 8,1989

 1. Added comments about nonpageability of data to the introduction.

 2. Clarified functions as operating on singly or doubly linked lists.

 3. Added section on the manipulation of singly linked interlocked lists.

Revision 1.2, July 15, 1989

 1. Add interlocked add short routine.

Revision 1.3, January 15, 1990

 2. Remove restriction that page faults cannot be taken during interlocked
sequences.

Revision 1.4, June 9, 1990

 1. Change the operation of the interlocked add long and short functions to be
unsigned and change the names as appropriate.

 2. Add a function to perform an interlocked add unsigned large integer
operation.

 3. Add text to warn users of these routines that page faults can not be
tolerated.

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS/2 Suspend/Resume Design Note

Author: David N. Cutler

Original Draft 1.0, February 9, 1989
Revision 1.1, March 30, 1989

NT OS/2 Suspend/Resume Design Note 2

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

This design note discusses a proposal to implement suspend
and resume as part of the kernel rather than in the
executive layer.

The suspension of a thread is controlled by a suspend count
and a semaphore object that is built into the thread object.
This semaphore has an initial value of zero and a maximum
count of two (see explanation at end of this document as to
why the maximum count must be two rather than one).

When an attempt is made to suspend a thread, the suspend
count is incremented and a check is made to determine if the
thread is already suspended (indicated by a nonzero initial
suspend count). If the thread is not suspended, then a
normal kernel APC is queued to the thread which will cause
it to wait on its builtin semaphore.

A special case arises when the builtin APC is already queued
to the target thread. This situation occurs when the target
thread has been suspended and then resumed, but has never
actually received the APC and suspended itself. Since the
target thread has never actually suspended itself, the
builtin semaphore count is decremented to indicate that the
thread should suspend rather than resume.

The following pseudo code describes the logic of
SuspendThread;

PROCEDURE SuspendThread (
 IN Tcb : POINTER KtThread;
) RETURNS integer;

VARIABLE

 OldCount : integer;

BEGIN

 Acquire dispatcher database lock;
 OldCount = Tcb.SuspendCount;
 IF Tcb.SuspendCount == 0 THEN
 IF NOT QueueApc(Tcb.SuspendAcb) THEN
 Tcb.SuspendSemaphore.Signal =
 Tcb.SuspendSemaphore.Signal - 1;
 END IF;
 END IF;
 Tcb.SuspendCount = Tcb.SuspendCount + 1;
 Release dispatcher database lock;
 RETURN OldCount;
END SuspendThread;

NT OS/2 Suspend/Resume Design Note 3

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

Resuming a thread checks to determine if the thread has been
suspended by examining the suspend count. If the thread has
not been suspended, then no operation is performed.
Otherwise the suspend count is decremented. If the resultant
value is zero, then the target thread's builtin suspend
semaphore is released.

The following pseudo code describes the logic of
ResumeThread;

PROCEDURE ResumeThread (
 IN Tcb : POINTER KtThread;
) RETURNS integer;

VARIABLE

 OldCount : integer;

BEGIN

 Acquire dispatcher database lock;
 OldCount = Tcb.SuspendCount;
 IF Tcb.SuspendCount <> 0 THEN
 Tcb.SuspendCount = Tcb.SuspendCount - 1;
 IF Tcb.SuspendCount == 0 THEN
 Release Tcb.SuspendSemaphore;
 END IF;
 END IF;
 Release dispatcher database lock;
 RETURN OldCount;
END SuspendThread;

The maximum count of the builtin semaphore must be two so
that the following race condition can be avoided.

1. a target thread is suspended by incrementing its
suspend count to one and queuing its builtin
suspend APC

2. before the thread can respond to the suspend APC, it

is resumed which causes the suspend count to be
decremented to zero and the builtin suspend
semaphore to be incremented to one

3. the thread receives the suspend APC, but before it

can wait on the builtin semaphore it is
interrupted to deliver a special kernel APC

4. the special kernel APC code page faults and waits on

the page to be brought into memory

NT OS/2 Suspend/Resume Design Note 4

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

5. the target thread is again suspended which causes

its suspend count to be incremented and its
builtin suspend APC to be queued

6. the thread is resumed before it has finished

processing the special kernel APC which causes the
suspend count to be decremented to zero and the
builtin semaphore to be incremented to two

No additional nesting can occur since further attempts to queue
the APC will fail which cause the semaphore count to be
decremented. Thus the maximum count does not need to be
greater than two.

NT OS/2 Suspend/Resume Design Note 5

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

Revision History:

 Original Draft 1.0, February 9, 1989

 Revision 1.1, March 30, 1989

1. Minor edits to conform to standard format.

[end of suspend.doc]

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT OS/2 Time Conversion Specification

Author: Gary D. Kimura

Revision 1.2, August 14, 1990

NT OS/2 Time Conversion Specification i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction.. 1

2. Converting From TIME to TIME_FIELDS .. 2

3. Converting From TIME_FIELDS to TIME .. 2

4. Converting From TIME to OS/2-Based Time ... 3

5. Converting From OS/2-Based Time to TIME... 3

6. Converting From TIME to POSIX-Based Time.. 4

7. Converting From POSIX-Based Time to TIME.. 4

NT OS/2 Time Conversion Specification 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

This specification describes the NT OS/2 routines that implement absolute time conversion. Time, in
NT OS/2, is expressed as a 64-bit signed large integer value with 100ns resolution and contained in
variables of type TIME. Absolute times, such as August 29, 1989 at 11:08:30.245, are expressed as
positive values (excluding zero), while time intervals (e.g., 1 hour and 20 minutes) are expressed as
negative values (including zero).

The routines described in this document deal with absolute time and converting from a value of type
TIME to a structure representing year, month, day, hour, minute, second, and millisecond, and back
again. They do not address the manipulation of time intervals or time zones. Time interval
manipulation is simply done using large integer arithmetic, and the time zone issue is beyond the realm
of the package.

Though NT OS/2 time has a 100ns resolution, the routines described here have only a one millisecond
resolution. Time precision smaller than a millisecond is either ignored or lost by these routines.

The basis for NT OS/2 time is the beginning of the year 1601 AD, which is chosen because 1601 AD
is the start of a new quadricentury. The algorithms used in this package are based on the Gregorian
calendar.

The structure TIME_FIELDS is used to represent a time value divided into its logical components.
The declaration for TIME_FIELDS is the following:

typedef struct _TIME_FIELDS {
 CSHORT Year;
 CSHORT Month;
 CSHORT Day;
 CSHORT Hour;
 CSHORT Minute;
 CSHORT Second;
 CSHORT Milliseconds;
 CSHORT Weekday;
} TIME_FIELDS;

where:

Year - Denotes the year in a range between 1601 AD to around 30000 AD.

Month - Denotes the month in a range between 1 (January) to 12 (December).

Day - Denotes the day in the month with a range between 1 to either 28, 29, 30, or 31, depending
on the month and the year.

Hour - Denotes the hour, on a 24 hour clock, in a range between 0 and 23.

NT OS/2 Time Conversion Specification 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Minute - Denotes the minute in a range between 0 and 59.

Second - Denotes the second in a range between 0 to either 59 or 60, where 60 denotes a leap
second.

Milliseconds - Denotes the fraction of a second in a range between 0 and 999.

Weekday - Denotes the day of the week represented by the rest of the time fields in a range
between 0 (Sunday) and 6 (Saturday). This field is only used when translating a 64-bit
time value into a time field structure and not when mapping the other direction.

In addition to providing routines to convert between TIME and a TIME_FIELDS structure, this
package also provides routines that convert between TIME and OS/2 time and POSIX time. OS/2
time is expressed as the number of seconds since the start of 1980. POSIX time is the number of
seconds since the start of 1970.

The APIs that implement time conversion are the following:

RtlTimeToTimeFields - Converts a TIME value to a TIME_FIELDS structure.
RtlTimeFieldsToTime - Converts a TIME_FIELDS structure to a TIME value.
RtlTimeToSecondsSince1980 - Converts a TIME value to seconds with a 1980 base.
RtlSecondsSince1980ToTime - Converts seconds with a 1980 base to a TIME value.
RtlTimeToSecondsSince1970 - Converts a TIME value to seconds with a 1970 base.
RtlSecondsSince1970ToTime - Converts seconds with a 1970 base to a TIME value.

2. Converting From TIME to TIME_FIELDS

A TIME value is converted to a corresponding TIME_FIELDS structure with the
RtlTimeToTimeFields procedure.

VOID
RtlTimeToTimeFields (
 IN PTIME Time,
 OUT PTIME_FIELDS TimeFields
);

Parameters:

Time - Supplies the value being converted

TimeFields - A pointer to the variable being set

The input time can be any non-negative large integer value and is interpreted as the number of 100ns
tics since the start of 1601 AD. The resulting TimeFields variable will never contain a leap second
value of 60.

NT OS/2 Time Conversion Specification 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3. Converting From TIME_FIELDS to TIME

A TIME_FIELDS structure is converted to a corresponding TIME value with the
RtlTimeFieldsToTime procedure.

BOOLEAN
RtlTimeFieldsToTime (
 IN PTIME_FIELDS TimeFields,
 OUT PTIME Time
);

Parameters:

TimeFields - Supplies the time field structure initialized by the caller to convert to a time value

Time - A pointer to the variable being set

The function result is TRUE if the input time fields is well formed and is expressible by a time variable
and FALSE otherwise.

The input time must be well formed (i.e., the year must be 1601 or later, month must be between 1 and
12, day must be between 1 and the maximum day for the given month and year, hour must be between
0 and 23, minute must be between 0 and 59, second must be between 0 and 60 where the value 60 is
only allowed during the last time in a month, and milliseconds must be between 0 and 999). The
Weekday field is ignored by this procedure.

4. Converting From TIME to OS/2-Based Time

A TIME value is converted to the corresponding number of seconds since the start of 1980 with the
RtlTimeToSecondsSince1980 procedure.

BOOLEAN
RtlTimeToSecondsSince1980 (
 IN PTIME Time,
 OUT PULONG ElapsedSeconds
);

Parameters:

Time - Supplies the value being converted, it must represent a time between 1980 AD and around
2115 AD

ElapsedSeconds - A pointer to the variable being set

The function result is TRUE if the input value is within the range expressible by the output value [1980
to 2115] and otherwise FALSE.

NT OS/2 Time Conversion Specification 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5. Converting From OS/2-Based Time to TIME

A ULONG value representing the number of elapsed seconds since the start of 1980 is converted to a
corresponding TIME value with the RtlSecondsSince1980ToTime procedure.

VOID
RtlSecondsSince1980ToTime (
 IN ULONG ElapsedSeconds,
 OUT PTIME Time
);

Parameters:

ElapsedSeconds - Supplies the value (i.e., number of seconds since the start of 1980) being
converted

Time - A pointer to the variable being set

6. Converting From TIME to POSIX-Based Time

A TIME value is converted to the corresponding number of seconds since the start of 1970 with the
RtlTimeToSecondsSince1970 procedure.

BOOLEAN
RtlTimeToSecondsSince1970 (
 IN PTIME Time,
 OUT PULONG ElapsedSeconds
);

Parameters:

Time - Supplies the value being converted, it must represent a time between 1970 AD and around
2105 AD

ElapsedSeconds - A pointer to the variable being set

The function result is TRUE if the input value is within the range expressible by the output value [1970
to 2105] and otherwise FALSE.

7. Converting From POSIX-Based Time to TIME

A ULONG value representing the number of elapsed seconds since the start of 1970 is converted to a
corresponding TIME value with the RtlSecondsSince1970ToTime procedure.

NT OS/2 Time Conversion Specification 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
RtlSecondsSince1970ToTime (
 IN ULONG ElapsedSeconds,
 OUT PTIME Time
);

Parameters:

ElapsedSeconds - Supplies the value (i.e., number of seconds since the start of 1970) being
converted

Time - A pointer to the variable being set

NT OS/2 Time Conversion Specification 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History:

Original Draft 1.0, August 29, 1989

Revision 1.1, January 4, 1990

 1. Included zero time as an interval time.

 2. Make 60 a valid value in the second field of the TIME_FIELDS structure to handle leap
seconds.

Revision 1.2, August 14, 1990

 1. Fix procedure prototype for RtlTimeFieldsToTime to return a BOOLEAN result.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT Timer Specification

Author: David N. Cutler

Original Draft 1.0, May 12, 1989
Revision 1.1, July 15, 1989
Revision 1.2, August 8, 1989
Revision 1.3, January 6, 1990

Windows NT Timer Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

i

1. Introduction.. 1

2. Create Timer Object .. 1

3. Open Timer Object.. 2

4. Cancel Timer .. 2

5. Query Timer ... 3

6. Set Timer.. 4

Windows NT Timer Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1

1. Introduction

This specification describes the Windows NT timer object which is used to record the
passage of time. A timer object is set to a specified time, and then expires when the
time becomes due. When a timer object is set, its state is changed to Not-Signaled,
and it is inserted in the timer queue according to its expiration time. When the timer
expires, it is removed from the timer queue and its state is set to Signaled.

When a timer is set, an Asynchronous Procedure Call (APC) routine can optionally
be specified. This routine is called asynchronously in the context of the establishing
thread when the timer expires.

Waiting for a timer object causes the execution of the subject thread to be
suspended until the timer attains a state of Signaled. Satisfying the Wait for a timer
does not cause the state of the timer to change. Therefore, when a timer attains a
Signaled state, an attempt is made to satisfy as many Waits as possible.

API's that support the timer object include:

NtCreateTimer - Create a timer object and open a handle to it
NtOpenTimer - Open a handle to existing timer object
NtCancelTimer - Cancel a timer object that is set to expire
NtQueryTimer - Get information about a timer object
NtSetTimer - Set a timer object to expire at a specified time

2. Create Timer Object

A timer object can be created and a handle opened for access to the object with the
NtCreateTimer function:

NTSTATUS
NtCreateTimer (
 OUT PHANDLE TimerHandle,
 IN ULONG DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL
);

Parameters:

TimerHandle - A pointer to a variable that receives the timer object handle
value.

DesiredAccess - The desired types of access to the timer object. The following
type specific access flags can be specified in addition to the

Windows NT Timer Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2

STANDARD_ACCESS_REQUIRED flags described in the Object
Management Specification.

DesiredAccess Flags:

TIMER_QUERY_STATE - Query access to the timer object is desired.

TIMER_MODIFY_STATE - Modify access (set and cancel) to the timer object
is desired.

SYNCHRONIZE - Synchronization access (wait) to the timer object is
desired.

TIMER_ALL_ACCESS - All possible types of access to the timer object are
desired.

ObjectAttributes - An optional pointer to a structure that specifies the object
atributes; refer to the Object Management Specification for details.

If the OBJ_OPENIF flag is specified, and a timer object with the specified name
already exists, then a handle to the existing object is opened, provided the desired
access types can be granted. Otherwise, a new timer object is created with an initial
state of Not-Signaled and a handle is opened to the new timer object.

3. Open Timer Object

A handle can be opened to an existing timer object with the NtOpenTimer function:

NTSTATUS
NtOpenTimer (
 OUT PHANDLE TimerHandle,
 IN ULONG DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters:

TimerHandle - A pointer to a variable that receives the timer object handle
value.

DesiredAccess - The desired types of access to the timer object. The following
type specific access flags can be specified in addition to the
STANDARD_ACCESS_REQUIRED flags described in the Object
Management Specification.

Windows NT Timer Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

3

DesiredAccess Flags:

TIMER_QUERY_STATE - Query access to the timer object is desired.

TIMER_MODIFY_STATE - Modify access (set and cancel) to the timer object
is desired.

SYNCHRONIZE - Synchronization access (wait) to the timer object is
desired.

TIMER_ALL_ACCESS - All possible types of access to the timer object are
desired.

ObjectAttributes - A pointer to a structure that specifies the object atributes;
refer to the Object Management Specification for details.

If the desired types of access can be granted, then a handle is opened to the
specified timer object.

4. Cancel Timer

A timer can be cancelled with the NtCancelTimer function:

NTSTATUS
NtCancelTimer (
 IN HANDLE TimerHandle,
 OUT PBOOLEAN CurrentState OPTIONAL
);

Parameters:

TimerHandle - An open handle to a timer object.

CurrentState - An optional pointer to a boolean variable that receives the
current state of the timer object.

Canceling a timer object causes the timer to be removed from the timer queue if it is
currently set, and returns the current state of the timer. If the current state of the
timer object is Not-Signaled, then a value of FALSE is returned. Otherwise, the
current state of the timer object is Signaled and a value of TRUE is returned.

Canceling a timer object that is not currently set to expire has no effect on the
timer. Canceling a timer object also does not affect the state of the timer object.

Windows NT Timer Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4

5. Query Timer

The state of a timer can be queried with the NtQueryTimer function:

NTSTATUS
NtQueryTimer (
 IN HANDLE TimerHandle,
 IN TIMERINFOCLASS TimerInformationClass,
 OUT PVOID TimerInformation,
 IN ULONG TimerInformationLength,
 OUT PULONG ReturnLength OPTIONAL
);

Parameters:

TimerHandle - An open handle to a timer object.

TimerInformationClass - The timer information class for which information is
to be returned.

TimerInformation - A pointer to a buffer that will receive the specified
information. The format and content of the buffer is dependent on the
specified information class.

TimerInformation Format by Information Class:

TimerBasicInformation - Data type is TIMERBASICINFO.

TIMERBASICINFO Structure:

TIME RemainingTime - The amount of time remaining before the timer will
expire.

BOOLEAN TimerState - The current state of the timer.

TimerInformationLength - Specifies the length in bytes of the timer information
buffer.

ReturnLength - An optional pointer which, if specified, receives the number of
bytes placed in the timer information buffer.

This function provides the capability to determine the state of a timer object and
how much time remains before the timer will expire.

Windows NT Timer Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

5

If the current state of the timer object is Not-Signaled, then a value of FALSE is
returned. Otherwise the current state of the timer object is Signaled and a value of
TRUE is returned.

The remaining time is returned as the difference between the expiration time of the
timer and the current system time. If the timer has already expired, then a negative
time is returned which represents the amount of time that has lapsed since the
timer expired. Otherwise, a positive value is returned that represents the amount of
time remaining before the timer will expire.

6. Set Timer

A timer can be set to expire at a specified time with the NtSetTimer function:

NTSTATUS
NtSetTimer (
 IN HANDLE TimerHandle,
 IN PTIME DueTime,
 IN PTIMER_APC_ROUTINE TimerApcRoutine OPTIONAL,
 IN PVOID TimerContext OPTIONAL,
 OUT PBOOLEAN PreviousState OPTIONAL
);

Parameters:

TimerHandle - An open handle to a timer object.

DueTime - The absolute or relative time at which the timer is to expire.

TimerApcRoutine - An optional pointer to a function that is called
asynchronously when the timer expires. If this parameter is not specified,
then the TimerContext parameter is ignored.

TimerContext - A pointer to an arbitrary data structure that is passed to the
function specified by the TimerApcRoutine parameter. This parameter is
ignored if the TimerApcRoutine parameter is not specified.

PreviousState - An optional pointer to a boolean variable that receives the
previous state of the timer.

The function specified by the TimerApcRoutine parameter has the following type
definition:

Windows NT Timer Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6

typedef
VOID
(*PTIMER_APC_ROUTINE) (
 IN PVOID TimerContext,
 IN ULONG TimerLowValue,
 IN LONG TimerHighValue
);

Parameters:

TimerContext - A pointer to an arbitrary data structure which was specified
when the timer was set.

TimerLowValue - The low half of the timer expiration time.

TimerHighValue - The high half of the timer expiration time.

Setting a timer object causes the absolute expiration time to be computed, the state
of the timer set to Not-Signaled, and the timer object to be inserted in the timer
queue.

If the timer is already in the timer queue, then it is implicitly canceled before it is set
to the new expiration time.

The expiration time of the timer object is specified as either the absolute time that
the timer is to expire, or a time relative to the current system time. If the value of
the DueTime parameter is negative, then the expiration time is relative. Otherwise,
the expiration time is absolute.

If an Asynchronous Procedure Call (APC) routine is specified, then the respective
procedure is called in the context of the subject thread when the timer expires. The
subject thread is also the only thread that can cancel the timer.

When the timer expires, it is removed from the timer queue and its state is set to
Signaled.

Windows NT Timer Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7

Revision History:

Original Draft 1.0, May 12, 1989

Revision 1.1, July 15, 1989

 1. Change type name of timer APC routine.

 2. Remove restriction that only the thread that set a timer with an APC
routine could cancel the timer.

Revision 1.2, August 8, 1989

 1. Change the output parameters of NtCancelTimer and NtSetTimer to be
optional.

Revision 1.3, January 6, 1990

 1. Change type name of object attributes parameter and refer to the Object
Management Specification for the definition of this parameter.

 2. Change the description of the desired access flags to include the standard
rights, object specific rights, and generic rights.

