
Communication-Based Semantics for Recursive Session-Typed Processes

Ryan Kavanagh

CMU-CS-21-141
September 2021

Computer Science Department
School of Computer Science
CarnegieMellon University

Pittsburgh, PA 15213

Thesis Committee:
Stephen Brookes (Co-chair)
Frank Pfenning (Co-chair)

Jan Hoffmann
Luís Caires (Universidade Nova de Lisboa)
Gordon Plotkin (University of Edinburgh)

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright © 2021 Ryan Kavanagh

This research was sponsored by National Science Foundation award CCF1017011; byMicrosoft Corporation award
5005283; by a CarnegieMellon University School of Computer Science Presidential Fellowship; and by a Natural
Sciences andEngineeringResearchCouncil of CanadaPostgraduateDoctoral Scholarship. The views and conclusions
contained in this document are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

2020Mathematics Subject Classification. Primary: 68Q55; Secondary: 03B70, 06B35, 18C50.
CCS Concepts. Theory of computation→ Program semantics; Computing methodologies →

Concurrent programming languages.
Key words and phrases. Session types, program equivalence, general recursion, observed

communication semantics, testing equivalence, denotational semantics.

iii

Abstract. Communicating systems are ubiquitous, and they bring human lives inestimable value.
Despite this, they often go wrong, sometimes with severe consequences. They are hard to get
right or reason about because of their inherent complexity. To tame this complexity, we can use
various formalisms and semantic techniques to model, implement, and reason about communicat-
ing systems. Notable among these are session-typed programming languages and process calculi.
Session types [Hon93; HVK98] are a typing discipline for communicating systems. They encode
communication protocols to specify communications, analogously to how data types specify values
in functional programs. Importantly, session-typed programming languages guarantee various
desirable properties of communicating systems.

Many techniques exist for reasoning about session-typed programming languages and their
programs. These include linear logical relations [Pér+14; Ton15], game semantics [CY19], denota-
tional semantics [Atk17; KMP19], bisimulations [KPY17], and run-timemonitoring [GJP18]. Few
prior approaches have treated inductive and co-inductive session types [Ton15; LM16; DP19] or
general recursive types [KPY17], or considered higher-order languages that integrate functional
features and code transmission. Moreover,many prior techniques are not compositional.

In this dissertation, we present novel semantics and reasoning techniques for Polarized

SILL [TCP13; PG15], a higher-order session-typed programming language. Polarized SILL coherently
integrates functional programming with asynchronous session-typedmessage-passing concurrency.
It supports recursive communication protocols, value transmission (including code transmission),
choices (a form of branching), and synchronization. Our contributions are unified by their commit-
ment to the process abstraction: communication is the only phenomenon of processes. As a result,
our semantics define themeaning of processes in terms of their communications. Together, they
support the following thesis:

Communication-based semantics elucidate the structure of session-typed languages and

allow us to reason about programs written in these languages.

Concretely, we give Polarized SILL three communication-based semantics: an observed communi-

cations semantics, a communication-based framework for testing equivalences, and a denotational

semantics.
Our observed communication semantics defines themeaning of processes to be the communi-

cations we observe during their executions. Ours is the first to support rich protocols like recursion,
code transmission, and synchronization.

We use our observed communication semantics to define extensional notions of program
equivalence. They are given by a testing equivalences framework. Testing equivalence is a technique
for defining process equivalence. It deems processes to be equivalent whenever they are indistin-
guishable through experimentation. Classical approaches to testing equivalences [DH84; Hen83; De
85] define experiment outcomes in terms of states. In contrast, we define experiment outcomes in
terms of observed communications. We show that one of the testing equivalences captured by our
framework coincides with barbed congruence, the canonical notion of process equivalence.

Our denotational semantics defines the meaning of communicating processes to be stable
continuous functions between dI-domains of session-typed communications. Importantly, our de-
notational semantics is compositional, and we can reason modularly about programs. Our semantics
is an instance of CYO semantics, a novel kind of semantics that adapts ideas from Kahn semantics for
dataflow networks [Kah74] to handle bidirectional communications. Our denotational semantics is
sound relative to barbed congruence.

To support our work, we make two contributions to the mathematical foundations of pro-
gramming languages semantics. First, we introduce the first notions of fairness for substructural
operational semantics andmultiset rewriting systems, and we study their properties. These fairness
results are essential to ensuring that our observed communications semantics is well-defined in
the presence of non-terminating processes. Second, we introduce techniques for reasoning about
parametrized fixed points of functors, and we study their 2-categorical properties. These results
underlie our denotational interpretation of recursive session types.

Acknowledgments

I am grateful to have spent the past six years in the company of truly wonderful
people at CarnegieMellon and in Pittsburgh.

First, I would like to thank my advisors, Steve Brookes and Frank Pfenning,
for their mentoring. You have taught me how to be a better researcher, how
to be a better writer and speaker, and countless technical skills. Thank you for
your unwavering support and encouragement these past six years. I would also
like to thank my committeemembers, Gordon Plotkin, Jan Hoffmann, and Luís
Caires, for having readmy thesis, for their technical advice, and for supporting
my professional development. More broadly, thank you to the Principles of Pro-
gramming group for having taught me somuch about programming languages. I
enjoyed all of our PLunch talks, reading group discussions, and seminars. Thank
you to Deb Cavlovich for your support throughout my PhD.

To my officemates in GHC 6207, Chris Fallin, Costin Badescu, and Anson
Kahn: thank you for our endless office discussions, for the laughs, and for your
friendship. Thank you to Catherine Copetas for your logistical support and for
ensuring our social events ran smoothly. More importantly, thank you for your
endless mischief and for having been an honourable opponent in our office feud.
You definitely kept me on my toes!

Thank you to Andrew Carlisle for having made me a better piper, to the
CMU Pipe Band for the camaraderie and for making great music together, and
to the Pittsburgh Piping Society for themany evenings ofmusical fun.

Thank you tomy family for having believed inme and for having encouraged
me to pursuemy dreams. I could not have done this without you.

Finally, thank you to my friends: you made Pittsburgh home for me. I
will forever cherish thememories that wemade together: the endless Avalon
and brunch and board games; our Saturday night outings to IBC; our backyard
barbecues, bonfires, and parties; the karaoke nights; skating, biking, kayaking,
and hiking together; our many outings to the Pittsburgh Symphony Orchestra
and the Pittsburgh Opera; the laughs at SIGBOVIK. Though we are dispersing
around the globe, I eagerly await our future adventures.

Contents

List of Figures ix

Chapter 1. Introduction 1
1.1. Outline of Dissertation 3
Notational Conventions 5

Part 1. Mathematical Foundations 7

Chapter 2. Mathematical Preliminaries 9
2.1. Category Theory 9
2.2. Order Theory 18
2.3. Properties of Parametrized Fixed-Point and Trace Operators 28
2.4. Generalized Abstract Binding Trees 31
2.5. Inductively and Coinductively Defined Judgments 33

Chapter 3. Fairness for Multiset Rewriting Systems 39
3.1. Multiset Rewriting Systems 39
3.2. Three Varieties of Fairness 47
3.3. Properties of Fair Traces 51
3.4. RelatedWork 60

Chapter 4. Fixed Points of Functors 63
4.1. Background 64
4.2. Functoriality of Fixed Points 64
4.3. 2-Categorical Structure of Parametrized Fixed Points 76
4.4. Conway Identities 84
4.5. Canonical and Parametrized Fixed Points for O-Categories 86
4.6. RelatedWork 87
4.A. General Results on ω-Categories 88

Part 2. Polarized SILL 95

Chapter 5. Statics and Dynamics 97
5.1. Overview of Statics 97
5.2. Overview of Dynamics 98
5.3. Typing andMultiset-Rewriting Rules 100
5.4. Static Properties of Session Types 106
5.5. Static Properties of Terms and Processes 106
5.6. Static Properties of Typed Configurations 108
5.7. Type-Indexed Relations 122
5.8. Dynamic Properties of Terms 124
5.9. Dynamic Properties of Typed Configurations 124
5.10. RelatedWork 133
5.A. Complete Listing of Typing Rules for Polarized SILL 134

vii

viii CONTENTS

5.B. Complete Listing ofMultiset-Rewriting Rules for Polarized SILL 135

Chapter 6. Observed Communication Semantics 137
6.1. Session-Typed Communications qua Communications 137
6.2. Session-Typed Communications on Single Channels 142
6.3. Observed Communications of Configurations 150

Chapter 7. Observational Preorders and Equivalences 153
7.1. Total Observations for Configurations 156
7.2. Internal Observations for Configurations 158
7.3. External Observations for Configurations 159
7.4. Summary of Relations 167
7.5. Precongruences for Processes 168

Chapter 8. Denotational Approaches to Equivalence 175
8.1. Overview of the Semantics 176
8.2. Choose Your Own Categories 181
8.3. Semantic Clauses 191
8.4. Well-Definedness of Interpretations 199
8.5. Semantic Properties 231
8.6. Soundness 235
8.7. RelatedWork 243
8.8. Summary of Interpretations 243

Chapter 9. Equivalence, Applied 251
9.1. η-Style Properties 252
9.2. Purely Polarized Session Types 264
9.3. Flipping Bit Streams 265
9.4. Identity Expansion 271
9.5. Binary Arithmetic 277

Chapter 10. Summary and Future Research 283

Bibliography 287

Symbols 301

Index 307

List of Figures

2.1 Axioms for monoidal categories 13
2.2 Axioms for symmetricmonoidal categories 13
2.3 String diagram notation for (symmetric) monoidal categories 14
2.4 Elements a, b, c, � are compact but not prime 22
2.5 String diagram notation for traced categories 30

3.1 LVobs sequent presentation of intuitionistic linear logic [CS09, Fig. 3] 42
3.2 Two markings of the same Petri net 48
3.3 Markings reachable from fig. 3.3(a), illustrating non-deterministic firings. 48
3.4 Visualization of themultiset B2(a, a),B1(a, b),B0(a, c),B3(c, d) as a tree 49
3.5 Graphical depiction of themultisets in execution (23) 50
3.6 An illustration of decompositions of σ given by lemma 3.3.16 58

5.1 Big-step semantics underlying Polarized SILL’s functional layer 98

7.1 Relationship between relations of section 7.3 167

8.1 Colimit diagram defining the components of jΞ ⊢ ρα.A type+s o as mediating morphisms
of cocones 198

ix

CHAPTER 1

Introduction

Communicating systems are ubiquitous: we find them in everything from the cars we drive, to
the smartphones in our pockets, to the computers on our desks. In all likelihood, this very document
has been conveyed to you through a sequence of dozens of computer systems, each communicating
with the next. Not only are communicating systems ubiquitous, but their importance to our lives
cannot be understated. They allow us to communicate with loved ones across great distances and
to access troves of information that would have unimaginable mere generations ago, and they
support modern commerce. Despite their importance, communicating systems often go wrong,
sometimes with severe consequences. For example, routing errors led to a large portion of the
internet to be inaccessible for hours in the Northeastern United States on July 24, 2019 [Str19]. In
2015, the Heartbleed vulnerability allowed attackers to access private data on an estimated 24–55%
of websites [Dur+14], and early estimates put its cost to industry at $500million [Ker14]. It was
due to an incorrect implementation of a communication protocol.

Communicating systems are hard to get right because of their inherent complexity. We can
tame this complexity by abstracting away inessential details. The two fundamental abstractions
of communicating systems are processes and communication. A process is a computational agent
(broadly construed) that interacts with its environment solely through communication. In particu-
lar, the only phenomenon of processes is their communications: we cannot observe their internal
states or workings. Communication is a sequence of atomic observable events (“messages”), each
caused by a process and potentially observed by one or more other processes. A communicating
system is then a collection of processes that interact through communication. To describe the
inner workings of communicating systems, we need a third abstraction: protocols. A protocol is a
specification of permitted communications.

To concretize these abstractions, consider the communicating system formed by a vending
machine and an office worker. These two processes interact through communication: the office
worker can insert a coin or push a button, and the vending machine can dispense a snack. Various
protocols are possible. For example, we could allow the worker to arbitrarily insert coins or push
buttons, but require that the vending machine dispense a snack whenever the office worker inserts
a coin and then pushes a button. If we felt generous, we could instead insist that the vending
machine dispense a snack whenever a button is pushed, regardless of whether a coin was inserted.

We can make these abstractions mathematically rigorous by appealing to various formalisms.
Process formalismsdescribe the operational behaviour ofprocesses. Examples includeMilner’s [Mil80]
Calculus of Communicating Systems, Hoare’s [Hoa85] Communicating Sequential Processes, and the
π-calculi ofMilner, Parrow, andWalker [MPW92a; MPW92b] and Sangiorgi [San92]. Similarly,
various protocol formalisms have been used to specify protocols. These include state transition
models [Boc78] and Petri nets [CAA84]. Though these two lines of researchwere long disconnected,
they are united by session-typed programming languages and process calculi. Session types [Hon93;
HVK98] specify protocols and classify communications, analogously to how data types classify
values. Importantly, programs written in session-typed programming languages are guaranteed to
respect the communication protocols specified by their session types.

Syntactic formalisms may describe and specify communicating systems, but they are not
enough. For a formalism to bemeaningful, it must be endowed with a semantics. We also need
techniques to reason about formalized systems that are sound relative to their intended semantics.

1

2 1. INTRODUCTION

In this dissertation, we study the semantics of session-typed programming languages and their
associated reasoning techniques. In particular, we investigate semantics and reasoning techniques
for the language Polarized SILL [TCP13; PG15].

Polarized SILL provides an ideal setting in which to study these topics: its feature set is
sufficiently rich to study interactions between many desirable real-world features, while being
sufficiently restricted to remain tractable. It coherently integrates functional programming with
session-typed message-passing concurrency. Its functional programming layer is the simply-
typed λ-calculus with a fixed-point operator, and it includes quoted processes as a base type.
Its process layer is based on a proofs-as-processes correspondence between intuitionistic linear
logic and the session-typed π-calculus. Protocols supported by Polarized SILL include value
transmission (including quoted processes), choices (a form of branching), and synchronization
(its communication layer is asynchronous). Importantly, it supports general recursive protocols.
Recursive protocols are essential for modelling real-world systems, but in contrast to inductively
and coinductively defined protocols, their semantics has been largely unstudied.

At the core of many techniques for reasoning about programs is the question of program

equivalence. It asks: when are two programs in some sense “equivalent”? The answer to this question
has many real-world applications, including compiler correctness and program verification. Indeed,
“program equivalence is arguably one of the most interesting and at the same time important
problems in formal verification” [Lah+18]. Program equivalence is an inherently semantic question:
its answer depends on the semantics of our language. We answer it for Polarized SILL using two
broad classes of semantic approaches, namely, operational and denotational semantics, and we
relate the notions of equivalence that they induce.

Operational semantics describe the operational or run-time behaviour of programs. Polarized
SILL’s operational behaviour is specified by a substructural operational semantics [Sim12], a formof
multiset rewriting with strong logical underpinnings [CS09]. Alone, this substructural operational
semantics is insufficient for defining an extensional notion of equivalence, i.e., an equivalence
where programs are equivalent if we cannot distinguish them through experimentation. To define
such an equivalence, wemust first define notions of observation and of experimentation. We take
seriously the premise that we can only interact with processes through communication, and that
communication is their sole phenomenon. This leads us to define an observed communication

semantics [Atk17] for Polarized SILL,where themeaning of a process is the collection of communica-
tions we observe during its execution. To define experiments on processes, we adapt classical ideas
on testing equivalences [DH84; Hen83; De 85] to the setting of observed communication semantics.
We deem processes equivalent if we cannot differentiate them through communication. We relate
testing equivalence to the canonical notion of process equivalence: barbed congruence [MS92].

Denotational semantics abstract away the concrete operational behaviour of programs and
define the meaning of a program to be an object in a mathematical universe. This object is
called the program’s denotation, and programs are equivalent if they denote the same object. A
defining characteristic of denotational semantics is that denotations are defined by induction
on the program’s structure. As a result, denotational semantics are automatically compositional.
Advantageously, this means that we can reason modularly about programs instead of having to
reason about whole programs at a time. We give Polarized SILL a denotational semantics where
processes denote continuous functions between complete partial orders of communications. It
is an instance of a novel style of semantics called CYO semantics.1 By construction, it guarantees
various desirable computational properties of processes. Subject to mild simplifying assumptions,
our denotational equivalence implies barbed congruence and testing equivalence.

Our semantics are all designed to be faithful to the process abstraction: they are defined in
terms of a process’s communications. Together, they support the following thesis statement:

Communication-based semantics elucidate the structure of session-typed

languages and allow us to reason about programs written in these languages.

1In reference to the Choose Your Own Adventure book series.

1.1. OUTLINE OF DISSERTATION 3

To help further situate our communication-centric approach, we briefly contrast it with pre-
existing approaches for reasoning about session-typed languages. Atkey [Atk17] gave a denotational
semantics for Classical Processes [Wad15], a proofs-as-processes interpretation of classical linear
logic with synchronous communication. Atkey’s semantics coincides with the relational semantics
of proofs in classical linear logic [Bar91]. In it, session types denote sets of communications and
processes denote relations over these. It does not treat recursion or value transmission. In contrast,
we draw inspiration from Kahn’s work [Kah74] and use complete partial orders and continuous
functions because they provide an ideal setting for investigating Polarized SILL’s recursive protocols
and processes. They also let us capture properties like continuity that we deem essential for a
semantics for programs working with infinite data. Castellan and Yoshida [CY19] introduced a
game semantics interpretation of the session π-calculus with recursion. Session types denote event
structures that encode games, and processes denote continuous maps that describe strategies. Their
semantics supports recursion and it is fully abstract relative to barbed congruence, i.e., it fully
characterizes barbed congruence. However, it does not consider desirable language features like
value transmission or functional programming. Kokke,Montesi, and Peressotti [KMP19] gave
a denotational semantics using Brzozowski derivatives to a proofs-as-processes interpretation
between classical linear logic and the π-calculus. It does not handle recursion or the transmission
of functional values. Pérez et al. [Pér+12; Pér+14] gave a theory of logical relations for session-typed
processes. In the broader setting of semantics for processes or communicating systems, Kahn
[Kah74] gave a denotational semantics for dataflownetworks. Communication in dataflownetworks
consists of unidirectional streams of values of a fixed simple type. In contrast, our semantics handle
bidirectional communication and rich communication protocols. DeNicola andHennessy [DH84],
Hennessy [Hen83], and De Nicola [De 85] introduced testing equivalences, where programs
are equivalent if they reach success states under all experiments. In our communication-based
approach, programs are equivalent if they produce the same communications under all experiments.

1.1. Outline of Dissertation

Part 1 (chapters 2 to 4) is dedicated to the mathematical structures that underlie our work
on Polarized SILL. It contains both an overview of the structures we use to study of Polarized
SILL, as well as required contributions to themathematical foundations of programming languages
semantics.

Chapter 2 provides a brief survey of themathematical concepts used in this dissertation. Its
contents are mostly standard. Its primary purposes are to define our notation, and to present
known results (or mild generalizations thereof) that will be used repeatedly in later chapters.

Chapter 3 contains the first study of fairness for multiset rewriting systems. As mentioned
above, Polarized SILL’s operational behaviour is defined using amultiset rewriting system. Rewrite
rules in multiset rewriting systems can be applied non-deterministically: we may use a given
rule whenever its conditions of use are satisfied. This non-determinism unfortunately means
that a process in a communicating system might never make progress, even if it is able to do
so. These “unfair” executions are undesirable in practice, and theymake it difficult to give well-
defined program equivalences. Accordingly, we restrict our attention to fair executions [Par80] of
communicating systems. To do so, we introduce and study fairness for multiset rewriting systems.
We discover that there are several reasonable and independent notions of fairness. We construct
a fair scheduler, we give sufficient conditions for traces to be fair, and we study the effects of
permutations on traces. We also introduce a novel notion of trace equivalence that will be essential
to the observed communication semantics in chapter 6. This chapter builds on work presented at
EXPRESS/SOS 2020 [Kav20a].

Chapter 4 studies fixed points of functors, and its results underlie our denotational account
of recursive session types. In particular, we study the 2-categorical properties of fixed points of
functors. We generalize existing techniques for computing and reasoning about parametrized fixed
points of functors. In the process, we define a dagger operation [BÉ95; BÉ96] on a suitable category
of categories, and we show that it satisfies the (cartesian) Conway identities. These identities imply

4 1. INTRODUCTION

many other identities [BÉ96, § 3.3] useful for semantic reasoning, such as Bekič’s rule, and they are
also independent interest. This chapter builds on work presented at MFPS XXXVI [Kav20b].

We turn our attention to Polarized SILL in part 2 (chapters 5 to 9). It is here that we present
our various semantics for Polarized SILL and their associated reasoning techniques. We start by
presenting Polarized SILL, its statics, and its dynamics in chapter 5. The remaining chapters are
our contributions. Each features an introductory section that gives amore detailed overview of the
problems it seeks to solve and their associated challenges.

In chapter 6, we introduce our observed communication semantics. Given a process execution,
it defines themeaning of the process to be the communications observed on its free channels. Our
observed communication semantics is the first to handle recursive processes and protocols, and
code transmission. We define a notion of equivalence on observed communications. To do so, we
must address various challenges caused by code transmission. This communication equivalence is
used in chapter 7 to define process equivalence. A key observation is that we observe the same
communications across all fair executions of a given process. This faithfully captures the confluence
property enjoyed by Polarized SILL and by other session-typed languages. This chapter builds on
work presented at EXPRESS/SOS 2020 [Kav20a].

Chapter 7 introduces our testing equivalence framework. Testing equivalence frameworks [DH84;
Hen83; De 85] use experiments to determine if processes are equivalent. Classical experiments can
end in “success” states, and two processes are equivalent if they succeed the same experiments. In
our setting, we cannot observe process states: we can only observe process communications. Our
experiments communicate with tested processes, and we deem two processes to be equivalent if
they produce equivalent communications under each experiment. There is a certain latitude in
deciding which communication channels to observe during experimentation. One possibility is
to observe the channels between an experiment and a process, leading to “internal” notions of
equivalence à la Darondeau [Dar82] and Atkey [Atk17]. A second possibility is to imagine that
an experiment uses some of its free channels to communicate with processes, and that it reports
its findings on its remaining free channels. Observing these remaining free channels leads to an
“external” notion of equivalence, and we show that this equivalence is a congruence. We also use
our framework to define observational preorders and precongruences. We relate our observational
equivalences to each other and to barbed congruence.

Our denotational semantics is given in chapter 8. It is inspired by “wave”-style geometry of
interaction constructions [AJ94; Abr96, § 4.4] and the ideas underlying Kahn’s [Kah74] semantics
for dataflow networks, and it significantly generalizes the latter. Dataflow networks consist of
processes communicating along unidirectional channels (lines or wires carrying messages in only
one direction), and communications are sequences of values. In Kahn’s semantics, processes denote
continuous functions between complete partial orders of sequences of values. We generalize this
to account for bidirectional communications and for the richer collection of protocols enjoyed by
Polarized SILL. In particular, we introduce CYO semantics, a novel style of denotational semantics
for systems with bidirectional communication. In CYO semantics, protocols denote partial orders
of communications related by an embedding.2 Concretely, they denote a complete partial order
(cpo) of complete (bidirectional) communications permitted by the protocol and two cpos of unidi-
rectional communications (one for each direction), and the embedding specifies the decomposition
of complete communications into pairs of unidirectional communications. A process denotes a
continuous function from the unidirectional input on its channels to the whole communications
obtained by filling in the gaps in its input with its output. Subject to some simplifying assumptions,
our denotational semantics is sound relative to barbed congruence and external testing equivalence,
i.e., denotational equivalence implies barbed congruence and external testing equivalence.

Finally, in chapter 9, we illustrate our techniques with various case studies. In particular, we
show that the forwarding process (the computational of the identity rule of intuitionistic linear
logic) and the process interpretation of the identity expansion theorem for intuitionistic linear

2Embeddings are injectivemonotone functions with nice order-theoretic properties.

NOTATIONAL CONVENTIONS 5

logic are equivalent. We also study processes on bit streams and binary representations of natural
numbers. These results illustrate our semantics ability to reason about recursive processes and
session types.

A reader who is primarily interested in operational notions of equivalence may prefer to
take the following path through the dissertation: section 3.1.2 and chapters 5 to 7, while referring
back to chapter 3 and sections 2.1.3, 2.4.2 and 2.5 as needed. A reader primarily interested in
our denotational semantics could read chapters 5 and 8, while referring back to chapters 2 and 4
as needed. For convenience, all typing rules for Polarized SILL are collected in section 5.A, all
multiset rewriting rules for Polarized SILL are collected in section 5.B, and all semantic clauses
of the denotational semantics are collected in section 8.8. We have also included a glossary of
symbols, and an index with major definitions and results.

Notational Conventions

When patternmatching against tuples,we often care only about certain components. To reduce
the cognitive burden caused by unneeded names, we adopt a convention found in programming
languages like StandardML, Prolog, and Coq, where we notate irrelevant values as underscores “_”.
For example, instead of writing “the frobnication of n is (n, p, q, 2 ∗ n) for some p and q” when p

and q are not used below, we write “the frobnication of n is (n, _, _, 2 ∗ n)”. Similarly, instead of
writing f (w , x , y, z) = x + y, wemay write f (_, x , y, _) = x + y.

When an expression is too long to fit on a single line, we typically break it at an operator or
relation symbol, and we follow the Oxford custom [CBB54, pp. 37–38] of repeating this symbol on
the following line.3 For example, we write

f ∶ {⋯}→

→{⋯}

when the domain and codomain of a function declaration cannot both fit onto a single line.
We often define terms inline to avoid breaking the flow of text. We use various typographical

conventions to make definitions easier to locate definitions and to indicate their importance. The
definitions of core concepts and objects are given in numbered environments. Important terms are
given in bold sans serif, while less important terms appear in emphasis.

3This convention is also found in many ex-Soviet republics. It serves to connect two parts of expression, and it makes
clear that the expression is incomplete.

Part 1

Mathematical Foundations

CHAPTER 2

Mathematical Preliminaries

For ease of reference, we define various mathematical concepts that will be used throughout
this thesis.

Section 2.1 gives an account of various category-theoreticnotions that underlie ourdenotational
semantics. We use these notions to reason about our semantics itself in chapter 8, but also when
using our semantics reason about processes in chapter 9. Virtually all concepts appearing in
section 2.1 are standard. Our denotational semantics makes extensive use of order theory and
fixed-point operators, which we survey in sections 2.2 and 2.3. Their contents are standard, apart
from a few technical lemmas in section 2.3. These lemmas will be useful for reasoning about
recursive processes.

In ??, I give an account general binding trees. These extend abstract syntax trees and abstract
binding trees [Chu40; Har16] to handle bound symbols. We use general binding trees to formally
processes in part 2. In particular, we use their generalized binding structure to capture the fact that
bound channel names appearing in processes can be freely renamed.

Finally, in section 2.5we discuss inductively and coinductively defined judgments. In particular,
we examine parametric judgments, which capture the structural properties of symbols appearing
in judgments. Parametric judgments will be important part 2, where we use symbols to represent
the names of communication channels appearing in process typing judgments.

2.1. Category Theory

There are a number of excellent introductory (and not so introductory) texts on category
theory [AL91; BW99; Mac98; Rie16], of which Riehl’s [Rie16] stands out. Our purpose here is not
to give a primer on category theory, so much as to fix our definitions and notation. Especially in
chapters 4 and 8 and section 2.2, we expect the reader to be familiar with the following notions:
category, functor, natural transformation, product, and colimit.

We generally use upright boldface for categories. For example, we write Set for the category of
sets and functions. We write Cop for the opposite category of C. We write ob(C) for the collection
of objects in C andmor(C) for its collection ofmorphisms. A category is small if its objects and
morphisms both form a set. It is locally small if its morphisms form a set. We write Cat for the
category of small categories, and CAT for the category of locally small categories.
Remark 2.1.1. Many categories of interest are not small, so they are not objects in Cat. We can work
around size issues by using a hierarchy of universes [Sch72, § 3] to treat them as small categories.

A subcategory C of D is full if for each pair of objects in C, C contains all morphisms that are
between them inD. It is wide if it contains all of the objects inD.

Definition 2.1.2. Let F ,G ∶ C → D be functors. A natural transformation η ∶ F ⇒ G ∶ C → D,
usually written η ∶ F ⇒ G, is a family ofmorphisms (ηX ∶ FX → GX)X indexed by objects of C
such that for all morphisms f ∶ X → Y of C, the following diagram commutes:

FX GX

FY GY

ηX

F f G f

ηY ◀

9

10 2. MATHEMATICAL PRELIMINARIES

If D is a locally small category, then we write D(−,−) ∶ Dop ×D → Set for the hom functor.
Given objects D and E ofD, D(D, E) is the set ofmorphisms from D to E. If a category E has an
internal hom, then we write E [−→ −] or just [−→ −] for it. Given small categories C and D, write
diagC ∶ D → CAT [C→ D] for the diagonal functor. Concretely, diagC D is the constant functor
onto the object D.

Definition 2.1.3. A diagram of shape J in a category C is a functor F ∶ J → C. If C is an object of
C, then a cone on F with summit C is a natural transformation λ ∶ diagJ C ⇒ F. Concretely, this
is a ob(J)-indexed family ofmorphisms λ i ∶ C → F i such that for all f ∶ i → j in J, the following
diagram commutes:

C

F i F j.
λ i

λ j

F f

Dually, a cocone on F with nadir C is a natural transformation κ ∶ F ⇒ diagJ C. ◀

The initial object of a category C, if it exists, is an object �C such that for every object X of C,
there exists a uniquemorphism �C → X in C. We often write � for �C. We also write � for the
unique cone �C ⇒ idC witnessing the initiality of �C. The terminal objects ⊺C of a category C is
dually defined.

IfC has a terminal object isomorphic to its initial object,we call the initial object the zero object
0C. C has zero morphisms if for all objects A and D there exists a fixedmorphism 0AD ∶ A → D,
and if this family ofmorphisms satisfies 0BD ○ f = 0AD = g ○ 0AC for all morphisms f ∶ A→ B and
g ∶ C → D. C has zero morphisms whenever it has a zero object: 0AB = A→ 0→ B.

Definition 2.1.4. Given a functor F ∶ C → Set, the category of elements ∫ F has as objects pairs
(x , X) such that X is an object of C and x ∈ FX. Morphisms f ∶ (x , X)→ (y,Y) aremorphisms
f ∶ X → Y in C such that F(f)(x) = y. ◀

Given a small category J, a locally small category C, and a functor F ∶ J → C, the cocone
functor [Rie16, Definition 3.1.5] Cone(F ,−) ∶ C → Set takes objects C of C to the set of cocones
on F with summit C. Given a morphism f ∶ C → C′ and a cocone (λ ∶ F ⇒ C) ∈ Cone(F ,C),
Cone(F , f)(λ) = f ○ λ. Given a diagram F ∶ J → C, the category of cocones on F is the category
of elements ∫ Cone(F ,−). Its objects are pairs (α,A) where α ∈ Cone(F ,A). Morphisms f ∶
(α,A) → (β, B) are morphisms f ∶ C → D in C such that Cone(F , f)(α) = β, i.e., such that
f ○ α = β. The colimit [Rie16, Definition 3.1.6] of F is the initial object of ∫ Cone(F ,−). Cone
functors Cone(−, F) ∶ Cop → Set, the category of cones on F, and limits are dually defined.

