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Abstract Reuse of software components, either closed or open source, is considered to be
one of the most important best practices in software engineering, since it reduces devel-
opment cost and improves software quality. However, since reused components are (by
definition) generic, they need to be customized and integrated into a specific system before
they can be useful. Since this integration is system-specific, the integration effort is non-
negligible and increases maintenance costs, especially if more than one component needs
to be integrated. This paper performs an empirical study of multi-component integration in
the context of three successful open source distributions (Debian, Ubuntu and FreeBSD).
Such distributions integrate thousands of open source components with an operating system
kernel to deliver a coherent software product to millions of users worldwide. We empir-
ically identified seven major integration activities performed by the maintainers of these
distributions, documented how these activities are being performed by the maintainers, then
evaluated and refined the identified activities with input from six maintainers of the three
studied distributions. The documented activities provide a common vocabulary for compo-
nent integration in open source distributions and outline a roadmap for future research on
software integration.
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1 Introduction

Software reuse is “the use of existing software or software knowledge to construct new
software” (Frakes and Kang 2005). Reuse roughly consists of two major steps (Basili et al.
1996): 1. identifying a suitable component to reuse, and 2. integrating it into the target sys-
tem. For example, vendors of mobile phones typically reuse an “upstream” (i.e., externally
developed) operating system component in their device, customized with proprietary device
drivers, control panels and utilities (Jaaksi 2007). Reuse is very commonplace, as shown in
studies on software projects of different sizes in China, Finland, Germany, Italy and Norway
(Chen et al. 2008; Hauge et al. 2008, 2010; Jaaksi 2007; Li et al. 2008, 2009). For exam-
ple, almost half of the Norwegian software companies reuse “Open Source” (OSS) in their
products (Hauge et al. 2008), while 30 % of the functionality of OSS projects in general
reuse existing components (Sojer and Henkel 2010).

Although reuse speeds up development, leverages the expertise of the upstream project
and, in general, improves the quality and cost of a product (Basili et al. 1996; Gaffney
and Durek 1989; Szyperski 1998), it is not entirely risk- and cost-free. In particular, the
integration step of reuse consumes a large amount of effort and resources (Boehm and Abts
1999; Brownsword et al. 2000; Di Cosmo et al. 2011; Morisio et al. 2002), for various
reasons. “Glue code” (Yakimovich et al. 1999) needs to be developed and maintained to
make a component fit into the target system, and developers need to continuously assess the
impact on this glue code of new versions of the component (such a new version can bring an
unpredictable set of bug fixes and features). Furthermore, the component might depend on
other components, whose bugs could propagate to the target system in undocumented ways
(Dogguy et al. 2010; McCamant and Ernst 2003; Orsila et al. 2008; Trezentos et al. 2010).
The ability to make local changes to the source code of a reused component introduces even
more challenges, since an integrator typically is not familiar with the reused component’s
code base and hence can easily introduce bugs in such local changes (Hauge et al. 2010;
Li et al. 2005; Merilinna and Matinlassi 2006; Stol et al. 2011; Tiangco et al. 2005; Ven
and Mannaert 2008). Worse, if the local changes are not contributed back to the owner of
the reused component, the organization that made the changes will need to maintain them
and possibly re-apply them themselves to future versions of the component (Spinellis et al.
2004; Ven and Mannaert 2008).

Thus far, most of the empirical studies on integration of components (Brownsword et al.
2000; Hauge et al. 2010; Li et al. 2005; Merilinna and Matinlassi 2006; Morisio et al.
2002; Stol et al. 2011; Ven and Mannaert 2008) concentrated on the base case of integrating
one component in a target system. In practice, however, organizations tend to integrate not
one, but two or more components, which brings along a set of unique challenges (Morisio
et al. 2002; Van Der Linden 2009; Ven and Mannaert 2008), especially given the popularity
of open source development: in the timespan of one release, an organization needs to co-
ordinate the integration of updates by multiple vendors, typically with totally independent
release dates (Boehm and Abts 1999; Brownsword et al. 2000). For example (Jaaksi 2007),
Nokia’s N800 tablet platform reused 428 OSS components, 25 % of which were reused as
is (e.g., bzip2 and GNU Chess), 50 % were changed locally (e.g., the graphics subsystem),
and 25 % were developed in-house using open source practices (“inner source”, ISS). It is
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unclear for organizations like Nokia how to keep their system stable and secure amidst the
integration of so many different components (Hauge et al. 2010). Furthermore, there is a
clear need (Boehm and Abts 1999; Crnkovic and Larssom 2002; Merilinna and Matinlassi
2006) for dedicated training and education of developers and organizations on integration,
since in a world of open source they now need to collaborate with the providers of 3rd party
components and other external contributors to benefit from external contributions and to
avoid having to maintain bug fixes and other customizations oneself.

This paper aims to improve the understanding of multi-component integration by
empirically studying and documenting the major integration activities performed by OSS
distributions (Gonzalez-Barahona et al. 2009). An OSS distribution basically is a “pack-
aging organization” (Ruffin and Ebert 2004; Merilinna and Matinlassi 2006), i.e., an
organization that integrates upstream components into a common platform (similar to prod-
uct lines Meyer and Lehnerd (1997) and Pohl et al. (2005)), ironing out bugs and intellectual
property issues, and providing extensive documentation and training on the integrated com-
ponents. Reusing an OSS component through an established distribution provides more
confidence in the quality of the component (Tiangco et al. 2005), and hence many compa-
nies use OSS distributions as the basis for products like routers, mobile phones or storage
devices (Koshy 2013). Examples of established OSS distributions are Eclipse, GNOME and
operating system distributions like Debian or Ubuntu.

Here, we focus on operating system distributions (henceforth called “OSS distribution”),
which bundle and customize OSS operating system kernels (e.g., Linux or BSD), system
utilities (e.g., compilers and file management tools) and end-user software (e.g., text pro-
cessors, games and browsers) with a dependency-aware package system. There are almost
400 active OSS distributions, and each year 26 new ones are born (Lundqvist 2013). Given
the growing competition, distributions need to release new features and versions in an ever
shorter time frame (Hertzog 2011; Remnant 2011; Shuttleworth 2008) to millions of desk-
top users and server installations. To achieve this, they rely on hundreds of volunteers to
integrate the latest versions and bug fixes of the tens of thousands of integrated upstream
components.

We empirically studied the major integration activities of three of the most popular and
successful OSS distributions, i.e., Debian, Ubuntu and FreeBSD, using qualitative analysis
on an accumulated 29 years of historical change and bug data. We document these activities
and the steps used to perform them in a structured format, distilling the state-of-the-practice
tools and processes followed by the actors involved in the activity, providing concrete exam-
ples, and comparing our findings to prior research and integration outside the context of
OSS. Six members of the maintenance community of the analyzed distributions discussed
and refined the documented activities, and provided feedback on the usefulness and com-
pleteness of the activities. Similar to the concept of design patterns (Gamma et al. 1995) or
reference architectures (Bowman et al. 1999), the documented activities can be used by (1)
organizations as a common terminology for discussing and improving integration activities
for components, and (2) researchers to set up a road map for research on integration, since
integration remains a largely unexplored research area (Goode 2005; Hauge et al. 2010; Stol
et al. 2011).

The main contributions of this paper are:

– Identification and documentation of seven major integration activities and the processes
that they follow in three major OSS distributions.

– Identification of major challenges for tool support and research for integration
activities.
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– Evaluation of and feedback on the identified activities and challenges by six integration
maintainers and release managers of the analyzed distributions.

This paper is structured as follows. First, Section 2 discusses background and related
work on software integration and OSS distributions, after which Section 3 presents the
design of our qualitative analysis. Section 4 documents the seven integration activities that
we identified during our analysis, followed by a discussion of the open challenges that we
identified (Section 5) and the evaluation of our findings by six practitioners (Section 6). We
conclude with threats to validity (Section 7) and the conclusion (Section 8) of our study.

2 Background and Related Work

This section discusses background and related work on integration and open source dis-
tributions. Table 1 summarizes key technical terms that will be used throughout the
paper.

2.1 Software Integration

Reuse can be black box or white box (Frakes and Terry 1996). Black box reuse refers
to “Commercial Off The Shelf” (COTS) components (Boehm and Abts 1999), for which

Table 1 List of common technical terms related to integration and open source distributions

term meaning

reuse identification and integration of a component (e.g., class or library)

into a system

OSS reuse reuse of Open Source Software

COTS reuse black box reuse based on Commercial Of The Shelf components

ISS reuse reuse of Inner Source Software, i.e., OSS developed in-house

integrator organization that integrates a third party component into its product

maintainer individual or team doing physical integration on behalf of integrator

downstream project synonym for “integrator”

upstream project organization (open source project or company) whose components

are being integrated by another project

upstream component component developed by upstream project that is being reused

multi-component integration integration of more than one upstream component

packaging organization integrator whose business goal is to package upstream com-

ponents into a coherent platform that is offered for sale or reuse

package upstream component that has been integrated into an OSS

distribution using the distribution’s packaging format (e.g., “rpm”)

binary distribution distribution providing compiled code in its packages

source-based distribution distribution providing source code in its packages, for compilation

on the end-user’s machine

derived distribution “child” distribution that customizes packages of an existing

“parent” distribution and adds additional packages to it
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source code typically is not available. Hence, such components can only be configured and
plugged into a target system. White box reuse provides access to the component’s source
code to customize it to the needs of the target system, either because the component is
OSS (Spinellis et al. 2004) or because it is developed in-house following open source princi-
ples (“inner source”, ISS), a practice that is increasingly more common in large companies
like Alcatel-Lucent, HP, Nokia, Philips and SAP (Stol et al. 2011). OSS and ISS reuse are
also very common in the base platform of software product lines (van der Linden et al.
2007; Pohl et al. 2005; Van Der Linden 2009), since up to 95 % of such a platform consists
of “commoditized” features readily available from upstream projects.

In general, software reuse creates a win-win situation for the reusing organization and
the upstream project whose software is reused. The former benefits from the features pro-
vided by the component in terms of productivity and product quality (Frakes and Kang
2005; Szyperski 1998), while the upstream project benefits financially (through licensing)
and/or qualitatively from the various forms of feedback in the form of defect reports, code
contributions and user experiences. However, despite the differences between COTS and
OSS/ISS, all forms of reuse introduce a dependency on an upstream project (COTS/OSS)
(Di Giacomo 2005; Hauge et al. 2010; Lewis et al. 2000; Mistrı́k et al. 2010; Morisio et al.
2002) or another division inside the organization (ISS) (Van Der Linden 2009), which can
lead to hidden maintenance costs.

Software reuse has been studied extensively from the perspective of how to make a soft-
ware system reusable (Coplien et al. 1998; DeLine 1999; Frakes and Kang 2005; Mattsson
et al. 1999; Parnas 1976; Pohl et al. 2005), how to select components for reuse (Bhuta
et al. 2007; Chen et al. 2008; Li et al. 2009), how to resolve legal issues regarding soft-
ware reuse (German et al. 2010), and what factors can impact collaboration between the
component provider and integrators (Brooks 1995; Curtis et al. 1988; Herbsleb and Grinter
1999; Herbsleb et al. 2001; Seaman 1996). In particular, Curtis et al. (1988) found, based
on interviews, how the need to communicate outside the team, department or even company
boundaries opens a can of worms (e.g., finger-pointing, silos of domain knowledge, limited
communication channels, lack of contact persons and misunderstanding due to different
context) that can negatively impact the integration process. Herbsleb and Grinter (1999)
and Herbsleb et al. (2001) empirically proved that the need to involve more people indeed
relates to the time necessary to resolve bugs and integration issues.

In contrast, the concrete activities involved with the integration of reused components,
as well as their costs, have been studied in substantially less detail. Especially for multi-
component integration, where not one but a potentially large number of (typically open
source) components are being reused by an organization at the same time, empirical evi-
dence is currently lacking (Morisio et al. 2002; Van Der Linden 2009; Ven and Mannaert
2008). Lewis et al. (2000) note that “The greater the number of components, the greater the
number of version releases, each potentially coming out at different times.” Hence, what
kind of activities does such integration imply, and how do those activities relate to known
activities for single-component integration? Before explaining how this study addresses
these questions, we first discuss prior work on COTS, OSS and ISS reuse.

2.1.1 COTS Reuse and Integration

Brownsword et al. (2000) studied over 30 medium-to-large commercial projects to ana-
lyze the hidden integration activities of COTS reuse. They found that for an organization it
is important to be informed about (new versions of) promising COTS components and to
continuously monitor the impact of the components on the organization’s code base. They
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also point out the maintenance issues of glue code and configuration of a COTS compo-
nent, and the fact that projects do not control the upstream project. However, their findings
are rather high-level, and do not explain how the projects coped with multi-component
integration.

