Windows and Some Differences from Linux

Brian Railing 1st Year PhD Student

Previously of Windows Server Performance Team

Windows Operating System Internals - by David A. Solomon and Mark E. Russinovich with Andreas Polze

Copyright Notice

© 2000-2005 David A. Solomon and Mark Russinovich

- These materials are part of the Windows Operating System Internals Curriculum Development Kit, developed by David A. Solomon and Mark E. Russinovich with Andreas Polze
- Microsoft has licensed these materials from David Solomon Expert Seminars, Inc. for distribution to academic organizations solely for use in academic environments (and not for commercial use)

Further Notices

- Original slide deck has modified to reflect updates to Windows since 2005
 - Mark Russinovich's 2009 TechEd Talk WCL402: "Windows 7 and Windows Server 2008 R2 Kernel Changes"
- Further updates to reflect particular APIs of interest
- Being a performance engineer, I only know certain components in great detail
 - Storage / Networking Stack
 - Kernel Debugging / Performance Tools
 - "Fast" Synchronization

Final Notices

This slide deck is

- To provide some specific details for developing applications and drivers with Windows
- To see some of the implementation decisions and consider trade-offs
- To show that Windows, Linux, etc make many similar design choices
- This slide deck is not
 - Meant to judge one between OSes

- This slide deck is
 - Long
- What should you look for?
 - IRQLs
 - Schedulers are similar. Priorities are different.
 - Paged vs NonPaged Memory
 - Wait for objects

Outline

Overview of Windows

- IO Processing
- Thread Scheduling
- Synchronization
- Memory
- Performance and Debugging
- Where to go from here

A Rose by any other Name

Most Operating System decisions are defined by fundamentals of computer science, performance considerations, etc

- Virtual Memory Abstraction
- Monolithic Kernels

So many of the OS internals reflect two different implementations of similar approaches

- read() vs ReadFile()
- DLLs vs SharedObjects

Windows Architecture

HAL (Hardware Abstraction Layer):

- support for x86 (initial), MIPS (initial), Alpha AXP, PowerPC (NT 3.51), Itanium (Windows XP/2003)
- Machine-specific functions located in HAL
- Additional functionality found in pci.sys, acpi.sys, etc
- At present, two main architectures: x64 and IA64
 - Allows a degree of focus in implementation
 - But, cedes certain fields to other OSes

Windows Kernel

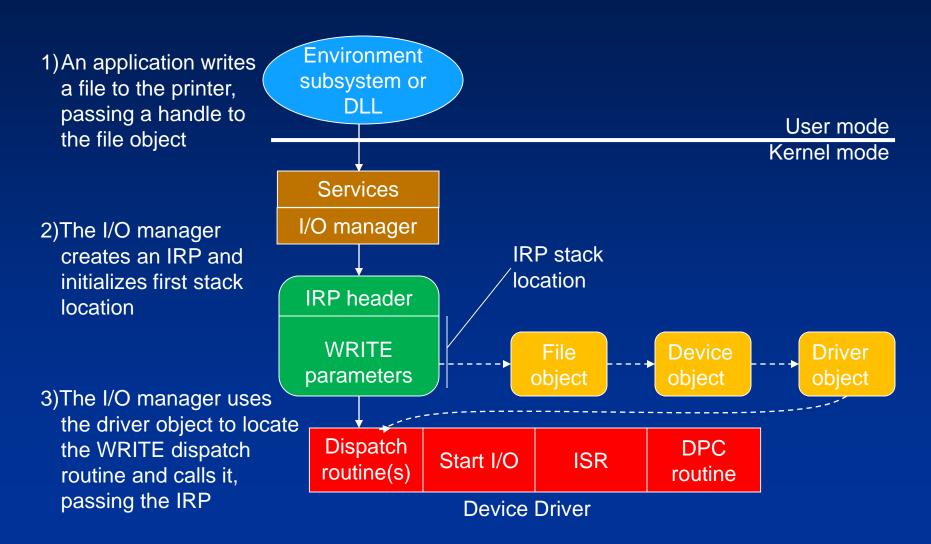
Windows is a monolithic but modular system