 3. Delete the handle flags and object name parameter from the
NtOpenTimer service and replace with a pointer to an object attributes
structure.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

NT Utilities Coding Conventions

Author: David J. Gilman

Revision 1.1, October 29, 1990
Revision 1.0, October 18, 1990

NT Utilities Coding Conventions i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction.. 1

2. The Existing Code Rule... 1

3. Module Headers... 1

4. Function Headers ... 3
4.1 Modifiers... 3
4.2 Function Declarations ... 4
4.3 Function Definitions ... 5

5. Header Files ... 6
5.1 Header File Inclusion.. 6

5.1.1 Description .. 6
5.1.2 Special Header Files.. 7

5.1.2.1 Ulibdef.hxx.. 7
5.1.2.2 Ulib.hxx... 7

6. Naming .. 8
6.1 Variable Names... 8

6.1.1 Initial Caps Format.. 9
6.1.2 Unstructured Format ... 9

6.2 Data Type Names.. 9
6.3 Returning or Accepting Pointers... 11
6.4 Structure Fields, Class Member Data and

Enumeration Constants .. 11
6.5 Macro and Constant Names .. 11

7. Indentation and Placement of Braces .. 12

8. Language Usage Guidelines .. 15
8.1 Known Problems... 15
8.2 C++ Specific Guidelines... 15
8.3 Debugging Support ... 16

9. Appendix A - Example : Class EXAMPLE .. 16
9.1 Ulib.hxx .. 16
9.2 Example.hxx ... 17
9.3 Examplep.hxx ... 18
9.4 Example.inl ... 19
9.5 Example.cxx.. 20
9.6 Client.cxx .. 23

NT Utilities Coding Conventions 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Introduction

This document describes the coding conventions that are used by the NT OS/2 Utilities group. Both
the document and the conventions are heavily based on the document, "NT OS/2 Coding Conventions"
written by Helen Custer and Mark Lucovsky.

There are primarily two reasons why the NT OS/2 Utilities group warrants a separate convention.
First, work is done on existing code from many different sources. Second, all new code will be written
in C++. This requires a number of changes and additions from the convention documented in the
above mentioned document.

All code written for NT OS/2 Utilities adheres to a common coding style. This style gives the utilities
a uniform appearance which allows group members to read, modify, and maintain each other's modules
without learning several different coding conventions.

The following items are standardized:

 o Module headers

 o Function (member and non-member) headers and declarations

 o Header file format

 o Names of variables, data types (including classes), structure fields, macros, and constants

 o Control structure indentation and placement of braces

2. The Existing Code Rule

When existing code is being ported to NT OS/2, every effort should be made to maintain the
conventions and style that already exist in that code.

3. Module Headers

The following prototype should appear at the beginning of each module. The source to the prototype
can be found in the file \nt\public\oak\inc\modhdr.c.

/*++

Copyright (c) 1990 Microsoft Corporation

Module Name:

 name-of-module-filename

Abstract:

 abstract-for-module.

Author:

NT Utilities Coding Conventions 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 name-of-author (email-name) creation-date-dd-Mmm-yyyy

[Environment:]

 optional-environment-info (e.g. kernel mode only...)

[Notes:]

 optional-notes

Revision History:

 most-recent-revision-date email-name
 description
 .
 .
 .
 least-recent-revision-date email-name
 description

--*/

/ Note that no Revision History will be maintained until after the product has been
released. /

The following is a sample of a completed module header:

/*++

Copyright (c) 1990 Microsoft Corporation

Module Name:

 object.hxx

Abstract:

 Definition of the root class for the ULIB class hierarchy.

Author:

 David J. Gilman (davegi) 12-Oct-1990

Environment:

 ULIB, User Mode

Notes:

 Note the PURE VIRTUAL functions.

--*/

NT Utilities Coding Conventions 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

\ The /*++ <text> --*/ construct is used by a comment extractor program that will be
developed to assist in our documentation efforts.\

4. Function Headers

In C++ member functions are declared within a class definition. These declarations contain a lot of
information and as such will be enhanced by the use of modifiers. Some of these modifiers are also
used by the function definition.

4.1 Modifiers

There are essentially three different types of modifiers; function specifiers, type specifiers and
argument direction. All can be used by function declarations. Those that can also be used in function
definitions are noted.

 o All member function declarations are preceded by one of the following modifiers:

 VIRTUAL
Indicates that the implementation of a member function can be overridden by a derived
class

 NONVIRTUAL
Indicates that the implementation of a member function can not be overridden by a derived
class

 STATIC
Indicates that the member function is static and therefore callable without an object
instance of the class.

 o Member function declarations may also be preceded by the following modifier:

 CONST (definition)
Indicates that the function returns a constant value (usually a pointer).

 o All formal arguments are preceded by one of the following modifiers:

 IN (definition)
Indicates that the argument is a non-modifiable input value (i.e., call-by-value semantics)

 OUT (definition)
Indicates that the argument is an address which refers to a variable or structure that will be
modified by the function (i.e., call-by-reference semantics)

NT Utilities Coding Conventions 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 IN OUT (definition)
Indicates that the argument is the address of an input variable or structure that is both read
and written by the function (i.e., call-by-reference semantics).

o Formal arguments may also be followed by one of the following modifiers:

 OPTIONAL
Indicates that an argument can be or NULL (or zero). To determine whether the actual
value supplied is NULL, the programmer must use the macro ARGUMENT_PRESENT,
which takes the argument and returns a value of type BOOLEAN. OPTIONAL arguments
must be specified by the caller and can occur at any position in the argument list

 DEFAULT
Indicates that the argument is optional and need not be specified by the caller. DEFAULT
arguments may only occur at the end (i.e. right end) of an argument list and must be
initialized in the class definition

 o Member function declarations may also be followed by the following modifiers:

 CONST (definition)
Indicates that the member function is safe. That is, it does not directly, or indirectly via a
call, modify the object's state

 PURE
Indicates that the member function is a pure virtual function. That is, all derived classes
must supply their own implementation

 o The order of the arguments in the comment block is the same as the order in which they appear
in the function declaration.

4.2 Function Declarations

When a member function is declared in a class definition, it's declaration contains the function
prototype and appropriate modifiers. For example:

NONVIRTUAL
CONST
POBJECT
GetNext (
 IN POBJECT LastObject,
 OUT BOOLEAN WrapAround
) CONST

Note that modifiers, types and argument names should be aligned.

NT Utilities Coding Conventions 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4.3 Function Definitions

Below is a prototype function definition and declaration. The definition form is to appear with the
implementation of the function. The source to the prototype can be found in the file
\nt\public\oak\inc\prochdr.cxx.

Note that a form-feed character should appear one line before the "return-type" line. This convention
is noted in this document with the string "<form-feed>".

The function declaration follows:

<form-feed>
modifier
 .
 .
 .
return-type
procedure-name (
 direction type-name argument-name [modifier],
 direction type-name argument-name [modifier]
 .
 .
 .
) [modifier]

/*++

Routine Description:

 description-of-function.

Arguments:

 argument-name - Supplies (IN) | Returns (OUT) description of argument.
 .
 .

Return Value:

 return-value - Description of conditions needed to return value.
 - or -
 None.

--*/

{
 .
 .
 .
}

/ Note the space between the procedure name and the opening parenthesis for it's
argument list. This is needed so that overloaded operators will be more readable. /

The following is a sample of a completed member function declaration:

NT Utilities Coding Conventions 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

<form-feed>
NONVIRTUAL
CONST
POBJECT
COLLECTION::GetNext (
 IN POBJECT LastObject OPTIONAL
) CONST

/*++

Routine Description:

 Get the next object from the collection.

Arguments:

 LastObject - Supplies the current object.

Return Value:

 POBJECT - A constant pointer to the next OBJECT in the
 COLLECTION.

--*/

{
 .
 .
 .
}

5. Header Files

The following sections define the requirements for inclusion and format of header files.

5.1 Header File Inclusion

5.1.1 Description

There are two types of header files used by the NT OS/2 Utilities:

 o Header files that are private to a single class:

 o Types, constants etc.

 o Inline functions

 o A public header file that contains the class declaration and associated types, constants etc.

The naming convention for private header files is <class-name>p.hxx. For example, the private header
file for the object class, would be called objectp.hxx.

NT Utilities Coding Conventions 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The public style of header files are the most important as they define class interfaces. An example can
be found in section 0.

Header files should not be nested. That is, one header file should not include another.

5.1.2 Special Header Files

There are two special header files used by the ULIB class library: ulibdef.hxx and ulib.hxx. These
files are exceptions to the nested include file rule.

5.1.2.1 Ulibdef.hxx

The file \nt\private\os2\programs\ulib\inc\ulibdef.hxx contains global information which is required by
all classes and client's of ULIB. It should not be directly included. Rather, it will be included by
ulib.hxx.

5.1.2.2 Ulib.hxx

The file \nt\private\os2\programs\ulib\inc\ulib.hxx is the master header file for the ULIB library. It
should be included by all classes and clients of ULIB by the statement

#include "ulib.hxx"

In turn ulib.hxx will include, in the correct order, the header files that are needed by a particular class.
This will be controlled by symbols of the form

CLASSNAME

which will be defined by the class client.

Class definitions will support this architecture by conditionally expanding to themselves, or to nothing
if they have already been expanded.

As mentioned, class writers will use ulib.hxx. This will ensure that it is accurate and usable by any
class clients. This means that special care should be taken to ensure that private header files are not
listed within ulib.hxx.

In the example below, if the class definition in collection.hxx was not previously referenced, then the
macro _COLLECTION_ is defined and the header file is expanded. Otherwise, _COLLECTION_ is
already defined and the remainder of the header file is ignored. This results in the header file being
included only once.

The following header file style should be used:

/*++

NT Utilities Coding Conventions 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Copyright (c) 1990 Microsoft Corporation

Module Name:

 object.hxx

Abstract:

 Definition of the abstract container class.

Author:

 David J. Gilman (davegi) 12-Oct-1990

Environment:

 ULIB, User Mode

Notes:

Revision History:

--*/

#if ! defined(_COLLECTION_)
#define _COLLECTION_
 .
 .
 .

//
// body
//

#endif // _COLLECTION_

6. Naming

The following sections describe the naming conventions for variables, structure fields, types, constants,
and macros.

6.1 Variable Names

Variable names are either in "initial caps" format, or they are unstructured. The following two sections
describe when each is appropriate.

Note that the NT OS/2 system, utilities included, do not use the Hungarian naming convention used in
some of the other Microsoft products.

6.1.1 Initial Caps Format

All global variables and formal argument names must use the initial caps format. The following rules
define this format:

 o Words within a name are spelled out; abbreviations are discouraged.

NT Utilities Coding Conventions 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o The first character of each word in a name is capitalized.

 o Acronyms are treated as words, that is, only the first character of the acronym is capitalized.

The following list shows some sample names that conform to these rules:

NumberOfBytes

TcbAddress

BilledProcess

6.1.2 Unstructured Format

Local variables may appear in either the initial caps format, or in a format of the programmer's
preference. The following list shows some possibilities for local variable names:

loopindex

LoopIndex

loop_index

6.2 Data Type Names

A set of primitive data types for use in the NT OS/2 Utilities is defined in ulibdef.hxx. All NT OS/2
Utilities software must declare variables using these defined types rather than standard C++ types,
where appropriate. The following are some examples of NT OS/2 Utilities types:

ULONG

PULONG

VOID

PVOID

BOOLEAN

PBOOLEAN

All new type names should be created in uppercase using typedef. Words within the name may either
be packed together or separated by underscores. All types should have a corresponding typedef which
defines a pointer and a reference to the type. The name for the pointer is the type name with a "P"
prefix. Similarly the reference is the type name with a "R" prefix.

The following example illustrates how to use typedef to create a class type:

NT Utilities Coding Conventions 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

typedef class COLLECTION : public OBJECT {

 public:

 NONVIRTUAL
 COLLECTION (
 IN ULONG InitialNumberOfElements,
 IN ULONG IncrementNumberOfElements DEFAULT = 10
);

 VIRTUAL
 ~COLLECTION (
);

 NONVIRTUAL
 POBJECT
 QueryNextElement (
 IN POBJECT CurrentElement
) CONST;

 VIRTUAL
 CONST
 POBJECT
 GetNextElement (
 IN POBJECT CurrentElement
) PURE;

 protected:

 POBJECT mCollection;

 private:

 ULONG _InitialNumberOfElements;
 ULONG _IncrementNumberOfElements;
} POINTER_AND_REFERENCE_TYPES(COLLECTION);

Note that there should only be one public:, one protected: and one private: section in each class
definition. In addition constructors and destructors should appear at the top of the list followed by
logical groupings of other member functions.

C++ does not require a typedef for structures, and enumerated types as it considers them to be types
when they are defined. However typedefs should be used so that a pointer and reference to the type are
defined at the same time as the underlying type. For example,

typedef struct RANGE {
 ULONG Start
 ULONG Count;
} POINTER_AND_REFERENCE_TYPES(RANGE);

typedef enum COLLECTION_TYPE {
 Array,
 List,
 Table
} POINTER_AND_REFERENCE_TYPES(COLLECTION_TYPE);

NT Utilities Coding Conventions 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6.3 Returning or Accepting Pointers

In order to minimize performance impacts of using objects, the following conventions are used when
pointers to objects, or other dynamic structures, are passed to and from an object:

 o Member function names that have the prefix:

 o Query
Return a pointer to an object which will be de-allocated by the client.

 o Get
Return a constant pointer which will be de-allocated by the object.

 o Set
Take a pointer to an object which will be de-allocated by the object.

 o Put
Take a pointer to an object which will be de-allocated by the client.

6.4 Structure Fields, Class Member Data and
Enumeration Constants

Notice from the above examples that structure field names, enumeration constants and class member
data should follow initial caps format. They should not have field name prefixes tied to a type.

The subtle exception to this rule is for member data. The names used for a class' member data should
be preceded by an '_' so that they can be more easily recognized in member function implementations.

6.5 Macro and Constant Names

All macros and manifest constants should have uppercase names. Words within a name may either be
packed together, or separated by underscores.

The following statements illustrate some manifest constant and macro names:

#define PAGE_SIZE 4096
#define CONTAINING_RECORD(address, type, field) \
 ((type *)((LONG)(address) - \
 (LONG)(&((type *)0)->field)))

Any macro that is likely to be replaced by a function at a later time should use the naming conventions
for functions.

In C++ it is preferable to use constant variables and inline functions instead of manifest constants and
macros.

NT Utilities Coding Conventions 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7. Indentation and Placement of Braces

Source files should contain real tab characters. Tab stops should be set to four characters. This can be
accomplished for the following tools by adding the following entry to the tools.ini file:

[pwb]
 entab:1
 filetab:4
 tabstops:4
 realtabs:yes

[list]
 tabamt:4

[ppr]
 flags = -e 4

/ The entries for list and ppr do not work. /

The following skeletal statements illustrate the proper indentation and placement of braces for C++
control structures.

<form-feed>
INT
FooBar(
 INT ArgumentOne,
 PULONG ArgumentTwo
)

/*++

Routine Description:

 This is the routine description.

Arguments:

 ArgumentOne - Supplies the value for argument 1.

 ArgumentTwo - Supplies the address of argument 2.

Return Value:

 0 - Success

 1 - Failure

--*/

{
 //
 // Local variables are indented one tab (tabs are 4 spaces)
 //

 ULONG LocalVariable1;
 LONG Counter;

 //
 // for loops

NT Utilities Coding Conventions 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 // - all for loops must have braces
 // - closing brace is at same indentation level as
 // for statement
 //

 for (Counter = 0; Counter < 10; Counter++) {

 //
 // Body of loop
 //

 }

 //
 // if statement
 //

 if (Counter == 0) {

 //
 // Then statements
 //

 }

 //
 // if then else
 //

 if (Counter == 1) {

 //
 // Then statements
 //

 } else {

 //
 // Else statements
 //

 }

 //
 // switch statement
 //

 switch (Counter) {

 case 1 :

 //
 // case 1 statements
 //
 break;

 case 2 :

 //
 // case 2 statements
 //
 break;

 default :

NT Utilities Coding Conventions 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 //
 // default case
 //
 break;

 }
}

8. Language Usage Guidelines

The NT OS/2 Utilities are written in portable C++ as defined by "The Annotated C++ Reference
Manual" written by Margaret A. Ellis and Bjarne Stroustrup1. Care should be taken not to write any
code that breaks with this language definition or with the ANSI C standard. When the two language
definitions are at odds, side with the C++ definition.

8.1 Known Problems

There are two known problems that have been encountered by the NT OS/2 group:

 o Left Hand Side Typecasts

ULONG i;
(FLOAT) i = 2.0; // PROBLEM!

 o Zero Length Arrays in Structures

struct X {
 ULONG i;
 ULONG arr[]; // PROBLEM!
};

Fortunately, C++ will not allow either of these constructs.

8.2 C++ Specific Guidelines

Following are a number of C++ specific guidelines which will aid in readability, consistency and
debugging:

 o File names should have the following extensions:

 o hxx
for class definitions and related types and constants

1 This book is also referred to as the "ANSI Base Document".

NT Utilities Coding Conventions 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o inl
for inline function implementations

 o cxx
for non-inline function implementations.

 o In order to benefit from C++'s strong type checking:

 o Dynamic allocation and de-allocation should be performed with the C++ new and delete
operators.

 o Constant, global variables should be used in lieu of pre-processor definitions.

 o Do not declare inline functions within a class definition.

 o Declare inline functions in the appropriate .inl file as described above and as shown in 0.

 o Do not use multiple inheritance.

 o Avoid using global, static objects.

 o Do not use the C++ specific form of casting (i.e. ULONG(x)).

 o Do not declare protected member data (use private data and access member functions).

8.3 Debugging Support

Debug code is enabled by the compiler symbol DBG. Debug code should not be defined within the
body of non-debug code. Instead a macro should be defined which conditionally compiles to a,
possibly inlined, function call. For example (from ulibdef.hxx),

#if defined(DBG)
 #define DebugAssert(b) DbgAssert(b)
#else
 #define DbgAssert
#endif // DBG

Programmers should use the symbol REGISTER instead of the C++ storage specifier, register. This
will disable register storage when DBG is enabled.

The macro, INLINE_INCLUDE, should be used to conditionally (depending on DBG) include (or
compile) inline functions. See 0 for an example. Note that usage of this macro will cause the DBG
symbol to effect the list of source files to be compiled. This macro will make tracing and stepping of
inline functions easier.

NT Utilities Coding Conventions 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

9. Appendix A - Example : Class EXAMPLE

9.1 Ulib.hxx

/*++

Copyright (c) 1990 Microsoft Corporation

Module Name:

 ulib.hxx

Abstract:

 Master include file for the ULIB class hierarchy.

Author:

 David J. Gilman (davegi) 19-Oct-1990

Environment:

 ULIB

Notes:

Revision History:

--*/

#include "ulibdef.hxx"
#include "object.hxx"
 .
 .
 .
#if defined(_EXAMPLE_)

//
// include files that the EXAMPLE class definition (not
// implementation) is dependent upon
//

 #include "example.hxx"

#endif // _EXAMPLE_

9.2 Example.hxx

/*++

Copyright (c) 1990 Microsoft Corporation

Module Name:

 example.hxx

Abstract:

 Definition for class EXAMPLE.

NT Utilities Coding Conventions 17

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Author:

 David J. Gilman (davegi) 19-Oct-1990

Environment:

 ULIB

Notes:

Revision History:

--*/

#if ! defined(_EXAMPLE_)
#define _EXAMPLE_

typedef class EXAMPLE : public OBJECT {

 public:

 NONVIRTUAL
 EXAMPLE (
 IN ULONG Value
);

 VIRTUAL
 ~EXAMPLE (
);

 VIRTUAL
 ULONG
 SetValue (
 IN ULONG Value
);

 NONVIRTUAL
 ULONG
 QueryValueDoubled (
) CONST;

 private:

 ULONG mValue;

} POINTER_AND_REFERENCE_TYPES(EXAMPLE);

INLINE_INCLUDE(example.inl);

#endif // _EXAMPLE_

9.3 Examplep.hxx

/*++

Copyright (c) 1990 Microsoft Corporation

Module Name:

 examplep.hxx

NT Utilities Coding Conventions 18

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Abstract:

 Private header file for class EXAMPLE.

Author:

 David J. Gilman (davegi) 19-Oct-1990

Environment:

 ULIB

Notes:

Revision History:

--*/

#if ! defined(_EXAMPLE_P)
#define _EXAMPLE_P

CONST DOUBLEVALUE = 2;

#endif // _EXAMPLE_P

9.4 Example.inl

/*++

Copyright (c) 1990 Microsoft Corporation

Module Name:

 example.inl

Abstract:

 Inline functions for class EXAMPLE.

Author:

 David J. Gilman (davegi) 19-Oct-1990

Environment:

 ULIB

Notes:

Revision History:

--*/

#define _EXAMPLE_
#include "ulib.hxx"

#include "examplep.hxx"

<form-feed>

ULONG

NT Utilities Coding Conventions 19

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

EXAMPLE::QueryValueDoubled (
) CONST

/*++

Routine Description:

 Compute double the value.