Lewis et al. (2000) relate on their experience with COTS reuse in 16 government orga-
nizations. They especially stress the loss of control as soon as a contract for COTS reuse is
signed: any clause or adaptation that was not negotiated will result in additional costs down
the line. Changing one’s own system or looking for another COTS component is prefer-
able to requesting (and having to pay) the component vendor to adapt her component. The
main question in the studied organizations’ mind was “How do we upgrade an operational
system without a great deal of disruption?”. There was no consensus whether one should
always update to the latest version of a reused component, wait until a new major version
or incorporate only the most pressing changes (e.g., security fixes). These questions only
aggravated for those organizations that were reusing dozens of components, which causes
additional coordination issues.

A similar study was performed by Morisio et al. (2002) at NASA. Again, integration was
the most costly aspect of COTS reuse, yet the integration activities varied widely across
projects. Glue code was the main means of integration, and the authors note that most suc-
cessful projects had to stay in contact with the COTS component provider throughout the
lifecycle of the system to avoid surprises in the next version of the COTS.

2.1.2 OSS Reuse and Integration

Merilinna and Matinlassi (2006) performed a literature survey and structured interviews
with nine small-to-medium Finnish companies that reuse OSS components. They found
that integration problems are primarily due to the heterogeneous environments that com-
ponents need to support as well as the lack of documentation, forcing companies to rely
primarily on their own experience. Merilinna et al. identified three ways to deal with inte-
gration problems: using OSS components as a COTS component (no changes to the code),
contributing changes back upstream, or using a packaging organization like an OSS dis-
tribution as mediator. Not upgrading to a new version of a reused component can also
help. In any case, a thorough analysis of the OSS component to be reused can avoid many
problems.

Ven and Mannaert (2008) performed interviews with members of a commercial project
reusing OSS components, and examined in detail the trade-off between changing the code
and contributing the changes back. Even though a project wants to avoid maintaining local
changes (since this is costly), the alternative of contributing changes to the upstream project
also requires an investment of time and resources, for example to get to know the contribu-
tion procedures and to keep track of the future evolution of the upstream project. Even if a
patch is accepted by the upstream project, the organization developing the patch might still
be required to maintain it since only it has all the insight. Ven et al. recommend to contribute
patches if the local changes are sufficiently generic, to maintain patches oneself if they are
too specific, or (in the worst case) to fork the upstream project, even though such a fork has
only a small chance of success.

While Merilinna and Matinlassi (2006) and Ven and Mannaert (2008) identified two inte-
gration activities that we also identified in our study (i.e., Upstream Sync and Local
Patch), we approached those activities from the perspective of a packaging organization
(and multi-component integration) and documented them in a structured way.
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2.1.3 ISS Reuse and Integration

Stol et al. (2011) studied the emerging practice of developing and reusing code in-house
using open source practices (ISS). ISS is a popular phenomenon in large companies, since
it provides the benefits of OSS reuse without giving up control. Some companies only offer
their employees the infrastructure for ISS reuse, while others make it part of their develop-
ment strategy. A systematic literature study and detailed study of ISS inside an organization
shows that the most costly ISS issues are due to integration. In addition to the integration
issues related to OSS reuse in general, other challenges like backwards compatibility and
the peculiar interplay between the ISS team and other teams in a company were identified.
For example, the ISS team can send a “delivery advocate” to other teams to help them inte-
grate the ISS components. However, various activities are company- and ISS reuse-specific.
For example, the ISS team receives components initially from a specific team in the orga-
nization, but after integration becomes responsible for it itself and starts acting as upstream
for the other teams in the organization (even though the original developers still collabo-
rate on the development of the component). In this paper, OSS distributions and upstream
projects are separate, independent entities.

Finally, Van Der Linden (2009) reports on adoption of OSS and ISS reuse in software
product lines (Meyer and Lehnerd 1997; Pohl et al. 2005). The platform on which such
product lines are built largely consists of common functionality for which many compo-
nents are available. Reuse of OSS and ISS components for such functionality improves the
quality and speed of development, however it also introduces a dependency on the upstream
projects, not only from the platform, but from all products based on the platform. In addi-
tion to the best practices mentioned before, close collaboration with the upstream projects
in a symbiotic fashion is key to keeping track of new features and changes, and can be
established by reporting or fixing bugs. Although OSS distributions can be seen as a prod-
uct line, our study focuses especially on the identification and structured documentation of
major integration activities in the context of multi-component integration.

2.2 Open Source Distributions

This paper focuses on the maintenance activities involved in software integration in the
context of OSS distributions, since this context enables us to study integration in a multi-
component, open source setting. OSS distributions are one of the most well-known open
source packaging organizations (Gonzalez-Barahona et al. 2009; Ruffin and Ebert 2004).
Such distributions integrate a collection of upstream software components consisting of an
operating system kernel (e.g., Linux or BSD), core libraries, compilation tools and software
for users like desktop applications and web browsers. Thanks to their inclusion in an OSS
distribution, the integrated upstream projects can reach millions of users without having
to market themselves. Although distributions are especially known in the Linux and BSD
world, even commercial products like Microsoft Windows and Mac OS X can be considered
as distributions (they just ship with more ISS projects than OSS).

There are hundreds of OSS distributions, most of which integrate thousands of upstream
components. Figure 1 shows that the total number of currently active Linux distributions
has grown to 380 (in addition to 135 discontinued distributions, which are not shown),
increasing more or less by 26 distributions each year (Lundqvist 2013). For the BSD fam-
ily of open source kernels, there are twelve currently active distributions (Comparison of
BSD operating systems 2011), in addition to 22 distributions that are either discontinued or
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Fig. 1 The number of active Linux distributions over time. BSD distributions (e.g., FreeBSD) are not
included

have an unclear status. The most popular Linux distributions like Debian and Ubuntu both
integrate more than 24,000 OSS components, whereas FreeBSD (most popular BSD distri-
bution) integrates almost 23,000 components. The Debian distribution doubles in size every
2 years, having passed the mark of 300 MLOC in 2007 (Gonzalez-Barahona et al. 2009).

Despite this large scale, integrating an OSS project’s components into a distribution
goes far beyond black-box reuse. First, the upstream components need to be turned into
a distributable “package”. Distributions such as Debian, Ubuntu and Fedora, compile the
components for a particular architecture, then split up the compiled libraries and executa-
bles across one or more “binary” packages. Such packages (together with the packages they
depend on) can be automatically installed using a distribution-specific package manage-
ment system, such as “apt”, “dpkg” or “yum”. Source-based distributions, like FreeBSD,
distribute the (possibly customized) source code of an upstream component to the end-user
as a so-called “source” package (FreeBSD uses the term “port” for this), for compilation on
the user’s machine. Unless otherwise specified, the term “package” in this paper will refer
to both “binary” and “source” (port) packages.

After building and packaging the upstream component, the new package needs to be
tested and delivered to the end-user. Once a package becomes available to end-users (includ-
ing the integrators), the real integration maintenance work starts, since packages (and their
dependent packages) need to be continuously updated to new versions of the packaged
component. Similarly, bugs in the package should be detected and fixed promptly, and
(if appropriate) patches should be sent back to the upstream project that developed the pack-
aged component. Local changes to the package that have not been sent back, however, need
to be maintained and kept up-to-date by the distribution. User complaints should be triaged
and processed by the distribution as well, before escalating them to upstream, if appropriate.

Organizations that reuse a component typically (Koshy 2013; Merilinna and Matinlassi
2006) appoint a person or group of people, i.e., the “maintainer(s)”, to perform and
co-ordinate integration activities on the organization’s behalf. Organizations like OSS dis-
tributions dealing with multiple upstream projects and components typically have multiple
maintainers, each one responsible for a group of related upstream components. Figure 2
shows the interactions of a distribution’s maintainer (in bold) with the other major actors of
the distribution. The maintainer packages and customizes the upstream software component
by herself, interacting with the upstream project whenever necessary, for example to under-
stand changes in a new release or to communicate reported bugs. Customizations result in
local patches applied to the vanilla upstream component, after which the patched compo-
nent is packaged using the distribution’s package management tool. The package is being
tested by the project’s package community, which consists of volunteering contributors and
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Fig. 2 The maintainer and her relation to other major stakeholders in an OSS distribution

testers. Once stabilized, packages can also be used by end-users, who can contribute bug
reports or suggestions by contacting the maintainer. The maintainer’s work ultimately ends
up in an official release of the distribution, hence all maintainers are being co-ordinated by
the release manager in charge. Some of the common activities of the release manager are
discussing release-critical bugs or project-wide packaging policies with the maintainer, and
enforcing deadlines.

Given the size of a distribution, most of the maintainers are responsible for multiple
components (each of which is packaged into one or more packages). Debian has around
2,400 (Project participants 2013) maintainers for 24,000 integrated components (a ratio
of 10 components per maintainer), while FreeBSD has around 400 (The freeBSD devel-
opers 2013) maintainers for 23,000 components (ratio of 57.5). Ubuntu only has around
150 (Ubuntu universe contributors team 2013; MOTU team 2013; Ubuntu core development
team 2013) maintainers for 24,000 components (ratio of 160), since most of its packages
are inherited as-is from Debian, thus requiring less work. Given the high maintainer-to-
component ratios, maintainers often team up to share package responsibilities, but even
then, they still need to divide their attention and limited time across many components. In
addition, the maintainers are not the developers of the packages that they are maintaining,
which means that even more time is spent to fully understand changes or to contact the
upstream developers about a change (Brownsword et al. 2000; Stol et al. 2011). Finally,
various proposals have been launched to shorten the time frame in between releases of dis-
tributions (Hertzog 2011; Remnant 2011) or even to synchronize releases with those of
other distributions (Shuttleworth 2008). This further complicates the task of the package
maintainers.

This paper identifies and documents the integration activities that must be done on a
daily basis by the maintainers of three of the most successful OSS distributions. Previ-
ous research has focused exclusively on the other stakeholders in Fig. 2: the governance
processes of distributions (Sadowski et al. 2008), release management (Michlmayr et al.
2007; van der Hoek and Wolf 2003), the package/developer community (Scacchi et al.
2006), the (evolution of the) size and complexity of packages (Gonzalez-Barahona et al.
2009), and the dependencies of packages (German et al. 2007). Given the central role of
package maintainers in the success of a distribution, their responsibilities and challenges
need to be understood in order to streamline the interaction between the OSS distribution
and the upstream project, and to bring new maintainers quickly up-to-speed. Furthermore,
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previous work focused especially on integration of individual components, while pack-
aging organizations like OSS distributions need to deal with the integration of thousands
of components at the same time, with their users expecting the latest versions of each
component to be integrated. Finally, open source development forces organizations to col-
laborate with external parties to reap the full benefits of quality and innovation that can
be achieved with open source components. If not, organizations waste substantial effort,
for example to maintain their own local patches. Hence, studying the integration activi-
ties of distributions will help us understand integration in a multi-component, open source
context.

The following section presents the approach that we followed to identify and analyze the
major integration activities in three large OSS distributions.

3 Case Study Setup

The goal of this paper is to empirically identify and document the major integration activ-
ities in use by packaging organizations for multi-component OSS integration, as existing
empirical work focused exclusively on single-component integration. Since a wide range of
packaging organizations exists, as a first step we focus on some of the most experienced
integration experts in the area of OSS reuse, i.e., OSS distributions. In particular, we per-
form qualitative analysis on three of the largest and most successful OSS operating system
distributions, i.e., Debian, Ubuntu and FreeBSD.

Although our results consist of integration activities performed in OSS distributions,
these activities are not unique to OSS integration, nor are they just a subset of the
integration activities performed by commercial organizations. Whereas in a commercial
setting organizations used to buy or develop all dependencies themselves, an OSS set-
ting requires one to collaborate with a variety of external stakeholders to avoid being
stuck with one’s own patches and customizations. Avoiding this requires a different
set of integration activities than before. In fact, those activities now need to trickle
back into the commercial organizations that started to adopt OSS practices internally
(ISS reuse).

To help such organizations, as well as open source projecs, this paper addresses the fol-
lowing question: What is the core set of activities in OSS for dealing with integration of
multiple 3rd party components? This question allows us to empirically study what is being
done in OSS integration, how it is being done and what challenges expert integrators still
face. In particular, it also helps us understand what are the state-of-the-art techniques in use
by OSS projects to facilitate their integration activities.

This section discusses the methodology for our study, which is also illustrated in
Fig. 3. We first performed a qualitative analysis to identify and document major integration
activities, then evaluated these findings with stakeholders from the three distributions.