- No protection among pieces of kernel code and drivers
- Support for Modularity is somewhat weak:
 - Windows Drivers allow for dynamic extension of kernel functionality
 - Windows XP Embedded has special tools / packaging rules that allow coarse-grained configuration of the OS

Windows Drivers are dynamically loadable kernel modules

- Significant amount of code run as drivers (including network stacks such as TCP/IP and many services)
- Built independently from the kernel
- Can be loaded on-demand
- Dependencies among drivers can be specified

Comparing Layering, APIs, Complexity


Windows

- Kernel exports about 250 system calls (accessed via ntdll.dll)
- Layered Windows/POSIX subsystems
- Rich Windows API (17 500 functions on top of native APIs)
- Linux
 - Kernel supports about 200 different system calls
 - Layered BSD, Unix Sys V, POSIX shared system libraries
 - Compact APIs (1742 functions in Single Unix Specification Version 3; not including X Window APIs)

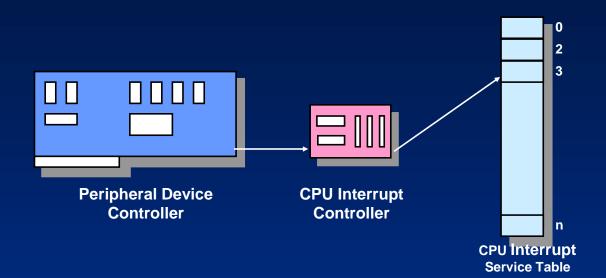
Outline

- Overview of Windows
- IO Processing
- Thread Scheduling
- Synchronization
- Memory
- Performance and Debugging
- Where to go from here

I/O Processing

IRP data

IRP consists of two parts:


- Fixed portion (header):
 - Type and size of the request
 - Whether request is synchronous or asynchronous
 - Pointer to buffer for buffered I/O
 - State information (changes with progress of the request)
- One or more stack locations:
 - Function code
 - Function-specific parameters
 - Pointer to caller's file object
- While active, IRPs are stored in a thread-specific queue
 - I/O system may free any outstanding IRPs if thread terminates

Completing an I/O request

Servicing an interrupt:

- ISR schedules Deferred Procedure Call (DPC); dismisses int.
- DPC routine starts next I/O request and completes interrupt servicing
- May call completion routine of higher-level driver
- I/O completion:
 - Record the outcome of the operation in an I/O status block
 - Return data to the calling thread by queuing a kernel-mode Asynchronous Procedure Call (APC)
 - APC executes in context of calling thread; copies data; frees IRP; sets calling thread to signaled state
 - I/O is now considered complete; waiting threads are released