Arguments:

 None.

Return Value:

 ULONG - double the value.

--*/

{
 return(mValue * DOUBLEVALUE);
}

9.5 Example.cxx

/*++

Copyright (c) 1990 Microsoft Corporation

Module Name:

 example.cxx

Abstract:

 Implementation for class EXAMPLE.

Author:

 David J. Gilman (davegi) 19-Oct-1990

Environment:

 ULIB

Notes:

Revision History:

--*/

#define _EXAMPLE_
#include "ulib.hxx"

#include "examplep.hxx"

<form-feed>

EXAMPLE::EXAMPLE (
 ULONG Value

NT Utilities Coding Conventions 20

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

)

/*++

Routine Description:

 Construct an EXAMPLE object.

Arguments:

 Value - Initial value for the EXAMPLE object.

Return Value:

 None.

--*/

{
 mValue = Value;
}

<form-feed>

EXAMPLE::~EXAMPLE (
)

/*++

Routine Description:

 Destroy an EXAMPLE object.

Arguments:

 None.

Return Value:

 None.

--*/

{
 DbgPrint("Example destroying...\n");;
}

<form-feed>

ULONG
EXAMPLE::SetValue (
 ULONG Value
)

/*++

Routine Description:

 Set an EXAMPLE's value.

NT Utilities Coding Conventions 21

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Arguments:

 Value - The value to set in EXAMPLE.

Return Value:

 ULONG - The set value.

--*/

{
 return(mValue = Value);
}

9.6 Client.cxx

/*++

Copyright (c) 1990 Microsoft Corporation

Module Name:

 client.cxx

Abstract:

 Sample usage of class EXAMPLE.

Author:

 David J. Gilman (davegi) 19-Oct-1990

Environment:

 ULIB

Notes:

Revision History:

--*/

extern "C" {
 #include <stdio.h>
};

#define _EXAMPLE_
#include "ulib.hxx"

<form-feed>

VOID
main (
)

/*++

Routine Description:

 Constructs and demonstrates usage of an EXAMPLE object.

NT Utilities Coding Conventions 22

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Arguments:

 None.

Return Value:

 None.

--*/

 EXAMPLE example = 4;
 PEXAMPLE pexample;

 pexample = &example;

 printf("Value = %d\n", example.QueryValueDoubled() / 2);
 printf("Value = %d\n", pexample->QueryValueDoubled() / 2);
}

NT Utilities Coding Conventions 23

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History

Revision 1.1, October 29, 1990 - djg

 1. Changed definition of IN argument modifier.

 2. Added IN OUT argument modifier.

 3. Added POINTER_AND_REFERENCE_TYPES macro.

 4. Added STATIC member modifier.

 5. Clarified OPTIONAL versus DEFAULT argument modifiers.

 6. Changed member data prefix from 'm' to '_'.

 7. Added style guidelines for public, private and protected sections.

 8. Miscellaneous edits for clarity.

Revision 1.0, October 18, 1990 - djg

 1. Incorporated comments from stever and loup.

 2. Added reference types.

 3. Fixed formatting errors.

Original Draft, October 16, 1990 - djg

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT Virtual Memory Specification

Author: Lou Perazzoli

Original Draft 1.0, December 15, 1988
Revision 4.0 April 28, 1993

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview... 1
1.1 Object Orientation... 1
1.2 Virtual Memory ... 1
1.3 Page Protections.. 2
1.4 Page File Quota and Commitment ... 3

2. Virtual Memory Operations ... 3
2.1 Create Section... 4
2.2 Open Section... 7
2.3 Map View Of Section ... 8
2.4 Extend Size Of Section .. 12
2.5 Unmap View Of Section... 13
2.6 Allocate Virtual Memory .. 14
2.7 Free Virtual Memory ... 17
2.8 Read Virtual Memory .. 19
2.9 Write Virtual Memory .. 20
2.10 Flush Virtual Memory ... 21
2.11 Lock Virtual Memory ... 22
2.12 Unlock Virtual Memory ... 23
2.13 Protect Virtual Memory ... 24
2.14 Query Virtual Memory... 26
2.15 Query Section Information .. 29
2.16 Create Paging File ... 31
2.17 Flush Instruction Cache.. 31
2.18 Flush Write Buffer... 32
2.19 Close Handle... 32

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview

This specification describes the virtual memory component for the portable New
Technology (Windows NT) system. Windows NT virtual memory includes the
following:

 o Virtual memory support for the POSIX fork and exec operations, which enable
compliance with the POSIX standard.

 o Mapping of files into virtual memory and paging directly to/from those files.
Files larger than 2 Gb are mapped via partial views of the file.

 o Protection of shared memory and mapped files via Access Control Lists
(ACLs), which is required to achieve a DOD security rating of C2 or higher.

 o Application control of virtual address space allocation and the mapping of
shared memory.

 o Copy-on-write pages with the ability to establish guard pages and set page
protection.

 o Creation of committed and/or reserved private memory without creating any
kind of memory object.

1.1 Object Orientation

The basic architecture of the Windows NT system is object based. This means that
all operating system abstractions presented at the API level are in the form of
objects and a set of operations on those objects. This allows a stylized set of
operations for each object, uniform naming across objects, uniform protection of
objects, and uniform sharing of objects.

Typically there is an operation to create a new instance of an object
(NtCreate_object) and to establish access (create a handle) for an existing object
(NtOpen_object). These basic operations are generally augmented by a set of object-
specific operations. A handle is closed with a generic close operation (NtClose).

The treatment of objects here is minimal. A separate specification, Windows NT
Object Management, more fully covers the object orientation of Windows NT.

1.2 Virtual Memory

Virtual memory is supported in the Windows NT system by section objects, a set of
operations that may be performed on section objects, and various other services
that directly manipulate the process virtual address space. In addition to section
objects and their corresponding services, a set of operations are also provided to
reserve and commit virtual memory private to a process.

A section object is a shareable entity that can be mapped into the virtual address
space of a process. It can be backed by a paging file (e.g., demand zero pages) or by
a file (mapped file).

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Mapping a section into the virtual address space creates a process-private view of
the section. The view can be partial or complete. Several different views of a section
can be concurrently mapped within the same or different processes. When a view of
a section is created, the corresponding process virtual address space is reserved and
optionally committed.

Views are allocated on a hardware dependent Allocation Granularity (64kb on x86
and MIPS) virtual address boundary. The allocation granularity is determined by
cache coherency issues and the desire to support larger page sizes in a compatible
manner.

In general, it is not desirable for programs to directly control the allocation of the
process virtual address space. However, the system has a need for this capability
when a program is activated (i.e., the program file is mapped into the address space
when the image is started), and some applications that use tag bits in pointers also
want to control placement so that certain address bits are guaranteed to be zero.
Thus the proposed interface provides for placement control, but it is optional.

Each section can have an optional name and Access Control List (ACL). This
provides the basis whereby a section can be shared in a controlled manner. An
unnamed section is a private section and can only be shared with another process
via inheritance (i.e., the fork mechanism required to support POSIX compliance).
Named sections can be shared by any other process that has access to the section.

The operating system does not use views as protection domains, and therefore never
checks to ensure that an argument data structure resides within a single view. Thus
an argument to a Windows NT service may span one or more views or private pages.

The default base address of all program images is the Allocation Granularity (zero-
based program images do not allow uninitialized pointers to manifest themselves as
access violations and are more difficult to debug). However, the base may be
explicitly set to any desired value.

1.3 Page Protections

The virtual memory services allow the specification of execute access for page
protections. On hardware which does not support execute access, the page
protections for execute access will be treated as read. Therefore execute-only access
would be treated as read-only, execute-read-write would be treated as read-write,
etc. However, in the query operations, the actual set page protection would be
returned.

1.4 Page File Quota and Commitment

The memory management system keeps track of page file usage on a global basis,
termed commitment, and on a per process basis as page file quota. Commitment and
page file quota are charged whenever virtual memory is created which requires
backing store from the paging file.

The following explains the actions for each service which potentially creates pages
destined for the paging file:

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NtCreateSection (mapping file) __No commitment or page file quota is charged.

NtCreateSection (paging file) __Charge commitment for any committed pages

within the section. The commitment is returned when the section is
deleted.

NtAllocateVirtualMemory (reserve) __Charge commitment and page file quota

for the page table pages required to map the potentially committed pages.

NtAllocateVirtualMemory (reserve & commit) __Charge commitment and page

file quota for both the page table pages required to map the virtual
memory and committed pages.

NtAllocateVirtualMemory (commit private pages) __Charge commitment and

page file quota for each page of memory committed.

NtAllocateVirtualMemory (commit shared pages) __Charge page file quota and

commitment if page protection is write-copy. Charge commitment if the
page is within a view of a paging file backed section.

NtMapViewOfSection (mapping file) __Charge commitment and page file quota

for the page table pages required to map the virtual memory. If the
protection of the section is write-copy, charge page file quota and
commitment for all pages in the view.

NtMapViewOfSection (paging file) __Charge page file quota as though all pages

in the section are committed. Charge commitment and page file quota for
the page table pages required to map the virtual memory. If the protection
of the section is write-copy, charge page file quota and commitment for all
pages in the view.

NtProtectVirtualMemory (within a view) __If the page protection is write-copy,

charge commitment and page file quota for each newly protected page
which is not already write-copy or private. If the page protection is not
write-copy, and the previous page protection was write-copy, return the
commitment and page file quota for that page.

NtFreeVirtualMemory __Returned the charged commitment and page file

quota.

2. Virtual Memory Operations

The following subsections describe the virtual memory operations that can be
performed in the Windows NT system. A definition and an explanation of each
operation is given.

The APIs described include:

NtCreateSection - Create section and open handle
NtOpenSection - Open handle to existing section
NtMapViewOfSection - Map view of section

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NtExtendSection - Extend the size of section
NtUnmapViewOfSection - Unmap view of section
NtAllocateVirtualMemory - Commit/reserve region
NtFreeVirtualMemory - Decommit/release region
NtReadVirtualMemory - Read memory from specified process
NtWriteVirtualMemory - Write memory to specified process
NtFlushVirtualMemory - Flush modified pages to file
NtLockVirtualMemory - Lock region process/system
NtUnlockVirtualMemory - Unlock region process/system
NtProtectVirtualMemory - Protect region
NtQueryVirtualMemory - Get information about region
NtQuerySection - Get information about section
NtCreatePagingFile - Create a paging file
NtFlushInstructionCache - Flushes the instruction cache.
NtFlushWriteBuffer - Flushes the write buffer on the current processor.
NtClose - Close handle

Each API returns a status value (error code) that signifies the success or failure of
the operation.

2.1 Create Section

A section object can be created and a handle opened for access to the section with
the NtCreateSection function:

NTSTATUS
NtCreateSection (
 OUT PHANDLE SectionHandle,
 IN ACCESS_MASK DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,
 IN PLARGE_INTEGER MaximumSize OPTIONAL,
 IN ULONG SectionPageProtection,
 IN ULONG AllocationAttributes,
 IN HANDLE FileHandle OPTIONAL,
);

Parameters:

SectionHandle - A pointer to a variable that will receive the section object
handle value.

DesiredAccess - The desired types of access for the section. The following
object type specific access flags can be specified in addition to the
STANDARD_ACCESS_REQUIRED flags described in the Object
Management Specification.

DesiredAccess Flags

SECTION_MAP_EXECUTE - Execute access to the section is desired.

SECTION_MAP_READ - Read access to the section is desired.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

SECTION_MAP_WRITE - Write and read access to the section is desired.

SECTION_QUERY - Query access to the section is desired.

SECTION_EXTEND_SIZE - The ability to extend the size of the section is
desired.

ObjectAttributes - An optional pointer to a structure that specifies the object's
attributes. Refer to the Object Management Specification for details.

MaximumSize - A pointer to the maximum size of the section in bytes. For page
file backed sections, this value is rounded up to the host page size. If this
argument is unspecified or the value is specified as zero, and a file handle
is specified, the section size is set to the size of the file.

SectionPageProtection - Specifies the underlying page protection for the section.
For files mapped as images, this parameter is ignored and the underlying
page protection is taken from the mapped file's image header.

Section Page Protection Values

PAGE_READONLY - Read access to the committed region of pages is
allowed. An attempt to write or execute the committed region results
in an access violation.

PAGE_READWRITE - Read, and write access to the region of committed
pages are allowed. If write access to the underlying section is allowed,
then a single copy of the pages is shared. Otherwise the pages are
shared read-only/copy-on-write.

PAGE_WRITECOPY - Read and write access to the region of committed
pages is allowed. The pages are shared read-only/copy-on-write.

PAGE_EXECUTE - Execute access to the committed region of pages is
allowed. An attempt to read or write the committed region results in
an access violation.

PAGE_EXECUTE_READ - Execute and read access to the region of
committed pages is allowed. An attempt to write the committed
region results in an access violation.

PAGE_EXECUTE_READWRITE - Execute, read and write access to the
region of committed pages is allowed.

PAGE_EXECUTE_WRITECOPY - Read, execute, and write access to the
region of committed pages is allowed. The pages are shared read-
only/copy-on-write.

AllocationAttributes - A set of flags that describes the allocation attributes of the
section. One of SEC_RESERVE, SEC_COMMIT or SEC_IMAGE must be

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

supplied. If SEC_IMAGE is specified the only other valid option is
SEC_BASED.

AllocationAttributes Flags

SEC_BASED - The section is a based section. Attempt to find a location
that allows mapping in the current process which does not conflict
with other SEC_BASED sections. If a view to a SEC_BASED section
cannot be mapped at the specified address in the process and error is
returned. NOTE: SEC_BASED does not prevent other mappings or
allocations from colliding with the based section, it merely
guarantees that either the section is mapped at the based
address or an error is returned.

SEC_RESERVE - All pages of the section are set to the reserved state.

SEC_COMMIT - All pages of the section are set to the commit state.

SEC_IMAGE - The file specified by the file handle is an executable image
file.

SEC_NOCACHE - All pages of the section are to be set as non-cacheable.

FileHandle - An optional handle of an open file object. If the value of this
handle is NULL, then the section is backed by a paging file. Otherwise, the
section is backed by the specified data file.

Creating a section creates an object that describes a region of potentially shareable
memory and opens a handle for access to the section object. The section can be
backed by a paging file or a specified data file. An open section handle can be used
to map a view of the section into the virtual address space of the subject process.

If the section is given a name, then it can be shared at any virtual address with
other processes that can open the section (see NtOpenSection below). The section
can also be specified as "based" in which case it can also be shared at a fixed
address in all processes that map a view of the section.

If the section is shareable (i.e., it is given a name), then the Access Control List
(ACL) specifies which users can access the section. If the section is not given a
name, then only the creating process and its descendants can access the section.

Various object attributes can be chosen for the section such that access to the
section can be inherited by the child process when a new process is created. This
capability is required to support the POSIX standard.

The OBJ_OPENIF object attribute allows the section to be created if a section object
with the specified name doesn't already exist. This is useful when two or more
processes dynamically create a temporary section to hold shared data while one or
more processes that operate on the shared data are active. If this option is specified
and a section object with the same name already exists, then the desired access to

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

the section object by the subject process is verified and an open handle is returned
for the existing object.

A section can be specified as temporary or permanent. A temporary object is deleted
when the last open handle to the object is closed. This can result from closing the
handle (see NtClose below) or by terminating a process. A permanent object is
deleted by first opening a handle to the object, marking it temporary, and then
closing the handle. The object then behaves much like a temporary object and is
deleted when the last open handle is closed.

If the section is mapped by a file, then the ACL on the file is used to control access
to the section unless the user ID of the subject process is the owner of the file, in
which case the specified ACL is used. The desired access types must be allowed by
the section ACL and must be compatible with the open mode of the file (i.e., write
access is not allowed to a file that is opened for read-only access).

If the file is open for read-write access, then the file acts as backing store for both
reads and writes of pages in the section. Otherwise, the file is used for inpaging and
no outpaging to the file occurs (i.e., any modified pages are written to a paging file).

In addition to quota errors and object management errors associated with creating
objects, the following status values may be returned by the function:

 o STATUS_NORMAL - Normal, successful completion.

 o STATUS_INVALID_PARAMETER - Error, an invalid parameter was specified.

 o STATUS_INVALID_PAGE_PROTECTION - Error, an invalid page protection was
specified.

 o STATUS_INVALID_FILE - Error, an invalid file handle was specified.

 o STATUS_NOT_IMAGE - Error, an attempt to map file as an image which is not
an image file.

 o STATUS_SECTION_TOO_BIG - Error, an attempt to map create a section which
is bigger than the file which it backs.

2.2 Open Section

A handle can be opened for access to an existing section object with the
NtOpenSection function:

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtOpenSection(
 OUT PHANDLE SectionHandle,
 IN ACCESS_MASK DesiredAccess,
 IN POBJECT_ATTRIBUTES ObjectAttributes
);

Parameters:

Sectionhandle - A pointer to a variable that will receive the section object
handle value.

DesiredAccess - The desired types of access for the section. The following
object type specific access flags can be specified in addition to the
STANDARD_ACCESS_REQUIRED flags described in the Object
Management Specification.

DesiredAccess Flags

SECTION_MAP_EXECUTE - Execute access to the section is desired.

SECTION_MAP_READ - Read access to the section is desired.

SECTION_MAP_WRITE - Write and read access to the section is desired.

SECTION_QUERY - Query access to the section is desired.

SECTION_EXTEND_SIZE - The ability to extend the size of the section is
desired.

ObjectAttributes - A pointer to a structure that specifies the object's attributes.
Refer to the Object Management Specification for details.

Opening a section causes a handle for the object to be opened so that a view of the
section can be mapped into the virtual address space of the subject process.

A process cannot open a section object unless the desired access types are allowed
by the section object ACL, and, if the section is backed by a data file, are also
compatible with the open mode of the associated data file.

In addition to quota errors and object management errors associated with opening
objects, the following status values may be returned by the function:

 o STATUS_NORMAL - Normal, successful completion.

 o STATUS_INVALID_PARAMETER - Error, an invalid parameter was specified.

2.3 Map View Of Section

A view of a section can be mapped into the virtual address space of a subject
process with the NtMapViewOfSection function:

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtMapViewOfSection(
 IN HANDLE SectionHandle,
 IN HANDLE ProcessHandle,
 IN OUT PVOID *BaseAddress,
 IN ULONG ZeroBits,
 IN ULONG CommitSize,
 IN OUT PLARGE_INTEGER SectionOffset OPTIONAL,
 IN OUT PULONG ViewSize,
 IN SECTION_INHERIT InheritDisposition,
 IN ULONG AllocationType,
 IN ULONG Protect
);

Parameters:

SectionHandle - An open handle to a section object.

ProcessHandle - An open handle to a process object.

BaseAddress - A pointer to a variable that will receive the base address of the
view. If the initial value of this argument is not NULL, then the view is
allocated starting at the specified virtual address must be a multiple of the
allocation granularity. If the initial value of this argument is NULL, then
the operating system determines where to allocate the view using the
information specified by the ZeroBits argument value and the section
allocation attributes (i.e., SEC_BASED).

ZeroBits - The number of high-order address bits that must be zero in the base
address of the section view. The value of this argument must be less than
21 and is only used when the operating system determines where to
allocate the view (i.e., when BaseAddress is NULL).

CommitSize - The size of the initially committed region of the view in bytes.
CommitSize is only meaningful for page-file backed sections, mapped
sections, both data and image are always committed at section creation
time and is ignored for mapped files. This value is rounded up to the next
host-page-size boundary.

SectionOffset - Optionally supplies a pointer to the offset from the beginning of
the section to the view in bytes. This value must be a multiple of allocation
granularity. If the section was created with the SEC_IMAGE, this
argument must be NULL.

ViewSize - A pointer to a variable that will receive the actual size in bytes of the
view. If the value of this argument is zero, then a view of the section will
be mapped starting at the specified section offset and continuing to the
end of the section. Otherwise the initial value of this argument specifies
the size of the view in bytes and is rounded up to the next host page size
boundary.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

InheritDisposition - A value that specifies how the view is to be shared by a child
process created with a create process operation.

InheritDisposition Values

ViewShare - Inherit view and share a single copy of the committed pages
with a child process using the current protection value.

ViewUnmap - Do not map the view into a child process.

AllocationType - A set of flags that describes the type of allocation that is to be
performed for the specified region of pages.

AllocationType Flags

MEM_TOP_DOWN - The specified region is to be allocated from the highest
portion of the address space possible based on the ZeroBits
argument.

MEM_LARGE_PAGES - Only valid with physical memory mappings. The
specified view should be mapped with the largest page size possible.

MEM_DOS_LIM - Only valid on x86, provided for DOS/VDM compatibility.
Allows views to be mapped on 4kb boundaries rather than allocation
granularity.

Protect - The protection desired for the region of initially committed pages.

Protect Values

PAGE_NOACCESS - No access to the committed region of pages is allowed.
An attempt to read, write, or execute the committed region results in
an access violation (i.e., a GP fault).