Fig. 3 Overview of our case study methodology
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3.1 Subject Selection

To obtain a representative sample, we selected a mixture of binary and source-based, and
derived and independent OSS distributions. A derived (or “child”) distribution automati-
cally inherits the packages of its “parent” distribution. It then customizes some of those
packages, and also adds its own packages, in order to enforce a uniform look-and-feel, focus
on specific types of packages or to specialize to a certain set of users (e.g., office work-
ers vs. music producers). Although a derived distribution saves substantial integration time,
it also leads to a unique set of integration activities, since each level of derivation adds an
additional layer in the integration process.

When looking at the history of open source distributions (Lundqvist 2013), Debian and
Ubuntu clearly stand out as two of the most influential distributions, with 41.0 % of all dis-
tributions deriving from Debian (211 out of 380 active and 135 discontinued distributions),
90 from Ubuntu and 17 from FreeBSD. In particular, the Debian distribution has 81 child
distributions, 105 distributions deriving from those child distributions (“grand-children”),
24 great-grand-children and 1 great-great-grand-child (Lundqvist 2013). The latter poten-
tially needs to integrate packages from its four ancestors as well as from some upstream OSS
projects directly. Ubuntu itself has 79 children and 11 grand-children (Lundqvist 2013),
while FreeBSD has 15 children, 1 grand-child and 1 great-grand-child (Comparison of BSD
operating systems 2011).

We found that the impact of the above distributions on other distributions also trans-
lated well to their popularity in terms of number of users. In contrast to mobile app stores,
there is no official popularity poll or ranking of OSS distributions. However, since May
2001 one of the leading sources on OSS distributions is the distrowatch.com web site,
which contains announcements of new versions of distributions as well as detailed his-
torical overviews of each distribution (either Linux- or BSD-based). One of its major
features is that, on a weekly basis, the site keeps track of how many people search
or click for each distribution. Although this ranking does not map 1-to-1 to the num-
ber of downloads, it does give an important indication about the popularity of OSS
distributions.

Despite its age (the first Debian release was made on the 16th of August, 1993), Debian
was still the fourth most popular binary distribution at the time of our case study, while
Ubuntu was the second most popular binary and derived distribution. We decided not to
study the top binary distribution at the time of our case study (i.e., Linux Mint), since
it was a rather recent distribution derived from Ubuntu, without sufficient historical data
available. The third most popular distribution was Fedora, but since this is independent
of the Debian/Ubuntu ecosystem, we also did not study this distribution. As source code-
based distribution, we picked the most popular source code-based BSD distribution, i.e.,
the FreeBSD distribution. Note that FreeBSD is also the most popular BSD distribution in
general according to the 2005 BSD Usage Survey (The BSD Certification Group 2005).

3.2 Data Sampling

We study integration activities by systematically analyzing, categorizing and revising histor-
ical package data for Debian, Ubuntu and FreeBSD to create a classification of integration
activities. Given the large number of packages and package-versions in the three distribu-
tions (Table 2), we could not examine all of them manually. Instead, for each distribution
we sampled enough package-versions to obtain a confidence interval of length 5 % within

www.distrowatch.com
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Table 2 Characteristics of the data for the three subject distributions

Debian Ubuntu FreeBSD

start of project 16/08/1993 20/10/2004 11/1993

start of data 12/03/2005 20/12/2005 21/08/1994

end of data 16/08/2011 14/09/2011 01/09/2011

#components 24,263 25,345 22,733

#packages 92,277 66,595 22,733

#pkg. versions 896,757 446,324 162,135

#releases 4 14 8 major/55 minor

#maintainers 2,400 150 400

a 95 % confidence level, taking into account the large population size (Cochran 1963):

sample size = ss

1 + ss−1
#pkg. versions

with

ss = Z2.p.(1 − p)

0.052

Z = 1.96 f or 95% conf. level

p = 0.5 f or pop. with unknown variability

This means that if we find an integration activity to hold for n % of the sampled package-
versions, we can say with a 95 % certainty that n ± 5 % of all package-versions exhibit that
activity. For example, 7±5 % would mean that the activity would hold with a 95 % certainty
for 2 % to 12 % of the package-versions. Although the three distributions have a different
number of package-versions, the asymptotic nature of the sample size formula obtained the
same number of package-versions (384) for each distribution.

3.3 Data Extraction

We randomly sampled 384 package-versions from each distribution, then automatically
extracted for each selected package-version the corresponding change log message. Such a
change log basically consists of a detailed (Koshy 2013) bullet list containing a high-level,
textual summary of all major changes in a particular package-version, as well as the explicit
IDs of all fixed bugs. Figure 4 shows an example change log message of a Debian package-
version (Ubuntu and FreeBSD use a similar format). Except for two changes, all changes
in Fig. 4 fix open bug reports, with the reports’ identifier pasted inside the change log. As
distributions stipulate that each new package-version has to be documented in a change
log (Debian project 2011), we used change log data as starting point for the analysis of each
package-version.

To interpret the change log’s reported changes, we then manually analyzed the refer-
enced bug reports via the distributions’ bug repository. As explained below, each distribution
uses a different technology for its change logs and bug repository, but we were able to
write scripts to automate the fetching of both the logs and reports. The bug reports often
contained references to emails on a distribution’s mailing lists, and sometimes contained
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Fig. 4 Example change log message for clisp package-version 1:2.49-1 in Debian

patches that had been proposed as a possible bug fix. If present, we also studied these mes-
sages and patches. Finally, to clarify technical terms or understand particularly unclear bugs
or changes, we used the distribution’s developer documentation (accessible from a distri-
bution’s web site) and, in the worst case, any relevant web search, especially for finding
relevant communication on online fora. This was only necessary in a small number of cases.

We now discuss how we obtained the above data for each of the three distributions. This
data can be found online in the paper’s replication package (Adams et al. 2015). For Debian,
we obtained the names of all integrated components across Debian’s entire history from
the so-called snapshot archive. This is a server containing all versions of all packages over
time,1 and allowing scriptable access via a public JSON-based API. Then, for every inte-
grated component, we retrieved all version numbers, their timestamps and the list of binary
package names associated with the component (since a component can be split across mul-
tiple packages). After sampling 384 package-versions, we downloaded the corresponding
change log using a simple script from Debian’s change log repository.2 Bug reports men-
tioned in the change logs can be found in the bug repository using the bug identifier.3

Related email messages and other data mentioned in the bug reports was found by using a
web search.

For Ubuntu, we used the Python API of the Launchpad collaboration platform4 to retrieve
the names and version numbers of all Ubuntu packages that have ever existed. Because
Ubuntu is derived from Debian, we filtered the Ubuntu packages to include only the ones
customized by Ubuntu, since the other packages are identical to Debian packages. Ubuntu-
customized packages have a version number ending in “-MubuntuN”, where “M” and “N”
are numbers following a special convention. We found 133,311 of such package versions,
belonging to 26,858 packages. Except for a different location of the change logs5 and bug
reports,6 we used the same approach for data extraction as for Debian.

1http://snapshot.debian.org/
2http://packages.debian.org/changelogs/pool/main
3http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=XYZ with XYZ the bug identifier
4http://api.launchpad.net/1.0/
5http://changelogs.ubuntu.com/changelogs/pool/main
6Manual search using the bug identifier on https://bugs.launchpad.net/ubuntu

http://snapshot.debian.org/
http://packages.debian.org/changelogs/pool/main
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=XYZ
http://api.launchpad.net/1.0/
http://changelogs.ubuntu.com/changelogs/pool/main
https://bugs.launchpad.net/ubuntu
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For FreeBSD, data extraction was a bit more involved, since it is a source-based repos-
itory. For this reason, we retrieved a copy of the FreeBSD version control system (CVS),7

which contains all local file changes ever made to all reused components. Since such CVS
changes are too fine-grained to be considered a “version”, but releases are too coarse-
grained (multiple port versions can exist in between two official releases), we had to
reconstruct the port versions by grouping related CVS changes together. For this, we used
the FreeBSD convention that each port’s Makefile is expected to have a PORTREVISION
variable that is changed “each time a change is made to the port which significantly affects
the content or structure of the derived package” (FreeBSD porter’s handbook 2011). If a
maintainer does not change the PORTREVISION (nor the related PORTVERSION vari-
able), the corresponding changes are not deemed important enough to be automatically
picked up by users during an update of their installation. We interpret this as “changes that
do not change the PORTREVISION variable do not define a new port version”, similar to
the definition of “version” of binary packages.

In practice, we determined for each port the timestamps of all changes that change
PORTREVISION and/or PORTVERSION, then grouped all changes to a port’s files
between two consecutive PORTREVISION changes (excluding the first PORTREVISION
change) into one port version. We treated all changes up to and including the first Makefile
revision as the first PORTREVISION, to account for the initial import of a port. We wrote
scripts that queried the CVS repository8 for all commit log messages between the start and
end date of a port version. The change logs of the resulting port versions then correspond
to the concatenation of these commit log messages. Finally, bug reports were obtained from
FreeBSD’s bug repository based on the bug identifiers mentioned in the change logs.9

3.4 Data Analysis

Since we did not have any classification of integration activities to start from, initially the
first author studied the Debian distribution as a pilot project. He manually interpreted the
changes documented in the change log of each sampled package-version, then looked up
the bug reports referenced by the change log in order to understand which bugs had been
resolved or which features had been added, and how this was done. For the latter, the bug
reports’ comments were an important source of information. To fully understand the scope
and context of more complex changes, he sometimes had to consult email messages ref-
erenced by the bug reports and patches attached to them. In case of doubt or usage of
unfamiliar technical terms or inside stories, the distribution’s developer documentation was
considered or, in the worst case, a web search was performed.

Once it was clear what exactly the integrators had done to produce the analyzed package-
version, the package-version was tagged with any observed activity to summarize the
rationale behind the version. Two examples of activities could be “new release” or “package
dependency change”. More than one tag could be assigned to a version, since a new version
of a package typically consists of multiple changes (as seen earlier in Fig 4). By repeating
this procedure for all sampled Debian versions, and constantly revising already analyzed
versions when new tags were found, an initial tagging schema was built up, representing
different activities that go into a package-version.

7ftp3.ie.FreeBSD.org::FreeBSD/development/FreeBSD-CVS/ports/
8:pserver:anoncvs@anoncvs.tw.FreeBSD.org:/home/ncvs
9http://www.FreeBSD.org/cgi/query-pr.cgi?pr=XYZ with XYZ the bug identifier

ftp3.ie.FreeBSD.org::FreeBSD/development/FreeBSD-CVS/ports/
http://www.:pserver:anoncvs@anoncvs.tw.FreeBSD.org:/home/ncvs
http://www.FreeBSD.org/cgi/query-pr.cgi?pr=XYZ
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After finishing the pilot project on Debian, the first two authors revised the obtained
tagging schema, leveraging the second author’s experience as a Debian/Kubuntu maintainer
and developer. Some tags were merged, others were renamed, and with the resulting tagging
schema in hand, we revised the Debian analysis to standardize the tags used. Afterwards,
both authors analyzed the Ubuntu and FreeBSD data using the same tagging schema as a
starting point (and using the same approach as for Debian). Conflicts in tagging between
both authors were manually resolved through discussion. We did not find additional tags for
Ubuntu and FreeBSD, giving us confidence about the completeness of our initial tagging
schema. Eventually, we obtained seven very popular tags, two less popular ones and a catch-
all tag for multiple unique or less frequent activities unrelated to any of the other tags. We
excluded the latter three tags from our analysis, but we come back to them in Section 6. The
replication package (Adams et al. 2015) contains the tags and noteworthy observations of
the sampled package versions.

3.5 Identification and Documentation of Activities

The seven most popular tags obtained after the manual analysis all correspond to unique
integration activities, however each distribution could have its own terminology and work-
flow for such an activity. Hence, in order to abstract up the commonalities and variabilities
across distributions for a particular activity (tag), all authors together distilled the intent,
motivation, common tasks and current practices across the distributions based on (1)
the information that we encountered in the change logs, bug reports and mailing lists
for the sampled package-versions, as well as (2) the second author’s experience as a
Debian/Kubuntu developer. This was an iterative process, trying to separate the essential
steps used during an integration activity from implementation details or exceptions in a par-
ticular distribution. Typically, each author would refine one or two patterns, then send to the
next author for further refinement until no more changes were made to an activity.