Flow of Interrupts

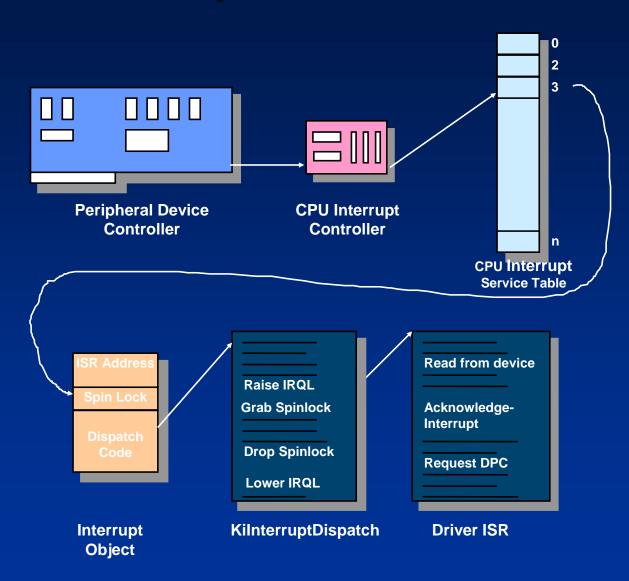
IRQLs on 64-bit Systems

x64

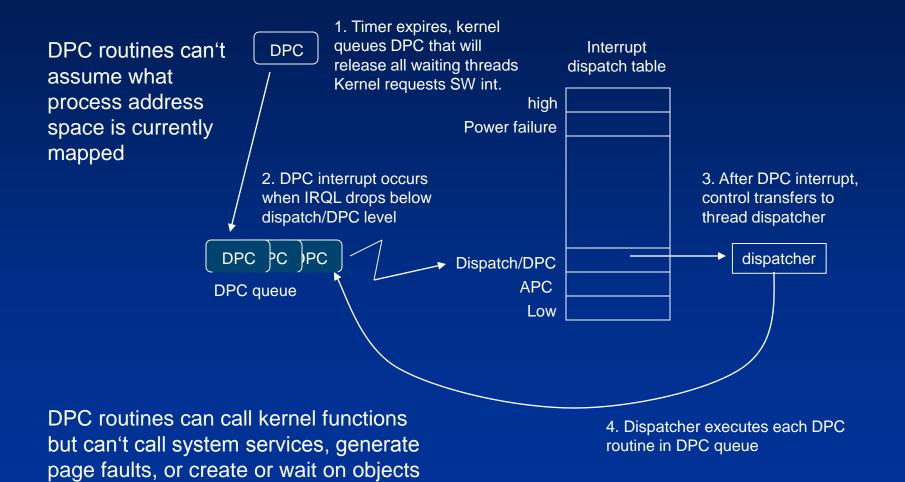
15	High/Profile
14	Interprocessor Interrupt/Power
13	Clock
12	Synch (Srv 2003)
	Device n
	-
4 3	-
3	Device 1
2	Dispatch/DPC
1	APC
0	Passive/Low

nign/Profile/Power	
Interprocessor Interrupt	
Clock	
Synch (MP only)	
Device n	

Ligh/Drafile/Dawar


Device 1 Correctable Machine Check Dispatch/DPC & Synch (UP only) APC Passive/Low

IRQLs on 64-bit Systems


When writing kernel code, five IRQLs matter:

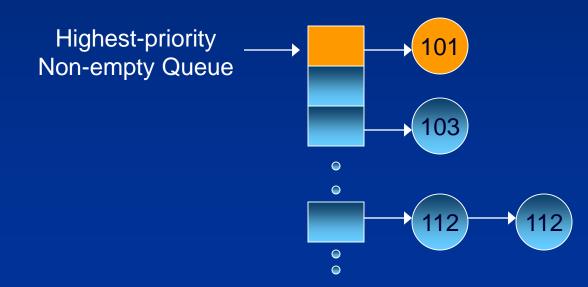
- HIGH Mask all interrupts
- DIRQL IRQL for a particular device
- DISPATCH / DPC
 - No thread scheduling
 - No page faults
- APC Run code in a specific thread's context
- PASSIVE Default

Flow of Interrupts

Delivering a DPC

I/O Processing

Linux 2.2 had the notion of bottom halves (BH) for lowpriority interrupt processing

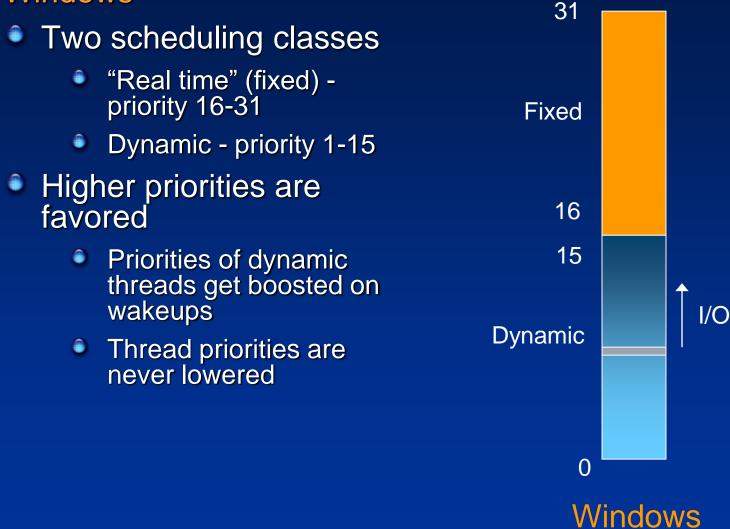

- Fixed number of BHs
- Only one BH of a given type could be active on a SMP
- Linux 2.4 introduced tasklets, which are non-preemptible procedures called with interrupts enabled
- Tasklets are the equivalent of Windows Deferred Procedure Calls (DPCs)

