Portable Systems Group
Windows NT Alerts Design Note
Author: David N. Cutler

Original Draft 1.0, February 9, 1989
Revision 1.2, March 30, 1989

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note

This design note discusses a proposal to implement alerts in
both kernel and user mode. The alert capability can be used
to interrupt thread execution in either processor mode at
well defined points. A companion design note on APC's
contains information and algorithms that are pertinent to
this design.

There are three alert specific kernel services;
TestAlertThread, AlertThread, and AlertResumeThread. In
addition, the kernel Wait functions take a mode and an
alertable flag as arguments.

Each thread has an alerted flag for each of the processor
modes user and kernel. These flags are set by calling the
AlertThread function and specifying the thread and the mode
which are to be alerted.

If AlertThread is called and the target thread is in a wait
state, then several additional tests are performed to
determine the correct action to take.

If the mode of the wait is user, the alertable flag is set,
and the alert mode is user, then a thread specific APC is
queued to user mode which will raise the condition
"alerted", the user APC pending flag is set, and the thread
is unwaited with a completion status of "alerted".

If the mode of the wait is kernel or user, the alertable
flag is set, and the alert mode is kernel, then the thread
is unwaited with a status of "alerted". There is no APC
queued for kernel mode.

The following pseudo code describes the logic of
AlertThread:

PROCEDURE AlertThread (
IN Mode : KtProcessorMode;
IN Tcb : POINTER KtThread;

) i
BEGIN

Acquire dispatcher database lock;
IF Tcb.State == Waiting THEN
IF Tcb.WaitMode >= Mode AND Tcb.Alertable THEN
IF Mode == User THEN
Queue Tcb.AlertAcb;
Tcb.UserApcPending = True;

END IF;
Unwait thread with a status of Alerted;
ELSE
Tcbhb.Alerted [Mode] = True;

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note

END IF;
ELSE

Tcb.Alerted [Mode] = True;
END IF;

Release dispatcher database lock;
END AlertThread;

When the user mode alerted flag gets set, it remains set
until either a TestAlert or a Wait alertable is performed
which clears the flag.

The kernel mode alerted flag is treated somewhat differently
in that it is cleared on each system service entry to the
system. The reasoning behind this is that a kernel mode
alert should only persist for the duration of time that
execution continues in kernel mode. As soon as execution
leaves kernel mode, the alerted flag is no longer
significant. This is a very important feature which allows
the conditional aborting of native system services by
protected subsystems which provide system services for other
operating system API's. This subject is discussed in more
detail at the end of this document.

The kernel service AlertResumeThread allows a thread to be
alerted and then resumed in a single operation. This
operation is really a kernel mode AlertThread followed by a
ResumeThread, but is provided as a kernel service so that is
can be executed without any race conditions.

The following pseudo code describes the logic of
AlertResumeThread:

PROCEDURE AlertResumeThread (
IN Tcb : POINTER KtThread;
) RETURNS integer;

VARIABLE
OldCount : integer;

BEGIN
Acquire dispatcher database lock;
IF Tcb.State == Waiting THEN

IF Tcb.Alertable THEN
Unwait thread with a status of Alerted;

ELSE
Tcbhb.Alerted [Kernel] = True;
END IF;
ELSE
Tcb.Alerted [kernel] = True;

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note

END IF;

O0ldCount = Tcb.SuspendCount;

IF Tcb.SuspendCount <> 0 THEN
Tcb.SuspendCount = Tcb.SuspendCount - 1;

IF Tcb.SuspendCount == 0 THEN
Release Tcb.SuspendSemaphore;
END IF;
END IF;

Release dispatcher database lock;
RETURN OldCount;
END AlertResumeThread;

TestAlertThread tests the alerted flag for a specified
processor mode and returns a status value of "alerted" if
the flag was set and "normal" if the flag was clear. If the
alerted flag was set, then it is cleared, and if the
specified mode is user, then an alert APC is gqueued to user
mode and user APC pending is set in the calling thread's
TCB.

In addition, TestAlertThread also tests whether a user APC
should be delivered. If the specified mode is user and the
user APC queue contains an entry, then APC pending is set in
the calling thread's TCB.

The following pseudo code describes the logic of TestAlert:

PROCEDURE TestAlertThread (
IN Mode : KtProcessorMode;
) RETURNS KtStatus;

BEGIN

Acquire dispatcher database lock;
Get current TCB address;
IF Tcb.Alerted[Mode] THEN
Tcb.Alerted [Mode] = False;
IF Mode == User THEN
Queue Tcb.AlertAcb;
Tcb.UserApcPending = True;
END IF;
Release dispatcher database lock;
RETURN Alerted;

ELSE
IF Mode == User AND Tcb.ApcQueue [User] <> NIL THEN
Tcb.UserApcPending = True;
END IF;

Release dispatcher database lock;
RETURN Normal;
END IF;
END TestAlertThread;

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note

Wait tests the alerted flags for the specified and all more
privileged processor modes if the alertable argument value

is true. If an alerted flag is set, then a status value of

"alerted" is returned.

In addition, Wait also tests whether a user APC should be
delivered if the alertable argument value is true and the
specified mode is user. For this case, if the user APC queue
contains an entry, then APC pending is set in the calling
thread's TCB and a status value of "UserApc" is returned.

The following pseudo code describes the logic of Wait:

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note

PROCEDURE Wait (
IN Mode : KtProcessorMode;
IN Alertable : boolean;
IN WaitObject : POINTER KtDispatcherObject;
IN Timeout : POINTER integer;
) RETURNS KTStatus;

BEGIN

Repeat:
Acquire dispatcher database lock;
Get current TCB address;
IF Alertable THEN
IF Tcb.Alerted[Mode] THEN
Tcb.Alerted [Mode] = False;
IF Mode == User THEN
Queue Tcb.AlertAcb;
Tcb.UserApcPending = True;
END IF;
Release dispatcher database lock;
RETURN Alerted;
ELSEIF Mode == User THEN
IF Tcb.UserApcQueue <> NIL THEN
Tcb.UserApcPending = True;
Release dispatcher database lock;
RETURN UserApc;
ELSEIF Tcb.Alerted[Kernel] THEN
Tcb.Alerted[Kernel] = False;
Release dispatcher database lock;
RETURN Alerted;
END IF;
END IF;
END IF;
IF WaitObject.Signal THEN
Satisfy wait for WaitObject;
Release dispatcher database lock;
RETURN Tcb.WaitStatus;
ELSE
Tcb.Alertable = Alertable;
Construct wait control block for WaitObject;
Initialize Tcb.Timer with time out wvalue;
Insert wait control block in wait queue;
Insert Tcb.Timer in timer queue;
Select new thread to run;
Swap context to new thread;

IF Tcb.WaitStatus == KernelApc THEN
Goto Repeat;
ELSE
RETURN Tcb.WaitStatus;
END IF;
END IF;

END Wait;

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note

It is the responsibility of the executive to test for the
"alerted" return status from TestAlert and Wait and perform
the correct operation (e.g. cleaning up data structure,
unwinding, etc).

Wait and AlertThread both allow a thread that is waiting
user mode alertable to be awakened by a kernel mode alert.
If this were not done, then it would not be possible to
abort the Wait system service.

The interesting combinations of initial conditions and the
resultant action when a Wait system service is executed are
given below.

Case 1

Wait Mode = Kernel
Tcb.Alerted [User] = True
Tcb.Alerted [Kernel] = False
Alertable = True

Action - Put thread in wait state
Case 2

Wait Mode = Kernel

Tcb.Alerted [User] =

Tcb.Alerted [Kernell
Alertable = True

X

True

Action - Clear Tcb.Alerted[Kernel] and return Alerted
Case

Wait Mode = User

Tcb.Alerted [User] = True

Tcb.Alerted [Kernel] = x

Alertable = True

Action - Clear Tcb.Alerted[User], queue Tcb.AlertAcb,
and set Tcb.UserApcPending

Case 4

Wait Mode = User

Tcb.Alerted [User] = False

Tcb.Alerted [Kernel] = True

Alertable = True

Action - Clear Tcb.Alerted[Kernel] and return Alerted
Case 5

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note

Wait Mode = User
Tcb.Alerted[User] = False
Tcb.Alerted [Kernel] = False
Alertable = True

Action - Put thread in wait state

Kernel mode alerts can be used to implement the semantics
necessary to abort native system services. The following
discussion describes how this can be implemented in Windows
NT.

In Mach the operations necessary to abort a native system
service are suspend, abort service, and resume. This
capability is used to get a thread out of a possible wait
state in the system and deliver a signal, terminate
execution, etc.

A similar set of primitives can be provided in Windows NT
using the kernel alert capability.

Windows NT suspends a thread by sending it a normal kernel
APC that causes the thread to wait on an semaphore that is
built into the thread object. The resume operation simply
releases the builtin semaphore which continues thread
execution.

The suspend wait operation is nonalertable to ensure that
the alert and resume operation functions properly; see
below.

If a thread is in a wait state when it is suspended, then
the wait completion status is set to "kernel APC". This is
done so the wait can be repeated when the APC returns.

Implementing the primitives to abort native system services
does not quite solve the whole problem. Each native service
that can result in a long wait must be written such that it
is responsive to kernel alerts. This means that a native
service should wait alertable in kernel mode when it does a
wait that could take a long time. Also, if very long
algorithms are being performed, then TestAlert should also
be called at appropriate points.

It is preferable that a native service either complete
successfully or be entirely aborted. For those cases where
there are really two parts to the service such as an
operation followed by a wait, the service should be broken
into two parts. Each part should be executed separately from
the calling mode.

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note

A protected subsystem that is a system service server can
stop, alter, and a resume a thread by performing the
sequence of operations suspend, get state, set state, and
alert and resume.

If a native service is active when the suspend operation
takes place, then the kernel alerted flag will remain set
for the duration of the service after the thread is resumed.
The alerted flag can be tested by the service using the
TestAlert function.

A more interesting case is when the native service is
waiting kernel mode alertable. The suspend service causes a
normal kernel APC to be sent to the target thread which
completes its wait with a status of "kernel APC". The target
thread then waits nonalertable on its builtin suspend
semaphore.

When the subsystem executes the alert and resume service,
the kernel alerted flag is set in the target thread and the
target thread's suspend semaphore is released. This causes
the target thread to be unwaited with a status that is the
key value of the semaphore.

Unwaiting the thread causes it to continue execution in the
suspend APC routine which simply returns to the kernel APC
delivery code. The kernel APC delivery code restores the
state of the thread and resumes execution at the point of
interruption which is in the wait code. The wait code tests
the wait completion status and determines that the wait was
satisfied to deliver a kernel APC. The wait is repeated and
finds that the kernel alerted flag is set and that the wait
is alertable. Thus it returns immediately with a wait
completion status of "alerted".

Note that the kernel APC delivery code must save and restore
the wait completion status in the TCB so that the subsequent
suspend wait does not destroy it.

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License



Windows NT Alerts Design Note

Revision History:
Original Draft 1.0, February 9, 1989
Revision 1.1, February 10, 1989

1. Include tests for nonempty user APC gqueue in
TestAlert and Wait algorithm descriptions.

Revision 1.2, March 30, 1989

1. Minor edits to conform to standard format.

[end of alerts]

Copyright (c) Microsoft Corporation
Use subject to the Windows Research Kernel License

10



Portable Systems Group
Windows NT APC Design Note
Author: David N. Cutler

Original Draft 1.0, February 6, 1989
Revision 1.2, March 30, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



APC Design Note 2

The following design note describes a proposal for the
handling of APC's in Windows NT. The companion design notes
on alerts and attach process contain information and
algorithms that are pertinent to this design.

The nice thing about APC's is that they interrupt thread
execution at any point and cause a procedure to be executed
in the context of a specified thread. This capability can be
used to reduce the number of threads required to perform a
particular function and can alleviate the need for polling.

The new model for implementing 0S/2 and POSIX compatibility
with protected subsystems would suggest that APC's could be
used to substantially reduce the overhead and implementation
complexity of these subsystems. For instance 0S/2 timers
could be implemented by NT timers that queue an APC when
they expire. The APC would be fielded by the 0S/2 subsystem
which would clear the appropriate semaphore and delete or
repeat the timer as appropriate.

As good as this all sounds it is not without flaw. The very
thing that makes APC's so useful is also the same thing that
makes them so bad. This is the fact that they interrupt a
thread at arbitrary points. To get past this liability, the
capability to "disable" APC's over short regions of code is
needed. But this then has the problem of not being very
modular and also requires a lot of thought on the part of
the user. Writing code that is "APC" safe is VERY difficult.

SRC never recognized the need for APC's but did recognize
that it was useful to be able to send a thread an alert
signal. This signal typically means quit what you are doing
and reset to some canonical state. SRC's system provides a
function to send an alert to a thread (AlertThread), a
function to test if a thread had been alerted (TestAlert),
and a form of wait that allows a thread to be alerted while
it is waiting (WaitAlertable).

When TestAlert or WaitAlertable is called and the subject
thread has been alerted, then the condition "alert" is
raised. In addition, if AlertThread is called while a thread
is waiting as the result of a call to WaitAlertable, then
the thread is unwaited and the "alert" condition is raised.

The nice thing about the SRC alert design is that the alert
condition occurs at well defined points in the execution of
a program. These points are exactly the points where the
program says it is alertable. Writing code that is "alert"
safe is easy.

We do not want to drop the flexibility of APC's, but at the

same time we do not want to interrupt the execution of a
thread at arbitrary points. Therefore why not combine the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



APC Design Note 3

notion of alertable with the functionality of APC's? To do
this we simply do not deliver an APC unless the thread is
alertable or calls TestAlert.

We only need to do this for user mode, and it fact, do not
want to do this for kernel mode as we need to break into the
kernel mode execution of a thread at an arbitrary point. As
system designers this does not (or more succinctly better
not!) present us with the same level of difficulty that it
does the run of the mill user.

Thus in user mode, APC's are only delivered at points where
the program is alertable. In kernel mode APC's are delivered
when the appropriate enabling conditions are present.

The following is an explantion of how APC's would work using
the concepts described above.

There are three types of APC's:

1. special kernel
2. normal kernel

3. normal user

A special kernel APC is deliverable whenever the Interrupt
Request Level (IRQL) of the corresponding thread is equal to
zero, and executes in kernel mode at IRQL 1. This type of
APC is used to break into a thread's execution and perform
some short operation such as posting I/O status. Code that
runs as the result of a special kernel APC is not allowed to
acqguire any mutexes that can also be acquired at IRQL O.
Special kernel APC code is allowed to take page faults, and
thus memory management code must ensure that it runs at IRQL
1 when it owns a mutex that could also be acquired during a
special kernel APC.

A normal kernel APC is deliverable whenever the IRQL of the
corresponding thread is equal to zero, a normal kernel APC
is not already in progress, and the thread does not own any
kernel level mutexes. Normal kernel APC code executes at
IRQL 0 and is allowed to execute any code including all
system services.

A normal user APC is deliverable at any time the target
thread is user mode alertable. Normal user APC code executes
at IRQL 0 and is allowed to execute any code including all
system services.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



APC Design Note 4

Both normal kernel and normal user APC's can also specify a
routine that is to be executed in kernel mode at IRQL 1 just
prior to executing the normal APC routine.

Each thread has a machine state which includes IRQL, an APC
pending flag for each of the modes kernel and user, an APC
in progress flag for kernel mode, and the number of mutexes
that are owned in kernel mode. This state is used to
determine when an APC should be delivered to a thread.

Unlike VAX or PRISM, there is no hardware support for APC's.
Thus at each exit from kernel mode (i.e. on each REI type of
operation), appropriate tests must be made to determine
whether an APC should be delivered or not.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



APC Design Note 5

The following pseudo code describes the logic of system
exit:

ExitFromSystem:

disable interrupts;

IF Previous IRQL == 0 THEN
Get current TCB address;
IF Previous mode == Kernel THEN
IF Tcb.KernelApcPending THEN
IRQL = 1;
Call kernel APC delivery code;
END IF;
ELSEIF Tcb.UserApcPending THEN
IRQL = 1;
Call user APC delivery code;
END IF;
END IF;

Restore state and continue execution;

The user APC delivery code is only called when an APC can
actually be delivered to user mode. Calling the kernel APC
delivery code, however, does not guarantee that a kernel APC
can really be delivered. Further checks must be performed to
ensure that proper enabling conditions are present. These
tests include whether the thread currently owns any mutexes
and whether a normal kernel APC is already in progress.

A thread in Windows NT can be in one of six states:

1. initialized - the thread has been initialized but
has not been readied for execution.

2. running - the thread is currently in execution on
some pProcessor.

3. ready - the thread is either in a processor ready
queue (i.e. ready to execute) or in a process
ready queue (i.e. process is not in balance set).

4. standby - the thread has been selected to run on a
processor but has not actually started its
execution.

5. terminated - the thread has terminated but has not
yet been rundown (e.g. all resources have not been
returned) .

6. waiting - the thread is waiting on one or more
dispatcher objects to attain a state of signaled.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



APC Design Note 6

When an APC is queued, certain tests must be performed to
determine what action if any should be taken.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



APC Design Note 7

The following pseudo code describes the logic of queuing an
APC:

PROCEDURE QueueApc (
IN Acb : POINTER KtApc;
IN Tcb : POINTER KtThread;
) i

BEGIN
IF Acb.Mode == Kernel THEN
IF Acb.Type == Special THEN
Insert APC at front of thread kernel APC
gqueue selected by Acb.ApcIndex;
ELSE
Insert APC at end of thread kernel APC gqueue
selected by Acb.ApcIndex;
END IF;
IF Tcb.State == Running AND
Acb.ApcIndex == Tcb.ApcIndex THEN
IF Tcb.NextProcessor == CurrentProcessor THEN
Set software interrupt at IRQL 1;
ELSE
Set APC delivery request for target
processor;
Set interrupt request for target
processor;
END IF;
ELSEIF (Tcb.State == Waiting AND
Acb.ApcIndex == Tcb.ApcIndex AND
Tcb.WaitIrgl == 0) AND
(Acb.Type == Special OR
(Tcb.MutexCount == 0 AND
NOT Tcb.KernelApcInProgress)) THEN
Unwait thread with status of KernelApc;
END IF;
Tcb.KernelApcPending = True;
ELSE
Insert APC at the end of thread user APC queue
selected by Acb.ApcIndex;
IF Tcb.State == Waiting AND
Acb.ApcIndex == Tcb.ApcIndex AND
Tcb.WaitMode == User AND
Tcb.Alertable THEN
Tcb.UserApcPending = True;
Unwait thread with status of Alerted;
END IF;
END IF;

END QueueApc;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



APC Design Note 8

A thread may be unwaited to execute a special kernel, normal
kernel, or normal user APC.

If the APC executes in kernel mode then the APC will have
already been executed by the time that execution continues
in the wait code. For this case the wait function is merely
repeated.

If the APC executes in user mode, then execution continues
in the wait code without having deliverd the user APC. For
this case, the wait code simply returns the status "alerted"
to the executive level Wait routine. The executive level
Wait routine must return a status of "RepeatService" to the
system service dispatch. The system service dispatcher backs
up the PC so that the wait service will be repeated,
restores state as necessary, and then executes the "REIL"
which will cause a user APC to occur.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



APC Design Note 9

Revision History

Original Draft 1.0, February 6, 1989
Revision 1.1, February 10, 1989
1. Move alert algorithms to alert design note.

2. Add test for attached process in QueueApc
procedure.

3. Add software interrupt request when APC is
gueued to the current processor in kernel
mode .

4. Correct algorithm for delivery of user APC.

Revision 1.2, March 30, 1989
1. Minor edits to confrom to standard format.

2. Add capability to receive APC's while attached
to another address space.

[end of apc.doc]

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Portable Systems Group

Windows NT Argument Validation Specification
Author: David N. Cutler

Original Draft, May 4, 1989

Revision 1.1, May 5, 1989

Revision 1.2, May 10, 1989
Revision 1.3, July 15, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License






Windows NT Argument Validation Specification i

1. OVETVIEW .ttt ettt e e 1
2. REQUITEIMENTS 1.ttt 1
1T 00755 = 1w o} s KNS PP 1
G NI aACES e 3
4.1 Probe for Readability and Read Argument Value...................... 3
4.2 Probe for Writeability and Read Argument Value ..................... 4
4.3 Probe for Writeability and Read /Write Argument Value ........... S
4.4 Probing An Aggregate Value..........cooeviiiiiiiiiiiiieneeeeeeenn, 7

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License






Windows NT Argument Validation Specification 1

1. Overview

This document describes the argument probing and capture
requirements to which all system services must adhere.

System services must be written such that they are robust and provide
protection against malicious attack and inadvertent program bugs. It
must not be possible to crash or corrupt the system by passing an
invalid argument value, a pointer to memory that is not accessible to the
caller, or by dynamically altering or deleting the memory occupied by an
argument in a simultaneously executing thread.

2. Requirements

Every system service must ensure that the arguments on which it
operates are valid (i.e., values are correct). This is essential to robust
system operation and involves the capturing of values and the probing of
argument addresses at appropriate points.

In general, a system service should capture all arguments on entry to the
procedure. This ensures that the caller or one of its cohorts (buddy
threads) cannot dynamically alter the value of the argument after it has
been read and verified, or delete the memory in which it is contained.

In some cases, it is not necessary to capture the value of an argument
immediately. Such is the case for I/O buffers and name strings. However,
all pointers MUST be captured and the addresses to which they point
MUST be probed for accessibility.

Fortunately, most arguments do not need explicit capture since they are
passed in registers. Arguments that are passed in memory are probed
and captured by the system service dispatcher as necessary.

3. Operation

The address space layout of Windows NT contains a boundary that
delineates user address space from system address space. All addresses
above the boundary are considered system addresses and all addresses
below the boundary are considered user addresses.

Pages in the system part of the address space are owned by kernel mode
and are not accessible to the user unless they are double mapped into
the user part of the address space. Pages in the user part of the address
space are owned by user mode and the access for kernel mode is
identical to that for user mode.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Argument Validation Specification 2

The executive NEVER creates a page in the user part of the address
space that is owned by kernel mode. Furthermore, at the boundary
between user address space and system address space, there are 64K
bytes that are inaccessible to all modes. This address space layout
makes it possible to determine whether an address is a valid user
address simply by doing a boundary comparison.

When a system service is called, the trap handler gets control, saves
state, and transfers control to the system service dispatcher. The system
service dispatcher determines which system service is being called, and
obtains the address of the appropriate function and the number of in-
memory arguments from a dispatch table. If the previous processor mode
is user mode and there is one or more in-memory arguments, then the
in-memory argument list is probed and then copied to the kernel stack. If
an access violation occurs during the copy, then the system service is
completed with a status of access violation. If an access violation does
not occur, then the the pointer to the in-memory argument list is
changed to point to the copy of the arguments on the kernel stack. The
system service dispatcher sets up a catchall condition handler, and then
calls the system service function.