Similar to design patterns (Gamma et al. 1995), we then “captured [the activities] in a
form that people can use effectively”. For each integration activity, we documented in a rigid
format its intent, motivation, the major tasks involved in the activity, its participants, possi-
ble interactions with other activities and notable instances of the activity in the three studied
distributions (Debian, Ubuntu and FreeBSD). Interactions are based on co-occurrence of
activities in our data. We also tried to compare each activity to prior work in the integration
literature, to put each activity in context.

During the tagging of integration activities, and the abstraction into pattern form, the
authors encountered recurring issues and problems of the package maintainers. Such issues
and problems were noted down by each author individually, then compared and clustered to
obtain a set of challenges, across 4 research areas. After filtering out challenges that were
already addressed by related work, we obtained 13 concrete challenges or limitations that,
based on our data, seemed to hold back maintainers in their activities. To cross-check those
challenges, together with the activities that we documented, we performed a validation with
practitioners in the next step.

3.6 Validation of the Activities by Practitioners

In order to get feedback on the correctness and usefulness of the documented integration
activities and challenges, we contacted members of the package maintenance community of
Debian, Ubuntu and FreeBSD. We asked them to (1) verify the correctness of the activities
that we derived and abstracted from the change log, bug report and other historical data, as
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well as of the challenges that we uncovered, and to (2) provide feedback on the usefulness
of the activities as well as the activities and challenges that we might have missed while
analyzing the sampled package-versions.

Based on their extensive experience with the 3 distribution communities, the second
and fourth author first compiled a short-list of package maintainers and release engineers
experienced with maintaining large packages. We then contacted the people on the short-
list by email, since email is the preferred channel of communication for maintainers (and
maintainers are volunteers spread across the world, without a fixed office). We played with
the idea of creating a bug report for our study, since maintainers track the bug repository of
their package from close-by, however since bug reports are a public broadcast medium, and
people would have been able to chime in and perhaps influence the maintainer, we discarded
the bug repository for our purposes.

We eventually received feedback from 3 maintainers (M1, M2 and M3) active in both
Debian and Ubuntu, one (M6) in Debian, 1 (M5) in Ubuntu, and 1 (M4) in FreeBSD. All
of them have at least five to ten years of experience, since the role of package maintainer or
release engineer can only be deserved through years of active involvement in a distribution.
Note that to respect their anonymity we will refer to all of them as “maintainers” and use a
symbolic name.

When contacting the maintainers, we provided them a draft of this paper, then asked
them for feedback about the documented activities and challenges. In particular, we asked
the following questions to evaluate the usefulness and completeness of the activities and
challenges:

Q1 What activities did we miss?
Q2 What can the documented activities be used for?
Q3 Which existing tools and techniques for these activities did we miss?
Q4 What challenges did we miss?
Q5 What promising tools/techniques do you see coming up to address some of the

challenges?

The maintainers replied to the five questions by email. All six also provided higher-
level comments about the paper, with one maintainer providing an annotated pdf with more
detailed comments. Despite their busy schedule and the asynchronous nature of email com-
munication (one cannot force someone to reply), only two maintainers left two or more
questions blank. We come back to this in Section 6. The email replies were then analyzed
by two of the authors and summarized into a table (Table 5) in order to compare the findings
across all 6 maintainers.

At a high level, the obtained feedback showed us whether the activities as a whole made
sense, whereas at a lower level it exposed inaccuracies, missed workarounds and any factual
errors. We then used this feedback to flesh out the description of the seven documented
activities and the 13 challenges, to obtain the final version of the activities documented
in the present paper. The contacted members suggested five additional activities, however
since we did not have sufficient empirical support for these activities in our data sample, we
did not add them to the documented activities. Instead, we discuss those additional activities
in Section 6.
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Table 3 Overview of integration activities and their prevalence in the three distributions. Activities below
the horizontal line were not common enough to be documented

Activity Explanation % Deb. % Ub. % Fre.

A. New Package Integrating a new software project. 1.04 0.78 13.54

B. Upstream Sync Updating to a new upstream version. 40.89 43.75 57.81

C. Dependency Management Managing changes to dependencies. 38.80 30.73 28.39

D. Packaging Change Changing a package’s packaging logic. 43.49 44.01 38.80

E. Product-wide Concern Enforcing policies across all packages. 4.95 3.13 25.00

F. Local Patch Patching upstream source code locally. 22.40 28.39 12.24

G. Maintainer Transfer Managing unresponsive maintainers. 5.73 0.00 2.86

H. Security Patching a security vulnerability. 4.43 1.30 0.78

I. Internationalization Internationalization of packages. 4.17 1.56 0.26

J. Other Catch-all for rare activities. 2.34 4.95 1.04

4 Integration Activities in Distributions

Table 3 gives an overview and short explanation of the seven major integration activities
that we documented, as well as three less common ones. The table also provides the per-
centage of sampled Debian, Ubuntu and FreeBSD package-versions that involve each of
the activities (within a confidence interval of 5 %). Those numbers are also plotted on
Fig. 5. Since a new version of a component can involve multiple integration activities, the
percentages in the plots add up to more than 100 %. Upstream Sync, Dependency
Management and Packaging Change are the most frequently occurring activities in
Debian and FreeBSD. Local Patch is also common in all three projects, whereas New
Package and Product-wide Concern are common for FreeBSD.

The next subsections discuss each of the seven major integration activities in detail. For
each activity, we provide:

Intent Short outline of the goal of the activity.
Motivation Short description of the role and rationale of an activity.
Major tasks The major steps involved with the activity.
Participants A list of stakeholders from Fig. 2 involved with the major tasks of the

activity.

a b c

Fig. 5 Popularity of the integration activities of Table 3 in the 384 sampled (a) Debian, (b) Ubuntu and (c)
FreeBSD package-versions (confidence interval with length 5 % for a 95 % confidence level)
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Interactions Activities that co-occurred substantially with a given activity in package-
versions, and hence are related.

Literature Discussion of prior work and approaches for the activity, as well as prevalence
of the activity outside the context of OSS distributions.

Notable instances Concrete examples of the activity from the sampled Debian, Ubuntu
and FreeBSD package-versions.

A. New Package

Intent: Integrating a previously unpackaged upstream component into a distribution.
Motivation: The users of the distribution or the maintainer of a package require new
functionality provided by a component that has been identified but is not yet part of the
distribution.
Major Tasks:
1. Recruiting a Maintainer responsible for integrating the new component and for liais-
ing with the upstream project is one of the most important decisions to take (Koshy 2013;
Merilinna and Matinlassi 2006). Most commonly, an upstream developer or motivated
end-user requests an upstream component to be integrated in the distribution. One of the dis-
tribution’s maintainers might pick up this request and become the maintainer. Alternatively,
the upstream developer can package the component herself and ask a distribution main-
tainer to “sponsor” this package, i.e., to review and to upload it to the distribution’s package
repository. In that case, although the majority of the integration is done upstream, the main-
tainer still has the end responsibility. Another possibility is that the distribution appoints a
maintainer to the integration of a new component because of a clear need in the distribution.
2. Packaging an Upstream Project requires access to the project’s source code (except for
binary-only packages like Adobe Flash) and verification of its license. The maintainer then
proceeds to determine the build-time and run-time dependencies of the package. If a depen-
dent component is not yet in the distribution, it has to be packaged first. This is a process of
trial-and-error, trying to build the package and fixing any dependency problems. The main-
tainer might have to customize the software or its makefiles so it would build correctly in the
environment of the distribution. When porting the package to other platforms than Linux-
or GNU-based ones, it is often needed to remove dependencies on Linux- or GNU-specific
libraries or functionality. This can take significant effort. Finally, the maintainer needs to
make sure that the package follows the distribution’s policies, such as specific locations for
configuration files and manual pages.
3. Creating the Package’s Metadata. The maintainer is responsible for creating the package
metadata like the package name, version number and the list of dependent packages. Such
metadata is necessary to add the package to the distribution’s package management sys-
tem (“apt” in Debian/Ubuntu, or the port system in FreeBSD) to enable the automatic and
systematic building, packaging, and deployment of the software project.
4. Integration Testing. The package must build and run consistently on all supported archi-
tectures. Typically, two rounds of tests are used to verify a package. The first round involves
only maintainers ironing out any obvious functionality or platform issues. The second round
involves uploading the package to a staging area (e.g., “unstable” in Debian), from where
expert end-users can install it for use in their daily work. Bugs identified by these users are
reported (together with possible patches) to the maintainer, who incorporates this feedback
in a new version of the package that is re-uploaded. Some distributions, like Ubuntu, have
tools to automatically run integration testing and identify integration issues.
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5. Publishing the Package. If a staged package contains severe bugs, it might be (temporar-
ily) removed from the staging archive until the bugs are resolved. If the package has been
stable for a certain period of time, it becomes eligible for inclusion in an upcoming release.
The package is either moved to that release’s archive (Debian/Ubuntu), or to the source code
repository (FreeBSD).
Participants: maintainer, upstream developer, package community, expert end-user.
Interactions: New Package is a prerequisite of the other six activities, and usually occurs
by itself (i.e., a package-version only involves New Package, and no other activity). In
2.3 ± 5 % of the FreeBSD package-versions, it also involves Local Patch to fix a bug
or to make the package compile.

Literature:
In the context of COTS reuse, additional tasks are involved, especially contract negotia-
tions (Information Technology Resources Board 1999; Navarrete et al. 2005). Lewis et al.
(2000) note that “Vendors are driven by profits [...] They can be cooperative and responsive
when it is in their perceived interest to be so.” Various guidelines and risk assessment tools
exist to help companies or federal departments select the right COTS components (Informa-
tion Technology Resources Board 1999; Lewis et al. 2000). They, for example, recommend
to find COTS components that fit with the existing architecture, or possibly adjust the archi-
tecture first, rather than requiring the COTS vendor to customize their component to the
system at hand (since that could be very costly). This is different from OSS distributions,
where monetary incentives typically do not exist and OSS distributions sometimes carry
enough weight to convince upstream components to adapt to them rather than the other way
around.

Although not applicable in the case of packaging organizations like OSS distribu-
tions, the identification of COTS/OSS components for reuse is a known challenge as well
(Morisio et al. 2002; Stol et al. 2011), typically requiring extensive web or literature
research, or insightful recommendations by experts. While maintainer recruitment and
integration testing are known research problems, the other tasks are less known in research.
Notable Instance:
A New Package with customization: irssi-plugin-otr (Ubuntu) is an IRC client plugin
integrated in July 2008. A first customization changed the location for documentation to
the Ubuntu default location. The second customization fixed the package’s build process to
not download required header files during the build, since the Ubuntu build servers do not
have network access.

B. Upstream Sync

Intent: Bringing a package up-to-date with a newer version of the upstream component.
Motivation: As shown in Fig. 5, synchronizing the existing packages of a distribution
with a newer upstream version forms the core activity of integration. End-users expect
package maintainers to update their packages to the latest features and bug fixes as soon
as possible, while maintainers are more concerned about the long-term stability of a
package.

Major Tasks:
1. Becoming Aware of a New Upstream Release largely depends on distribution-specific
dashboards that automatically track the development progress of upstream projects. For
example, Debian’s watch file mechanism specifies (1) the URL of the upstream project’s
download page with all releases of a component, as well as (2) a regular expression to
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identify the source code and a version number for each release. If the highest version number
surpasses the current version, this means that a new release is available.

Derived distributions (e.g., Ubuntu) not only need to synchronize with the upstream
projects, but also with their own parent distribution, typically at the start of a new release
cycle. For example, out of 167 analyzed Ubuntu package-versions involving Upstream
Sync, 99 versions were synchronized with the upstream project, 65 were synchronized
with the parent distribution (Debian) and 3 were synchronized with both. Since the derived
distribution can leverage the Upstream Sync and other activities performed by the main-
tainers of the parent distribution, risk assessment (task 2) becomes slightly easier. However,
keeping track of which patch was synchronized from which upstream project requires rig-
orous book-keeping. Projects use custom dashboards for this, sometimes interfacing with
the bug reporting infrastructure.
2. Assessing the Risk of an Upstream Release requires the maintainer to review the changes
to the previous upstream version (Rodin and Aoki 2011) in order to estimate whether the
new version is production-ready. These changes run the risk of breaking important func-
tionality, while end-users do not always need the new features and bug fixes. Despite the
importance of this analysis, in practice it currently is a largely manual task supported by
basic tools like “diff” (Rodin and Aoki 2011), change and commit log messages, email
communication with upstream developers, and experience.