Outline

- Overview of Windows
- IO Processing
- Thread Scheduling
- Synchronization
- Memory
- Performance and Debugging
- Where to go from here

Linux Scheduling

- Linux 2.6 has a revamped scheduler that's O(1) from Ingo Molnar that:
 - Calculates a task's priority at the time it makes scheduling decision
 - Has per-CPU ready queues where the tasks are pre-sorted by priority



Scheduling

- Windows NT has always had an O(1) scheduler based on pre-sorted thread priority queues
- Server 2003 introduced per-CPU ready queues
 - Linux load balances queues
 - Windows does not
 - Not seen as an issue in performance testing by Microsoft
 - Applications where it might be an issue are expected to use affinity

Scheduling Priorities

Windows

Windows Scheduling Details

Most threads run in variable priority levels

- Priorities 1-15;
- A newly created thread starts with a base priority
- Threads that complete I/O operations experience priority boosts (but never higher than 15)
- A thread's priority will never be below base priority
- The Windows API function SetThreadPriority() sets the priority value for a specified thread
 - This value, together with the priority class of the thread's process, determines the thread's base priority level
 - Windows will dynamically adjust priorities for non-realtime threads

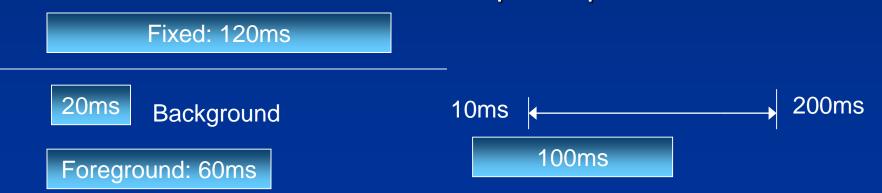
Process Management

Windows

- Process
 - Address space, handle table, statistics and at least one thread
 - No inherent parent/child relationship
- Threads
 - Basic scheduling unit
 - Fibers cooperative usermode threads
- Win7: User-Mode Scheduling(UMS)
 - User scheduled
 - Kernel supported

Linux

- Process is called a Task
 - Basic Address space, handle table, statistics
 - Parent/child relationship
 - Basic scheduling unit
- Threads
 - No threads per-se
 - Tasks can act like Windows threads by sharing handle table, PID and address space
 - PThreads cooperative user-mode threads


Scheduling Timeslices

Windows

- The thread timeslice (quantum) is 10ms-120ms
 - When quanta can vary, has one of 2 values
- Reentrant and preemptible

Linux

- The thread quantum is 10ms-200ms
 - Default is 100ms
 - Varies across entire range based on priority, which is based on interactivity level
- Reentrant and preemptible

Outline

- Overview of Windows
- IO Processing
- Thread Scheduling
- Synchronization
- Memory
- Performance and Debugging
- Where to go from here

Windows Synchronization

Two types of Synchronization:

"Fast"

- Protect small amounts of data
- Busy waits

- Producer / consumer, etc
- Scheduler event
- Notification of system events
 - E.G. wait for thread to exit

Windows Synchronization

Uses interrupt masks to protect access to global resources on uniprocessor systems.

Uses spinlocks on multiprocessor systems.

- Provides dispatcher objects which may act as mutexes and semaphores.
- Dispatcher objects may also provide events. An event acts much like a condition variable.