The first thing the system service should do is establish a condition
handler. This handler should be prepared to handle access violations
that may occur as argument pointers are dereferenced to read or write
actual argument values.

Next, the system service code should obtain the previous processor
mode. If the previous processor mode was kernel, then there is no need
to probe any arguments. The executive does not call itself with bad
arguments.

If the previous processor mode was user, then any argument values that
are read or written by dereferencing a pointer must be probed for
accessibility. Probing is accomplished by first ensuring that the address
of the variable is within the user's address space and then reading or
writing the variable as appropriate. The code that actually probes
pointer-related arguments does not set up a condition handler. It merely
does the boundary check and then reads or writes the indicated location.
If the boundary check fails, an access violation condition is raised. If the
memory is inaccessible, an access violation is raised by hardware. Thus
probes are extremely cheap.

The complete code at the beginning of a system service should be
constructed as follows:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Argument Validation Specification 3

// set up condition handler to catch access violations

if (GetPreviousMode() != KernelMode) {

// probe and capture reference arguments

}

At this point in the execution of a system service, all input values have
been captured and all output variables have been probed for writeability.
The system service performs its function, writes output values as
necessary, and returns a status that indicates whether the service
succeeded or failed.

During the writing of output values, an access violation can occur
because another thread or user altered the address space of the calling
thread. Access violations that occur at this time are silent and do not
cause the service to fail. If this were not the case, then it would be very
difficult to actually complete a system service since code would have to
be added to back out and undo the service right up until the very last
output value is written. If the caller receives a success status under such
conditions, it is likely that the caller will attempt to access one of the
output values and get an access violation.

4. Interfaces

The following sections describe the interfaces that are provided to probe
arguments for read and write accessibility.

4.1 Probe for Readability and Read Argument Value

The following functions provide the capability to probe a primitive data
type for readability and to read an argument value.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Argument Validation Specification 4

CHAR
ProbeAndReadChar (
IN PCHAR Address

)

UCHAR
ProbeAndReadUchar (
IN PUCHAR Address

);

SHORT
ProbeAndReadShort (
IN PSHORT Address

)

USHORT
ProbeAndReadUshort (
IN PUSHORT Address

);

LONG
ProbeAndReadLong (
IN PLONG Address

)

ULONG
ProbeAndReadUlong (
IN PULONG Address

)

QUAD
ProbeAndReadQuad (
IN PQUAD Address

)
UQUAD

ProbeAndReadUquad (
IN PUQUAD Address

)

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Argument Validation Specification 5

HANDLE
ProbeAndReadHandle (
IN PHANDLE Address

)

BOOLEAN
ProbeAndReadBoolean (
IN PBOOLEAN Address

);

The previous functions are used to probe and read a value pointed to by
a safe pointer. A safe pointer is one that has either been captured on
procedure entry or which has been previously captured with one of the
these functions. The functions compare the pointer value to the
user/system address boundary, read the appropriate data-type value,
and return the value as the function value. If the value is not of
consequence, then the function value is simply not assigned to a
variable. Note that both signed and unsigned data types are provided.

4.2 Probe for Writeability and Read Argument Value

The following functions provide the capability to probe a primitive data
type for writeability and read an argument value.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Argument Validation Specification 6

CHAR
ProbeForWriteChar (
IN PCHAR Address

)

UCHAR
ProbeForWriteUchar (
IN PUCHAR Address

);

SHORT
ProbeForWriteShort (
IN PSHORT Address

)

USHORT
ProbeForWriteUshort (
IN PUSHORT Address

);

LONG
ProbeForWriteLong (
IN PLONG Address

)s
ULONG

ProbeForWriteUlong (
IN PULONG Address

)

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Argument Validation Specification 7

QUAD
ProbeForWriteQuad (
IN PQUAD Address

)

UQUAD
ProbeForWriteUquad (
IN PUQUAD Address

);

HANDLE
ProbeForWriteHandle (
IN PHANDLE Address

)

BOOLEAN
ProbeForWriteBoolean (
IN PBOOLEAN Address

);

The previous functions are used to probe for writeability and read a value
pointed to by a safe pointer. A safe pointer is one that has either been
captured on procedure entry or which has been previously captured with
one of these functions. The functions compare the pointer value to the
user/system address boundary, read the appropriate data type value,
write the value that was read back into memory, and return the original
value as the function value. If the value is not of consequence, then the
function value is simply not assigned to a variable. Note that both signed
and unsigned data types are provided.

4.3 Probe for Writeability and Read/Write Argument Value

The following functions provide the capability to probe a primitive data
type for writeability, read an argument value, and write a specified value.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Argument Validation Specification 8

CHAR

ProbeAndWriteChar (
IN PCHAR Address,
IN CHAR Value

)

UCHAR
ProbeAndWriteUchar (
IN PUCHAR Address,
IN UCHAR Value

)

SHORT
ProbeAndWriteShort (
IN PSHORT Address,
IN SHORT Value

)

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Argument Validation Specification 9

USHORT
ProbeAndWriteUshort (
IN PUSHORT Address,
IN USHORT Value

);

LONG

ProbeAndWriteLong (
IN PLONG Address,
IN LONG Value

);

ULONG
ProbeAndWriteUlong (
IN PULONG Address,
IN ULONG Value

)

QUAD

ProbeAndWriteQuad (
IN PQUAD Address,
IN QUAD Value

)

UQUAD

ProbeAndWriteUquad (
IN PUQUAD Address,
IN UQUAD Value

)

HANDLE
ProbeAndWriteHandle (
IN PHANDLE Address,
IN HANDLE Value

)

BOOLEAN
ProbeAndWriteBoolean (
IN PBOOLEAN Address,
IN BOOLEAN Value

);
The previous functions are used to probe a primitive data type for

writeability and read a value pointed to by a safe pointer. In addition, the
value that is to be written is specified as an argument to the function. A

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Argument Validation Specification 10

safe pointer is one that has either been captured on procedure entry or
which has been previously captured with one of these functions. The
functions compare the pointer value to the user/system address
boundary, read the appropriate data-type value, write the specified value
to memory, and return the original memory contents as the function
value. If the value is not of consequence, then the function value is
simply not assigned to a variable. Note that both signed and unsigned
data types are provided.

4.4 Probing An Aggregate Value

The following functions provide the capability to probe aggregate data
types (i.e., structures, arrays, strings, etc.) for read and write
accessibility.

VOID

ProbeForRead (
IN PCHAR Address,
IN ULONG Length

)

VOID

ProbeForWrite (
IN PCHAR Address,
IN ULONG Length

)

The previous functions are used to probe an aggregate for read or write
accessibility using a safe pointer. A safe pointer is one that has either
been captured on procedure entry or which has been previously captured
with one of the preceding functions. The functions compare the starting
and ending addresses of the specified aggregate for read or write
accessibility and then read or write one character from each page that is
spanned by the aggregate. Note that these functions do not capture the
aggregate value.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Argument Validation Specification 11

Revision History:
Original Draft 1.0, May 4, 1989
Revision 1.1, May 5, 1989
1. Add capturing of reference arguments to sample system service
code.

2. Change data type definitions to make Portable System Group
conventions.

Revision 1.2, May 10, 1989

1. Move the capturing and probing of the in-memory argument
list into the system service dispatcher.

Revision 1.3, July 15, 1989

1. Add functions to probe handle and boolean values.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Portable Systems Group
Windows NT Attach Process Design Note
Author: David N. Cutler

Original Draft 1.0, February 8, 1989
Revision 1.2, March 30, 1989

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Attach Process Design Note

This design note discusses a proposal that would allow a
thread to attach to the address space of another process,
execute code in the attached process's address space, and
then detach and resume execution in the original process
address space. It is envisioned that this capability will be
required to implement the newly proposed system structure.

This capability would not be exported to user mode at all.
It is intended for internal use by the executive layer of
the system.

The new system structure (i.e. system service servers)
requires the ability to perform certain operations on behalf
of another process. Typical of these operations is creating
and deleting virtual memory. In order to implement these
operations, we either have to build the data structures and
algorithms such that they can be done outside the recipient
process or architect a way to actually execute code within
the address space of another process.

A good example of a difficult service to build outside of a
process 1is the deletion of virtual memory. Mach stands on
its head to implement this capability and, while it is doing
such an operation, a global virtual memory lock must be
held.

Graham Hamilton (of exDECwest fame) suggested that a way to
do this was to have some number of anonymous system threads
which could do such an operation. A requesting thread would
build a request packet that contained the arguments of the
operation to be performed, the function that was to be
executed, a pointer to the address map that the thread was
to execute in, and an event to synchronize the completion of
the operation. The request packet would then be gueued to
the worker thread, a semaphore signaled, and the requesting
thread would wait on the event. A worker thread would be
awakened by the signal of the semaphore and would remove an
entry from the request queue. The thread would attach to the
new address space, perform the operation, set the event,
detach from the address space, and then look for more work
to do. The requesting thread would then resume execution.

In analyzing Graham's proposal it is clear that there are
two extra context switches, a copy of the argument data, two
extra translation buffer and data cache flushes, and the
need to attach to an address space. So why not just let the
requesting thread directly attach to the target process
address space and avoid the worker threads, the argument
copy, and the two extra context switches?

When a thread wanted to execute in another process' address
space it would execute the following logic:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Attach Process Design Note

verify that source process has the rights necessary to
perform the desired operation on the destination
process

obtain pointers to objects in the source process as
necessary

KeAttachProcess (pPcb)

perform desired operation in address space of target
process

KeDetachProcess ()

resume execution i1s source process

There are several questions and complications that arise
from doing this kind of operation. These include:

1. How is the kernel stack of the source thread
addressed in the target process?

2. What happens if the source process gets removed from
the balance set while an attach operation is in
progress and causes the process' thread's kernel
stacks to be made pageable?

3. What happens if the target process is not in the
balance set?

4. What happens if the source or target processes are
terminated?

5. What happens if the source thread is terminated?
6. What happens if a thread tries to do a second attach
after having attached to a target process' address

space?

7. What object table is visible when a thread is
attached to the address space of another process?

8. What working set is manipulated while a thread is
attached to the address space of another process?

9. What process gets charged for the time that is
consumed while the thread is attached to another
process' address space?

10. How is mutex ownership handled between the source
and target processes?

11. What happens if user and/or kernel mode are alerted
while a process is attached?

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Attach Process Design Note

12. What happens to APC's that are queued to the thread
after it has entered the target process' address
space?

13. Can the attached thread receive APC's?

14. What happens if a suspend or resume is performed on
the specified thread?

Before attempting to answer these questions it is useful to
review the kernel data structures that correspond to process
and thread objects. These data structures are described in
more detail at the end of this note.

There is a Process Control Block (PCB) and a Thread Control
Block (TCB).

A PCB contains a pointer to a process address map (actually
the physical address of the Page Directory for the process),
a list of all the TCB's that are members of the PCB, a count
of all the kernel mutexes owned by member TCB's, and a state
which is either "included" or "excluded" (corresponds to
whether the process is, or is not, in the balance set).

A TCB contains a pointer to the PCB of which it is a member,
an APC queue for each of the modes kernel and user, a kernel
APC in progress flag, a kernel APC pending flag, a user APC
pending flag, a user alert APC Control Block (ACB), an
alerted flag for each of the modes kernel and user, an
alertable wait flag, an owned mutex count, and link pointers
for linking the thread into the PCB's TCB list.

Actually there are several other fields in the TCB and PCB,
but they are not really pertinent to this discussion.

The kernel data structures that describe the TCB and PCB are
contained within the executive data structures that describe
the process and thread objects. The executive must use the
linkage structures provided by the kernel and cannot keep a
separate set of linkage pointers that tie the data
structures together.

The below discussion addresses the questioins raised above
and gives an explanation of how KeAttachProcess and
KeDetachProcess work.

How is the kernel stack of the source thread addressed in
the target process?

We would like to make kernel stacks addressible in the

process part of the address space. However, in order to
attach to another process' address space we will need to map

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Attach Process Design Note

kernel stacks in the system part of the address space so we
can avoid an argument copy and allocation of a temporary
kernel stack. If we do not do this, then we will have to
allocate a temporary kernel stack in the system part of the
address space, copy necessary argument information to the
temporary stack, switch to the temporary stack, attach the
target process' address space, execute the necessary logic,
switch back to the source address space, switch back to the
original stack, and then deallocate the temporary stack.

When a process is in the balance set the kernel stacks of
all its threads must be locked in memory (there are several
ways we can do this - the reference count on the pages being
the most likely candidate). When a process is not in the
balance set, the kernel stacks of all its threads are
pageable. The locking and unlocking of these pages is
performed by the balance set manager when it brings a
process into or out of the balance set.

What happens if the source process gets removed from the
balance set while an attach operation is in progress and
causes the process' thread's kernel stacks to be made
pageable?

If the source process is allowed to leave the balance set
while a thread is attached to another process, then the
kernel stack on which the thread is running would become
pageable. This cannot be allowed to happen since it would
cause the system to crash if a page fault occurred on the
kernel stack itself. In order to prevent this situation from
happening, the Pcb.MutexCount in the source PCB is
incremented by one on attach to ensure that the process is
not allowed to leave the balance set. When the corresponding
detach is executed the count if decremented by one.

Even though the process is not allowed to leave the balance
set any threads that do not own mutexes are prevented from
further execution if the process is excluded from the
balance set. Threads that do own mutexes are allowed to
continue execution until they release all the mutexes they
own. Therefore Tcb.MutexCount in the TCB is incremented by
one on attach to ensure that the thread continues to
execute. When the corresponding detach is executed the count
is decremented by one.

What happens if the target process is not in the balance
set?

If the target process is not in the balance set, then the
subject TCB is inserted in the target PCB's ready queue.
When the corresponding process is brought into the balance
set, the thread's TCB will be inserted in the appropriate
dispatcher ready queue. We must ensure that once the target

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Attach Process Design Note

process is brought into the balance set, it is not allowed
to leave the balance set until the detach operation is
performed. This is required since we have incremented
Tcb.MutexCount which allows the thread to continue running
in the target process' address space even though the process
might be removed from the balance set. Therefore
Pcb.MutexCount is also incremented in the target process'
PCB during the attach operation. When the detach operation
occurs all the mutex counts will be corrected to enable the
respective processes to leave the balance set.

What happens if the source or target processes are
terminated?

What happens if the source thread is terminated?

The kernel does not allocate or deallocate any data
structures that control the execution of threads within the
system. It depends on the executive to keep appropriate
reference counts, and only when the reference count is zero,
can the executive delete data structures. Therefore the
executive must ensure that the reference count of the source
process, the target process, and the subject thread are such
that they cannot be deleted during the execution of a
attach/detach sequence.

What happens if a thread tries to do a second attach after
having attached to a target process' address space?

The TCB of a thread contains the storage necessary to save
information for a single execution of an attach/detach
sequence. Therefore the rule is that only one level of
attach is allowed. If an attempt is made to attach to
another address space while an address space is already
attached, then a bug check will occur.

What object table is visible when a thread is attached to
the address space of another process?

The object table of the attached process is visible to a
thread when it is attached to another process' address
space. It is doubtful that it will ever be necessary to
create an object in another process' object table, but this
operation can be performed if necessary.

What working set is manipulated while a thread is attached
to the address space of another process?

While a thread is attached to another process' address space

it takes page faults and manipulates the working set of that
process as if it were really a thread in that process.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Attach Process Design Note

What process gets charged for the time that is consumed
while the thread is attached to another process' address
space?

While a thread is attached to a target process' address space,

What

the target process is charged for the execution time
accumulated by the thread. When the detach operation occurs,
execution time is again charged to the source process.

How is mutex ownership handled between the source and target
processes?

There is simple rule for mutex ownership. When a thread does
and attach or detach process it cannot own any mutexes. If
an attempt is made to attach/detach while a thread owns a
mutex, then a bug check will occur.

What happens if user and/or kernel mode are alerted while a
process is attached?

There is no interaction between alert and attach process.
Kernel alert applies to whatever context the thread is
currently in. The thread can either respond or ignor kernel
alert as appropriate. User alert only applies to the source
context since user mode cannot be entered when a process is
attached.

A user mode alert cannot occur while a thread has a process
attached since the thread will never do a wait alertable for
user mode. An alert ACB may have been queued just prior to
attaching the process in which case it will occur when the
thread detachs and returns to user mode.

happens to APC's that are queued to the thread after it has
entered the target process' address space?

Can the attached thread receive APC's?

An ACB is initialized and directed to a thread running in a

specific address space. Therefore APC's directed to a source
process context cannot be allowed to occur while the subject
thread is attached to the address space of another process.
This means that there must be a way to direct an APC to the
right context and make sure it does not occur at the wrong
time.

To accomplish this, each TCB will contain an APC state index

(Tcb.ApcStateIndex) which can have a value of zero or one
(only one level of attach is allowed). When an ACB is
initialized the address of the associated TCB must be
specified. This allows Tcb.ApcStateIndex and
Tcb.CurrentApcState.Pcb to be captured and stored in the ACB
in addition to the address of the TCB itself.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Two

An a

When

When

When

Whil

When

Windows NT Attach Process Design Note

sets of APC context are stored in the TCB; the current APC
context (Tcb.CurrentApcState) and the saved APC context
(Teb.SavedApcState) . Each set of context contains the APC
state information described for the kernel TCB data
structure.

rray of pointers is used to address the two sets of APC
context. When an ACB is queued, the appropriate set of APC
context is selected by using Acb.ApcStateIndex to obtain the
appropriate array member which contains the address of the
corresponding set of APC context. A comparison is then made
between the PCB address stored in the ACB and the PCB
address stored in the selected APC context. If a mismatch
occurs, then a bug check is executed (i.e. an attach was
performed, an ACB was initialized (e.g. associated with a
timer), a detach was performed, and then the ACB was
gueued) . Otherwise the ACB is inserted in the selected APC
gueue and appropriate APC state bits are updated. If
Tcb.ApcStateIndex is equal to Acb.ApcStateIndex, then the
APC effects the current context of the subject thread and
checks are made to determine if an APC should be delivered
immediately.

Tcb.ApcStateIndex is zero, the first pointer of the array
points to Tecb.CurrentApcState and the second pointer points
to Tcb.SavedApcState. To ensure a PCB address mismatch
occurs if an attempt is made to queue an ACB with an
Acb.ApcStateIndex value of one, a value of NIL is stored in
Tcb.SavedApcState.Pcb.

Tcb.ApcStateIndex is one, the first pointer of the array
points to Tcb.SavedApcState and the second pointer of the
array points to Tcb.CurrentApcState. Both sets of context
have a valid PCB pointer.

an attach process is executed, Tcb.ApcStateIndex is
examined. If the value is one, then a bug check occurs (i.e.
an attempt is being made to attach another process while one
is already attached). Otherwise Tcb.ApcStateIndex is
incremented and the current APC context is copied to the
saved APC context. The two pointers in the array that
address the APC context blocks are switched and the current
APC state is initialized.

e a thread is executing in another process' address space,
the thread can initialize and receive APC's targeted to that
address space.

a detach process is executed, Tcb.ApcStateIndex is examined.
If the value is zero, then a bug check occurs (i.e. an
attempt is being made to detach an address space when one is
not attached). The current APC context is also examined to

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Attach Process Design Note

determine if the thread has a "clean" APC context. If a
kernel APC is in progress, the kernel APC queue contains an
entry, or the user APC queue contains as entry, then a bug
check occurs. Otherwise Tcb.ApcStateIndex is decremented,
the saved APC context is moved to the current APC context,
the saved APC context PCB address is set to NIL, and the two
entries in the pointer array are switched.

What happens if a suspend or resume is performed on the
specified thread?

A thread is suspended by queuing the thread's builtin
suspend ACB. This ACB is initialized such that it's target
is the source process' address space and causes a normal
kernel APC. In an attempt is made to suspend a thread while
it attached to another process, then the suspend ACB will
get gqueued to the source context and the suspend count will
get adjusted. Suspension of the thread will not actually
occur until the thread does a detach and reenters the source
context. The thread may be suspended and resumed several
times while it is attached to another process. This works in
the same way as the case where the suspend APC cannot be
delivered because the thread is either currently in a kernel
APC or has kernel APC's blocked (IRQL raised).

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Attach Process Design Note

The following pseudo code describes the operation of attach to
address space:

PROCEDURE KeAttachProcess (
IN Pcb : POINTER KtPcb;
) ;

BEGIN

Acquire dispatcher database lock;
Get current TCB address;
IF Tcb.ApcStateIndex == 1 OR Tcb.MutexCount <> 0 THEN
Call bugcheck with fatal error;
ELSE
Tcb.ApcStateIndex += 1;
Tcb.SavedApcState = Tcb.CurrentApcState;
Tcb.CurrentApcState.Pcb = Pcb;
Tcb.CurrentApcState.KernelApcInProgress = FALSE;
Tcb.CurrentApcState.KernelApcPending = FALSE;
Tcb.CurrentApcState.UserApcPending = FALSE;
Initialize APC gueue headers for current state;
Swap APC context pointers in APC pointer array;
Tcb.MutexCount += 1;
Pcb.MutexCount += 1;
Tcb.SavedApcState.Pcb->Pcb.MutexCount += 1;
IF Pcb.Active OR Pcb.MutexCount > 1 THEN
Flush data cache;
Set new page directory pointer;
Release dispatcher database lock;
ELSE
Tcb.PcbReadyQueue = TRUE;
Insert TCB in PCB's ready dqueue;
Select new thread to run;
Call context switch routine;
END IF;
END IF;
RETURN;
END KeAttachProcess;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Windows NT Attach Process Design Note

The following pseudo code describes the operation of detach
from address space:

PROCEDURE KeDetachProcess (
) i

BEGIN

Acquire dispatcher database lock;

Get current TCB address;

IF Tcb.ApcStateIndex == 0 OR Tcb.MutexCount <> 1 OR
Tcb.CurrentApcState.KernelApcInProgress OR
Current kernel APC queue not empty OR
Current user APC queue not empty THEN

Call bugcheck with fatal error;

ELSE
Tcb.ApcStateIndex -= 1;
Tcb.CurrentApcState.Pcb->Pcb.MutexCount -= 1;
IF Tcb.CurrentApcState.Pcb->Pcb.MutexCount == 0
AND NOT Tcb.CurrentApcState.Pcb->Pcb.Active
THEN
Set Tcb.CurrentApcState.Pcb->Pcb.Event;
END IF;

Tcb.CurrentApcState = Tcb.SavedApcState;
Tcb.SavedApcState.Pcb = NIL;
Swap APC context pointers in APC pointer array;
Tcb.MutexCount -= 1;
IF Kernel APC queue not empty THEN
Tcb.CurrentApcState.KernelApcPending = TRUE;
Set software interrupt at IRQL 1;
END IF;
Tcb.CurrentApcState.Pcb->Pcb.MutexCount -= 1;
IF Tcb.CurrentApcState.Pcb->Pcb.MutexCount == 0
AND NOT Tcb.CurrentApcState.Pcb->Pcb.Active
THEN
Set Tcb.CurrentApcState.Pcb->Pcb.Event;
Tcb.PcbReadyQueue = TRUE;
Insert TCB in PCB's ready dqueue;
Select new thread to run;
Call context switch routine;
ELSE
Flush data cache;
Set new page directory pointer;
Release dispatcher database lock;
END IF;
END IF;
RETURN;
END KeDetachProcess;

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

11



Windows NT Attach Process Design Note 12

Revision History:

Original Draft 1.0, February 8, 1989

Revision 1.1, February 17, 1989

1. Add text to explain what interactions exist
between attach/detach process and
suspend/resume, APC's, alerts, and mutexes.