The outcome of risk assessment is often to not update to a full new release, but to “cherry-
pick” a select number of acceptable changes out of all changes made upstream or by another
distribution, then merge those changes into the current package-version (discarding the other
changes). For example, an upcoming release of a distribution might be too nearby, making
the full import of a new version of a component too risky. Instead, maintainers would cherry-
pick the show-stopper bug fixes that they are most interested in. Some distributions, like
FreeBSD, prefer not to cherry-pick, i.e., they either take a new version of a component as a
whole, or do not update to it.
3. Updating Customization involves revisiting the customizations (patches) performed on
earlier versions of the packaged component (e.g., the initial New Package or later Local
Patch activities). Maintainers typically submit these patches upstream, to be merged. As a
consequence, some patches no longer need to be maintained locally and can be discarded by
the maintainer. Other patches, however, need to be updated by the maintainer to be cleanly
applied to the new version of the upstream package. Just like task 2, this requires manual
analysis of the patch and the new package-version.
4. Updating the Package’s Metadata, cf. task 3 of New Package.
5. Integration Testing, cf. task 4 of New Package.
6. Publishing the Package, cf. task 5 of New Package.

Participants: maintainer and upstream developer.
Interactions: Upstream Sync is a pivotal activity that can be accompanied by any
other activity, except for New Package (by definition). Upstream Sync occurs mostly
together with Packaging Change, Dependency Management, Local Patch
and (in source-based distributions) Product-wide Concern.

Literature:
Together with Local Patch, Upstream Sync is the most discussed integration
activity in literature, independent of the type of reuse (COTS/OSS/ISS) or organization
(OSS/commercial) (Lewis et al. 2000; Navarrete et al. 2005), and it is the source of
most of the issues related to Dependency Management (sometimes even preventing
Upstream Sync of other packages). For example, Begel et al. (Begel et al. 2009) report
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that at Microsoft up to 9 % of 775 surveyed engineers rely on other teams to inform them of
changes to a component they rely on. Researchers (Merilinna and Matinlassi 2006; de Souza
and Redmiles 2008) and practitioners (Koshy 2013) recommend to continuously monitor
(or inquire) for new versions and their impact on the software system, even appointing a
specific gatekeeper responsible for doing this. This also helps mitigate one of the largest
risks of reuse: the component vendor going out of business (Lewis et al. 2000).

Since reuse induces a dependency on the provider of a COTS/OSS/ISS component (who
fully controls the component’s evolution (Lewis et al. 2000)), researchers have reported two
extreme approaches to deal with this dependency: swiftly updating to each new component
version (Brownsword et al. 2000; Stol et al. 2011; Van Der Linden 2009) versus sticking
to a particular version and patching it for the organization’s particular needs (Merilinna
and Matinlassi 2006; Ruffin and Ebert 2004; Van Der Linden 2009). There is no system-
atic methodology to decide between the two approaches and hybrid approaches in between
like cherry-picking (Lewis et al. 2000), typically personal experience is the deciding fac-
tor (Merilinna and Matinlassi 2006), while other factors like the safety-critical nature of a
software system can play a role as well (Lewis et al. 2000). Interestingly, many integration
issues could in fact be avoided if the new component version would be backwards compat-
ible with the previous version (Crnkovic and Larssom 2002; Stol et al. 2011), but this is
outside the control of the organization that reuses a component.
Notable Instances:
A low-risk Upstream Sync: Gnash (Ubuntu) is a Flash player that was updated to
upstream version 0.8.7 in March 2010 (#52225410), right at the start of the Ubuntu feature
freeze window (i.e., close to the next release). Since new features are technically not allowed
in a freeze window, a member of the Ubuntu release team needed to explicitly approve the
Upstream Sync. As Gnash is a package inherited from Debian, and the update mostly
contained bug fixes, version 0.8.7 quickly got synced.
An Upstream Sync taking a long time: Krita 2.1.1-1 (Debian), the painting program
of the KOffice suite, was broken early May 2010 because one of the libraries it depends
on (libkdcraw7) had been replaced by a newer version (libkdcraw8) in an Upstream
Sync of KDE 4.4.3 (#580782). Unfortunately, the solution (an Upstream Sync to KOf-
fice 2.2.0), took 2 months because this new version of KOffice introduced too many new
functionalities, requiring the package to be tested more thoroughly.
A patch cherry-picked from another distribution: libpt 1.10.10 (Ubuntu), a cross-platform
library, relied on the new gspca webcam driver provided by the 2.6.27 Linux kernel. For
this driver to work, all programs and libraries consuming the webcam stream now had to
load the libv4l wrapper libraries at run-time, forcing 62 Ubuntu packages to be modified.
Since three weeks earlier a patch had been uploaded to Fedora (another distribution) to
make these changes for libpt, this patch was cherry-picked into Debian (and Ubuntu).

C. Dependency Management

Intent: Keeping track of the dependencies of a package to make sure it can be properly built
and run.
Motivation Packages depend on other packages to be built (e.g., compilers and static
libraries) and to be run (e.g., dynamic libraries and services). For example, in our data set,
Debian packages containing dynamic libraries have on average 6.4 packages depending

10This notation refers to a bug report in the distribution’s bug repository.
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on them directly (median: 2.0), and 47.6 transitively (median: 3.0). If a package on which
many other packages (“reverse-dependencies”) depend changes, for example because of an
Upstream Sync, that change might break its reverse-dependencies.

A special case of such a change are “library transitions”, i.e., changes to the public inter-
face of a shared library that might force dozens of packages to be rebuilt or, in the worst case,
to be adapted to the new interface via source code changes. For example, if the C runtime
library would change, all packages using C might need to be changed and/or re-built.
Major Tasks
1. Becoming Aware of Dependency Changes either happens automatically (see Upstream
Sync), or based on an announcement by the maintainer of a dependent package that is
about to change significantly. The latter announcement typically is sent to the release man-
ager and any affected maintainers, leaving time to discuss the repercussions of the update.
In case such an announcement has not been done, at the very minimum, the maintainer
should notice a change in the API through the updated interface version (“SONAME”)
of a dynamic library11. For example, a dynamic library “libfoo” with interface version
1 would have a SONAME of “libfoo.so.1”. If this SONAME suddenly changed to “lib-
foo.so.2” upstream, maintainers would know that the API of the component has changed
substantially.
2. Assessing the Risk of a Dependency Change is similar to task 2 of an Upstream Sync.
Determining which and whose packages broke because of a change is largely a manual
task, requiring insight into how an API is used by other packages, whose implementation
and algorithms are typically unknown to the maintainer. Unfortunately, no tool support is
available in practice to assist in this task. Typically, the build logs are checked for errors and
the package is driven through a small smoke test scenario.
3. Fixing the Damage either happens atomically, i.e., the changed package and all its reverse-
dependencies are updated at once (FreeBSD), or interleaved, i.e., each of the packages is
updated independently (Debian/Ubuntu). Atomic updates can delay a new package-version
as long as not all broken packages have been updated successfully, but at least the end user
will not be impacted by inconsistent packages. Distributions like Fedora and Ubuntu use
sandbox build environments to atomically update a transitioning library with all its reverse-
dependencies in isolation, without affecting other packages (and hence users) (The Fedora
Project 2011).

Whether or not the update model is atomic, the maintainer of the library causing the
changes is responsible for performing all rebuilds. The maintainer analyses the build and
test logs to determine which packages failed to build, and attempts to write patches for
those, using her knowledge of the API changes. If this fails, she needs to assist the failing
packages’ maintainers to resolve the transition issues, similar to delivery advocates for ISS
reuse (Stol et al. 2011). To keep track of which packages have already been re-built, the
release manager and maintainers use a tracking system: Ubuntu and Debian both use a
custom library transition tracker, while Ubuntu sometimes uses a bug tracker.
4. Updating the Packages’ Metadata, cf. task 3 of New Package.
5. Integration Testing, cf. task 4 of New Package, once the whole transition is complete
(atomic model) or for each updated package separately (interleaved model).
6. Publishing the Package, cf. task 5 of New Package.

11If the maintainer finds out that the interface did change without a SONAME update, she would contact
upstream to ask for an update of the SONAME, then perform an Upstream Sync of the updated library
before resuming the Dependency Management of the library’s reverse-dependencies.
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Participants: maintainers of the changed package and those of its reverse-dependencies,
release manager.
Interactions: Dependency Management can be accompanied by any other activ-
ity, except for New Package. It occurs mostly together with Upstream Sync,
Packaging Change, Local Patch and (in source-based systems) Product-wide
Concern.
Literature:
Similar to Upstream Sync, Dependency Management is independent of the kind
of reuse and organization. Begel et al. (2009) observed a wide range of mitigation tech-
niques for dependency problems at Microsoft, ranging from minimizing the number of
dependencies to explicitly planning backup strategies to deal with dependency issues. Other
companies, such as the one studied by de Souza et al. (2004) and de Souza and Redmiles
(2008), stressed the importance of vendor-integrator communication to reduce the effort
required for “impact management” of reused APIs. Managers first should build an impact
network consisting of people affecting or affected by their component, then use frequent
email communication or people assigned explicitly to a particular API (or ISS compo-
nent (Stol et al. 2011)) to manage forward (i.e., on other teams) and backward (i.e., on their
team) dependency impact. Similar to other major companies like Google (Whittaker et al.
2012), as well as the studied OSS distributions, a team is required to inform its clients of
major API breakage. de Souza and Redmiles (2008) note, however, that one should not
forget the ripple effect of “indirect” (i.e., transitive) dependencies.

Similar to Upstream Sync, backwards compatibility of dependent packages can
avoid many integration issues (Crnkovic and Larssom 2002; Stol et al. 2011). Further-
more, many Dependency Management issues are due to unnecessarily high coupling
between components by relying on implementation details (Spinellis et al. 2004) and pri-
vate APIs (Stol et al. 2011). Hence, using components via explicit (Stol et al. 2011) and
stable (Merilinna and Matinlassi 2006) interfaces can avoid many problems. Finally, pack-
aging organizations like distributions can eliminate many dependency issues of their users
by providing assemblies (sets) of integrated components instead of individual components.
This is why many distributions offer so-called “virtual” packages, for example to integrate
all core packages of Perl, KDE or GNOME.
Notable Instances:
A surprise library transition: A library interface change to the libfm 0.1.14-1 (Debian) file
manager library was not announced by the upstream developer. As a consequence, applica-
tions built against the old version of libfm (“libfm.so.0”), such as the pcmanfm file manager,
broke (#600387). The dynamic linker had no way of knowing that “libfm.so.0” was no
longer the original library version all packages were built against, but rather the new version
with a different interface that should have been named “libfm.so.1”.

Problems with non-atomic fixes of dependency changes: The transition of Perl 5.10
(Debian), the Perl programming language ecosystem, to Perl 5.12 at the end of April 2011
(#619117) took slightly over two weeks, during which over 400 packages (directly or indi-
rectly depending on Perl), including high-profile ones such as vim, subversion, rxvt-unicode
and GNOME, were not installable from the staging area until all their dependencies were
rebuilt consistently against Perl 5.12.

A dependency change requiring only a rebuild: The chances of acceptance for Boost
1.34.1 (Ubuntu), a general-purpose C++ library, in Ubuntu 7.10 looked slim, since Ubuntu
had just entered its “Feature Freeze” (only bug fixes were still accepted for the upcoming
release) and all Boost’s reverse-dependencies had to be updated. However, the contributor
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championing the new Boost release was able to convey the urgency of the release (fixes
to show-stopper bugs) and the package maintainer verified that all reverse-dependencies
could just be rebuilt without source code changes.