Queued Spinlocks

- Problem: Checking status of spinlock via test-and-set operation creates bus contention
- Queued spinlocks maintain queue of waiting processors
- First processor acquires lock; other processors wait on processor-local flag
 - Thus, busy-wait loop requires no access to the memory bus
- When releasing lock, the first processor's flag is modified
 - Exactly one processor is being signaled
 - Pre-determined wait order

Other High-Perf Synchronization

- Problem: If the data under synchronization is small, is an interlocked operation sufficient or is a "lock" required
- Semaphores: The count can be the data
- Test and Set, Swap, etc Exchange small sets of flags or other simple data
- How about a linked list?
- Windows SLists or Interlocked Singly Linked Lists
 - Push Entry
 - Pop Entry
 - Flush List

Synchronizing Threads with Kernel Objects

DWORD WaitForSingleObject(HANDLE hObject, DWORD dwTimeout);

DWORD WaitForMultipleObjects(DWORD cObjects, LPHANDLE lpHandles, BOOL bWaitAll, DWORD dwTimeout);

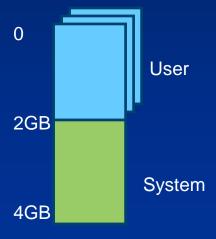
The following kernel objects can be used to synchronize threads:

- Processes
- Threads
- Files
- Console input

- File change notifications
- Mutexes
- Events (auto-reset + manual-reset)
- Waitable timers

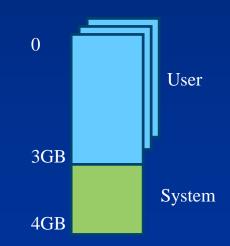
Wait Functions - Details

- WaitForSingleObject():
 - hObject specifies kernel object
 - dwTimeout specifies wait time in msec
 - dwTimeout == 0 no wait, check whether object is signaled
 - dwTimeout == INFINITE wait forever
- WaitForMultipleObjects():
 - cObjects <= MAXIMUM_WAIT_OBJECTS (64)</p>
 - IpHandles pointer to array identifying these objects
 - bWaitAll whether to wait for first signaled object or all objects
 - Function returns index of first signaled object
- Side effects:
 - Mutexes, auto-reset events and waitable timers will be reset to non-signaled state after completing wait functions


Outline

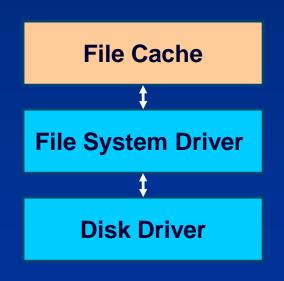
- Overview of Windows
- IO Processing
- Thread Scheduling
- Synchronization
- Memory
- Performance and Debugging
- Where to go from here

Virtual Memory Management

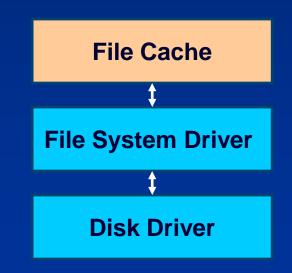

Windows

- 32-bit versions split usermode/kernel-mode from 2GB/2GB to 3GB/1GB
- Demand-paged virtual memory
 - 32 or 64-bits
 - Copy-on-write
 - Shared memory
 - Memory mapped files

Linux


- Splits user-mode/kernel-mode from 1GB/3GB to 3GB/1GB
 - 2.6 has "4/4 split" option where kernel has its own address space
- Demand-paged virtual memory
 - 32-bits and/or 64-bits
 - Copy-on-write
 - Shared memory
 - Memory mapped files

File Caching


Windows

- Single global common cache
- Virtual file cache
 - Caching is at file vs. disk block level
 - Files are memory mapped into kernel memory
- Cache allows for zero-copy file serving

Linux

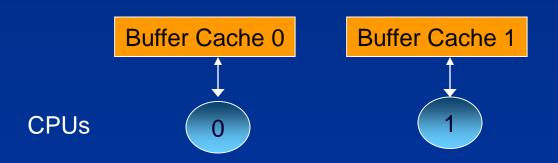
- Single global common cache
- Virtual file cache
 - Caching is at file vs. disk block level
 - Files are memory mapped into kernel memory
- Cache allows for zero-copy file serving

Kernel Memory Allocation

Pool Allocations

- ExAllocatePoolWithTag(type, size, tag)
 - Paged vs NonPaged
 - Size in bytes
 - Tag identifies allocations for debugging purposes
- Allocations for device operations
 - MmAllocateNonCachedMemory, MmAllocateContiguousMemorySpecifyCache, AllocateCommonBuffer

http://msdn.microsoft.com/en-us/library/aa489507.aspx


Kernel Memory Allocation cont.