2. Allow APC's to be queued and processed in
either the source or target address on
attach/detach operations.

Revision 1.2, March 30, 1989

1. Minor edits ot conform to standard format.

[end of attproc]

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Portable Systems Group
NT OS Base Product Contents
Author: Lou Perazzoli

Original Draft 0.0, September 19, 1990
Revision 0.1, September 25, 1990
Revision 0.2, October 2, 1990

Revision 0.3, October 15, 1990
Revision 0.4, October 18, 1990
Revision 0.5, October 30, 1990
Revision 0.6, November 27, 1990

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License






NT OS Base Product Contents

—

I a5 e Yo A6 Lei 1o} s NUNURURUNEU NPT

—_

2. Internal development workstation .........c..coeeeiiiiiiiiiiiiinnnen.e.

3. Beta testing SDK kit (includes DDK) .......coooiiiiiiiiiinen,
Bl AP SOt ittt
3.2 SUDSYSEEIMS .ouiiiiiiiii e
3.3 File SySteImMIS . uutniiiii
3.4 DevVICE DIIVETS ...ouiiiiiiiiiiiiiiii e

3.4.2 Intel 486/MP and uni-processor drivers: .........ccceevevenenenen.
3.5 Fault tolerance.......cooeiuiiiiiiiiiiiii
3.6 Language SUPPOTL ...o.euiniiii e
3.7 MIPS SUPDPOTL ettt et ettt e e e e e e enaaaenanas
3.8 INtel 486 SUPPOTT cneninininiii e aans
3.9 Hardware booting SUPPOTIt.......cccuveiiiniiiiiiiiiiiiiiiie e,
3.10 Installation / Setup ...cocieiiiii e
3.11 Performance Utilities ........c.ooveviiiiiiiiiiiiiiinir e
3.12 Development UtilitieS.......coeuviiiiiiiiiiiiii e
3.13 Internal Development Utilities (not shipped with SDK) ..........

4. Retail Product for RISC/PC (includes an SDK)..........cccoviiiiiiininen.n.
4.1 APT SEtS . ouiiiiii i
4.2 SUDSYSTEIMIS . ouiiiiiiiiii e
4.3 DEVICE DIIVETS c.uviiniiiiiiiiiii e
4.4 File SYSTOIMIS . .ttt
4.5 Fault tolerancCe ... .ocuinininiiii
4.6 Language SUPPOTLL .ueneei et
4.7 Hardware booting SUPPOTIt.....ccoeuiuiiiiiiiiiiiiiiiiiiieineeeeeeieeenenn
4.8 Installation / Setup....coeeviiiiiiiiiii e
4.0 SO CUTILY tutntitiiiiit i et
4.10 Performance Utilities .......ccooveviiiiiiiiiiiiii e 11
4.11 Development Utilities.......coeuviiiiiiiiiiiiiii e 12

O 00 00 00 00 00 00 00 00 OO N~Nooouunugta b, PP WWNDNDN

5. Retail Product for Servers (RISC, 486 and 486MP)................c........ 13
S.1 APL SEES oottt 13
5.2 SUDSYSEEIMS 1.ttt 13
5.3 File SyStemIS . uuuiiiiii e 13
5.4 DEVICE DIIVETS . vuiiiiiiiiiiiiie e 13
5.5 Fault tolerance .........oeuiuiiiiiiiii e 13
5.6 Language SUPPOTT «.ouiuiniiiiiiiii e 13
5.7 Hardware booting SUpPPOrt....c.coeieiiiiiiiiiiiiiiiiiieeeeeeee 13
5.8 Installation / SetUP ...oiu it 14

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS Base Product Contents

5.9 SECUTIILY .ttt 14
5.10 Performance Utilities ......covviiiiiiiiiiiii e 14
5.11 Development Utilities.....ccvuvuiiiiiiiiiiii e, 14
6. Retail Product for 486 workstations .........coceeviviviiiiiiiniiiiiiiniiininn.n. 15
.1 AP St iuiiiiiitiii e e e 15
0.2 SUDSYSEEIMS ..eniniiiiii i 15
0.3 File SYSteImMIS. . cuiuiiiiiiiii e 15
0.4 DEVICE DIIVETS . uiniititiniiiitiiie e ettt e teneneaaenanan 15
0.5 Fault tolerance........coouiuiuiiiiiiiii e 15
0.6 Language SUPPOTL ...o.iuieiiiiiiiiiiiee e 15
0.7 Intel 486 SUPPOTL ceuinieiiiniiii e 15
6.8 Installation / SetUp....cccvevuiiiiiiiiii e 15
0.9 SECUTILY enininiiiiii e 16
6.10 Performance Utilities .........ccooeviviiiiiiiiiiiir e 16
6.11 Development Utilities.......ccveviiiiiiiiiiiiiiiii 16

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS Base Product Content 1

1. Introduction

This document describes the NT Base group deliverables for the NT OS for four
product releases:

o beta testing SDK kit for RISC and 486
o retail product for MIPS and 486 workstation (includes retail SDK kit).
o retail product for RISC, uniprocessor 486, and 486 mutliprocessor servers

o retail product for 486 workstation which includes MVDM and Win-16
support.

Note that 386 workstations will be supported (B6 stepping and above), but
they will not have kernel support for correcting the deficiencies in i386
memory management. This deficiency manifests itself by allowing one thread
to change the page protection on a page to read-only and having another
thread (which is executing a kernel service) write to that page. The 486 has
hardware support to honor page protections in kernel mode.

The Base group is responsible for those portions of NT OS which do not include
networking or windowing, for example, device drivers, files systems, scheduler,
loader.

2. Internal development workstation

Allows self-hosting of NT on an NT workstation. This includes CMD.EXE, compiler,
assembler, linker, SLM, editor (MEP), redirector, and other tools.

As the windowing environment will still be under development, a stopgap character
mode window driver will be developed which will allow the VGA on the 386/486 and
frame buffer on JAZZ to appear as an ANSI terminal device. This allows character
based applications to operate using the graphics device as an output device. The
ANSI terminal emulation will be incorporated into the Windows environment for the
SDK release. This support is described in the document titled NT Console Interface
Specification.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS Base Product Content 2

3. Beta testing SDK kit (includes DDK)

The beta testing SDK kit contains the basic features of NT OS to allow ISVs and
OEMs to begin developing applications and device drivers targeted specifically at
Win-32 and/or NT.

3.1 API Sets
The following API sets are provided (including necessary header files for C language):

Win-32 Base API - provides the 32-bit interface for integrating with the base
operating system. These APIs are described in the document titled Win32
Base APIs and are designed as a logical extension to the Windows 3.0 Base
APIs thereby allowing a straightforward conversion of software developed for
Windows 3.0. This same API set is offered on the 32-bit version of Windows.

NT Native API - this is the underlying API set for NT. It is currently undecided if this
API set is formally documented, though certain features may be provided
through an "NT Extension" API set. One such feature which would improve
server based applications is asynchronous I/O. Issue: if the NT API set is
provided, documentation must exist.

Device Drivers - this is the "public executive" (device helper) API set exposed by NT
kernel mode components. The User Ed group is developing documentation for
device driver developers. The NT Design Workbook specifies the device driver
model and interface in documents titled NT OS Driver Model Specification and
NT OS I/ O System Specification.

3.2 Subsystems

The NT OS base provides a number of subsystems which act as servers for various
applications. Subsystems operate as user mode processes but may have amplified
privileges beyond the client application. This allows subsystems to manage global
state, open key files, and manage critical resources on behalf of its clients.

The following subsystems exist in the NT OS base:

o Session Manager - provides a mechanism to start processes executing images
which were developed for a different API environment then the current
process. For example, a POSIX application can "exec" an image which was
developed with the OS/2 API set. The session manager is describes in a
document titled NT OS Session Management and Control.

o Security

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS Base Product Content

o Local Security Authority - maintains security policy information, including
list of privileged users, audit control, and security domain membership.
This is described in a document titled NT OS Local Security Specification.

o Security Account Manager - maintains user and group account
information as described in the document NT OS Security Account
Manager Protected Server (SAM).

Loader - provides mechanism for locating DLLs, translating symbol names to
executable images, and other DLL related functions.

Windows Base - provide mechanism for maintaining shared state between
window processes and groups. The functionality provided by this subsystem
may be moved to the subsystem which provides windows graphic support.

Debug - provides dispatching of debug events. This subsystem is described in
the document titled NT OS Debug Architecture.

Issue: Is DOS emulation required on the RISC/PC? How about Win-16 emulation?

3.3 File Systems

o

FAT - supports the FAT file format. This allows floppy disks to be exchanged
between NT and DOS. The overall file system design is described in the
document titled NT File System Design Note.

HPFS - supports the HPFS file format as defined by OS/2 v1.21.

NTFS - supports the NT native fully recoverable file system. This file system
provides enhanced data integrity features to provide basic support for
transactions. The NTFS is described in the document titled NT Recoverable
File System Specification.

CD-ROM - supports the ISO CD-ROM file format.

NPFS - supports named pipes. The named pipe file system is described in the
document titled NT Named Pipe File Specification.

BOOT - supports multiple boot partitions and allows new file formats to be
bootable as described in the NT Boot Architecture.

3.4 Device Drivers

Device drivers provide the necessary logic to bind the I/O functions to a physical
device. NT OS supplies the proper mechanisms to allow drivers to be loaded either
at system initialization or later once the system is operational.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS Base Product Content

3.4.1 MIPS R4000 PC drivers:

o

o

floppy as described in the document NT Floppy Driver Specification.

SCSI driver with support for disk, CD-rom and tape as described in NT SCSI
Design Note.

serial - western digital part (2 serial, 1 parallel port), supports modems,
printers, basic serial devices as described in the NT Serial Driver Specification.

parallel - western digital part, supports printers and basic parallel devices as
described in the NT Parallel Driver Specification.

video - frame buffer as described in NT Screen Device Driver Design Note.

keyboard as described in NT Keyboard Device Driver Design Note.

mouse - in port as described in NT Mouse Device Driver Design Note.

sound

EISA support - verification driver to show that EISA functions properly.

3.4.2 Intel 486/MP and uni-processor drivers:

o

o

floppy as described in the document NT Floppy Driver Specification.

SCSI driver with support for disk, CD-rom and tape as described in NT SCSI
Design Note.

disk - ST506 EDSI driver as described in the NT EDSI Driver Specification.

serial - Intel 8250 part supports modems, printers, basic serial devices as
described in the NT Serial Driver Specification.

parallel supports printers and basic parallel devices as described in the NT
Parallel Driver Specification..

video - frame buffer as described in NT Screen Device Driver Design Note.

keyboard as described in NT Keyboard Device Driver Design Note.

mouse - in port and serial variants as described in NT Mouse Device Driver
Design Note.

EISA support - verification driver to show that EISA functions properly

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS Base Product Content 5

o MCA support - verification driver to show that MCA functions properly
3.5 Fault tolerance

For systems with battery backed up memory, power fail recovery is supported. This
support involves saving volatile hardware registers and caches into RAM during loss
of power and restoring the system state when power is regained. At restoration
time, all drivers requesting powerfail notification are notified and any I/O operations
in progress are restarted by the drivers.

3.6 Language support
3.7 MIPS support
o C compiler for MIPS (from either MS or MIPS)
o MIPS assembler for R4000 (only runs on RISC/PC)
o Linker for R4000 (provided by NT/Base group)
o Debugger similar to symdeb

o Kernel debugger for device driver ISV's (requires separate host machine,
currently running OS/2)

o C Run time libraries for Win-32 applications
o Cross development tools for 486 development:
o C6.0 compiler
o MASM Assembler

o Linker for 486 modules. Current plan is for the NT native linker to
support both MIPS and 486 OMFs (Object Module Formats).

3.8 Intel 486 support
o C6.0 compiler
o MASM Assembler
o Linker for 486 modules.

o Debugger similar to symdeb

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS Base Product Content 6

o Kernel debugger for device driver ISV's (requires host machine, currently
0S/2).

Issue: the kernel debugger should be ported to the Win-32 environment at a
minimum and possibly to the Win-16 environment. Porting to the Win-16
environment provides the least disruption to the target audience.

o C Run time libraries for Win-32 applications
3.9 Hardware booting support

The following platforms are being utilized for development and/or testing and as
such hardware booting support and configuration will be provided.

o Power PC/RISC (Jazz)
o Compaq Deskpro-486 (EISA)

For 386 environments, Intel 387 floating point emulation is provided for system
without 387 coprocessors.

3.10 Installation / Setup

The beta SDK release will have minimal installation / setup support. This includes
support for building a bootable system from a floppy disk kit and copying the
appropriate SDK header files and utilities to the hard disk.

3.11 Performance utilities
The beta SDK will have basic performance utilities.

o profiler - provides mechanism to obtain a time sampled PC histogram. The
profiler is implemented like a debugger; no changes are required to the
application to enable profiling. The profiler operates in its own address space
and creates profiling objects on behalf of the process being profiled. When the
process completes, the profiler closes the profile objects and analyzes the
collected data. The beta SDK version of the profiler will not be GUI based.
The profiler fucntionality is not currently documented.

o show system information - shows the current resource usage, active
processes, active threads, etc. within the system. The show system
functionality is not currently documented.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS Base Product Content

3.12 Development utilities

CMD.EXE - command interpreter (ported from OS/2) provides basic
commands (dir, ren, del, etc) and batch script capability.

format - format disks, supports FAT format for floppy, HPFS, FAT, and NTFS
for hard disks.

chkdsk - check disk, checks disk for consistent file structure and bad blocks

chmode - allows protection on file to be changed

diskcopy - sector based floppy disk copy

diskcomp - sector based disk comparison

du - disk usage by directory

ech - echo string

fcom - compare files (both text and binary)

fcopy - general purpose file/directory copy

fdel - general purpose file/directory deletion

fview - extensible file viewer, views text files, objects, images, etc.

Is - list directory contents

nmake - program maintenance utility

ppr - remote print

qgrep - search for strings in files

sort - sort file contents base on keys

timer - simple execution timer

touch - change file time stamps

walk - walk a directory tree applying command to files and directories

where - locate files in a directory tree

ync - single character batch file prompts (yes, no, continue)

editor (MEP) which utilizes WinHelp

3.13 Internal Development Utilities (not shipped with SDK)

cp - copy file to file or files to directory
delnode - delete directory tree

exp - remove deleted files

mv - rename files and directories

rm - make files deleted

slm - source control maintenance facility
t - terminal emulator

undel - undelete deleted files

upd - timestamp based file copy

updrn - timestamp base file copy for directories
xcopy - copy file and directory tree

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS Base Product Content

4. Retail Product for RISC/PC (includes an SDK)

The retail product for RISC/PC includes the final version of the components
provided in the beta SDK release plus installation/setup features, POSIX
compliance and security at the C2 level.

4.1 API Sets
Same as beta SDK with addition of POSIX support.

POSIX 1003.1 API - provides the POSIX compliant APIs. These APIs are defined by
the IEEE 1003.1 POSIX specification. The APIs supported are the minimum
set required for to obtain POSIX certification, i.e., none of the optional APIs
will be supported.

4.2 Subsystems
Same as Beta SDK with the addition of POSIX.
o POSIX - provides support for all processes executing the POSIX API set.
4.3 Device Drivers
Same as beta SDK.
4.4 File Systems
Same as beta SDK.
4.5 Fault tolerance
Same as beta SDK.
4.6 Language support
Same as beta SDK plus the addition of C run time libraries for POSIX applications.
4.7 Hardware booting support
Same as beta SDK.
4.8 Installation / Setup

Complete installation / setup support including configuration management. The
documentation for installation and system management is currently under
development.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS Base Product Content o

o Architecture dependent kernel routines
o System configuration / configuration management
o System management

o Error log reporting mechanism. This is a character mode application that
allows error log reports to be generated based on error type, time, and
device type. For example, list all Fatal errors on device HarddiskO
between Jan 1 1990 12:00 and Jan 1 1990 18:00.

o System crash dump and analysis utility. This provides a mechanism to
dump the contents of physical memory to a file on the disk in the case of a
system crash. When the system is rebooted, the analysis utility allows the
cause of the crash to be analyzed. In severe cases, crash dump contents
may be copied to floppy or tape and sent to product support specialists for
analysis.

o File backup on SCSI tape. This utility provides the ability to backup and
restore complete volumes or selected files onto tape.

Issue: does this need to be SYTRON compatible to provide the ability to read
files written on an OS/ 2 system? How about just supporting TAR
format??

o Application installation - provides a mechanism to install application software
on an NT system.

o National Language Support (NLS) - provides a mechanism for tailoring an NT
system to a specific language environment.

o Shutdown - allow orderly shutdown of the system as a reasonable alternative
to Ctrl-Alt-Del. The shutdown mechanism flushes file caches, terminates
network connects, and does an orderly shutdown of the system.

4.9 Security

NT OS provides security features to allow the base operating system to be certified
at the C2 level (discretionary access control) for the first product release, and
eventually at the B1 level. In order to gain certifications certain features and
utilities must be present in the system to allow the detection and analysis of break-
in attempts and suspected attempts. In addition, a mechanism must be provided to
allow users to display and manipulate security information on objects, most notably
files.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS Base Product Content 10

The following components are provided to support security:

User Interface:

User Account Manager - This utility is based upon the LAN Manager 3.0 User
Account Manager utility. It includes minor extensions to support
administration of Security Account Manager concepts that don't exist in
LAN Manager.

Local Security Manager - This utility allows the security parameters of each NT
system to be administered. This is a new utility with no corresponding
LAN Manager functionality. This utility will utilize the Local Security
Manager DLL described below.

Win32 Logon User Interface - This is the user interface presented at logon time.
It collects the user name and password and prevents password stealing by
unauthorized processes. This Ul is projected by the Win32 logon process
described below.

Win32 File Browser extensions - The Win32 File Browser will be extended to
support security by:

- Displaying security of files and directories upon request.

- Allow modification of file and directory protection and auditing
requirements (using the Object Security editor DLL described below).

- Allow modification of file and directory owner values.

The Win32 Shell will allow a user to establish security personas and to modify
the user's active security persona. This will allow the user to perform
actions such as changing default protection or enabling and disabling
privileges.

Some aspects of installation will deal with establishing the customer's mode of
operation (secure or non-secure) and collecting security parameters, if
running securely. A secure system may also have to convert a LAN
Manager UAS database to a Security Account Manager database.

Some aspects of configuration control will deal with the security attributes
associated with components of the configured system. For example,
protected subsystems, such as the NT Session Manager, may be assigned
privileges to be run with.

Runtime Library & Client Stubs:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS Base Product Content 11

Runtime Library routines will be included for the manipulation of security data
structures, such as access control lists.

Client RPC stubs will be included for Security Account Manager services,
making the security Account Manager a network-wide service. This allows
administration of security accounts from remote nodes.

Client RPC stubs will be included for Local Security Authority services, making
the Local Security Authority a network-wide service. This allows
administration of individual system security from remote nodes.

Executable Images And DLLs:

Security Account Manager protected subsystem image (sam.exe). This image is
run as a native NT protected subsystem. It services user/group account
administration requests, as well as user authentication requests. This
image will only be run on Domain Controller nodes.

Local Security Authority protected subsystem (Isa.exe). This image is run as a
native NT protected subsystem. This image is responsible or maintaining
and enforcing all security policy for an individual system, such as what
audit messages to generate. This protected subsystem will be active on
each NT system.

Win32 Logon Process (w32logon.exe). This image is responsible for monitoring
Win32 for logon requests, and processing them when received. It prevents
Trojan programs from stealing user passwords. This is a customer
modifiable or replaceable module and we will ship the source code for this
module. This image will be active on each NT system.

Local Security Manager DLL (Ism.dll). This DLL provides Win32 user Interface
screens for administering the local system security. This is implemented
as a DLL to allow this functionality to be activated from a number of
related Ul utilities (such as the security account administrator).

Object Security Editor DLL (objsec.dll). This DLL provides object protection
viewing and modification capabilities. It is implemented as a DLL to allow
a standard view of object security to be used anyplace it is needed. For
example, the file browser will use this DLL for file and directory protection
modification and the Security Account Manager will use this DLL for user
and group account protection modification.

4.10 Performance utilities

Same as beta SDK with a GUI interface to show system information utility.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS Base Product Content

4.11 Development utilities

Same as beta SDK with the addition of Ul enhancements to some utilities and the
user debugger.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

12



NT OS Base Product Content 13

5. Retail Product for Servers (RISC, 486 and 486MP)

The retail product for servers includes the retail product components provided in
the above product in addition to a more robust networking environment.

5.1 API Sets

Same as RISC workstation product.

5.2 Subsystems

Same as RISC workstation product.

5.3 File Systems

Same as RISC workstation product.

5.4 Device Drivers

Same as retail product (both MIPS and 486).
5.5 Fault tolerance

o Disk Mirror - allows files mirroring of disk image on another disk(s) block for
block. While this is implemented as a layered driver, it is listed under file
systems.

o UPS - uninterruptable power systems support

o Dual controller support ??
5.6 Language support
Same as RISC workstation product with the addition of C++ support.
5.7 Hardware booting support

The following platforms are being utilized for development and/or testing and as
such hardware booting support and configuration will be provided.

o Power PC/RISC (Jazz)
o Power PC/486 with EISA bus
o Power PC/486 with MCA bus

o Compaq Deskpro 486

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS Base Product Content

o IBM PS/2 Model 90
o Power MP/486 - to be determined.
5.8 Installation / Setup

Same installation / setup features provided in the RISC workstation product plus
the addition of:

o Disk mirroring management

o Logical volume management - allows multiple disks to be configured such
that they appear as a single drive.

5.9 Security
More network based security? remote admin?
5.10 Performance utilities
network performance things?
5.11 Development utilities

Same as RISC workstation product.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

14



NT OS Base Product Content 15

6. Retail Product for 486 workstations

The retail product for 486 workstations provides the support for running Windows
16-bit applications and DOS applications as well as support for 32-bit OS/2 non PM
base (i.e., server) applications.