An adjunction F ⊣ G is a pair of functors F ∶ C → D and G ∶ D → C equipped with an
isomorphism D(F(C),D) ≅ C(C ,G(D)) natural in C and D. Equivalently, an adjunction is a
pair of functors F ∶ C → D and G ∶ D → C equipped with natural transformations η ∶ id⇒ GF

and є ∶ FG ⇒ id satisfying the triangle indentities:

F FGF G GFG

F G

Fη

id
єF

ηG

id
Gє

We call F the left adjoint, G the right adjoint, η the unit, and є the counit.
A two-variable adjunction [Rie16, Definition 4.3.7] is given by a triple of functors F ∶ A×B→ C,

G ∶ Aop ×C, and H ∶ Bop ×C→ A equipped with a natural isomorphism

C(F(A, B),C) ≅ B(B,G(A,C)) ≅ A(A,H(B,C)).

We call G and H the left and right closures of F. We say that F is closed whenever G and H are
naturally isomorphic.

2.1. CATEGORY THEORY 11

A category is discrete if every morphism is an identity. A product is the limit of a diagram
whose shape is a discrete category. We say that a product is finite if this discrete category has finitely
many objects. A category is cartesian if it has all finite products. If C has binary products, then
the product bifunctor × ∶ C × C → C assigns to pairs (A, B) of objects of C their product in C. A
cartesian category C is cartesian closed if its product bifunctor is closed. Its left and right closures
define the exponential objects of C.

It is often useful to have notation to identify the components of a product. Consider a discrete
category with objects d1 , . . . , dn and a diagram F(d i) = D i . We write (d1 ∶ D1) ×⋯× (dn ∶ Dn) or
∏d i

D i for limit of F: it is the d i-indexed product of theD i . Givenmorphisms f i ∶ C → D i ,wewrite
⟨d1 ∶ f1 , . . . , dn ∶ fn⟩ for themediating morphism C →∏d i

D i . Given an indexed product∏i∈I D i

and a subset J ⊆ I, we write πI
J
or πJ for the projection∏i∈I D i →∏ j∈J D j . If∏d i

D i is an object
in a category of sets with structure and δ i ∈ D i for 1 ≤ i ≤ n, then we write (d1 ∶ δ1 , . . . , dn ∶ δn) for
the corresponding element of this product.

Coproducts are dually defined to products. We write (d1 ∶ D1)⊕⋯⊕ (dn ∶ Dn) or⊕d i
D i for

the coproduct of the D i indexed by the d i . We write ιd i ∶ D i →⊕d i
D i for the injection of D i into

the coproduct.
Morphisms ⊕i∈I A i → ∏ j∈J B j from coproducts to products are uniquely determined by

morphisms f(i , j) for each (i , j) ∈ I × J. This means that such morphisms can be conveniently
represented bymatrices whose (i , j)-th component is f(i , j) [Rie16, pp. 82f.]. When a category has
zero morphisms and I = J, a collection of maps f i ∶ A i → B i for i ∈ I determines a morphism
diag(f i)i∈I ∶ ⊕i∈I A i → ∏i∈I B i . It is represented by thematrix whose (i , i)-th component is f i

and whose (i , j)-th components for i ≠ j is the corresponding zero morphism.
Applications to semantics motivate functor algebras. Given a functor F ∶ C→ C, an F-algebra

is a pair (A, a)where A and a are respectively an object and amorphism FA→ A inC. Amorphism
f ∶ (A, a) → (B, b) of F-algebras is amorphism f ∶ A→ B in C such that f ○ a = b ○ F f . Such a
morphism is called an F-algebra homomorphism. These objects andmorphisms form a category CF

of F-algebras.

2.1.1. 2-Category Theory. Chapter 4 builds heavily on 2-category theory. Readers unfamiliar
with 2-category theorymay replace the words “2-category”, “2-functor”, and “2-natural transforma-
tion” by “category”, “functor”, and “natural transformation” throughout to obtain weaker forms of
our results. Fiore [Fio94, Chapter 2] and Kelly and Street [KS74] give surveys of 2-category theory.

A 2-category C has objects A, B, . . . , arrows (horizontal morphisms) f ∶ A → B, and 2-cells
(vertical morphisms) α ∶ f ⇒ g ∶ A→ B drawn as:

A B

f

⇓α
g

Objects and arrows form a category C0 called the underlying category of C; we write ○ for its
composition. Each pair of objects A and B gives rise to a category C(A, B) whose objects are
arrows A→ B and whosemorphisms are 2-cells between them; we call its composition operator “⋅”
vertical composition. Objects and 2-cells form a category CellC; we call its composition operator
“∗”. Vertical and horizontal composition satisfy themiddle four interchange and identity laws:
whenever

A B C and A B C
⇓α

⇓β

⇓γ

⇓δ

f

⇓id f

f

g

⇓idg

g

we have (δ ⋅γ)∗ (β ⋅α) = (δ ∗ β) ⋅ (γ ∗α) and idg ∗ id f = idg○ f , respectively. Thanks to the identity
law, we can adopt the convention of writing f for the identity 2-cell id f ∶ f ⇒ f ∶ A→ B.

The prototypical 2-category is Cat, the category of small categories, where objects are small
categories, horizontal morphisms are functors, and vertical morphisms are natural transformations.
Given 2-cells є ∶ F ⇒ G ∶ C → D and η ∶ H ⇒ I ∶ D → E in Cat, their horizontal composition

12 2. MATHEMATICAL PRELIMINARIES

η ∗ є ∶ HF ⇒ IG is given by the equal natural transformations Iє ○ ηF = ηG ○ Hє. Given a
morphism f ∶ K → L in C, we abuse notation and write η ∗ f ∶ FK → GL for the naturality square

FK
F f

Ð→ FL
ηL

Ð→ GL = FK
ηK

Ð→ GK
G f

Ð→ GK.
Let C and D be 2-categories. A 2-functor F ∶ C→ D sends objects of C to objects of D, arrows

of C to arrows ofD, and 2-cells of C to 2-cells ofD while preserving all identities, compositions,
domains, and codomains. A 2-natural transformation η ∶ F ⇒ G ∶ C→ D is a natural transformation
η ∶ F ⇒ G that is 2-natural, i.e., such that for each 2-cell α ∶ f ⇒ g ∶ A → B in C, we have the
following equality inD:

FA FB GB = FA GA GB.

F f

⇓Fα

F g

ηB ηA

G f

⇓Gα

Gg

A modification ρ ∶ α → β ∶ F ⇒ G ∶ C→ D is amorphism of 2-natural transformations. It assigns
to each object A of C a 2-cell ρA ∶ αA ⇒ βA such that for all f ∶ A → B we have the following
equality inD:

FA GA GB = FA FB GB.

αA

⇓ρA

βA

G f F f

αB

⇓ρB

βB

Various constructions give new 2-categories from old. The opposite 2-category Cop of a 2-
category C is determined by Cop(A, B) = C(B,A), where arrows are reversed but not 2-cells
between them. The product 2-category C ×D is given by the usual product-category construction,
where objects are pairs (C ,D) of objects C of C and D of D, and all morphisms, compositions,
and identities are given component-wise.

Every 2-category C is equipped with a hom 2-functor C(−,−) ∶ Cop × C → CAT,1 where
CAT is the 2-category of locally small categories. It takes objects (A, B) to categories C(A, B),
arrows (f , g) ∶ (A, B) → (A′ , B′) to functors g ○ − ○ f ∶ C(A, B) → C(A′ , B′), and 2-cells
(α, β) ∶ (f , g)⇒ (f ′ , g′) ∶ (A, B)→ (A′ , B′) to natural transformations α ∗ id− ∗ β ∶ g ○ − ○ f ⇒
g′ ○ − ○ f ′ ∶ C(A, B)→ C(A′ , B′).

A 2-category C is 2-cartesian closed if CellC is cartesian closed [BÉ95, p. 97]. In elementary
terms [Fio94, p. 24], this means that C has a terminal object, binary 2-products, and 2-exponentials,
where

● the terminal object of C is an object 1 of C with a 2-natural isomorphism C(−, 1) ≅ ∆1,
where 1 is the terminal category;
● the 2-product of objects A and B ofC is an object A×B ofCwith a 2-natural isomorphism
C(−,A) ×C(−, B) ≅ C(−,A× B);
● the 2-exponential of objects A and B of C is an object C [A→ B] of C with a 2-natural
isomorphism C(− × A, B) ≅ C(−,C [A→ B]).

We can generalize functor algebras to algebras of horizontal morphisms in arbitrary 2-cartesian
categories. Given a horizontal morphism f ∶ A×B → B in a 2-cartesian category, an f -algebra [BÉ95,
Definition 2.3] is a pair (g , u) where g ∶ A→ B is a horizontal morphism and u ∶ f ○ ⟨idA, g⟩⇒ g

is vertical. An f -algebra homomorphism (g , u)→ (h, v) is a vertical morphismw ∶ g ⇒ h such that
w ○ u = v ○ (f ∗ ⟨idA,w⟩). These f -algebras and f -algebra homomorphisms form a category.

2.1.2. Monoidal Categories.

Definition 2.1.5. Amonoidal category is a sextuple (M,⊗, I, λ, ρ, α) satisfying the axioms of fig. 2.1,
where

● M is a category
● ⊗ ∶M ×M→M is a bifunctor (called a tensor) onM

1It will be clear from context whether C(−,−) is the hom 2-functor into CAT or the usual hom functor into Set.

2.1. CATEGORY THEORY 13

A⊗ (I ⊗ B) (A⊗ I)⊗ B

A⊗ B

αA,I ,B

A⊗λB ρA⊗B

(a) The triangle axiom

A⊗ (B ⊗ (C ⊗ D))

A⊗ ((B ⊗ C)⊗ D) (A⊗ B)⊗ (C ⊗ D)

(A⊗ (B ⊗ C))⊗ D ((A⊗ B)⊗ C)⊗ D

A⊗αB ,C ,D αA,B ,C⊗D

αA,B⊗C ,D αA⊗B ,C ,D

αA,B ,C⊗D

(b) The pentagon axiom

Figure 2.1. Axioms for monoidal categories

A⊗ B B ⊗ A

A⊗ B

σA,B

id σB ,L

(a) Symmetry

A⊗ I I ⊗ A

A

σA,I

ρA λA

(b) Preservation of identity

A⊗ (B ⊗ C) (A⊗ B)⊗ C

A⊗ (C ⊗ B) C ⊗ (A⊗ B)

(A⊗ C)⊗ B (C ⊗ A)⊗ B

αA,B ,C

A⊗σB ,C σA⊗B ,C

αA,C ,B αC ,A,B

σA,C⊗B

(c) Interaction with associativity

Figure 2.2. Axioms for symmetricmonoidal categories

● I is the unit of the tensor
● λ ∶ I ⊗ A⇒ A is a natural isomorphism witnessing that I is the left unit
● ρ ∶ A⊗ I ⇒ A is a natural isomorphism witnessing that I is the right unit
● α ∶ (A⊗ B)⊗ C ⇒ A⊗ (B ⊗ C) is a natural isomorphism witnessing the associativity of

the tensor ⊗.
A monoidal category is symmetric if it is additionally equipped with a natural isomorphism
σ ∶ A⊗ B⇒ B ⊗ A satisfying the axioms of fig. 2.2. ◀

For more details on monoidal and symmetricmonoidal categories, we refer the reader to the
expositions by Etingof et al. [Eti+15, chap. 2], Barr andWells [BW99, chap. 16], and Riehl [Rie16,
§ E.2].

Example 2.1.6. Every Cartesian category is symmetricmonoidal. The tensor product is given by
the Cartesian product, and the terminal object ⊺ is the unit. ◀

String diagrams provide a convenient graphical notation for reasoning about monoidal cate-
gories. Instead of reasoning about morphisms through algebraicmanipulations, we can reason

14 2. MATHEMATICAL PRELIMINARIES

A

(a) An object A

A

(b) The identitymorphism idA

(empty)

(c) The unit I

f
A B

(d) Amorphism f ∶ A→ B

f g
A B C

(e) The composition g ○ f of f ∶ A→ B and g ∶ B → C

A

B

(f) The tensor A⊗ B

f
A B

g
C D

(g) The tensor f ⊗ g

f

A1

An

B1

Bm

⋮ ⋮

(h) Amorphism f ∶ A1 ⊗⋯⊗ An → B1 ⊗⋯⊗ Bm

A

AB

B

(i) Symmetry σA,B

Figure 2.3. String diagram notation for (symmetric) monoidal categories

about them bymanipulating diagrams made up of boxes and wires. We refer the reader to [Sel11;
JSV96; JS91; Mal10, § 2.8] for more detailed expositions of this style of graphical language.

The graphical notation used herein is found in [Sel11; Mal10, § 2.8]. It depicts objects as wires,
morphisms as boxes, identity morphisms as wires, and composition as connecting wires. The
tensor operation is represented by juxtaposition, while the unit object I is the empty diagram.
Symmetry is represented by crossing wires. We adopt the convention that diagrams flow from left
to right: wires entering a box from the left denote inputs to amorphism, while wires exiting a box
on the right denote outputs of amorphism. These are summarized by fig. 2.3.

Theorem 2.1.7 ([Sel11, Theorem 3]). A well-formed equation between morphism terms in the

language ofmonoidal categories follows from the axioms ofmonoidal categories if and only if it holds,

up to planar isotopy,
2
in the graphical language.

Theorem 2.1.8 ([Sel11,Theorem 7]). Awell-formed equation betweenmorphisms in the language

of symmetricmonoidal categories follows from the axioms of symmetricmonoidal categories if and

only if it holds, up to isomorphism of diagrams,
3
in the graphical language.

2.1.3. Multicategories, Polycategories, And Pluricategories. Multicategories generalize cat-
egories to allow for morphisms with multiple inputs. The following definition is for the original
presentation ofmulticategory due to Lambek [Lam69, pp. 103ff.]. It differs from modern presenta-
tions, e.g., [Lei04], by allowing only two morphisms to be composed together, instead of requiring
that all inputs receive a composition partner.

Given a set X, we write X∗ for the freemonoid on X, and ε for its unit. We write its elements
as lists and composition as concatenation. We use capital Greek letters to range over these. If
Φ = x1 ,⋯ , xn ∈ X∗, then we write Φ i for the i-th element x i in the concatenation.

Definition 2.1.9. A multicategoryM consists of the following data:

2Informally, planar isotopymeans equivalence up to continuous deformation without allowing any boxes or wires to
cross each other or be detached.

3An isomorphism of diagrams is a bijection between wires and boxes that preserves the structure of the graph.

2.1. CATEGORY THEORY 15

● a class ob(M) of objects;
● a class mor(M) of multimaps or morphisms;
● a function dom ∶ mor(M)→ ob(M)∗;
● a function cod ∶ mor(M)→ ob(M));
● a substitution or composition operator subst ∶ (⊎n∈Nmor(M) ×n mor(M)) → mor(M)

that is the uniquemorphism out of the disjoint union determined by a family of compo-
sition operators

substn ∶ mor(M) ×n mor(M)→ mor(M),

where

mor(M) ×n mor(M) = {(g , f) ∈ mor(M) ×mor(M) ∣ cod(f) = (dom(g))
n
}.

We write f ∶ A1 , . . . ,An → B when dom(f) = A1 , . . . ,An and cod(f) = B. We write g ○i f for
substi(g , f). It is convenient to write compositions in tree-form, with morphism names above the
arrows:

Ψ
f

Ð→ A i A1 , . . . ,A i , . . . ,An

g

Ð→ B

A1 , . . . ,Ψ, . . . ,An

g○i f
ÐÐ→ B

These datamust satisfy the following axioms:
(1) if f ∶ Ψ → A i and g ∶ A1 , . . . ,An → B, then g ○i f ∶ A1 , . . . ,Ψ, . . . ,An → B;
(2) for all objects A, there exists an identity morphism idA ∶ A→ A;
(3) the identitymorphism is the left unit, i.e., the following multimap is equal to f :

A
idA

Ð→ A Φ,A,Ψ
f

Ð→ B

Φ,A,Ψ Ð→ B

(4) the identitymorphism is the right unit, i.e., the following multimap is equal to g:

Λ
g

Ð→ A A
idA

Ð→ A

Λ
A
Ð→

(5) composition is associative, i.e., the following multimaps are equal:

Λ Ð→ A Φ,A,Ψ Ð→ B

Φ,Λ,Ψ Ð→ B Γ, B, ∆ Ð→ C

Γ,Φ,Λ,Ψ, ∆ Ð→ C

Λ Ð→ A

Φ,A,Ψ Ð→ B Γ, B, ∆ Ð→ C

Γ,Φ,A,Ψ, ∆ Ð→ C

Γ,Φ,Λ,Ψ, ∆ Ð→ C

(6) composition is partially commutative, i.e., the following multimaps are equal:

Γ Ð→ C

∆ Ð→ D Φ,C ,Θ,D,Ψ Ð→ B

Φ,C ,Θ, ∆,Ψ Ð→ B

Φ, Γ,Θ, ∆,Ψ Ð→ C

∆ Ð→ D

Γ Ð→ C Φ,C ,Θ,D,Ψ Ð→ B

Φ, Γ,Θ,D,Ψ Ð→ B

Φ, Γ,Θ, ∆,Ψ Ð→ C ◀

Polycategories [Sza75] generalizemulticategories to allow formorphismswithmultiple outputs.

Definition 2.1.10 ([Sza75]). A polycategory P is given by the following data:
● a class ob(M) of objects;
● a class mor(M) of polymaps or morphisms;
● functions dom, cod ∶ mor(M)→ ob(M)∗;

16 2. MATHEMATICAL PRELIMINARIES

● a substitution or composition operator

subst ∶ (⊎
n ,m∈N

mor(M) ×n ,m mor(M))→ mor(M)

that is the uniquemorphism out of the disjoint union determined by a family of compo-
sition operators

substn ,m ∶ mor(M) ×n ,m mor(M)→ mor(M),

where

mor(M) ×n ,m mor(M) = {(g , f) ∈ mor(M) ×mor(M) ∣ (cod(f))
m
= (dom(g))

n
}.

We write f ∶ A1 , . . . ,An → B1 , . . . , Bm when dom(f) = A1 , . . . ,An and cod(f) = B1 , . . . , Bm .
We write g ○n ,m f for substn ,m(g , f). It is convenient to write compositions in tree-form, with
morphism names above the arrows:

Ψ
f

Ð→ Λ,A,Φ Γ,A, ∆
g

Ð→ Ξ

Γ,Ψ, ∆
g○n ,m f

ÐÐÐ→ Λ, Ξ,Φ

These datamust satisfy the following axioms:
(1) if f ∶ Ψ → Λ,A,Ψ, g ∶ Γ,A, ∆ → Ξ, (cod(f))n = A, and (dom(g))m = A, then

g ○n ,m f ∶ Γ,Ψ, ∆ → Λ, Ξ,Φ;
(2) for all objects A, there exists an identity morphism idA ∶ A→ A;
(3) the identitymorphism is the left unit, i.e., the following morphism is equal to f :

A
idA

Ð→ A Φ,A,Ψ
f

Ð→ Ξ
Φ,A,Ψ Ð→ Ξ

(4) the identitymorphism is the right unit, i.e., the following morphism is equal to g:

Λ
g

Ð→ Γ,A, ∆ A
idA

Ð→ A

Λ
Γ
Ð→,A, ∆

(5) composition is associative, i.e., the following morphisms are equal:

Γ1
f

Ð→ Γ2 ,A, Γ3 ∆1 ,A, ∆2
g

Ð→ ∆3 , B, ∆4

∆1 , Γ1 , ∆2 Ð→ Γ2 , ∆3 , B, ∆4 , Γ3 Φ1 , B,Φ2
h
Ð→ Φ3

Φ1 , ∆1 , Γ1 , ∆2 ,Φ2 Ð→ Γ2 , ∆3 ,Φ3 , ∆4 , Γ3

Γ1
f

Ð→ Γ2 ,A, Γ3

∆1 ,A, ∆2
g

Ð→ ∆3 , B, ∆4 Φ1 , B,Φ2
h
Ð→ Φ3

Φ1 , ∆1 ,A, ∆2 ,Φ2 Ð→ ∆3 ,Φ3 , ∆4

Φ1 , ∆1 , Γ1 , ∆2 ,Φ2 Ð→ Γ2 , ∆3 ,Φ3 , ∆4 , Γ3

(6) composition is partially commutative, i.e., the following morphisms are equal whenever
at least one of ∆2 , Γ2, and one of ∆2 , Γ3 is empty:

∆1
g

Ð→ ∆2 , B, ∆3

Γ1
f

Ð→ Γ2 ,A, Γ3 Φ1 ,A,Φ2 , B,Φ3
h
Ð→ Φ4

Φ1 , Γ1 ,Φ2 , B,Φ3 Ð→ Γ2 ,Φ4 , Γ3

Φ1 , Γ1 ,Φ2 , ∆1 ,Φ3 Ð→ ∆2 , Γ2 ,Φ4 , Γ3 , ∆3

Γ1
f

Ð→ Γ2 ,A, Γ3

∆1
g

Ð→ ∆2 , B, ∆3 Φ1 ,A,Φ2 , B,Φ3
h
Ð→ Φ4

Φ1 ,A,Φ2 , ∆1 ,Φ3 Ð→ Γ2 ,Φ4 , Γ3

Φ1 , Γ1 ,Φ2 , ∆1 ,Φ3 Ð→ ∆2 , Γ2 ,Φ4 , Γ3 , ∆3

2.1. CATEGORY THEORY 17

and the following morphisms are equalwhenever at least one ofΦ1 , ∆1, and one ofΦ2 , ∆2,
is empty:

Γ1
h
Ð→ Γ2 ,A, Γ3 , B, Γ4 ∆1 ,A, ∆2

f

Ð→ ∆3

∆1 , Γ1 , ∆2 Ð→ Γ2 , ∆3 , Γ3 , B, Γ4 Φ1 , B,Φ2
g

Ð→ Φ3

Φ1 , ∆1 , Γ1 , ∆2 ,Φ2 Ð→ Γ2 , ∆3 , Γ3 ,Φ3 , Γ4

Γ1
h
Ð→ Γ2 ,A, Γ3 , B, Γ4 Φ1 , B,Φ2

g

Ð→ Φ3

Φ1 , Γ1 ,Φ2 Ð→ Γ2 ,A, Γ3 ,Φ3 , Γ4 ∆1 ,A, ∆2
f

Ð→ ∆3

Φ1 , ∆1 , Γ1 , ∆2 ,Φ2 Ð→ Γ2 , ∆3 , Γ3 ,Φ3 , Γ4 ◀

Every polycategory contains amaximal multicategory.
Pluricategories4 generalize polycategories to allow for composition along multiple objects. Its

axioms associativity and partial commutativity axioms generalize those of polycategories in the
obvious manner, where we replace single objects by a sequence of adjacent objects.

Definition 2.1.11. A pluricategory P is given by the following data:
● a class ob(M) of objects;
● a class mor(M) of plurimaps or morphisms;
● functions dom, cod ∶ mor(M)→ ob(M)∗;
● a substitution or composition operator

subst ∶ (⊎
n ,m ,k∈N

mor(M) ×n ,m ,k mor(M))→ mor(M)

that is the uniquemorphism out of the disjoint union determined by a family of compo-
sition operators

substn ,m ,k ∶ mor(M) ×n ,m ,k mor(M)→ mor(M),

where

mor(M) ×n ,m ,k mor(M)
= {(g , f) ∈ mor(M) ×mor(M) ∣ ∀0 ≤ i ≤ k.(cod(f))m+i = (dom(g))n+i}.

We write f ∶ A1 , . . . ,An → B1 , . . . , Bm when dom(f) = A1 , . . . ,An and cod(f) = B1 , . . . , Bm . We
write g ○n ,m ,k f for substn ,m ,k(g , f). It is convenient to write compositions in tree-form, with
morphism names above the arrows:

Ψ
f

Ð→ Γ,Π,Φ Λ,Π, ∆
g

Ð→ Ξ

Λ,Ψ, ∆
g○n ,m ,k f
ÐÐÐÐ→ Γ, Ξ,Φ

These datamust satisfy the following axioms:
(1) if f ∶ A1 , . . . ,Am → C1 , . . . ,Cn , g ∶ B1 , . . . , Bp → D1 , . . . ,Dq , then

dom(g ○r ,s ,t f) = B1 , . . . , Br−1 ,A1 , . . . ,Am , Br+t+1 , . . . , Bp

cod(g ○r ,s ,t f) = C1 , . . . ,Cs−1 ,D1 , . . . ,Dq ,Cs+t+1 , . . . ,Cq ;

(2) for all lists of objects objects ∆, there exists an identity morphism id∆ ∶ ∆ → ∆;
(3) identitymorphisms commute with concatenation, i.e., the following composition is equal

to id∆,Ψ :

∆
id∆
Ð→ ∆ Ψ

idΨ
Ð→ Ψ

∆,Ψ Ð→ ∆,Ψ

4Introduced here as a convenient notation for representing compositions in symmetric monoidal categories. In
particular, they simplify semantic reasoning by omitting theneed to include extraneous identitymorphismswhen composing
pairs ofmorphisms.

18 2. MATHEMATICAL PRELIMINARIES

(4) the identitymorphism is the left unit, i.e., the following morphism is equal to f :

∆
id∆
Ð→ ∆ Φ, ∆,Ψ

f

Ð→ Ξ
Φ, ∆,Ψ Ð→ Ξ

(5) the identitymorphism is the right unit, i.e., the following morphism is equal to g:

Λ
g

Ð→ Γ, ∆, ∆ ∆
id∆
Ð→ ∆

Λ
Γ
Ð→, ∆, ∆

(6) composition is associative, i.e., the following morphisms are equal:

Γ1
f

Ð→ Γ2 ,Π, Γ3 ∆1 ,Π, ∆2
g

Ð→ ∆3 ,Θ, ∆4

∆1 , Γ1 , ∆2 Ð→ Γ2 , ∆3 ,Θ, ∆4 , Γ3 Φ1 ,Θ,Φ2
h
Ð→ Φ3

Φ1 , ∆1 , Γ1 , ∆2 ,Φ2 Ð→ Γ2 , ∆3 ,Φ3 , ∆4 , Γ3

Γ1
f

Ð→ Γ2 ,Π, Γ3

∆1 ,Π, ∆2
g

Ð→ ∆3 ,Θ, ∆4 Φ1 ,Θ,Φ2
h
Ð→ Φ3

Φ1 , ∆1 ,Π, ∆2 ,Φ2 Ð→ ∆3 ,Φ3 , ∆4

Φ1 , ∆1 , Γ1 , ∆2 ,Φ2 Ð→ Γ2 , ∆3 ,Φ3 , ∆4 , Γ3

(7) composition is partially commutative, i.e., the following morphisms are equal whenever
at least one of ∆2 , Γ2, and one of ∆2 , Γ3 is empty:

∆1
g

Ð→ ∆2 ,Θ, ∆3

Γ1
f

Ð→ Γ2 ,Π, Γ3 Φ1 ,Π,Φ2 ,Θ,Φ3
h
Ð→ Φ4

Φ1 , Γ1 ,Φ2 ,Θ,Φ3 Ð→ Γ2 ,Φ4 , Γ3

Φ1 , Γ1 ,Φ2 , ∆1 ,Φ3 Ð→ ∆2 , Γ2 ,Φ4 , Γ3 , ∆3

Γ1
f

Ð→ Γ2 ,Π, Γ3

∆1
g

Ð→ ∆2 ,Θ, ∆3 Φ1 ,Π,Φ2 ,Θ,Φ3
h
Ð→ Φ4

Φ1 ,Π,Φ2 , ∆1 ,Φ3 Ð→ Γ2 ,Φ4 , Γ3

Φ1 , Γ1 ,Φ2 , ∆1 ,Φ3 Ð→ ∆2 , Γ2 ,Φ4 , Γ3 , ∆3

and the following morphisms are equalwhenever at least one ofΦ1 , ∆1, and one ofΦ2 , ∆2,
is empty:

Γ1
h
Ð→ Γ2 ,Π, Γ3 ,Θ, Γ4 ∆1 ,Π, ∆2

f

Ð→ ∆3

∆1 , Γ1 , ∆2 Ð→ Γ2 , ∆3 , Γ3 ,Θ, Γ4 Φ1 ,Θ,Φ2
g

Ð→ Φ3

Φ1 , ∆1 , Γ1 , ∆2 ,Φ2 Ð→ Γ2 , ∆3 , Γ3 ,Φ3 , Γ4

Γ1
h
Ð→ Γ2 ,Π, Γ3 ,Θ, Γ4 Φ1 ,Θ,Φ2

g

Ð→ Φ3

Φ1 , Γ1 ,Φ2 Ð→ Γ2 ,Π, Γ3 ,Φ3 , Γ4 ∆1 ,Π, ∆2
f

Ð→ ∆3

Φ1 , ∆1 , Γ1 , ∆2 ,Φ2 Ð→ Γ2 , ∆3 , Γ3 ,Φ3 , Γ4 ◀

We can extract amaximal polycategory P from each pluricategory Q. The objects of P are
those of Q, and themorphisms of P are those whose codomain consists of a single object.

Example 2.1.12. Every symmetric monoidal category induces a pluricategory by interpreting
morphisms f ∶ A1 ⊗⋯⊗ An → B1 ⊗⋯⊗ Bm as morphisms f ∶ A1 , . . . ,An → B1 , . . . , Bm . ◀

2.2. Order Theory

Partial orders have long been applied to the semantics of programming languages. We briefly
review the key definitions that we will use in this thesis, building primarily on [AJ95; Gie+03]. For
a deeper introduction, we refer the reader to the wealth of expository works on order theory and
domain theory, and on applications of domain theory to the semantics of programming languages:
[AJ95; Gie+80; Gie+03; GM89; Gun92; Ten95].

Definition 2.2.1. A partially ordered set or poset (P, ⊑) is a set P equipped with a relation ⊑ that is:

2.2. ORDER THEORY 19

(1) reflexive: for all x ∈ P, p ⊑ p;
(2) transitive: for all x , y, z ∈ P, x ⊑ y and y ⊑ z implies x ⊑ z;
(3) antisymmetric: for all x , y, z ∈ P, x ⊑ y and y ⊑ x implies x = y. ◀

As usual in mathematics, we usually leave the structure on a set implicit, i.e., we write P for
the poset (P, ⊑).

Definition 2.2.2. A function f ∶ P → Q between posets is monotone if for all x , y ∈ A, if x ⊑ y,
then f (x) ⊑ f (y). ◀

Partially ordered sets andmonotone functions between them form a category Poset.