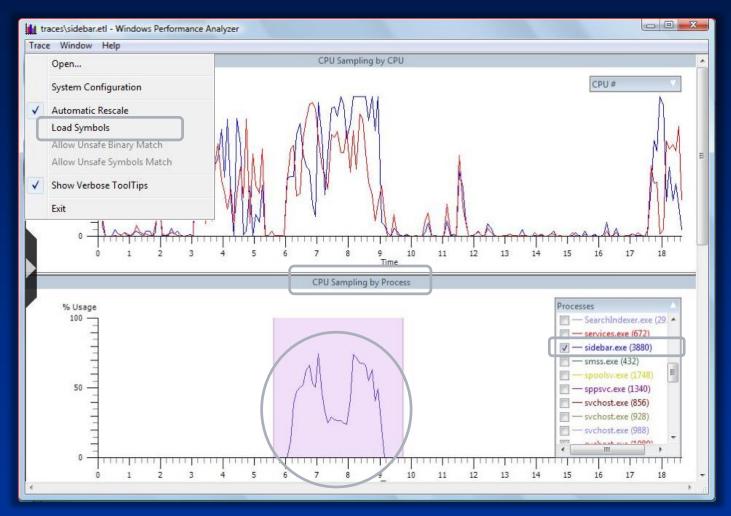
When drivers need to work with many kernel allocations

- ExXxxLookasideList
 - Initialize / Allocate / Free
 - Paged vs NonPaged
- System managed list of allocations of specified size
 - Heuristics for availability of system memory
 - Frequency of allocation
- Faster allocation / free times
 - Can be per-processor / per-Node

Per-CPU Memory Allocation

- Keeping accesses to memory localized to a CPU minimizes CPU cache thrashing
 - Hurts performance on enterprise SMP workloads
- Linux 2.4 introduced per-CPU kernel memory buffers
- Windows introduced per-CPU buffers in an NT 4 Service Pack in 1997

Outline


- Overview of Windows
- IO Processing
- Thread Scheduling
- Synchronization
- Memory
- Performance and Debugging
- Where to go from here

Performance Testing

Windows Performance Instrumentation

- Support for profiling
- XPerf common interface for most instrumentation
 - Take CPU profiles
 - Collect instrumented events
 - Collect stacktraces for (almost) any profile source
- Let's see an example
- http://msdn.microsoft.com/en-us/performance/default.aspx

What is CPU Time Spent On?

xperf trace.etl

CPU Summary Table

Grouping columns

Aggregated columns

e	Process	Sta	sck	Weight	% Weight	Count	TimeStamp	
	1 Idle (0)			4,103.003 130	50.43	2,281		
	□ sidebar.exe (3880)			2,793.029 829	33.83	2,793		
3		Đ	[Root]	2,704,030 633	33.72	2,704		
4		+		8.999 190	0.11	9		
5	E svchost.exe (1116)			823.062 734	9.97	823		
6	⊕ dwm.exe (4828)			141.040 023	1.71	141		
7				132.982 010	1.61	133		
8	E System (4)			58.986 168	0.71	59		
9	InoRT.exe (448)	+	[Root]	48,993 936	0.59	49		
10	taskeng.exe (2012)		[Root]	27.001 351	0.33	27		
11	svchost.exe (1164)		[Root]	18,994 313	0.23	19		
12	svchost.exe (988)		[Root]	12.999 849	0.16	13		
13	svchost.exe (928)	Đ	[Root]	6.994 746	0.08	7		
14	csrss.exe (640)		[Root]	6.988 878	0.08	7		
15	SearchIndexer.exe (2932	•	[Root]	5,999 797	0.07	6		
16	Isass.exe (684)		[Root]	5.999 085	0.07	6		
17	svchost.exe (856)	(+)	[Root]	4.999 518	0.06	5		
18	svchost.exe (1772)	+	[Root]	1.001 245	0.01	1		
19	Ism.exe (692)	ŧ	[Root]	1.001 244	0.01	1		
20	svchost.exe (1388)	+	[Root]	1.000 000	0.01	1		
21	spoolsv.exe (1748)	Ŧ	[Root]	0.999 568	0.01	1		
22	svchost.exe (1520)	Ŧ	[Root]	0.998 450	0.01	1		