6.1 API Sets

Same as server product.

6.2 Subsystems

Same as server product plus the addition of:
o MVDM subsystem
o Windows 16-bit subsystem
o OS/2 subsystem

6.3 File Systems

Same as server product.

6.4 Device Drivers

Same as server product.

6.5 Fault tolerance

Same as server product.

6.6 Language support

Same as server product.

6.7 Intel 486 support

Same as server product.

5.8 Hardware booting support

Same as server product.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS Base Product Content 16

6.8 Installation / Setup

Same installation / setup features provided in the server product plus the addition
of:

o MVDM installation
o Windows 16-bit installation
o OS/2 Subsystem installation
6.9 Security
Same as server product.
6.10 Performance utilities

Same as server product.

6.11 Development utilities

Same as server product.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Portable Systems Group
Caching Design Note
Author: Tom Miller

Revision 1.3, October 31, 1991

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License






Caching Design Note

1. OVETVIEW .ottt ettt e e e 1
1.1 File Streams and Cache Maps .....ccoveiiiiiiiiiniiiiiiiiieeeieeaenes 1
1.2 Target Clients of the Cache Manager .........c..ceeveviiieiinininininen.. 2
1.3 Cache Manager Interfaces .........coooveiiiiiiiiiiiiiiiin 3

2. WalkThrough of Cache Manager Interaction........c....cccceveieiiann... )
2.1 Setting up the File Object on Create .......c.cccvevieiiieiiiiiinanen... 5

2.1.1 FSCONtEXt.ouiuiniiiiiiiiii e S
2.1.2 SectionObjectPointer .........ccovviviiiiiiiiiiiiiiii, 7
2.1.3 PrivateCacheMap field ........cccoeiiiiiiiiiiiiie, 7
2.2 Initializing Cache Maps for a File Stream.......c....c.ccooeieiiinnin. 7
2.3 Accessing Data in the Cache .........c.coioiiiiiiiiiiiiiiin, 8
2.3.1 Copying Data To and From the Cache.........c....c.c.coeieiane. 8
2.3.2 DMA Transfer of Data To and From the Cache.................. 9
2.3.3 Accessing Data Directly in the Cache..........c....c.coooiinil. 9
2.4 Uninitializing Cache Maps for a File Stream .........c....c.c.coeenaee. 10
2.5 Fast [/ O Optimization .......ccoveieuiiiiiiiiiiiiiiiie e 10
2.6 Use of the Wait Input Parameter...........c.coooviiiiiiiiiiiiiininnen... 11
2.7 Use of Stream Files ....c.couiiiiiiiiiiiiiii e 11
2.8 File System Cleanup and Close Routines..........c.cocvevivininininen.n. 12
2.9 Using Write Through and Cache Flushing ..........c.c.cocoeiinin. 13
2.10 Valid Data Length and File Size Considerations..................... 14
2.11 Resource Locking Rules.........c.covuviiiiiiiiiiiiiiiii e 15
2.12 Network File Server Interfaces .......c..cocoeviiiiiiiiiiiiin.. 17

3. File System Maintenance Functions (FSSUP)............c.cooiiiinin. 19

3.1 CclnitializeCacheMap .......ccvuviiiiiiiiiiiiier e 19

3.1.1 Cache Manager Callbacks......c.ceeieuiiiiiiiiiiiiiiiiniiiiineenne, 20
3.2 CcUninitializeCacheMap........cccoeuiiiiiiiiiiiiiiiiieeeeeeea 21
3.3 CcExtendCachedFileSize .........c.cooviiiiiiiiiiiiiiiiiii e, 23
3.4 CcExtendCacheSection .........ccveuiuiiiiiiiiiiiiiiiiiiiceeeeeene 23
3.5 CcFIUuShCache.....c.ouiiiiiiiii e 24
3.6 CcPurgeFromWorkingSet........cocoviiiiiiiiiiiiiiieceeene 24
3.7 CcPurgeCacheSection.......ccc.vuviiiiiiiiiiiiiiie e 25
3.8 CcTruncateCachedFileSize ..........cccoeiiiiiiiiiiiiiiiiiiiieen, 25
3.9 CCZETODALA ..uvuiiiiiiii 26
3.10 CcRePINBCD ...uiiiiiiii i 27
3.11 CcUnpinRepinnedBeh .....c.iviiiiniiiiiiii e 27
3.12 CclsFileCached .......ccoouiiiiiiiiiiiiiiiii e 27
3.13 CcReadAhead ....c...oiuiuiiiiiiiiiii e 28
3.14 CcSetAdditionalCacheAttributes.........cocoeviiiiiiiiiiiiiininnn.e. 29

4. Copy Interface (COPYSUP) ..c.ouiiiiiiiiiiiii e 30
4.1 CcCOPYREAA. ...t 30
4.2 CCCOPYWIILE .eueiinininiiii e 30

5. Mdl Interface (MDLSUP) ......iuiuiiiiiiiiie e 32
5.1 CCMAIREAd. .. cuiiniiiiiiee e 32
5.2 CcMdIReadComplete .......ocueuiuiiiniiiiiiiiiieie e 33
5.3 CcPrepareMAIWTIte ...c.ouiininiiiiii e 34

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note

5.4 CcMdAIWTriteComplete.....ovuininiiiiiiii e 35
6. Pin Interface (PINSUP)......ccoouiiiiiiiii e 36
0.1 CcPInRead ......ouiviiiiii e 36
0.2 CcMapData...c.cc.iuiiiiii e 37
0.3 CcPinMappedData........oeuiuiiiiniiiiiiiiiie e 38
0.4 CcPreparePInWIIte ....o.oviiiiiiiiiiiiiiiii e 40
6.5 CcSetDirtyPinnedData.........cccovuiiiiiiiiiiiiiiieieceeea 41
0.6 CcUnpinData ......o.vviuiiiiiiiii e 41
7. Revision HiSTOTY . .oiiiiiii e 42

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License

ii



Caching Design Note 1

1. Overview

This design note describes the Cache Manager for Windows NT. The Cache Manager
uses a file mapping model, which is closely integrated with memory management.

The file mapping model or virtual block cache, has been chosen over a logical block
cache for the following reasons:

o Virtual block caching is more compatible with the ability of user programs to
map files. It is possible for some programs to do NtReadFile and NtWriteFile
at the same time that other programs have the file mapped with read-only or
read/write access. With proper synchronization, both types of programs are
able to see the most current data.

o By using a file mapping model, all of physical memory becomes available for
data caching, with the allocation of pages reacting dynamically to the
changing needs for image file pages versus data file pages.

o Cache hits are processed more efficiently by handling virtual block hits
directly in a mapped file. In most cases an [/O request is able to access the
data directly in the cache, without calling the file system at all (see Section 0).
The I/O system makes a subroutine call to access the cache, and the Cache
Manager resolves the access via a single hardware virtual address lookup.

o For the a recoverable file system such as NTFS, it is necessary to have
caching closely synchronized with logging. This requires that all cache entries
be directly identifiable by the recoverable file to which they belong.

The Cache Manager also provides a simple mechanism for dealing with unaligned
buffers. If a file has been opened with caching disabled
(FILE_NO_INTERMEDIATE_BUFFERING specified in the Create/Open options), then
an NtReadFile or NtWriteFile will fail if the alignment and size of the specified
transfer is less than that required by the target disk. The assumption is, that if a
program specified a request with caching disabled, then it really does not want to
pay the cost of having the transfer go to an intermediate buffer and be copied.

1.1 File Streams and Cache Maps

The Cache Manager is a central system component which may be thought of as
being layered closely on top of the Memory Management support. Key to
understanding the Cache Manager is the concept of File Streams.

A File Stream is a linear stream of bytes associated with a File Object. Each File
System creates, deletes and manipulates File Streams both for external use via NT
File System APIs, as well as for internal use by the File System itself. Examples of
File Streams maintained by File Systems are the data of a given file, the EAs of a
file, the Acl of a file, a directory, or any other file system metadata. How virtual byte
offsets within the File Stream are mapped to physical locations in nonvolatile store
is strictly an opaque operation determined by the File System, and may vary for
different types of file streams.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 2

Once a file system has identified which streams it wishes to support, it needs to
decide which of these streams it wishes to cache. For all streams which are to be
cached, the file system must actually support both cached and noncached access.
Noncached access is always issued via a read or write I/O Request Packet (IRP), in
which the IRP_NOCACHE flag is set in the Irp flags. (See the NT I/ O System
Specification.) For streams which may be accessed by normal user programs, such
as the data of a file, the file system will also receive cached I/O requests via read or
write IRPs with the IRP_NOCACHE flag not set. Also for internal use a file system
may perform cached access to any of the streams it defines via direct calls to the
Cache Manager.

As mentioned earlier, the Cache Manager uses mapping to implement the caching of
streams, and to integrate caching with Memory Management's policy with other
uses of pageable memory. Thus when a file system calls the Cache Manager to
intitiate caching of a stream, the Cache Manager immediately maps all or a portion
of the stream via a call to memory management. For larger streams, the Cache
Manager may subsequently find it necessary to map additional portions of the
stream on an as-needed basis. To keep track of which portions of a file stream the
Cache Manager currently has mapped, it uses private data structures which it
refers to as Cache Maps. For each stream being cached, the Cache Manager
maintains a single Shared Cache Map. For each File Object through which the
cached stream is being accessed, the Cache Manager also maintains a Private Cache
Map. The Shared Cache Map describes an initial portion of the file stream which is
mapped for common access via all File Objects for this stream. Each Private Cache
Map optionally describes an additional nonoverlapping portion of the stream
mapped on an as-needed basis to access bytes in the stream which were not
mapped by the Shared Cache Map.

Again, the Cache Maps are private structures maintained by the Cache Manager,
and a further understanding of these structures is not required by a person writing
a file system. However, a file system writer does have to be aware of the respective
relationships between a file system, the Cache Manager, and Memory Management.
For example, when an attempted cache access results in a "miss", this miss results
in a page fault which is serviced by Memory Management who subsequently makes
a (recursive) call back to the file system with a noncached I/0O request.

1.2 Target Clients of the Cache Manager

The Cache Manager interfaces have been primarily designed to support the following
clients:

o Normal file systems such as FAT, HPFS and CDFS. File systems may create
and cache File Streams for normal data files, the EAs associated with a file,
the volume structure of a volume, etc. Note that the Cache Manager knows
nothing about different types of streams; it only knows about File Objects and
different modes of access.

For example, HPFS creates File Streams to cache normal file data, the first
time the data is actually accessed. It also creates a File Stream for a "Volume
File", which is a compressed mapping of the volume structure on a HPFS
volume. If the EAs or ACL for a given file fit in the Fnode, then they are

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 3

simply cached with the Fnode in the Volume File. The other case HPFS has is
that the EA or ACL is too large to fit in the Fnode, and is described by one or
more runs of contiguous sectors external to the Fnode. In this case, a
separate stream is created to cache the EA or ACL the first time they are
accessed.

Interfaces are provided for File Systems to access data by copying, or
accessing it directly in the cache.

Network File System clients, such as the Lan Manager Redirector. For
starters, a Network File System looks like any other File System, with normal
data streams, and potentially other types of streams associated with files.
However, a Network File System client would normally not be maintaining any
"volume" structure of its own.

Network File Servers, such as the Lan Manager Server. A file server is not
expected to look like a file system at all. However, it also may be considered a
"client" of the Cache Manager via the host file system(s) which it calls.

Indeed, some of the file system calls which are ultimately supported by the
Cache Manager (such as the Mdl interfaces defined later), were designed with
Network File Servers in mind.

1.3 Cache Manager Interfaces

The Cache Manager has four sets of interfaces. One is for basic File Stream
maintenance, and the other three implement different access methods for the cache.
The three access methods share common support routines, but acknowledge the
different ways in which the cache will be used.

Following is a brief description of the four sets of interfaces supported by the cache
manager, which are described in detail in the following sections:

o

o

File Stream maintenance functions.

The File Stream maintenance functions are implemented in the Cache
Manager module fssup.c. These routines are for initializing and uninitializing
cached operation for a stream, extending and truncating cached streams and
file sizes, flushing pages to disk, purging pages from the cache without
flushing, zeroing file data, and so on.

Copy Interface.

The Copy Interface is implemented by the Cache Manager module copysup.c.
The copy interface is the simplest form of cached access. It supports copying
a range of bytes from a specified offset in a cached file stream to a buffer in
memory, or from a buffer in memory to a specifiedd offset in a cached file
stream. The copy interface also has a related call to initiate read ahead.

Mdl1 Interface.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 4

The MdI Interface is implemented by the Cache Manager module mdlsup.c.
The Mdl interface supports direct access to the cache via DMA. For example,
a network file server can efficiently support large client reads via DMA of the
desired bytes directly out of the cache to a network device. Similarly a
network file server is able to support large client writes by DMA directly into
the cache. The Mdl interface shares the same Read Ahead call as the copy
interface.

o A Pinning Interface.

The Pinning Interface is implemented by the Cache Manager module pinsup.c.
The pin interface may be used to lock (pin) data in the cache and access it
directly via a pointer, and then unpin the data when the pointer is no longer
required. Pinning is a database concept, and it is the optimal way for a File
System to deal with the caching of file system metadata:

The following table summarizes which of the Cache Manager's clients are intended
to use which of the four interface classes. Note that Network File Servers never call
the Cache Manager directly, but rather benefit from the specified interfaces via
associated calls to local file systems.

Local File Network FS Network File
Systems Clients Servers

FS Maint. X X

Copy Int. X X X

Mdl Int. X X

Pin Int. X

The next section walks through what a file system has to do to set up for and use
the Cache Manager. Then, subsequent sections will document the individual
routines belonging to the four classes of interfaces presented above.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 5

2. WalkThrough of Cache Manager Interaction

This section attempts to present all of the background information which is
important to understand when about to write a File System (including a Network
File System client) or File Server which intends to use the Cache Manager. All of the
following subsections but the last one relate only to file systems, but may provide
some insight to someone writing a file server.

The final subsection describes how a file server accesses cached file streams. The
final section should also be understood by anyone writing a local file system.

The following include files, present in \nt\private\inc, define the data structures
and procedure calls described in this section and the rest of this document:

cache.h Cache Manager structures and routines
fsrtl.h File System Rtl structures and routines
io.h I/O system structures and routines
ex.h Executive structures and routines

2.1 Setting up the File Object on Create

When a file system is called at its Create Fsd entry point, one of the important fields
in the Irp is a pointer to a File Object (see io.h) for the file being opened. There are
three pointers in the File Object which must be initialized in a particular way for a
file system which wishes to use the Cache Manager. These fields are FsContext,
SectionObjectPointer, and PrivateCacheMap. (A fourth pointer, FsContext2, has no
significance to the Cache Manager, and is usually used to point to a per file object
context called the Channel Control Block or CCB.) The following subsections
describe how these fields are to be initialized.

2.1.1 FsContext

The Cache Manager expects FsContext to point to a structure defined by FsRtl,
called the FSRTL_COMMON_FCB_HEADER. This structure must be allocated from
nonpaged pool, and must exist only once for the respective file stream, no matter
how many times it is opened. So, for example, for normal files, exactly one Common
Fcb Header must exist for each open file on the volume, no matter how many times
the file is opened. If the same file is opened multiple times, then for each File Object
which has the file open, FsContext must point to the same Common Fcb Header.
The Common Fcb Header will generally be contained at the beginning of a common
structure maintained by the file system for this file, typically called the File Control
Block, or Fcb.

\Note that currently the Common Fcb Header is actually only used to support
Fast I/ O, which means it is actually only required for file objects describing
user file opens. However, it might be recommedable for a new file system to
always point FsContext to this structure, even for stream files.\

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 6

The Common Fcb Header is defined in fsrtl.h, and at the time of this revision has
the following format.

typedef struct _FSRTL_COMMON_FCB_HEADER ¢{

CSHORT NodeTypeCode;
CSHORT NodeByteSize;

BOOLEAN IsFastloPossible;

LARGE_INTEGER AllocationSize;
LARGE_INTEGER FileSize;
LARGE_INTEGER ValidDataLength;

PERESOURCE Resource;

} FSRTL_COMMON_FCB_HEADER;
typedef FSRTL_COMMON_FCB_HEADER *PFSRTL_COMMON_FCB_HEADER;

Here is a brief definition of these fields:

NodeTypeCode - A unique code identifying the Fcb for this particular file system.
This field is unused by the Cache Manager.

NodeByteSize - The size of the entire containing Fcb in bytes. This field is also not
used by the Cache Manager.

IsFastloPossible - This boolean contain TRUE (0x01) whenever the file system
believes it is acceptable for the I/O system to call the Cache Manager directly
to read or write byte ranges directly in the cache, without calling the file
system. It must contain FALSE (0x00) whenever it is not acceptable to access
cache data directly. In this case, all cached reads and writes must be passed
to the file system via Irp.

Examples of cases where this field might contain FALSE, would be if there are
active FileLocks or Network Oplocks in the file, or the media is undergoing
volume verification.

AllocationSize - The current allocation size of this file in bytes, typically an integral
multiple of the underlying device sector size or allocation cluster size. This
field must be initialized to the correct value when the Fcb is created, and
thereafter the Cache Manager must be notified when it changes.

FileSize - The logical size of the file up to which the file may be read. Reads
beginning before this point are truncated, and reads beyond this point return
STATUS_END_OF _FILE. This field must be initialized to the correct value
when the Fcb is created, and thereafter the Cache Manager must be notified
when it changes.

ValidDataLength - The size of the initialized portion of the file. If ValidDataLength is
less than FileSize, then reads extending beyond ValidDataLength return

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 7

binary O in the read buffer. This field must be initialized to the correct value
when the Fcb is created, and thereafter the Cache Manager will inform the file
system when it is safe to change this value for the file on disk (see Section 0).

Resource - Pointer to an ERESOURCE structure (defined in ex.h). The ERESOURCE
structure is usually allocated elsewhere in the Fcb. The executive resource
structure is a synchronization structure which supports multiple Shared
accessors at once, or one Exclusive accessor via the routines
ExAcquireResourceShared, ExAcquireResourceExclusive and
ExReleaseResource. FsRtl and the Cache Manager require that all file system
operations for this stream be synchronized by this resource. Of course,
modifying operations generally require that the file system take out exclusive
access, and nonmodifying access require that the file system take out shared
access. The synchronization requirements of streams will be further
discussed later.

2.1.2 SectionObjectPointer

Memory Management and the Cache Manager require that the SectionObjectPointer
field of the file object point to a structure call SECTION_OBJECT_POINTERS. This
structure must also exist only once for the file stream, and it must also be allocated
in nonpaged pool. Generally this structure is also allocated somewhere in the file
system's Fcb.

The Section Object Pointers structure is defined in io.h, and at the time of this
revision has the following format.

typedef struct _SECTION_OBJECT_POINTERS {
PVOID DataSectionObject;
PVOID SharedCacheMap;
PVOID ImageSectionObject;
} SECTION_OBJECT_POINTERS;
typedef SECTION_OBJECT_POINTERS *PSECTION_OBJECT_POINTERS;

Here is a brief description of these fields, however the file system only has to
initialize this structure by clearing it:

DataSectionObject - This pointer is used by Memory Management whenever a data
section has been created for this stream, including when the Cache Manager
has done so.

SharedCacheMap - This pointer is used by the Cache Manager to point to its
SharedCacheMap structure whenever the file is currently being cached.

ImageSectionObject - This pointer is used by Memory Management whenever an
image section has been created for this stream.

2.1.3 PrivateCacheMap field

This pointer must simply be initialized with NULL (0x00000000). It is filled in by
the Cache Manager if the stream is cached. The only way for the file system to

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 8

reliably determine if this file object is currently being cached
(CclInitializeCacheMap has been called), is to have the Fcb Resource shared or
exclusive, and test the PrivateCacheMap field for NULL. It is not valid for the file
system to capture this information elsewhere, because under certain circumstances
the File Object has to be forcibly uninitialized.

2.2 Initializing Cache Maps for a File Stream

The previous section described how the Cache Manager expects the File Object to be
initialized on Create. The Cache Manager however does not expect Create to initiate
caching, but rather that this work be deferred to the first read or write of the file.
This is basically for two reasons:

First, experience has shown that it is very inefficient to immediately initiate caching
on a file when it is opened, since there are quite a few apps which open a file, get or
set some file information on the file or mark it for delete, and then close the file
without ever accessing its data. These applications may run noticeably slower if the
file system is needlessly initializing and uninitializing caching for the files.

More importantly, however, is the fact that under certain circumstances it becomes
necessary to forcibly uninitialize the Cache Maps on a file object. Examples are
when a file is truncated, or the file system supports removeable media and a volume
fails mount verification. A network file system client may decide to call
CcUninitializeCacheMap on all of its files in the event of an oplock break, or a
virtual circuit goes down, and the data can no longer be trusted. Forced
uninitialization works because we know that the next read or write, if there is one,
will simply initialize the cache again.

Note that if there are multiple accesses to the same file, as represented by multiple
file objects, the file system must call CclnitializeCacheMap for each file object that
attempts to access file data. It must also eventually call CcUninitializeCacheMap
for each of these file objects.

For further detail on initialization, see Section O on CclInitializeCacheMap.

Once, caching has been initialized on a file object, and the Fcb resource is still
acquired, a file system may access the cache via one of the classes of access
routines described in the next section.

2.3 Accessing Data in the Cache

Once the file object is set up and CclnitializeCacheMap has been called, a file
system may now access data in the cache. There are three methods for accessing
the cache, and these methods are described in the following subsections.

2.3.1 Copying Data To and From the Cache

The simplest way of accessing a stream is to copy data into and out of it. The
routines CcCopyRead and CcCopyWrite are provided for this purpose. They both

take a previously initialized file object along with a description of the desired byte
range in the file and an input or output buffer in memory. It is essential that the

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 9

Fcb resource remain acquired from some time before the point where the file object
was initialized (if it was not already), until after the copy operation is complete.

In the case of a call to CcCopyRead, the caller may also wish to call CcReadAhead
to see if any Read Ahead is desired. The call to CcReadAhead takes some of the
same parameters as the call to CcCopyRead. CcReadAhead automatically
determines whether or not read ahead is appropriate, based on the recent history of
calls to CcReadAhead, and whether or not the data has perhaps already been read
ahead. If read ahead is required, it is scheduled to be performed by one of the
Cache Manager's worker threads, so as not to hold up the current thread.

For the case of CcCopyWrite, all modified pages are lazy written by default. For
most cases the file system simply does not have to worry about it, and the data will
typically get to disk within about five seconds of when it was modified. For cases
where Lazy Writing is not appropriate because the data has to be written through,
see Section 0.