Example 2.2.3. Let P and Q be posets. The poset Poset [P → Q] has as elements monotone
functions f ∶ P → Q. Its ordering is given pointwise, i.e., f ⊑ g if and only if f (x) ⊑ g(x) for all
x ∈ P. ◀

Definition 2.2.4 ([AJ95, Definition 2.1.3]). Let P be a poset and A a subset of P.
(1) The subset A is an upper set if x ∈ A implies y ∈ A for all y ⊒ x. We write ↑A for the least

upper set containing A, and ↑x for ↑{x}.
(2) An element x ∈ P is an upper bound of A if a ⊑ x for all a ∈ A.
(3) The subset A is a lower set if x ∈ A implies y ∈ A for all y ⊑ x. We write ↓A for the least

upper set containing A, and ↓x for ↓{x}.
(4) An element x ∈ P is a lower bound of A if x ⊑ a for all a ∈ A.
(5) The least upper bound of A, if it exists, is variously called the lub, supremum, or join of A.

We write ⊔A for this element when it exists.
(6) The least element of P, if it exists, is called its bottom element and is denoted by �. In this

case, we say that P is a pointed poset.
(7) The greatest lower bound of A, if it exists, is variously called the glb, infimum, or meet of

A. We write ⊓A for this element when it exists.
(8) The greatest element of P, if it exists, is called its top element and is denoted by ⊺.
(9) If every pair of elements in P has a supremum and an infimum, then P is called a lattice.

A complete lattice is a lattice with a supremum and an infimum for each of its subsets. ◀

Definition 2.2.5. A function F ∶ P → Q of pointed posets is strict if f (�) = �. ◀

Given a category P of partially ordered sets, we write P� for the full subcategory of P whose
objects are pointed posets. We write P�! for the wide subcategory of P� whose morphisms are
strict.

Definition 2.2.6. Let P be a poset and f ∶ P → P a function. An element x ∈ P is called a fixed
point of f if f (x) = x, a pre-fixed point of f if f (x) ⊑ x, and a post-fixed point of f if x ⊑ f (x). The
least and greatest fixed points of f , if they exist, are respectively denoted lfp(f) and gfp(f). ◀

The fixed points of amonotone function on a complete lattices form a complete lattice. In
particular,monotone functions on complete lattices enjoy least and greatest fixed points:

Theorem 2.2.7 (Knaster-Tarski [Tar55]). Let L be a complete lattice, f ∶ L → L be amonotone

function, and P the set of all fixed points of f . Then P is non-empty, a complete lattice, and

⊓ P =⊓{x ∣ f (x) ⊑ x},

⊔ P =⊔{x ∣ x ⊑ f (x)}.

We can explicitly construct fixed points of ω-(co)continuous functions on complete lattices
using the Kleene fixed-point theorem:

Definition 2.2.8. Let L be a complete lattice. We say that a function f ∶ L → L is
(1) ω-continuous if f (⊔i∈N x i) = ⊔i∈N f (x i) for all increasing sequences x0 ⊑ x1 ⊑ ⋯ of

points in L;

20 2. MATHEMATICAL PRELIMINARIES

(2) ω-cocontinuous if f (⊓i∈N x i) = ⊓i∈N f (x i) for all decreasing sequences ⋯ ⊑ x1 ⊑ x0 of
points in L. ◀

Theorem 2.2.9 (Kleene Fixed-Point [San12, Theorem 2.8.5]). Let L be a complete lattice and

f ∶ L → L a function. If f is ω-continuous, then

lfp(f) = ⊔
n∈N

f
n(�).

If f is ω-cocontinuous, then

gfp(f) = ⊓
n∈N

f
n(⊺).

In chapter 4, we will generalize the above results from ω-cocontinuous functions on lattices to
ω-cocontinuous functors on categories.

The definition of lattice is too strong for many applications, and functions on sets with less
structure still have pleasant fixed-point properties.

Definition 2.2.10 ([AJ95, Definition 2.1.8]). A subset A of a poset P is directed if it is non-empty
and each pair of elements of A has an upper bound in A. We write ⊔↑A for the supremum of a
directed subset A, if it exists, and call it a directed supremum. ◀

The following proposition is useful for simplifying calculations involving directed suprema:

Proposition 2.2.11 ([AJ95, Proposition 2.12.2]). Let I be a directed poset and let α ∶ I × I → P

be amonotone function into a poset P. If the following directed suprema exist, then they are equal:

⊔
↑

i , j∈I
α(i , j) = ⊔↑

i∈I
⊔
↑

j∈I
α(i , j) = ⊔↑

j∈I
⊔
↑

i∈I
α(i , j) = ⊔↑

i∈I
α(i , i).

Definition 2.2.12. A directed-complete partial order or dcpo is a poset whose every directed subset
has a supremum. ◀

Remark 2.2.13. Some authors [Mit90, p. 394] require that dcpos be pointed, i.e., that they have a
bottom element. Following Abramsky and Jung [AJ95], we do not require dcpos to be pointed.

Definition 2.2.14. Let C and D be dcpos. A function f ∶ C → D is (Scott-)continuous if for all
directed subsets A of C, f (⊔↑A) = ⊔ f (A). ◀

Proposition 2.2.15 ([AJ95, Exercise 2.3.9(12)]). A function f ∶ C → D between dcpos is

continuous if and only if it is monotone and f (⊔↑A) = ⊔↑ f (A) for all directed subsets A of C.

Dcpos and continuous functions between them form a categoryDCPO.
One important feature of continuous functions on pointed dcpos is that they admit fixed

points. The following proposition gives two explicit characterizations of these:

Proposition 2.2.16. Let D be a pointed dcpo, and let f ∶ D → D be a continuous function. Then

the fixed points of f form a pointed dcpo. In particular, f has a least fixed point lfp(f) ∈ D, and it is
equivalently constructed:

(1) using the Kleene fixed-point theorem, with lfp(f) = ⊔↑n∈N f n(�D);
(2) using a variant of the Knaster-Tarski theorem, with lfp(f) = ⊓{x ∈ D ∣ f (x) ⊑ x}.

Proof. The proofs are standard. We begin by showing the formulation given by the Kleene fixed-
point theorem. Observe first that � ⊑ f (�D), and induction on n shows that f n(�D) ⊑ f n+1(�D)
for all n. It follows that { f n(�D) ∣ n ∈ N} is a directed subset of D, so it has a directed supremum
by definition of dcpo. Observe that this directed supremum is a fixed point of f :

f (⊔
↑

n∈N
f
n(�D)) = ⊔

↑

n∈N
f
n+1(�D) = ⊔

↑

n∈N
f
n(�D).

To see that it is the least fixed point, let d be any other fixed point of f . Then �D ⊑ d = f (d), and
by induction on n, we have f n(�D) ⊑ d for all n. So d is also an upper bound of { f n(�D) ∣ n ∈ N}.
It follows that ⊔↑n∈N f n(�D) ⊑ d, i.e., that ⊔↑n∈N f n(�D) is truly the least upper bound of f .

2.2. ORDER THEORY 21

Next, we show the Knaster-Tarski formulation. Set F = {x ∈ D ∣ f (x) ⊑ x}. Observe that
lfp(f) ∈ F, so it is sufficient to show that lfp(f) is the least element of F. Let x ∈ F be arbitrary.
Then � ⊑ x. Bymonotonicity of f and the definition of F, f (�) ⊑ f (x) ⊑ x. By induction on n,
we get f n(�D) ⊑ x for all n, so lfp(f) ⊑ x. It follows that lfp(f) is the least element of f , so the
infimum ⊓ F exists and is equal to lfp(f).

We know by the existence of lfp(f) that the fixed points of f form a pointed poset. It remains
to show that this pointed poset is directed complete. Let X be any directed subset. Wemust show
that f (⊔↑X) = ⊔↑X. But this is immediate by continuity of f , and the fact that the elements of X
are fixed points of f :

f (⊔
↑
X) = ⊔

↑
f (X) = ⊔

↑
X .

A key idea underlying category theory is that objects are best studied through the lens of their
morphisms. Order theory enjoys a wide variety of morphisms with special properties, and we
consider these here.

Definition 2.2.17. Let P and Q be posets. We say that monotone functions l ∶ P ⇆ Q ∶ u form an
adjunction (l , u) if for all x ∈ P and y ∈ Q, l(x) ⊑ y if and only if x ⊑ u(y). In this case, we write
l ⊣ u, and we call l the lower adjoint and u the upper adjoint. ◀

Remark 2.2.18. The order of l and u in an adjunction (l , u) varies in the literature. We follow
[AJ95], who place the lower adjoint on the left, while [Gie+03] write (u, l) for the same adjunction.
We generally prefer the categorical notation l ⊣ u to eliminate any ambiguity.

In the literature, adjunctions are also called Galois connections. When the posets P and Q are
viewed as categories, we recognize the adjoint functions l ⊣ u as adjoint functors. Consequently,
facts about adjoint functors, e.g., that adjoints uniquely determine each other, also apply to adjoint
functions between posets. The following equivalent definitions of adjunctions are well known:

Proposition 2.2.19 ([Gie+03, TheoremO-3.6; AJ95, Propositions 3.1.10 and 3.1.12]). Let P and

Q be posets, and assume that l ∶ P ⇆ Q ∶ u aremonotone. The following are equivalent:

(1) l ⊣ u is an adjunction;

(2) l ○ u ⊑ idQ and idP ⊑ u ○ l ;
(3) ∀x ∈ P, l(x) = min(u−1(↑x));
(4) ∀y ∈ Q, u(y) = max(l−1(↓y)).

These conditions imply:

(5) l = l ○ u ○ l and u = u ○ l ○ u;

(6) l ○ u and u ○ l are idempotent;

(7) l is injective if and only if u ○ l = idP if and only if u is surjective;

(8) l is surjective if and only if l ○ u = idQ if and only if u is injective;

(9) l preserves existing suprema, and u preserves existing infima.

The following class of adjunctions is particularly useful in applications to semantics:

Definition 2.2.20. Let P and Q be posets. Monotone functions e ∶ P ⇆ Q ∶ p form an embedding-
projection pair or e-p-pair (e , p) if p ○ e = id and e ○ p ⊑ id. We say e is an embedding and p is a
projection. As adjoints, the functions e and p uniquely determine each other. Given an e-p-pair
(f , g), wemay write f p for g and g e for f . ◀

We will frequently silently use the following proposition:

Proposition 2.2.21. Lower adjoints (including embeddings) are strict whenever their domains

are pointed. Surjective upper adjoints (including projections) are also strict whenever their domains

are pointed.

Proof. If l is a lower adjoint, then by proposition 2.2.19,

l(�) = l(⊔∅) =⊔∅ = �.

22 2. MATHEMATICAL PRELIMINARIES

⊺

a b c

�

Figure 2.4. Elements a, b, c, � are compact but not prime

If u is a surjective upper adjoint, then its lower adjoint l is injective by proposition 2.2.19. By
definition of adjunction, (l ○u)(�) ⊑ �. This implies (l ○u)(�) = �. But l(�) = � and l is injective,
so u(�) = �.

The ordering in dcpos provides a notion of convergence. We are also interested in a second
ordering on dcpos, which specifies which elements can be used to “approximate” other elements.

Definition 2.2.22. We say that x approximates y (or that x is way-below y) in a dcpo D if for all
directed subsets A of D, y ⊑ ⊔↑A implies x ⊑ a for some a ∈ A. In this case, we write x ≪ y. We
say that x is compact if x ≪ x. WriteK(D) = {x ∈ D ∣ x ≪ x} for the set of compact elements of
D. ◀

Remark 2.2.23. The terminology “approximation order” is due Abramsky and Jung [AJ95]. It is
traditionally called the “way-below relation”.
Remark 2.2.24. Compact elements are often called “finite” elements. This is because the compact
elements in the complete lattice induced by a power set are exactly its finite sets.

The approximation and convergence orders are related as follows:

Proposition 2.2.25 ([AJ95, Proposition 2.2.2]). Let D be a dcpo. Then for all x , x′ , y, y′ ∈ D,
(1) if x ≪ y, then x ⊑ y;

(2) if x′ ⊑ x ≪ y ⊑ y′, then x′ ≪ y′.

Definition 2.2.26. A basis B of a dcpo D is a subset B ⊆ D such that for all x ∈ D, the set {b ∈ B ∣
b ≪ x} contains a directed subset with supremum x. ◀

A domain is a dcpo equipped with a notion of approximation:

Definition 2.2.27. A dcpo D is an algebraic domain if it has a basis of compact elements. It is an
ω-algebraic domain ifK(D) is a countable basis of D. ◀

Prime elements are a special subclass of compact elements:

Definition 2.2.28. Let D be a dcpo. An element p is prime if for all bounded subsets B of D,
p ⊑ ⊔B implies p ⊑ b for some b ∈ B. Write ∣D∣ for the set of prime elements of D. We say that D
is prime-algebraic if every element of D is the supremum of its prime elements. ◀

Though every prime element is compact, not every compact element is prime. For example,
the bottom element is never prime in non-trivial dcpos. More generally, every element in theHasse
diagram of fig. 2.4 is compact, but only the top element is prime.

There are several important classes of domains in semantics.

Definition 2.2.29 ([Gun92, p. 151]). A non-empty dcpo D is bounded-complete if every bounded
subset M ⊆ D has a least upper bound⊔M ∈ D.WewriteBC for the category of bounded-complete
dcpos and continuous morphisms between them. ◀

We say that a pair of elements x , y ∈ D is consistent, written x ↑ y, if they are bounded.

Proposition 2.2.30 ([Gun92, Theorem 5.5]). A dcpo D is bounded-complete if and only if every

consistent pair x ↑ y in D has a least upper bound.

2.2. ORDER THEORY 23

An important result about bounded complete domains is:

Proposition 2.2.31 ([Gun92, Lemma 5.10;AJ95, Exercise 4.3.11(2)]). If D is a bounded-complete

domain, then ⊓ ∶ D × D → D is continuous.

Remark 2.2.32. Proposition 2.2.31 is not true in general for bounded-complete dcpos [Gun92,
Exercise 5.16].

Definition 2.2.33. Abounded-complete dcpo satisfies the d-property if x⊓(y⊔z) = (x⊓y)⊔(x⊓z)
whenever y ↑ z (equivalently, whenever x ↑ y and x ↑ z). ◀

The bounded-complete dcpo of fig. 2.4 does not satisfy the d-property.

Definition 2.2.34. An algebraic domain satisfies the I-property if every compact element has a
finite number of lower bounds. ◀

The domain {� ⊑ ⋯ ⊑ 3 ⊑ 2 ⊑ 1} does not satisfy the I-property [Zha91, p. 140].

Definition 2.2.35. A dI-domain is a bounded-complete ω-algebraic domain satisfying properties d
and I. ◀

Theorem 2.2.36 ([Zha91, Theorem 6.2]). If D is a bounded-complete ω-algebraic domain

satisfying the I-property, then D is prime algebraic if and only if it is a dI-domain.

We can characterize the prime elements of dI-domains. Say that x is immediately below y if
x ⊑ y and for all x ⊑ z ⊑ y, either x = z or z = y.

Proposition 2.2.37 ([Zha91, Lemma 6.1]). The prime elements of a dI-domainD are the compact

elements with a unique element immediately below them.

We give Polarized SILL’s functional layer a denotational semantics using dI-domains and
continuous functions in section 8.3. Defining this semantics requires a cartesian-closed category of
dI-domains. To construct such a category, it is well known that wemust restrict our attention from
continuous functions to stable functions.

Definition 2.2.38. A continuous function f ∶ D → I between dI-domains is stable if for all x ↑ y
in D, f (x ⊓ y) = f (x) ⊓ f (y). ◀

Example 2.2.39. All upper adjoints are stable by proposition 2.2.19. ◀

Intuitively, a stable function is one where each finite (compact) piece of output is determined
by a unique finite piece of input. Proposition 2.2.40 makes this fact explicit. It adapts [Gir86,
Theorem 1.3] from qualitative domains to dI-domains.

Proposition 2.2.40 (Normal FormTheorem). Let f ∶ X → Y be a stable function of dI-domains

and a ∈ X. If q ∈ Y is prime and such that q ⊑ f (a), then:

(1) there exists a k ∈ K(X) such that k ⊑ a and q ⊑ f (k), and
(2) if such a k′ is chosen to beminimal, then k′ is unique.

Proof. To see the first condition, observe first that a = ⊔↑K(X)a by algebraicity. By continuity,
f (a) = ⊔↑ f (K(X))a . But q is compact, so there exists a k ∈ K(X)a such that q ⊑ f (k).

Assume now that k′ ∈ K(X) is chosen to beminimal with k′ ⊑ a and q ⊑ f (k′). Then k and
k′ are compatible, so f (k⊓ k′) = f (k)⊓ f (k′) by stability. But then q ⊑ f (k⊓ k′), so k′ = k⊓ k′ by
minimality, whence k′ ⊑ k. Because k was arbitrary, it follows that k′ is the uniqueminimum.

Warning 2.2.41. Proposition 2.2.40 does not state that theminimal k′ is globallyminimum such
that q ⊑ f (k′). It only states that if k′ ⊑ a is chosen minimal such that q ⊑ f (k′), then it is unique.
This k′ is sometimes called the modulus of stability M(f , x , q) of f , x, and q [Abr07, p. 42].

Definition 2.2.42. Let f ∶ X → Y be a stable function of dI-domains. Its skeleton is the set
sk(f) = {(k, q) ∈ K(X) × ∣Y ∣ ∣ k minimal with q ⊑ f (k)}. ◀

24 2. MATHEMATICAL PRELIMINARIES

Skeletons are frequently called traces in the literature. To avoid confusion with the trace
operators of section 2.3, we adopt the terminology of Girard [Gir06, Définition 2.8.2.16].

The skeleton of a stable function is well-defined by proposition 2.2.40. Proposition 2.2.43
adapts [Gir86, Theorem 1.4] from qualitative domains to dI-domains. Its proof can be found in
[Zha91, Lemma 6.2].

Proposition 2.2.43 (Representation Theorem). If f ∶ X → Y is a stable function between

dI-domains, then it is entirely determined by its skeleton: for all x ∈ X,

f (x) =⊔{q ∣ ∃k ⊑ x .(k, q) ∈ sk(f)}.

Definition 2.2.44. If f , g ∶ X → Y are stable functions between dI-domains, then f is stably less
than g, written f ⊑s g, if for all x ⊑ y, f (x) = f (y) ⊓ g(x). ◀

Viewing f and g as functors between X and Y , this is exactly the statement that ⊑s is a cartesian
natural transformation ⊑s ∶ f ⇒ g.

The stable ordering on functions is equivalent to the inclusion ordering on their skeletons:

Proposition 2.2.45. Let f , g ∶ X → Y be stable functions between dI-domains. Then f ⊑s g if

and only if sk(f) ⊆ sk(g).

Proof. Sufficiency is given by [Zha91, Lemma 6.3]. To see necessity, let x ⊑ y be arbitrary. By
proposition 2.2.43 and the assumption that sk(f) ⊆ sk(g):

f (y) ⊓ g(x) = (⊔{q ∣ ∃k ⊑ x .(k, q) ∈ sk(f)}) ⊓ (⊔{q ∣ ∃k ⊑ y.(k, q) ∈ sk(g)})

=⊔ ({q ∣ ∃k ⊑ x .(k, q) ∈ sk(f)} ⊓ {q ∣ ∃k ⊑ y.(k, q) ∈ sk(g)})

=⊔ ({q ∣ ∃k ⊑ x .(k, q) ∈ sk(f)} ⊓ {q ∣ ∃k ⊑ y.(k, q) ∈ sk(f)})

=⊔{q ∣ ∃k ⊑ x .(k, q) ∈ sk(f)}
= f (x).

DI-domains and stable functions form a cartesian-closed category Stab. Its product is inherited
fromDCPO. The exponential Stab [X → Y] is the dI-domain of stably ordered stable functions
from X to Y . We refer the reader to [Gun92, § 5.2] for a proof that Stab is cartesian closed. For
convenience, we present several useful facts related to its proof.

Proposition 2.2.46 ([Zha91, Lemma 6.4; Gun92, Lemma 5.17]). If F ⊆ Stab [D → E] is
bounded, then its supremum is computed point-wise:

⊔ F = λx .⊔
f ∈F

f (x).

Theorem 2.2.47 ([Gun92, Theorem 5.21]). If D and E are dI-domains, then so is Stab [D → E].

To make a function f ∶ ∏i∈I A i → B strict in a component j ∈ I, we use the continuous
function strict j ∶ [∏i∈I A i → B]→ [∏i∈I A i → B]:

strict j(f) ((a i)i∈I) =
⎧⎪⎪
⎨
⎪⎪⎩

�B if a j = �A j

f ((a i)i∈I) otherwise.
(1)

2.2.1. ConstructionsOnPartiallyOrdered Sets. We present various functorial constructions
used to form new posets, dcpos, domains, etc., from old.

The lifting P� of a poset P is the poset obtained by adjoining a new bottom element to P.
Explicitly, its elements are given by the set {�} ∪ {[p] ∣ p ∈ P}. As usual, � ⊑ p for all p ∈ P�,
and [p] ⊑ [q] if and only if p ⊑ q in P. Lifting sends morphisms f ∶ P → Q to strict morphisms
f� ∶ P� → Q� such that f�([x]) = [f (x)]. In particular, the diagram

P P�

Q Q�

up

f f�

up

(2)

2.2. ORDER THEORY 25

commutes in Poset for all morphisms f ∶ P → Q.
The (categorical) product P × Q of posets P and Q is given by the cartesian product of the

underlying sets of P and Q, and the ordering is given component-wise. Given pointed posets
Pi for i ∈ I and a j ∈ I, we write ι j ∶ Pj → ∏i∈I Pi for the map that sends p ∈ Pj to the tuple
(�, . . . , �, p, �, . . . , �) whose j-th component is p, and whose other components are all �. The
smash product P ⊗ Q of pointed posets P and Q identifies all elements of the form (�, q) or (p, �)
of P × Q. Explicitly,

P ⊗ Q = {(p, q) ∈ P × Q ∣ p ≠ � ∧ q ≠ �} ∪ {(�, �)},

and the ordering is given component-wise. We use the same notation for projections out of smash
products as we do for projections out of products. We warn the reader that smash products do not
in general play the role of categorical products in categories of dcpos. This is because themediating
morphism required by universalitymay not exist.

The disjoint union P1 ⊎ P2 of posets P1 and P2 is the poset whose underlying set is the disjoint
union of P1 and P2, and whose ordering is given by (i , x) ⊑ (j, y) if and only if i = j and x ⊑ y in
Pi . The coalesced sum P1 ⊕ P2 of pointed posets P1 and P2 identifies all labelled bottom elements of
the disjoint union P1 ⊎ P2. Explicitly,

P1 ⊕ P2 = {�} ∪ {(i , p) ∣ 1 ≤ i ≤ 2 ∧ p ∈ Pi ∧ p ≠ �}

The ordering is given by x ⊑ y if x = �, or if x = (i , x′) and y = (i , y′) and x′ ⊑ y′ in Pi .

Proposition 2.2.48.Where defined, the lifting, product, smash product, disjoint union, or

coalesced sum of a poset, dcpo, or (bc-,dI-)domain is again a poset, dcpo, or (bc-,dI-)domain.

Products play the categorical role of product in the various categories. Coalesced sums play
the role of coproducts in the various subcategories of pointed posets with strict morphisms. We
refer the reader to [AJ95, § 3.2] for further properties of the aforementioned constructions. Given
a functor F into a category of posets closed under lifting, we often abbreviate (−)� ○ F as F�.

Lemmas 2.2.49 and 2.2.50 describe embedding-projection pairs involving the above construc-
tions. They will frequently be used in the denotational semantics of Polarized SILL.

Lemma 2.2.49. If l i ∶ A i → L i and r i ∶ A i → R i are such that ⟨l i , r i⟩ ∶ A i → L i × R i is an

embedding for 1 ≤ i ≤ n, then

⟨
n

∏
i=1

l i ,
n

∏
i=1

r i⟩ ∶
n

∏
i=1

A i → (
n

∏
i=1

L i) × (
n

∏
i=1

R i)

is an embedding with associated projection

(
n

∏
i=1

L i) × (
n

∏
i=1

R i)
≅
Ð→

n

∏
i=1

L i × R i

∏n

i=1⟨l i ,r i⟩
p

ÐÐÐÐÐÐ→
n

∏
i=1

A i .

Lemma 2.2.50. Let F ,G ∶ C → Poset�! be functors, where Poset�! is the category of pointed

posets and strict monotone maps. The natural transformation δ ∶ ((−)�F) × G ⇒ (−)� (F ×G)
given by

δC(x , y) =
⎧⎪⎪
⎨
⎪⎪⎩

� if x = �

[(z, y)] if x = [z].

is a natural family of projection. The associated family of embeddings

(δC)
e
(x) =

⎧⎪⎪
⎨
⎪⎪⎩

(�, �) if x = �

([a], b) if x = [(a, b)]

is natural, and each component is stable.

If ⟨ϕ, γ⟩ ∶ H ⇒ F ×G ∶ C→ Poset�! is natural, then

⟨(−)�ϕ, down ∗ γ⟩ = δe ○ (−)�⟨ϕ, γ⟩ ∶ (−)�H ⇒ (−)�F ×G .

26 2. MATHEMATICAL PRELIMINARIES

Proof. Straightforward computation shows that both families are natural, and that they form an
e-p-pair. It is also clear that each component (δC)

e is stable. A calculation shows the equality of
natural transformations.

2.2.1.1. ω-Colimits. The categoryDCPO is closed under colimits of a class of diagrams called
“expanding sequences” [AJ95, Definition 3.3.6 and Theorem 3.3.7]. We specialize these results to
diagrams of shape ω.

Definition 2.2.51. Let ω be the category induced by the posetN under the usual ordering. Explicitly,
its objects are natural numbers, and there exists a uniquemap m → m + k for all m, k ≥ 0. ◀

Definition 2.2.52. An ω-chain is a diagram of shape ω. ◀

Colimits of expanding sequences inDCPO follow the usual pattern of colimits in categories of
sets with structure (cf. [Rie16, §3.2, § 3.5]. Theorem 2.2.53 is a special case of [AJ95, Theorem 3.3.7].

Theorem 2.2.53 (Limit-Colimit Coincidence). Let (emn ∶ Dn → Dm)n≤m be an ω-chain

in DCPO such that each emn is an embedding, and write pnm for e
p

mn ∶ Dm → Dn . Define:

D = {(xn)n∈N ∈∏
n∈N

Dn ∣ ∀n ≤ m.xn = pnm(xm)},

pm((xn)n∈N) = xm ∶ D → Dm for m ∈ N,

em(x) = (⊔
↑

k≥n ,m
(pnk ○ ekm) (x))

n∈N
∶ Dm → D for m ∈ N.

Then

(1) Themaps (em , pm) form e-p-pairs, and ⊔↑n∈N en ○ pn = idD .
(2) The cone (pm ∶ D → Dm)m∈N is limiting. Given any other cone (gm ∶ C → Dm)m∈N, the

uniquemediating morphism of cones is ⊔↑n∈N en ○ gn .
(3) The cocone (em ∶ Dm → D)m∈N is colimiting. Given any other cocone (fm ∶ Dm → E)m∈N,

the uniquemediating morphism of cocones is ⊔↑n∈N fn ○ pn .

Let the canonical representatives of colimits of ω-chains of embeddings be given by theo-
rem 2.2.53.

Though the category Stab of dI-domains and stablemaps is not closed under ω-colimits of
embeddings, it is closed under ω-colimits of “rigid” embeddings:

Definition 2.2.54 ([KP93, Definition 9.3]). An embedding-projection pair e ∶ D ⇆ E ∶ p is rigid if
it additionally satisfies

∀x ∈ D.∀y ∈ E .y ⊑ e(x) ⊃ y = (e ○ p)(y). ◀

Intuitively, an embedding is rigid if its image is downward-closed. Rigid embeddings are exactly
the embeddings given when homsets are ordered stably instead of point-wise:

Proposition 2.2.55 ([CGW88, Lemma 2; Zha92, p. 168]). Consider an embedding-projection

pair e ∶ D ⇆ E ∶ p between algebraic domains D and E, with e and p continuous. Then (e , p) is
rigid if and only if e ○ p ⊑s id.

Proposition 2.2.56 ([Ber94, p. 34; CGW88, p. 350]). The category Stabre
of dI-domains and

rigid embeddings is closed under ω-colimits.

Corollary 2.2.64, below, shows that the ω-colimits of proposition 2.2.56 coincide with those
given by theorem 2.2.53.

2.2. ORDER THEORY 27

2.2.2. Order-Enriched Category Theory. We refer the reader to [Gun92, Chapter 10; SP82;
Fio94, § 2.3] for additional background on order-enriched categories andO-categories.

Definition 2.2.57. An O-category [SP82, Definition 5] (or DCPO-enriched category) is a category
K where every hom-set K(C ,D) is a dcpo, and where composition ofmorphisms is continuous
with respect to the partial ordering on morphisms. ◀

Example 2.2.58. The category DCPO is an O-category. Functor categories Cat[C → D] are
O-categories whenever D is anO-category. ◀

Example 2.2.59. Full subcategories ofO-category are againO-categories. ◀

Remark 2.2.60. Any given subcategory ofDCPOmay induce distinct O-categories. For example,
the category Stab of dI-domains and stable functions induces theO-category whose homsets are
stably ordered, as well as the O-category whose homsets are pointwise ordered. This subtlety
has critical implications when solving domain equations. Indeed, the category of dI-domains
whosemorphisms are embeddings under the stable ordering is closed under ω-colimits, while the
category of dI-domains whosemorphisms are embeddings under the pointwise ordering is not.

Definition 2.2.61. A functor F ∶ D → E between O-categories is locally continuous if the maps
f ↦ F(f) ∶ D(D1 ,D2)→ E(F(D1), F(D2)) are continuous for all objects D1 ,D2 ofD. ◀

Small O-categories form a 2-cartesian closed category O, where horizontal morphisms are
locally continuous functors and vertical morphisms are natural transformations.

Example 2.2.62. The functors defining lifting, products, smash products, disjoint unions, and
coalesced sums are all locally continuous relative to the pointwise and stable ordering. ◀

When K is an O-category, we write Ke for the subcategory of K whosemorphisms are em-
beddings. The category Ke is not in general an O-category under the induced ordering [SP82,
p. 768].

A cocone κ ∶ J ⇒ A inKe is anO-colimit [SP82, Definition 7] if (κn ○κ
p

n)n is an ascending chain
inK(A,A) and ⊔↑n∈N κn○κ

p

n = idA. K isO-cocomplete if every ω-chain inKe has anO-colimit inK.
Our interest in O-colimits is due to proposition 2.2.63, which appears as [SP82, Propositions A
and D] and as part of the proof of [SP82, Proposition A]. It characterizes the colimits that will be
used to construct the denotations of recursive session types. Parts of proposition 2.2.63 can also be
found in the proof of [Gun92, Theorem 10.4] or specialized to DCPO as [AJ95, Theorem 3.3.7].
This result gives us an explicit characterization of colimits in O-categories. We invite the reader to
compare it to theorem 2.2.53.

Proposition 2.2.63 ([SP82, Propositions A and D]). Let K be an O-category, Φ an ω-chain in

Ke , and α ∶ Φ⇒ A a cocone in K.
(1) If β ∶ Φ⇒ B is a cocone in Ke , then (αn ○ β

p

n)n∈N is an ascending chain in K(B,A) and
themorphism θ = ⊔↑n∈N αn ○ β

p

n is mediating from β to α.