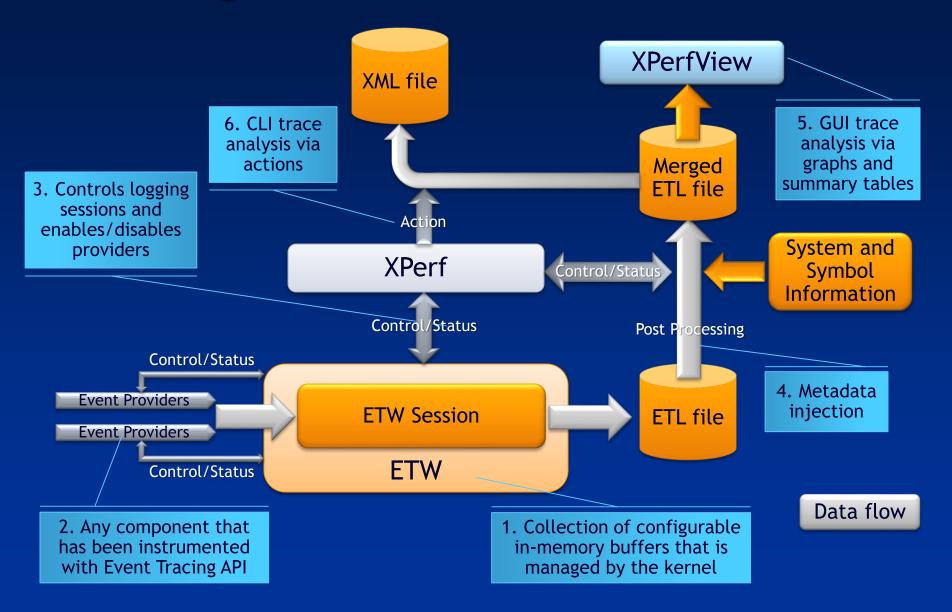
CPU Summary Table

Trace Window Help		
Line Process	Stack	ght % Weigh
32	jscript.dll!NameTbl::InvokeInternal 834.029	185 10.10
33	- jscript.dlllScrFncObj::Call 827.029	412 10.02
34	jscript.dll!CScriptRuntime::Run 827.029	
35		616 9.96
36	jscript.dll!NameTbl::InvokeInternal 822.029	
37	/ script.dll!ScrFncObj::Call 818.029	
38	jscript.dll!CScriptRuntime::Run 818.029	666 9.91
39	- jscript.dll!VAR::InvokeByDispID	853 9.88
40	🖂 Stript.dll!NameTbl::InvokeInternal 814.028	598 9.86
41	□	800 9.80
42	jscript.dlllCScriptRuntime::Run 809.028	800 9.80
43	🗉	
44		001 5.80
45		
46	□	
47	□	
48		
49		440 3.32
50		
51		
52		
53		
54		
55		
56		
57	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	848 0.01
Total CPU Usage (Non-Idle)	- 43-J7 76	
	□	11.02
	I I	10.86

Kernel Debugging

- Useful for investigating internal system state not available from other tools
 - Requires 2 computers (host and target)
 - Target would be halted while host debugger in use
- XP & Server 2003 support live local kernel debugging
 - kd -kl
 - Technically requires system to be booted /DEBUG to work correctly
 - You can edit kernel memory on the live system (!)
 - But, not all commands work

http://www.microsoft.com/whdc/devtools/debugging/default.mspx


Outline

- Overview of Windows
- IO Processing
- Thread Scheduling
- Synchronization
- Memory
- Performance and Debugging
- Where to go from here

Where to go from here

- Windows Driver Kit:
 - http://www.microsoft.com/whdc/devtools/WDK/default.mspx
- Msdn.microsoft.com
 - Every function is documented
 - Many have example code

The Big Picture