PAGE_READONLY - Read access to the committed region of pages is
allowed. An attempt to write or execute the committed region results
in an access violation.

PAGE_READWRITE - Read, and write access to the region of committed
pages are allowed. If write access to the underlying section is allowed,
then a single copy of the pages is shared. Otherwise the pages are
shared read-only/copy-on-write.

PAGE_WRITECOPY - Read and write access to the region of committed
pages is allowed. The pages are shared read-only/copy-on-write.

PAGE_EXECUTE - Execute access to the committed region of pages is
allowed. An attempt to read or write the committed region results in
an access violation.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

PAGE_EXECUTE_READ - Execute and read access to the region of
committed pages is allowed. An attempt to write the committed
region results in an access violation.

PAGE_EXECUTE_READWRITE - Execute, read and write access to the
region of committed pages is allowed.

PAGE_EXECUTE_WRITECOPY - Read, execute and write access to the
region of committed pages is allowed. The pages are shared read-
only/copy-on-write.

PAGE_GUARD - Protect the page with the underlying page protection,
however, access to the region causes a "guard page entered" condition
to be raised in the subject process. This value is only valid with one
of the page protections except PAGE_NOACCESS.

Mapping a view of a section into the virtual address space of a subject process
causes a region of the virtual address space to be reserved and, optionally,
committed. The issuing process must have PROCESS_VM_OPERATION access to the
subject process, and the following access to the section:

Protect Value Section Access Required

PAGE_NOACCESS SECTION_MAP_READ

PAGE_READONLY SECTION_MAP_READ

PAGE_READWRITE SECTION_MAP_WRITE, SECTION_MAP_READ

PAGE_WRITECOPY SECTION_MAP_READ

PAGE_EXECUTE SECTION_MAP_EXECUTE

PAGE_EXECUTE_READ SECTION_MAP_READ, SECTION_MAP_EXECUTE

PAGE_EXECUTE_READWRITE SECTION_MAP_EXECUTE,
SECTION_MAP_READ, SECTION_MAP_WRITE

PAGE_EXECUTE_WRITECOPY SECTION_MAP_EXECUTE, SECTION_MAP_READ

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

In addition to the section access, the specified page protection must be compatible
with the SectionPageProtection specified when the section was created.

Desired View Protection Section Protection Required

PAGE_NOACCESS Any

PAGE_READONLY Any except PAGE_NOACCESS and
 PAGE_EXECUTE

PAGE_READWRITE PAGE_READWRITE,
 PAGE_EXECUTE_READWRITE

PAGE_WRITECOPY Any except PAGE_NOACCESS and
 PAGE_EXECUTE

PAGE_EXECUTE PAGE_EXECUTE, PAGE_EXECUTE_READ,
 PAGE_EXECUTE_READWRITE,

 PAGE_EXECUTE_WRITECOPY

PAGE_EXECUTE_READ PAGE_EXECUTE_READ,
 PAGE_EXECUTE_READWRITE,

 PAGE_EXECUTE_WRITECOPY

PAGE_EXECUTE_READWRITE PAGE_EXECUTE_READWRITE

PAGE_EXECUTE_WRITECOPY PAGE_EXECUTE_READ,
 PAGE_EXECUTE_READWRITE,

 PAGE_EXECUTE_WRITECOPY

The view size and section offset determine the region of the section that is mapped
into the virtual address space of the subject process. The commit size determines
how much of the view is initially committed. The committed pages, if any, start at
the beginning of the view and extend upward.

Several different views of a section can be concurrently mapped into the virtual
address space of a process. Likewise, several different views of a section can also be
concurrently mapped into the virtual address space of several processes.

If the operating system determines the virtual address allocation for the view (i.e.
BaseAddress is NULL) and the section is based, then the region chosen is the one
that was reserved when the section was created.

If the operating system determines the virtual address allocation for the view and
the section is not based, then the allocation is such that the specified number of
high-order address bits are zero in the base address of the view. This capability is
provided so that applications that use address bits for tag bits need not explicitly
manage the virtual-address-space allocation themselves.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

If the operating system determines the virtual address allocation for the view, the
ViewSize is zero, and the complete section has been mapped before, the returned
based address will be the base address where the complete section is already
mapped. This allows library routines to map complete views of sections without
having to determine if the section has been previously mapped.

If the operating system does not determine the virtual address allocation (i.e.,
BaseAddress is not null), then an attempt is made to map the view starting at the
specified base address and extending upward. If any page within this region is
already reserved or committed, then the view cannot be mapped.

Committed pages are initialized with the specified protection value which must be
compatible with the granted access to the section. Reserved pages are given a
protection value of no access. Any attempt to access these pages results in an
access violation unless another sharer has previously committed the pages.

The following status values may be returned by the function:

 o STATUS_NORMAL - Normal, successful completion.

 o STATUS_INVALID_PARAMETER - Error, an invalid parameter was specified.

 o STATUS_NO_ACCESS - Error, access denied to specified object.

 o STATUS_NO_QUOTA - Error, insufficient quota to create the specified section.

 o STATUS_NO_MEMORY - Error, insufficient virtual memory to map specified
view.

 o STATUS_SECTION_PROTECTION - Error, the specified protection is not
compatible with the underlying section protection.

 o STATUS_INVALID_PAGE_PROTECTION - Error, an invalid page protection was
specified.

 o STATUS_CONFLICTING_ADDRESSES - Error, the specified address range
conflicts with an existing address range.

2.4 Extend Size Of Section

An existing section which maps a data file can be extended with the
NtExtendSection function:

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtExtendSection (
 IN HANDLE SectionHandle,
 IN OUT PLARGE_INTEGER NewSectionSize
);

Parameters:

SectionHandle - An open handle to a section object that maps a data file.
SECTION_EXTEND_SIZE access to this handle is required.

NewSectionSize - A pointer to a variable that supplies the new size for the
section. This variable receives the new size of the section. If the specified
size is less than the current size, this variable receives the current size.

The extend section service allows a user to extend the size of a section that maps a
data file. If the current size of the section is greater than the specified size, the
section size is not changed and the current section size is written to the
NewSectionSize.

If the current section size is less than the new section size, the current file allocation
size is checked and if the file allocation size is greater than the specified new section
size, the section is extended.

If, however, the file allocation size is less than the specified section size, an attempt
is made to set the file allocation size to the specified new section size. If this
succeeds, the section is extended. If this fails the section size is unchanged and the
returned status indicates why the file allocation could not be increased.

2.5 Unmap View Of Section

A view of a section can be unmapped from the virtual address space of a subject
process with the NtUnmapViewOfSection function:

NTSTATUS
NtUnmapViewOfSection(
 IN HANDLE ProcessHandle,
 IN PVOID BaseAddress
);

Parameters:

ProcessHandle - An open handle to a process object.

BaseAddress - A virtual address within the view which is to be unmapped.

The entire view of the section specified by the base address parameter is unmapped
from the virtual address space of the specified process. The base address argument
may be any virtual address within the view. The issuing process must have
PROCESS_VM_OPERATION access to the subject process.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

The virtual address region occupied by the view is no longer reserved and is
available to map other views or private pages. If the view was also the last reference
to the underlying section (i.e., no open handles exist to the section object), then all
committed pages in the section are decommitted and the section is deleted.

The following status values may be returned by the function:

 o STATUS_NORMAL - Normal, successful completion.

 o STATUS_INVALID_PARAMETER - Error, an invalid parameter was specified.

 o STATUS_NO_ACCESS - Error, access denied to specified object.

2.6 Allocate Virtual Memory

A region of pages within the virtual address space of a subject process can be
reserved and/or committed with the NtAllocateVirtualMemory function:

NTSTATUS
NtAllocateVirtualMemory(
 IN HANDLE ProcessHandle,
 IN OUT PVOID *BaseAddress,
 IN ULONG ZeroBits,
 IN OUT PULONG RegionSize,
 IN ULONG AllocationType,
 IN ULONG Protect
);

Parameters:

ProcessHandle - An open handle to a process object.

BaseAddress - A pointer to a variable that will receive the base address of the
allocated region of pages. If the initial value of this argument is not NULL
and the memory is being reserved, then the region is allocated starting at
the specified virtual address rounded down to the next 64K byte
boundary. If the memory is already reserved and is being committed, this
value is rounded down to a host-page-size boundary. If the initial value of
this argument is NULL, then the operating system determines where to
allocate the region.

ZeroBits - The number of high-order address bits that must be zero in the base
address of the section view. The value of this argument must be less than
21 and is only used when the operating system determines where to
allocate the view (i.e., when BaseAddress is NULL).

RegionSize - A pointer to a variable that will receive the actual size in bytes of
the allocated region of pages. The initial value of this argument specifies
the size in bytes of the region and is rounded up to the next host-page-size
boundary.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

AllocationType - A set of flags that describes the type of allocation that is to be
performed for the specified region of pages. One of MEM_COMMIT or
MEM_RESERVED is required, both are acceptable (i.e., MEM_COMMIT |
MEM_RESERVE).

AllocationType Flags

MEM_COMMIT - The specified region of pages is to be committed.

MEM_RESERVE - The specified region of pages is to be reserved.

MEM_TOP_DOWN - The specified region is to be allocated from the highest
portion of the address space possible based on the ZeroBits
argument.

Protect - The protection desired for the committed region of pages.

Protect Values

PAGE_NOACCESS - No access to the committed region of pages is allowed.
An attempt to read, write, or execute the committed region results in
an access violation (i.e., a GP fault).

PAGE_READONLY - Read access to the committed region of pages is
allowed. An attempt to write or execute the committed region results
in an access violation.

PAGE_READWRITE - Read and write access to the committed region of
pages is allowed. If write access to the underlying section is allowed,
then a single copy of the pages are shared. Otherwise, the pages are
shared read-only/copy-on-write.

PAGE_WRITECOPY - Read and write access to the region of committed
pages is allowed. The pages are shared read-only/copy-on-write.

PAGE_EXECUTE - Execute access to the committed region of pages is
allowed. An attempt to read or write the committed region results in
an access violation.

PAGE_EXECUTE_READ - Execute and read access to the region of
committed pages is allowed. An attempt to write the committed
region results in an access violation.

PAGE_EXECUTE_READWRITE - Execute, read and write access to the
region of committed pages is allowed.

PAGE_EXECUTE_WRITECOPY - Read, execute, and write access to the
region of committed pages is allowed. The pages are shared read-
only/copy-on-write.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

PAGE_GUARD - Protect the page with the underlying page protection,
however, access to the region causes a "guard page entered" condition
to be raised in the subject process. This value is only valid with one
of the page protections except PAGE_NOACCESS.

PAGE_NOCACHE - Disable the placement of committed pages into the
data cache. This is only valid for pages which are not contained
within a view of a section. For pages which are contained in a view of
a section, the nocache attribute may be specified when the section is
created, in which case it cannot be changed. This value is only valid
with one of the page protections except PAGE_NOACCESS.

This function can be used to commit a region of previously reserved pages (i.e., from
a mapped view or a previous call to this function), to reserve a region of private
pages, or to reserve and commit a region of private pages. This function also can be
used to create a sparse population of committed private or mapped pages. The
issuing process must have PROCESS_VM_OPERATION access to the subject process.

If the initial value of the base address parameter is NULL, then the operating system
allocates a region of private pages large enough to fulfill the specified allocation
request from the virtual address space of the subject process. The base address of
this region is returned in the base address parameter. Private pages are given an
inherit disposition of equivalent to ViewShare.

Process address map entries are scanned from the base address upward until the
entire range of pages can be allocated or a failure occurs. If the entire range cannot
be allocated, an appropriate status value is returned and no pages are mapped.

Each page in the process virtual address space is either private or mapped into a
view of a section. Private pages can be in one of three states:

 1. Free - Not committed or reserved, and inaccessible

 2. Committed - Allocated backing storage with access controlled by a protection
code

 3. Reserved - Reserved, not committed, and inaccessible

Pages that are mapped into a view of a section can be in one of two states:

 1. Committed - Allocated backing storage with access controlled by a protection
code

 2. Reserved - Reserved, not committed, and inaccessible, but can be auto-
committed if an access to the page is attempted and the page has already
been committed in the section mapped by the view (i.e., the page has been
committed by another sharer of the section)

As each page is considered for allocation, its state and whether it is a private or
mapped page is determined. Private pages are handled as follows:

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 1. Free - A private page that is free can be reserved and/or committed.

 2. Committed - A private page that is already committed is left unchanged (i.e., it
is still committed and its protection is not changed).

 3. Reserved - A private page that is reserved can be committed. An attempt to
reserve a page already in the reserved state has no effect.

Pages that are mapped into a view of a section are handled as follows:

 1. Committed - A mapped page that is already committed cannot be changed to
reserved. A shared page that is already committed is unchanged, however, in
certain cases it's protection may be changed. This is due to the fact that
shared pages, even though committed, may not be active in the process and
hence have the original protection of the mapping. In committing the page
the mapping state is not checked on a page by page basis.

 2. Reserved - A mapped page that is reserved can be committed.

The protection value applied to committed pages that are contained within a
mapped view of a section must be compatible with the access granted to the
underlying section. Note that the underlying protection of the section does not
change, only the specified pages contained in the process's view. Any protection
value can be applied to committed private pages. Reserved pages are given a
protection value of no access.

Pages that are backed by a paging file are committed as demand-zero pages (i.e., the
first attempt to read or write the page causes a page of zeros to be created). Pages
that are backed by a data file are committed such that they map pages of the data
file.

The following status values may be returned by the function:

 o STATUS_NORMAL - Normal, successful completion.

 o STATUS_INVALID_PARAMETER - Error, an invalid parameter was specified.

 o STATUS_INVALID_PAGE_PROTECTION - Error, an invalid page protection was
specified.

 o STATUS_CONFLICTING_ADDRESSES - Error, the specified address range
conflicts with an existing address range.

 o STATUS_NO_ACCESS - Error, access denied to specified object.

2.7 Free Virtual Memory

A region of pages within the virtual address space of a subject process can be
decommitted and/or released with the NtFreeVirtualMemory function:

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtFreeVirtualMemory(
 IN HANDLE ProcessHandle,
 IN OUT PVOID *BaseAddress,
 IN OUT PULONG RegionSize,
 IN ULONG FreeType
);

Parameters:

ProcessHandle - An open handle to a process object.

BaseAddress - A pointer to a variable that will receive the base address of the
region of pages to be freed. The initial value of this argument is the base
address of the region of pages to be freed. This value is rounded down to
the next host-page-address boundary.

RegionSize - A pointer to a variable that will receive the actual size in bytes of
the freed region of pages. The initial value of this argument is rounded up
to the next host-page-size boundary. If this value is zero and the
BaseAddress is the starting address of the allocated region, the complete
range of pages allocated together is freed or decommitted.

FreeType - A set of flags that describes the type of free that is to be performed
for the specified region of pages. One of the following:

FreeType Flags

MEM_DECOMMIT - The specified region of pages is to be decommitted.

MEM_RELEASE - The specified region of pages is to be released.

This function can be used to decommit a region of previously committed pages (i.e.
from a mapped view or from an allocation of virtual memory), to release a region of
previously reserved private pages, and to decommit and release a region of
previously committed private pages. The issuing process must have
PROCESS_VM_OPERATION access to the subject process.

Process address map entries are scanned from the base address upward until the
entire range of pages can be freed or until a failure occurs. If the entire range cannot
be freed, an appropriate status value is returned and no pages are freed.

As each page is considered for deallocation, its state and whether it is a private or
mapped page is determined. Private pages are handled as follows:

 1. Free - A private page that is free cannot be released or decommitted.

 2. Committed - A private page that is committed can be released and/or
decommitted.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 3. Reserved - A private page that is reserved can be released or decommitted.
Decommitting a reserved page leaves the page in the reserved state.

Pages that are mapped into a view of a section are handled as follows:

 1. Committed - A mapped page that is committed cannot be decommitted or
released.

 2. Reserved - A mapped page that is reserved cannot be decommitted or
released.

If the desired type of free is allowed for the specified RegionSize, then page attributes
are established as necessary in the process address map, and the current length of
the freed region is updated.

If the desired type of free cannot be performed on the entire range, then an
appropriate status value is returned and none of the specified region is freed.

Decommitting a private page causes the backing storage for the page to be released
to the appropriate paging file and the address map entry for the corresponding page
to be returned to the reserved state.

Decommitted and released pages are given a protection value of no access.

The following status values may be returned by the function:

 o STATUS_NORMAL - Normal, successful completion.

 o STATUS_INVALID_PARAMETER - Error, an invalid parameter was specified.

 o STATUS_NO_ACCESS - Error, access denied to specified object.

 o STATUS_UNABLE_TO_FREE_VM - Error, the specified virtual memory could
not be released. This could be caused by the virtual memory being a system
structure (TEB or PEB) or being part of a mapped view, or the specified size
larger than the original allocation.

 o STATUS_VM_NOT_AT_BASE - Error, the region size was specified as zero, but
the starting address was not the beginning of the allocation.

 o STATUS_MEMORY_NOT_ALLOCATED - Error, no memory as been allocated at
the specified base address.

2.8 Read Virtual Memory

Data can be read from the address space of another process with the
NtReadVirtualMemory function:

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

NTSTATUS
NtReadVirtualMemory(
 IN HANDLE ProcessHandle,
 IN PVOID BaseAddress,
 OUT PVOID Buffer,
 IN ULONG BufferSize,
 OUT PULONG NumberOfBytesRead OPTIONAL
);

Parameters:

ProcessHandle - An open handle to a process object.

BaseAddress - The base address in the specified process of the region of pages
to be read.

Buffer - The address of a buffer that receives the contents from the specified
process address space.

BufferSize - The requested number of bytes to read from the specified process.

NumberOfBytesRead - Receives the actual number of bytes transferred into the
specified buffer.

This function reads data from the base address in the specified process and places
the data in the specified buffer. The NtReadVirtualMemory function probes both the
input and the output buffers before any bytes are copied. If either the Buffer fails a
probe for write, or the BaseAddress fails a probe for read, the function returns an
error and the NumberOfBytesRead parameter is returned as zero.

If the probe operations are successful, an attempt is made to copy the number of
bytes specified in BufferSize. The NumberOfBytesRead parameter returns the actual
number of bytes copied from the specified process into the buffer. The issuing
process must have PROCESS_VM_READ access to the subject process.

The following status values may be returned by the function:

 o STATUS_NORMAL - Normal, successful completion.

 o STATUS_PARTIAL_COPY - Warning, due to protection conflicts not all the
requested bytes could be copied.

 o STATUS_INVALID_PARAMETER - Error, an invalid parameter was specified.

 o STATUS_NO_ACCESS - Error, access denied to specified object.

 o STATUS_ACCESS_VIOLATION - Error, one of the memory regions was not
completely accessible.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.9 Write Virtual Memory

Data can be written to the address space of another process with the
NtWriteVirtualMemory function:

NTSTATUS
NtWriteVirtualMemory(
 IN HANDLE ProcessHandle,
 OUT PVOID BaseAddress,
 IN PVOID Buffer,
 IN ULONG BufferSize,
 OUT PULONG NumberOfBytesWritten OPTIONAL
);

Parameters:

ProcessHandle - An open handle to a process object.

BaseAddress - The base address in the specified process of the region of pages
to be written.

Buffer - The address of a buffer that contains the contents to be written into
the specified process address space.

BufferSize - The requested number of bytes to write into the specified process.

NumberOfBytesWritten - Receives the actual number of bytes transferred into
the specified address space.

This function writes data from the specified buffer in the current process to the
specified base address in the specified process. The NtWriteVirtualMemory function
probes both the input and the output buffers before any bytes are copied. If either
the Buffer fails a probe for read, or the BaseAddress fails a probe for write, the
function returns an error and the NumberOfBytesRead parameter is returned as
zero.

If the probe operations are successful, An attempt is made to copy the number of
bytes specified in BufferSize. The NumberOfBytesWritten parameter returns the
actual number of bytes copied from the buffer to the specified process. The issuing
process must have PROCESS_VM_WRITE access to the subject process.

The following status values may be returned by the function:

 o STATUS_NORMAL - Normal, successful completion.

 o STATUS_PARTIAL_COPY - Warning, due to access violations not all the
requested bytes could be copied.

 o STATUS_INVALID_PARAMETER - Error, an invalid parameter was specified.

 o STATUS_NO_ACCESS - Error, access denied to specified object.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o STATUS_ACCESS_VIOLATION - Error, one of the memory regions was not
completely accessible.

2.10 Flush Virtual Memory

A region of pages within the virtual address space of a subject process can be forced
to be written back into the corresponding data file (if they have been modified since
they were last written) with the NtFlushVirtualMemory function:

NTSTATUS
NtFlushVirtualMemory(
 IN HANDLE ProcessHandle,
 IN OUT PVOID *BaseAddress,
 IN OUT PULONG RegionSize,
 OUT PIO_STATUS_BLOCK IoStatus
);

Parameters:

ProcessHandle - An open handle to a process object.

BaseAddress - A pointer to a variable that will receive the base address of the
region of pages to flush. The initial value of this argument is the base
address of the region of pages to flush. This value is rounded down to the
next host-page-address boundary.