D. Packaging Change

Intent: Changing the packaging logic or metadata to fix packaging bugs, to follow new
packaging guidelines or to change the default configuration, either for binary or source
packages.
Motivation: The packaging process combines the build process (McIntosh et al. 2011) of
an upstream component with the dependency management and packaging machinery of a
distribution. Hence, understanding the packaging process is not a trivial process, and bugs
slip in frequently. Furthermore, as the packaged component evolves, its packaging require-
ments evolve as well. For example, new features might have been added that need to be
configured in the package. The Packaging Change activity covers any such changes to
the packaging, building and installation logic and metadata of a package.
Major Tasks:
1. Replicating Reported Problems is a prerequisite in order to fix a packaging problem.
Ideally, the maintainer would like to clone the packaging environment of a bug reporter,
or at least have a complete description of the build platform, all installed libraries and
their versions. Tools exist to generate such a description when submitting bug reports, yet
inexperienced bug reporters often do not know or forget to use those.
2. Understanding the Build and Packaging Process is a necessity in order to be able to
fix packaging bugs or enhance the packaging logic. Such understanding currently is based
on interpreting the build and execution logs of packages. Furthermore, trial-and-error is
commonly used when changing the packaging logic. Since there is no dedicated way to test
build and packaging changes, the maintainer verifies the correctness of those changes by
manually installing the package and running the unit or user tests of the package.
3. Integration Testing, cf. task 4 of New Package.
4. Publishing the Package, cf. task 5 of New Package.
Participants: maintainer, package community (for testing), expert end-user.
Interactions: This activity is performed during most of the other activities, such as New
Package and Upstream Sync. Frequently, this activity requires a Local Patch.
Literature:
The Packaging Change activity has not been discussed thoroughly in prior research,
except for the well-known difficulty of configuring COTS/OSS/ISS components (Stol et al.
2011). Such configuration issues are due to the fact that, by default, components need to be
generic and contain many features, whereas a specific integrator only needs some of those.
The need to adapt packaging logic is specific to the domain of packaging organizations (of
which OSS distributions are a subset), since they are a mediator between upstream compo-
nents and final users, and hence require upstream components to fit into their own package
management system.
Notable Instances:
A package with missing files: The librt shared library implementing the POSIX Advanced
Realtime specification had been dropped without warning from the GNU standard C library
on Debian (libc6 2.3.6-18), breaking the XFS file system package (#381881). To resolve
this case of Dependency Management for XFS, a Packaging Change was made
to libc6’s package metadata to indicate that librt was no longer provided.
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Broken packaging because of changed guidelines: Versions 2.6 to 3.2 of Python
(Ubuntu), the Python programming language ecosystem, suddenly failed to build on Ubuntu
(#738213) because essential libraries like libdb and zlib on which python depended could
not be found anymore on the build platform. The change in directory layout was a result of
the work on enabling 32 and 64 bit versions of libraries to be installed on a single machine.
Broken packaging because of upstream changes: The GNU Octave (FreeBSD) developers
changed the layout of their web site as well as the build logic of some of their projects
(#144512). The maintainer had to fix the code fetching script and refactor the existing build
script shared by all GNU Octave ports into separate scripts for the individual ports.

E. Product-wide Concern

Intent: Applying product-wide policies and strategic decisions to the integrated packages.
Motivation: Since a distribution integrates thousands of packages, there are important rules
and strategic decisions that should be followed in order to make the distribution coherent
and consistent. For example, a new standard for package help files should be adopted by all
packages, either all at once or at their own pace. Similarly, strategic decisions to transition
to a new version of a core library or to move to a new default window manager should be
followed up as uniformly as possible by all involved packages.
Major Tasks:
1. Determining Ownership and Timing of Changes happens through discussions between the
co-ordinator (release manager or a volunteer) of the product-wide concern and the affected
maintainers. The co-ordinator notifies all affected package maintainers about the decision,
explaining the motivation of the Product-wide Concern, the end goal and the dif-
ferent steps involved in getting there. Those steps depend on the enforcement strategy in
use.
2. Enforcing the Concern happens either through centralized or distributed enforcement.
With centralized enforcement, the Product-wide Concern co-ordinator applies the
concern’s changes herself on all affected packages at once. Maintainers only need to test
if their package still works and report a bug if it does not. With distributed enforcement,
the package maintainers, briefed by the co-ordinator, are in charge of the change for their
own package. This gives them the freedom to implement a Product-wide Concern
as they see fit, but might delay updates to their packages’ reverse-dependencies. While the
concern is being enforced, the co-ordinator continuously monitors the status of the concern
via dashboards, mailing lists and/or bug reporting systems.

Debian uses distributed enforcement, FreeBSD uses centralized enforcement and Ubuntu
uses both. Derived distributions like Ubuntu automatically leverage Product-wide
Concern changes performed by the contributors of the parent distribution. FreeBSD co-
ordinators use regular expressions to change the packaging logic of hundreds of ports at
once, thanks to the strict naming conventions in the packaging logic. Given the high risk
of such product-wide changes in FreeBSD, the co-ordinator needs approval by the release
manager, after which the whole distribution is rebuilt on the distribution’s build cluster to
check the effects of the product-wide change.
3. Integration Testing, cf. task 4 of New Package.
4. Publishing the Package, cf. task 5 of New Package.
Participants maintainer, co-ordinator, release manager.
Interactions: Product-wide Concern is typically accompanied by Dependency
Management, Upstream Sync or Packaging Change.
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Literature:
Similar to Packaging Change, Product-wide Concern is a relatively unknown
activity. For example, Curtis et al. (1988) identify the issue that “Projects must be aligned
with company goals and [that they] are affected by corporate politics, culture, and pro-
cedures”, and they stress that the “inter-team group dynamics” (between an integrator
and upstream) significantly complicates the already complex “intra-team group dynamics”.
However, no concrete advice or discussion of the tasks involved are provided, especially not
in the context of multi-component integration at the scale of OSS distributions (thousands
of integrated components).
Notable Instances:
The massive migration to GCC 4 (Debian) in July 2005 is an example of a
Product-wide Concern with distributed enforcement. Since the compiler suite broke
C++ programs compiled with earlier GCC versions, all C++ packages using GCC had to be
rebuilt. An approach typically followed in cases like this,12,13 is to (permanently) rename
the packages after rebuilding by attaching a suffix like “+b2”. This ensures the visibility
of rebuilt packages, enabling other packages to explicitly depend on the rebuilt versions.
The migration to Dash as the default command shell in Ubuntu 6.10 (October 2006)
and Debian Lenny (February 2009) illustrates the differences between centralized and dis-
tributed enforcement. The Ubuntu co-ordinator instantaneously made Dash the default shell,
breaking many packages’ scripts and build files (centralized). Although several users were
enraged, the co-ordinator consistently referred to the maintainers and upstream developers
of the failing packages to fix incompatible Bash-specific code (“bashisms”). A web site
with official migration strategies and workarounds was provided.

When Debian discussed their move to Dash (independently from the Ubuntu move),14

the Ubuntu co-ordinator convinced them about the importance of clear release goals and
communication with all stakeholders. The Debian developers then built tools to screen all
packages for known bashisms. Maintainers of packages containing bashisms were notified
by email and requested to fix the bashisms by a certain date (distributed).

F. Local Patch

Intent: Maintaining local fixes and/or customizations to a package.
Motivation: Integrators and their users will find bugs in packages. Some of these bugs are
package-specific, while others are due to the integration of the package in the distribution.
Typically, maintainers are encouraged to send the fixes for both kinds of bugs upstream,
such that the upstream project will take ownership of the code (and its maintenance) and
include it by default in their project. In practice, however, many integration bug fixes are
not accepted by upstream (or take time to be adopted) and tend to end up as local patches
that need to be maintained by the integrator and re-applied by the integrator upon each
Upstream Sync. The same holds for customization changes specific to a distribution,
for example because of Product-wide Concern.
Major Tasks:
1. Getting a Local Patch Accepted Upstream requires a patch that fixes the bug in a clean
way and follows the programming guidelines of the upstream developers. After thorough

12http://bit.ly/FOCJHf
13http://lwn.net/Articles/160330/
14http://bit.ly/z3ORxT

http://bit.ly/FOCJHf
http://lwn.net/Articles/160330/
http://bit.ly/z3ORxT
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testing, the maintainer submits the patch to the preferred bug reporting system of the
upstream project. The report should be as detailed as possible, making clear what bug is
fixed, in which version of the project, and what the impact is on the users of the distribu-
tion. Either the patch is accepted in a reasonable period of time, or it is not. If accepted,
the maintainer can discard his Local Patch. Otherwise, the maintainer is responsible for
maintaining and re-applying the Local Patch across all future versions of the package.
2. Maintaining the Patch upon an Upstream Sync is the maintainer’s responsibility until
the Local Patch is accepted by upstream (if ever), cf. task 3 of Upstream Sync. As
such, Local Patch is a very common activity, involving 22.1±5 % (Debian), 28.4±5 %
(Ubuntu) and 12.2±5 % (FreeBSD) of all package-versions. Of these versions, only 7±5 %
(Debian), 0.3 ± 5 % (Ubuntu) and 0 ± 5 % (FreeBSD) had to update an existing Local
Patch, whereas 24.7 ± 5 % (Debian), 11.9 ± 5 % (Ubuntu) and 6.3 ± 5 % (FreeBSD)
could stop maintaining the Local Patch because it was included into a new upstream
version. To keep track of local patches, Debian-based distributions use patch management
systems such as “quilt”, “dpatch” and “git”, while FreeBSD maintainers manage patches
manually.
3. Updating the Package’s Metadata, cf. task 3 of New Package.
4. Integration Testing, cf. task 4 of New Package.
5. Publishing the Package, cf. task 5 of New Package.

Participants: maintainer, upstream developer, bug reporter.

Interactions: Local Patch is typically accompanied by Upstream Sync,
Packaging Change, or Dependency Management.

Literature:

The paradox of on the one hand having to submit a patch upstream to avoid mainte-
nance but on the other hand having a hard time getting the patch accepted, is the most
studied integration challenge in the literature, across different kinds of reuse and organiza-
tions (Bac et al. 2005; Brownsword et al. 2000; Merilinna and Matinlassi 2006; Spinellis
et al. 2004; Stol et al. 2011). No silver bullet exists, although, similar to Upstream
Sync and Dependency Management, close collaboration of an organization with the
upstream project is generally recommended (Stol et al. 2011), even in the case of COTS
(Morisio et al. 2002). However, such a collaboration takes a lot of time, effort and goodwill,
and also does not guarantee that the upstream project will accept and maintain the patch
(Ven and Mannaert 2008). In fact, it often happens that even an accepted patch still needs
to be maintained by the downstream organization (since the organization has the required
expertise) (Jaaksi 2007).

An opposite approach has been successful in the case of ISS, where the ISS team reaches
out to the teams that reuse its components to help them with integration (Stol et al. 2011).
Alternatively, one could use COTS-style glue or wrapper code to avoid changing the actual
code altogether (Di Giacomo 2005; Van Der Linden 2009). However, such approaches are
less powerful (one loses the benefits of OSS/ISS) and still require maintenance. As a kind
of middle ground, many organizations use packaging organizations like OSS distributions
as a maintenance buffer between upstream and themselves (Merilinna and Matinlassi 2006),
shifting the problem to the distributions. In the presence of sufficient industrial partners,
one could even consider making an independent fork of an upstream component, but this is
quite costly and in the end not that successful in practice (Ven and Mannaert 2008). Note
that patches for local usage or configuration will never be picked up upstream, hence require
eternal maintenance. This applies especially to end-users, who might have local patches on
top of a distribution’s package.
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Notable Instance:
A patch that is quickly adopted upstream: The Debian and Ubuntu packages of the GNOME
sensors-applet (Debian/Ubuntu) desktop widget for temperature and other sensors featured
“ugly, outdated icons” (#69800) because the newer icons did not comply with the license
policy of Debian and Ubuntu. To fix this, the Ubuntu maintainer built a local patch on
top of the Debian package to use the newer icons in Ubuntu, while the upstream devel-
oper contacted the icon designer to make the new icons compatible with Debian by adding
an additional license to the icons (an example of the “Disjunctive” legal pattern (German
and Hassan 2009)). The designer complied, and the Ubuntu maintainer reported the license
change to the Debian maintainer, such that he could drop his Local Patch.
A Local Patch can cause havoc: A notorious security hole in the OpenSSL Debian
package (an implementation of the SSL/TLS protocols) was introduced into Debian by
a local patch and lasted from May 2006 until May 2008.15 A call to the function adding
randomness to a cryptographic key had accidentally been commented out by a Local
Patch (#363516). The Debian maintainer had contacted upstream, but did not fully dis-
close himself, nor his plans, and was largely ignored.16 The patch was never sent upstream
for inclusion afterwards. To complicate the issue further, the address of the mailing list
contacted by Debian was not the real OpenSSL development list, since that one was hidden
from non-developers.17 This security hole propagated to over 44 derived distributions,
without any of the maintainers or contributors involved identifying the bug.

G. Maintainer Transfer

Intent:
Maintaining a package if the maintainer is absent, unwilling or incapable to further

maintain a package.
Motivation:

Being a package maintainer is a major responsibility, since it requires mediating between
upstream projects and the end-user, typically for multiple packages at a time. However,
maintainers may have periods during which they cannot spend the required time on integra-
tion, they may lose interest in certain packages, or they could just become unresponsive to
bug reports or user requests. In the worst case, a package could even be orphaned when the
maintainer quits. To prevent packages (and any product based on it (Van Der Linden 2009))
from stalling, OSS distributions need to provide a means to keep packages evolving, while
bypassing or overriding a maintainer.
Major Tasks:
1. Overriding the Maintainer depends on how a distribution organizes package ownership.
If package maintenance is shared across all distribution developers collectively, the concept
of overriding a maintainer is not relevant. In Ubuntu, for example, packages in the com-
mercially supported Main and Restricted archives are managed by a team known as Core
Developers, whereas the packages in the commercially unsupported Universe and Multi-
verse archives are supported by the community under the guidance of a team known as
“Masters Of The Universe” (MOTU). Any developer can modify any package, as long as
it is managed by the developer’s collective and the change does not introduce unnecessary

15http://lwn.net/Articles/282038/
16http://bit.ly/w7rn04
17http://www.links.org/?p=327

http://lwn.net/Articles/282038/
http://bit.ly/w7rn04
http://www.links.org/?p=327
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divergences compared to upstream. In case of disagreement amongst developers, there are
conflict resolution procedures in place, but those rarely need to be used.