(2) If β ∶ Φ⇒ B is anO-colimit and α lies in Ke , then θ is an embedding.

(3) If α is anO-colimit, then α is colimiting in both K and Ke .

(4) If α is colimiting in K, then α lies in Ke and is anO-colimit.

Corollary 2.2.64. Let Stab be theO-category of dI-domains and stablemaps,where homsets are

stably ordered. Then Stabe
is the category of dI-domains and rigid embeddings. Let Φ be an ω-chain

in Stabe
, and let κ ∶ Φ⇒ A be colimiting in Stab. Then κ ∶ Φ⇒ A is also colimiting in DCPO.

Proof. The first part is exactly proposition 2.2.55. If κ ∶ Φ ⇒ A is colimiting in Stab, then it is
colimiting in Stabe . It follows that κ is an O-colimit relative to the stable ordering. The stable
ordering implies the pointwise ordering, and directed suprema in Stab [A→ A] are computed
point-wise by proposition 2.2.46. It follows that ⊔↑n∈N κn ○ κ

p

n = idA inDCPO [A→ A], so κ is an
O-colimit inDCPO, where homsets are ordered pointwise. We conclude that κ is colimiting in
DCPO.

28 2. MATHEMATICAL PRELIMINARIES

2.3. Properties of Parametrized Fixed-Point and TraceOperators

We saw in section 2.2 that the categoryDCPO is equipped with a fixed-point operator. It and
many other categories of interest in semantics are also equipped with a parametrized fixed-point
operator. Particularly nice parametrized fixed-point operators are called Conway operators [BÉ96].

Definition 2.3.1 ([SP00, Definitions 2.2 and 2.4]). A parametrized fixed-point operator on a cartesian
categoryM is a family ofmorphisms (⋅)† ∶M [X × A→ A]⇒M [X → A] satisfying:

(1) Naturality: for any g ∶ X → Y and f ∶ Y × A→ A,

f
† ○ g = (f ○ (g × idA))

† ∶ X → A.

(2) The parametrized fixed-point property: for any f ∶ X × A→ A,

f ○ ⟨idX , f †⟩ = f
† ∶ X → A.

It is a Conway operator if it additionally satisfies:
(3) Parameterized dinaturality: for any f ∶ X × B → A and g ∶ X × A→ B,

f ○ ⟨idX , (g ○ ⟨πX , f ⟩)
†
⟩ = (f ○ ⟨π1 , g⟩)† ∶ X → A.

(4) The diagonal property: for any f ∶ X × A× A→ A,

(f ○ (idX × ∆))† = (f †)
†
∶ X → A,

where ∆ ∶ A→ A× A is the diagonal map. ◀

Proposition 2.3.2. The operator (⋅)† ∶ DCPO� [X × A→ A]⇒ DCPO� [X → A] given by

f
†(x) = lfp(λa ∈ A. f (x , a))

is a Conway operator.

Using proposition 2.2.16, we can characterize this Conway operator in two ways:

Corollary 2.3.3. Let X be a dcpo, A a pointed dcpo, and f ∶ X × A→ A a continuous function.

The parametrized fixed-point f † is equivalently constructed:

(1) using the Kleene fixed-point theorem, with f †(x) = ⊔↑n∈N(λa ∈ A. f (x , a))n(�A);
(2) using a variant of the Knaster-Tarski theorem, with f †(x) = ⊓{a ∈ A ∣ f (x , a) ⊑ a}.

Traces are a third kind of fixed-point operator. Traces were first discovered by Căzănescu and
Ştefănescu [CŞ90, § 4.3] and then independently rediscovered by Joyal, Street, and Verity [JSV96]
in the setting of balancedmonoidal categories.

Definition 2.3.4 ([BH03, Definition 2.4]). Let (M,⊗, I, λ, ρ, α, σ) be a symmetricmonoidal cate-
gory. A trace onM is a family of functions

TrU

A,B ∶M(A⊗U , B ⊗U)→M(A, B)

satisfying the following conditions:
(1) Naturality in A (left tightening): if f ∶ A′ ⊗U → B ⊗U and g ∶ A→ A′, then

TrU

A,B (f ○ (g ⊗ idU)) = TrU

A′ ,B(f) ○ g ∶ A→ B.

(2) Naturality in B (right tightening): if f ∶ A⊗U → B′ ⊗U and g ∶ B′ → B, then

TrU

A,B ((g ⊗ idU) ○ f) = g ○ TrU

A,B′(f) ∶ A→ B.

(3) Dinaturality (sliding): if f ∶ A⊗U → B ⊗ V and g ∶ V → U , then

TrU

A,B ((idB ⊗ g) ○ f) = TrVA,B (f ○ (idA ⊗ g)) ∶ A→ B.

2.3. PROPERTIES OF PARAMETRIZED FIXED-POINT AND TRACE OPERATORS 29

(4) Action (vanishing): if f ∶ A→ B, then

TrIA,B (ρ
−1 ○ f ○ ρ) = f ∶ A→ B,

and if f ∶ A⊗ (U ⊗ V)→ B ⊗ (U ⊗ V), then

TrU⊗V
A,B (f) = TrU

A,B (TrVA⊗U ,B⊗U (α
−1 ○ f ○ α)) .

(5) Superposing:5 if f ∶ A⊗U → B ⊗U , then

TrU

C⊗A,C⊗B (α
−1 ○ (idC ⊗ f) ○ α) = idC ⊗ TrU

A,B(f) ∶ C ⊗ A→ C ⊗ B.

(6) Yanking: for all U ,
TrU

U ,U (σU ,U) = idU ∶ U → U .

In this case, we callM a symmetric traced category.6 ◀

Example 2.3.5. The following defines a trace on the categoryDCPO� [AHS02, § 5.6]:

TrXA,B(f) = π
B×X
B ○ f ○ ⟨idA, (πB×X

X ○ f)
†
⟩ . ◀

For conciseness and clarity, we will often elide the subscripts on the trace operator when they
are clear from context.

We can reason about traces using string diagrams, where the trace operator is captured by
looping the output of a function back into the corresponding input. We adopt the graphical notation
of [Sel11; Mal10, § 2.8]. Figure 2.5 presents the trace axioms in this graphical notation.

Theorem 2.3.6 ([Mal10, Theorem 2.8.1]). A well-formed equation between morphism terms in

the language of traced symmetricmonoidal categories follows from the axioms of traced symmetric

monoidal categories if and only if it holds, up to isomorphism of diagrams, in the graphical language.

Hasegawa [Has99, Theorem 7.1] andHyland [BH03, p. 281] independently discovered that a
cartesian category has a trace if and only if it has a Conway operator. The following is a special case
of the proof of theHasegawa-Hyland theorem.

Proposition 2.3.7. For all f ∶ A× X → B× X, we have f ○ ⟨idA, (πB×X
X
○ f)†⟩ = (f ○ πB×X×A

A×X)†.

Consequently, TrXA,B(f) = π
B×X
B
○ (f ○ πB×X×A

A×X)† when Tr is defined as in example 2.3.5.

Corollary 2.3.8. Let A be a dcpo, let B and X be pointed dcpos, and let f ∶ A× X → B × X be

a continuous function. Then the trace TrXA,B(f) is equivalently constructed:

(1) using the Kleene fixed-point theorem, with

TrX(f)(a) = πB×X
B (⊔

↑

n∈N
(λ (b, x) . f (a, x))n (�B , �X)) ;

(2) using a variant of the Knaster-Tarski theorem, with

TrX(f)(a) = πB×X
B (⊓{(b, x) ∈ B × X ∣ f (a, x) ⊑ (b, x)}) .

The following corollary gives a collection of identities that will be useful for reasoning about
traces.

Corollary 2.3.9. Let A be a dcpo, let B and X be pointed dcpos, and let f ∶ A× X → B × X be

a continuous function. Let a ∈ A be arbitrary, and set

P = {(b, x) ∈ B × X ∣ f (a, x) ⊑ (b, x)},

(β, χ) =⊓ P.

5This axiom is sometimes replaced by the “strength” axiom [Sel11; Mal10]: if f ∶ A⊗ X → B⊗ X and g ∶ C → D, then
TrX

C⊗A,D⊗B (α
−1
⊗ (g ⊗ f) ○ α) = g ⊗ TrX

A,B(f). Both collections of axioms give equivalent definitions.
6This categorical nomenclature is due to Selinger [Sel11].

30 2. MATHEMATICAL PRELIMINARIES

f

g

h f

g

h=

(a) Naturality (left and right tightening)

f

g

f

g

=

(b) Dinaturality (sliding)

f

I

f
=

(c) Vanishing I

f

XY

f

X ⊗ Y

=

(d) Vanishing II

=

(e) Yanking

f

g

f

g

=

(f) Strength

Figure 2.5. String diagram notation for traced categories

Then (β, χ) ∈ P, and the following identities hold:

(f ○ πA×B×X
A×X)

†

(a) = (β, χ), TrX(f)(a) = β,
f (a, χ) = (β, χ), min{b ∣ ∃x ∈ X . f (a, x) ⊑ (b, x)} = β.

Proof. We begin by showing that (f ○ πA×B×X
A×X)

†
(a) = (β, χ). By corollary 2.3.3, we have

(f ○ πA×B×X
A×X)

†
(a)

=⊓{(b, x) ∈ B × X ∣ (f ○ πA×B×X
A×X) (b, a, x) ⊑ (b, x)}

=⊓{(b, x) ∈ B × X ∣ f (a, x) ⊑ (b, x)}

=⊓ P

= (β, χ).

2.4. GENERALIZED ABSTRACT BINDING TREES 31

By the parametrized fixed-point property (definition 2.3.1),

f (a, χ) = (f ○ πA×B×X
A×X) (a, β, χ)

= ((f ○ πA×B×X
A×X) ○ ⟨idA, (f ○ πA×B×X

A×X)
†
⟩) (a)

= (f ○ πA×B×X
A×X)

†
(a)

= (β, χ).

So (β, χ) ∈ P. By corollary 2.3.8, TrX(f)(a) = πB(⊓ P) = β. Finally, the infimimum ⊓ P is the
least element of P because ⊓ P ∈ P. Infima of products are computed component-wise, so:

min{b ∣ ∃x ∈ X . f (a, x) ⊑ (b, x)}
= πB (min{(b, x) ∣ f (a, x) ⊑ (b, x)})

= πB (⊓ P)

= β.

2.4. Generalized Abstract Binding Trees

Processes in Polarized SILL feature two kinds of place-holders. The first kind is variables,
which stand for unknown values, and whosemeaning is given by substitution. The second kind is
symbols or names, which do not stand for anything, and whosemeaning is given by their structural
role as identifiers. Both variables and symbols can appear in free and bound positions in processes.
To make the important distinction between variables and symbols precise, we generalize abstract
binding trees [Har16, § 1.2] to allow for bound symbols. We also generalize abstract binding trees
to allow for infinite trees. Abstract binding trees find their roots in the work of Church, and their
theory was developed byHarper. Our exposition closely follows Harper’s.

2.4.1. Abstract Binding Trees. Abstract binding trees, or abts, generalize abstract syntax
trees to account for binding and scoping. Fix a finite set S of sorts. A sort s ∈ S is an identifier for a
sort, type, kind, or variety of tree. Abstract binding trees are constructed from operators, which
combine zero or more arguments of given sorts to form new trees of a given sort. Importantly,
each argument can use zero or more bound variables.

Valencies specify the number of bound variables in each argument. A valency is a syntactic
expression s1 , . . . , sn .s (abbreviated s⃗.s)with s1 , . . . , sn , s ∈ S and n ≥ 0. It specifies that an argument
has sort s, and that it has n bound variables representing trees of sort s i . An arity is a syntactic
expression (v1 , . . . , vn)s that specifies that an operator of sort s takes n ≥ 0 arguments of valency
v1 , . . . , vn . Operators are elements of an arity-indexed family of setsO = {Oα}.

To specify the sorts of variables that appear in abstract binding trees, we assume a sort-indexed
family of variables X = {Xs}s∈S . We say that x is a variable of sort s if x ∈ Xs . We say that x is fresh
for X if x ∉ Xs for all s. Given a family X of variables, a variable x fresh for X , and a sort s, we
write X , x for the family of variables obtained by extending Xs with x; context will disambiguate
the sort of x in X , x. More generally, given a family X ′ of fresh variables for X , we write X ,X ′ for
the family obtained by extending Xs with X ′s .

Abstract binding trees form sort-indexed families B[X] = {B[X]s}s∈S over sort-indexed
families of variables X . Fresh renamings account for the free renaming of bound variables in abts.
Given variables Y and fresh variables Y ′ (relative to X), a fresh renaming is a bijection ρ∶Y ↔ Y ′.
Given an abt a ∈ B[X ,Y]s , replacing each y ∈ Y in a by its counterpart in Y ′ gives a new abt
[ρ]a ∈ B[X ,Y ′]s .

Definition 2.4.1 ([Har16, p. 8]). The family of abstract binding trees is the least sort-indexed family
B[X] = {B[X]s}s∈S of sets closed under the following conditions:

(1) if x ∈ Xs , then x ∈ B[X]s ;
(2) for each operator o of arity (s⃗1 .s1 , . . . , s⃗n .sn)s, if for each 1 ≤ i ≤ n and each fresh renaming

ρ i ∶ x⃗ i ↔ x⃗′i , we have [ρ i]a i ∈ B[X , x⃗′i], then o(x⃗1 .a1 , . . . , x⃗n .an) ∈ B[X]s . ◀

32 2. MATHEMATICAL PRELIMINARIES

Remark 2.4.2. The family X of variables in the above definition is not fixed, but varies according to
the variables introduced by operators’ abstraction operations.

We always identify abstract binding trees up to α-equivalence:

Definition 2.4.3 ([Har16, p. 9]). α-Equivalence on abstract binding trees is the strongest congruence
≡α such that

(1) x ≡α x for all variables x;
(2) o(x⃗1 .a1 , . . . , x⃗n .an) ≡α o(x⃗′1 .a

′
1 , . . . , x⃗

′
n .a
′
n) if for every 1 ≤ i ≤ n, [ρ i]a i ≡α [ρ

′
i]a
′
i for all

fresh renamings ρ i ∶ x⃗ i ↔ z⃗ i and ρ′i ∶ x⃗
′
i ↔ z⃗ i . ◀

Example 2.4.4. The family of abstract binding trees for the unityped7
λ-calculus is generated by

the following data:
● the family S = {t} of sorts;
● the sort-indexed familyO where all sets are empty except for

O(t .t)t = {λ},
O(t ,t)t = {app}.

The set of abstract binding trees over Xt = {x , y} is:

B[X]t = {x , y, app(x , y), app(y, x), λ(x .x), λ(x .y), app(x , λ(x .x)), . . . }.

The result of substituting app(x , y) for x in app(x , λ(x .x)) is

[app(x , y)/x] (app(x , λ(x .x))) = app(app(x , y), λ(x .x)). ◀

As described above, themeaning of variables is given by capture-avoiding substitution, where
a variable x of sort s stands for an unknown abstract binding tree of sort s. Capture-avoiding
substitution is formally defined as follows:

Definition 2.4.5. A morphism of abts σ ∶B[X]↝ B[Y] is a choice σ(x) ∈ B[Y] for each variable
x ∈ X such that if x ∈ Xs , then σ(x) ∈ B[X]s is of the same sort. ◀

Definition 2.4.6. Given amorphism σ ∶B[X]↝ B[Y] and an abt a ∈ B[X], the abt [σ]a ∈ B[Y]
is given by simultaneous capture-avoiding substitution of σ(x) for x in a, a procedure recursively
defined on the structure of a by:

(1) [σ]x = σ(x);
(2) [σ](o(x⃗1 .a1 , . . . , x⃗n .an)) = o (x⃗1 .[σ]a1 , . . . , x⃗n .[σ]an) where we assume without loss of

generality that X ∩ x⃗ i = ∅ for all 1 ≤ i ≤ n. ◀

As a special case, we write [b1 , . . . , bn/x1 , . . . , xn] for themorphism that substitutes b i for x i
and fixes all other variables.

2.4.2. General Binding Trees. Just as abts extended abstract syntax trees to account for
bound variables, general binding trees, or gbts, extend abstract binding trees to account for bound
symbols. The development of gbts closely the development of abts, except that we also take symbols
into account. A sort s ∈ S is an identifier for a sort, type, kind, or variety of tree. A valency is a
syntactic expression s1 , . . . , sm .s′1 , . . . , s

′
n .s, where s i , s′i , s ∈ S are sorts. The sorts s1 , . . . , sm describe

the sorts of bound symbols; the sorts s′1 , . . . , s
′
n describe the sorts of bound variables. Arities are

again syntactic expressions (v1 , . . . , vn)s, where the v i are valencies. Operators are again given by
arity-indexed families of sets.

In addition to the sort-indexed family of variables X , we assume a sort-indexed family U =
{Us}s∈S of disjoint sets of symbols. The terminology and notation for variables from above carries
over to symbols. We assume that the sets of variables and of symbols are disjoint from each other.

We extend fresh renamings to account for the renaming of bound symbols. Given symbols V
and variables Y , and fresh symbols V ′ and fresh variables Y ′ (relative to U and X , respectively),

7The “untyped” λ-calculus is really “unityped” or “monotyped”.

2.5. INDUCTIVELY AND COINDUCTIVELY DEFINED JUDGMENTS 33

a fresh renaming is a bijection ρ∶V ;Y ↔ V ′;Y ′ that sends symbols to symbols and variables
to variables. Replacing symbols by symbols and variables by variables according to ρ in a tree
a ∈ B[U ,V ;X ,Y]s gives a new tree [ρ]a ∈ B[U ,V ′;X ,Y ′]s .

Definition 2.4.7. The family of general binding trees is the largest sort-indexed family B[U ;X] =
{B[U ;X]s}s∈S of sets closed under the following conditions:

(1) if x ∈ Xs , then x ∈ B[U ;X]s ;
(2) if u ∈ Us , then u ∈ B[U ;X]s ;
(3) if o(u⃗1 .x⃗1 .a1 , . . . , u⃗n .x⃗n .an) ∈ B[U ;X]s and ρ i ∶ u⃗ i ; x⃗ i ↔ u⃗′i ; x⃗

′
i is a fresh renaming for

each 1 ≤ i ≤ n, then [ρ i]a i ∈ B[U , u⃗′i ;X , x⃗
′
i]. ◀

Remark 2.4.8. The families U of symbols and X of variables in the above definition are not fixed,
but vary according to the symbols and variables introduced by operators’ abstraction operations.
Remark 2.4.9. The coinductive (greatest fixed point) definition of general binding tree diverges
from the inductive (least fixed point) definition of abstract binding trees to allow for infinite trees.
This change lets us form judgments about infinite objects below. We can recover an inductive
definition by using least families and by replacing condition 3 of definition 2.4.7 with

(3’) for each operator o of arity (s⃗1 .s⃗′1 .s1 , . . . , s⃗n .s⃗
′
n .sn)s, if [ρ i]a i ∈ B[U , u⃗′i ;X , x⃗

′
i] for all 1 ≤

i ≤ n and fresh renamings ρ i ∶ u⃗ i ; x⃗ i ↔ u⃗′i ; x⃗
′
i , then o(u⃗1 .x⃗1 .a1 , . . . , u⃗n .x⃗n .an) ∈ B[U ;X]s .

Though we do not pursue it here, it would be interesting to see how to combine sorts whose trees
can be inductively or coinductively defined.

Every abstract binding tree can be seen as a general binding tree with no symbols. We always
identify general binding trees up to α-equivalence:

Definition 2.4.10. α-Equivalence on general binding trees is the strongest congruence ≡α such that
(1) x ≡α x for all variables x;
(2) u ≡α u for all symbols u;
(3) o(u⃗1 .x⃗1 .a1 , . . . , u⃗n .x⃗n .an) ≡α o(u⃗′1 .x⃗

′
1 .a
′
1 , . . . , u⃗

′
n .x⃗
′
n .a
′
n) if for every 1 ≤ i ≤ n, [ρ i]a i ≡α

[ρ′i]a
′
i for all fresh renamings ρ i ∶ u⃗ i , x⃗ i ↔ w⃗ i , z⃗ i and ρ′i ∶ u⃗

′
i , x⃗
′
i ↔ w⃗ i , z⃗ i . ◀

Definition 2.4.11. A morphism of gbts σ ∶B[U ;X]↝ B[V ;Y] is:
(1) a choice σ(x) ∈ B[V ;Y] for each variable x ∈ X such that if x ∈ Xs , then σ(x) ∈ B[V ;X]s

is of the same sort; and
(2) a choice σ(u) ∈ V for each symbol u ∈ U such that if u ∈ Us , then σ(u) ∈ Vs is of the

same sort. ◀

Definition 2.4.12. Given a morphism σ ∶B[U ;X] ↝ B[V ;Y] and a gbt a ∈ B[U ;X], the gbt
[σ]a ∈ B[V ;Y] is given by simultaneous capture-avoiding substitution of σ(x) for x in a, a procedure
recursively defined on the structure of a by:

(1) [σ]x = σ(x) for variables x;
(2) [σ]u = σ(u) for symbols u;
(3) [σ](o(u⃗1 .x⃗1 .a1 , . . . , u⃗n .x⃗n .an)) = o (u⃗1 .x⃗1 .[σ]a1 , . . . , u⃗n .x⃗n .[σ]an) where we assume

without loss of generality that X ∩ x⃗ i = ∅ and U ∩ u⃗ i = ∅ for all 1 ≤ i ≤ n. ◀

2.5. Inductively and CoinductivelyDefined Judgments

We introduce substructural parametric generic judgments on general binding trees. This
work closely follows and synthesizes Harper [Har16, chap. 3] and Sangiorgi [San12, chap. 2] with
two important differences. First, we take a substructural approach to derivation instead of a
structural approach. This allows for clearer explanations of various constructions that appear later
in this dissertation. Moreover, we lose nothing by taking a substructural approach: the structural
approach is a special case. Second, instead of forming judgments about abstract binding trees,
we form judgments about general binding trees. Generic judgments are families of hypothetical
judgments that are closed under substitutions, while parametric judgments are families closed
under renamings of symbols.

34 2. MATHEMATICAL PRELIMINARIES

2.5.1. Judgments, Generally. A judgment is an object of knowledge [Mar96], and we say that
a judgment holds ifwe deem it to be true. We range over judgments using themetavariable J. In this
thesis, we will only concern ourselves with knowledge about general binding trees. For example, if
we consider general binding trees for λ-terms given by example 2.4.4, then judgments wemight
want to consider includeM ∶ τ (term M has type τ),M val (term M is a value), or M → M′ (term
M steps to termM′). We call these kinds of judgments—judgments that are not composed of other
judgments—basic judgments, and we let K and L range over them in this section. Formally:

Definition 2.5.1. Fix some family of gbts B[U ;X]. Basic judgments over B[U ;X] are gbts of sort b
in a family of gbts obtained by extending B[U ;X] with a new sort b such that whenever o is an
operator of arity (v1 , . . . , vn)b, the valencies v i do not mention b and have no bound variables or
symbols. ◀

Example 2.5.2. We encode the basic judgments M val and M → M′ by modifying S and O
of example 2.4.4 as follows. We first extend the family S with a new sort b of basic judgments:
S = {t, b}. Next, we extend the sort-indexed family O to have the following unary and binary
judgment formers:

O(t)b = {val},
O(t ,t)b = {step},

where we treat M val andM → M′ as concrete syntax for the gdts val(M) and step(M ,M′). The
basic judgments about the terms of example 2.4.4 are general binding trees of sort b, i.e., elements
of B[U ;X]b . ◀

2.5.2. Inductive and Coinductive Definitions. In our setting, we are interested in judgments
whose truth is inductively or coinductively defined by a collection of inference rules. Inference
rules specify sufficient conditions for a judgment to hold, and they are often schematically depicted
as follows:

J1 ⋯ Jk

J

The (ordered) judgments J1 , . . . , Jk are called the premisses of the rule, while J is its conclusion.
Intuitively, the premisses of a rule are sufficient conditions for its conclusion: if J1 , . . . , Jk hold,
then we can infer J also holds. A rule with no premisses is called an axiom. For ease of reference,
we often give rules a name, which we put to the right of the rule in brackets, e.g.,

J1 ⋯ Jk

J
(ExampleRule)

Formally, an inference rule over some set of judgments J is the set of all ground rules satisfying
its schemata. A ground rule is a pair (P,C) where P ⊆ J is a set of basic judgments that are the
premisses of the ground rule, and C ∈ J is its conclusion. Given a collectionR of inference rules,
we pun and also writeR for the union of its inference rules viewed as sets of ground rules.

We say that a set T of judgments is closed under a set of rulesR if for all (P,C) ∈R, if P ⊆ T ,
then C ∈ T . We say that a set of judgments is inductively defined by a set of rules R if it is the
least collection of judgments closed underR. To make this precise, we observe that each setR
of ground rules defines a monotone rule functional ΦR on the complete lattice ℘(J) of sets of
judgments:

ΦR(T) = {C ∣ ∃(P,C) ∈R.P ⊆ T} .
We say that a family of judgments is inductively defined by the set R of rules if it is the least
fixed point lfp(ΦR) of the functional R, and that it is coinductively defined if it is the greatest
fixed point gfp(ΦR). These least and greatest fixed points exist by the Knaster-Tarski theorem
(theorem 2.2.7). The functional ΦR is ω-continuous by [San12, Exercise 2.9.2], so the least fixed
point can be constructed by theorem 2.2.9. If the set {P ∣ (P,C) ∈R} is finite for all C, then ΦR is
ω-cocontinuous by [San12, Theorem 2.9.4] and the greatest fixed point can also be constructed by
theorem 2.2.9.

2.5. INDUCTIVELY AND COINDUCTIVELY DEFINED JUDGMENTS 35

Example 2.5.3. Consider the following reduction rule for the λ-calculus:
M → M′

MN → M′N

Formally, this reduction rule stands for the following inference rule schemata, where the terms M,
M′, and N are implicitly universally quantifiedmeta-variables:

step(M ,M′)
step(app(M ,N), app(M′ ,N))

The corresponding inference rule is:

{({step(M ,M′)}, step(app(M ,N), app(M′ ,N))) ∣ M ,M′ ,N ∈ B[U ;X]t} .

Alone, this inference rule inductively defines an empty set of judgments (consider the action of the
induced functional on the bottom element ∅ of ℘(J) and apply theorem 2.2.9). ◀

2.5.3. Derivations. A derivation of a judgment J using a collection of rulesR is awell-founded
tree (usually assumed to be finite) constructed by composing rules fromR, with J at the bottom
and axioms at its leaves. For example, ifD1 , . . . ,Dk are derivations of J1 , . . . , Jk , then the following
tree is a derivation of J using (ExampleRule):

D1 ⋯ Dk

J

We say that a judgment is derivable if it has a derivation. Wewrite ▸U ;X
R J to mean that J is derivable

using R, and that it is a gbt using symbols U and variables X . By [San12, Theorem 2.11.2], a
collection of judgments is inductively defined by R if and only if each judgment has a finite
derivation built from rules inR.

2.5.3.1. Hypothetical Derivations. In practice, we would like to study derivability while assum-
ing certain hypotheses, instead of requiring that all leaves in a derivation be axioms. A hypothetical
derivation is a derivation where leaves are also allowed to be judgments. Assuming some ordered
collection of judgments J1 , . . . , Jk ,wewrite J1 , . . . , Jk▸U ;X

R J if there exists a derivation of J where all
leaves are axioms, except for J1 , . . . , Jk , which appear as leaves (from left-to-right) in the derivation.
We often abbreviate collections of hypotheses, called contexts, using Γ or other capital Greek letters.
The judgment Γ ▸U ;X

R J is called hypothetical derivability.
Hypothetical derivability satisfies the following structural properties by definition:
(1) reflexivity: each judgment is a consequence of itself: J ▸U ;X

R J for each judgment J;
(2) transitivity: we can compose derivations: if Γ ▸U ;X

R J′ and ∆, J′ , Σ ▸U ;X
R J,

then ∆, Γ, Σ ▸U ;X
R J.

Example 2.5.4. Consider judgments a, b, c, d governed by the rules
a c

b
d c
a

c b

d c

Then the following hypothetical derivation justifies c, b, c ▸ b:
c b

d c
a c

b

We remark that it does not justify c, c, b ▸ b, or c, b ▸ b, or anything else. ◀

This treatment of derivation is extremely restrictive, and often we would like to let hypotheses
go unused or let them be used repeatedly. Conditions on the usage of hypotheses are called structural
properties and they include:

(1) exchange: hypotheses can be used in any order: if Γ, J1 , J2 , Γ′ ▸U ;X
R J,

then Γ, J2 , J1 , Γ′ ▸U ;X
R J;

36 2. MATHEMATICAL PRELIMINARIES

(2) weakening: hypotheses can go unused: if Γ, Γ′ ▸U ;X
R J, then Γ, J′ , Γ′ ▸U ;X

R J;
(3) contraction: hypotheses can be used arbitrarily often: if Γ, J′ , J′ , Γ′ ▸U ;X

R J,
then Γ, J′ , Γ′ ▸U ;X

R J.
We say that hypothetical derivability is structural if it satisfies exchange,weakening, and contraction,
and that it is substructural otherwise. We say that it is linear if it allows exchange, but not weakening
or contraction. Linearity ensures that each hypotheses is used exactly once.

2.5.3.2. Generic Derivations. Themeaning of variables is given by substitution, and we would
like derivations to respect this. In particular, if we designate certain variables Y as generic, then a
generic derivation is a derivation that is invariant under renaming or substitution for these variables.
Explicitly, generic derivability Y ∣ Γ ▸U ;X

R J is defined to hold if and only if Γ ▸U ;XY
R J, and the

rulesR are interpreted such that generic derivability enjoys the following structural properties:

(1) proliferation: closure under the expansion of the universe: if Y ∣ Γ ▸U ;X
R J, and Y ′ is fresh

for X ,Y , then Y ,Y ′ ∣ Γ ▸U ;X
R J;

(2) renaming: closure under renaming: if Y ∣ Γ ▸U ;X
R J, and ρ∶Y ↔ Y ′ is a fresh renaming,

then Y ′ ∣ [ρ]Γ ▸U ;X
R [ρ]J;

(3) substitution: closure under substitution: if Y ∣ Γ ▸U ;X
R J and σ ∶U ;X ,Y ↝ U ;Y ′ is a

morphism fixing U and X , then Y ′ ∣ Γ ▸U ;X
R [σ]J.

We remark that renaming is a special case of substitution.
2.5.3.3. Parametric Derivations. Just as generic derivations are stable under renaming or

substitution of generic variables, parametric derivations are stable under renaming of symbols
deemed parametric. Explicitly, parametric derivability V ∥ Γ▸U ;X

R J is defined to hold if and only if
Γ ▸U ,V ;X
R J, and the rulesR are interpreted such that parametric derivability enjoys the following

properties:

(1) proliferation: closure under the expansion of the universe: if U ∥ Γ▸U ;X
R J, and V ′′ is fresh

for U ,V , then V ,V ′ ∥ Γ ▸U ;X
R J;

(2) renaming: closure under renaming: if V ∥ Γ ▸U ;X
R J, and ρ∶V ↔ V ′ is a fresh renaming,

then V ′ ∥ [ρ]Γ ▸U ;X
R [ρ]J.