RegionSize - A pointer to a variable that will receive the actual size in bytes of
the flushed region of pages. The initial value of this argument is rounded
up to the next host-page-size boundary. If the RegionSize is specified as
0, the range from the base address until the last address mapped in this
view is flushed.

IoStatus - A pointer to an I/O status block that receives the I/O status from the
last page written.

Process address map entries are scanned from the base address upward until the
entire specified range of pages has been flushed. The actual size of the flushed
region and an appropriate status value are returned. The issuing process must
have PROCESS_VM_OPERATE access to the subject process.

As each page is considered for flushing, its state is determined. If the page is
committed, mapped into a view of a section that is backed by a data file, and has
been modified in memory but not yet written back into the file, then a write of the
modified page is initiated. Otherwise, no operation is performed on the page.

This function can be used to ensure that a consistent state of the data within a file
is maintained in the presence of various sequences of updates (e.g., forced writes of
log pages, etc.).

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

If an I/O error occurs while writing pages, the RegionSize contains the starting
virtual address of the write which failed, and the IoStatus contains the failure
status.

The following status values may be returned by the function:

 o STATUS_NORMAL - Normal, successful completion.

 o STATUS_INVALID_PARAMETER - Error, an invalid parameter was specified.

 o STATUS_NO_ACCESS - Error, access denied to specified object.

 o Any errors possible from an NtWriteFile service.

2.11 Lock Virtual Memory

A region of pages within the virtual address space of a subject process can be locked
for process residency and/or system residency with the NtLockVirtualMemory
function:

NTSTATUS
NtLockVirtualMemory(
 IN HANDLE ProcessHandle,
 IN OUT PVOID *BaseAddress,
 IN OUT PULONG RegionSize,
 IN ULONG MapType
);

Parameters:

ProcessHandle - An open handle to a process object.

BaseAddress - A pointer to a variable that will receive the base address of the
region of pages to lock. The initial value of this argument is the base
address of the region of pages to lock. This value is rounded down to the
next host-page-address boundary.

RegionSize - A pointer to a variable that receives the actual size in bytes of the
locked region of pages. The initial value of this argument is rounded up to
the next host-page-size boundary.

MapType - The map type flags.

MapType Flags

MAP_PROCESS - Process residency

MAP_SYSTEM - System residency

Locking a region of pages in an address map causes the residency attributes of the
corresponding pages to be set such that they are not eligible for paging.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Locking a page for system residency causes the page to remain memory resident
until it is explicitly unlocked. A special privilege is required in a server system to
lock a page for system residency.

Locking a page for process residency causes the page to remain memory resident
while the subject process is a member of the balance set (i.e., the set of processes
that are actively being considered for execution).

Note that changing the protection of a locked page to PAGE_NOACCESS or
PAGE_GUARD causes the page to become unlocked. In addition, locked pages are
not inherited as locked, they are unlocked in the new process.

If the entire RegionSize cannot be locked, an appropriate status code is returned
and none of the pages is locked. The issuing process must have
PROCESS_VM_OPERATE access to the subject process.

The following status values may be returned by the function:

 o STATUS_NORMAL - Normal, successful completion.

 o STATUS_WAS_LOCKED - Warning, at least one of the pages in the specified
region was already locked.

 o STATUS_INVALID_PARAMETER - Error, an invalid parameter was specified.

 o STATUS_NO_ACCESS - Error, access denied to specified object.

 o STATUS_NO_QUOTA - Error, insufficient quota to lock the specified region.

2.12 Unlock Virtual Memory

A region of pages within the virtual address space of a subject process can be
unlocked from process residency and/or system residency with the
NtUnlockVirtualMemory function:

NTSTATUS
NtUnlockVirtualMemory(
 IN HANDLE ProcessHandle,
 IN OUT PVOID *BaseAddress,
 IN OUT PULONG RegionSize,
 IN ULONG MapType
);

Parameters:

ProcessHandle - An open handle to a process object.

BaseAddress - A pointer to a variable that will receive the base address of the
region of pages to unlock. The initial value of this argument is the base
address of the region of pages to unlock. This value is rounded down to
the next host-page-address boundary.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

RegionSize - A pointer to a variable that receives the actual size in bytes of the
unlocked region of pages. The initial value of this argument is rounded up
to the next host-page-size boundary.

MapType - The map type flags.

MapType Flags

MAP_PROCESS - Process residency

MAP_SYSTEM - System residency

Unlocking a region of pages causes the residency attributes of the corresponding
pages to be set such that they are eligible for paging.

Unlocking a process-resident page causes the page to become pageable until it is
explicitly locked.

Unlocking a system-resident page causes the page to become pageable until it is
explicitly locked. A special privilege is required in a server system to unlock a
system-resident page.

If the entire RegionSize cannot be unlocked, an appropriate status code is returned
and none of the pages is unlocked. The issuing process must have
PROCESS_VM_OPERATE access to the subject process.

The following status values may be returned by the function:

 o STATUS_NORMAL - Normal, successful completion.

 o STATUS_INVALID_PARAMETER - Error, an invalid parameter was specified.

 o STATUS_NO_ACCESS - Error, access denied to specified object.

2.13 Protect Virtual Memory

The protection on a region of committed pages within the virtual address space of
the subject process can be changed with the NtProtectVirtualMemory function:

NTSTATUS
NtProtectVirtualMemory(
 IN HANDLE ProcessHandle,
 IN OUT PVOID *BaseAddress,
 IN OUT PULONG RegionSize,
 IN ULONG NewProtect,
 OUT PULONG OldProtect
);

Parameters:

ProcessHandle - An open handle to a process object.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

BaseAddress - A pointer to a variable that will receive the actual base address
of the protected region of pages. The initial value of this argument is
rounded down to the next host-page-address boundary.

RegionSize - A pointer to a variable that will receive the actual size in bytes of
the protected region of pages. The initial value of this argument is rounded
up to the next host-page-size boundary.

NewProtect - The new protection desired for the specified region of pages.

NewProtect Values

PAGE_NOACCESS - No access to the specified region of pages is allowed.
An attempt to read, write, or execute the specified region results in
an access violation (i.e., a GP fault).

PAGE_READONLY - Read-access to the specified region of pages is
allowed. An attempt to execute or write the specified region results in
an access violation.

PAGE_READWRITE - Read and write access to the specified region of pages
is allowed. If write access to the underlying section is allowed, then a
single copy of the pages are shared. Otherwise, the pages are shared
read-only/copy-on-write.

PAGE_WRITECOPY - Read and write access to the region of committed
pages is allowed. The pages are shared read-only/copy-on-write.
This value may only be specified for an address ranges which is
within a mapped view of a section.

PAGE_EXECUTE - Execute access to the specified region of pages is
allowed. An attempt to read or write the specified region results in an
access violation.

PAGE_EXECUTE_READ - Execute and read access to the region of
committed pages is allowed. An attempt to write the committed
region results in an access violation.

PAGE_EXECUTE_READWRITE - Execute, read and write access to the
region of committed pages is allowed.

PAGE_EXECUTE_WRITECOPY - Read, execute, and write access to the
region of committed pages is allowed. The pages are shared read-
only/copy-on-write. This value may only be specified for an address
ranges which is within a mapped view of a section.

PAGE_GUARD - Protect the page with the underlying page protection,
however, access to the region causes a "guard page entered" condition
to be raised in the subject process. This value is only valid with one
of the page protections except PAGE_NOACCESS.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

PAGE_NOCACHE - Disable the placement of committed pages into the
data cache. This value is only valid when specified in combination
with one of the above underlying page protections with the exception
of PAGE_NOACCESS, e.g., (PAGE_NOCACHE | PAGE_READWRITE).
The PAGE_NOCACHE attribute may not be specified on an address
range which is within a mapped view of a section.

OldProtect - A pointer to a variable that will receive the old protection of the first
page within the specified region of pages.

Setting the protection on a range of pages causes the old protection value to be
replaced by a new protection value. The protection value can only be set on
committed pages. The issuing process must have PROCESS_VM_OPERATE access
to the subject process.

Note that setting page protections to PAGE_NOACCESS or PAGE_GUARD on a page
which is locked in memory or locked in the process causes the locked page to
become unlocked.

Setting the protection value to PAGE_GUARD causes guard pages to be established.
If an access to a guard page is attempted, then the protection of the accessed page
to be set to its declared access, and "guard page entered" condition is raised. This
capability is intended to provide automatic stack checking, but can also be used to
separate other data structures where appropriate.

As each page is considered for protecting, its state is determined. If the state of the
page is not committed, the page is reserved and cannot be auto-committed, or the
page is contained within a mapped view of a section and the granted access to the
section is incompatible with the new protection, then an appropriate status value is
returned and none of the pages in the specified region is modified.

The following status values may be returned by the function:

 o STATUS_NORMAL - Normal, successful completion.

 o STATUS_WAS_UNLOCKED - Warning, at least one of the pages in the specified
region was unlocked due to a page protection of PAGE_NOACCESS or
PAGE_GUARD.

 o STATUS_INVALID_PARAMETER - Error, an invalid parameter was specified.

 o STATUS_INVALID_PAGE_PROTECTION - Error, an invalid page protection was
specified.

 o STATUS_NO_ACCESS - Error, access denied to specified object.

 o STATUS_NOT_COMMITTED - Error, some pages within the range are not
committed.

 o STATUS_IS_WRITECOPY - Warning, the protection of the region was set to
PAGE_WRITECOPY due to the underlying nature of the section.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

2.14 Query Virtual Memory

Information about a range of pages within the virtual address space of the subject
process can be obtained with the NtQueryVirtualMemory function:

NTSTATUS
NtQueryVirtualMemory(
 IN HANDLE ProcessHandle,
 IN PVOID BaseAddress,
 IN MEMORY_INFORMATION_CLASS MemoryInformationClass,
 OUT PVOID MemoryInformation,
 IN ULONG MemoryInformationLength,
 OUT PULONG ReturnLength OPTIONAL
);

Parameters:

ProcessHandle - An open handle to a process object.

BaseAddress - The base address of the region of pages to be queried. This value
is rounded down to the next host-page-address boundary.

MemoryInformationClass - The memory information class about which to
retrieve information.

MemoryInformation - A pointer to a buffer that receives the specified
information. The format and content of the buffer depend on the specified
information class.

MemoryInformation Format by Information Class:

MemoryBasicInformation - Data type is PMEMORY_BASIC_INFORMATION.

MEMORY_BASIC_INFORMATION Structure

PVOID BaseAddress - The base address of the region.

PVOID AllocationBase - The allocation base of the allocation this page
is contained within.

ULONG AllocationProtect - The protection specified when the region
was initially allocated.

ULONG RegionSize - The size of the region in bytes beginning at the
base address in which all pages have identical attributes.

ULONG State - The state of the pages within the region.

State Values

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

MEM_COMMIT - The state of the pages within the region is
committed.

MEM_FREE - The state of the pages within the region is free.

MEM_RESERVE - The state of the pages within the region is
reserved.

If the memory state is MEM_FREE other the AllocationBase,
AllocationProtect, Protect and Type fields in the information
are undefined.

If the memory state is MEM_RESERVE the information in the
Protect field is undefined.

ULONG Protect - The protection of the pages within the region.

Protect Values

PAGE_NOACCESS - No access to the region of pages is allowed.
An attempt to read, write, or execute within the region
results in an access violation (i.e., a GP fault).

PAGE_READONLY - Read-access to the region of pages is
allowed. An attempt to execute or write within the region
results in an access violation.

PAGE_READWRITE - Read and write access to the region of
pages is allowed. If write access to the underlying section is
allowed, then a single copy of the pages are shared.
Otherwise, the pages are shared read-only/copy-on-write.

PAGE_WRITECOPY - Read and write access to the region of
committed pages is allowed. The pages are shared read-
only/copy-on-write.

PAGE_EXECUTE - Execute access to the region of pages is
allowed. An attempt to read or write within the region
results in an access violation.

PAGE_EXECUTE_READ - Execute and read access to the region
of committed pages is allowed. An attempt to write the
committed region results in an access violation.

PAGE_EXECUTE_READWRITE - Execute, read and write access
to the region of committed pages is allowed.

PAGE_EXECUTE_WRITECOPY - Read, execute and write access
to the region of committed pages is allowed. The pages are
shared read-only/copy-on-write.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

PAGE_GUARD - Protect the page with the underlying page
protection, however, access to the region causes a "guard
page entered" condition to be raised in the subject process.
This value is only valid with one of the page protections
except PAGE_NOACCESS.

PAGE_NOCACHE - Disable the placement of committed pages
into the data cache. This value is only valid with one of the
other page protections except PAGE_NOACCESS.

ULONG Type - The type of pages within the region.

Type Values

MEM_PRIVATE - The pages within the region are private.

MEM_MAPPED - The pages within the region are mapped into
the view of a section.

MEM_IMAGE - The pages within the region are mapped into the
view of an image section.

MemoryInformationLength - Specifies the length in bytes of the memory
information buffer.

ReturnLength - An optional pointer which, if specified, receives the number of
bytes placed in the process information buffer.

This function provides the capability to determine the state, protection, and type of
a region of pages within the virtual address space of the subject process. The
issuing process must have PROCESS_QUERY_INFORMATION access to the subject
process.

The state of the first page within the region is determined and then subsequent
entries in the process address map are scanned from the base address upward until
either the entire range of pages has been scanned or until a page with a
nonmatching set of attributes is encountered. The region attributes, the length of
the region of pages with matching attributes, and an appropriate status value are
returned.

The following status values may be returned by the function:

 o STATUS_NORMAL - Normal, successful completion.

 o STATUS_INVALID_PARAMETER - Error, an invalid parameter was specified.

 o STATUS_NO_ACCESS - Error, access denied to specified object.

 o STATUS_INFO_LENGTH_MISMATCH - Error, the specified buffer size is not
large enough to hold the requested information.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o STATUS_INVALID_INFO_CLASS - Error, the specified information class is not
valid for this service.

2.15 Query Section Information

Information about a section can be obtained with the NtQuerySection function:

NTSTATUS
NtQuerySection(
 IN HANDLE SectionHandle,
 IN SECTION_INFORMATION_CLASS SectionInformationClass,
 OUT PVOID SectionInformation,
 IN ULONG SectionInformationLength,
 OUT PULONG ReturnLength OPTIONAL
);

Parameters:

SectionHandle - An open handle to a section object.

SectionInformationClass - The section information class about which to retrieve
information.

SectionInformation - A pointer to a buffer that receives the specified information.
The format and content of the buffer depend on the specified section class.

SectionInformation Format by Information Class:

SectionBasicInformation - Data type is PSECTION_BASIC_INFORMATION..

SECTION_BASIC_INFORMATION Structure

PVOID BaseAddress - The base virtual address of the section if the
section is based.

ULONG AllocationAttributes - The allocation attributes flags.

AllocationAttributes Flags

SEC_BASED - The section is a based section.

SEC_FILE - The section is backed by a data file.

SEC_RESERVE - All pages of the section were initially set to the
reserved state.

SEC_COMMIT - All pages of the section were initially set to the
committed state.

SEC_IMAGE - The section was mapped as an executable image
file.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

SEC_NOCACHE - All pages of the section are to be set as non-
cacheable.

LARGE_INTEGER MaximumSize - The maximum size of the section
in bytes.

SectionImageInformation - Data type is PSECTION_IMAGE_INFORMATION.

SECTION_IMAGE_INFORMATION Structure

PVOID TransferAddress - The transfer address of the image.

ULONG ZeroBits - The zero bits requirement for the creation of the
stack.

ULONG MaximumStackSize - The maximum stack size required by
the image.

ULONG CommittedStackSize - The amount of stack space to initially
commit.

ULONG SubSystemType - Subsystem image is linked for.

ULONG SubSystemVersion - Subsystem version number.

ULONG GpValue - The value for the global pointer register.

USHORT ImageCharacteristics - Image characteristics.

USHORT DllCharacteristics - Dll characteristics.

USHORT Machine- Hardware platform image was built for.

USHORT Spare1 - unused.

ULONG LoaderFlags - Flags specified in image for loader usage.

SectionInformationLength - Specifies the length in bytes of the section
information buffer.

ReturnLength - An optional pointer which, if specified, receives the number of
bytes placed in the section information buffer.

This function provides the capability to determine the base address, size, granted
access, and allocation of an opened section object. The issuing process must have
SECTION_QUERY access to the specified section.

The following status values may be returned by the function:

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o STATUS_NORMAL - Normal, successful completion.

 o STATUS_INVALID_PARAMETER - Error, an invalid parameter was specified.

 o STATUS_NO_ACCESS - Error, access denied to specified object.

 o STATUS_INFO_LENGTH_MISMATCH - Error, the specified buffer size is not
large enough to hold the requested information.

 o STATUS_INVALID_INFO_CLASS - Error, the specified information class is not
valid for this service.

 o STATUS_SECTION_NOT_IMAGE - Error, attempt to get image information on a
section which does not map an image.

2.16 Create Paging File

An existing file can be declared as a paging file with the NtCreatePagingFile
function:

NTSTATUS
NtCreatePagingFile (
 IN PSTRING PageFileName,
 IN PLARGE_INTEGER InitialSize,
 IN PLARGE_INTEGER MaximumSize,
 IN ULONG Priority
);

Parameters:

PageFileName - Supplies the name of an existing file to utilize as a paging file.
This file must already exist.

InitialSize - Supplies the initial size of the specified paging file in bytes. This
value is rounded up to the next host size boundary and the specified
paging file is extended or truncated to the initial size.

MaximumSize - Supplies the maximum number of bytes to store in the specified
paging file. This value is rounded up to the next host page size. This
value must be greater than or equal to the InitialSize.

Priority - Supplies the relative priority of the paging file with zero being the
lowest priority and 0xFFFFFFFF being the highest priority. Page file space
on paging files is searched for based on the priority of each paging file.

At least 8 paging files may be created. The modified page writer attempts to write
pages to all specified paging file simultaneously, therefore, for maximum
performance, each paging file should reside on a separate disk drive.

The following status values may be returned by the function:

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o STATUS_NORMAL - Normal, successful completion.

 o Errors resulting from attempting to open, extend, or truncate the specified
file.

2.17 Flush Instruction Cache

The instruction cache for a specific process can be flushed with the
NtFlushInstructionCache function:

NTSTATUS
NtFlushInstructionCache (
 IN HANDLE ProcessHandle,
 IN PVOID BaseAddress OPTIONAL,
 IN ULONG Length
);

Parameters:

ProcessHandle - An open handle to a process object.

BaseAddress - Optionally supplies the base address to begin the flush
operation at. If not specified the whole cache is flushed.

Length - Supplies the length of the buffer to flush. Only used if BaseAddress is
specified.

This routine is provided for use by system debuggers and routines which
dynamically modify code segments. The issuing process must have
PROCESS_VM_OPERATION access to the subject process

The following status values may be returned by the function:

 o STATUS_NORMAL - Normal, successful completion.

 o Errors resulting from referencing the specified process handle.

2.18 Flush Write Buffer

The write buffers are flushed with the NtFlushWriteBuffer function:

NTSTATUS
NtFlushWriteBuffer (
 VOID
);

This routine flushes the write buffer on the current processor. On processors
without write buffers no action is taken.

The following status values may be returned by the function:

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o STATUS_NORMAL - Normal, successful completion.

2.19 Close Handle

An open handle to any object can be closed with the NtClose function:

NTSTATUS
NtClose(
 IN HANDLE Handle
);

Parameters:

Handle - An open handle to an object.

This is a generic function and can be used to close an open handle to any object.

Closing an open handle to an object causes the reference count of the associated
object to be decremented. If the resultant count is zero (i.e., there are no other
references to the section), then the object is deleted. If the resultant count is one,
the object has a name, and the object is temporary, then an attempt is made to
delete the object by removing its name from the appropriate object directory. (Note
that this operation may fail if another sharer manages to open the object before the
name can be deleted, i.e., the removal of the name is conditional.)

Closing a handle to a section object causes all modified pages to be written to the
associated file, if the section is backed by a data file.

After a close operation, the specified section handle is no longer valid.

The following status values may be returned by the function:

 o STATUS_NORMAL - Normal, successful completion.

 o STATUS_INVALID_PARAMETER - Error, an invalid parameter was specified.

 o STATUS_NO_ACCESS - Error, access denied to specified object.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History:

Revision 1.3, January 4, 1989

 1. Add section that describes the difference between this proposal and the
proposal included in the IBM IPFS for Cruiser.

 2. Drop expand stack and allow set protection to establish a guard region.
Accessing a guard region causes the corresponding page to be turned into
a read/write page and a guard page exception to be raised.

 3. Define all API functions as returning a status value that determines the
success or failure of the operation.

 4. Use the words "commit" and "reserve" when referring to virtual address
space allocation.

 5. Add flags argument to allocate and free virtual memory which signifies
whether the commitment and/or reservation of the specified region is to
be changed. This allows a region of private pages to be reserved without
creating any kind of memory object.