2.3.2 DMA Transfer of Data To and From the Cache

Network file servers and network file system clients sometimes have to transfer large
amounts of data into or out of the cache from a network device. For such large
transfers, it is inefficient to allocate a temporary buffer, call the copy interfaces
above, transfer the data on the network device, and then free the temporary buffer.
In order to eliminate the large copy and temporary buffer in the above scenario, the
Cache Manager provides a second class of interface to the cache, called the Mdl
interface.

The Mdl (Memory Descriptor List) contains a physical description of a buffer in
memory, according to the physical pages it occupies. This structure should already
be familiar to anyone dealing with the network (see the Windows NT I/ O System
Specification).

\Please note in the following discussion that the network software does not
actually call the CcMdl routines directly, however we describe it that way
here for simplicity. See Section 0.\

To read from the cache and write to the network, network software may first call
CcMdIRead, specifying the initialized file object and range of bytes required.
CcMdIRead returns an Mdl (actually a linked list of Mdls called an Mdl Chain)
describing the desired byte range directly in the cache. Note that the reader does
not have to specify a transfer that starts on a page or sector boundary, he only
needs to make sure he is specifying a file offset with sufficient alignment to satisfy
his network device. Once CcMdlRead has returned, the pages containing the
desired data are locked in memory, and the reader may use the Mdl chain to effect
the transfer on the network. Prior to that the network software may wish to
prepend an Mdl to the Mdl chain returned by the Cache Manager, in order to
describe header information. When the network transfer is complete,
CcMdIReadComplete must be called to unlock the cache buffers and delete the Mdl
chain. Just as described with the Copy interfaces, CcReadAhead may be called to
have the Cache Manager decide whether he should schedule some data to be read
ahead after a CcMdlRead.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 10

Similarly for writing to the cache, network software may call CcPrepareMdlWrite to
prepare a space in the cache to receive the desired data for a specified byte range in
the file. The Mdl returned may then be used to specify a direct DMA transfer of the
data into the cache off of the network. When the DMA is complete,
CcMdlWriteComplete must be called to unlock the buffers and free the Mdl chain.
Also as in the Copy case, after receiving the CcMdlWriteComplete call, the Cache
Manager automatically guarantees that the new data is eventually written to disk.

It is acceptable to mix Copy access and Mdl access to the same file.
2.3.3 Accessing Data Directly in the Cache

Local file systems sometimes wish to access data directly in the Cache, possibly
modifying it in place. This is particularly interesting for file streams which have
been defined to describe file system metadata, such as directories. For this purpose
the Cache Manager provides a third interface class referred to as the Pin interface.

If a file system wants to access a structure directly in a stream, possibly modify it,
and then release it, it may start by calling CcPinRead. CcPinRead takes an
initialized file object, and the offset and length of the desired byte range. It returns
a virtual address at which the desired file data may be accessed, and an opaque
Buffer Control Block address (Bcb) which will be used to free the buffer later. If the
file system subsequently modifies the pinned data, then it must call
CcSetDirtyPinnedData before unpinning it. If the file system knows in advance
that it will be modifying an entire range of bytes, then it may call
CcPreparePinWrite instead of CcPinRead, and the data will automatically be set
dirty (and optionally zeroed in advance). In any case, when the file system is done
with the pinned data, it must call CcUnpinData, to release the buffer, and allow it
to be written if it is dirty.

If the file system knows in advance that it does not need to modify the desired data,
or knows in advance that it may not need to modify the data, then instead of calling
CcPinRead it can use a faster call which is CcMapData. CcMapData has the same
interface as CcPinRead, but it is much cheaper since it does not lock the data in
memory. If the caller later decides that he does need to modify the data, then he
may call CcPinMappedData to lock it in memory (and then call
CcSetDirtyPinnedData). In any case, when done with the mapped and optionally
pinned data, the caller must call CcUnpinData when done.

Since pinning is generally used for random access to file system metadata, read
ahead is usually not performed. As to modified data, the Cache Manager
guarantees that any data that was set dirty will eventually be written to disk,
typically within about five seconds.

For reasons relating to Cache Manager implementation details, it is not acceptable
to mix Pin access to a file with Copy or Mdl access.

2.4 Uninitializing Cache Maps for a File Stream

When a file system is done accessing a given file on a given file object, it must call
CcUninitializeCacheMap. This routine should generally be called in the file

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 11

system's cleanup processing. CcUninitializeCacheMap must be called for each file
object on which CclnitializeCacheMap was called.

By default, CcUnintializeCacheMap does not remove the file from the cache, it
simply tells the Cache Manager that the file system is no longer accessing that file
from the specified file object. The file may still remain in the cache for some time
until its pages get reclaimed for caching another file (or program image, etc.).

If for any reason a file system does wish to have all or part of a file removed from the
cache, CcUnitializeCacheMap provides this capability as well (see Section 0).

2.5 Fast I/O Optimization

There is a module in FsRtl which provides fast access to cached data without calling
the file system. The routines in this module may be called by the I/O system when
caching has already been initialized on a file object. They may also be called by file
servers.

Since the file system is never called on the Fast I/O path, it is important that it have
the ability to enable or disable these calls. Fast I/O should generally be left enabled
unless some condition exists in a file for which correct handling can only be
guaranteed by executing the normal file system read and write paths. For example,
if any file locks exist in the file, or network oplocks, then execution of a fast I/O
path may not work correctly.

If the file system detects a case which makes Fast I/O unsafe, then it must simply
clear the IsFastloPossible boolean in the common Fcb header. This boolean will be
tested while owning the Fcb resource shared, and if it is FALSE, the Fast I/O
routine returns FALSE as an indication that Fast /O is not currently possible.

Once the file system detects that the last condition making Fast I/O impossible has
been removed, then it should set the IsFastloPossible boolean to TRUE again.

2.6 Use of the Wait Input Parameter

A number of the Cache Manager routines and the FsRtl routines implementing Fast
I/0O take a boolean Wait input parameter, and return a boolean result. Use of the
Wait parameter is the same in all cases, and is explained here in detail. By far the
most efficient operation is always afforded to synchronous callers, i.e., callers who
supply Wait as TRUE signifying that it is ok to block. This design encourages
callers to be multi-threaded in order to get parallel operation, rather than adding
lots of threads to file systems and having to pay the expense of locking down and
mapping buffers and then context switching to the next available file system thread.

The Wait parameter should be used as follows.

If the caller does not want to block (such as for disk I/0O), then Wait should be
supplied as FALSE. If Wait was supplied as FALSE and it is currently impossible to
supply all of the requested data without blocking, then this routine will return
FALSE. However, if the data is immediately accessible in the cache and no blocking
is required, this routine supplies the data and returns TRUE.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 12

If the caller supplies Wait as TRUE, then this routine is guaranteed to supply the
data and return TRUE. If the data is immediately accessible in the cache, then no
blocking will occur. Otherwise, the the data transfer from the file into the cache will
be initiated, and the caller will be blocked until the data can be returned.

File system Fsd's should typically supply Wait = TRUE if they are processing a
synchronous I/O request, or Wait = FALSE if they are processing an asynchronous
request.

File system or Server Fsp threads should supply Wait = TRUE.
2.7 Use of Stream Files

All of the Cache Manager routines which have been presented take a file object as
input in order to tell which file a particular operation is directed to. For normal
user file opens, it is the user's own file object, which the file system initializes
during create, which may be specified to all of the Cache Manager calls. For the
case where a file system wishes to cache file system metadata, there is no user file
object at hand.

For this case, the I/O system provides the capability of creating a "stream file
object", to represent an arbitrary stream as defined by the file system. The file
system simply calls IoCreateStreamFileObject (see the Windows NT I/ O System
Specification), and sets up the file object fields as described in Section 0. Note that
in this case the common Fcb header and the section object pointers may generally
not be resident in an Fcb, but rather in any structure convenient to the file system.

Once the stream file is created and the various pointer fields initialized, the file
system may call CclnitializeCacheMap at any time to enable caching on this
stream.

When done with the stream file, the file system should call
CcUninitializeCacheMap to turn off caching on that file, and
ObDereferenceObject with the address of the file object to cause it to subsequently
get deleted.

2.8 File System Cleanup and Close Routines

Now that we have presented a walkthrough of the normal Cache Manager
interaction, and presented the special case of how stream files may be used, it is
important to complete the picture by explaining exactly what expectations are
placed on the file system cleanup and close routines (which respond to the Irps with
function codes IRP_MJ_CLEANUP and IRP_MJ_CLOSE).

Cleanup is called each time that the last user file handle to a given file object goes
away. For normal user files, the file system is guaranteed to get exactly one cleanup
call on a given file for each successful create operation which it performs. If the
same file is opened and accessed by multiple users, then each open results in a
separate file object, and separate cleanup calls on this file will be received as each
user file handle is closed.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 13

Within the I/O system, there are various cases where a system component wishes to
guarantee that a file object will not be deleted, even if the user closes its handle. It
does this typically by calling ObReferenceObjectByPointer for the file object.

When the system component no longer needs to rely on this file object it calls
ObDereferenceFileObject. So, for example, a file object is referenced each time an
I/O request is issued on it, and dereferenced each time the request is completed.
The Cache Manager references a file object the first time the file is cached, and it
dereferences the file object when no file objects have it cached, and there are no
more dirty pages to flush. A final example is that Memory Management references a
file object when a user or the Cache Manager creates a section for mapping that file,
and it dereferences the file object when there are no more sections in existence for
the file, and the last page has been removed from memory for the file. Note that
regardless of how many times the Cache Manager and Memory Management is
called for a given file, they only reference the first file object they were called with.

A file system is called to close a file object when the last reference to that file object
goes away. This may not occur until some time after cleanup is received on the file
object. For example if a system is idle for hours and memory management still has
pages for a file that was once mapped, the close call will not occur during this time.

In order to keep track of all these file objects, and thus assist the cleanup and close
routines to do the right thing, the file system is expected to maintain two counters
in the Fcb. The first counter is essentially a count of user handles, but has been
traditionally referred to as the "UncleanCount". The second count is a count of how
many referenced file objects referenced exist for a given file, and it has been
traditionally called the "OpenCount".

For normal user files, a file system should increment both the UncleanCount and
the OpenCount on each successful create. The UncleanCount should be
decremented on each cleanup call for a given file, and the OpenCount should be
decremented on each close call for a given file.

For stream files, a file system generally only needs to maintain (at most) an
OpenCount. Note that a cleanup call will be issued for a stream file object from
within the call to IoCreateStreamFileObject. It is important to recognize this
cleanup call in the file systems cleanup routine (by the way the stream file object
was set up), and expediently dismiss it; i.e., simply Noop all cleanup calls to stream
file objects. Generally it is also not necessary to maintain an OpenCount for stream
files, as a single close call will be received when the one and only file object for the
stream is dereferenced the last time.

The Cache Manager expects to be called at CcUninitializeCacheMap for each file
object which was initialized. If a file is being truncated or deleted, the TruncateSize
parameter should be correctly specified to this routine. It is acceptable to call
CcUninitializeCacheMap on a file object that was never initialized; the Cache
Manager will detect this case and do the right thing. In fact, if the file is being
deleted or truncated, the Cache Manager definitely should be unconditionally called
with the correct TruncateSize, because otherwise the file may not be purged from
the cache properly if it had been earlier cached or otherwise mapped via a different
file object.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 14

The only way that a file system really knows if both the Cache Manager and memory
management (or potentially anyone else) are done with a file, is when the
OpenCount finally goes to O in the close routine. This is the only time that it is safe
for the file system to delete its Fcb, or whatever other structure the file system has
associated with a given stream file.

2.9 Using Write Through and Cache Flushing

So far we have only discussed the Cache Manager's default method of lazy writing
all dirty data. There are two different ways for either the user program or a file
system to force dirty data out to disk and know when it is safely out there. These
two methods are write through or flushing.

A user program specifies that it wants all operations on a given file performed write
through by specifying FILE_ WRITE_THROUGH in its Create options when it opens a
file, which the file system can later see in the file object via the
FO_WRITE_THROUGH flag in the file object flags. Once this flag is set in the file
object, the copy write and Mdl write routines automatically perform write through.
As a result, the Lazy Writer will never see dirty data modified through this file object
and will never attempt to write any.

Now the only question that remains is, how is write through dealt with in
conjunction with pin access? The current file systems in NT have chosen to write
through all structure information that is modified as the result of performing an
operation on a file object with FO_WRITE_THROUGH set. For such a file object,
each time that a pinned Bcb is set dirty, CcRepinBcb is called at the same time to
guarantee that the Bcb will not be deleted when it is unpinned. In addition, the file
systems remember all Bcbs that they have repinned. When the file system request
is complete, and all Bcbs have been unpinned and all resources have been released
(both very important to prevent deadlocks), and just before completing the Irp, the
file systems loop to call CcUnpinRepinnedBcb for each Bcb that was repinned.
This call is made with the WriteThrough flag specified as TRUE. An unpinned Bcb
causes the Bceb to be flushed, and the resulting I/O status is returned. This write
through is synchronized with the Lazy Writer, and the Lazy Writer will not lazy write
this page a second time.

Flushing is considerably simpler. A user request to flush file buffers results in a
flush Irp to the file system. CcFlushCache may be called to immediately flush all
dirty data to the file. In addition, a file system may choose to flush buffers in any
cached file or stream file at any time by also calling CcFlushCache. Unlike write
through, flushing is not synchronized with the Lazy Writer. However, this only
means two things:

o Any buffer which is currently dirty and pinned will not be flushed. If the file
system does not eliminate this possibility by synchronizing this properly
within itself, then the affected buffer will still eventually get Lazy Written.

o If a dirty buffer which is waiting to be flushed by the Lazy Writer is flushed
first, then the Lazy Writer will eventually go through the motions of flushing
this buffer anyway, but the flush will be nooped by Memory Management,
when it realizes that the buffer is no longer dirty.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 15

The current NT file systems only use flushing to mark volumes clean when they
have been idle for a while. For this case flushing activity is serialized with
everything else on a volume and the first case above does not occur. The second
case above can occur, but is benign.

2.10 Valid Data Length and File Size Considerations

Nearly every file system has system has separate concepts of Allocation Size (how
much space is allocated to a file) and File Size (how far may a caller read in the file).
Allocation Size will typically be a multiple of the disk sector size or allocation
quantum (aka cluster size), while File Size may be any number of bytes.

Some file systems (such as HPFS) have, in addition, a concept called Valid Data
Length, which is an indication of how much of the file has actually been initialized.
Reading beyond Valid Data Length is allowed (unlike reading beyond File Size),
however all zeros are returned in the buffer, regardless of what may actually be
present on the respective allocated sectors on disk. Returning O's is both an
optimization (we do not have to read the sectors) as well as a security feature (the
caller does not get to read the data that used to be in those sectors from some
previous file).

It is a very good idea, even for file systems that do not have a concept of Valid Data
Length, to present and maintain a concept of Valid Data Length in their
implementation and in their interaction with the Cache Manager. This is advisable
for both the optimization and security related reasons discussed above. Consider
the frequent case where a user creates a file and is sequentially writing to the file.
As each user write comes in, the file system typically has to check if it needs to
extend the file allocation, and it also may want to advance the File Size early on for
internal reasons. When it comes time to call the Cache Manager, say at
CcCopyWrite, the Cache Manager has to get a page ready to receive the data, and
the only way to do that is to fault the page in. This now results in a page fault read
back to the file system from within the write path. Fortunately Resources, such as
the one synchronizing the Fcb, allow recursive acquisition, so the read proceeds
fine. The File Size may already be advanced, but clearly what the file system wants
to do in this case is detect that the read is beyond Valid Data Length, so that no real
read is required. The file system in this case should simply map the buffer and
clear it, and complete the request.

Now, for file systems that actually record Valid Data Length on disk, this field
should be updated in a reliable fashion such that even if the system dies, there are
still no windows where someone will get to see uninitialized data after the system
reboots. This is necessary to really make the file system secure. However, because
of the Lazy Writer, the file system can not easily and reliably keep track of when it is
safe to advance Valid Data Length, because it cannot make any assumptions about
what order the Lazy Writer will flush data to disk. Therefore, the Lazy Writer calls
the file system to inform it when it is safe to update Valid Data Length. It does this
by issuing a IRP_MJ_SET_INFORMATION Irp on the file with
SetEndOfFileInformation as the operation code and the AdvanceOnly flag set.
(The AdvanceOnly flag can only be set by the Lazy Writer. This call instructs the
file system that it can safely update ValidDataLength for the file to the specified size,
but only if that would make the new ValidDataLength greater than the current value

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 16

(someone could have done a WriteThrough or a flush in the meantime which would
already advance the ValidDataLength). In some cases, such as for stream files
containing file system metadata, the file system simply wishes to consider the entire
file to be valid, and it never wants to get the SetEndOfFileInformation calls
described above. For this case it may specify a NULL pointer for ValidDataLength in
the CclnitializeCacheMap call for this file. This will disable the Cache Manager's
ValidDataLength processing just described. For normal files, however, file systems
are recommended to support a concept of ValidDataLength in their implementation.

One final note about FileSize. In general paging I/O requests (IRP_PAGING_IO set
in the Irp Flags) are unsynchronized with File Size Changes. This is true whether
these requests emanate from the Cache Manager (especially the Lazy Writer) or
whether they occur from user mapped files. Fortunately the rules a file system
must follow are simple. On reads, paging I/O requests must obey end of file like
anyone else; thus reads extending beyond FileSize should be truncated to the
nearest allocation boundary beyond FileSize, and reads totally beyond FileSize
should receive STATUS_END_OF_FILE. Paging [/O writes are not allowed to extend
AllocationSize or FileSize; they are handled similarly to reads. Paging [/O writes
extending beyond end of file should be truncated to the nearest allocation boundary
beyond FileSize. Paging I/O writes starting beyond FileSize should be nooped with
an immediate completion with STATUS_SUCCESS. Complete all successful writes
with the Information field of the /O status containing the requested byte count,
whether all the bytes really were transferred or not.

2.11 Resource Locking Rules

Doing a caching strategy with a mapped file model is a fairly complex problem. The
file system calls the Cache Manager, the Cache Manager calls Memory Management,
at which point Memory Management sometimes has to call the file system again.
Generally all of this activity stays within the same file. In spite of this complexity, at
the time of this writing two disk-based file systems (FAT and HPFS), the CDRom file
system, the Lan Manager Redirector, and the Lan Manager Server (through the calls
in the next subsection) are all completed and running reliably using the Cache
Manager.

Through the experiences gained with the above implementations, a set of resource
locking rules has been refined, which seems to allow for good parallelism without
deadlock. These rules are as follows:

o Since most activity begins in the file system, the first rule of preventing
deadlock is that resources must be acquired in the order: file system
resources, Cache Manager resources, Memory Management resources.

Since some activity begins in the Lazy Writer as it processes its work queue,
and since it is necessary for the Lazy Writer to own some its resources across
calls to the file systems, the Cache Manager requires some very simple
callbacks to allow it to acquire file system resources first before beginning to
acquire its own resources. (See Section 0.)

Some activity also begins in Memory Management, such as in the Modified

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 17

Page Writer, or in the servicing of MM services. In general, Memory
Management attempts to own no resources at all when it calls the file system.

o The next rule is that the file system resources must support recursive
acquisition, since some Cache Manager calls that the file system makes will
sometimes result in recursive calls to the file system within the same thread.
It's important to note that the recursive calls are never random, but rather
logical consequences of the Cache Manager call being made; otherwise
recursive resource acquisition could actually be dangerous! One example of a
worst-case scenario: in the process of servicing a cached write request, the file
system calls CcCopyWrite, which results in a recursive call to the file system
for a noncached read to fault in the page to be written, then subsequently a
call for a noncached write of the page if the file object is Write Through.

All of the file systems currently use the executive resource package, which
supports single-thread exclusive access or multi-thread shared access. Both
exclusive and shared access support recursive acquisition. If an exclusive
user recursively requests a resource shared, this is transparently turned into
a recursive exclusive acquisition (there is only one release call). Finally, a
non-recursive exclusive acquisition can be converted to shared access to allow
greater sharing after completing a critical section. (Code which attempts to
convert shared to exclusive is almost certain to cause deadlocks.) The calls
are: ExAcquireResourceExclusive, ExAcquireResourceShared,
ExReleaseResource, and ExConvertExclusiveToShared.

Note that the file systems use some of the other synchronization mechanisms
available in NT, but never across calls to the Cache Manager.

o As further assistance, the following table attempts to summarize how the
Cache Manager expects the the Fcb to be acquired when it is called at its
various entry points. This table was built from the actual usage in HPFS and
FAT. Note that the file systems should always attempt to own no other
resources exclusive (such as a resource synchronizing allocation on the
volume) across calls to the Cache Manager.

Multiple options in the table below are separated by "/". In the table E =
exclusive, S = shared, 0 = unowned, and - = don't care.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note

Routine

CclnitializeCacheMap
CcUninitializeCacheMap
CcExtendCachedFileSize
CcExtendCacheSection
CcFlushCache
CcPurgeFromWorkingSet
CcPurgeCacheSection
CcTruncateCachedFileSize
CcZeroData

CcRepinBcb
CcUnpinRepinnedBcb
CclsFileCached
CcReadAhead
CcSetAdditionalCacheAttributes

CcCopyRead
CcCopyWrite

CcMdlRead
CcMdIReadComplete
CcPrepareMdlWrite
CcMdIWriteComplete

CcPinRead
CcMapData
CcPinMappedData
CcPreparePinWrite
CcSetDirtyPinnedData
CcUnpinData

18

Fcb Res

E/S
E
E
E

=
~
(@)

=

®n O gn!' o

om!
~
(0)]

In addition, the caller should have nothing pinned (repinned is ok) when calling
CcExtendCacheSection or CcUnpinRepinnedBcb.

2.12 Network File Server Interfaces

There is not a lot to say here about how a network file server should use the Cache
Manager, as this occurs primarily by virtue of the fact that the file server calls a
local file system which is already using the Cache Manager. However, it is quickly
worth mentioning that there are basically two ways for a Server to access cached
files. Note that in any case servers will tend to open files, close files, and do all
other operations except read and write by calling the same file APIs that any other
local program would call.

The first alternative for reading and writing file data in a server is to also issue the
normal NtReadFile and NtWriteFile operations. This is not a bad approach, as the
server will still benefit from the Fast I/O operations implemented in these services.
However, note that all data will be copied into and out of the cache; there is no
opportunity to get at the Mdl interfaces at this level.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 19

The second alternative assumes that the Server is running as a kernel-mode
process, just like the current Lan Manager Server and all of the file systems.
Running in kernel mode the server is able to directly call the FsRtl Fast I/O
interfaces layers to either the Cache Manager copy interfaces or Mdl interfaces. The
FsRtl interfaces are nearly identical to the respective Cc interfaces documented in
this paper; the names are the same except that the Cc prefix is replaced by FsRtl.
The difference is that the FsRtl interfaces perform the necessary synchronization
with the file system via the Fcb resource, and they also perform a few simple checks
(such as IsFastloPossible as described in Section 0). If the FsRtl routine cannot
perform the specified request, then it returns FALSE. If the Server receives FALSE
from an FsRtl Fast [/O routine, then it should build the same request in the form of
an Irp and queue it directly to the file system via IoCallDriver (see the Windows NT
I/ O System Specification and Section 0).