Remark 2.5.5. Judgments can be both generic and parametric. These parametric generic judgments
are notated by “stacking” the syntax for generic and parametric judgments: V ∥ Y ∣ J. We
will revisit these parametric generic judgments in section 2.5.7 when we discuss type systems for
programs that use both variables and symbols.

2.5.4. Hypothetical Judgments. Hypothetical judgments internalize the notion of hypothet-
ical derivability, and they let us inductively define judgments that are subject to hypotheses. A
hypothetical judgment K1 , . . . ,Kk ⊢ L means that we can derive the basic judgment L assuming
the ordered collection of basic judgments K1 , . . . ,Kk . It is the formal analog of the hypothetical
derivability judgment K1 , . . . ,Kk ▸

U ;X
R L. As with hypothetical derivability, structural properties

govern the use of hypotheses in contexts in hypothetical judgments:
(1) exchange: hypotheses can be used in any order: if Γ,K ,K′ , Γ′ ⊢ L, then Γ,K′ ,K , Γ′ ⊢ L;
(2) weakening: hypotheses can go unused: if Γ, Γ′ ⊢ L, then Γ,K , Γ′ ⊢ L;
(3) contraction: hypotheses can be used arbitrarily often: if Γ,K ,K , Γ′ ⊢ L, then Γ,K , Γ′ ⊢ L.

We say that a context in a hypothetical judgment is structural if it satisfies exchange, weakening,
and contraction, and that it is substructural otherwise. We say that it is linear if it allows exchange,
but not weakening or contraction.

Sometimes, we would like to have multiple contexts of hypotheses, each governed by its
own structural properties. For example, in part 2 we will encounter a hypothetical judgment
Ψ ; ∆ ⊢ P ∶∶ c ∶ A for typing processes, where the context Ψ of “functional variables” is structural
and the context ∆ of “channel names” is linear. The reader is referred to [Wal05] for more details
on structural properties and on substructural type systems.

2.5. INDUCTIVELY AND COINDUCTIVELY DEFINED JUDGMENTS 37

As with basic judgments, we often want to inductively define a collection of hypothetical
judgments. We do so by a collectionR of hypothetical rules schematically depicted as

ΓΓ1 ⊢ K1 ⋯ ΓΓk ⊢ Kk

Γ ⊢ L

where Γ contains global hypotheses and the Γi contain local hypotheses. Hypothetical rules refine
inference rules to ensure that the hypothetical judgments they define faithfully capture the notion
of derivation under hypotheses. In particular, hypothetical rules are uniform, i.e., their contexts
of global hypotheses Γ are implicitly universally quantified. We also require that collections of
inductively defined hypothetical judgments satisfy the following structural properties:

(1) reflexivity: each judgment is a consequence of itself: K ⊢ K for each judgment K;
(2) transitivity: we can compose derivations: if Γ ⊢ K and ∆,K , Σ ⊢ L, then ∆, Γ, Σ ⊢ L.

These two structural properties and the three properties governing the use of contexts respectively
correspond to the following uniform inference rules:

K ⊢ K

Γ ⊢ K ∆,K , Σ ⊢ L

∆, Γ, Σ ⊢ L

Γ,K′ ,K , Γ′ ⊢ L

Γ,K ,K′ , Γ′ ⊢ L

Γ, Γ′ ⊢ L

Γ,K , Γ′ ⊢ L

Γ,K ,K , Γ′ ⊢ L

Γ,K , Γ′ ⊢ L

We say that a collection of hypothetical judgments Γ ⊢ L is inductively defined byR if it is the least
collection of hypothetical judgments closed underR, the rules for the two structural properties,
and the rules for the desired structural properties governing Γ. The above definitions extends
straightforwardly to hypothetical judgments Γ1; . . . ; Γn ⊢ L with multiple contexts.

2.5.5. Generic Judgments. Just as hypothetical judgments internalize hypothetical derivabil-
ity, generic judgments internalize generic derivability. A formal generic judgment Y ∣ J specifies
a family of judgments closed under substitution for the variables Y . Generic judgments Y ∣ J
are identified up-to-renaming of the variables Y , so that we identify Y ∣ J and Y ′ ∣ [ρ]J for any
renaming ρ∶Y ↔ Y ′. For a generic judgment Y ∣ J to be well formed, we assume that the variables
in Y are pairwise distinct. The judgment J can refer both to variables in Y and others.

Generic judgments can be inductively defined using generic rules. Generic rules are of the
form:

YY1 ∣ J1 ⋯ YYk ∣ Jk
Y ∣ J

The variables Y are the global variables, while the Yi are the local variables. A collection of generic
judgments is inductively defined by a collectionR of rules if it is the least collection of judgments
closed underR and the following structural rules capturing proliferation and substitution:

Y ∣ Γ ⊢ J

Y ,Y ′ ∣ Γ ⊢ J (3)
Y ∣ J

Y ′ ∣ [σ]J (4)

The substitution rule (4) encodes both the renaming and substitution structural properties. It is
universally quantified over all gbt morphisms σ fixing all symbols and fixing all variables save those
in Y .

2.5.6. Parametric Judgments. We repeat the same development for parametric judgments,
which internalize parametric derivations. A formal parametric judgment V ∥ J specifies a family
of judgments parametrized by the variables V . Parametric judgments V ∥ J are identified up-to-
renaming of the symbols V , so that we identify V ∥ J and V ′ ∥ [ρ]J for any renaming ρ∶V ↔ V ′.
For a parametric judgment V ∥ J to be well formed, we assume that the symbols in V are pairwise
distinct. The judgment J can refer both to symbols in V and others. Unlike generic judgments,
which are closed under substitution, parametric judgments are only closed under renamings of
symbols.

38 2. MATHEMATICAL PRELIMINARIES

Parametric judgments can be inductively defined using parametric rules. Parametric rules are
of the form:

VV1 ∥ J1 ⋯ VVk ∥ Jk
V ∥ J

The symbols V are called global symbols, while the Vi are called local symbols. A collection of
parametric judgments is inductively defined by a collectionR of rules if it is the least collection of
judgments closed underR and the following structural rules capturing proliferation and renaming:

V ∥ Γ ⊢ J

V ,V ′ ∥ Γ ⊢ J (5)
V ∥ J

V ′ ∥ [ρ]J (6)

The renaming rule (6) is universally quantified over all renamings ρ∶V ↔ V ′.
Remark 2.5.6. The interactions between coinductivelydefined derivations, andhypothetical, generic,
or parametric judgments are far from clear. Though we will make extensive use of coinductively
defined judgments in chapter 6, at no point will we use coinductively defined hypothetical, generic,
or parametric judgments.

2.5.7. Encoding Type Systems. Typing judgments e ∶ τ specify that an expression e has type
τ. Type systems are often inductively defined using hypothetical judgments Γ ⊢ e ∶ τ, where the
context Γ is a list of hypotheses x1 ∶ τ1 , . . . , xn ∶ τn for variables x i and types τ i . For a type system
to be well-behaved, these hypothetical judgments must in fact be interpreted as generic hypothetical

judgments x1 , . . . , xn ∣ Γ ⊢ e ∶ τ in B[x1 , . . . , xn]. This ensures both that the particular choice of
variable names does not matter, and that type systems are closed under substitution.

Later in part 2, we will see type systems that are encoded using parametric generic hypothetical

judgments c0 , . . . , cn ∥ x1 , . . . , xm ∣ x1 ∶ τ1 , . . . , xm ∶ τm ; c1 ∶ A1 , . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0. There,
the symbols c0 , . . . , cn correspond to channel names, and we interpret the judgment as a para-
metric judgment to ensure that these channel names can be freely varied. The variabes x1 , . . . , xm
correspond to usual variables in a functional language, and we interpret the judgment as generic
in these to ensure that the judgments respect substitution. Again, we assume that the only free
symbols and variables appearing in these parametric typing judgments are those in which the
judgment is parametric or generic, respectively.

In practice, we elide the sequences of parametric symbols and generic variables in typing
judgments. Despite this elision, typing judgments should always be interpreted as generic in their
free variables and parametric in their free symbols.

Type systems of this form enjoy a typed notion of substitution, called a “context morphism”,
which refines morphisms of abts or gbts:

Definition 2.5.7. Fix typing contexts Γ = y1 ∶ τ1 , . . . , ym ∶ τm and Γ′ = x1 ∶ τ′1 , . . . , xn ∶ τ′n . A
context morphism σ ∶ Γ ↝ Γ′ is amorphism of (g)abts σ ∶B[U ; x1 , . . . , xn]↝ B[U ; y1 , . . . , ym] such
that y1 , . . . , ym ∣ Γ ⊢ σ(x i) ∶ τ i for all 1 ≤ i ≤ n.

A context morphism σ ∶ Γ ↝ Γ′ acts on typing judgments over Γ′ by substitution: if
x⃗ ∣ Γ′ ⊢ e ∶ τ, then y⃗ ∣ Γ ⊢ [σ]e ∶ τ. ◀

2.5.8. Modes of Use. Judgments can be thought of as n-ary relations over gbts. It is often
useful to think as some components as inputs and others as outputs of the judgment. We indicate
these modes of use using colours, where we designate inputs in blue and outputs in red.

Example 2.5.8. Bidirectional type-checking [PT00; DK19] is given by two judgments: Γ ⊢ e ⇐ τ

means that e checks agains the type τ under the context Γ, while Γ ⊢ e ⇒ τ means that e synthesizes

the type τ under Γ. These two judgments are inductively defined, and they describe mutually
recursive functions whosemodes correspond to the inputs and outputs of the functions. ◀

CHAPTER 3

Fairness for Multiset Rewriting Systems

Session-typed languages are often defined usingmultiset rewriting systems (MRS). In chapter 6,
we give an observed communications semantics for Polarized SILL. To ensure that it is well-defined
in the presence of non-termination, we require that process executions be fair. Intuitively, fairness
ensures that if a process can make progress, then it eventually does so. To this end, we introduce
and study fairness for multiset rewriting systems.

We begin by reviewingmultiset rewriting systems and their relation to linear logic in section 3.1.
In section 3.2 we introduce three different varieties of fairness, each of which subdivides along the
axis of weak and strong fairness. We study properties of fair traces in section 3.3. In particular, we
construct a scheduler, we give sufficient conditions for traces to be fair, and we study the effects
of permutations on traces. We also introduce a novel notion of trace equivalence, called union

equivalence, that will be essential to the development of the observed communication semantics of
chapter 6.

This chapter builds on work presented at EXPRESS/SOS 2020 [Kav20a].

3.1. Multiset Rewriting Systems

In this section, we review (first-order) multiset rewriting systems. For expository reasons,
we start with the simpler formalismMSR1 of Cervesato and Scedrov [CS09] in section 3.1.1. We
extend it in section 3.1.2 to handle the persistency features of themultiset rewriting systemMSR of
[Cer+05]. These first sections are expository, and they serve solely to give a uniform presentation
to pre-existing work. Our contribution comes in section 3.1.4, where we extend parallel multiset
rewriting [Cer01, §§ 5.3–5.4] to support persistency.

Definition 3.1.1. A multiset M is a pair (S ,m) where S is a set (the underlying set) and m ∶ S → N
is a function. It is finite if∑s∈S m(s) is finite. We say s is an element ofM, s ∈ M, if m(s) > 0. The
support ofM is the set supp(M) = {s ∈ S ∣ s ∈ M}. ◀

Remark 3.1.2. A multiset with a finite underlying set is always finite. The converse is false: the
multiset (N, λx ∈ N.0) is finite, but the underlying set N is infinite.

When considering several multisets at once, we assume without loss of generality that they
have equal underlying sets.

Definition 3.1.3. Multisets M1 = (S ,m1) and M2 = (S ,m2) are equipped with the following
operations and relations:

(1) the sum ofM1 andM2 is themultiset M1 ,M2 = (S , λs ∈ S .m1(s) +m2(s));
(2) the union ofM1 andM2 is themultiset M1 ∪M2 = (S , λs ∈ S . max(m1(s),m2(s)));
(3) the intersection ofM1 andM2 is themultiset M1 ∩M2 = (S , λs ∈ S . min(m1(s),m2(s)));
(4) the difference ofM1 andM2 is themultiset M1∖M2 = (S , λs ∈ S . max(0,m1(s)−m2(s)));
(5) M1 is included in M2, written M1 ⊆ M2, if m1(s) ≤ m2(s) for all s ∈ S. ◀

We abuse terminology and call multisets (S ,m) sets if m(s) ≤ 1 for all s ∈ S. We write ∅ for
emptymultisets, i.e., for multisets (S ,m) such that m(s) = 0 for all s ∈ S.

Example 3.1.4. A finite string s over an alphabet Σ describes amultiset (Σ,m), where m(σ) is the
multiplicity of σ in s. ◀

39

40 3. FAIRNESS FOR MULTISET REWRITING SYSTEMS

3.1.1. First-Order Multiset Rewriting. Consider finite multisets of first-order atomic for-
mulas over some fixed initial signature Σ i . We call formulas facts. We write M(x⃗) to mean that
the facts in themultiset M draw their variables from x⃗, where x⃗ = x1 , . . . , xm for some m. Given
M(x⃗) and some choice of terms t⃗ for x⃗, we writeM(t⃗) for the simultaneous substitution [t⃗/x⃗]M.

Multiset rewrite rules describe localized changes to multisets of facts. Amultiset rewrite rule r

is a pair ofmultisets F(x⃗) and G(x⃗ , n⃗), and it is schematically represented by:

r ∶ ∀x⃗ .F(x⃗)→ ∃n⃗.G(x⃗ , n⃗).

Informally,we interpret the variables x⃗ as being universally quantified in F andG, and the variables
n⃗ as being existentially quantified in G. In particular, we treat x⃗ and n⃗ as bound variables, and
assume that they can be freely α-varied. We will make these intuitions precise below when we
relatemultiset rewriting systems to linear logic. Amultiset rewriting system (MRS) is a setR of
multiset rewrite rules.

Given a rule r ∶ ∀x⃗ .F(x⃗)→ ∃n⃗.G(x⃗ , n⃗) inR and some choice of constants t⃗ for x⃗, we say that
the instantiation r(t⃗) ∶ F(t⃗) → ∃n⃗.G(t⃗, n⃗) is applicable to amultiset M if there exists amultiset
M′ such that M = F(t⃗),M′. The rule r is applicable to M if r(t⃗) is applicable to M for some t⃗.
In these cases, the result of applying r(t⃗) to M is themultiset G(t⃗, d⃗),M′, where d⃗ is a choice of
pairwise-distinct fresh constants. In particular, we assume that the constants d⃗ do not appear in M

or inR. We call θ = [t⃗/x⃗] the matching substitution and ξ = [d⃗/n⃗] the fresh-constant substitution.
Intuitively, thematching substitution specifies to which portion of M the rule r is applied. The
instantiating substitution for r relative to M is the composite substitution δ = (θ , ξ). We capture
this relation using the syntax

F(t⃗),M′
(r ;δ)
ÐÐ→ G(t⃗, d⃗),M′ .

For conciseness, we often abuse notation and write r(θ), F(θ), and G(θ , ξ) for r(t⃗), F(t⃗), and
G(t⃗, d⃗). We call F(t⃗) the activemultiset andM′ the stationarymultiset.

Definition 3.1.5. Given an MRSR and amultiset M0, a trace from M0 is a countable sequence of
steps

M0
(r1 ;δ1)
ÐÐÐ→ M1

(r2 ;δ2)
ÐÐÐ→ M2

(r3 ;δ3)
ÐÐÐ→ ⋯ (7)

such that, where δ i = (θ i , ξ i), the constants in M i and ξ j are disjoint for all i < j.
The notation (M0 , (r i ; δ i)i∈I) abbreviates the trace (7), where I always ranges over N or

n = {1, . . . , n} for some n ∈ N. An execution is amaximally long trace. ◀

Let the support supp(T) of a trace T = (M0; (r i , δ i)I) be the set supp(T) = ⋃i≥0 supp(M i).

WriteM Ð→ M′ ifM
(r ,θ)
ÐÐ→ M′ for some (r, θ), and letÐ→∗ be the reflexive, transitive closure ofÐ→.

Example 3.1.6. Wemodel computations with queues. Let the fact queue(q, $)mean that q is the
empty queue, and let queue(q, v ↝ q′)mean that the queue q has value v at its head and that its
tail is the queue q′. Then themultiset Q = queue(q, 0↝ q′), queue(q′ , $) describes a one-element
queue containing 0. The following two rules capture enqueuing values on empty and non-empty
queues, respectively, where the fact enq(q, v) is used to enqueue v onto the queue q:

e1 ∶ ∀x , y.enq(x , y), queue(x , $)→ ∃z.queue(x , y ↝ z), queue(z, $),
e2 ∶ ∀x , y, z,w .enq(x , y), queue(x , z ↝ w)→ queue(x , z ↝ w), enq(w , y).

The following execution from Q , enq(q, 1) captures enqueuing 1 on the queue q:

Q , enq(q, 1)
(e2 ;([q ,1,0,q′/x ,y ,z ,w],∅))
ÐÐÐÐÐÐÐÐÐÐÐÐÐ→ Q , enq(q′ , 1)
(e1 ;([q′ ,1/x ,y],[a/z]))
ÐÐÐÐÐÐÐÐÐÐÐ→ queue(q, 0↝ q

′), queue(q′ , 1↝ a), queue(a, $). ◀

The substructural operational semantics of Polarized SILL is given by a multiset rewriting
system, and it uses queues ofmessages to ensure that messages sent by processes arrive in order.
Thesemessage queues are captured by a variant of example 3.1.6.

3.1. MULTISET REWRITING SYSTEMS 41

Example 3.1.7. We define addition on unary natural numbers. TheMRS uses the facts add(m, n, l)
and val(l , v), where val(l , v) represents amemory cell l with value v, and add(m, n, l) causes the
sum of m and n to be stored in cell l . It is given by the following rules:

az ∶ ∀n, l .add(z, n, l)→ val(l , n) (8)
as ∶ ∀m, n, l .add(s(m), n, l)→ add(m, s(n), l) (9)

Write 3 for the unary representation s(s(s(z))) of three. The following execution stores the sum
of two and three in l :

add(s(s(z)), 3, l)Ð→ add(s(z), s(3), l)Ð→ add(z, s(s(3)), l)Ð→ val(l , s(s(3))).

The first two rules in this execution are instances of as, while the last rule is an instance of az. ◀

Example 3.1.8. We build on example 3.1.7 to recursively compute the n-th Fibonacci number. The
fact fib(n, l) causes the n-th Fibonacci number to be stored in cell l . TheMRS is given by az, as,
and the following new rules:

f0 ∶ ∀l .fib(z, l)→ val(l , s(z)) (10)
f1 ∶ ∀l .fib(s(z), l)→ val(l , s(z)) (11)

f ∶ ∀l , n.fib(s(s(n)), l)→ ∃l ′ , l ′′ .cont(l , l ′ , l ′′), fib(s(n), l ′), fib(n, l ′′) (12)

c ∶ ∀l , l ′ , l ′′ ,m, n.cont(l , l ′ , l ′′), val(l ′ ,m), val(l ′′ , n)→ add(m, n, l) (13)

Rules f0 and f1 directly calculate the zeroth and first Fibonacci numbers. The rule f makes two
“recursive calls” that will store their results in fresh locations l ′ and l ′′. It uses the continuation
fact cont(l , l ′ , l ′′) to signal that the values in locations l ′ and l ′′ need to be added and stored in
location l . Once values m and n are available in locations l ′ and l ′′, the rule c causes m and n to
be added and stored in location l .

We remark that this implementation builds in garbage collection. Indeed, becausewe represent
memory locations val(l , n) using ephemeral facts, these locations are discarded as soon as they
are no longer needed by future computation. However, this implementation is not very efficient:
it repeatedly recomputes the same n-th Fibonacci number and requires exponential time. In
example 3.1.11, we will use persistent facts to implement amemoized version of this algorithm. ◀

Remark 3.1.9. The order in which rewrite rules are applied is non-deterministic and is outside of
the control of amultiset rewriting system. For example, when computing fib(2, l), a scheduler
could non-deterministically choose to apply rule f1 or f0 after applying f2. Moreover, multiset
rewriting systems need not satisfy any confluence properties. This means that, in general, finite
executions from a given multiset need not result in the same final multiset. In example 3.1.11, we
illustrate design considerations for multiset rewrite systems that force a scheduler to order certain
rule applications. In section 3.3, we present a condition on MRSs called “interference-freedom”.
Intuitively, it states that the order in which rules are applied does not matter, because rules do not
interfere with or disable each other.

Though the above presentation of multiset rewriting due to Cervesato et al. [Cer+05] is
relatively concise, its implicit treatment of eigenvariables and signatures introduces some ambiguity.
For greater clarity and to more easily relatemultiset rewriting to linear logic, we sometimes adopt
an equivalent presentation due to Cervesato and Scedrov [CS09]. In this presentation,multiset
rewriting systems rewrite multisets-in-context. A multiset-in-context is a pair Σ ; M where the
term-level symbols used by M appear in the signature Σ, and Σ contains the initial signature Σ i .
We write Σ ⊢ t to mean that the term t is valid over the signature Σ, and Σ ⊢ t⃗ for the obvious
extension to collections of terms t⃗.

Consider a rule r ∶ ∀x⃗ .F(x⃗)→ ∃n⃗.G(x⃗ , n⃗). Given a signature Σ, an instantiation r(t⃗) of r is a
rule of the form r(t⃗) ∶ F(t⃗)→ ∃n⃗.G(t⃗, n⃗) for some t⃗ with Σ ⊢ t⃗. This instantiation is applicable to
amultiset-in-context Σ ; M ifM = F(t⃗),M′ for someM′. The result of applying the instantiation

42 3. FAIRNESS FOR MULTISET REWRITING SYSTEMS

Γ ; ∆ Ð→Σ ,Σ′ ∃Σ′ .∆
(Obs) Γ,A ; ∆,AÐ→Σ C

Γ,A ; ∆ Ð→Σ C
(Clone)

Γ ; ∆1 Ð→Σ A Γ ; ∆2 ,AÐ→Σ C

Γ ; ∆1 , ∆2 Ð→Σ C
(Cut)

Γ ; ⋅Ð→Σ A Γ,A ; ∆ Ð→Σ C

Γ ; ∆ Ð→Σ C
(Cut!)

Γ ; ∆ Ð→Σ C

Γ ; ∆, 1Ð→Σ C
(1l)

Γ ; ∆,A1 ,A2 Ð→Σ C

Γ ; ∆,A1 ⊗ A2 Ð→Σ C
(⊗l)

Γ ; ∆, B Ð→Σ ,Σ′ C

Γ ; ∆, ∆′ , (∃Σ′ .∆′)⊸ B Ð→Σ ,Σ′ C
(⊸′l) Γ ; ∆,A i Ð→Σ C

Γ ; ∆,A1 & A2 Ð→Σ C
(&li)

Γ,A ; ∆ Ð→Σ C

Γ ; ∆, !AÐ→Σ C
(!l)

Σ ⊢ t Γ ; ∆, [t/x]AÐ→Σ C

Γ ; ∆,∀x .AÐ→Σ C
(∀l)

Γ ; ∆,AÐ→Σ ,x C

Γ ; ∆, ∃x .AÐ→Σ C
(∃l)

Figure 3.1. LVobs sequent presentation of intuitionistic linear logic [CS09, Fig. 3]

r(t⃗) to Σ ; M is themultiset-in-context Σ, n⃗ ; G(t⃗),M′, where we extend the signature Σ with the
globally fresh symbols1 n⃗ (modulo α-renaming). We can represent this transition schematically as:

Σ ; F(t⃗),M′ Ð→R,r∶∀x⃗ .F(x⃗)→∃n⃗ .G(x⃗ , n⃗) Σ, n⃗ ; G(t⃗),M′ if Σ ⊢ t⃗.

Here,R lists the other rules in themultiset rewriting system, and the substitution [t⃗/x⃗] applied to
F and G corresponds to thematching substitution. Extending the signature Σ with n⃗ captures the
fresh-constant substitution [n⃗/n⃗].

Given an MRS R and a multiset-in-context Σ0 ; M0, a trace from Σ0 ; M0 is a countable
sequence of applications Σ0 ; M0 Ð→R Σ0 , Σ1 ; M1 Ð→R Σ0 , Σ1 , Σ2 ; M2 Ð→ ⋯ . Again, an
execution is amaximally long trace.

3.1.1.1. Relation to Linear Logic. We relate first-order multiset rewriting to the LVobs fragment
of intuitionistic linear logic of Cervesato and Scedrov [CS09]. This fragment is equivalent to a
fragment of the intuitionistic version of Pfenning’s [Pfe95] sequent calculus presentation LV of
linear logic. The fragment LVobs uses sequents of the form Γ ; ∆ Ð→Σ C. Here Γ is a structural
context of reusable assumptions, ∆ is a linear context of assumptions, and C is the goal formula. The
term-level symbols appearing in Γ, ∆, and C are listed in the signature Σ. The rules are reproduced
in fig. 3.1. Where ∆ is a context, we use the syntax ∃Σ.∆ to mean ∃Σ.⊗∆, where

⊗(⋅) = 1, ⊗(A, ∆) = A⊗ (⊗∆),
∃(⋅).C = C , ∃(x , Σ).C = ∃x .∃Σ.C .

This sequent calculus enjoys cut-elimination, i.e., the rules (Cut) and (Cut!) are both admissible
[CS09, Lemmas 2.13 and 2.14] and every derivable sequent in LVobs has a cut-free derivation in
LVobs [CS09, Theorem 2.15].

We interpret multiset rewriting into LVobs using the following homomorphicmapping ⌜⋅⌝ that
takes multisets and rules to logical formulas:

⌜∅⌝ = 1
⌜M , s⌝ = ⌜M⌝⊗ s

⌜∀x⃗ .F(x⃗)→ ∃n⃗.G(x⃗ , n⃗)⌝ = ∀x⃗ .⌜F⌝⊸ ∃n⃗.⌜G⌝

We extend the homomorphism to map multiset rewriting systems to contexts of formulas, where
⌜∅⌝ = ⋅ and ⌜R, r⌝ = ⌜R⌝, ⌜r⌝.

The following result specializes [CS09, Properties 3.3 and 3.4] and the surrounding discussion
to our setting:

Proposition 3.1.10. For all signatures Σ, Σ′,multisets M, M′, andmultiset rewriting systemR,
the sequent ⌜R⌝ ; ⌜M⌝Ð→Σ ∃Σ′ .⌜M′⌝ is derivable in LVobs if and only if Σ ; M Ð→∗R (Σ, Σ

′) ; M′.

1In particular, we expect the constants to be disjoint from M and from those appearing in any other rule.

3.1. MULTISET REWRITING SYSTEMS 43

3.1.2. First-Order Multiset Rewriting with Persistence. Facts in multisets represent pieces
of knowledge. In section 3.1.1, these facts were ephemeral: they could be consumed or destroyed
by applying multiset rewrite rules. Often times, we would like some facts to be persistent, i.e., for
some facts to be reusable and preserved by all rules. To this end, we partition facts as persistent
(indicated by bold face, p) and ephemeral (indicated by sans serif face, p). We then extend the
multiset rewriting system of the previous section to support persistence. In doing so, we diverge
slightly from Cervesato et al. [Cer+05] to allow for the set of persistent facts to grow across time.

Persistent facts are reusable, so we do not care about their multiplicities in multisets. For
simplicity, we assume throughout that they form a set. We also separate persistent facts from
ephemeral facts and write a genericmultiset as Π,M, where the set Π contains the persistent facts
and themultiset M contains the ephemeral facts. A multiset-in-context is now a triple Σ ; Π,M. As
before, all term-level symbols appearing in Π andM are contained in the signature Σ.

A multiset rewrite rule is now schematically represented by

r ∶ ∀x⃗ .π(x⃗), F(x⃗)→ ∃n⃗.π′(x⃗ , n⃗),G(x⃗ , n⃗),

where F and G are as before, and π and π′ are sets of persistent facts.
As before,multiset rewrite rulesdescribe localized changes tomultisets. Fix amultiset rewriting

system R. Given a rule r ∶ ∀x⃗ .π(x⃗), F(x⃗) → ∃n⃗.π′(x⃗ , n⃗),G(x⃗ , n⃗) in R and some choice of
constants t⃗ for x⃗, we say that the instantiation r(t⃗) ∶ π(t⃗), F(t⃗)→ ∃n⃗.π′(t⃗, n⃗),G(t⃗, n⃗) is applicable
to amultiset Π,M if there exists amultiset M′ such that M = F(t⃗),M′ and if π(t⃗) ⊆ Π. The rule r

is applicable to M if r(t⃗) is applicable to M for some t⃗. In these cases, the result of applying r(t⃗)

to Π,M is themultiset (Π ∪ π′(t⃗, d⃗)) ,G(t⃗, d⃗),M′, where d⃗ is a choice of fresh constants. Again,
we assume that the constants d⃗ do not appear in M or inR. Because Π and π′(t⃗, d⃗) were both
assumed to be sets, themultiset Π ∪ π′(t⃗, d⃗) in the result is again a set.

Multiset rewrite rules again equivalently describe localized changes to multisets-in-context.
Consider a rule r ∶ ∀x⃗ .π(x⃗), F(x⃗)→ ∃n⃗.π′(x⃗ , n⃗),G(x⃗ , n⃗) in amultiset rewriting systemR. Given
a signature Σ, an instantiation r(t⃗) of r is a rule of the form r(t⃗) ∶ π(t⃗), F(t⃗)→ ∃n⃗.π′(t⃗, n⃗),G(t⃗, n⃗)
for some t⃗ with Σ ⊢ t⃗. This instantiation is applicable to amultiset-in-context Σ ; Π,M if there exists
a multiset M′ such that M = F(t⃗),M′ and if π(t⃗) ⊆ Π. The result of applying the instantiation
Σ ; Π,M is themultiset-in-context Σ, n⃗ ; (Π ∪ π′(t⃗)) ,G(t⃗),M′, where we extend the signature
Σ with the globally fresh symbols n⃗ (module α-renaming). We can represent this transition
schematically as:

Σ ; π(t⃗),Π′ , F(t⃗),M′ Ð→R,(r∶∀x⃗ .π(x⃗),F(x⃗)→∃n⃗ .π′(x⃗ , n⃗),G(x⃗ , n⃗))
Σ, n⃗ ; (π(t⃗) ∪Π′ ∪ π′(t⃗)) ,G(t⃗),M′ if Σ ⊢ t⃗,

whereR lists the other rules in themultiset rewriting system. The active multiset is (π, F)(t⃗),while
the stationary multiset is Π′ ,M′.

The definitions of trace and execution are as before.