 6. Correct definition of giveable and gettable sections so they are temporary
and mapped at a fixed address in the virtual address space of each
process.

 7. Correct definition of tiled to mean that the preferred mapping of the
section is within the first 512mb of the virtual address space of a process.

 8. Change give and get section to work with a virtual address rather than a
section handle.

 9. Add function to query a region of virtual memory.

 10. Clear up confusion about protection types by defining types to be no
access, execute-only, read-only, read/write, and guard region.

 11. Drop section offset parameter on create section operation which allows
any number of section to be backed by the same data file.

 12. If no ACL is specified for an object, then use a process default ACL.

 13. Change close section handle to be a generic function that closes any type
of handle.

 14. More clearly define what permanent objects are and how they are deleted.

Revision 2.0, February 28, 1989

 1. Changed format of calls to match the Windows NT coding guidelines.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision 2.1, March 16, 1989

 1. Changed format of calls to match the new Windows NT coding guidelines.

 2. Added ProcessHandle argument create operations which operated on the
address space.

 3. Change Fork attribute to Inherit.

 4. Removed giveable and gettable attributes and replaced them with the
based attribute.

 5. Eliminated NtGetSection and NtGiveSection services.

 6. Changed semantics of services that change virtual memory attributes on a
range of pages to either change the total specified range or fail and change
none of the range. This matches OS/2 behavior.

 7. Added OBJ_EXCLUSIVE and OBJ_SYSTEM_TABLE flags to handle
attributes in create section.

 8. Added handle attributes to OpenSection service.

 9. Enhanced map view to recognize multiple mappings of the same complete
section and return the base address in subsequent mappings.

 10. Changed FreeVirtualMemory to not allow previously committed shared
pages to be decommitted. This matches the OS/2 behavior.

 11. Changed lock and unlock virtual memory to talk about system and
process residency rather than system and process address maps.

 12. Add zero bits parameter to NtAllocateVirtualMemory.

 13. Add NtReadVirtualMemory function.

 14. Add NtWriteVirtualMemory function.

 15. Add error return values.

Revision 2.2, May 9, 1989

 1. Fix typos and minor inconsistencies.

Revision 2.3, August 7, 1989

 1. Add SEC_IMAGE option to NtCreateSection.

 2. Add PAG_NOCACHE option to the protection values.

Revision 2.4, September 7, 1989

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 1. Change names of PAG_READ, PAG_READWRITE, PAG_EXECUTE,
PAG_NOACCESS, PAGE_NOCACHE, PAG_GUARD to PAGE_READ, etc.

 2. Change names of PAG_COMMIT, PAG_RESERVE, PAG_RELEASE,
PAG_DECOMMIT, PAG_PRIVATE, PAG_MAPPED, to MEM_COMMIT,
MEM_RESERVE, etc.

 3. Changed NtMapViewOfSection to have AllocationType parameter and
changed the type of InheritDisposition from ULONG to
SECITON_INHERIT.

 4. Added MEM_TOP_DOWN to NtAllocateVirtualMemory and
NtMapViewOfSection.

 5. Changed BaseAddress from an IN to an IN OUT in NtFreeVirtualMemory,
NtProtectVirtualMemory, NtLockVirtualMemoryh and
NtUnlockVirtualMemory.

 6. Added BaseAddress field to MEMORYBASICINFO type.

 7. Added PAGE_WRITECOPY protection to NtMapViewOfSection,
NtProtectVirtualMemory, and NtQueryVirtualMemory.

 8. Added note to NtProtectVirtualMemory indicating that changing a locked
page to PAGE_NOACCESS causes the page to be unlocked.

 9. Added note to NtLockVirtualMemory to indicate that locked pages are not
locked in a process which inherits the memory.

 10. Changed SectionOffset in NtMapViewOfSection to IN OUT.

Revision 2.5, October 23, 1989

 1. Add PAGE_EXECUTE_READ, PAGE_EXECUTE_READWRITE and
PAGE_EXECUTE_WRITECOPY.

 2. Change semantic of PAGE_GUARD to be similar to PAGE_NOACCESS, but
instead of an "access violation" being raised, the page protection is
changed to its declared protection and a "guard page entered" exception is
raised. Like PAGE_NOACCESS, guard pages unlocked locked pages.

 3. Added SectionPageProtection argument to NtCreateSection.

 4. Added SEC_NOCACHE attribute to NtCreateSection.

 5. Made SetionOffset optional for NtMapViewOfSection and changed its
allocation from host page size, to system allocation granularity (64k).

 6. Changed SEC_COPY, SEC_SHARE, SEC_UNMAP to ViewCopy, ViewShare,
ViewUnmap in NtMapViewOfSection.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 7. Removed PAGE_NOCACHE option from NtMapViewOfSection.

 8. Added PAGE_GUARD option to NtMapViewOfSection.

 9. Added PAGE_GUARD option to NtAllocateVirtualMemory.

 10. Clarified PAGE_NOCACHE option in NtAllocateVirtualMemory.

 11. Changed region size of zero to operate on complete range in
NtFreeVirtualMemory.

 12. Added AllocationBase and AllocationProtect to NtQueryVirtualMemory.

 13. Added SECTIONIMAGEINFO to NtQuerySection.

 14. For NtReadVirtualMemory the NumberOfBytesRead was changed to be
OPTIONAL.

 15. For NtWriteVirtualMemory the NumberOfBytesWritten was changed to be
OPTIONAL.

Revision 2.6, December 1, 1989

 1. Changed description of NtCreateSection and NtOpenSection to sue
OBJECT_ATTRIBUTES and reference the Object Management
Specification for details.

 2. Changed Query services info structure names.

 3. Removed all references to TILE.

Revision 2.7, January 5, 1990

 1. Changed section access rights from READ, WRITE, and EXECUTE to
SECTION_MAP_READ, SECTION_MAP_WRITE, and
SECTION_MAP_EXECUTE.

 2. Added SECTION_QUERY access right.

 3. Described the type of access required on the section and process handles
for various virtual memory services.

Revision 2.8, February 8, 1990

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 1. Changed NtReadVirtualMemory to have OUT on the buffer argument
rather than IN.

 2. Changed NtWriteVirtualMemory to have OUT on the base address
argument rather than IN.

 3. Changed both NtReadVirtualMemory and NtWriteVirtualMemory to
remove the base address rounding down to the host page size.

 4. Removed PAGE_NOACCESS and PAGE_GUARD as valid page protections
when creating a section.

 5. PAGE_NOACCESS may not be specified in combination with
PAGE_GUARD or PAGE_NOCACHE.

 6. Removed STATUS_BUFFER_TOO_SMALL.

 7. Added status's of STATUS_INVALID_INFO_CLASS and
STATUS_INFO_LENGHT_MISMATCH to query functions.

 8. Disallow the combination of Commit and Release to NtFreeVirtualMemory.

 9. Add STATUS_NOT_IMAGE to query vm and create section.

 10. Add section on page file quota and commitment.

 11. Clarify protection rules in MapViewOfSection.

 12. Don't allow protection of PAGE_WRITECOPY or
PAGE_EXECUTE_WRITECOPY on address ranges not mapping a view of a
section.

 13. Don't allow a protection of PAGE_NOCACHE on address ranges mapping a
view of a section.

Revision 2.9, March 9, 1990

 1. Added the following status values to various calls:
STATUS_SECTION_TOO_BIG and STATUS_CONFLICTING_ADDRESS.

 2. Changed DesiredAccess to type ACCESS_MASK.

 3. When SEC_IMAGE is specified in NtCreateSection only accept
SEC_BASED with it.

 4. Limit MaximumSize in NtCreateSection to 0xFFFEFFFF.

 5. Removed ViewCopy from NtMapViewOfSection.

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision 3.0, May 31, 1990

 1. Added the NtExtendSection service.

 2. Added SECTION_EXTEND_SIZE access.

 3. In create section SEC_COMMIT is only meaningful for page file backed
sections.

 4. Changed SectionSize parameter to type PLARGE_INTEGER in
NtCreateSection.

 5. Changed description of MaximumSize parameter in NtCreateSection.

 6. Changed SectionOffset parameter to type PLARGE_INTEGER in
NtMapViewOfSection.

 7. Added NtCreatePagingFile routine.

 8. Added NtFlushInstructionCache routine.

 9. Added NtFlushWriteBuffer routine.

 10. Changed NtFreeVirtualMemory to require the base address to be the start
of the region if the region size is specified as zero.

 11. Added more status codes to NtFreeVirtualMemory.

Revision 3.1, October 4, 1990

 1. Added STATUS_NOT_COMMITTED to NtProtectVirtualMemory.

 2. Added MEM_IMAGE as another type to NtQueryVirtualMemory.

Revision 3.2, January 24, 1991

 1. Added SECTION_EXTEND_SIZE to NtOpenSection.

 2. Clarified that SECTION_WRITE access also grants read access.

 3. Clarified that private pages are inherited on a fork operation.

 4. Changed parameters to NtCreatePagingFile.

 5. Clarified NtReadVirtualMemory and NtWriteVirtualMemory to state that
the buffers are probed before any bytes are copied.

Revision 3.3, April 25, 1991

Windows NT Virtual Memory Specification

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 1. For NtFlushVirtualMemory if RegionSize is zero, flush from the base
address to the end of the mapped view.

Revision 4.0, April 28, 1993

 1. Reflect Windows NT version 3.1.

 2. Remove all references to OS/2.

 3. Change references to 64k alignment to Allocation Granularity as this
alignment is hardware architecture dependent.

 4. Changed description of SEC_BASED.

 5. Added MEM_LARGE_PAGES and MEM_DOS_LIM to NtMapViewOfSection.

 6. Changed NtAllocateVirtualMemory to reflect the fact that committed pages
may be committed.

 7. Change NtFreeVirtualMemory to reflect the fact that reserved pages may
be decommitted.

 8. Updated section information structure.

 9. Added parameters to NtFlushInstructionCache.

[end of vm.doc]

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Portable Systems Group

Windows NT Memory Management Design Note

Author: Lou Perazzoli

Revision 1.8, July 24, 1990

Windows NT Memory Management Design Note i

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview... 1

2. Address Space Layout... 1

3. Initial Page Directory at Address Space Creation 2

4. Page Frame Database (PFN) .. 3

5. Paged and Nonpaged Dynamic Memory... 5

6. Page Fault Handling.. 5
6.1 Valid PTE .. 6
6.2 Transition PTE .. 7
6.3 Demand Zero PTE ... 7
6.4 PTE Referring to Page in Paging File .. 7
6.5 PTE Referring to Prototype PTE (protection code in protoPTE) .. 7
6.6 PTE Referring to Prototype PTE (protection code here) 8

7. Prototype PTEs ... 8
7.1 Valid Prototype PTE... 9
7.2 Transition Prototype PTE... 9
7.3 Demand Zero Prototype PTE.. 9
7.4 Prototype PTE Referring to Page in Paging File......................... 9
7.5 Prototype PTE Referring to Page in Mapped File....................... 10

8. Page Protection ... 10

9. Retrieving a Free Page... 10

10. In-Paging I/O.. 10
10.1 Collided Page Faults.. 11

11. Sections.. 12
11.1 Segments .. 12
11.2 Segment Control Area ... 12
11.3 Subsection Descriptors ... 13

12. Extending Sections ... 13

13. Image Activation ... 14
13.1 Activation Process ... 14
13.2 Create Section Operation For Images..................................... 15
13.3 Map view of section ... 16
13.4 Image Fixup .. 16

Windows NT Memory Management Design Note ii

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

14. Virtual Address Descriptors .. 16

15. POSIX Fork Support ... 17
15.1 Structures to Support Fork ... 17
15.2 Fork Operation.. 17

16. Working Set Management ... 19

17. Physical Page Management ... 20
17.1 Modified Page Writer ... 20
17.2 Balance Set Manager... 21

18. I/O Support.. 21
18.1 Locking Pages in Memory .. 22
18.2 Unlocking Pages from Memory... 22
18.3 Mapping Locked Pages into the Current Address Space 23
18.4 Unmapping Locked Pages from the Current Address Space ... 23
18.5 Mapping I/O Space ... 23
18.6 Unmapping I/O Space... 24
18.7 Get Physical Address... 24

19. File System Caching Support .. 24
19.1 Mapping a View in the Cache .. 25
19.2 Unmapping a View from the Cache.. 26
19.3 Unlock Checked Pages .. 27
19.4 Read Mapped File.. 27
19.5 Purge Section .. 28
19.6 Force Section Closed ... 28

Windows NT Memory Management Design Note 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

1. Overview

This specification discusses memory management issues as related to the Intel 860.
The Intel 386/486 architecture has a similar PTE format and the software PTE
definition is identical between the two architectures.

The memory management subsystem is responsible for the mapping of physical
memory into the virtual address space of a process. The memory management
functions are implemented by several distinct pieces of the executive. The
translation-not-valid fault handler (pager) is the exception service routine that
responds to page faults and makes virtual pages resident on behalf of a process.
The modified page writer is responsible for writing modified pages to the appropriate
backing store so the physical pages can be reused. The balance set manager is
responsible for reducing process working set sizes to gain more pages of memory.
Executive routines and system services are provided to allow processes some degree
of control over the behavior of their memory while executing and to support various
executive functions.

The memory management subsystem has the following requirements:

 o A number of processes may exist in memory simultaneously, each only
allowed access to its own address space

 o Support for the I/O subsystem and process structure.

 o A process's pages need not be totally resident at any one time.

 o Virtual pages of a process are not physically contiguous.

 o Processes executing the same image will share read only code and data.

The memory management subsystem imposes requirements due to the nature of
page fault handling that page faults cannot occur at interrupt request levels (IRQL)
greater than APC_LEVEL. This allows the pager to acquire and release mutexes in
a deadlock free manner.

Because page faults can occur at IRQLs 0 or APC_LEVEL, and routines executing
at IRQL 0 can be interrupted by APCs at IRQL APC_LEVEL, all memory
management function which acquire mutexes operate at IRQL APC_LEVEL.

2. Address Space Layout

The Intel 860 supports a 4-gigabyte virtual address space. The virtual address
space is divided into 3 parts.

Windows NT Memory Management Design Note 2

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o User Space - Consists of 3 gigabytes which is unique for each address space.
The page ownership for this region is user mode.

 o Hyper Space - Consists of 12 megabytes with a page ownership of kernel
mode and unique for each address space. Page table pages, working set lists,
PTEs reserved for temporary mappings, and other address space unique
structures reside in this region.

 o System Space - Consists of almost 1 gigabyte which is shared among all
address spaces and has a page ownership of kernel mode.

The page ownership (user mode or kernel mode) is used for access checks for
operations on virtual addresses.

 Layout of Virtual Address Space:
 +------------------------+ 00000000
 | |
 | |
 | User Space |
 | |
 | |
 +------------------------+ C0000000
 | Hyper Space |
 +------------------------+ C0C00000
 | |
 | System Space |
 | |
 +------------------------+ FFFFFFFF

System space contains a paged and a non-paged area. The paged area starts at the
low addresses and grows upward, while the nonpaged area starts at the high
addresses and grows downward.

The highest 32k bytes of the address space are reserved for mapping non-paged
constructs used by the kernel. The Intel 860 dispatches traps to virtual address
FFFFFF00, which is in the last page of the virtual address space. The page before
the trap page is used to map constructs for the kernel to utilize in trap handling.
This page is used for saving and restoring various registers, locating the kernel
process object and locating the user's thread control block (TEB). In addition, the
page is double mapped into the user portion of the address space as read-only to
allow routines executing in user mode to locate the TEB.

The last 64K bytes of user space (BFFF0000 - BFFFFFFF) is set as no access. This
allows argument probing within the executive to be accomplished by comparing the
specified address to the highest valid address in user space (BFFEFFFF). If the
address less than the highest valid address, it resides within user space, and the

Windows NT Memory Management Design Note 3

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

access is allowed (note that the actual page protection may not permit the access).
By setting the last 64K bytes as no access, an argument that straddles the
boundary causes an access violation.

If access to the user's data is allowed, the routine requesting the access check
eventually attempts to read or write the data. If the page protection prevents the
access, an access violation exception is delivered and is handled by the routine
attempting the access.

Any time data which resides in the user space portion of the address space is being
read or written from kernel mode, an exception handler must be present to handle
access violations. This is required because another thread within the process can
potentially change the protection or validity of any page within user space after
argument validation has occurred.

3. Initial Page Directory at Address Space Creation

When an address space is initially created, the user portion of the address space is
set to no access. This is accomplished by zeroing entries 0 through 767 of the new
process's PD (page directory).

Nonpaged system space is initialized by copying PD entries 992 through 1023 of the
current process to the PD of the new process. This provides an identical view of a
128 megabyte nonpaged system space in every process.

Paged system space is created by building a Virtual Address Descriptor which
describes the range of paged system space and the section which maps the paged
system space. Initial references to paged system space result in page faults which
are then resolved to map the corresponding page within the paged system space.

Hyper Space is created by mapping PD entry 768 to the physical page that contains
the PD itself, and mapping entry 769 to a private page table page that will contain
the page table entries to map the address space control structures. During the life
of the process, this region can grow expand by 4 megabytes due to large working
sets.

By mapping the PD to itself means that all references through PD entry 768 refer to
page table pages. For example, the 32-bit word at address 0xC0000000 is the page
table entry (PTE) which describes the page which maps addresses 0 through 4095.
By mapping the page directory onto itself, all processes have their page table pages
mapped at the same address, and one process does not have a view of another
process's page table pages.

Windows NT Memory Management Design Note 4

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

4. Page Frame Database (PFN)

The PFN database contains information about each page of physical memory. The
fact that this information must be available while the page is being used prevents
this information from being stored in the page itself.

Every physical page of memory is in one of 5 states:

 o Active and valid. A valid PTE refers to this page.

 o Transition. The page is on either the modified list or the standby list. The
page contents are still valid, but the page is not currently in any process's
working set. A non-valid, transition PTE refers to this physical page.

 o Free. The page is on the free list and may be used immediately.

 o Zeroed. The page is on the zeroed list. It may be used immediately and
contains all zeroes.

 o Bad. The page is on the bad list. The page has parity or hard ECC errors
which prevent it from being used.

The PFN database contains information to link all pages except active/valid pages
together in lists. This allows pages to be easily manipulated to satisfy page faults.

The PFN database consists an array of records indexed by the physical page
number, and has the following structure:

 +-----------------------------------+
 | Forward link, Event Address or |
 | Working Set Index Hint |
 +-----------------------------------+
 | Virtual Address of (Proto) PTE |
 +-----------------------------------+
 | Backward link or Share Count |
 +-----------------------------------+
 | Reference Count | # valid PTEs |
 +-----------------------------------+
 | Original PTE contents |
 +-----------------------------------+
 | PFN of PTE | flags |
 +-----------------------------------+

When the page is on one of the lists (free, standby, modified, zeroed, or bad), the
Forward and Backward link fields link the elements of the list together. Note that
when a page is on one of the lists, the ShareCount must be zero and therefore can
be overlayed with the backward link, but the ReferenceCount may not be zero as

Windows NT Memory Management Design Note 5

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

there could be I/O in progress for this page. This is true when the page is being
written to backing storage.

When a page is active/valid or transition the original contents of the PTE (which
could be a prototype PTE, see section 7 for information about prototype PTEs) are
stored in the PFN element. This allows the PTE to be restored when the physical
page is no longer resident. In addition to the contents of the PTE, the virtual
address of the PTE and the physical page number of the page which contains the
PTE are stored in the PFN element. These fields provide the virtual and the physical
address of the PTE which maps the page.

When a page is active/valid, the ShareCount field represents the number of PTEs
which refer to this page. As long as the ShareCount is greater than zero, the page is
not eligible for removal from memory.

The ReferenceCount field represents the number of reasons the page must be kept in
memory. The ReferenceCount field is incremented when a page initially becomes
valid (ShareCount becomes non-zero) and when the page is locked in memory for
I/O. The ReferenceCount is decremented when the ShareCount becomes zero and
when pages are unlocked from memory. When the ReferenceCount becomes zero,
the page is placed on the free, standby or modified list depending on the contents of
various flags.

The working set index hint field is only valid when the ShareCount is non-zero. This
field indicates the index into the working set where the virtual address that maps
this physical page resides. If the page is a private page, then the working set index
field always contains the proper value as the page is only mapped at a single virtual
address. In the case of a shared page, this hint value is only correct for the first
process which made the page valid. The process which sets the hint field is
guaranteed that the hint field refers to the proper index and does not need to add
the Working Set List Entry referenced by the hint index into the working set tree.
This reduces the size of the working set tree allowing faster searches for particular
entries.

The following information is contained in the flags field:

 o Modified state - Indicates if the page was modified requiring its contents to
be saved if it is removed from memory.

 o Prototype PTE - Indicates the PTE referenced by the PFN element is a
prototype PTE.

 o In-page read in progress - Indicates that an in-page operation is in progress
for the page. In this case the event address is stored in the field used for the
forward link.