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 20

3. File System Maintenance Functions (FSSUP)
3.1 CclnitializeCacheMap

This routine is intended to be called by File Systems only. It initializes the Cache
Manager Data structures for data caching. It should be called the first time a File
Stream which is to be cached is read or written, or any time the stream is about to
be written and it is not already cached (FileObject->PrivateCacheMap == NULL).

The Fcb should be acquired either shared or exclusive when this routine is called.

The three size parameters passed will be captured in the Shared Cache Map, and
they must be updated as described later if they change.

If a window to the file cannot be mapped in the normal system cache, then it will be
mapped to the specified process, which should presumably be the file system's Fsp
process.

The callbacks are described in the next subsection.

VOID
CclnitializeCacheMap (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER AllocationSize,
IN PLARGE_INTEGER FileSize,
IN PLARGE_INTEGER ValidDataLength OPTIONAL,
IN PEPROCESS Process,
IN BOOLEAN PinAccess,
IN PCACHE_MANAGER_CALLBACKS Callbacks,
IN PVOID LazyWriteContext,
IN PVOID CloseContext

)5
Parameters:
FileObject - A pointer to the file object for the stream to be cached.

AllocationSize - The size of the file to be cached. This must be greater than or
equal to the actual size of the file. It might be greater, for example, if the
file is being created, or may be extended. If supplied as O, it will be
defaulted by the Cache Manager.

FileSize - The exact File Size of the file, beyond which it may not be read.

ValidDataLength - The initialized portion of the file, beyond which 0's must be
returned if read (up to FileSize). This number also controls when the Lazy
Writer should call Set Information File to advance valid data length. If the
caller wants to consider all data valid and does not want callbacks, it can
specify NULL for this pointer (please refer to Section 0).

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 21

Process - Pointer to the process to which the view should be mapped, if it
cannot be mapped in system space. This should typically be the Fsp
process itself.

PinAccess - FALSE if file will be used exclusively for Copy and Mdl access, or
TRUE if file will be used for Pin access. (Files for Pin access are mapped
entirely in one view, as it is assumed that the caller must access multiple
areas of the file at once. Therefore, it is a good idea organize files for Pin
Access into a number of small files.)

Callbacks - Pointer to a vector of Callbacks used by the Lazy Writer (see next
subsection)

LazyWriteContext - Parameter to pass to Lazy Write and Read Ahead callbacks.
CloseContext - Parameter to pass to Close callbacks
3.1.1 Cache Manager Callbacks

The Cache Manager must set rules for locking order in order to prevent deadlocks.
At a high level these rules are that first the file system is allowed to acquire its
resources, then the Cache Manager is allowed to acquire resources, and finally in
the worst case Memory Management may also acquire resources. These rules work
perfectly well in most cases, since most activity starts in the file system to begin
with. One case where there is a problem, however, is in the Lazy Writer. The Lazy
Writer must own some Cache Manager resources prior to calling the file system.

To keep this case from producing deadlocks, the Cache Manager requires a set of
callbacks to allow the Lazy Writer to acquire any necessary file system resources
first, before it begins to acquire its own. This allows the Lazy Writer to continue to
follow the locking rules, and prevent deadlocks.

To this end, CclInitializeCacheMap takes a pointer to a vector of callback
addresses, and two different callback parameters, as defined below:

This routine is called by the Lazy Writer prior to calling CcUninitializeCacheMap,
since this may result in a Close call to the file system. The context parameter
supplied is whatever the file system passed as the CloseContext parameter when it
called CclnitializeCacheMap.

typedef

BOOLEAN (*PACQUIRE_FOR_CLOSE) (
IN PVOID Context,
IN BOOLEAN Wait

);

This routine releases the Context acquired above.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 22

typedef
VOID (*PRELEASE_FROM_CLOSE) (
IN PVOID Context

);

This routine is called by the Lazy Writer prior to doing a write, since this will require
some file system resources associated with this cached file. The context parameter
supplied is whatever the FS passed as the LazyWriteContext parameter when it
called CclnitializeCacheMap.

typedef

BOOLEAN (*PACQUIRE_FOR_LAZY_WRITE) (
IN PVOID Context,
IN BOOLEAN Wait

);
This routine releases the Context acquired above.

typedef
VOID (*PRELEASE_FROM_LAZY_WRITE) (
IN PVOID Context

);

This routine is called by the Lazy Writer prior to doing a readahead. It also uses the
LazyWriteContext parameter.

typedef

BOOLEAN (*PACQUIRE_FOR_READ_AHEAD) (
IN PVOID Context,
IN BOOLEAN Wait

);
This routine releases the Context acquired above.

typedef
VOID (*PRELEASE_FROM_READ_AHEAD) (
IN PVOID Context

);

Finally, this is the complete callback vector, a pointer to which must be passed to
CclnitializeCacheMap.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 23

typedef struct _CACHE_MANAGER_CALLBACKS {

PACQUIRE_FOR_CLOSE AcquireForClose;
PRELEASE_FROM_CLOSE ReleaseFromClose;
PACQUIRE_FOR_LAZY_WRITE AcquireForLazyWrite;
PRELEASE_FROM_LAZY_WRITE ReleaseFromLazyWrite;
PACQUIRE_FOR_READ_AHEAD AcquireForReadAhead,;
PRELEASE_FROM_READ_AHEAD ReleaseFromReadAhead;

} CACHE_MANAGER_CALLBACKS, *PCACHE_MANAGER_CALLBACKS;

3.2 CcUninitializeCacheMap

This routine uninitializes the previously initialized File Stream. This routine is only
intended to be called by File Systems. It should be called when the File System
receives a cleanup call on the File Object.

A File System which supports data caching must always call this routine whenever
it closes a file that it is trying to delete, whether it cached the file on the given file
object or not. This is because the final cleanup of a file related to truncation or
deletion of the file, can only occur on the last close, whether the last closer cached
the file or not. Any time CcUninitializeCacheMap is called on a file object for
which CclnitializeCacheMap was never called, the call is benign.

CcUninitializeCacheMap does the following:

o If a File Stream was initialized on this File Object, it is uninitialized (unmap
any views, delete section, and delete Cache Manager structures).

o On the last Cleanup, if the file has been deleted, the Section is forced closed.
If the file has been truncated, then the truncated pages are purged from the
cache.

Some times a file system may want pages of the file removed from the cache, even
though the file is still open. Examples in the case of a local file system might be if
the file has been truncated, a file's media has been removed from the drive. For a
network file system client, examples might be if an opportunistic locking protocol
dictates that a file may no longer be cached, or perhaps if a virtual circuit goes
down. For this purpose CcUnitializeCacheMap takes a TruncateSize parameter,
which, if specified, causes all pages from the specified file offset on to be purged
(removed) from the cache.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 24

BOOLEAN
CcUninitializeCacheMap (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER TruncateSize OPTIONAL,
IN PCACHE_UNINITIALIZE_EVENT UninitializeCompleteEvent OPTIONAL

)
Parameters:

FileObject - File Object which was previously supplied to
CclnitializeCacheMap.

TruncateSize - If specified, all pages should be purged (removed) from the cache
starting at, and including, the specified address.

UninitializeCompleteEvent - If specified, this event will be set when the
uninitialize is complete, since it may not be complete upon return. If the
caller wishes to wait on this event, he must absolutely guarantee that he
owns no resources, as this could lead to deadlocks. The format of this
structure is:

typedef struct _CACHE_UNINITIALIZE_EVENT {

struct _.CACHE_UNINITIALIZE_EVENT *Next;

KEVENT Event;

} CACHE_UNINITIALIZE_EVENT, *PCACHE_UNINITIALIZE_EVENT;

Returns:

FALSE - if Section was not closed. In this case, if the caller really cares, it may
wish to specify and wait on the UninitializeCompleteEvent.

TRUE - if Section was closed.
3.3 CcExtendCachedFileSize

This routine must be called whenever a file has been extended to reflect this
extension in the Cache Manager data structures and the underlying section.
Calling this routine has a benign effect if the current size of the file is already
greater than or equal to FileSize. The Cache Manager must know the correct file
size to make the fast read paths work correctly.

VOID

CcExtendCachedFileSize (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileSize

)

Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 25

FileSize - Supplies the new file size for the file.
3.4 CcExtendCacheSection

This routine must be called whenever the allocation for a file has been extended to
reflect this extension in the Cache Manager data structures and the underlying
section. Calling this routine has a benign effect if the current allocation size of the
file is already greater than or equal to NewSize. The Cache Manager must know the
correct allocation size in order to insure that the underlying section is large enough.

BOOLEAN
CcExtendCachedFileSize (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER NewsSize,
IN BOOLEAN Wait

)

Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

NewSize - Supplies the new allocation size for the file.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

Returns:

FALSE - if Wait was supplied as FALSE, and the extend was not possible
without blocking.

TRUE - if the extend was successfully completed.
3.5 CcFlushCache
This routine may be called to flush dirty data from the cache to the cached file on
disk. Any byte range within the file may be flushed, or the entire file may be flushed
by omitting the FileOffset parameter.

This routine does not take a Wait parameter; the caller should assume that it will
always block.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 26

VOID
CcFlushCache (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset OPTIONAL,
IN ULONG Length,
OUT PIO_STATUS_BLOCK IoStatus OPTIONAL

)

Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

FileOffset - If this parameter is supplied (not NULL), then only the byte range
specified by FileOffset and Length are flushed.

Length - Defines the length of the byte range to flush, starting at FileOffset.
This parameter is ignored if FileOffset is specified as NULL.

IoStatus - The I/0 status resulting from the flush operation.
3.6 CcPurgeFromWorkingSet
This routine which may optionally be used to purge all of the pages of a file from the
system cache or Fsp working set. The pages do not immediately leave memory, but
simply become eligible for replacement.
BOOLEAN
CcPurgeFromWorkingSet (

IN PFILE_OBJECT FileObject,
IN BOOLEAN Wait

)

Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

Returns:

FALSE - if Wait was supplied as FALSE, and the extend was not possible
without blocking.

TRUE - if the extend was successfully completed.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 27

3.7 CcPurgeCacheSection

This routine forcibly purges pages from the cache, automatically uninitializing all
file objects which have cached this file if necessary. It is meant for infrequent use
when dealing with such things as removeable media. Note that this routine is called
automatically if the Cache Manager is notified of a file truncation via
CcTruncateCachedFileSize.

VOID
CcPurgeCacheSection (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER PurgeSize

)

Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

PurgeSize - The offset at which the purge is to begin. If not on a page
boundary, the page at PurgeSize is first flushed.

3.8 CcTruncateCachedFileSize

This routine must be called any time a local file system truncates a file. It informs
the Cache Manager of the new size. If any of AllocationSize, FileSize, or
ValidDataLength are larger than this number, they are reduced. Any pages beyond
this point are purged from the cache.

VOID

CcTruncateCachedFileSize (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER NewSize

)

Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

NewSize - Supplies the new size for the file.
3.9 CcZeroData
This routine may be called to zero a given byte range in a file. As a general service,
it may even be called by file systems to zero byte ranges in files which are not
cached.
Up to some reasonable amount, this routine will simply attempt to zero data in the

cache, and let it be lazy written out. However, beyond a certain size, or for the
entire range if the file is not cached, the pages of the file are zeroed by writing to

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 28

them directly on disk. Note that for files which are not cached, the caller must
guarantee that the specified StartOffset is on a physical sector boundary for the
underlying disk, otherwise the disk driver will return an error and this routine will
raise that error status.

BOOLEAN

CcZeroData (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER StartOffset,
IN PLARGE_INTEGER EndOffset,
IN BOOLEAN Wait,
OUT PIO_STATUS_ BLOCK IoStatus

)

Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

StartOffset - Supplies the file offset at which zeroing is to begin. If the file is not
cached, this offset must be on a hardware sector boundary.

EndOffset - Supplies the file offset at which zeroing is to end.
Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

IoStatus - Returns the I/0 status from the zeroing operation.

Returns:

FALSE - if Wait was supplied as FALSE, and the extend was not possible
without blocking.

TRUE - if the extend was successfully completed.
3.10 CcRepinBcb

This routine may be called to guarantee that the specified Bcb does not go away.
This Bcb address must be one previously returned by either CcPinRead,
CcPreparePinWrite, or CcPinMappedData. The caller must subsequently call
CcUnpinRepinnedBcb for this Becb. This sequence is usually done in connection
with a write through file object, however it may also be done to insure that a buffer
does not leave memory to facilitate possible error recovery.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 29

BOOLEAN
CcRepinBcb (
IN PBCB Bcb

)

Parameters:
Bceb - A previously returned pinned Bcb.
3.11 CcUnpinRepinnedBcb

This routine must be called to release a Bcb which was previously specified in
CcRepinBcb. It releases the Bceb, optionally writing it through to disk first.

VOID
CcUnpinRepinnedBcb (
IN PBCB Bcb,
IN BOOLEAN WriteThrough,
OUT PIO_STATUS_BLOCK JoStatus

)
Parameters:
Bceb - Address of the Beb

WriteThrough - Specified as TRUE, if the data represented by the Bcb should
first be written through

IoStatus - Returns the I/O status of the write, if WriteThrough was specified
3.12 CcIlsFileCached

This routine is the approved way to determine if a file is cached by any FileObject,
whether it is cached by the input file object or not.

Note, if the caller wishes to determine if a given file object itself has been initialized
for caching, he should simply test FileObject->PrivateCacheMap. If this field is not
NULL, then the file object has been initialized for caching.

BOOLEAN

CclsFileCached (
IN PFILE_OBJECT FileObject

)

Parameters:

FileObject - The file object in question.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 30

Returns:

FALSE - if no file object has the file cached.

TRUE - if at least one file object has the file cached.
3.13 CcReadAhead

This routine is intended to be called by file systems, after a successful CcCopyRead
or CcMdIRead. The caller essentially specifies information about the previous read.
CcReadAhead maintains history information about a small number of recent calls
for this file object, and attempts to detect if read ahead would currently be
adviseable, and if so, whether or not the determined read ahead has already been
performed.

If the routine decides that it should perform some read ahead, then a read ahead
work request is queued off to one of the Cache Manager's worker threads, in order
to not tie up the current thread.

VOID
CcReadAhead (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN ULONG StililNeed

)

Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

FileOffset - Byte offset in file where the last read was just performed.
Length - The number of bytes successfully returned to the reader.

StillNeed - If the read was CcCopyRead, this parameter should specify 0. If the
read was CcMdIRead, then the caller had specified both a Length and
MinimumLength that he desired, and we may therefore have given him
less than Length. If so, this parameter should specify the Length
requested in CcMdlRead minus the length we returned to him.

3.14 CcSetAdditionalCacheAttributes

This routine may be called to disable read ahead or lazy write on a file object.
Disabling read ahead is always safe. The caller must guarantee that if it disables
lazy write, that it will write all dirty pages eventually for the entire file by flushing. A
file system should clearly not disable lazy write just because someone opens the file
write through, because disabling lazywrite applies to the file itself (not a given file

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 31

object), and someone else may open the file without write through. Note also that
write through is properly synchronized with the Lazy Writer anyway.

VOID
CcSetAdditionalCacheAttributes (
IN PFILE_OBJECT FileObject,
IN BOOLEAN DisableReadAhead,
IN BOOLEAN DisableLazyWrite

)

Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

DisableReadAhead - If specified as TRUE, read ahead will be disabled.

DisableLazyWrite - If specified as TRUE, lazy writing will be disabled.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 32

4. Copy Interface (COPYSUP)
4.1 CcCopyRead

This routine attempts to copy the specified file data from the cache into the output
buffer, and deliver the correct I/O status.

BOOLEAN
CcCopyRead (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
OUT PVOID Buffer,
OUT PIO_STATUS_BLOCK I[oStatus

)

Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

FileOffset - Byte offset in file for desired data.

Length - Length of desired data in bytes.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

Buffer - Pointer to output buffer to which data should be copied.

IoStatus - Pointer to standard I/O status block to receive the status for the
transfer. (STATUS_SUCCESS guaranteed for cache hits, otherwise the
actual I/O status is returned.)

Returns:
FALSE - if Wait was supplied as FALSE and the data was not delivered
TRUE - if the data is being delivered
4.2 CcCopyWrite
This routine attempts to copy the specified file data from the specified buffer into
the Cache, and deliver the correct I/O status. If the file object has
FO_WRITE_THROUGH set, then the data will have been written through to disk
upon return.
There is one optimization that is important to note. In CcCopyWrite, a fast

compare is made to see if the caller happens to be writing the same data that
already exists in the file at that point, a common case in certain applications. On

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 33

the first different byte that is seen, a move of the new data into the cache begins at
that point. However, if the buffer is completely the same, then the write is
essentially nooped. This optimization does not occur if the buffer was already dirty
anyway, or the write is beyond ValidDataLength, or the file does not support
ValidDataLength (NULL pointer was passed to CclnitializeCacheMap). Given these
checks, this optimization should always be safe, but the file system should be aware
of this optimization none the less.

BOOLEAN
CcCopyWrite (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN PVOID Buffer,
IN PLSN Lsn OPTIONAL,
OUT PIO_STATUS_BLOCK IloStatus

)

Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

FileOffset - Byte offset in file to receive the data.

Length - Length of data in bytes.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)
Buffer - Pointer to input buffer from which data should be copied.

Lsn - An optional pointer reserved for future support. Should be supplied as
NULL.

IoStatus - Pointer to standard I/O status block to receive the status for the
transfer. (STATUS_SUCCESS guaranteed when WriteThrough = FALSE,
otherwise the actual I/O status from the Write is returned.)

Returns:

FALSE - if Wait was supplied as FALSE and the data was not copied.
TRUE - if the data has been copied.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 34

5. Mdl Interface (MDLSUP)
5.1 CcMdlRead

This routine attempts to lock the specified file data in the cache and return a
description of it in an Mdl along with the correct I/O status.

If not all of the data can be delivered, but at least MinimumLength can be, then all of
the data currently available is still delivered.

If the caller does not want to block, then Wait should be supplied as FALSE. If Wait
was supplied as FALSE and it is currently impossible to supply the minimum
requested data without blocking, then this routine will return FALSE. However, if
the minimum amount of data is immediately accessible in the cache and no
blocking is required, this routine locks the data and returns TRUE.

If the caller supplies Wait as TRUE, then this routine is guaranteed to lock at least
MinimumLength data and return TRUE. If at least MinimumLength is immediately
accessible in the cache, then no blocking will occur, and all of the available data up
to Length will be returned. Otherwise, a data transfer from the file into the cache
will be initiated for all missing data up to MinimumLength, and the caller will be
blocked until the data can be returned.

File system Fsd's will typically not use CcMdlRead, except to implement the
IRP_MN_MDL subfunction of read.

File Server threads do not call this routine directly as that is not safe. They may call
FsRtlMdlRead, which has essentially the same interface. They may also queue an
Irp with IRP_MN_MDL set in the subfunction of an IRP_MJ_READ request. In this
case they must pass MinimumLength in via the Irp->loStatus.Information field. They
can intercept the Irp completion via a completion routine (see the Windows NT I/O
System Specification) and read the I/O status and get the Mdl from Irp->MdlAddress.
It must then clear this field, or else not allow the Irp completion to continue.

After the caller is done with the data, it must call CcMdlReadComplete to free
Cache Manager resources.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 35

BOOLEAN
CcMdIRead (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN ULONG MinimumLength,
IN BOOLEAN Wait,
OUT PMDL *MdIChain,
OUT PIO_STATUS_BLOCK IoStatus

)

Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

FileOffset - Byte offset in file for desired data.
Length - Length of desired data in bytes.

MinimimumLength - Minimum data to be guaranteed on return if this routine
returns TRUE.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)
MdIChain - Returns a pointer to an Mdl chain describing the desired data.
IoStatus - Pointer to standard I/O status block to receive the status and byte
length of the returned data for the transfer. (STATUS_SUCCESS
guaranteed for cache hits, otherwise the actual I/O status is returned.)
Returns:
FALSE - if Wait was supplied as FALSE and the data was not delivered
TRUE - if the data is being delivered
5.2 CcMdlReadComplete

This routine must be called after the call to CcMdlRead, when the Mdl is no longer
required. It performs any cleanup that is necessary from the CcMdIRead.

Note that this routine does not assume that the calls to CcMdlReadComplete will
occur in the same order as the calls to CcMdIRead, however it does assume that
each call to CcMdIRead will eventually be followed by a call to this routine.

File systems only use this routine to implement the IRP_MN_MDL_COMPLETE

subfunction of IRP_MJ_READ. Servers may generate this Irp with the MdIChain
returned from CcMdIlRead in Irp->MdlAddress, or they may call

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 36

FsRtIMdIReadComplete. (Either of these options are available regardless of how
they called CcMdlRead.)

VOID

CcMdlReadComplete (
IN PFILE_OBJECT FileObject,
IN PMDL MdIChain

);

Parameters:
FileObject - Same file object pointer supplied to CcMdlRead.
MdIChain - Mdl chain returned from CcMdIRead.

5.3 CcPrepareMdlWrite

This routine attempts to lock the specified file data in the cache and return a
description of it in an Mdl along with the correct I/O status. Pages to be completely
overwritten may be satisfied with empty pages.

File system Fsd's will typically not use CcMdlWrite, except to implement the
IRP_MN_MDL subfunction of write.

File Server threads do not call this routine directly as that is not safe. They may call
FsRtlPrepareMdlWrite, which has essentially the same interface. They may also
queue an Irp with IRP_MN_MDL set in the subfunction of an IRP_MJ_WRITE
request. They can intercept the Irp completion via a completion routine (see the
Windows NT I/ O System Specification) and read the I/O status and get the Mdl from
Irp->MdlAddress. It must then clear this field, or else not allow the Irp completion
to continue.

After the caller is done with the data, it must call CcMdlWriteComplete to free
Cache Manager resources.

BOOLEAN
CcPrepareMdlWrite (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
OUT PMDL *MdIChain,
OUT PIO_STATUS_BLOCK I[oStatus

)

Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

FileOffset - Byte offset in file for desired data.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 37

Length - Length of desired data in bytes.
Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

MdIChain - On output it returns a pointer to an Mdl chain describing the
desired data.

IoStatus - Returns I/0 status from potential read required to prepare the data.

Returns:
FALSE - if Wait was supplied as FALSE and the pages were not delivered
TRUE - if the pages are being delivered

5.4 CcMdlWriteComplete

This routine must be called after a call to CcPrepareMdlWrite. The caller supplies
the ActualLength of data that it actually wrote into the buffer, which may be less
than or equal to the Length specified in CcPrepareMdlWrite.