Example 3.1.11. We use memoization to improve the time complexity of example 3.1.8, which
computed the n-th Fibonacci number. Memoization uses a persistent fact memo(n,m) that means
“m is the n-th Fibonacci number”. Care is often needed when designing multiset rewriting systems
to counter the effects of non-deterministic rule application. Indeed, in the case ofmemoization,
the scheduler could chose to ignore available memoized values. To see how, consider a naïve
implementation ofmemoization, where extend example 3.1.8 with the rule

fmemo ∶ ∀l , n,m.fib(n, l),memo(n,m)→ val(l ,m).

The scheduler could apply the rule f to themultiset fib(s(s(z)), l),memo(s(s(z)), 2) instead
of fmemo, even though amemoized value is available.

We can force the scheduler’s hand by disabling rules after one use. We do so bymaking them
depend on an ephemeral fact that is never replaced. Concretely,we use an ephemeral fact notyet(n)

44 3. FAIRNESS FOR MULTISET REWRITING SYSTEMS

that is consumed on the first invocation of fib(n, l):

f0 ∶ ∀l .fib(z, l), notyet(z)→memo(z, s(z)), val(l , s(z)) (14)
f1 ∶ ∀l .fib(s(z), l), notyet(s(z))→memo(s(z), s(z)), val(l , s(z)) (15)

f ∶ ∀l , n.fib(s(s(n)), l), notyet(s(s(n)))→

→ ∃l ′ , l ′′ .fibcont(s(s(n)), l , l ′ , l ′′), fib(s(n), l ′), fib(n, l ′′)
(16)

The rule f uses themodified continuation fact fibcont(k, l , l ′ , l ′′). As with the continuation fact
cont(l , l ′ , l ′′) of example 3.1.8, it means that the values in locations l ′ and l ′′ should be added and
stored in l . We also use it to mean that this sum should be memoized as the value of the k-th
Fibonacci number. Because the fact notyet(n) gets consumed, subsequent attempts to compute
fib(n, l ′) are forced to used thememoized value. Using thememoized value is captured by:

r ∶ ∀l , n,m.memo(n,m), fib(n, l)→ val(l ,m) (17)

We split the rule c of example 3.1.8 in two. The first rule c f waits until values n and m are available
in the locations l ′ and l ′′. It then causes them to be added and stored in location l . It also creates a
continuation fact addcont(k, l). This fact is used by the rule ca to memoize the value in l as the
value of the k-th Fibonacci number:

c f ∶ ∀l , l ′ , l ′′ , k,m, n.fibcont(k, l , l ′ , l ′′), val(l ′ , n), val(l ′′ ,m)→
→ addcont(k, l), add(l , n +m)

(18)

ca ∶ ∀l , k,m.addcont(k, l), val(l ,m)→memo(k,m), val(l ,m) (19)

To compute the n-th Fibonacci number, take an arbitrary execution from themultiset

notyet(z), notyet(s(z)), . . . , notyet(n), fib(n, l).

We can show that this execution is finite. Its final multiset will contain a fact val(l ,m), where m is
the desired value. ◀

Sometimes matching substitutions can make a pair of rules indistinguishable:

Definition 3.1.12. Two rule instantiations r1(θ1) and r2(θ2) are equivalent, r1(θ1) ≡ r2(θ2), if they
are applicable to the samemultisets, and if whenever they are applicable to somemultiset M, then
the result of applying either to M is the same (up to choice of fresh constants). Otherwise, they are
distinct. ◀

We will use instantiation equivalence in section 3.3 to study the relationship between various
forms of fairness and properties of fair traces. We can characterize it as follows:

Proposition 3.1.13. Consider rules r i ∶ ∀x⃗ i .πi(x⃗ i), Fi(x⃗ i) → ∃n⃗ i .π′i(x⃗ i , n⃗ i),G i(x⃗ i , n⃗ i) and
matching substitutions θ i for i = 1, 2. The instantiations r1(θ1) and r2(θ2) are equivalent if and only

if

(1) π1(θ1), F1(θ1) = π2(θ2), F2(θ2);
(2) ∃n⃗1 .G1(θ1 , n⃗1) = ∃n⃗2 .G2(θ2 , n⃗2) (up to renaming of bound variables); and

(3) ∃n⃗1 .π1(θ1) ∪ π′1(θ1 , n⃗1) = ∃n⃗2 .π2(θ2) ∪ π′2(θ2 , n⃗2) (up to renaming of bound variables).

Proof. We start with sufficiency. Assume that r1(θ1) and r2(θ2) are equivalent. Then they are both
applicable to the multiset π1(θ1), F1(θ1), so we deduce (π2(θ2), F2(θ2)) ⊆ (π1(θ1), F1(θ1)). A
symmetric observation gives the opposite inclusion, so we deduce that the multisets are equal.
Next, the result of applying either to M = π1(θ1), F1(θ1) is the same, so

∃n⃗1 . (π1(θ1) ∪ π′1(θ1 , n⃗1)) ,G1(θ1 , n⃗1) = ∃n⃗2 . (π2(θ2) ∪ π′2(θ2 , n⃗2)) ,G2(θ2 , n⃗2)

up to renaming of bound variables. Recall that the collections of ephemeral and persistent facts are
disjoint, so this implies the remaining two conditions.

Next, we show necessity. The first condition implies that r1(θ1) and r2(θ2) are applicable to
the samemultisets. The last two conditions imply that the result of applying either rule to a given
multiset is the same. We deduce that the two rule instantiations are equivalent.

3.1. MULTISET REWRITING SYSTEMS 45

Example 3.1.14. Consider the rules

r1 ∶ ∀x , y.A(x , y)→ ∃n.B(x , n),
r2 ∶ ∀x .A(x , x)→ ∃n.B(x , n)

andmatching substitutions θ1 = [a, a/x , y] and θ2 = [a/x]. Then r1(θ1) ≡ r2(θ2):

r1(θ1) ∶ A(a, a)→ ∃n.B(a, n),
r2(θ2) ∶ A(a, a)→ ∃n.B(a, n).

Moreover, applying either r1(θ1) or r2(θ2) to themultiset A(a, a),C(b, b) gives B(a, a′),C(b, b)
for some fresh constant a′. ◀

3.1.2.1. Relation to Linear Logic. We conjecturally relate first-order multiset rewriting with
persistence to the sequent calculus LVobs

1⊗∃! of Cervesato and Scedrov [CS09, § 2.6]. It is given by
the rules of fig. 3.1, except that the rule (Obs) is replaced by the observation rule

Γ, Γ′ ; AÐ→Σ ,Σ′ ∃Σ′ .(! Γ, ∆)
(Obs’)

where we write ! Γ for the linear context obtained by prefixing each fact in Γ with the bang operator
!. Cut elimination does not hold in LVobs

1⊗∃!: the rule (Cut) is admissible, but (Cut!) is not [CS09,
p. 1056].

We adapt the homomorphicmapping of section 3.1.1.1 to handle persistent facts. In positive
positions, we prefix persistent facts with the bang operator; in negative positions, we translate them
as though they were ephemeral. WhereM ranges over arbitrarymultisets potentially including
both ephemeral and persistent facts:

⌜∅⌝ = 1 ⌜M , s⌝ = ⌜M⌝⊗ s ⌜M , p⌝ = ⌜M⌝⊗ p

2∅7 = 1 2M , s7 = 2M7⊗ s 2M , p7 = 2M7⊗ ! p

⌜∀x⃗ .π(x⃗), F(x⃗)→ ∃n⃗.π′(x⃗ , n⃗),G(x⃗ , n⃗)⌝ = ∀x⃗ .⌜π, F⌝⊸ ∃n⃗.2π′ ,G7

We extend the homomorphism to multiset rewriting systems, where ⌜∅⌝ = ⋅ and ⌜R, r⌝ = ⌜R⌝, ⌜r⌝.
The following conjecture generalizes proposition 3.1.10 to the setting with persistence. We will

not use this conjecture, but state it for the sake of analogy with first-order multiset rewriting.

Conjecture 3.1.15. For all signatures Σ, Σ′,multisets Π,M and Π′ ,M′, andmultiset rewriting

system R, the sequent ⌜R⌝ ; ⌜Π,M⌝ Ð→Σ ∃Σ′ .2Π,M′7 is derivable in LVobs
1⊗∃! if and only if Σ ;

Π,M Ð→∗R (Σ, Σ
′) ; Π′ ,M′.

3.1.3. Semantic Irrelevance of Fresh Constants. The constants in fresh-constant substitu-
tions are, by construction, not semanticallymeaningful. Indeed, they are arbitrarily chosen globally
fresh constants.

In the absence of persistence, this semantic irrelevance is made precise by appealing to propo-
sition 3.1.10. Indeed, consider some sequence of rewriting steps Σ ; M Ð→∗R (Σ, Σ

′) ; M′. By
proposition 3.1.10 and an induction on the rules, the fresh constants Σ′ must have been obtained by
extending the signature Σ using the rule (∃l). In each case, the signature is extended using some
symbol x that was previously a bound variable in the goal formula. In particular, the new symbol
x could freely be α-varied prior to being used to extend the signature Σ. If conjecture 3.1.15 holds,
then an analogous observation can bemade for multiset rewriting with persistence.

As a result of these observations, we identify traces up to refreshing substitutions. A refreshing
substitution for a trace T = (M0 , (r i ; (θ i , ξ i))i) is a collection of fresh-constant substitutions
η = (η i)i such that [η]T = (M0 , (r i ; (θ i , η i))i) is also a trace. Explicitly, we identify traces T and
T ′ if there exists a refreshing substitution η such that T ′ = [η]T .

46 3. FAIRNESS FOR MULTISET REWRITING SYSTEMS

3.1.4. Parallel Rule Applications. We have so far only considered sequential rule application.
However, we are interested in modelling parallel computation, and to do so, we would expect
parallel (or simultaneous) rule application to be required. To this end, we briefly discuss parallel
multiset rewriting systems. We show that we can emulate parallel rule application using sequential
rule application and vice-versa. As a result, it will be sufficient to consider only sequential rule
applications.

We define an operator ∗ on rules that combines them for parallel application. Given rules
r i ∶ ∀x⃗ i .πi(x⃗ i), Fi(x⃗ i)→ ∃n⃗ i .π′i(x⃗ i , n⃗ i),G i(x⃗ i , n⃗ i) for i = 1, 2, let the rule r1 ∗ r2 be given by:

r1 ∗ r2 ∶ ∀x⃗1 , x⃗2 .(π1(x⃗1) ∪ π2(x⃗2)), F1(x⃗1), F2(x⃗2)→

→ ∃n⃗1 , n⃗2 .(π′1(x⃗1 , n⃗1) ∪ π′2(x⃗2 , n⃗2)),G1(x⃗1 , n⃗1),G2(x⃗2 , n⃗2).

Themultiset rewrite rule r1 ∗ r2 captures applying r1 and r2 in parallel. Intuitively, every application
of this rule splits the ephemeral portion of amultiset in two, applies each of the rules separately,
and then recombines the results at the end. It is clear that ∗ is an associative and commutative
operator with identity 1∗ ∶ ∅→ ∅.

Given a multiset rewriting system R, let the parallel multiset rewriting system R∗ be the
multiset rewriting system given by:

R∗ = {r1 ∗⋯ ∗ rn ∣ n ∈ N, r i ∈R}.
The following proposition shows that parallel rewriting can be emulated by sequential rewriting.
At a high level, its proof replaces each rule r1 ∗ ⋯ ∗ rn appearing in a trace M Ð→∗R∗ M′ by the
sequence of rules r1 , . . . , rn . We can make this replacement because, by definition of ∗, the rule
r1∗⋯∗rn describesmaking the localized changes described by each r i to a disjoint portion (modulo
persistence) of themultiset. Because each r i rewrites a disjoint portion of themultiset, the rules
r1 , . . . , rn do not disable or otherwise interfere with each other, so applying each r i sequentially
gives the same result.

Proposition 3.1.16. For all multiset rewriting systemsR andmultisets M and M′, M Ð→∗R M′

if and only if M Ð→∗R∗ M
′.

Proof. Sufficiency is clear: every trace overR is a trace overR∗. Conversely, assume that M Ð→∗R∗
M′. We proceed by induction on the number of steps taken. If no steps were taken, i.e., if
M Ð→∗R∗ M′ by reflexivity, then we are done. Now assume that m + 1 steps were taken, i.e., that
M Ð→R∗ M

′′ Ð→∗R∗ M
′ for someM′′. Assume that the first step is given by the rule

r1 ∗⋯ ∗ rk ∶ ∀x⃗1 , . . . , x⃗k . (
k

⋃
i=1

π i(x⃗ i)) , F1(x⃗1), . . . , Fk(x⃗k)→

→ ∃n⃗1 , . . . , n⃗k . (
k

⋃
i=1

π′i(x⃗ i , n⃗ i)) ,G1(x⃗1 , n⃗1), . . . ,Gk(x⃗k , n⃗k)

for some rules r i ∈R and k ≥ 1, with matching substitution θ and fresh-constant substitution ξ.
Let θ i and ξ i be the obvious restrictions of θ and ξ to x⃗ i and n⃗ i , respectively. By definition of rule
application, it follows that

M = (
k

⋃
i=1

π i(θ)) ,Π′ , F1(θ), . . . , Fk(θ),N

= (
k

⋃
i=1

π i(θ i)) ,Π′ , F1(θ1), . . . , Fk(θk),N , (20)

M
′′ = ((

k

⋃
i=1

π i(θ)) ∪Π′ ∪ (
k

⋃
i=1

π′ i(θ , ξ))) ,G1(θ , ξ), . . . ,Gk(θ , ξ),N

= ((
k

⋃
i=1

π i(θ i)) ∪Π′ ∪ (
k

⋃
i=1

π′ i(θ i , ξ i))) ,G1(θ1 , ξ1), . . . ,Gk(θk , ξk),N . (21)

3.2. THREE VARIETIES OF FAIRNESS 47

We claim that, whereM0 = M, the following is a trace for somemultisets M1, . . . ,Mk+1, and
that Mk+1 = M

′′:

M0
(r1 ;(θ 1 ,ξ1))
ÐÐÐÐÐ→ M1 Ð→ ⋯Ð→ Mk

(rk ;(θ k ,ξk))
ÐÐÐÐÐÐ→ Mk+1 (22)

This claim implies that M Ð→∗R M′′. By the induction hypothesis, M′′ Ð→∗R M′. BecauseÐ→∗R is
transitive, we can then concludeM Ð→∗R M′.

We show that (22) is a trace. To do so, we proceed by induction on j, 0 ≤ j ≤ k + 1, to show that

M j = (
k

⋃
i=1

π i(θ i)) ∪Π′ ∪ (
j

⋃
i=1

π′ i(θ i , ξ i)) ,

G1(θ1 , ξ1), . . . ,G j(θ j , ξ j), F j+1(θ j+1), . . . , Fk(θk),N .

It will then follow that r j is applicable to M j for all 0 ≤ j ≤ k, i.e., that (22) is a trace. It will also be
immediate by (21) that Mk+1 = M

′′.
The case k = 0 is immediate by eq. (20). Assume the result for some j, then by definition of

rule application, we have

M j+1 = (
k

⋃
i=1

π i(θ i)) ∪Π′ ∪ (
j+1
⋃
i=1

π′ i(θ i , ξ i)) ,

G1(θ1 , ξ1), . . . ,G j+1(θ j+1 , ξ j+1), F j+2(θ j+2), . . . , Fk(θk),N .

This is exactly what we wanted to show. We conclude the result.

Parallel rule applications for multiset rewriting systems are discussed by Cervesato [Cer01,
§§ 5.3–5.4]. Our approach is inspired by Cervesato’s: we both decompose amultiset into disjoint
pieces, apply rules in parallel, and recombining multisets. However, we diverge in the details from
Cervesato’s approach by defining a newMRSR∗ that captures parallel execution, instead of using
an inductively defined parallel rewriting judgment. Our approach also allows for persistent facts.

3.2. Three Varieties of Fairness

Intuitively, fairness properties provide progress guarantees for components in computational
systems. Countless varieties of fairness were introduced in the 1980s, and they were classified
according to various taxonomies by Francez [Fra86] and Kwiatkowska [Kwi89]. A common
classification is along the axis of strength. Weak fairness ensures that components that are almost
always able to make progress do make progress infinitely often. In contrast, strong fairness ensures
that components that are able to make progress infinitely often do make progress infinitely often.

We introduce three varieties of fairness for multiset rewriting systems—rule fairness, fact
fairness, and instantiation fairness—and we give a weak and a strong formulation for each. We
motivate each variety of fairness by an example. In section 3.2.4, we show that these three varieties
are independent.

3.2.1. Rule Fairness. Wemotivate rule fairness using an encoding of Petri nets as multiset
rewriting systems. Petri nets [Pet80; Pet77] are structures used to model concurrency. A Petri

net is given by two sets—a set P of places and a set T of transitions—and a pair of functions
I,O ∶ T → ℘(P) specifying the inputs and outputs of the transitions in T .

Informally, one executes a Petri net by placing tokens in places and observing how the tokens
move through the net. An assignment µ ∶ P → N of tokens to places is called amarking. Amarked

Petri net (P, T , I,O , µ) is conveniently depicted as a directed graph, where circles represent places,
solid dots represent tokens, thick lines represent transitions, and arrows represent input/output. For
example, fig. 3.2(a) depicts themarkedPetri net given by P = {p1 , p2 , p3}, T = {t1}, I(t1) = {p1 , p2},
O(t1) = {t3}, and µ0 = (p1 ↦ 2, p2 ↦ 1, p3 ↦ 0).

A transition is enabled if all of its inputs have at least one token. In this case, it fires by taking
one token from each of its input places and adding one token to each of its output places; this
changes themarking of the Petri net. A Petri net executes by repeatedly firing enabled transitions.

48 3. FAIRNESS FOR MULTISET REWRITING SYSTEMS

p1

p2

t1

p3

(a) Marking µ0

p1

p2

t1

p3

(b) Marking µ1

Figure 3.2. Two markings of the same Petri net

An execution is then a sequence µ0 , µ1 , . . . of markings, each obtained from its predecessor by
firing an enabled transition. For example, in the Petri net of fig. 3.2(a), the transition t1 is enabled,
and the result of firing t1 is the Petri net of fig. 3.2(b). When considering executions from a given
marked Petri net, it is often more convenient to notate executions by their firing sequence, i.e., by
the sequence of transitions that fired, than by the sequence ofmarkings. The firing sequence for
the execution µ0 , µ1 is t1.

Transitions fire non-deterministically. Consider, for example, themarked Petri net in fig. 3.3(a).
It could fire t2 first to obtain themarking µ1 of fig. 3.3(b). From here, it can fire t1 to return to the
marking µ0. Alternatively, it could have fired the transition t3 to get themarking µ2 of fig. 3.3(c).
No transitions are enabled in this marking, so an execution ends as soon as it reaches this marking.
It follows that all executions from µ0 are given by the firing sequences2

t2, (t2 t1)
∞, or (t2 t1)

∗t3.

t1

t2

t3

p1 p2

p3

(a) Marking µ0

t1

t2

t3

p1 p2

p3

(b) Marking µ1

t1

t2

t3

p1 p2

p3

(c) Marking µ2

Figure 3.3. Markings reachable from fig. 3.3(a), illustrating non-deterministic
firings.

In applications, it is often desirable to rule out so-called “unfair” executions. For example, we
could deem the execution (t2 t1)

ω to be unfair because, though the transition t3 is enabled infinitely
often, it never fires. To this end, we recall the definitions of weak and strong fairness for Petri
nets [Leu+88]. We say that an execution (µ i)i∈I of a Petri net is

● weakly fair if it is finite, or if it is infinite and for all transitions t ∈ T , if t is enabled on all
but finitelymanymarkings µ i , then there exist infinitelymany i ∈ I such that µ i+1 was
obtained from µ i by firing t;
● strongly fair if it is finite, or if it is infinite and for all transitions t ∈ T , if t is enabled on
infinitely many markings µ i , then there exist infinitely many i ∈ I such that µ i+1 was
obtained from µ i by firing t.

Weak and strong fairness rule out different executions. For example, the firing sequence
(t2 t1)

ω describes a weakly fair execution from µ0: the execution alternates between themarkings
µ0 and µ1, so no transitions are enabled on all but finitelymanymarkings. The execution is not
strongly fair: the transition t3 is enabled infinitely often, but it never fires. The only strongly fair
executions from µ0 are given by the finite firing sequences t2 and (t2 t1)

∗t3.

2We adopt notation from ω-regular languages, where Σ∗ and Σω respectively denote finite and infinite words over
the alphabet Σ, and Σ∞ = Σ∗ ∪ Σω .

3.2. THREE VARIETIES OF FAIRNESS 49

We can encode a Petri net (P, T , I,O) as amultiset rewriting system.3 Each transition t ∈ T

induces a rule
t ∶ i1 , . . . , im → o1 , . . . , on

where I(t) = {i1 , . . . , im} and O(t) = {o1 , . . . , on}. A marking specifies a multiset containing
µ(p)many facts p for each place p ∈ P. Firing a transition t corresponds to applying the rule t.
Observe that a transition is enabled if and only if the rule is applicable.

Example 3.2.1. The Petri net of fig. 3.2 induces the single rule t1 ∶ p1 , p2 → p3. Themarking µ0
corresponds to themultiset p1 , p1 , p2. Firing the transition t1, i.e., applying the rule t1, results in
themultiset p1 , p3. ◀

Weak and strong fairness for Petri nets exactly correspond to the concepts of weak and strong
rule-fairness for multiset rewriting systems. Consider an MRSR. A trace T = (M0 , (r i ; δ i)i∈I) is:

● weakly rule-fair if it is finite, or if it is infinite and for all rules r ∈R, if r is applicable to all
but finitelymany M i , then there exist infinitelymany i ∈ I such that r i = r;
● strongly rule-fair if it is finite, or if it is infinite and for all r ∈R, if r is applicable to infinitely
many M i , then there exist infinitelymany i ∈ I such that r i = r.

3.2.2. Fact Fairness. Rule fairness alone is insufficient for an intuitively reasonable notion of
fairness. We illustrate this fact bymeans of an MRS that grows and shrinks trees of finite height.
Consider a collection of formulas Bn(a, s) capturing branches in a tree. Here, n ∈ N denotes
some amount of “growth potential”, a is the branch’s ancestor, and s is a globally unique symbol
identifying the branch. The root of a tree is given by a formula Bn(a, a). We can depict trees-
as-multisets graphically, using dots to represent growth potential. For example, fig. 3.4 depicts
multiset B2(a, a),B1(a, b),B0(a, c),B3(c, d).

a c

b

d

Figure 3.4. Visualization of themultiset B2(a, a),B1(a, b),B0(a, c),B3(c, d)
as a tree

A branch can sprout a new branch if it has positive growth potential. Branching is given by a
family of rules, where we have a “branching rule” b j ,k for all n > 0 and j, k ≥ 0 such that j + k = n:

b j ,k ∶ ∀xy.Bn(x , y)→ ∃z.B j(x , y),Bk(y, z).

It takes a branch y with potential n, and creates a new descendent z with potential k, leaving y

with potential j.
Consider the following execution starting from a root a0 with two units of growth potential:

B2(a0 , a0)
b1,1
Ð→ B1(a0 , a0),B1(a0 , a1)
b0,1
Ð→ B1(a0 , a0),B0(a0 , a1),B1(a1 , a2)

⋮

b0,1
Ð→ B1(a0 , a0),B0(a0 , a1),B0(a1 , a2), . . . ,B1(an , an+1)
⋮

(23)

3This encoding is very similar to the one used to encode Petri nets in Concurrent LF [Cer+03, § 5.3.1].

50 3. FAIRNESS FOR MULTISET REWRITING SYSTEMS

a0 a0 a1 a0 a1 a2

⋯

a0 a1

⋯

an an+1

⋯

Figure 3.5. Graphical depiction of themultisets in execution (23)

It is graphically depicted by the sequence of trees in fig. 3.5. This execution grows the tree forever by
applying b0,1 to the right-most branch in the tree. It is both weakly and strongly rule-fair. Indeed,
the only rule that is applicable infinitely often is b0,1, and it is applied infinitely often. However, the
execution could be deemed “unfair” to the branch a0. Indeed, though a0 has a unit of potential left,
it never gets to use it to grow a second branch. This motivates the notion of fact fairness, which
ensures that facts that could be used to take a step are not ignored.

Consider an MRSR. We say that a fact J ∈ M is enabled in M if there exists an instantiation
r(θ) ∶ F(θ)→ ∃n⃗.G(θ , n⃗) of a rule r ∈R such that J ∈ F(θ). A trace T = (M0 , (r i ; δ i)i∈I) is:

● weakly fact-fair if it is finite, or if it is infinite and for all facts J ∈ supp(T), if J is enabled
in all but finitelymanyM i , then there exist infinitelymany i ∈ I such that J is in the active
multiset of r i(θ i);
● strongly fact-fair if it is finite, or if it is infinite and for all facts J ∈ supp(T), if J is enabled
in infinitelymany M i , then there exist infinitelymany i ∈ I such that J is in the active
multiset of r i(θ i).

3.2.3. Instantiation Fairness. To illustrate a final variety of fairness, we suspend disbelief
and assume that we can water individual branches. Watering a branch gives it a unit of potential:

wn ∶ ∀xy.Bn(x , y)→ Bn+1(x , y).

Intuitively, fairness should ensure that no branch in the tree is left unwatered forever. Rule-fairness
and fact-fairness are insufficient to ensure this in general. To illustrate this,wemake the simplifying
assumption that we only have the rule w0 plus a family of rules that redistribute potential:

rm ,n ∶ ∀xyz.Bm+1(x , y), Bn(y, z)→ Bm(x , y), Bn+1(y, z).

Consider the execution starting from the multiset B0(a, a), B0(a, b), B0(b, c) given by the se-
quence of rule instantiations

w0(a), r0,0(a, a, b), r0,0(a, b, c),
w0(a), r0,0(a, a, b), r0,1(a, b, c),

. . . ,w0(a), r0,0(a, a, b), r0,n(a, b, c),

After the 3n-th rule, themultiset is B0(a, a), B0(a, b), Bn(b, c). This execution is strongly rule-fair:
the only rules applicable infinitely often are w0 and r0,0, and they are both applied infinitely often.
It is strongly fact-fair: the only facts enabled infinitely often are B0(a, a), B1(a, a), B0(a, b), and
B1(a, b). Each of these appears in the activemultisets of infinitelymany rule applications. However,
the instantiation is still intuitively unfair because though the branch b could be watered infinitely
often, it never gets watered. Explicitly, the rule instantiation w0(a, b) is applicable infinitely often,
but it is never applied. To address this, we introduce instantiation fairness.

Recall the definition of equivalent instantiations r1(θ1) ≡ r2(θ2) from definition 3.1.12. Con-
sider an MRSR. A trace T = (M0 , (r i ; δ i)i∈I) is:

● weakly instantiation-fair if it is finite, or if it is infinite and for all rules r ∈R and θ, if r(θ)
is applicable to all but finitelymany M i , then there exist infinitelymany i ∈ I such that
r i(θ i) ≡ r(θ);
● strongly instantiation-fair if it is finite, or if it is infinite and for all r ∈ R and θ, if r(θ)
is applicable to infinitely many M i , then there exist infinitely many i ∈ I such that
r i(θ) = r(θ).

3.3. PROPERTIES OF FAIR TRACES 51

3.2.4. Comparing Varieties of Fairness. We have a proliferation of varieties of fairness, and
it raises the question: are they all useful and independent from each other? The first question is
normative and implicitly presupposes an answer to the question: useful to what end? Wemotivated
each kind of fairness by an application, but it is up to the practitioner to decide whether or not a
particular kind of fairness is useful or desirable in a particular setting. We can, however, answer
the second question. We show that rule, fact, and instantiation fairness are independent notions,
no two of which imply the other. To do so, we construct traces that satisfy two of the forms of
fairness, but not the third.

Consider theMRS given by the following rules:

a ∶ ∀x .A(x)→ A(x)

b ∶ ∀x .A(x), B → A(x), B.

Consider themultiset M0 = A(c),A(d), B. The trace given by alternating applications of a(c) and
b(d) is strongly fact-fair and strongly-rule fair, but it is not weakly or strongly instantiation fair.
Indeed, though the instantiation b(c) is always applicable, it never gets applied.

Now consider theMRS given by the following rule:

r ∶ ∀xy.A(x), B(y)→ ∃z.A(x), B(z).

Consider the multiset M0 = A(a),A(a′), B(b0). Assume that we generate the fresh constants
b1 , b2 , Then the trace given by r(a, b0), r(a, b1), r(a, b2), . . . is strongly instantiation-fair and
strongly rule-fair, but it is not weakly or strongly fact-fair. Indeed, the only rule r is applied infinitely
often, so the trace is strongly rule-fair, and all instantiations of r are globally unique, so the trace is
instantiation-fair. It is not fact fair because, though the fact A(a′) is always enabled (it is in the
activemultiset of r(a′ , bn) for each n), it is never in the activemultiset of a rule in the trace.

Finally, consider theMRS given by the following rules:

a ∶ ∀x .A(x)→ ∃y.A(y)
b ∶ ∀x .B(x)→ ∃y.B(y)

i ∶ ∀x , y.A(x), B(y)→ A(x), B(y).

Consider themultiset A(a0), B(b0). Consider the trace given by alternating applications of a and
b:

A(a0), B(b0)→ A(a1)B(b0)→ A(a1), B(b1)→ A(a2), B(b1)→ A(a2), B(b2)→ ⋯

It is strongly fact-fair: each fact appears at most twice in the trace. It is strongly instantiation-fair:
each rule instantiation is applicable at most twice in the trace. However, it is not weakly or strongly
rule-fair: the rule i never gets applied.

3.2.5. Weak, Strong, and Über Fairness. We say that a trace is weakly fair if it is weakly
rule-, fact-, and instantiation-fair, and strongly fair if it is strongly rule-, fact-, and instantiation-fair.
Surprisingly, amuch stronger notion of fairness arises naturally in applications ofmultiset rewriting
systems. We say that a trace (M0 , (r i ; δ i)i∈I) is über fair if it is finite, or if for all i ∈ I, r ∈R, and θ,
whenever r(θ) is applicable to M i , there exists a j > i such that r j(θ j) ≡ r(θ). Given an über fair
trace T , we write υT(i , r, θ) for the least such j if it exists. Every über fair trace is also strongly fair,
and every strongly fair is also weakly fair.

3.3. Properties of Fair Traces

We study sufficient conditions for multiset rewriting systems to have fair traces. One of these,
“interference-freedom”, implies that all fair traces are permutations of each other. We also study the
effects of permuting steps in traces.

The fair tail property is immediate from the definitions of fairness:

Proposition 3.3.1 (Fair Tail Property). Let “fair” range over the nine notions of fairness consid-

ered in section 3.2.5. If (M0 , (t i ; δ i)i∈I) is fair, then so is (Mn , (t i ; δ i)n<i , i∈I) for all n ∈ I.

52 3. FAIRNESS FOR MULTISET REWRITING SYSTEMS

Most notions of fairness are closed under concatenation with finite prefixes:

Proposition 3.3.2 (Fair Concatenation Property). Let “fair” range over weak and strong rule,

fact, and instantiation fairness. If M0 Ð→
∗ Mn , and T is a fair trace from Mn , then M0 Ð→

∗ Mn

followed by T is a fair trace from M0. If T is finite, then the result also holds for über fairness.