Windows NT Memory Management Design Note 6

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Parity error - Indicates the physical page contains parity or ECC errors.

 o In-page error - Indicates an I/O error occurred during the in-page operation
on this page.

The number of valid PTEs field contains the count of PTEs within this physical page
which are either valid or in transition. If this field is not zero, the page cannot be
removed from memory.

5. Paged and Nonpaged Dynamic Memory

At system initialization the memory management subsystem creates two dynamic
memory regions for use by the executive for storage allocation and deallocation.
These storage pools are located in the system part of the address space and are
mapped at the same virtual address in every process.

The nonpaged pool consists of a range of virtual addresses which are guaranteed to
be resident in physical memory at all times and thus can be accessed from any
address space without page faults. This is mapped through a single set of page
table pages which are shared by each process.

The paged pool consists of a range of virtual addresses which may be paged in and
out of a process's working set. Each process has a unique copy of page table pages
which refer to the paged portion of system space. This means that there is no
guarantee that an address within the paged portion of the system will not cause a
page fault at any time. For this reason data structures which are operated at IRQL
levels greater than APC_LEVEL must be allocated from nonpaged pool.

6. Page Fault Handling

A page fault occurs when the valid (present) bit in a PTE is zero indicating the
desired page is not resident in memory. When a page fault occurs, the memory
management system examines various structures to determine if the fault is a page
fault or an access violation.

Upon entry, the page fault handler locates the PTE which describes the page. Note,
that the page table page containing the PTE could be non-resident, or could not
exist. If it does not exist, the PTE which describes the page is treated as if it were
zero.

Note, that before the page is made valid, access checks are performed to ensure the
requestor has access to the page.

Once the PTE is found, it can be in one of six states:

Windows NT Memory Management Design Note 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 1. Active and valid - Another thread already faulted the page into memory.

 2. Transition - The desired page is in memory on either the standby or modified
list.

 3. Demand Zero - The desired page should be satisfied with a page of zeroes.

 4. Page File Format - The desired page resides within a paging file and should
be in-paged.

 5. Prototype PTE Format - The desired page is potentially shared and this PTE
refers to the Prototype PTE for the shared page.

 6. Unknown - The PTE is zero. This means the virtual address descriptors
should be examined to determine if this virtual address has been allocated.

The following figures describe the contents of a PTE for the first 5 cases. The below
abbreviations are used;

Hardware usage (defined by Intel 860 reference manual):

vld - valid bit (present bit)
wrt - write bit
own - owner (user)
wt - write through cache bit
cd - cache disable bit
acc - accessed bit
dty - dirty bit
rsv - reserved, must be zero when vld is one
gp - guard page
prot. code - protection code

value protection
0 no-access
1 read-only
2 execute-read
3 execute-only
4 read-write
5 execute-read-write
6 read-writecopy
7 execute-read-writecopy
8+(0-7) no-cache + protection (0-7)
16+(0-15) guard page + protection (0-15)

Software usage (defined by Windows NT memory management):

Windows NT Memory Management Design Note 8

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

trn - if set page is in transition state (pro must be zero)
cow - if set page should be copied on write operation
pro - if set in a PTE, then the PTE refers to a prototype PTE. If set in a

prototype PTE, then the prototype PTE is in mapped format.

Windows NT Memory Management Design Note 9

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

6.1 Valid PTE

 3 1 1 1
 1 2 1 0 9 8 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	t		c	r	r	d	a	c	w	o	w	v
Page Frame Number	r		o	s	s	t	c	d	t	w	r	l
	n		w	v	v	y	c			n	t	d
0 0 0 0 1												
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

6.2 Transition PTE

 3 1 1 1
 1 2 1 0 9 8 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	t	p	protect	c	w	o	w	v
Page Frame Number	r	r	code	d	t	w	r	l
	n	o				n	t	d
1 0 0								
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

6.3 Demand Zero PTE

 3 1 1 1
 1 2 1 0 9 8 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	t	p	protect	page	v
Page File Offset (all zeroes)	r	r	code	file	l
	n	o		number	d
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

6.4 PTE Referring to Page in Paging File

 3 1 1 1
 1 2 1 0 9 8 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	t	p	protect	page	v
Page File Offset (20 bits)	r	r	code	file	l
	n	o		number	d
0 0 0					
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

6.5 PTE Referring to Prototype PTE (protection code in protoPTE)

 3 1 1 1
 1 2 1 0 9 8 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |p|r|r| Offset to |v|

Windows NT Memory Management Design Note 10

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 | Offset to Prototype PTE |r|s|s| Proto PTE |l|
 | <27:7> |o|v|v| <6:0> |d|
 | 1 0 0 0|
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

6.6 PTE Referring to Prototype PTE (protection code here)

 3 1 1 1
 1 2 1 0 9 8 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	p	protect		v
Offset to Prototype PTE	r	code		l
<27:7>	o			d
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0				
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Note that a PTE in the transition state is indicated by the transition bit being set to
1 and the bit normally occupied by the prototype PTE indicator set to 0. In this
case, the state of the prototype PTE indicator is maintained in the page frame
database.

7. Prototype PTEs

Prototype PTEs have a similar format as normal PTEs, but are a memory
management structure and never reside in a page table page. Prototype PTEs are
created as a result of section creation and POSIX fork and provide the mechanism
for sharing pages between multiple address spaces.

When a view of a section is mapped, the PTEs in the address space refer to the
corresponding prototype PTE for the section. Hence when multiple address spaces
map the same view, the same prototype PTEs are referenced allowing sharing of the
physical page.

When a PTE refers to a prototype PTE, the address of the prototype PTE is
calculated by multiplying the offset value by 4 and adding it to the system prototype
PTE base address. Note that prototype PTEs are allocated from paged pool.

Once the prototype PTE has been located, it can be in one of 5 states:

 1. Active and valid - Another thread already faulted the page

 2. Transition - The desired page is in memory on one of the memory
management lists (standby or modified list)

 3. Demand Zero - The desired page should be satisfied with a page of zeroes

Windows NT Memory Management Design Note 11

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 4. Page File Format - The desired page resides within a paging file and should
be in-paged

 5. Mapped File Format - The desired page is in a mapped file and should be in-
paged

Windows NT Memory Management Design Note 12

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

7.1 Valid Prototype PTE

 3 1 1 1
 1 2 1 0 9 8 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	t	p	c	r	r	d	a	c	w	o	w	v
Page Frame Number	r	r	o	s	s	t	c	d	t	w	r	l
	n	o	w	v	v	y	c			n	t	d
0 0 0 0 1												
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

7.2 Transition Prototype PTE

 3 1 1 1
 1 2 1 0 9 8 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	t	p	protect	c	w	o	w	v
Page Frame Number	r	r	code	d	t	w	r	l
	n	o				n	t	d
1 0 0								
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

7.3 Demand Zero Prototype PTE

 3 1 1 1
 1 2 1 0 9 8 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	t	p	protect	page	v
Page File Offset (all zeroes)	r	r	code	file	l
	n	o		number	d
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

7.4 Prototype PTE Referring to Page in Paging File

 3 1 1 1
 1 2 1 0 9 8 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	t	p	protect	page	v
Page File Offset (20 bits)	r	r	code	file	l
	n	o		number	d
0 0 0					
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

7.5 Prototype PTE Referring to Page in Mapped File

 3 1 1 1
 1 2 1 0 9 8 7 6 5 4 3 2 1 0
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | |p| protect | Offset|v|

Windows NT Memory Management Design Note 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 | Offset to SubSection |r| code | Subsct|l|
 | <24:4> |o| | <3:0> |d|
 | 1 0|
 +-+-+-+-+-+-+-+-+-+-+ ~~+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

8. Page Protection

The Intel i860 supports read only and read/write pages. Pages that are protected as
either no-access or as guard pages are managed through software. This is
accomplished by setting the protection mask appropriately and on the access trap,
examining the protection mask and returning the appropriate status.

9. Retrieving a Free Page

The pager must supply a free page for demand zero faults, copy on write operations,
and to satisfy in-page requests. For the demand zero case and in-paging less than a
full page, the pager checks the zeroed page list for a page. If the zeroed page list is
empty, the free list is checked and, if empty, the standby list is checked. If the
standby list is empty, then no free pages are available and the thread enters a wait
state for a free page.

In the case of copy on write and in-paging a full page, the free list is first checked,
then the zeroed list and lastly the standby list.

If the page is to be removed from the zeroed or the free lists, the pager removes the
page from the head of the list and updates the appropriate list structures. However,
if the page is removed from the standby list, the PTE referenced by the
corresponding PFN database element is currently in a transition state and must
have its original contents restored.

This is accomplished by using the physical address information located in the PFN
database element and mapping the PTE within the current process's hyper space.
The transition PTE is then restored to its original state using the mapped virtual
address, and the virtual address is unmapped. Note, to prevent unnecessary TB
and cache flushes, a pool of PTEs for mapping addresses is maintained in hyper
space and the unmapping of these virtual addresses is only done when the pool
becomes exhausted. At this time all the reserved mapping PTEs are made invalid
and the TB and caches are flushed permitting reuse of the PTEs.

10. In-Paging I/O

In-paging I/O occurs when a read operation must be issued to a file (paging or
mapped) to complete a page fault operation. The in-page I/O operation is
essentially synchronous. It is not APC interruptible, and the thread waits on an
event once the I/O operation is issued.

Windows NT Memory Management Design Note 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

In order to support in-paging, each thread control block contains two events and
two I/O status blocks which are used for I/O requests. There are two events and
IOSBs to allow the initial in-page I/O to incur a page fault, which could issue
another I/O request. The second I/O request would use the other event/IOSB pair.
This allows file retrieval pointers and other information to be kept in the pagable
portion of the executive. Note, however, that information relating to a paging file
must not be maintained in the pagable portion or the page fault cannot complete.

The pager uses a special modifier in the I/O request function to indicate paging I/O.
Upon I/O completion, the IoCompletion mechanism recognizes this as paging I/O,
and writes the IOSB and sets the event. It does not attempt to deliver a kernel mode
APC or unlock buffers. Note that both the event and the IOSB are allocated in
nonpaged pool and the event is set to false before the I/O is issued. Setting the
event to false prevents a race condition where another thread issues a wait on the
event before the I/O system has cleared the event.

When the event is set, the wait is satisfied, allowing the pager to continue in-page
processing. The pager checks the IOSB status, updates the PFN database and other
structures, and completes the page fault.

While the paging I/O operation is in progress, the faulting thread does not own any
mutexes. This allows other threads within the process to incur and handle page
faults and issue virtual memory APIs. This exposes a number of interesting
conditions which must be recognized by the pager when the I/O completes and the
mutexes are again acquired. These conditions are:

 o Another thread could have faulted the same page.

 o The page could have been deleted (and remapped) from the virtual address
space.

 o Another process could have faulted the same page.

 o The protection on the page could have changed.

 o The fault could have been for a prototype PTE and the page which maps the
prototype PTE could be out of the working set.

The pager handles these conditions by saving enough state on the kernel stack
before the paging I/O request such that when the request is complete, it can detect
these conditions, and, in the pathological cases, just dismiss the page fault without
making the page valid. When the faulting instruction is reissued, the pager will
again be invoked, and the proper action taken.

Windows NT Memory Management Design Note 15

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

10.1 Collided Page Faults

The case when another thread or process faults a page which is currently being in-
paged is known as a collided page fault. This case is detected and handled
optimally by the pager as it is a common occurrence in multi-threaded systems.

When an in-page operation occurs, a physical page is allocated for the I/O request,
and the corresponding PTE is placed into the transition state referring to the
physical page. The PFN database element for the physical page contains the
original PTE contents, the physical address of the transition PTE, and the virtual
address of the event which is used in the I/O request.

If another thread or process faults the same page, the collided page fault is detected
by the pager noticing that the page is in transition and the read-in-progress flag in
the PFN database element is set. In this case the pager issues a wait operation on
the event address specified in the PFN database element.

When the I/O operation completes, all threads waiting on the event have their wait
satisfied. The first thread to acquire the PFN database lock, is responsible for
performing the in-page completion operations. This consists of checking the IOSB
(which is at a known offset from the event) to ensure the I/O operation completed
successfully, clearing the read-in-progress bit in the PFN database, and updating
the PTE element.

If the IOSB indicates an in-page I/O failure, the PFN database element for the page
has the in-page error flag set. The corresponding PTE element is not updated and
an in-page error exception is raised in the faulting thread.

When subsequent threads acquire the PFN database lock to complete the collided
page fault, the pager recognizes that the initial updating has been performed as the
read-in-progress bit is clear, and checks the in-page error flag in the PFN database
element to ensure the in-page completed successfully. If the in-page error flag is
set, the PTE is not updated and an in-page error exception is raised in the faulting
thread.

11. Sections

When a section is created, a section object is created. The section object is allocated
from paged pool and contains the following information:

 o Size of the section in bytes.

 o Type of section (page file backed, mapped file, or image file).

Windows NT Memory Management Design Note 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Pointer to the segment structures that describes the prototype PTE and the
control area structures for the section.

11.1 Segments

A segment structure is created for every section that is backed by a paging file, and
for each section that maps a file that is not already described by a segment. That
means that multiple sections that map the same file all refer to the same segment. A
segment structure is allocated from paged pool and contains:

 o Size of the segment in pages and bytes.

 o Type of segment (page file backed, mapped file, or image file)

 o Pointer to control area for the segment

 o Prototype PTEs which describe the segment

11.2 Segment Control Area

The segment control area maintains, in nonpaged pool, the information required to
perform I/O to and from mapped files. The segment control area contains:

 o A pointer to the file descriptor for the associated file

 o Number of valid/transition pages in the section

 o Total number of prototype PTEs in section

 o Pointer to section

 o One or more subsection descriptors

11.3 Subsection Descriptors

A subsection contains the necessary information to calculate the prototype PTE to
logical sector number (LSN) correspondence. It contains:

 o A pointer to the segment control area

 o Address of first prototype PTE for this subsection

 o Base LSN for this subsection

 o Number of LSNs in this subsection

Windows NT Memory Management Design Note 17

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Pointer to any extended subsections

When a prototype PTE refers to a subsection, the logical LSN is calculated by
subtracting the address of the prototype PTE from the address of first prototype PTE
for this subsection. This result is doubled and added to the base LSN for this
subsection. This yields the LSN for the I/O.

The size of the I/O, which is 8 sectors for a full page, is checked against the number
of LSNs within this subsection and if a full 8 sectors are not read, the remainder of
the page is filled with zeroes.

12. Extending Sections

Sections which map data files may be extended. This is accomplished by comparing
the current section size to the requested extension size. If the section size is greater
than the requested extension size, no extension is done.

If the section size is less than the extended size, the segment which corresponds to
the mapped file is examined. If its size is greater than the requested extension, the
section is extended by merely adjusting the size value in the section object. If,
however, the segment size is smaller than the requested size, the segment is
extended.

Segment extension is accomplished by allocating enough prototype PTEs to map the
requested extension rounded up to the next 4mb boundary. This allows multiple
small extensions to be made without allocating any additional structures.
Associated with the prototype PTEs is a new subsection which points to the
segment's control area and the extended prototype PTEs. This subsection is added
to the singlely linked list of subsections for the segment. In addition, the segment
structures are updated to indicate the large size.

Mapping a view to the extended part of the section no different than mapping a view
to a non-extended section, however, when a page fault occurs for a page within the
extended part of the section, the subsection list is searched until the subsection
which contains the page is located. This is accomplished by calculating the PTE
offset from the start of the section and then finding the subsection which contains
this offset.

13. Image Activation

Image activation is a multi-step process which consists of open the image file for
execute access, creating a section for the image, mapping the image into the address
space, performing fixup operations on the image, "activating any DLLs", and starting
the image at it's main entry point.

Windows NT Memory Management Design Note 18

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Image activation has the following goals:

 o All executable images are automatically shared among all users of that image.

 o A minimum number of disk I/Os are issued to load and fixup the image.

 o Image fixup operations occur in user mode in the context executing the image.

 o Code, data, and fixup information from images is brought into the address
space via the pager. No special code exists to read images into memory.

13.1 Activation Process

The following steps occur to activate an image:

 o Open the image file.

The image file is opened using the NtOpenFile or NTCreateFile service. The
specified desired access is FILE_EXECUTE and the file sharing specifies
reading with no writers.

 o Create the section.

A section is created using the NtCreateSection service passing in the file
handle for the image and an attribute indicating the file should be treated as
an image rather than as a data file.

 o Create a new process.

A new process is created specifying the section handle of the mapped image
file. When the new process is created, the image file will be mapped in the
user part of the address space at its specified base address. If this image
cannot be mapped at the specified base address, the process creation fails.

During the process creation phase, the system DLL (UDLL.DLL) is also
mapped into the address space of the newly created process.

 o Thread startup.

The initial thread in the process is created with a context that will cause it to
start at the entry-point specified in the image header. The routine
RtlCreateUserProcess is provided to perform the above steps.

The executive starts all user-mode threads with a user-mode APC targeted at
LdrInitializeThunk. This procedure exists in the UDLL.DLL mapped in all
address spaces. The LdrInitializeThunk routine does the following:

Windows NT Memory Management Design Note 19

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 - Determines if this is the initial thread of a "non-forked" process. If this is
the not the case, then return as initialization has already been performed.
Note, in the future, initialization of such things as thread local storage, or
other thread specific initialization would be performed at this time.

 - DLL initialization is now performed. The PEB contains the address of the
image header for the initial image. Using the image header, the image's
DLL table is located and for each DLL referenced by the image, the
following steps occur:

 1. If the DLL is already mapped, it doesn't need to be mapped again,
skips steps 2 through 4.

 2. Open the file for the DLL image.

 3. Create a section for the DLL image.

 4. Map the DLL image into the address space. If the DLL could not be
mapped at its base address, fixups are performed on the DLL image.

 5. For each entry-point used by the main image, resolve references to the
mapped DLL.

 6. Examine the newly loaded DLL image for DLL and resolve any external
references using these same steps.

 7. If the DLL contains an initialization routine, call the specified
initialization routine.

 8. Repeat until all DLL references are resolved.

 - At this point all static DLL references have been resolved and
LdrInitializeThunk returns.

 o The thread context is restored and the APC is dismissed. The thread begins
execution at the specified address.

13.2 Create Section Operation For Images

Once the image file has been opened, the NtCreateSection service is invoked to
create the necessary structures to allow the image to mapped and shared between
multiple address spaces.

Create section performs the following:

 1. Translate the file handle to an object pointer with execute access.

Windows NT Memory Management Design Note 20

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 2. Check to see if the section field in the file object is NULL. If the section field is
not NULL, a section object for this file already exists and the section has
already been created and may be shared (don't do the rest of these steps).

 3. Allocate a page of memory and read in the first 4k bytes of the image header
(the image header may be less than 4k bytes and the file may be less than 4k
bytes, but this read will produce the correct results).

 4. Analyze the image header to ensure that the file is a valid image.

 5. Using the information found in the image header, create the prototype PTEs,
the subsection descriptors, update the section field in the file object, and
create the section object.

 6. Return the appropriate status and section handle (if successful) to the caller.

13.3 Map view of section

The NtMapViewOfSection maps the specified section into the specified address
space and returns the base address of the section. For images, the image header
mapped is at the returned base address. This allows the image header to be
analyzed using offsets from the base address. An attempt is made to map the image
at its specified base address thereby eliminating the need for internal fixups on the
image.

From the image header information for DLLs, fixups, entry point, debugger, etc. may
be obtained.

13.4 Image Fixup

The image file contains the necessary fixup information to resolve internal image
addresses if the image cannot be based at the specified address. The information is
mapped in the TBD section which can be located using the image header.

Image fixup is accomplished by mapping the pages to be modified as read/write,
and changing the specified addresses by the difference between the desired base
address and the actual base address. Once the fixups have been performed the
page protection is changed back to its previous protection.

14. Virtual Address Descriptors

Whenever a range of virtual addresses is created (committed or reserved), a virtual
address descriptor is built. A virtual address descriptor contains the following
information:

Windows NT Memory Management Design Note 21

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 1. Virtual address range for this descriptor

 2. Section information, if any

 3. Attributes for range including protection and inheritance

 4. Link words to form an ordered set of virtual address descriptors

As pages within the virtual address descriptor are referenced, page table entries
(which are initially zero) are updated to map the appropriate page.

15. POSIX Fork Support

POSIX fork requires that a new process (the child) be created with its virtual
address mappings and contents identical to the process that initiated the fork (the
parent). In order to provide efficient fork operation, pages that are shared between
the parent and child are shared copy-on-write.