Distributions with individual package ownership, on the other hand, need a
Maintainer Transfer policy to take over the role of a maintainer if she becomes
unresponsive or disappears altogether. A contributor proposing an Upstream Sync,
Dependency Management, Infrastructure Change or a Local Patch that
fulfils certain criteria can explicitly mark her change as a Maintainer Transfer. In
Debian, for example, this is called a “Non-Maintainer Upload” (NMU), and is only valid
for changes that fix an important, known bug. Debian provides the “nmudiff” tool to help
contributors submit NMUs.

The unique property of a Maintainer Transfer change is that a timer is attached
to it, with a delay depending on the severity of the proposed change (e.g., FreeBSD typically
uses a delay of 2 weeks). Unless the maintainer replies to the change on time, the change is
set to go in automatically once the timer expires. If the maintainer replies on time, she can
request suspending the timer in order to review the change. If not approved, the contributor
needs to revise the change corresponding to the maintainer’s comments.

We found that 5.7 ± 5 % (Debian) and 2.9 ± 5 % (FreeBSD) of all package-versions
contain an instance of Maintainer Transfer (Ubuntu has collective package own-
ership, hence does not have such transfers). The min/median/max number of days until
such changes were accepted is 0/1.5/556 days for Debian and 1/16/465 days for FreeBSD.
In Debian, the median value is very low, indicating that maintainers often commit a
Maintainer Transfer before the timer goes off. In FreeBSD, time-outs are much
more common. The cases with maximum time-out in Debian (#325110) and FreeBSD
(#140303) correspond to packages that temporarily were orphaned, i.e., the maintainer
officially stepped down.
2. Supporting Orphaned Packages is typically done by an ad hoc team of volunteers, based
on casual contributions or reported critical bugs. In Debian, the QA team typically jumps in
to make changes to orphaned packages.
3. Adopting Orphaned Packages either happens by volunteers interested in an orphaned
package, or by convention, when a contributor provides patches for an orphaned package
and automatically becomes the new maintainer. For example, if no feedback is received
for a patch in FreeBSD within three months, the maintainer is deemed to have abandoned
the package and any contributor may assume maintainership (The FreeBSD Documentation
Project 2011, Section 5.5).

Participants: maintainer, contributor.

Interactions: Maintainer Transfer can co-occur with all other activities, except for
New Package.

Literature:
We could not find any reference to the Maintainer Transfer activity in literature.
However, Curtis et al. (1988) and Lewis et al. (2000) do stress the importance of having
“system-level thinkers” as maintainers, who are able to sufficiently understand both the
specific domain of the integrated component as well as the overall architecture of their own
system. According to our analysis, the Maintainer Transfer activity would kick in
as soon as the maintainer of a component would not possess those skills.

Notable Instances:
An NMU helping out a busy maintainer: httrack 3.40.4-3.1 (Debian), an offline browser,
fixed an issue with the file system locations for test files. The bug was reported on the 11th
of October 2006, followed one week later by a proposed NMU by a contributor. A couple
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of hours later the NMU was approved by the maintainer, who noted (#392419): “Thanks a
lot, I didn’t yet had [sic] the change [sic] to review the issue”.
An NMU with strings attached: The maintainer of libcdio 0.78.2+dfsg1-2.1 (Debian), a
library for accessing CD media, had been warned on the 20th of January 2008 about C++
header file issues with the upcoming release of GCC 4.3 (Product-wide Concern).
Two months later, a contributor sent in an NMU patch fixing the compiler errors. One day
later, the maintainer chimes in (#461683): “I don’t object to a NMU (I know I haven’t been
handling my libcdio package in the best possible way), but if you wish to NMU, please
consider applying the patches that were sent to other bug reports”. The NMU was approved
the same day.
A hostile NMU: On the 18th of May 2007, a contributor requested an Upstream Sync to
the new upstream release (1.3.2) of libjcalendar-java 1.2.2-6.1 (Debian), a calendar picker
component, and also proposed a Packaging Change to support the Kaffe Java VM.
However, since nothing happened for one week, the contributor added a comment to both
bug reports stating “I am planning a NMU if nothing happens (again)” (#424981, #424982).
The next day, the maintainer replied (#424981) “I admit that I’m not very reactive, but
before you do your NMU, have you checked that Jcalendar 1.3.2 is backwards compatible
with version 1.2?”. Nothing happened for 1.5 months, until the NMU timer had expired and
the NMU went in.

5 Identified Integration Challenges

The seven discussed integration activities document the complexity of integration. Even
in the simplest case, i.e., black box integration, maintainers still need to package the
integrated project (New Package), verify if the integrated product is compatible with
each Upstream Sync, and follow up on Dependency Management changes like
library transitions. In the case of white box integration, the integrated projects need to
be customized or fixed with Local Patches, and streamlined to product-wide policies
(Product-wide Changes). All the time, the packaging logic and configuration files
need to be kept up-to-date (Packaging Change), and maintainer activity needs to be
monitored (Maintainer Transfer).

To paraphrase Curtis et al. (1988), we “are not claiming to have discovered new insights”
for OSS integration, instead we identified and documented the core integration activities
that the maintainers of three large OSS distributions perform on a daily basis “to help iden-
tify which factors must be attacked to improve” integration. Although distributions have
guidelines on how to address some of these activities (Debian project 2011; The FreeBSD
Documentation Project 2011), the differences in terminology (e.g., “NMU” vs. “time-out”)
and technical procedures (e.g., centralized vs. distributed Product-wide Concern)
make it confusing to understand and compare the activities, or to study possible tools and
techniques to improve these activities. Hence, the unifying vocabulary that we provide is
key to understand the integrating process of upstream components, complementing existing
work on code integration (Coplien et al. 1998; DeLine 1999; Frakes and Kang 2005; Parnas
1976; Pohl et al. 2005) and on selection of reusable components (Bhuta et al. 2007; Chen
et al. 2008; Li et al. 2009). Finally, we also compared the activities to those in prior work,
in particular in commercial settings.

Throughout our analyses and the documentation of the 7 integration activities, we dis-
tilled 13 concrete challenges summarized in Table 4, across four different research areas.
Most of the challenges have been discussed earlier in this paper. Ubuntu and Debian are
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Table 4 Open challenges for integration activities

Area Challenge

packaging · insight into upstream build process

· automatic build-/run-time dependency extraction

· accurate replication of packaging environment

testing · cross-platform testing of package & its dependencies

· integration testing during packaging

· accurate replication of functionality issues

evolution · determining best moment for Upstream Sync

· insight into upstream changes

· recommendations about important API changes

· management of ownership of package changes

merging · prediction of integration defects

· identifying opportunities for cherry-picking

· insight into merge status of Local Patches

currently in the process of designing an automatic unit and integration testing system for the
packaging process. Similar to defect prediction work at the code level, prediction of inte-
gration defects and the effort involved with fixing these defects would be extremely useful.
There is some initial work on this (Mohamed et al. 2008; Yakimovich et al. 1999), but more
work is needed to bring such techniques to practitioners. Similarly, a kind of bugzilla reposi-
tory for managing ownership of changes, i.e., who should update reverse-dependencies, who
should perform a Product-wide Concern or who should act on an NMU, is needed
to improve communication across all involved parties. Insight into the upstream build pro-
cess (Adams et al. 2007; Qiang and Godfrey 2001) currently relies on manual tracing and
analysis of build and run-time logs, with only some packages having rudimentary scripts
for checking runtime dependencies. In general, however, the ability to accurately repli-
cate bugs in code and build is missing. Packaging environments can vary widely between
users, with certain combinations of package and distribution versions causing subtle pack-
aging or run-time problems. Current bug reporting tools automatically include detailed
platform information, yet such information is often insufficient to identify Dependency
Management changes.

As the above challenges impact even three of the largest and most popular OSS dis-
tributions, more powerful tool and process support is essential for most of the OSS
integration activities, complementing the mailing lists, bug repositories, and custom dash-
boards (for example to track library transitions) currently in use by organizations. Until
now, researchers have only been studying some of the challenges, such as API changes
(Dagenais and Robillard 2008) and merge defects (Brun et al. 2011; Shihab et al. 2012).
Clearly, more research is needed to support maintainers in the field.

6 Evaluation

The six contacted maintainers pointed out some small factual errors in an earlier version
of the documented integration activities, and recent advances (e.g., regarding the automatic
test systems being built for Debian and Ubuntu). However, no fundamental errors were
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identified, nor was any activity discarded. The identified inaccuracies have been fixed in the
activity descriptions above.

Regarding the completeness and usefulness of the documented activities, Table 5 sum-
marizes the replies of the six contacted maintainers. As explained in Section 3.6, two
maintainers (M2 and M5) provided empty replies for at least two questions, while M1 left
one question open. Hence, we obtained some empty replies for Q2, Q3 and Q5. We now
discuss each question’s answers.

Q1. What activities did we miss? Five of the maintainers pointed out missing activities,
although many of them were captured in some form.

A.“Upstream Lobbying” was in fact mentioned as part of Local Patch, but M4 found
that it deserved its own activity. Interestingly, M6 mentioned the inverse kind of lobbying,
i.e., lobbying in derived distributions for newly reported or fixed bugs. Instead of splitting
up Local Patch, we decided to keep this activity as is, but add more detail about the
lobbying part.

B. “Post-release Maintenance” was suggested by M4 and M2 as a dedicated integration
activity encompassing all the activities occurring after a new package-version has made it
into a new release of the distribution. M4 notes that “while the maintainer isn’t required
to support the use of a product they [sic] are often the first person contacted if someone
can’t get to build on FreeBSD”. Our activities do not capture this activity by itself, only
its outcome, for example in the form of a Packaging Change or Local Patch. This
is because many emails could be exchanged regarding a maintenance problem without a

Table 5 Maintainer feedback on the usefulness and completeness of the documented activities and
challenges

M1 M2 M3

Q1 license/copyright analysis vulnerability resolution no

post-release maintenance

Q2 people unfamiliar with topic < no reply > major activities . . .

. . . in easy-to-read way

Q3 < no reply > < no reply > more detail/examples

Q4 license tracking none none

Q5 DEP5/CDBS license checking < no reply > automated testing

autom. dep. checking autom. dep. checking

M4 M5 M6

Q1 upstream lobbying package end-of-life monitoring downstream . . .

post-release maintenance . . . distributions for bugs/patches

Q2 useful overview < no reply > nice intro to what . . .

do we document our activities? . . . being distro dev is about

Q3 what to do? nothing none

Q4 timely integration none monitoring the status . . .

desktop vs. enterprise . . . of all packages . . .

hundreds of variants . . . in the distribution

Q5 good question : −) < no reply > improvements to package process

atomic package updates
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corresponding change log item or bug report (i.e., our data set does not capture such discus-
sions). Although this hints at less important integration issues (since they did not need to be
fixed or acted upon in some form), future work should analyze the mailing list data of the
distributions to uncover this part of the integration work.

C. “License/Copyright Analysis” was mentioned by M1 as an important activity: “copy-
right/licensing analysis isn’t mentioned anywhere, yet it’s often a tiresome process when
creating a new package (and often forgot [sic] to update on upstream sync)”. License anal-
ysis did not occur very often in our data set, for example in our Ubuntu samples we only
found one occurrence (version “0.4 − 0Ubuntu1” of package “branding-ubuntu”), in which
case the license of some files had not been specified as being GPL. For this reason, the
activity is captured in our Other category.

D. “Vulnerability Resolution” was pointed out by M2 as a missing activity, i.e., the
steps performed to address a vulnerability in a timely manner after release. Although it is
not one of the top 7 activities (and hence not documented in detail by us), vulnerability
resolution occurred relatively often (Table 3), occurring in 4.4 ± 5 % (Debian), 1.3 ± 5 %
(Ubuntu) and 0.8 ± 5 % (FreeBSD) of all package-versions. Our data shows how most
of these vulnerabilities were reported and fixed upstream. Similar to Upstream Sync,
distributions first have to become aware of vulnerabilities, then update their packages as
soon as a fix is available.