This call does the following:

o Makes sure the data up to ActualLength eventually gets written. If the file
object is not write through, the data will not be written immediately and
IoStatus will simply say ActualLength bytes were successfully written on return
(even though they were not). This strategy allows the caller to always check
the I/O status, and know that if it got an error, the file object must be write
through. If the file object is write through, then the data is written
synchronously, and the appropriate loStatus is returned.

o Unlocks the pages and deletes the MdIChain

File systems only use this routine to implement the IRP_MN_MDL_COMPLETE
subfunction of IRP_MJ_WRITE. Servers may generate this Irp with the MdIChain
returned from CcPrepareMdlWrite in Irp->MdlAddress, or they may call
FsRtIMdIWriteComplete. (Either of these options are available regardless of how
they called CcPrepareMdlWrite.)

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 38

BOOLEAN
CcMdlWriteComplete (
IN PFILE_OBJECT FileObject,
IN ULONG ActualLength,
IN PMDL MdIChain,
IN BOOLEAN Wait,
OUT PIO_STATUS_BLOCK IloStatus

)
Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

ActualLength - Length of data actually transferred.
MdIChain - Mdl chain returned from CcPrepareMdlWrite.
Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

IoStatus - Returns success, or the actual I/O status from Write Through.

Returns:
FALSE - if Wait was supplied as FALSE and the pages were not delivered
TRUE - if the pages are being delivered

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 39

6. Pin Interface (PINSUP)

The Pin interface is implemented specifically for file systems which are
implementing a particular file structure on external media. In a sense it is a more
primitive interface than the Copy or Mdl interfaces which always guarantee that
data is never left locked in memory, and which automatically deal with cases where
the desired data crosses page boundaries, and so on. Therefore there are a couple
of special rules that users of this interface must obey.

In general, the Pin interface allows a range of bytes to be locked/pinned in memory
(or in the lighter-weight case mapped), and subsequently accessed directly by virtual
address. While the data is pinned or mapped system resources are being held. The
Cache Manager absolutely relies on the File System to guarantee that it will free
these resources by calling CcUnpinData.

Forgetting to unpin data is a serious error which can lead to system failure. One
approach has proven to be bullit-proof in guaranteeing that file systems never forget
to unpin data. By initializing all Bcb variables in a procedure to NULL, and nesting
all calls which may fail or Raise within a try statement of a try-finally clause, all
non-NULL Bcbs may be unpinned in the finally clause on the way out. This means
they will be unpinned whether the try statement is exited normally, or whether
some type of exception occurs which causes the procedure to be unwound.

There is another rule which is a bit more subtle, but for most cases not a problem.
Whenever a file system maps or pins a range of bytes in one request that are
present on one or more pages, it is invalid for that file system to ever make a
subsequent request to map or pin a range of bytes in this stream that includes a
page from the first request along with a page that was not included in the first
request. The reason for this is somewhat due to internal details, but here is a
simplified explanation. Once the Cache Manager completes the first request, he has
"delivered" this data at a particular range of virtual addresses. If the second request
comes along and overlaps the first request, but demands at least one additional
page at the beginning or end, it is impossible in general for the Cache Manager to
guarantee that it can deliver the new page(s) at contiguous virtual addresses. In the
worst case the new page(s) could currently be being accessed as part of another
request at a different virtual range. In reality the Cache Manager tries to avoid
doing dynamic mapping, but in addition to the potential mapping problems the
internal use of Bcbs also restricts overlapping requests.

6.1 CcPinRead

This routine attempts to lock/pin the specified file data in the cache. If successful
(returning TRUE), a pointer is returned to the desired data in the cache. This
routine is intended for File Systems.

If the caller subsequently modifies the data, it should call CcSetDirtyPinnedData.
In any case, the caller MUST subsequently call CcUnpinData. Naturally if

CcPinRead, CcMapData, or CcPreparePinWrite were called multiple times for the
same data, CcUnpinData must be called the same number of times.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 40

The returned Buffer pointer is valid until the data is unpinned, at which point it is
invalid to use the pointer further.

BOOLEAN
CcPinRead (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
OUT PVOID *Bcb,
OUT PVOID *Buffer,
OUT PIO_STATUS_BLOCK IoStatusBlock

)

Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

FileOffset - Byte offset in file for desired data.
Length - Length of desired data in bytes.
Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

Bceb - On the first call this returns a pointer to a Bcb parameter which must be
supplied as input on all subsequent calls for this buffer.

Buffer - Returns pointer to desired data, valid until the buffer is unpinned or
freed.

IoStatus - Pointer to standard I/O status block to receive the status for the
transfer. (STATUS_SUCCESS guaranteed for cache hits, otherwise the
actual I/O status is returned.)

Returns:
FALSE - if Wait was supplied as FALSE and the data was not delivered
TRUE - if the data is being delivered

6.2 CcMapData

This routine attempts to map the specified file data in the cache. If successful
(returning TRUE), a pointer is returned to the desired data in the cache. Mapping
data is considerably cheaper than pinning it, however mapped data may not be
modified. One either needs to call CcPinRead (or CcPreparePinWrite) instead if
one knows in advance that the data is to be modified, or call CcPinMappedData
prior to modifying the data and setting it dirty. The caller must not modify the data
or set it dirty before calling CcPinMappedData.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 41

This routine is intended for File Systems.

The caller MUST subsequently call CcUnpinData once with the Bcb returned from
this call, or the modified Bcb returned from CcPinMappedData if that routine was
called. Naturally if CcPinRead, CcMapData, or CcPreparePinWrite were called
multiple times for the same data, CcUnpinData must be called the same number of
times.

The returned Buffer pointer is valid until the data is unpinned, at which point it is
invalid to use the pointer further.

BOOLEAN
CcMapData (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
OUT PVOID *Bcb,
OUT PVOID *Buffer,
OUT PIO_STATUS_BLOCK IoStatusBlock

)

Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

FileOffset - Byte offset in file for desired data.
Length - Length of desired data in bytes.
Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

Bceb - On the first call this returns a pointer to a Bcb parameter which must be
supplied as input on all subsequent calls for this buffer.

Buffer - Returns pointer to desired data, valid until the buffer is unpinned or
freed.

IoStatus - Pointer to standard I/O status block to receive the status for the
transfer. (STATUS_SUCCESS guaranteed for cache hits, otherwise the
actual I/O status is returned.)

Returns:

FALSE - if Wait was supplied as FALSE and the data was not delivered
TRUE - if the data is being delivered

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 42

6.3 CcPinMappedData

This routine attempts to pin the specified file data which may have previously only
been mapped. If successful (returning TRUE), a pointer is returned to the desired
data in the cache. The data is guaranteed to stay at the same virtual address. If
CcPinMappedData has already been called for this data or the data was actually
pinned in the first place (both cases determined from the Bcb IN OUT parameter),
then this call is benign. Also note that Bcbs that are either pinned or mapped have
to be unpinned, and a call to this routine does not mean that CcUnpinData has to
be called an additional time, in fact it should not.

Note that Beb is an IN OUT parameter, and that its value may in fact change. If so,
it is the new value that must be specified to CcSetDirtyPinnedData or
CcUnpinData; the caller should avoid making copies of the Bcb prior to this call.

This routine is intended for File Systems.
If the caller subsequently modifies the data, it should call CcSetDirtyPinnedData.

In any case, the caller MUST subsequently call CcUnpinData. Naturally if
CcPinRead, CcMapData, or CcPreparePinWrite were called multiple times for the
same data, CcUnpinData must be called the same number of times.

BOOLEAN
CcPinMappedData (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Wait,
IN OUT PVOID *Bcb,
OUT PIO_STATUS_BLOCK IoStatusBlock

)

Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

FileOffset - Byte offset in file for desired data.
Length - Length of desired data in bytes.
Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

Bceb - On the first call this returns a pointer to a Bcb parameter which must be
supplied as input on all subsequent calls for this buffer.

IoStatus - Pointer to standard I/O status block to receive the status for the

transfer. (STATUS_SUCCESS guaranteed for cache hits, otherwise the
actual I/O status is returned.)

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 43

Returns:
FALSE - if Wait was supplied as FALSE and the data was not delivered
TRUE - if the data is being delivered

6.4 CcPreparePinWrite

This routine attempts to lock the specified file data in the cache and return a
pointer to it along with the correct I/O status. Pages to be completely overwritten
may be satisfied with empty pages.

When this call returns with TRUE, the caller may immediately begin to transfer data
into the buffers via the Buffer pointer. The buffer will already be marked dirty.

The caller MUST subsequently call CcUnpinData. Naturally if CcPinRead or
CcPreparePinWrite were called multiple times for the same data, CcUnpinData (or
CcFreePinnedData) must be called the same number of times.

The returned Buffer pointer is valid until the data is unpinned, at which point it is
invalid to use the pointer further.

BOOLEAN
CcPreparePinWrite (
IN PFILE_OBJECT FileObject,
IN PLARGE_INTEGER FileOffset,
IN ULONG Length,
IN BOOLEAN Zero,
IN BOOLEAN Wait,
IN PLSN Lsn OPTIONAL,
OUT PVOID *Bcb,
OUT PVOID *Buffer,
OUT PIO_STATUS_BLOCK IoStatus

)

Parameters:

FileObject - A file object for which CclnitializeCacheMap has been previously
called.

FileOffset - Byte offset in file for desired data.

Length - Length of desired data in bytes.

Zero - If supplied as TRUE, the buffer will be zeroed on return.

Wait - FALSE if caller may not block, TRUE otherwise (see Section 0)

Lsn - An optional pointer reserved for future support. Should be supplied as
NULL.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 44

Bceb - This returns a pointer to a Bcb parameter which must be supplied as
input to CcPinWriteComplete.

Buffer - Returns pointer to desired data, valid until the buffer is unpinned or
freed.

IoStatus - Pointer to standard I/O status block to receive the status for the
transfer. (STATUS_SUCCESS guaranteed for cache hits, otherwise the
actual I/O status is returned.)

Returns:
FALSE - if Wait was supplied as FALSE and the pages were not delivered
TRUE - if the pages are being delivered

6.5 CcSetDirtyPinnedData

This routine declares that the data previously read via a call to CcPinRead has been
modified. It is important to call this routine to insure that the data will eventually
be written to disk in a timely manner.

VOID
CcSetDirtyPinnedData (

IN PVOID Bcb,

IN PLSN Lsn OPTIONAL,

)

Parameters:
Bcb - Beb parameter returned from a call to CcPinRead.

Lsn - An optional pointer reserved for future support. Should be supplied as
NULL.

6.6 CcUnpinData

This routine must be called after each call to CcPinRead, CcMapData or
CcPreparePinWrite. It unlocks the data from the cache, enabling it to be written if
it is dirty. Data will never be written while it is pinned.

VOID
CcUnpinData (
IN PVOID Bcbh

)

Parameters:

Bceb - Beb parameter returned from the last call to CcPinRead, CcMapData
(possibly modified by CcPinMappedData) or CcPreparePinWrite.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Caching Design Note 45

7. Revision History
Original Draft 1.0, February 3, 1990
Revision Draft 1.1, March 5, 1990

Minor changes plus incorporate review comments

Addition of MmDeclareWsRoutines

Addition of Section on further Memory Management Requirements
- Addition of entire
Revision Draft 1.2, June 15, 1990

- Complete rewrite except for the first half of Page 1, to reflect the actual
implementation driven by the Design Review meeting for Draft 1.1.

Revision Draft 1.3, October 27, 1991

- Greatly expanded detail and update to describe actual implementation for
PDK1.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS/2 Coding Conventions

Portable Systems Group

NT 0S/2 Coding Conventions

Author: Mark Lucovsky, Helen Custer
Revision 1.5, January 21, 1991

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS/2 Coding Conventions

(0T [ To1 1 o] I 3
Y (010 (U1 L= LT (o LT TR 3
[T Tox o) I (== 10 [T £ 4
[ LT L0 [T T L= TR 6
[ L o [T g T LR L Tod [V o] RO 6

[ L o [T G LR 01§ 10T SRR 7
N0 1T oo OSSR USRI 8
T o o] LB N T L TR 9
INItIAL CAPS FOIMAL.......iiiiiiie ittt st e b e ta e e et e st e st e besbeeteeseeneeeeseestesaeateeneeneeseens 9

L0 LTy o (U =0 [ 0 - R 9
[Tt B IV 1= 30 - TS 9
Structure Field Names and EnumEeration CONSTANTS .........ocueeiviiiiie ittt sres s ves b s sreesree s 10
MaACTrO ANd CONSLANT NAMIES........veiiriiirie ittt e st e s st e e st e s s bbe e sbte s sbeessbbessbeeesbeessbbessaesssbenesrenees 10
Indentation and PIaCEMENT OF BIACES ......cccivviiiiieie ittt et e e ettt e s st et e s sttt e s s stb e e e ssbbesesareeaessabeneeas 11
(00101 [ e (o 1A\ V/0 o RO 13
Left HANA SIOE TYPECASTS. ....eivieiiiitiieiieiert ettt bbbttt bbbt bt 13
Zer0 Length Arrays iN STIUCLUIES .......oueiiiieiee ettt bbbttt st sb ettt e e e e 13

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS/2 Coding Conventions

Introduction

All code written for NT 0S/2 by members of the Portable Systems Group
adheres to a common coding style. This style gives the system a
uniform appearance that allows group members to read, modify, and
maintain each other®s modules without learning several different coding
conventions.

The following items are standardized:

. Module headers

. Function headers and declarations

. Header file format

. Names of variables, data types, structure fields, macros,
and constants

. Control structure indentation and placement of braces

Module Headers
The following prototype should appear at the beginning of each module.

Ize source to the prototype can be found in file \nt\bak\inc\modhdr.c.
++
Copyright (c) 1989 Microsoft Corporation
Module Name:

name-of-module-filename
Abstract:

abstract-for-module
Author:

name-of-author (email-name) creation-date-dd-mmm-yyyy
[Environment:]

optional-environment-info (e.g. kernel mode only...)
[Notes:]

optional-notes

Revision History:

most-recent-revision-date email-name
description

least-recent-revision-date email-name
description

——*/

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS/2 Coding Conventions
The following is a sample of a completed module header:
/*++
Copyright (c) 1989 Microsoft Corporation
Module Name:
pool.c
Abstract:

This module contains the pool allocator for the NT 0S/2
executive.

Author:

Mark Lucovsky (markl) 16-Feb-1989
Environment:

Kernel mode only.
Revision History:

22-Feb-1989 markl

Modified module to conform to the new naming and coding
standards agreed to 21-Feb-1989.

20-Feb-1989 markl
Added module and function headers.
——*/
Note that the revision history portion is not completed. Until we get
further along in the project, we will not keep a revision history.

The /*++ <text> --*/ construct is used by a comment extractor program
that will be developed to assist in our documentation efforts.

Function Headers

The following is a prototype function declaration. This declaration is
to appear with the implementation of the function. The source to the
prototype can be found in file \nt\bak\inc\prochdr.c.

Notice the following details in the function declaration:

. A form-feed character should appear one line before the
“return-type"” line. This convention is noted 1iIn this
document with the string "<form-feed>".

. All formal arguments are preceded by one of the following

macro definitions:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS/2 Coding Conventions

IN

ouT

IN OUT

[ ]
<form-feed>
return-type

Indicates that the argument is a non-modifiable input
value (i.e., call-by-value semantics)

Indicates that the argument is an address which refers
to a variable or structure that will be modified
by the function (i.e., call-by-reference
semantics)

Indicates that the argument 1is the address of an
input variable or structure that 1is both read and
written by the function (i.e., call-by-reference
semantics)

The OPTIONAL macro appears after a formal argument of type
pointer, HANDLE, or ULONG when the function accepts either
a NULL or non-NULL value. To determine whether the actual
value supplied is NULL or non-NULL, the programmer must use
the macro ARGUMENT PRESENT, which takes the pointer,
HANDLE, or ULONG variable as an argument and returns a
value of type BOOLEAN.

The order of the arguments in the comment block is the same
as the order 1iIn which they appear in the function
declaration.

The function declaration follows:

Ffunction-name(
direction type-name argument-name,
direction type-name argument-name...

)

/> ++

Routine Description:

description-of-function

Arguments:

argument-name - [Supplies | Returns] description-of-argument

Return Value:

return-value - description-of-return-value

——*/

_or_
None

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS/2 Coding Conventions

}

The following is a sample of a completed function declaration:
<form-feed>
VOID
loBuildPartialmdl(
IN PMDL SourceMdl,
IN PMDL TargetMdl,
IN PVOID VirtualAddress,
IN ULONG Length OPTIONAL

)
/> ++
Routine Description:

This routine maps a portion of a buffer as described by an

MDL. The portion of the buffer to be mapped is specified via a virtual
address and an optional length. IT the length is not supplied, then
the remainder of the buffer is mapped.

Arguments:
SourceMdl - MDL for the current buffer.
TargetMdl - MDL to map the specified portion of the buffer.
VirtualAddress - Base of the buffer to begin mapping.

Length - Optional length of buffer to be mapped; if zero,
remainder.

Return value:
None.

When a function is declared externally iIn a header file, its
declaration contains only the function prototype and not the comment
section. For example:
VOID
loBui ldPartialmdl(

IN PMDL SourceMdl,

IN PMDL TargetMdl,

IN PVOID VirtualAddress,

IN ULONG Length OPTIONAL

)

Header Files

The following sections define the requirements for inclusion and format
of header files.

Header File Inclusion
There are three types of header files in the NT 0S/2 system:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS/2 Coding Conventions

. Header files that are private to a single operating system
component (the kernel or the 1/0 system, for example)

. A header file that is shared by the internal components of
the operating system (the kernel and the executive)

. A public header file that defines external application

programming interfaces (APIs) for system components outside
the kernel and executive

Each component of the operating system has a private header file. The
naming convention for these header TfTiles iIs <component-name>p.h. For
example, the private header file for kernel component, ke, is called
kep.h.

The NT 0S/2 shared header file, \nt\private\src\ntos\inc\ntos.h, 1is
included by each component of the executive and by the kernel, using
the following statement:

#include ''ntos.h"

(This file is included by a component"s private include file.)

File ntos.h contains a list of #include statements, one for each
operating system component. Each operating system component has a
corresponding header file that defines prototypes for the functions
that are shared with other components within the executive. The naming
convention for these header files is <component-name>_h. For example,
the header file containing shared prototypes for kernel component, ke,
is called ke.h.

The public header Tfile, \nt\sdk\inc\ntos2.h, 1is included by all
components outside the NT 0S/2 kernel and executive, using the
following statement:

#include <ntos2.h>

Header File Format

Modules should be able to nest header files without causing multiple
definition problems. To accomplish this, each header file should be
conditionally expanded to itself, or to nothing if it has already been
expanded.

In the example below, if the module pool.h was not previously included,
then the macro _POOL_ is defined and the header file 1is expanded.
Otherwise, _POOL_ is already defined and the remainder of the header
file is ignored. This results in the header file being included only
once.

The following header file style should be used:
/> ++

Copyright (c) 1989 Microsoft Corporation
Module Name:

pool .h

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS/2 Coding Conventions

Abstract:

This module defines the NT 0S/2 pool data structures and
function prototypes.

Author:

Mark Lucovsky (markl) 16-Feb-1989
Revision History:
-—*/

#ifndef POOL
#define _POOL_

#include "'ntdef.h"
#include "list_h"
#include "process.h"

typedef enum POOL_TYPE {
NonPagedPool ,
PagedPool
} POOL_TYPE;

#endif // _POOL_
Note that if module list.h were shown, the conditional would appear as
follows:

#ifndef _LIST_

#define _LIST_

//

// body

//

#endif // _LIST_

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS/2 Coding Conventions

Naming

The following sections describe the naming conventions for variables,
structure fields, types, constants, and macros.

Variable Names

Variable names are either 1in "initial caps" format, or they are
unstructured. The following two sections describe when each is
appropriate.

Note that the NT 0S/2 system does not use the Hungarian naming
convention used in some of the other Microsoft products.

Initial Caps Format

All global variables and formal argument names must use the initial
caps format. The following rules define this format:

. Words within a name are spelled out; abbreviations are
discouraged.

o The first character of each word in a name is capitalized.

o Acronyms are treated as words, that is, only the first

character of the acronym is capitalized.

The following list shows some sample names that conform to these rules:
NumberOfBytes

TcbAddress

BilledProcess

Unstructured Format

Local variables may appear in either the initial caps format, or in a
format of the programmer®s preference. The following list shows some
possibilities for local variable names:

loopindex

LoopIndex

loop_index

Data Type Names

A set of primitive data types for use in the NT 0S/2 system is defined
in the file \nt\sdk\inc\ntdef_h. All NT 0S/2 software must declare
variables using these defined types rather than standard C types, where
appropriate. The following are some examples of NT 0S/2 types:

VOID
PVOID
QUAD
UQUAD
STRING
TIME

All new type names should be created iIn uppercase using typedef. Words

within the name may either be packed together or separated by
underscores. All types should have a corresponding typedef which

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS/2 Coding Conventions

defines a pointer to the type. The name for the pointer is the type
name with a "P" prefix.

The following example illustrates how to use typedef to create a
structure type:

typedef struct POOL_LIST HEAD {
ULONG CurrentFreelLength;
ULONG TotalEverAllocated;
LIST_ENTRY ListHead;

} POOL_LIST_HEAD, *PPOOL_LIST_HEAD;

The following example illustrates how to use typedef to create an
enumerated type:
typedef enum POOL_TYPE {

NonPagedPool ,

PagedPool,

MaxPoolType

} POOL_TYPE;

Structure Field Names and Enumeration Constants

Structure field names should follow initial caps format. They should
not have field name prefixes tied to a type. The following is a sample
structure:

typedef struct POOL_LIST HEAD {
ULONG CurrentFreelLength;
ULONG TotalEverAllocated;
LIST_ENTRY ListHead;

} POOL_LIST_HEAD, *PPOOL_LIST_HEAD;

As illustrated in the previous section, enumeration constants should
also follow initial caps format.

Macro and Constant Names

All macros and manifest constants should have uppercase names. Words
within a name may either be packed together, or separated by
underscores.