15.1 Structures to Support Fork

There are three structures created during a fork operation:

 o The fork prototype PTEs that describe the unique address space that is shared
between the parent and the child. A fork prototype PTE is a simple structure
that contains a prototype PTE and a reference count indicating the number of
processes that refer to the prototype PTE. When the reference count is
decremented to zero, any resources (paging file space, physical page) are
released.

 o The fork header is a system-wide structure allocated from non-paged pool that
contains the size and address of the fork prototype PTEs created during the
fork operation. It also contains a reference count indicating the number of
processes that refer to at least one of the fork prototype PTEs. When the
reference count becomes zero, all the fork prototype PTEs and the associated
fork header are deleted.

 o The fork descriptor is a process structure allocated from non-paged pool that
contains a pointer to the fork header, the starting and ending address of the
fork prototype PTEs, and a reference count indicating the number of PTEs
that refer to fork prototype PTEs. When the reference count in the fork
descriptor becomes zero, the fork descriptor is deleted and the reference count
in the fork header is decremented.

Windows NT Memory Management Design Note 22

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

15.2 Fork Operation

When a fork operation is performed, the following steps occur:

 o A new address space is created containing a page directory page, hyper space
structures and the mapping of the non-paged executive.

 o An attach process is issued with the parent process as the target.

 o The parent process's virtual address descriptors (VADs) are examined.

 o If the VAD indicates the range is inherit on fork and the VAD is not a section
with the PAG_COPY attribute, do the following:

 - Allocate a new VAD from non-paged pool and initialize it as a copy of the
parent's VAD.

 - Examine the page directory entry in the child process for the starting
virtual address for the memory described by the VAD. If no PDE is
allocated, get a free page of memory, otherwise, use the page which has
previously been allocated.

 - Examine the PTEs described by the VAD and for each PTE take the
following action:

 o Valid - Examine the PFN element to assess the PTE type.

 - If it is a prototype PTE and it was not created from a previous fork
operation, put the prototype PTE address into the PFN element
preserving the current protection values.

 - If it is a fork prototype PTE, put the prototype PTE address into the
PFN element preserving the current protection values and
increment the reference count for that fork prototype PTE.

 - If it is not a prototype PTE, allocate a fork prototype PTE, put the
new PTE into prototype PTE format, set the reference count for the
fork prototype PTE to 2, and change the PFN element to refer to the
"fork prototype PTE."

 o Transition

 - Acquire the PFN lock and check the PTE again. If it is still in
transition, this page is private and therefore, must be converted
into "fork prototype PTE format". This is identical to the valid case,

Windows NT Memory Management Design Note 23

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

except the parent's PTE is changed to refer to the fork prototype
PTE which is placed into the transition state.

 o Demand Zero

 - Make the corresponding PTE in the child process demand zero.

 o Page File Format

 - Allocate a fork prototype PTE, set the reference count to 2, move
the page file format PTE into the fork prototype PTE and put the
address of the fork prototype PTE into the PTE of both the parent
and the child.

 o Prototype PTE Format

 - Copy the PTE contents to the child process and check to see if this
is fork prototype PTE format, if so increment the reference count
for the fork prototype PTE.

 o If the VAD indicates PAG_COPY, each committed page of the section must be
copied into a private page. This is accomplished by creating a VAD to
describe the section as a copy-on-write section. Later, in the context of the
child process, all pages in the section are read and written, causing a private
copy of the page to be created.

 o Once all the VADs have been processed, detach from the parent process and
attach to the child process. In the context of the child process, build the
structures to manage the VADs, fork descriptors, and force copy-on-write
actions to all pages in any PAG_COPY sections.

Note that at no time during the processing of the VADs to build the PTEs in the
child process was a PTE created in either the valid or transition state. By avoiding
this condition no updates need occur to the working set child while attached to the
parent process.

16. Working Set Management

Associated with every process is a working set. Two parameters control the size of
the working set. The WorkingSetMinimum is the minimum number of pages
guaranteed to be resident or made resident when any thread within the process is
executing. The other parameter is the WorkingSetMaximum which is the maximum
number of pages which the process is allowed to have resident. The
WorkingSetMaximum can be exceeded if there is a large number of free pages
available.

Windows NT Memory Management Design Note 24

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Each page fault requires a page to become resident to satisfy the request. The
working set list is used to track the current number of pages a process has resident
in memory. As pages are made valid, the page is added to the working set. When
the working set reaches its limit, for every page added, a page is discarded. (Note,
that due to cache flushes, etc. it may be the case that a set of pages is removed from
the working set when a new page is added. This allows a number of page faults to
occur without each one having to invalidate TBs and data caches.) The discarded
page(s) are not removed from memory immediately, but rather, are placed on the
modified or standby lists. By placing pages on the lists, if a fault occurs for the
page while it is still on the list, the fault can be satisfied by removing the page from
the list and placing it back into the working set.

A working set is an array of working set list entries (WSLE), with each WSLE
describing one resident page of the address space. Associated with the working set
list are two indexes. One index is for the start of the dynamic region (all working set
list entries before that index are locked in the working set), and the other is the end
of the working set list.

Replacement is performed by keeping an index into the dynamic portion of the list.
When a page needs to be removed from the working set, the WSLE found by this
index becomes the candidate for removal. If, after closer examination, this WLSE
should be removed, then it is removed and the index is incremented. If it is not a
proper candidate for replacement, the index is incremented and the next WSLE
becomes the candidate for replacement. After the last WSLE in the array is
examined, the index is changed to reference the first entry in the dynamic portion of
the working set.

A WSLE which has been selected as a candidate for removal from the working set
has the access bit in its corresponding PTE examined. If the access bit is currently
set, it is cleared and the WSLE is not removed. If the access bit is clear, the WSLE
is removed from the working set and placed on the modified list or standby list.

In order to limit the time to find a WSLE to replace, if a certain number, say 16,
WSLEs are examined for replacement and a suitable candidate cannot be found, the
first WSLE examined is the one removed from the working set and the index is
adjusted accordingly.

A working set list entry is created for every valid pageable PTE. The working set list
entry is 64 bits in size and consists of:

 1. Virtual Page Number of this element (20 bits)

 2. Attributes (locked in working set, valid, etc.) (12 bits)

Windows NT Memory Management Design Note 25

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 3. Link words (16 bits each) to link working set entries together into a sorted list
by virtual page number. If both link words are zero, the entry is directly
indexed through the PFN working set index hint field and not in the tree.

Because the link words are 16 bits, the maximum size of a working set is limited to
65,535 entries. This means the largest amount of physical memory a process can
consume is 512 MB. This does not limit the virtual size of a process. In addition,
when this limit becomes a factor, the WSLE will be changed to support a larger
working set.

17. Physical Page Management

The memory management subsystem maintains a working set for each process so
that physical memory is shared equitably among all the active processes on the
system. As the demands for physical memory increase, and the free and zeroed list
becomes empty, free pages are obtained by the following methods:

 o Removing pages from the standby list

 o Writing pages on the modified list and placing those pages on the standby list

 o Reducing the size of working sets thereby placing pages on the modified and
standby list

 o Eliminating processes from memory by reducing the size of their working sets
to zero

17.1 Modified Page Writer

The modified page writer is a system thread created during system initialization.
The modified page writer is responsible for limiting the size of the modified page list
by writing pages to their backing store locations when the list becomes too big.

When invoked, the modified page writer attempts to write as many pages as possible
to backing store with a single I/O request. This is accomplished by examining the
original PTE field of the PFN database elements for pages on the modified page list
to locate pages in contiguous locations in the backing store. Once a list is created,
the pages are removed from the modified list, an I/O request is issued, and, at
successful completion of the I/O request, the pages are placed at the tail of the
standby list.

Pages which are in the process of being written may be faulted back into memory.
This is accomplished by incrementing both the ReferenceCount and ShareCount for
the physical page. When the I/O completes, the modified page writer notices that
the ShareCount is no longer zero, and does not place the page on the standby list.

Windows NT Memory Management Design Note 26

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

17.2 Balance Set Manager

The balance set manager is created during system initialization and is responsible
for trimming process working sets when physical memory becomes over-committed.

Each process has a minimum working set which is guaranteed to be available when
any thread within the process is executing. When the balance set manager is
invoked, it creates free pages by reducing working sets towards their minimum size
by starting with those processes which have the lowest page fault rates.

If all working sets are reduced to their minimum, and physical memory is still over-
committed, the balance set manager removes processes from the system. This is
accomplished by selecting a process to eliminate, and calling the kernel function
KeExcludeProcess. Once the kernel has prevented the process from executing, the
balance set manager reduces the process's working set to zero causing pages to be
placed on the modified and standby lists.

Once a process has been excluded from the balance set, it becomes eligible for
inclusion when either ample physical memory exists for its minimum working set,
or threads within the process become computable and the priority is such that the
threads should be allowed to execute. In the later case, another process(es) may be
removed from the balance set to free ample physical pages.

When the system reaches the state that physical memory is so severely over-
committed that processes must be removed from the balance set to allow non-
resident processes to be included in the balance set, the system performance suffers
greatly. This case should be avoided in all but the most extreme cases, i.e. the
amount of physical memory is inadequate for the workload.

Once memory again becomes plentiful the pager allows working sets to expand
above their minimum. This is accomplished by satisfying page faults without
removing pages from the working set list.

18. I/O Support

The memory management subsystem provides services for operating on virtual
memory to support I/O operations. The following operations are available:

 o Probing pages for access

 o Locking pages in memory

 o Unlocking pages from memory

 o Mapping locked pages into the current address space

Windows NT Memory Management Design Note 27

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Unmapping locked pages from the current address space

 o Getting the physical address of a locked page

 o Mapping I/O space

 o Unmapping I/O space

These operations are available from kernel mode at IRQL 0 or APC_LEVEL.

18.1 Locking Pages in Memory

A range of virtual addresses for the current process are checked for proper
accessibility and locked in physical memory with the MmProbeAndLockPages
function:

VOID
MmProbeAndLockPages (
 IN PMDL MemoryDescriptionList,
 IN ULONG AccessMode,
 IN ULONG Operation
);

Parameters:

MemoryDescriptionList - A pointer to a memory description list which contains
the starting virtual address to lock, the size in bytes of the region to lock,
and an array of elements that are to be filled with physical page numbers.

AccessMode - Specifies the access mode with which to probe the region
(UserMode or KernelMode).

Operation - Specifies the type of the I/O operation (IoWriteAccess, IoReadAccess
or IoModifyAccess).

This function probes the specified range for access and locks the pages in memory
by making any nonresident pages resident and incrementing the ReferenceCount in
the PFN database for the physical page. Incrementing the ReferenceCount prevents
the physical page from being reused.

If any pages are found with improper access protection, or the processes working set
is not sufficient to lock the range in memory, an exception is raised and none of the
pages are locked in memory.

Windows NT Memory Management Design Note 28

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

18.2 Unlocking Pages from Memory

Pages which have been locked in memory are unlocked with the MmUnlockPages
function:

VOID
MmUnlockPages (
 IN PMDL MemoryDescriptionList
);

Parameters:

MemoryDescriptionList - A pointer to an memory definition list containing the
information about locked pages.

This function analyzes the MemoryDescriptionList and unlocks any pages which
have been locked. This function is callable within any process's context.

18.3 Mapping Locked Pages into the Current Address Space

Once a page has been locked into memory, the MmMapLockedPages function maps
the physical pages into the address space of the current process. This provides a
mechanism for system processes to virtually address the physical memory within
another process.

PVOID
MmMapLockedPages (
 IN PMDL MemoryDescriptionList
 IN KPROCESSOR_MODE AccessMode
);

Parameters:

MemoryDescriptorList - Supplies a valid Memory Descriptor List which has been
updated by MmProbeAndLockPages.

AccessMode - Supplies an indicator of where to map the pages; KernelMode
indicates that the pages should be mapped in the system part of the
address space, UserMode indicates the pages should be mapped in the
user part of the address space.

Returns the base address where the pages are mapped. The base address has the
same offset as the virtual address in the MDL.

Windows NT Memory Management Design Note 29

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This routine will raise an exception if the processor mode is USER_MODE and quota
limits or VM limits are exceeded.

18.4 Unmapping Locked Pages from the Current Address Space

Pages which have been mapped into the current process's address space are
unmapped with the MmUnmapLockedPages function:

VOID
MmUnmapLockedPages (
 IN PVOID BaseAddress,
 IN PMDL MemoryDescriptionList
);

Parameters:

BaseAddress - The base address where the pages are mapped.

MemoryDescriptionList - A pointer to an memory definition list containing the
information about locked pages.

This function unmaps the pages which were previously mapped. Once the pages
have been unmapped, they may be unlocked.

If the MemoryDescriptionList indicates the pages are not locked an exception is
raised.

18.5 Mapping I/O Space

Physical addresses residing in the processors I/O space can be mapped to virtual
addresses within the nonpagable portion of the system with the MmMapIoSpace
function:

PVOID
MmMapIoSpace (
 IN PHYSICAL_ADDRESS PhysicalAddress,
 IN ULONG NumberOfBytes
);

Parameters:

PhysicalAddress - The physical address within I/O space to map.

NumberOfBytes - The number of bytes to map.

Windows NT Memory Management Design Note 30

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

This function returns the base virtual address where the requested I/O space was
mapped.

18.6 Unmapping I/O Space

Physical addresses residing in the processors I/O space can be unmapped from
virtual addresses in the nonpagable portion of the system with the
MmUnmapIoSpace function:

VOID
MmUnmapIoSpace (
 IN PVOID BaseAddress,
 IN ULONG NumberOfBytes
);

Parameters:

BaseAddress - The virtual address within system space to unmap.

NumberOfBytes - The number of bytes to unmap.

18.7 Get Physical Address

The physical address mapped by a virtual address which has been locked in
memory may be obtained with the MmGetPhysicalAddress function:

PHYSICAL_ADDRESS
 MmGetPhysicalAddress (
 IN PVOID BaseAddress
);

Parameters:

BaseAddress - Specifies the virtual address of which to provide the physical
address.

This function returns the physical address of the page mapped by the specified
virtual address.

19. File System Caching Support

A 256MB region of system space is reserved for file system caching support. This
region has the following characteristics:

 o Not accessible from user-mode.

Windows NT Memory Management Design Note 31

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

 o Pagable, but has a system-wide working set. This means that if a page is
valid in the "system cache" it is valid in any address space. Note, however,
that the page could be removed from the working set of the system cache at
any time unless it has been explicitly "locked" in the system cache.

 o Only views of mapped files may reside in the cache.

 o Addresses within the system cache may not be used as arguments for the
BaseAddress within NT memory management services, e.g.,
NtLockVirtualMemory supplying the base address argument as an address
that resides in the cache.

The following routines are provided to the file systems and server for interacting
with the system cache.

19.1 Mapping a View in the Cache

A view to a section can be mapped in the system cache with the
MmMapViewInSystemCache function:

NTSTATUS
MmMapViewInSystemCache (
 IN PVOID SectionObject,
 OUT PVOID *CapturedBase,
 IN OUT PLARGE_INTEGER SectionOffset,
 IN OUT PULONG CapturedViewSize,
 IN OUT ULONG Protect
);

Parameters:

SectionObject - An pointer to a section object.

CaputuredAddress - A pointer to a variable that will receive the base address of
the view.

SectionOffset - Supplies a pointer to the offset from the beginning of the section
to the view in bytes. This value is rounded down to the next allocation
granularity size boundary.

CapturedViewSize - A pointer to a variable that will receive the actual size in
bytes of the view. If the value of this argument is zero, then a view of the
section will be mapped starting at the specified section offset and
continuing to the end of the section. Otherwise the initial value of this
argument specifies the size of the view in bytes and is rounded up to the
next host page size boundary.

Windows NT Memory Management Design Note 32

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Protect - The protection desired for the region of initially committed pages.

19.2 Unmapping a View from the Cache

NTSTATUS
NtUnmapViewInSystemCache (
 IN PVOID BaseAddress
);

Parameters:

BaseAddress - A virtual address within the view which is to be unmapped.

18.3 Check and Lock Pages

A range of valid (or transition if the virtual address resides within the system cache)
virtual addresses may be locked in memory with the check and lock pages function.

ULONG
MmCheckAndLockPages
 IN PEPROCESS Process,
 IN PVOID BaseAddress,
 IN ULONG SizeToLock
);

Parameters:

Process - Supplies a pointer to the process in which these pages are mapped.

BaseAddress - A virtual address within the system cache to begin locking.

SizeToLock - The number of bytes to attempt to lock in the system cache.

The returned value is the number of bytes that were actually locked.

This routine checks to see if the specified pages are resident and if so increments
the reference count for the page. For addresses within the system cache, the virtual
address is guaranteed to be valid until the pages are unlocked (the reference count
for the page becomes zero), for pages not residing in the system cache, the physical
page is resident, but a page-fault could occur when referencing this address (though
no I/O operation will result from this page fault).

NOTE, this routine is not to be used for general locking of user addresses - use
MmProbeAndLockPages. Rather, this routine is intended for well file system

Windows NT Memory Management Design Note 33

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

caches which maps views of files into the address range and guarantees that the
mapping will not be modified (deleted or changed) while the pages are mapped.

This routine may be called at DPC_LEVEL and below. If the base address is not
within the system cache and the IRQL is at DPC_LEVEL, no pages will be locked
and a zero will be returned.

19.3 Unlock Checked Pages

A range of addresses locked in memory with the MmCheckAndLockPages function
is unlocked with the MmUnlockCheckedPages.

VOID
MmUnlockCheckedPages
 IN PEPROCESS Process,
 IN PVOID BaseAddress,
 IN ULONG SizeToUnlock
);

Parameters:

Process - Supplies a pointer to the process in which these pages are mapped.

BaseAddress - A virtual address within the system cache to begin unlocking.

SizeToUnlock - The number of bytes to attempt to lock in the system cache, this
was the function value returned when the range was locked.

If the base address is within the system cache, this routine may be called at
DPC_LEVEL or below. If the base address is not within the system cache, it may be
called at APC_LEVEL or below.

19.4 Read Mapped File

A range of virtual memory can be made valid with the MmReadMappedFile
function:

Windows NT Memory Management Design Note 34

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

VOID
MmReadMappedFile
 IN PEPROCESS Process,
 IN PVOID BaseAddress,
 IN ULONG Size,
 IN PIOSTATUS_BLOCK IoStatus
);

Parameters:

Process - Supplies a pointer to the process in which these pages are mapped.

BaseAddress - Supplies the virtual address within the system cache to begin
reading.

Size - Supplies the number of bytes to read.

IoStatus - Supplies the I/O status value from the in-page operation.

This function checks the corresponding PTEs and makes the specified range valid
with a minimum number of I/O operations. Any errors which occur during the in-
page sequence are returned in the IoStatus argument.

19.5 Purge Section

To support file truncation, pages within a section can be cleared with the
MmPurgeSection function:

BOOLEAN
MmPurgeSection (
 IN PVOID SectionObject,
 IN PLARGE_INTEGER Offset
);

Parameters:

SectionObject - Supplies a pointer to the section object which to purge.

Offset - Supplies the offset into the file where the purge should begin.

This function examines the prototype PTEs beginning at the specified offset. If the
PTE is active and valid, a bugcheck code is issued. If the PTE is transition, the page
is put on the free list and the prototype PTE is loaded with the original contents
from the PFN database.

Windows NT Memory Management Design Note 35

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

19.6 Force Section Closed

A section can be disassociated from a file object with the MmForceSectionClosed
function:

BOOLEAN
MmForceSectionClosed
 IN POBJECT_FILE FileObject
);

Parameters:

FileObject - Supplies a pointer to the file object to check for a section and
attempt to close and remove the section reference.

If the section cannot be closed due to outstanding references or mapped view, the
value FALSE is returned and no action is taken. If the section was successfully
closed, the value TRUE is returned.

Windows NT Memory Management Design Note 36

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision History:

Original Draft 1.0, January 6, 1989

Revision 1.1, January 20, 1989

 1. Fix PTE format to include prototype PTEs.

 2. Add virtual address descriptors.

 3. General reorganization.

Revision 1.2, March 31, 1989

 1. Add I/O routines.

 2. Make PPTN database 20 bytes rather than 24.

Revision 1.3, May 3, 1989

 1. Make PPTN database 24 bytes rather than 20, the PTE address field
cannot overlay the Flink field.

 2. Change size of last reserved page of user address space to 64k bytes.

 3. Change name of I/O support routines.

Revision 1.5, August 10, 1898

 1. Add description of fork structures and operation.

 2. Change description of section to add description of segment object.

Revision 1.6, October 25, 1989

 1. Clarify modified page writer.

Revision 1.7, July 10, 1990

 1. PFN mutex is now an executive spinlock.

 2. Add section detailing overview of how create and map file interact with
image activiation.

 3. Add section on extending mapped sections.

 4. Add section on system wide cache.

Windows NT Memory Management Design Note 37

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

Revision 1.8, July 25, 1990

 1. At working set index hint field in PFN database.

 [end of vmdesign.doc]

	alerts
	apc
	argument
	attproc
	basecont
	cache
	coding
	coff
	dbg
	dd
	dwintro
	exceptn
	execsupp
	fsdesign
	fsrtl
	implan
	io
	irp
	ke
	mailslot
	memio
	mutant
	namepipe
	ntdesrtl
	ob
	oplock
	os2
	prefix
	proc
	resource
	rsm
	sem
	startup
	status
	support
	suspend
	time
	timer
	ulibcode
	vm
	vmdesign