For this reason, vulnerability changes tend to use NMUs (see Maintainer
Transfer), since the security team wants to update a vulnerable package as soon as pos-
sible, overruling the maintainer if necessary. Often, vulnerability fixes are cherry-picked,
leaving other upstream changes until the next official Upstream Sync. For example,
cups-base revision 1.44 (FreeBSD) (24th of January 2005) fixed a vulnerability in the Cups
printer server identified and reported upstream by a university student, while php4 4:4.4.0-
3ubuntu1 (Ubuntu) cherry-picked 8 upstream vulnerability fixes for the php programming
language (19th of December, 2005). Since the full details of vulnerabilities and how they
were processed internally are not available in publicly available databases, and since it is less
common than the seven documented activities, detailed analysis of this integration activity
is future work.

E. “Package End-of-life” was a missing and often overlooked activity according to M5.
Some packages lose user and maintainer interest over time, hence when the distribution
evolves and integration activities need to be performed on the package, either nobody steps
up or substantial effort is required by other maintainers to keep the package up-to-date.
Similarly, if an older version of a library is rendered obsolete by a newer one, or the older
version starts to create conflicts with the newer one, the older version needs to be removed
from the distribution. However, we did not find evidence of this activity in our data sam-
ples. Our Maintainer Transfer activity comes closest, since this one occurs when an
unmaintained package is “saved” from end-of-life by a new maintainer.

Surprisingly, the Internationalization activity, which is the ninth most frequent
activity that we found (Table 3), was not mentioned by any maintainer. This activity com-
prises all the work related to translation and adaptation of a package to other cultures (e.g.,
different currencies) (Xia et al. 2013). Since distributions reach significantly more users
than an individual upstream project could reach on its own, a packaged project has a higher
chance of being used in non-English locales. Hence, distributions typically have dedicated
teams addressing the internationalization needs of their packages.

For example, the debian-l10n-english team works on the translation templates of pack-
ages to facilitate the job of translators (who are often not software engineering experts).
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Distributions typically solicit Internationalization patches once development has
been frozen, i.e., the basic new functionality has been stabilized and only bug fixes are
still allowed. Although Internationalization changes are typically harmless, they
can in rare cases keep packages from executing. In January 2006, for example, an incom-
plete Japanese character prevented the xchat IRC client of FreeBSD from executing. A
1-character fix in a translation template fixed this issue.

Q2. What can the documented activities be used for? M1, M3 and M4 agree that the
documented patterns provide a clear overview of the major integration activities, which is
useful for novices (M1) as well as any stakeholder involved in integration (M3/M4). M4
noted that the activities do not necessarily need to be used as direct documentation. They
could also be used to check how well the distribution collects data or monitors the progress
of each integration activity. M3 informed us that the structured, accessible explanations of
the major integration activities piqued the interest of two of his package testers, which he
believes to be a success. M6 recommended us to “reach out to developers communities
with this documentation. E.g., you could write a blog post providing an introduction to your
paper, targeted at distribution devs”. We are planning to follow up on this suggestion.

Q3. What is missing from the documented activities? M3 was interested in getting
more details and examples for each activity, while M4 wanted to know what the recom-
mended practices and tools for each activity are. Our documented activities on purpose
describe only the major tasks and how they are implemented in the three considered distribu-
tions, without a dedicated section for “best practices”. Given the many challenges identified
in Section 5 as well as in Section 2, many activities rely on manual work, and hence do not
yet have best practices.

Q4. What challenges did we miss? M1 again mentioned license tracking. M4 noted
that the largest challenge is not how to perform each activity, but how to perform them
on time. Given the ever shorter time frame in between releases (Hertzog 2011; Remnant
2011; Shuttleworth 2008), this is indeed an important constraint on the identified chal-
lenges. Furthermore, the right activity to do on a particular moment also depends on the
end-user: “desktop users want updates ASAP while enterprise users don’t want to change
their software for multiple years”. This echoes known phenomena such as Microsoft’s
monthly “patch Tuesday” (Lemos 2003) and Mozilla’s extended support releases for com-
panies (Khomh et al. 2012). M4 concluded by warning for the challenges represented by the
hundreds of variations in build systems, versioning schemes, projects, etc. Slightly related
to this, M6 noted that “something orthogonal is the management of a large amount of soft-
ware packages: getting a global overview from their status is not easy”. This ties into the
management-related challenges of Table 4 identified from our data.

Q5. What promising tools/techniques do you see coming up to address some of the
challenges? Both M1 and M3 expect automated dependency checking tools to become
mainstream, i.e., “It may take some time to make that automatic but we are getting closer
every day”. Such tools would improve at least the Upstream Sync and Dependency
Management activities. M1 mentioned two promising license analysis tools, while M3
remarked that “We already have automated testing tools in Ubuntu (see QA team) so we
are heading in the right direction here”. M6 saw the advent of atomic Dependency
Management and other packaging process improvements as a promising development.

Overall, the six maintainers liked the work and found that the documented activities
described their daily activities “quite well” (M6). They would not necessarily use our doc-
umented representation of the activities themselves (it is more targeted towards novices),
except to systematically check which activities their distribution is not tracking (M4). Some
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missing important activities were identified, in particular license analysis and tracking of
licensing changes, vulnerability resolution and post-release maintenance, as well as some
missing challenges (especially time pressure). Finally, some tool support for dependency
checking is expected to arrive in the medium term, however many challenges remain open.

7 Threats to Validity

With respect to construct validity, there are several threats to consider. First, we used the
change log messages as a representative record of the maintainers’ activities, based on which
important bug reports were identified for in-depth manual analysis and (if necessary) mail-
ing list messages and other kinds of documentation. We did not formally verify the accuracy
of these data sources, nor their completeness. Although M6 warned that the log message of
the first version of a Debian package does not always mention whether Local Patch has
been performed, none of the 4 instances of New Package found suffered from this issue.

There is no further evidence that suggests that the logs are incorrect: the three analyzed
distributions require their maintainers to provide log messages (Debian project 2011; Koshy
2013), since those are the primary input for end users and other maintainers affected by
changes to a package. In fact, bug reports and mailing lists form the official means of com-
munication in OSS distributions, together with IRC chat messages. In cases where a bug
report identifier was missing (cf. Fig. 4), either the change log item was sufficiently clear
or we were able to find a related email message via a web search.

Second, we only analyzed a subset of the package-versions, and, hence, change logs.
To mitigate this threat, we randomly sampled a large enough subset of package-versions to
obtain a confidence interval of ±5% with a 95% confidence level. Furthermore, the activi-
ties that we identified for Ubuntu and FreeBSD did not add any new activity on top of those
identified for Debian.

Third, our algorithm for reconstructing “versions” from the FreeBSD CVS commits
depends on conventions that are documented by the FreeBSD project, but not explicitly
enforced. It is possible that the recovered versions are either too fine-grained (under-
approximating the actual number of activities performed for a version) or too coarse-grained
(over-approximating). Feedback from the package maintainers confirmed that the algorithm
is correct and that deviations from the guidelines should be minimal.

Fourth, since we study individual package-versions, our sample could contain multiple
versions of some packages, just one version of other packages, and no version at all of
the remaining packages. Such an approach is necessary, since large projects like KDE or
GNOME involve more integration effort than smaller projects, and hence need to have more
weight in our study. In addition, such projects typically also have a larger number of asso-
ciated packages, which increases their weight further. The risk that this sampling decision
biases the observed activities is small, since ecosystems like KDE and GNOME consist of
hundreds of different applications and tools, developed by hundreds of developers and pack-
aged by dozens of maintainers. In other words, even inside one such ecosystem, we should
still expect a large diversity in integration activities.

Regarding internal validity, as mentioned above we rely on the accuracy and complete-
ness of the logs of each package-version. Even in the event that some activities were not
documented in the logs, there is no specific reason to believe that some activities would
be less documented than others, hence this effect would cancel itself out across the differ-
ent activities. For example, Post-release Maintenance was missed in our results,
since “unimportant” discussions (i.e., those without explicit bug report or patch attached to
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them) did not have any trace in the change log and its referenced bug reports, across all
three distributions.

Furthermore, the nature of manual classification implies that there might be some mis-
classifications (both for the activities as well as challenges). To overcome this, the logs were
interpreted by two of the authors, both of whom have experience in integration tasks (one
of them is a Debian/Kubuntu developer), and they discussed their decisions with each other
in order to resolve differences and obtain consensus. These discussions also resolved pos-
sible bias introduced by having the first set of tags be derived only by one of the authors.
Furthermore, to validate the discovered patterns of integration and open challenges, we
reached out to six maintainers/release engineers of Debian, Ubuntu and FreeBSD to evaluate
and provide feedback on these patterns. Nonetheless, the quantitative results of this paper
(prevalence of each activity) is exploratory only and we do not extrapolate these results.

The evaluation by the six maintainers was performed entirely via email, since this is
the preferred means of communication for maintainers (and bug repositories, as discussed,
are not suited). Furthermore, the asynchronous nature of emails provided breathing space
to the maintainers and made it easier for them to organize their feedback amongst their
voluntary open source activities and day-time job. Even then, we still observed that some
of the questions were not addressed. In future work, we might complement asynchronous
messages via email with synchronous follow-up via, for example, instant messaging (using
IRC).

The open replies by some of the maintainers, as well as the selection of maintainers for
the evaluation, also could introduce bias. M2 provided three open replies, M5 two open
replies and M1 one open reply, yielding a total of 6 open replies out of 30 (20%). Due to
the distribution of the open replies across the questions, each question obtained at least four
concrete replies (two obtained six replies). Furthermore, the open replies are spread across
the Debian and Ubuntu maintainers, reducing the overal impact of the missing data even
further. Regarding selection bias, all six maintainers were experienced maintainers in their
respective OSS distribution, covering a range of different packages according to size and
domain.

An alternative evaluation methodology would have been to first perform a survey or
interview, after which the research findings would be empirically analyzed and validated on
change log and other data. However, doing this would bias our results to the activities that
stakeholders think would be important, not necessarily all important activities that they are
actually doing. Some essential activities never would have surfaced.

With respect to external validity, we have analyzed three of the largest OSS distri-
butions as exemplars of packaging organizations. Since integration is the central activity
of OSS distributions, we expect the identified activities to be representative for many of
the activities that other packaging organizations would face in the case of OSS reuse.
For example, packaging organizations like GNOME and KDE, or even “regular” Java
or C++ systems that reuse multiple open source libraries as well have to deal with
Upstream Sync (e.g., reusing a new version of log4j), Dependency Management
(e.g., adding the dependencies of the new version of log4j) and Local Patch (e.g., cus-
tomizing the new version of log4j to fix a bug). Nevertheless, manual analysis of other kinds
of OSS distributions (e.g., Fedora-based), packaging organizations in general or any organi-
zation that performs multi-component integration, is necessary to confirm these conjectures
and validate the generalizability of the seven integration activities. Such an analysis might
discover new activities, for example in the case of package organizations that do not build
products for end-users but rather middleware or frameworks for other companies to build
on.
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8 Conclusion

Software reuse is a major tenet of software engineering, yet the integration activities that
accompany it, be it in a COTS, OSS or ISS context, introduce unforeseen maintenance
costs. Since more empirical research is necessary in this area to help organizations reuse
components successfully and since most studies thus far focused on integration of indi-
vidual components and/or non-OSS integration, we performed a large-scale study on three
successful OSS distributions, i.e., Debian, Ubuntu and FreeBSD.

Analysis of a large sample of change log messages, bug reports and other historical
integration data resulted in the identification of seven major integration activities, whose
processes were documented in a pattern-like fashion to help organizations and researchers
understand the responsibilities involved in integration. The activities were shown to be
non-trivial and requiring a large amount of effort, and they were validated by six main-
tainers of the three distributions. Based on the seven documented activities, the major
challenges turned out to be related to cherry-picking of safe changes from a new upstream
release, the management of dependencies between packages, testing of packages and co-
ordination among maintainers. Models and tools are needed to support these integration
activities.

By providing a unified terminology across distributions and by documenting the inte-
gration activities in a structured way, our catalogue of activities enables maintainers of
open source distributions, organizations interested in reusing OSS or ISS components, and
researchers to better understand the challenges and activities that they face, and to plan
policies, tools and methods to address these challenges. Together with other studies on inte-
gration, a dedicated training program on integration could be built, aimed at developers and
their managers, with the aim of reducing or at least stabilizing maintenance costs caused by
integration.

Finally, and very encouragingly, all distribution maintainers that we contacted hope that
the documented activities and challenges will inspire researchers to start up a research
program in the domain of reuse and integration.
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