Interference-freedom roughly means that at any given point, the order in which we apply
applicable rules does not matter. Write SI for the group of bijections on I; its elements are called
permutations. A permutation σ ∈ SI acts on a trace T = (M0 , (t i ; δ i)i∈I) to produce a sequence
σ ⋅ T = (M0 , (tσ(i); δσ(i))i∈I). This sequence σ ⋅ T is a permutation of T whenever it is also a trace.
We adopt group-theoretic notation for cyclic permutations and write (x , σ(x), σ(σ(x)), . . .) for
a cyclic permutation σ ∶ I → I; implicit is that all elements not in the orbit of x are fixed by σ . For
example, let T be given by the sequence of rule instances t1 , t2 , t3 , t4 , t5. Then (4, 3, 2) ⋅ T is the
sequence t1 , t4 , t2 , t3 , t5. Cyclic permutations of length two are called transpositions.

Consider an MRSR and let r1(θ1), . . . , rn(θn) enumerate all distinct instantiations of rules
in R applicable to M0. We say that R commutes on M0 or is interference-free on M0 if for all
corresponding pairwise-disjoint fresh-constant substitutions ξ i , the following diagram commutes
for all permutations σ ∈ Sn, and both paths around it are traces:

M1 ⋯ Mn−1

M0 Mn

M′1 ⋯ M′n−1

(r2 ;(θ2 ,ξ2)) (rn−1 ;(θn−1 ,ξn−1))
(rn ;(θn ,ξn))(r1 ;(θ 1 ,ξ1))

(rσ(1) ;(θ σ(1) ,ξσ(1)))
(rσ(2) ;(θ σ(2) ,ξσ(2))) (rσ(n−1) ;(θ σ(n−1) ,ξσ(n−1))) (rσ(n) ;(θ σ(n) ,ξσ(n)))

We note that interference-freedom is only defined if the enumeration of distinct applicable in-
stantiations is finite. The following proposition is an immediate consequence of the definition of
commuting rules:

Proposition 3.3.3. Let R commute on M0, and let r i(θ i) with 1 ≤ i ≤ n be the distinct

instantiations applicable on M0. IfM0
(r1 ;(θ 1 ,ξ1))
ÐÐÐÐÐ→ M1, then r2(θ2), . . . , rn(θn) are applicable to and

commute on M1.

Interference-freedom implies the existence of über fair executions. To prove this, we construct
a scheduler that enqueues all applicable rules and applies them one by one. Interference freedom
ensures that a rule is still applicable once it reaches the front of the queue.

Given an MRS R and a property P of multisets, we say P holds from M0 if for all traces
(M0 , (r i ; δ i)i∈I), P holds for M0 and for M i for all i ∈ I.

Proposition 3.3.4 (Fair Scheduler). IfR is interference-free from M0, then there exists an über

fair execution from M0.

Proof. We define an über fair execution (r i ; (θ i , ξ i)i) from M0 by induction on n.
Let Q0 = r01(θ01), . . . , r0n(θ0n) be an enumeration of the distinct instantiations of rules from

R applicable to M0. The enumeration is finite becauseR commutes on M0. Wemaintain for all n
the following invariants:

● all distinct rules instantiations applicable to Mn appear in Qn ;
● all rules in Qn are applicable to Mn and are distinct instantiations of rules inR.

Let Qn be given; we construct rn+1, θn+1, ξn+1,Mn+1 andQn+1. IfQn is empty, then no rules are
applicable to Mn and (M0 , (r i ; (θ i , ξ i)i)) is maximal. Otherwise, let rn+1(θn+1) be first element
in Qn so that Qn = rn+1(θn+1),Q′n for some Q′n . Pick a suitably fresh ξn+1. Take

Mn

(rn+1 ;(θn+1 ,ξn+1))
ÐÐÐÐÐÐÐÐÐ→ Mn+1 .

By assumption, all rules in Qn are applicable to Mn , and these are all instantiations of rules
in R. By interference-freedom, R commutes on Mn , so all rules in Q′n are applicable to Mn+1

3.3. PROPERTIES OF FAIR TRACES 53

by proposition 3.3.3. Let Qn+1 = Q′n ,Nn+1, where Nn+1 is an enumeration of the distinct rule
instantiations applicable to Mn+1 not already in Q′n . It is finite becauseR commutes on Mn+1. The
invariants hold by construction.

The resulting trace is clearly über fair: for all j, if r is applicable to M j , then it appears at some
finite depth d in Q j+1 and will appear in the trace after d steps.

Though interference-freedom simplifies fair scheduling, it is primarily of interest for reasoning
about executions. For example, it is useful for showing confluence properties. It also lets us
safely permute certain steps in a trace without affecting observations for session-typed processes
(see chapter 6). This can simplify process equivalence proofs, because it lets us assume that related
steps in an execution happen one after another.

Interference-freedom is a strong property, but it holds for manymultiset rewriting systems of
interest. This is becausemany systems can be captured using rules whose activemultisets do not
intersect, and rules with disjoint activemultisets commute. In fact, even if their activemultisets
intersect, rules do not disable each other so long as they preserve these intersections. Because
persistent facts are always preserved, it is sufficient to consider only ephemeral facts.

To make this intuition explicit, consider multisets M i ⊆ M for 1 ≤ i ≤ n. Their overlap in M

is ΩM(M1 , . . . ,Mn) = M1 , . . . ,Mn ∖M. Consider an MRSR and let r i(θ i) ∶ πi(θ i), Fi(θ i) →
∃n⃗ i .π′i(θ i),G i(θ i , n⃗ i), 1 ≤ i ≤ n, enumerate all distinct instantiations of rules inR applicable to
M. We say thatR is non-overlapping on M if for all 1 ≤ i ≤ n and fresh-constant substitutions ξ i ,
Fi(θ i)∩ΩM(F1(θ1), . . . , Fn(θn)) ⊆ G i(θ i , ξ i), i.e., if each rule instantiation preserves its portion
of the overlap.

Example 3.3.5. The overlap of A, B and B,C in A, B,C is ΩA,B ,C((A, B), (B,C)) = B. The overlap
of A, B and B,C in A, B, B,C is the emptymultiset ΩA,B ,B ,C((A, B), (B,C)) = ∅. The overlap of
A, B and B,C, and C ,A in A, B,C is ΩA,B ,C((A, B), (B,C), (C ,A)) = A, B,C. ◀

Example 3.3.6. TheMRS given by example 3.1.6 is non-overlapping from anymultiset of the form
Q , E where Q is a queue rooted at q, and E contains at most one fact of the form enq(q, v). ◀

Proposition 3.3.7 characterizes the application of non-overlapping rules,while proposition 3.3.9
characterizes the relationship between commuting and non-overlapping rules. Because persistent
facts pose no difficulty (multiset union is a commutative operation), we elide them from these
results for clarity.

Proposition 3.3.7. LetR be non-overlapping on M0 and let r i(θ i) ∶ Fi(θ i)→ ∃n⃗ i .G(θ i , n⃗ i)

with 1 ≤ i ≤ n be the distinct instantiations applicable to M0. If M0
(r1 ;(θ 1 ,ξ1))
ÐÐÐÐÐ→ M1 and r1 , . . . , rn are

non-overlapping on M0, then r2(θ2), . . . , rn(θn) are applicable to and non-overlapping on M1.

In particular, abbreviate Fi(θ i) andG i(θ i , ξ i) by Fi andG i , respectively, and let O be the overlap

O = ΩM0(F1 , . . . , Fn) ∩ F1. There exist F′1 and G
′
1 be such that F1 = O , F′1 and G1 = O ,G′1, and there

exists an M such that M0 = O , F′1 ,M andM1 = O ,G′1 ,M. The instantiations r2(θ2), . . . , rn(θn) are

all applicable to O ,M ⊆ M1.

Proof. WhereM = (S ,m) is amultiset and s ∈ S, we abuse notation and writeM(s) for m(s).
Let O = ΩM0(F1 , . . . , Fn) ∩ F1. By assumption, O ⊆ G1, so F1 = O , F′1 and G1 = O ,G′1 for

some F′1 and G′1. It follows that M0 = O , F′1 ,M and M1 = O ,G′1 ,M for some M. We show that
r2(θ2), . . . , rn(θn) are all applicable to O ,M. Without loss of generality, we show that r2(θ2) is
applicable to O ,M. This requires that we show that F2 ⊆ O ,M, i.e., that F2(s) ≤ O(s) +M(s) for

54 3. FAIRNESS FOR MULTISET REWRITING SYSTEMS

all s. We compute:

(ΩM0(F1 , . . . , Fn))(s) = max(0, (
n

∑
i=1

Fi(s)) −M0(s))

= max(0, (
n

∑
i=2

Fi(s)) −M(s)) , (24)

O(s) = min(F1(s),max(0, (
n

∑
i=2

Fi(s)) −M(s))) . (25)

Because r2(θ2) is applicable to M0, we have F2 ⊆ M0, i.e., F2(s) ≤ M0(s) = O(s) + F
′
1(s) +M(s)

for all s. If F′1(s) = 0, then we are done. Assume now that F′1(s) > 0. From this it follows that
F1(s) = F

′
1(s) + O(s) > O(s). We consider three cases for the value of O(s), based on the three

possibilities in eq. (25):
Case O(s) = F1(s): Impossible, for it contradicts F1(s) > O(s).
Case O(s) = 0: Then F1(s) = 0 or max (0, (∑n

i=2 Fi(s)) −M(s)) = 0. The case F1(s) = 0 is
impossible because F1(s) > O(s) = 0. So 0 ≥ (∑n

i=2 Fi(s))−M(s), soM(s) ≥ ∑n

i=2 Fi(s). Because
the Fi are all non-negative,M(s) ≥ F2(s), so we are done.

Case O(s) = (∑n

i=2 Fi(s)) −M(s): Then O(s) +M(s) = ∑
n

i=2 Fi(s) ≥ F2(s), so we are done.
We conclude that r2(θ2) is applicable to M1.

Next, we show that r2(θ2), . . . , rn(θn) is non-overlapping onM1. In particular, wemust show
that for all i, ΩM1(F2 , . . . , Fn) ∩ Fi ⊆ G i . By assumption,

ΩM0(F1 , . . . , Fn) ∩ Fi ⊆ G i

for all i, so it is sufficient to show that

ΩM1(F2 , . . . , Fn) ⊆ ΩM0(F1 , . . . , Fn).

To do so, we show that for all s,

(ΩM1(F2 , . . . , Fn)) (s) ≤ (ΩM0(F1 , . . . , Fn)) (s).

Let M1 = O ,G′1 ,M as before. We compute:

(ΩM1(F2 , . . . , Fn))(s) = max(0, (
n

∑
i=2

Fi(s)) −M1(s))

= max(0, (
n

∑
i=2

Fi(s)) − O(s) −G
′
1(s) −M(s)) .

Because all values involved are non-negative,

(
n

∑
i=2

Fi(s)) − O(s) −G
′
1(s) −M(s) ≤ (

n

∑
i=2

Fi(s)) −M(s).

Recall that max is monotone and recall eq. (24). It follows that

(ΩM1(F2 , . . . , Fn)) (s) ≤ (ΩM0(F1 , . . . , Fn)) (s)

as desired. We conclude that r2(θ2), . . . , rn(θn) are non-overlapping on M1.

Lemma 3.3.8. Consider distinct instantiations r i(θ i) ∶ Fi(θ i)→ ∃n⃗ i .G i(θ i , n⃗ i) that are appli-

cable to M0 for i = 1, 2. If they are non-overlapping on M0, then they commute on M0.

Proof. We must show that for all disjoint fresh-constant substitutions ξ1 and ξ2, the following
diagram commutes and both paths around it are traces:

M0 M1

M′1 M2 .

(r1 ;(θ 1 ,ξ1))

(r2 ;(θ2 ,ξ2)) (r2 ;(θ2 ,ξ2))
(r1 ;(θ 1 ,ξ1))

3.3. PROPERTIES OF FAIR TRACES 55

Fix some such substitutions and abbreviate Fi(θ i) and G i(θ i , ξ i) by Fi and G i , respectively. Both
paths around the square are traces by proposition 3.3.7; we show that it commutes.

Let O′i = Fi ∩ ΩM0(F1 , F2), O12 = O
′
1 ∩ O

′
2, and O i = O

′
i ∖ O12. By assumption, O′i ⊆ G i , so

for some F′i and G
′
i we have Fi(θ i) = O

′
i , F
′
i = O12 ,O′i , F

′
i and G i = O

′
i ,G

′
i = O12 ,O′i ,G

′
i . Because

Fi ⊆ M0 for i = 1, 2, it follows that M0 = O12 ,O1 ,O2 , F′1 , F
′
2 ,M. Then the two paths are

M0
(r1 ;(θ 1 ,ξ1))
ÐÐÐÐÐ→ O12 ,O1 ,O2 ,G′1 , F

′
2 ,M

(r2 ;(θ2 ,ξ2))
ÐÐÐÐÐÐ→ O12 ,O1 ,O2 ,G′1 ,G

′
2 ,M

M0
(r2 ;(θ2 ,ξ2))
ÐÐÐÐÐÐ→ O12 ,O1 ,O2 , F′1 ,G

′
2 ,M

(r1 ;(θ 1 ,ξ1))
ÐÐÐÐÐ→ O12 ,O1 ,O2 ,G′1 ,G

′
2 ,M .

We conclude that the diagram commutes.

In [Kav20a, Proposition 5], we claimed that the converse of proposition 3.3.9 was false. The
counter-example used does not support this claim.

Proposition 3.3.9. An MRS commutes on M0 if it is non-overlapping on M0.

Proof. Assume that the rules are non-overlapping on M0. Let r i(θ i) ∶ Fi(θ i) → ∃n⃗ i .G(θ i , n⃗ i)
enumerate the distinct instantiations that are applicable to M0 with 1 ≤ i ≤ n. Consider pairwise-
disjoint fresh-constant substitutions ξ i for 1 ≤ i ≤ n. Wemust show that (M0 , (r i ; (θ i , ξ i))1≤i≤n)
is a trace and that permuting its steps does not change the last multiset.

We proceed by induction on n to show that it is a trace. Informally, proposition 3.3.7 will
ensure that no matter which instance we apply to get to the next multiset, the remaining instances
will be applicable to and non-overlapping on that multiset. The result is immediate when n = 0.
Assume that the result holds for some k, and assume that n = k + 1. By the induction hypothesis,
the following sequence of k steps is a trace:

M0
(r1 ;(θ 1 ,ξ1))
ÐÐÐÐÐ→ M1

(r2 ;(θ2 ,ξ2))
ÐÐÐÐÐÐ→ ⋯

(rk−1 ;(θ k−1 ,ξk−1))
ÐÐÐÐÐÐÐÐÐ→ Mk−1

(rk ;(θ k ,ξk))
ÐÐÐÐÐÐ→ Mk .

We proceed by induction on 0 ≤ j ≤ k to show that r j+1(θ j+1), . . . , rk+1(θk+1) are all applicable
and non-overlapping on M j .

Case j = 0: Immediate from the assumption that the rules are non-overlapping on M0.
Case j = j′ + 1 with j′ < k: The instances r j(θ j), . . . , rk+1(θk+1) are all applicable to M j by

the induction hypothesis on j′. By proposition 3.3.7, the instances r j+1(θ j+1), . . . , rk+1(θk+1) are
all applicable and non-overlapping on M j+1.
This completes the nested induction on j, and we conclude that rk+1(θk+1) is applicable to Mk .
Pairwise-disjointness of the ξ i guarantees that the resulting sequence of k + 1 steps is a trace. This
completes the induction on n.

Next, we observe that any permutation of the above trace is a trace. Indeed, the numbering
of the r i(θ i) ∶ Fi(θ i) → ∃n⃗ i .G(θ i , n⃗ i) was arbitrary, and the proof that (M0 , (r i ; (θ i , ξ i))1≤i≤n)
was a trace did not depend in any way on the numbering of the rules or on the individual rules
themselves.

Finally, we show that all permutations of the trace have the same final multiset. Concretely, fix
some σ and let (N0 , (rσ(i); (θσ(i) , ξσ(i)))i∈n)) = σ ⋅(M0 , (r i ; (θ i , ξ i))i∈n). We show that Mn = Nn .
The permutation σ factors as a product of transpositions of adjacent steps by the proof of [Hun74,
Corollary I.6.5]. By the previous paragraph, each of these transpositions preserves the property
of being a trace. By lemma 3.3.8, each transposition preserves themultisets at its endpoints. In
particular, each transposition preserves Mn . An induction on the number of transpositions in the
factorization of σ gives that Mn = Nn .

Weak, strong, and über fairness coincide in the presence of interference-freedom:

Proposition 3.3.10. If R is interference-free from M0 and T is a trace from M0, then the

following are equivalent: T is weakly instantiation-fair, T is strongly instantiation-fair, T is über fair.

56 3. FAIRNESS FOR MULTISET REWRITING SYSTEMS

Proof. It is clear that über fairness implies both forms of instantiation-fairness, and that strong
instantiation-fairness implies weak instantiation-fairness. It is sufficient to show that if T is weakly
instantiation-fair, then it is über fair.

Assume that T is weakly instantiation-fair. If T is finite, then we are done, so assume that
T = (M0; (r i , δ i)i) is infinite. Consider some arbitrary M i , and assume that r(θ) is applicable to
M i . Wemust show that there exists some k ≥ 1 such that r i+k(θ i+k) ≡ r(θ). By induction on k ≥ 1
with proposition 3.3.7, we know that if r i+k(θ i+k) /≡ r(θ), then r(θ) is applicable to M i+k+1. This
implies that r i+k(θ i+k) ≡ r(θ) for some k ≥ 1 or that r(θ) is applicable to all but finitelymany M j

(i.e., at most the first i multisets). In the first case, we are done. In the latter case, we know that
r(θ) is applied infinitely often by weak instantiation-fairness. We conclude that T is über fair.

Corollary 3.3.11 (Fair Concatenation for Über Fairness). IfR is interference-free from M0,

M0 Ð→
∗ Mn , and T is an über fair trace from Mn , then M0 Ð→

∗ Mn followed by T is an über fair

trace from M0.

Proof. Immediate by propositions 3.3.2 and 3.3.10.

In light of proposition 3.3.10, we hereinafter use the words “fair trace” to equivalentlymean
“weakly fair trace”, “strongly fair trace”, or “über fair trace” when assuming interference-freedom.
Assumption 3.3.12. For the remainder of this section, we assume that if (M0 , (r i ; δ i)i) is a fair trace,
then its MRS is interference-free from M0.

In the remainder of this section, we study the effects of permutations on fair traces. We first
show that fairness is invariant under permutation. Then, we show that all fair executions are
permutations of each other.

Interference-freedom implies the ability to safely permute finitely many steps that do not
depend on each other. However, it is not obvious that finite permutations, let alone infinite
permutations, preserve fairness. We begin by showing that finite permutations preserve fairness.
Our proof relies on the fact that finite permutations factor as products of cycles, which themselves
factor as products of transpositions. We begin by showing that transpositions of adjacent steps
preserve fairness.

Lemma 3.3.13. LetR be interference-free from M0 and let T = (M0 , (r i ; (θ i , ξ i))i∈I) be a trace,

an execution, or a fair trace. For all transpositions (m + 1,m) ∈ SI , if rm+1(θm+1) is applicable to

Mm−1, then (m + 1,m) ⋅ T is respectively a trace, an execution, or a fair trace.

Proof. Consider some transpositions (m + 1,m) ∈ SI such that rm+1(θm+1) is applicable to Mm−1.
By non-interference, it follows that (m + 1,m) ⋅ T = (M0 , (r′i ; (θ

′
i , ξ
′
i))i) is also a trace. Observe

that for all j, if j ≠ m, then M′
j
= M j , and if j < m or j > m + 1, then (r′

j
; (θ′

j
, ξ′

j
)) = (r j ; (θ j , ξ j)).

Assume that T is an execution. We must show that (m + 1,m) ⋅ T is also maximal. If it is
infinite, then we are done. If it ends at someM′n , then M′n = Mn by the above observation because
m < m + 1 ≤ n. Because T is maximal, no rules are applicable to Mn , so no rules are applicable to
M′n . We conclude that (m + 1,m) ⋅ T is maximal.

Assume now that T is fair. We show that (m + 1,m) ⋅ T is also fair. Consider some r(θ)
applicable to M′

j
. We proceed by case analysis on j < m, j = m, and j > m to show that r(θ)

appears as some r′
k
(θ′

k
) with k > j.

Case j < m: By the above observations,M′
j
= M j . Because T is fair, there exists a k′ > j such

that rk′(θk′) ≡ r(θ). Because j < m and j < k, it follows that k = (m + 1,m)(k′) > j. So r(θ)
appears as r′

k
(θ′

k
) after M′

j
as desired.

Case j = m: By proposition 3.3.3, r(θ) is applicable to Mm+1. Because T is fair, there exists a
k > m + 1 such that rk(θk) ≡ r(θ). So r′

k
(θ′

k
) = rk(θk) ≡ (r, θ).

Case j > m: Because T is fair, there exists a k > j such that rk(θk) ≡ r(θ). Because k > j > m,
k > m + 1, so r′

k
(θ′

k
) = rk(θk) ≡ (r, θ).

We conclude that (m + 1,m) ⋅ T is fair whenever T is fair.

3.3. PROPERTIES OF FAIR TRACES 57

Proposition 3.3.14. LetR be interference-free from M0 and let T = (M0 , (r i ; (θ i , ξ i))i∈I) be a
trace, an execution, or a fair trace. For all cycles (m+k, . . . ,m+1,m) ∈ SI with k ≥ 1, if r(m+k)(θm+k)
is applicable to Mm−1, then (m + k, . . . ,m + 1,m) ⋅ T is respectively a trace, an execution, or a fair

trace. It is equal to T after the (m + k)-th step.

Proof. By induction on k. If k = 1, then we are done by lemma 3.3.13 and non-interference. Assume
the result for some k′, and consider the case k = k′ + 1. BecauseR is interference-free from M0,
it follows that if r(m+k)(θm+k) is applicable to Mm−1, then it is also applicable to Mm . By the
induction hypothesis, T ′ = (m + k, . . . ,m + 1) ⋅ T is respectively a trace, an execution, or a fair
trace. By lemma 3.3.13, so is T ′′ = (m,m + 1) ⋅ T ′, for the (m + 1)-th step in T ′ is r(m+k)(θm+k),
and it is assumed to be applicable to Mm−1. The transposition (m + 1,m) does not alter T ′ beyond
the (m + k)-th step, so T ′′ still agrees with T after the (m + k)-th step. Observe that

T
′′ = (m + 1,m) ⋅ T ′ = ((m + k,m) ○ (m + k, . . . ,m + 1)) ⋅ T = (m + k, . . . ,m + 1,m) ⋅ T ,

so we are done. We note that the second equality in the above sequence is subtle: the transposition
(m + 1,m) is relative to the ordering of rules in T ′. It becomes (m + k,m) on the right of the
equality because the (m + 1)-th step in T ′ is the (m + k)-th step of T .

We conclude that finite permutations preserve fairness:

Proposition 3.3.15. LetR be interference-free from M0 and let T = (M0 , (r i ; (θ i , ξ i))i∈I) be
a trace. Let σ ∈ SI be a finite permutation, i.e., assume that there exists an n ∈ I such that σ(i) = i
for all i > n. Further assume that σ ⋅ T is a trace. If T is an execution or a fair trace, then σ ⋅ T is

respectively an execution or a fair trace. The traces σ ⋅ T and T are equal after n-th step.

Proof. Informally, the approach is to decompose σ into a finite composition of cyclic permutations
of the form (σ(m), . . . ,m + 1,m). Proposition 3.3.14 ensures that each of these cycles preserves
the desired properties.

Let m beminimal in I such that σ(m) ≠ m; if no such m exists, i.e., if σ is the identity, then
set m = n. We proceed by strong induction on d = n −m. If d = 0, then σ ⋅ T = T and we are done.
Assume the result for some d′, and consider the case d = d′ + 1. Byminimality of m, the traces
T and σ ⋅ T are equal up until the multiset Mm−1. By the assumption that T and σ ⋅ T are both
traces, it follows that rm(θm) and rσ(m)(θσ(m)) are both applicable toMm−1. Byminimality, it also
follows that m < σ(m). By proposition 3.3.14, T ′ = (σ(m), . . . ,m + 1,m) ⋅ T is also respectively a
trace, an execution, or a fair trace. By the same proposition, it also agrees with T on all multisets
after the σ(m)-th. Since σ(m) < n, it follows that T ′ and T are equal after the n-th step. The trace
T ′ agrees with σ ⋅ T on at least the first m steps. This decreases d by at least one. We conclude the
result by the strong induction hypothesis on (σ(m), . . . ,m + 1,m) ⋅ T and σ ⋅ T .

Next, we show that infinite permutations preserve fairness. To do so, we use the following
lemma to reduce arguments about infinite permutations to arguments about finite permutations.
Intuitively, it decomposes any infinite permutation σ on N into the composition of a permutation
τ that only permutes natural numbers less than some χσ(n), and of an infinite permutation ρ that
only permutes natural numbers greater than χσ(n). Themechanics of the decomposition are best
understood bymeans of a picture. We refer the reader to fig. 3.6 for an illustration, where we note
that χσ(0) = 1 and χσ(1) = 2.

Lemma 3.3.16. For all n ∈ N and permutations σ ∶ N → N, set χσ(n) = maxk≤n σ−1(k). Then

there exist permutations τn , ρn ∶ N → N such that σ = ρn ○ τn , τn(k) = k for all k > χσ(n), and
ρn(k) = k for all k ≤ n.

Proof. Let s1 < ⋯ < sm be the elements of {0, 1, . . . , χσ(n)} ∖ σ−1({0, . . . , n}). Explicitly, these
are the natural numbers less than χσ(n) whose image under σ is greater than n.

58 3. FAIRNESS FOR MULTISET REWRITING SYSTEMS

0

1

2

3

4

0

1

2

3

4

(a) A permutation σ

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

(b) Its decomposition with n = 0

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

(c) Its decomposition with n = 1

Figure 3.6. An illustration of decompositions of σ given by lemma 3.3.16

Let τ be given by

τ(k) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

σ(k) σ(k) ≤ n

n + j k = s j

k k > χσ(n).
Intuitively, τ acts as σ on elementswhose image is less than n; it then “stacks” the remaining elements
less than χσ(n) in order on top of n (we refer the reader to fig. 3.6 for this spatial intuition); and it
fixes elements greater than χσ(n).

Let ρ be given by

ρ(k) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

k k ≤ n

σ(sk−n) n < k ≤ χσ(n)

σ(k) k > χσ(n).
Intuitively, ρ takes the “stacked” elements and recovers their original value before applying σ ; it
directly applies σ to those greater than χσ(n).

We show that σ = ρ ○ τ. Let k ∈ N be arbitrary. We proceed by case analysis:
Case σ(k) ≤ n: Then ρ(τ(k)) = ρ(σ(k))) = σ(k).
Case k = s j: Then ρ(τ(k)) = ρ(n + j) = σ(s(n+ j)−n) = σ(s j) = σ(k).
Case k > χσ(n): Then ρ(τ(k)) = ρ(k) = σ(k).

The function τ is clearly total and an isomorphism. Because σ is an isomorphism and σ = ρ ○ τ,
it follows that ρ is also an isomorphism. So τ and ρ are two permutations with the desired
property.

Lemma 3.3.17. Assume thatR is interference-free from M0, that T is a fair trace from M0, and

that σ ⋅T is a permutation of T . For all n, τn ⋅T is a fair trace, where σ = ρn ○ τn is the decomposition

given by lemma 3.3.16.

Proof. This proof is analogous to the proof of proposition 3.3.15. Informally, we decompose τn as a
potentially empty composition of cyclic permutations such that each successive cyclic permutation
increases the length of the prefix of the trace that agrees with τn ⋅ T and preserves the relative
ordering of the s i described in the proof of lemma 3.3.16.

Let m beminimal such that τn(m) ≠ m; if no such m exists, then τn ⋅ T = T and we are done.
Otherwise, the σ(m)-th step rσ(m)(θσ(m)) of T is applicable to Mm−1. Indeed, σ(m) = τn(m),
and σ ⋅ T is a trace by assumption. By proposition 3.3.14, T ′ = (σ(m), . . . ,m + 1,m) ⋅ T is a fair
trace. The trace T ′ agrees with τn ⋅ T on at least the first m steps. Moreover, the relative ordering of
the s i in T ′ is the same as in T .

Iterating this procedure results in a trace T ′′ that agrees with τn ⋅T on the first n steps. Indeed,
this procedure terminates because after each iteration, the number of steps in the first n that
disagree decreases by one. The resulting trace T ′′ also agrees with τn ⋅ T on all steps after the
(χσ(n))-th. Indeed, for each cycle (σ(m), . . . ,m + 1,m), σ(m) ≤ χσ(n). Because both τn and

3.3. PROPERTIES OF FAIR TRACES 59

the above procedure preserves the relative ordering of the s i , and both result in permutations, it
follows that their images agree on all of the steps between the n-th and the χσ(n)-th. So T ′′ and
τn ⋅ T are equal. Because T ′′ is fair, we conclude that τn ⋅ T is fair.

Corollary 3.3.18. Fairness is invariant under permutation, that is, ifR is interference-free from

M0, T is a fair trace from M0, and Σ = σ ⋅ T is a permutation of T , then Σ is also fair.

Proof. Let T = (M0 , (t i ; δ i)i), and let Σ be the trace M0 = Σ0
(tσ(1) ;δσ(1))
ÐÐÐÐÐÐ→ Σ1

(tσ(2) ;δσ(2))
ÐÐÐÐÐÐ→ ⋯.

Consider some rule r ∈R and θ such that r(θ) is applicable to Σ i . Wemust show that there exists
a j such that σ(j) > σ(i), tσ(j)(θσ(j)) ≡ r(θ).

Let the factorization σ = ρ ○ τ be given by lemma 3.3.16 for n = σ(i). The trace τ ⋅ T is fair
by lemma 3.3.17. By construction of τ, τ ⋅ T and Σ agree on the first n steps and n + 1 multisets.
By fairness, there exists a k > σ(i) such that the k-th step in τ ⋅ T is r(θ). By construction of ρ,
ρ(k) > σ(i), so this step appears after Σ i in Σ as desired. We conclude that Σ is fair.

It is not the case that every permutation of the steps of a fair trace is a fair trace: it could fail to
be a trace. Corollary 3.3.18 simply states that if the result of permuting the steps of a fair trace is a
trace, then that trace is fair.

Corollary 3.3.18 established that permutations preserve fairness. Relatedly, all fair traces from
a given multiset are permutations of each other. To show this, we construct a potentially infinite
sequence of permutations. We use the following lemma to compose them:

Lemma 3.3.19. Let (σn)n∈I be a family of bijections on I such that for all m < n,

(σn ○ ⋯ ○ σ1)(m) = (σm ○ ⋯ ○ σ1)(m).

Let σ ∶ I → I be given by σ(m) = (σm ○ ⋯ ○ σ1)(m). Then σ is injective, but need not be surjective.