The following statements illustrate some macro and manifest constant
names:

#define PAGE_SIZE 4096
#define CONTAINING_RECORD(address, type, Ffield) \
((type *)((LONG)(address) - \
(LONG) (&((type *)0)->Field)))

Note: Any macro that is likely to be replaced by a function at a later
time should use the naming conventions for functions.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS/2 Coding Conventions

Indentation and Placement of Braces

The following skeletal statements illustrate the proper indentation and
placement of braces for C control structures. In all cases,
indentations consist of four spaces each.
All control structures should routinely use braces even iIf there Iis
only a single statement that will be executed.
<form-feed>
INT
FooBar(

INT ArgumentOne,

PULONG ArgumentTwo

)
/> ++
Routine Description:
This is the routine description.
Arguments:
ArgumentOne - Supplies the value for argument 1.
ArgumentTwo - Supplies the address of argument 2.
Return Value:
0 - Success
1 - Failure
-=-*/

{
1/

// Local variables are indented one tab (tabs are 4 spaces)
//

ULONG LocalVariablel;
LONG Counter;

//

// fTor loops

// - all for loops must have braces

// - closing brace is at same indentation level as
// for statement

//

for ( Counter = 0; Counter < 10; Counter++ ) {
//

// Body of loop
//

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS/2 Coding Conventions

//

// i1t statement

//

// - All if statements should use braces
//

if ( Counter == 0 ) {

//
// Then statements
//

b

//

// if then else

//

if ( Counter == 1) {

//
// Then statements
//
} else {
//
// Else statements
//
¥
//
// switch statement
//

switch ( Counter ) {
case 1 :

//

// case 1 statements
//

break;

case 2 :
//
// case 2 statements
//
break;
default :

//
// default case

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS/2 Coding Conventions

//
break;

Constructs to Avoid

NT 0S/2 1is written in portable, ANSI C. Due to differences in C
compilers, there are a number of coding constructs that need to be
avoided in order to promote portability.

Left Hand Side Typecasts

Some C compilers allow the cast operator on the left hand side of an
assignment. This is not allowed by standard C and must be avoided in NT
0S/2.

Zero Length Arrays in Structures

Zero length arrays embedded in structure definitions are not handled
uniformly by all C compilers. They should not be used in NT 0S/2.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



NT OS/2 Coding Conventions

Revision History

Original Draft 1.0, February 21, 1989 - ml
Revision 1.1, February 23, 1989 - ml
Revision 1.2, May 5, 1989 - hkc

1. Extracted coding guidelines from exec.txt and converted
text to Word.

2. Added text regarding primitive data type definitions.

3. Added text and example describing OPTIONAL arguments.

4. Added text regarding the inclusion of header files in
implementation modules.

5. Style edit.

Revision 1.3, May 11, 1989 - Incorporated group comments. hkc
Revision 1.5, January 21, 1991 tonye
1. Emphasized that all control structures must use braces.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Portable Systems Group
NT OS/2 Linker/Librarian/Image Format Specification
Author: Michael J. O'Leary

Revision 1.3, May 31, 1990

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



L OVRIVIBW. ..o 1

1.1 DESIGN GOAIS.....ueeiieiiiieeiie ettt naenre s 1
1.2 CONSEFAINTS ...ttt bbb et e et re e beebesneenreas 1

2 O o i TSPV R PR PPPPPPRP 1
2.1 WA IS COTF? o 1
2.2 WY COTT2. bbb 2
2.3 COfT SEUCTUIE......eiei ettt nreas 2
2.3.1 COff File LAYOUL......ceeiiieie e 2

2.3.2 COFf File HEAUET ........eeeiee e 4

2.3.3 Coff Optional HEAUET .........cveieeeeie e 5

2.3.4 COff SECtION HEAUEN ......cceviieeiiiee e 7

2.3.5 COff RelOCatioN ENLIY ....c.voivieece et 11

2.3.6 COff LINENUMDET ENTIY ...oviiiiiiiieceee e 11

2.3.7 Coff Symbol Table ENtrY ......cov i 11

2.3.8 Coff Auxiliary Symbol Table Entry.........cccooviiiiiinieceeeee e 14
2.3.8.1 Coff Symbol Table Ordering.........cccocevvereeieiieeneee e ee e 14

2.3.9 COff String Table .......ooii s 16
2.3.10 OVEITAYS ..ottt ettt nneas 16
2.3.11 COMMON ATAS ....coueietieaiieeiee sttt ettt e e be e eente e san e sbeesseeabeesaneeees 16
2.3.12 16-bit Offset Definition........ccccoviiiiiiiirieee e 16

B FIXUPS ottt ettt bbb ne e nre e enes 16
3.1 BaSEAd REIOCAIIONS.......cviiiieieiie ittt 16
3.2 RElOCAION TYPES ..ttt 17
3.2.1 1860 RelOCAtION TYPES ..ecvveviecieeieciesie ettt ae et ae e nneas 17

3.2.2 386 REIOCALION TYPES. .. coviiiiiiiieiieeiesiie sttt 19

3.3 DL SUPPOIT ...t 19
BLB L TRUNKS. ...ttt bbbt 20

3.3.2 EXPOIT SECHION ...ttt 23

O [ 0T TR o £ AVZ: LA o] SRR 24
0. RESOUICES ...ttt ettt e e bt e e e bt e e e be e e sbn e e e nbr e e anneeeas 25
6. COUBVIBW SUPPOI.....oiitieitieie ettt et e e et e e nraeneenes 25
6.1 Incremental LINKING.......ccooiiiiiiiiiieee s 25
6.2 Linker Command LiNE........ccccooiiiiinieieiene et 26
6.3 LINKEr SWITCNES ....veiiiiie et 26

A Lo - T4 T Lo SO 26
7.1 LIDrarian SWILCNES ......cuoeiiiieiee ettt 27
7.2 Library File LaYOUL.........ccciieiieiie ettt 27
7.2.1 Library File HEAOEN .........ooiiieieee e 28

7.2.2 Library Member Header............cooiveiiiieie e 28

7.2.3 LINKEI IMEMDEK ...ttt 29

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Linker/Librarian/Image Format

7.2.4 Secondary Linker Member..........ccoooiiiiiiiiiieeee e 29
7.2.5 L0oNg NAMES MEMDET .....c..eiiiieiiceee et 30

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License






Linker/Librarian 1
1. Overview

This specification describes the Linker and Librarian for the NT OS/2 system. The Common Object
File Format (COFF) standard with extensions needed to support Dynamic Linked Libraries (DLL's)
and new languages such as C++ will be used both as the Object Module Format (OMF) produced by
the compilers/assemblers and the executable image format used by the operating system to load a
program.

1.1 Design Goals
0 Fastest possible image activation.
0 Minimize and localize pages that can't be shared and require fixups.
0 Able to base a DLL or image at a prefered memory location.
0 Linker is the only program that modifies or constructs images.
0 Resource compiler will produce object fed to linker.
0 Need to easily support extensions to image format.
0 Linker will support multiple sections in objects.
1.2 Constraints
0 Must be able to distinguish Cruiser Images vs NT images.
0 Header must have common flags.
0 DLL support compatible with Cruiser.
0 Support transfer of control (calls) and data references.
o Allinit routines called before program entry.
0 Must be compatible with Intel i860 assembler.
0 Understand basic coff.
0 Identify Intel extensions.
2. Coff
2.1 What is Coff?

Coff (Common Obiject File Format) is the formal definition for the structure of machine code files in
the UNIX System V environment. All machine code files, whether fully linked executables, compiled
applications, or system libraries, are COFF structured files. This will also become the formal definition
for NT OS/2.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Linker/Librarian 2
The COFF definition describes a complex data structure that represents object files, executable files,
and archive (library) files. The Coff data structure defines fields for machine code, relocation
information, symbolic information, and more. The contents of these fields are accessed by an
organized system of pointers. Assemblers, compilers, linkers, and archivers manipulate the contents of
the COFF data structure to achieve their particular objective.

2.2 Why Coff?
Coff was chosen over the Crusier Linear Executable Format because of the following reasons.
o Crusier images are not mappable.
0 No mappable image header.

0 Text and data pages are not laid out in the file such that they can be direclty mapped and
paged into memory. Must grovel over a mapping table to determine page table contents.

0 Preloaded pages prohibit mapping.
o Certain fields are not on their natural alignments.
0 lterated data pages prohibit mapping.
o Crusier format contains 386 specifics.
0 Wasted space for fields that will never be used.
o Verify Record Table.
0 Resident Name Table.
0 Checksums.
0 Fixups are by page/offset instead of by virtual address.
0 Resource Compiler modifies executable image.
0 Current i860 tools support COFF. We don't want to have to do another assembler.
2.3 Coff Structure
2.3.1 Coff File Layout

For NT OS/2, the following diagram shows the structure of a basic coff file. All headers must be at the
beginning of the file. All other parts of the file can be in any order. An executable file will always be in
the order show in this diagram.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Linker/Liblf.arian

virtual ° FILE HEADER ° relative
pointers® TargetMachine ° gizes
° NumberOfSections-------------- 4-1
TimeDateStamp °
—————— PointerToSymbolTable °
NumberOfSymbols--------------- 0-é-------
SizeOfOptionalHeader---------- QIe
Characteristics co0o

o> o o oo
o 0 0 O ¥

OPTIONAL HEADER ©oo
TargetVersionStamp
LinkerVersionStamp
SizeOfCode
SizeOfInitializedData
SizeOfUninitializedData
AddressOfEntryPoint
BaseOfCode
BaseOfData
ImageBase
TargetOperatingSystem
TargetSubsystem
ImageVersionStamp
SizeOfImage
SizeOfHeaders
SizeOfHeap
SizeOfHeapCommit
SizeOfStack
SizeOfStackCommit
ZeroBits
CheckSum

—————— PointerToBaseRelocations
NumberOfBaseRelocationg---—----
AddressOfProcessInitRoutine
AddressOfThreadInitRoutine
AddressOfDl1Table
SectionNumberByType [6] —
AdditionalMachineValues [8]

° ° SECTION HEADER °© ° °
° ° Name (e.g.,.text) °© o °
° ° PhysicalAddress ° o° °
° ° VirtualAddress °
° ° SizeOfRawData----------------- a-é-1 °
° O---A------ PointerToRelocations °© o o
° ° §-A------ PointerToRawData °© o o °
°o|H-é-6-A------ PointerToLineNumbers °
© o o o NumberOfRelocationEntries----- 4
°ofo o o o NumberOfLineNumberEntries----- a-
°fo o o o Characteristics °

1
1

o M\ Hr
1

o H
(o)

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



L

(o]
(o]
[e]

o

o o

(o]

0O 0O 0O 0O O 0O 0o 0o o o

0O O 0O 0O 0O O o o

Ch o o o o

inker/Librarian 4

o o o U= e e e e e - -

[e]
[e]
[e]
[e]
[e]

o o

o
o
o
o
DGy D oo
o
o
o
o
o

oN
L
()]
)
[n)
()
}—l
o)
Q
L
o
'_I.
O
3
()]
:lj
o
o
o

o o o o o o o
S 1 A o o o o
o o J-A raw data (.text) ° © o o o
o o o ﬁ___i o o o
o o D A o o o
o o ° other sections raw data f © o o
o o ﬁ ______________________________ A o o o
°© 0---A first relocation entry ° °© o o
° ° virtual address ° °© o o°
° ° symbol table index ° © o o
° ° relocation type ° © o o
o 6 A o o o
° ° last relocation entry ----- 100
o D A o o
° ° other sections relocations f ° o
o ﬁ ______________________________ A o o
0----- A first line number entry ° ° o°
° symbol table index ° °o o°
° line number ° ° o
Qo mm e e e e oo - A o o
° last line number entry ------- i0°
e R S A o
° other sections line numbers ° °
P A o
——————— A symbol table ° °
° name or string pointer ° °
° virtual address ° °
° section number ° °
o type o o
° class ° °
° number aux entries ° °
° --------- 1
U A
° [size] string table ° SymPtr+NumSyms*SizeSym
Ummmmm e m e 1

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Linker/Librarian 5
2.3.2 Coff File Header

The file header size and format is that of standard COFF.

typedef struct _FILE_HEADER {
USHORT TargetMachine;
USHORT NumberOfSections;
ULONG TimeDateStamp;
ULONG PointerToSymbolTable;
ULONG NumberOfSymbols;
USHORT SizeOfOptionalHeader;
USHORT Characteristics;

} FILE_HEADER, *PFILE_HEADER;

FILE HEADER Structure:

TargetMachine —Indicates the target machine the object/image file is executable.

TargetEnvironment Flags:

COFF_FILE_TARGET_UNKNOWN —Indicates unknown target machine.

COFF_FILE_TARGET_860 —Indicates the object/image is binary compatable with the
Intel i860 instruction set.

COFF_FILE_TARGET_386 —Indicates object/image is binary compatable with the
Intel 386 instruction set.

COFF_FILE_TARGET_MIPS —Indicates object/image is binary compatable with the
Mips instruction set.

NumberOfSections —Indicates the number of section headers contained in the file. The number
of the first section is one.

TimeDateStamp —Indicates the time and date when the file was created. Number of elapsed
seconds since 00:00:00 GMT, January 1, 1970.

PointerToSymbolTable —A file pointer (offset from the beginning of the file) to the start of the
symbol table. The symbol table is sector aligned on disk.

NumberOfSymbols —Indicates the number of symbol table entries. Each entry is 18 bytes in
length.

SizeOfOptionalHeader —Indicates the size of the optional header.
Characteristics —Indicates the characteristics of the object file.

Characteristics Flags:

COFF_FILE_RELOCS_STRIPPED —Relocation information stripped from file.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Linker/Librarian 6
COFF_FILE_EXECUTABLE_IMAGE —No unresolved external references.

COFF_FILE_LINE_NUMS STRIPPED —Line numbers stripped from file.
COFF_FILE_LOCAL_SYMS STRIPPED —Local symbols stripped from file.
COFF_FILE_MINIMAL_OBJECT —Reserved.
COFF_FILE_UPDATE_OBJECT —Reserved.

COFF_FILE BYTES _REVERSED —Bytes of machine word are reversed.
COFF_FILE_MACHINE_16BITS —16 bit word machine.
COFF_FILE_MACHINE_32BITS —32 bit word machine.

COFF_FILE PATCH —Reserved.

COFF_FILE_NT_EXTENSIONS —If set, specifies the file contains new section
headers and padded symbol table.

COFF_FILE_DLL —Image is a Dynamic Link Library.
COFF_FILE BYTES_REVERSED_LO —Bytes of machine are reversed.

COFF_FILE BYTES REVERSED_HI —Bytes of machine are reversed. You can test
either of the above two bits, they are in the same bit position in each short word. This
allows you to identify if the coff object/image was written for a big or little endian
machine.

2.3.3 Coff Optional Header

There is no standard COFF optional header size and format. NT defines the optional header as:

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Linker/Librarian 7
typedef struct  OPTIONAL_HEADER {
USHORT TargetVersionStamp;
USHORT LinkerVersionStamp;
ULONG SizeOfCode;
ULONG SizeOfInitializedData;
ULONG SizeOfUninitializedData;
ULONG AddressOfEntryPoint;
ULONG BaseOfCode;
ULONG BaseOfData;
ULONG ImageBase;
USHORT TargetOperatingSystem;
USHORT TargetSubsystem;
ULONG ImageVersionStamp;
ULONG SizeOflmage;
ULONG SizeOfHeaders;
ULONG SizeOfHeap;
ULONG SizeOfHeapCommit;
ULONG SizeOfStack;
ULONG SizeOfStackCommit;
ULONG ZeroBits;
ULONG CheckSum;
ULONG AddressOfBaseRelocations;
ULONG NumberOfBaseRelocations;
PVOID AddressOfProcessinitRoutines;
PVOID AddressOfThreadlInitRoutines;
ULONG AddressOfDIITable;
USHORT SectionNumberByTYpe[6];
ULONG AdditionalMachineValues[8];
} OPTIONAL_HEADER, *POPTIONAL_HEADER;

OPTIONAL_HEADER Structure:

TargetVersionStamp —Indicates operating system version.

LinkerVersionStamp —Indicates which version of the linker was used to build image.
SizeOfCode —Indicates the number of bytes of code.

SizeOflInitializedData —Indicates the number of bytes of initialized data.
SizeOfUnlInitializedData —Indicates the number of bytes of uninitialized data.

AddressOfEntryPoint —Relative virtual address of starting point of image. This value added to
the ImageBase is the virtual address of the entrypoint.

BaseOfCode —Indicates the relative virtual address (64K aligned) of the origin of the first byte
of code. This value added to the ImageBase is the virtual address of the code.

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Linker/Librarian 8
BaseOfData —Indicates the relative virtual address (64K aligned) of the origin of the first byte
of data. This value added to the ImageBase is the virtual address of the data.

ImageBase —Indicates the virtual address (64K aligned) of the origin of the file header.

TargetOperatingSystem —Indicates operating system and system version on which the image is
executable.

TargetOperatingSystem Flags:

COFF_OPTIONAL_TARGET_OS_UNKNOWN —Indicates unknown target
environment.

COFF_OPTIONAL_TARGET_OS_NTOS2 —Indicates image is targeted for NT OS/2.

TargetSubsystem —Indicates which subsystem of the operating system the image is intended to
run under.

TargetSubsystem Flags:

COFF_OPTIONAL_TARGET_SUBSYSTEM_UNKNOWN —Indicates unknown
subsystem.

COFF_OPTIONAL_TARGET_SUBSYSTEM_NATIVE —Indicates image runs under
the native operating system. Subsystems are native images.

COFF_OPTIONAL_TARGET_SUBSYSTEM_0OS2 —Indicates image is to run in the
0OS/2 subsystem.

COFF_OPTIONAL_TARGET_SUBSYSTEM_POSIX —Indicates image is to run in
the Posix subsystem.

ImageVersionStamp —Indicates image version. To be used for backword compatibility. This
stamp can be set by the user with the Version: switch.

SizeOflmage —Indicates the virtual size of the image.

SizeOfHeaders —Indicates the total size of all headers.

SizeOfHeap —Indicates the maximum size the heap is allowed to grow.
SizeOfHeapCommit —Indicates the initial heap size.

SizeOfStack —Indicates the maximum size the stack is allowed to grow.
SizeOfStackCommit —Indicates the initial stack size.

ZeroBits —Indicates how memory is to be allocated.

PointerToBaseRelocations —A file pointer to a table that is used to apply relocations to the
image if the image can't be based at its desired base location. The first long word of the
base table indicates the number of base table entries that follow. PointerToBaseTable will

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Linker/Librarian 9
be zero if the image doesn't have a base table. The base table structure is defined later in
this document.

AddressOfProcessInitRoutines —TBD.
AddressOfThreadlnitRoutines —TBD.

AddressOfDIITable —The relative virtual address of a table that defines DLL's. This is
described later in this document.

SectionNumberByType —Is any array of interesting section numbers.

SectionNumberByType index values:

COFF_SECTION_TYPE_DEBUG —Indicates the section with contains the debug
information.

COFF_SECTION_EXPORTS —Indicates the section with contains the export table.
COFF_SECTION_RESOURCE —Indicates the section with contains the resource data.

COFF_SECTION_SECURITY —Indicates the section with contains security
information.

COFF_SECTION_EXCEPTION —Indicates the section with contains the exception
tables.

The optional header is used only for images. If an object file contains an optional header of the proper
size, it is used in the following manner:

If TargetSubsystem is not COFF_OPTIONAL_TARGET_SUBSYSTEM_UNKNOWN, then a
subsystem is being defined. It tells the linker that the following sections within this file are for a
particular subsystem. With this information, the linker can guarantee that different subsystem
components won't be mixed together. Each library should contain one of these records.

If AddressOfEntryPoint is non-zero, then an entrypoint is being defined. This allows a compiler to
supply the entrypoint without using the linker command line switch.

All other fields are ignored.
2.3.4 Coff Section Header
All section headers must follow the file header (or optional header if there is one).

An object or image can contain any number of sections and in any order. The linker combines any
sections with the same name and with the same flags. For example, if a compiler wants to keep all
constants together, then the compiler could use a section name of .const in every object that contained
constants. The linker will merge these sections together (provided they also had the same flag attribute
such as R/O). In some coff implementations, if a section is empty (i.e., object contains no .bss), a

Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Linker/Librarian 10
section header still identifies the section, but would contain a zero size. For NT OS/2, this extra section
header is not required.

Section names must start with a period (.). For each section, a special symbol will be defined by the
linker. The period (.) will be replaced with a colon (:). This will be the next address after the section.
Thus if a section is named .text, then the linker will create the symbol :text.

Grouping of sections hasn't been determined yet.

There are two styles of the section header. The first section header size and format is that of standard
COFF. The second section header is an extension added to Coff. Both headers are the same size, but
different format. The COFF_OPTIONAL_NT_EXTENSIONS flag in the file header specifies which
section header the object contains. Section headers can not be mixed within one object, they must all
be of one type. The image file will always have the COFF_OPTIONAL_NT_EXTENSIONS flag
set, and thus the image will always contain new section headers.

The standard Coff section header has the following format:

typedef struct _OLD_SECTION_HEADER {
UCHAR Name[8];
ULONG PysicalAddress;
ULONG VirtualAddress;
ULONG SizeOfRawData;
ULONG PointerToRawData;
ULONG PointerToRelocations;
ULONG PointerToLinenumbers;
USHORT NumberOfRelocations;
USHORT NumberOfLineNumbers;
ULONG Characteristics;

} OLD_SECTION_HEADER, *POLD_SECTION_HEADER;

The new section header the following format:

typedef struct  NEW_SECTION_HEADER {
UCHAR Name|8];
ULONG NumberOfLinenumbers;
ULONG VirtualAddress;
ULONG SizeOfRawData;
ULONG PointerToRawData;
ULONG PointerToRelocations;
ULONG PointerToLinenumbers;
ULONG NumberOfRelocations;
ULONG Characteristics;

} NEW_SECTION_HEADER, *PNEW_SECTION_HEADER,;

SECTION HEADER Structure:

Name —Eight character null padded section name.

PysicalAddress —Indicates the physical address of the section. This field only exits within the
old section header. Its value is never used.
Copyright (c) Microsoft Corporation - Use subject to the Windows Research Kernel License



Linker/Librarian 11
VirtualAddress —Indicates the relative virtual address of the section.

SizeOfRawData —Indicates the size in bytes of the sections raw data.

PointerToRawData —A file pointer (offset from the beginning of the file) to the raw data for
this sections.

PointerToRelocations —A file pointer (offset from the beginning of the file) to the relocation
entries for this section. The relocation entries are sector aligned on disk.

PointerToLinenumbers —A file pointer (offset from the beginning of the file) to the line number
entries for this section. The line number entries are sector aligned on disk.

NumberOfRelocations —Indicates the number of relocation entries for this section.
NumberOfLinenumbers —Indicates the number of line number entries for this section.
Characteristics —This flag represent three kinds of information:

0 Section Type

0 Section Content

0 Section Memory Mapping

The flags determines how the linker and system loader handle the section. A section can
only be of one type, one content, but can have a combination of memory flags set.

For now, all NT/OS2 objects and images will be of type COFF_SCN_TYPE_REGULAR
except for those sections that want 16-bit offset addressing. These sections will be of type
COFF_SCN_TYPE_GROUPED.

Section grouping is controlled by using a colon (:) in the section name. For example, if you
have four objects each containing sections by the name of .DATA, .DATA:1, and
.DATA:2, which all have the SAME FLAGS, then