Proof. Let m, n ∈ I be arbitrary such that σ(m) = σ(n). Assume without loss of generality that
m ≤ n. Observe that

σ(m) = (σm ○ ⋯ ○ σ0)(m) = (σn ○ ⋯ ○ σm ○ ⋯ ○ σ0)(m)

and
σ(n) = (σn ○ ⋯ ○ σm ○ ⋯ ○ σ0)(n).

Because σ0 , . . . , σn are all bijections, so is their composition. It follows that m = n, so σ is injective.
To see that σ need not be surjective, consider the family σn = (0, n) for n ≥ 1. Then σ(n) = n+1

for all n. It follows that 0 is not in the image of σ .

Recall from section 3.2.5 that, given an über fair trace T and an instantiation t(τ) applicable
to its i-th multiset, υT(i , t, τ) is the least j > i such that the j-th step of T is equivalent to t(τ).
The following lemma is a special case of proposition 3.3.14:

Lemma 3.3.20. LetR be interference-free from M0 and T a fair execution from M0. If t(τ) is
applicable to M0, then (υT(0, t, τ), . . . , 0) ⋅ T is a permutation of T with t(τ) as its first step, and it

is a fair execution.

Proposition 3.3.21. If R is interference-free from M0, then all fair executions from M0 are

permutations of each other.

Proof. Consider traces R = (R0 , (r i ; (θ i , ξ i))i∈I) and T = (T0 , (t j ; (τ j , ζ j)) j∈J) where R0 = M0 =
T0.We construct a sequence of permutations σ0 , σ1 , . . . ,whereΦ0 = R and the stepΦn+1 = σn+1 ⋅Φn

is given by lemma 3.3.20 such that Φn+1 agrees with T on the first n + 1 steps. We then assemble
these permutations σn into an injection σ using lemma 3.3.19; fairness ensures that it is a surjection.
We have T = σ ⋅ R by construction.

The construction is as follows. Wewrite Σ0 = R horizontally, and then down from R0,wewrite
T . Let Γn+1 be the fair trace obtained by applying lemma 3.3.20 to Σn and (tn+1; (τn+1 , ζn+1)); it is a
permutation of Σn . Without loss of generality, we assume that the fresh constant substitutions ζn+1

60 3. FAIRNESS FOR MULTISET REWRITING SYSTEMS

and the corresponding ξk in Σn , . . . , Σ0 are equal; refreshing both S and T makes this possible.
Let Σn+1 be the tail of Γn+1 starting at Tn+1; we write it horizontally to the right of Tn+1. We get the
following picture:

R0 = T0 R1 R2 R3 ⋯ Σ0 = R

T1 Σ11 Σ12 Σ13 ⋯ Σ1

T2 Σ21 Σ22 Σ23 ⋯ Σ2

T3 Σ31 Σ32 Σ33 ⋯ Σ3

⋮ ⋮

(r1 ;(θ 1 ,ξ1))

(t1 ;(τ1 ,ζ1))

(r2 ;(θ2 ,ξ2)) (r3 ;(θ3 ,ξ3)) (r4 ;(θ4 ,ξ4))

(t2 ;(τ2 ,ζ2))

(t3 ;(τ3 ,ζ3))

(t4 ;(τ4 ,ζ4))

Set Φ0 = Σ0, and for each n > 0, let Φn be the trace given by the trace T0 → ⋯ → Tn followed
by the trace Σn . Each of the permutations µn ∶ Σn → Γn+1 determines a permutation σn from Φn

to Φn+1 that fixes the first n steps. The family of these permutations satisfies the hypothesis of
lemma 3.3.19, and gives us an injection σ ∶ I → J. It is a surjection by construction: tn(τn) appears
as some rk(θk) by fairness, and σ(k) = n. To see that σ ⋅ R = T , it is sufficient to observe that for
all n, σ ⋅ R and T agree on the first n steps.

Definition 3.3.22. Two traces T = (M0; (r i , δ i)I) and T ′ are union-equivalent if T ′ can be refreshed
to a trace [η]T ′ such that supp(T) = supp([η]T ′). ◀

Lemma 3.3.23. If T is a permutation of S, then T and S are union-equivalent.

Proof. Consider a trace (M0 , (r i ; δ i)i). For all n, each fact in Mn appears either in M0 or in the
result of some rule r i with i ≤ n. Traces T and S start from the samemultiset and have the same
rule instantiations. It follows that they are union-equivalent.

Corollary 3.3.24 will be key to showing in chapter 6 that processes have unique observations.

Corollary 3.3.24. IfR is interference-free from M, then all fair executions from M are union-

equivalent.

3.4. RelatedWork

Multiset rewriting systems with existential quantification were first introduced by Cervesato
et al. [Cer+99]. They were used to study security protocols and were identified as the first-order
Horn fragment of linear logic. Since,MRSs havemodelled other security protocols, and strand
spaces [Cer+00; Cer+05]. Cervesato and Scedrov [CS09] studied the relationship between MRSs
and linear logic. These works do not explore fairness.

Substructural operational semantics [Sim12] based on multiset rewriting are widely used to
specify the operational behaviour of session-typed languages arising from proofs-as-processes
interpretations of linear logic and adjoint logic. Examples include functional languages with
session-typed concurrency [TCP13], languageswith run-timemonitoring [GJP18],message-passing
interpretations of adjoint logic [PP19a], and session-typed languages with sharing [BP17].

Fairness finds its roots in work of Lamport [Lam77] and Park [Par80]. Lamport [Lam77]
studied the correctness ofmultiprocessor programs. He described fairness constraints on schedulers
using clocks, where process clocks were assumed to advance a certain amount in every period of
real time. Instead of using clocks, Park [Par80] defined fairness using a “fair merge” operator on
traces. Early work [LPS81; Par80] on fairness was concerned with fair termination. Francez [Fra86]

3.4. RELATED WORK 61

gave a comprehensive analysis of fair termination. Weak and strong fairness were introduced
by Apt and Olderog [AO82] and Park [Par82] in the context of do-od languages. Fairness was
subsequently adapted to process calculi, e.g., byGrumberg, Francez, andKatz [GFK84] forCSP-like
languages and by Costa and Stirling [CS87] for Milner’s CCS. Hennessy [Hen87] studied fairness
in the setting of asynchronous communicating processes. Leu et al. [Leu+88] introduced fairness
for Petri nets. Kwiatkowska [Kwi89] surveys these notions and others, and gives a taxonomy of
varieties of fairness. Bounded fairness [DJP03] places bounds on how long wemust wait before an
event occurs.

Fair scheduling algorithms are an active research area in the programming languages and
systems communities. For example, Sistla [Sis83] studied the complexity of fair scheduling algo-
rithms. Henry [Hen84] gave a fair scheduler for processes on UNIX systems. Muller,Westrick,
and Acar [MWA19] andMuller, Acar, and Harper [MAH18] studied fair scheduling for interactive
computation and in the presence of priorities. Lahav et al. [Lah+20] gave an account of process
fairness under weak memorymodels.

CHAPTER 4

Fixed Points of Functors

Recursive types are ubiquitous in functional languages. For example, in StandardML we can
define the type of (unary) natural numbers as:

datatype nat = Zero | Succ of nat

This declaration specifies that a nat is either zero or the successor of some natural number. Seman-
tically, we can think of nat as a domain D satisfying the domain equation

D ≅ (Zero ∶ {�}) ⊎ (Succ ∶ D),

where ⊎ forms the labelled disjoint union of domains. Equivalently, we can think of D as a fixed
point of the functor Fnat(X) = (Zero ∶ {�}) ⊎ (Succ ∶ X) on a category of domains.

Mutually-recursive data types give rise to a similar interpretation. Consider, for example, the
types of even and odd natural numbers:

datatype even = Zero | E of odd

and odd = O of even

This declaration specifies that an even number is either zero or the successor of an odd number,
and that an odd number is the successor of an even one. The types even and odd respectively
denote solutions De and Do to the system of domain equations:

De ≅ (Zero ∶ {�}) ⊎ (E ∶ Do) and Do ≅ (O ∶ De).

These are solutions to the system of equations:

Xe ≅ Feven(Xe , Xo) (26)
Xo ≅ Fodd(Xe , Xo) (27)

where Feven and Fodd are the functors Feven(Xe , Xo) = (Zero ∶ {�})⊎(E ∶ Xo) and Fodd(Xe , Xo) =
(O ∶ Xe). We can use Bekič’s rule [Bek84, § 2] to solve this system of equations. To do so, we think
of eq. (26) as a family of equations parametrized by Xo. If we could solve for Xe, then we would get
a parametrized family of solutions F†even(Xo) such that:

F
†
even(Xo) ≅ Feven(F

†
even(Xo), Xo) (28)

for all domains Xo. Substituting this for Xe in eq. (27) gives the domain equation

Xo ≅ Fodd(F
†
even(Xo), Xo).

Solving for Xo gives the solution Do. Substituting Do for Xo in eq. (28),we see that De = F
†
even(Do)

is the other part of the solution.
The above examplemotivates techniques for solving parametrized domain equations. These

techniques are well understood. For example, given a suitable functor F ∶ D × E→ E on suitable
categories of domains, [AJ95, Proposition 5.2.7] gives a recipe for constructing a functor F† ∶ D→ E
such that for all objects D ofD, F†D ≅ F(D, F†D). Is themapping F ↦ F† functorial? Semantically,
substitution is typically interpreted as composition [Cro93, § 3.4]. If the interpretations of recursive
types are to respect substitution, then themapping F ↦ F† must be natural in D. Is it? What other
properties does it satisfy?

Families of parametric fixed points arise elsewhere in mathematics. An external dagger op-
eration [BÉ95, Definition 2.6; BÉ96, p. 7] on a cartesian closed category C is a family †A,B ∶

63

64 4. FIXED POINTS OF FUNCTORS

C(A× B, B)→ C(A, B) of set-theoretic functions for each pair of objects A and B in C. Of partic-
ular interest are dagger operations that satisfy the (cartesian) Conway identities These identities
implymany other identities [BÉ96, § 3.3] useful for semantic reasoning, such as Bekič’s rule. They
are also of independent interest. Indeed, they axiomatize a decidable theory [BÉ98], and dagger
operations that satisfy them are closely related to the trace operator [JSV96; Has99, Theorem 7.1;
BH03, p. 281]. Does the above dagger operation satisfy the Conway identities?

In this chapter,we present dagger operators in two different categorical settings. In sections 4.2
to 4.4,weworkwith ω-cocontinuous functors between categories with sufficientlymany ω-colimits.
In section 4.5, weworkwith locally continuous functors betweenO-categories. O-categories [SP82]
generalize categories of domains to provide just the structure required to compute fixed points of
functors and to show the limit-colimit coincidence theorem (theorem 2.2.53). In both cases, these
dagger operators will enjoy a 2-categorical structure that will imply the Conway identities. As an
application, in chapter 8 we see that properties of our dagger operation are essential for defining
and reasoning about semantics of session-typed languages with recursion.

4.1. Background

Recall from section 2.2.1.1 that ω is the category with natural numbers as objects and with
at most one arrow between each pair of objects, where n → m if and only if n ≤ m. An ω-chain
in a category K is a diagram J ∶ ω → K. An ω-category [Leh76a, Definition 5] is a category with
all colimits of ω-diagrams. We warn the reader that the definition of ω-category varies in the
literature. Some [LS81, Definition 2.4] additionally require the existence of an initial object; we
call such categories IFP-categories. This name stems from the fact that IFP-categories have the
structure required for ω-functors to have initial fixed points (see corollary 4.2.14 below). An ω-
functor [LS81, Definition 2.5] is an ω-cocontinuous functor, i.e., a functor that preserves all existing
colimits of ω-diagrams. Small ω-categories and ω-functors between them form a 2-cartesian-
closed subcategory ω-Cat of Cat. Small IFP-categories and ω-functors between them form a
2-cartesian-closed subcategory IFP of ω-Cat. A parameterized ω-functor is a functor F ∶ C×D→ E
such that F(C ,−) ∶ D→ E is an ω-functor for all objects C of C.

4.2. Functoriality of Fixed Points

We show that constructing fixed points of ω-functors is itself a functorial operation. The
initial fixed point of an ω-functor F on an ω-category is given by the colimit of the ω-chain
� → F� → F2� → ⋯ . Other fixed points can be constructed using a different “first link”, i.e., by
taking the colimit of a chain K → FK → F2K → ⋯ generated by a link k ∶ K → FK.

Recall that, given natural transformations η ∶ F ⇒ G ∶ C → D and ϕ ∶ H ⇒ I ∶ D → E,
their horizontal composition is the natural transformation η ∗ ϕ ∶ FH ⇒ GI ∶ C → E. Given a
morphism f ∶ K → L in C, we abuse notation and write η ∗ f ∶ FK → GL for the naturality square

FK
F f

Ð→ FL
ηL

Ð→ GL = FK
ηK

Ð→ GK
G f

Ð→ GK.

Definition 4.2.1. Fix an ω-category K. Links form a category LinksK where

● objects are triples (K , k, F) called “links”, where K is an object of K, F ∶ K → K is an
ω-functor, and k ∶ K → FK is amorphism in K;
● morphisms (K , k, F) → (L, l ,G) are pairs (f , η) where f ∶ K → L is amorphism of K,
η ∶ F ⇒ G is a natural transformation, and f and η satisfy l ○ f = (η ∗ f) ○ k ∶ K → GL;
● composition is given component-wise: (g , ρ) ○ (f , η) = (g ○ f , ρ ○ η). ◀

The condition onmorphisms between links provide the structure required to definemorphisms
between the ω-chains they generate.

Proposition 4.2.2. If K has an initial object, then the link (�, �, ∆�) is the initial link in LinksK.

4.2. FUNCTORIALITY OF FIXED POINTS 65

Proof. The object � is initial in K, and the constant functor ∆� is initial in IFP [K→ K]. It follows
that for every (L, l ,G), there is at most one morphism (�, �, ∆�) → (L, l ,G). We check that
(�L , �G) is such amorphism. For every (L, l ,G), initiality implies

� ∆�

L GL

�

� �G∗�L

l

commutes. We conclude that (�L , �G) is amorphism in LinksK, and that (�, �, ∆�) is initial.

The category LinksK is ω-cocomplete, and proposition 4.2.4 below characterizes its ω-colimits.
We first prove the following lemma. It extends [LS81, Lemma 4.3] to also specify the action of
mediating morphisms of cocones:

Lemma 4.2.3. Let C be a category and let T = F0
τ0
Ô⇒ F1

τ1
Ô⇒ ⋯ and T ′ = F′0

τ
′
0
Ô⇒ F′1

τ
′
1
Ô⇒ ⋯ be

ω-chains in the functor category Cat [C→ C]. Assume they have colimit cocones σ ∶ T ⇒ F∞ and

σ ′ ∶ T ′ ⇒ F′∞, respectively. Then the ω-chain T ′′ = F′0F0
τ
′
0∗τ0
ÔÔ⇒ F′1F1

τ
′
1∗τ1
ÔÔ⇒ ⋯ has the colimit cocone

σ ′ ∗ σ ∶ T ′′ ⇒ F′∞F∞.

Let γ ∶ T ⇒ G and γ′ ∶ T ′ ⇒ G′ be arbitrary cocones, and let ϕ ∶ (σ , F∞) → (γ,G) and
ϕ′ ∶ (σ ′ , F′∞) → (γ

′ ,G′) be the unique mediating morphisms of cocones. Then their horizontal

composition ϕ′ ∗ ϕ ∶ (σ ′ ∗ σ , F′∞F∞)→ (γ
′ ∗ γ,G′ ,G) is the uniquemediating morphism of cocones

on T ′′.

Proof. See [LS81, Lemma 4.3] for the proof of the first paragraph. The second paragraph is an
obvious corollary of the first.

Let 2 be the category (●→ ●).

Proposition 4.2.4. Let J = (K0 , k0 , F0)
(f0 ,η0)
ÐÐÐ→ (K1 , k1 , F1)

(f1 ,η1)
ÐÐÐ→ ⋯ be an ω-chain inLinksK.

Let (κ,K∞) be the colimit of the ω-chain K = K0
f0
Ð→ K1

F1
Ð→ ⋯ in K. Let (ϕ, F∞) be the colimit of

the ω-chain Φ = F0
η0
Ð→ F1

η1
Ð→ ⋯ in ω-Cat [K→ K]. Then there exists a k∞ ∶ K∞ → F∞K∞ such

that (κ, ϕ) ∶ J ⇒ (K∞ , k∞ , F∞) is colimiting in LinksK.

Proof. We can recognize each link (Kn , kn , Fn) as a 2-diagram ∆Kn

kn
Ô⇒ Fn ○(∆Kn) in the category

ω-Cat [K→ K]. Furthermore, we can recognize J as a diagram Ĵ ∶ ω → Cat [2→ ω-Cat [K→ K]]:

∆K0 ∆K1 ∆K2 ⋯

F0 ○ (∆K0) F1 ○ (∆K1) F2 ○ (∆K2) ⋯

∆ f0

k0

∆ f1

k1

∆ f2

k2

η0∗(∆ f0) η1∗(∆ f1) η2∗(∆ f2)

Colimits in ω-Cat[K → K] are determined component-wise, so the top row has colimit
(∆κ, ∆K∞). By lemma 4.2.3, the bottom row has colimit (ϕ ∗ κ, F∞ ○ (∆K∞)). Let k = (kn ∶
∆Kn → Fn ○ (∆Kn)) be the natural transformation from the top row to the bottom row. Then
((ϕ ∗ κ) ○ k, F∞ ○ (∆K∞)) is a cocone on the top row, so there exists a unique coconemorphism

66 4. FIXED POINTS OF FUNCTORS

k∞ ∶ (∆κ, ∆K∞)→ ((ϕ ∗ κ) ○ k, F∞ ○ (∆K∞)):

∆K0 ∆K1 ∆K2 ⋯ ∆K∞

F0 ○ (∆K0) F1 ○ (∆K1) F2 ○ (∆K2) ⋯ F∞ ○ (∆K∞)

∆ f0

∆κ0

k0

∆ f1

∆κ1

k1

∆ f2

∆κ2

k2 k∞

η0∗(∆ f0)

ϕ0∗(∆κ0)

η1∗(∆ f1)

ϕ1∗(∆κ1)

η2∗(∆ f2)

ϕ2∗(∆κ2)

In particular, k∞ ∶ ∆K∞ ⇒ F∞ ○ (∆K∞) is a natural transformation between two constant
functors, so is given by a singlemorphism K∞ → F∞K∞ in K. We conclude that (K∞ , k∞ , F∞) is
an object of LinksK. It is immediate from the above diagram that (κ, ϕ) ∶ J ⇒ (K∞ , k∞ , F∞) is a
cocone in LinksK.

We show that this cocone is colimiting in LinksK. Let (α, β) ∶ J ⇒ (A, c, B) be any other co-
cone inLinksK.We begin by showing that there exists a coconemorphism (a, b) ∶ (K∞ , k∞ , F∞)→
(A, c, B). Observe that (α, β) determines a cocone α ∶ K ⇒ A in K, so a unique cocone mor-
phism a ∶ (κ,K∞) → (α,A). It also determines a cocone β ∶ Φ ⇒ B in ω-Cat [K→ K], so
a unique cocone morphism b ∶ (ϕ, F∞) → (β, B). Of course, (α, β) also induces a cocone
(∆α, β ∗ ∆α) ∶ Ĵ ⇒ (∆A

c
Ô⇒ B ○ (∆A)). By lemma 4.2.3, the components of unique mediating

Ĵ-coconemorphism are given by the top and bottom row of the following diagram:

∆K∞ ∆A

F∞ ○ (∆K∞) B ○ ∆A

k∞

∆a

c

b∗(∆a)

These obviously induce amorphism (a, b) ∶ (K∞ , k∞ , F∞)→ (A, c, B) in LinksK.
To see uniqueness, consider any other coconemorphism (a′ , b′) ∶ ((κ, ϕ), (K∞ , k∞ , F∞))→

((α, β), (A, c, B)). Then a′ ∶ (κ,K∞)→ (α,A) is a coconemorphism in the category of cocones
∫ Cone(K ,−), so a′ = a. Analogously, b′ ∶ (ϕ, F∞) → (β, B) is a cocone morphism in the
category of cocones ∫ Cone(Φ,−), so b′ = b. We conclude that (a′ , b′) = (a, b), i.e., uniqueness
ofmediating morphism.

We conclude that (κ, ϕ) ∶ J ⇒ (K∞ , k∞ , F∞) is colimiting.

There exists a functor Ω ∶ LinksK → ω-Cat [ω → K] that produces the ω-chain K
k
Ð→ FK

Fk
Ð→

F2K
F

2
k
ÐÐ→ ⋯ from a link (K , k, F). Its action on morphisms uses the horizontal iteration of natural

transformations. Consider functors H,G ∶ C → C and a natural transformation η ∶ H ⇒ G. We
define the family of horizontal iterates η(i) ∶ H i ⇒ G i , i ∈ N, by recursion on i. When i = 0,
H0 = G0 = idC and we define η(0) to be the identity natural transformation on idC. Given η(i), we
set η(i+1) = η ∗ η(i).

4.2. FUNCTORIALITY OF FIXED POINTS 67

We define the functor Ω ∶ LinksK → ω-Cat [ω → K]. The action ofΩ(K , k, F) on morphisms
n → n + k is defined by induction on k.

Ω(K , k, F)(n) = Fn
K (29)

Ω(K , k, F)(n → n) = idFnK (30)

Ω(K , k, F)(n → n + k + 1) = Fn+k
k ○Ω(K , k, F)(n → n + k) (31)

Ω(f ∶ K → L, η ∶ F ⇒ G)n = η
(n) ∗ f ∶ Fn

K → G
n
L (32)

Proposition 4.2.7 generalizes the functor S ∶ ω-Cat [C→ C]→ ω-Cat [ω → C] of [LS77, § 3;
LS81, Lemma 4.2] to form chains with an arbitrary initial link in an ω-cocontinuous manner. Its
existence depends on the following sequence of lemmas:

Lemma 4.2.5. Let K be a category and F ,G ,H ∶ K→ K functors. Let η ∶ F ⇒ G and ρ ∶ G ⇒ H

be natural transformations. Then for all n ≥ 0, (ρ ○ η)(n) = ρ(n) ○ η(n) ∶ Fn ⇒ Hn .

Proof. Let K be an object of K. We proceed by induction on n to show that (ρ ○ η)(n)
K
= (ρ(n) ○

η(n))K ∶ F
nK → HnK. When n = 0, F0K = K = H0K and (ρ ○ η)(0)

K
= idK = (ρ

(0) ○ η(0))K .
Assume the result for some n, and consider the case n + 1. By the induction hypothesis and the
middle four interchange law,

(ρ ○ η)(n+1)

= (ρ ○ η) ∗ (ρ ○ η)(n)

= (ρ ○ η) ∗ (ρ(n) ○ η(n))

= (ρ ∗ ρ
(n)) ○ (η ∗ η(n))

= ρ
(n+1) ○ η(n+1) .

We conclude the result by induction.

Lemma 4.2.6. Equations (29) to (32) define a functor Ω ∶ LinksK → ω-Cat [ω → K].

Proof. In this proof we show that:

(1) Ω(K , k, F) is a well-defined functor ω → K for all links (K , k, F);
(2) Ω(K , k, F) is an ω-functor for all links (K , k, F);
(3) Ω(f , η) is natural;
(4) Ω respects composition.

Let (K , k, F) be an arbitrary link and abbreviate Ω(K , k, F) by J. Wemust show that J is a
well-defined functor ω → Ke . It preserves identities by eq. (30). We must show that it respects
composition. Let l → l+m and l+m → l+m+n be arbitrary, and note that l → l+m+n = (l+m →
l +m+n)○(l → l +m). Wemust show that J(l → l +m+n) = J(l +m → l +m+n)○ J(l → l +m).
We proceed by nested strong induction on n. Assume first n = 0, then by eq. (30),

J(l → l +m + n)

= J(l → l +m)

= idF l+mK ○ J(l → l +m)

= J(l +m → l +m) ○ J(l → l +m)

= J(l +m → l +m + n) ○ J(l → l +m).

68 4. FIXED POINTS OF FUNCTORS

Now assume the result for some n, then by eq. (31),

J(l → l +m + (n + 1))

= F l+m+n
k ○ J(l → l +m + n)

= F l+m+n
k ○ (J(l +m → l +m + n) ○ J(l → l +m))

= (F l+m+n
k ○ J(l +m → l +m + n)) ○ J(l → l +m)

= J(l +m → l +m + (n + 1)) ○ J(l → l +m).

We conclude the result by induction.
We know that Ω(K , k, F) is ω-cocontinuous for all links (K , k, F) by proposition 4.A.16.
Next,wemust show that Ω is well-defined onmorphisms. Let (f , η) ∶ (K , k, F)→ (L, l ,G) be

arbitrary. Wemust show that Ω(f , η) ∶ Ω(K , k, F)⇒ Ω(L, l ,G) is a natural transformation. Let
n → n +m be an arbitrarymorphism of ω. Wemust show that the following diagram commutes:

FnK GnL

Fn+mK Gn+mL

Ω(f ,η)n

Ω(K ,F ,k)(n→n+m) Ω(L ,G , l)(n→n+m)
Ω(f ,η)n+m

(33)

We proceed by induction on m. Assume first that m = 0, then diagram 33 becomes

FnK GnL

FnK GnL

Ω(f ,η)n

id id

Ω(f ,η)n

and clearly commutes. Assume the result for some m, and consider the case m + 1. Wemust show
that the following diagram commutes:

FnK GnL

Fn+m+1K Gn+m+1L

Ω(f ,η)n

Ω(K ,F ,k)(n→n+m+1) Ω(L ,G , l)(n→n+m+1)
Ω(f ,η)n+m+1

By eq. (31), this diagram is equal to the outer rectangle of the following diagram:

FnK GnL

Fn+mK Gn+mL

Fn+m+1K Gn+m+1L

Ω(f ,η)n

Ω(K ,F ,k)(n→n+m) Ω(L ,G , l)(n→n+m)
Ω(f ,η)n+m

F
n+m

k G
n+m

l

Ω(f ,η)n+m+1

(34)

The top square commutes by the induction hypothesis. The middle horizontal morphism is
Ω(f , η)n+m = η(n+m) ∗ f = Gn+m f ○ η

(n+m)
K

. Horizontal composition is associative, and the
bottom morphism is Ω(f , η)n+m+1 = η(n+m+1) ∗ f = η ∗ η(n+m) ∗ f = η(n+m) ∗ η ∗ f . The bottom
square of diagram 34 is equal to the outer rectangle of the following diagram:

Fn+mK Gn+mK Gn+mL

Fn+m+1K Gn+mFK Gn+m+1L

η
(n+m)

K

F
n+m

k

G
n+m

f

G
n+m

k G
n+m

l

η
(n+m)

FK G
n+m(η∗ f)

(35)

4.2. FUNCTORIALITY OF FIXED POINTS 69

The left square of diagram 35 commutes by naturality of η(n+m). The right square commutes because
l ○ f = (η ∗ f) ○ k, which holds because (f , η) is a morphism. So diagram 35 commutes. We
conclude that diagram 34 commutes.

Next, we must show that Ω respects composition. Let (f , η) ∶ (K , k, F) → (L, l ,G) and
(g , ρ) ∶ (L, l ,G) → (M ,m,H) be arbitrary morphisms. We must show that Ω(g ○ f , ρ ○ η) =
Ω(g , ρ) ○Ω(f , η). This entails showing for all n ∈ N that Ω(g ○ f , ρ ○ η)n = Ω(g , ρ)n ○Ω(f , η)n .
We proceed by induction on n. When n = 0,Ω(g○ f , ρ○η)0 = g○ f = Ω(g , ρ)0○Ω(f , η)0. Assume
the result for some n, and consider the case n + 1. Then Ω(g ○ f , ρ ○ η)n+1 = (ρ ○ η)n+1 ∗ (g ○ f) is
the diagonal of the following commuting square:

Fn+1K Hn+1K

Fn+1M Hn+1M .

(ρ○η)(n+1)
K

F
n+1(g○ f) Ω(g○ f ,ρ○η)n+1 H

n+1(g○ f)

(ρ○η)(n+1)
M

By lemma 4.2.5, (ρ ○ η)(n+1) = ρ(n+1) ○ η(n+1). We recognize the above diagram as the perimeter
and diagonal of the following commuting diagram:

Fn+1K Gn+1K Hn+1K

Fn+1L Gn+1L Hn+1L

Fn+1M Gn+1M Hn+1M

η
(n+1)
K

F
n+1

f Ω(f ,η)n+1

ρ
(n+1)
K

Ω(f ,ρ)n+1G
n+1

f H
n+1

f

η
(n+1)
L

F
n+1

g Ω(g ,η)n+1

ρ
(n+1)
L

Ω(g ,ρ)n+1G
n+1

g H
n+1

f

η
(n+1)
M

ρ
(n+1)
M

That is, we have Ω(g ○ f , ρ ○ η)n+1 = (Ω(g , ρ) ○ Ω(f , η))n+1. We conclude by induction that
Ω(g ○ f , ρ ○ η) = Ω(g , ρ) ○Ω(f , η).

Proposition 4.2.7. Equations (29) to (32) define an ω-functor Ω ∶ LinksK → ω-Cat [ω → K].

Proof. The proof loosely follows [LS81, Theorem 4.1]. We know by lemma 4.2.6 that eqs. (29)
to (32) define a functor Ω ∶ LinksK → ω-Cat [ω → K]. We show that it preserves ω-colimits.
Let J ∶ ω → LinksK be arbitrary. Let Jm = (Km , km , Fm) and J(m → m + 1) = (jm0 , ηm) ∶
(Km , km , Fm) → (Km+1 , k(m+1) , Fm+1); the purpose of the zeros in the subscript will be made
clear shortly. We can visualize ΩJ as a commuting grid in K, with the m-axis pointing down and
the n-axis pointing to the right. Indeed, by uncurrying ΩJ ∶ ω → Cat [ω → LinksK], we get a
functor G ∶ ω × ω → Cat [ω → LinksK] where G(m, n) = Ω(Jm)n = Fn

mKm . The m-th row is
given by the functor Hm = G(m,−) ∶ ω → LinksK, while the n-th column is given by the functor
Vn = G(−, n) ∶ ω → LinksK. We use the following abbreviations in the grid:

jm = Ω(J(m → m + 1)) ∶ Hm ⇒ Hm+1 ,
jmn = G(m → m + 1, n) ∶ G(m, n)→ G(m + 1, n)

= η
(n)
m ∗ jm0 ∶ F

n

mKm → F
n

m+1Km+1 ,

j
mn = G(m, n → n + 1) ∶ G(m, n)→ G(m, n + 1)

= Fn

mkm ∶ F
n

mKm → F
n+1
m Km ,

j
n = { jmn ∶ G(m, n)→ G(m, n + 1)}m∈N ∶ Vn⇒ V(n + 1).

70 4. FIXED POINTS OF FUNCTORS

Then ΩJ and G determine the grid:

V0 V1 V2 ⋯

H0 ∶ F0
0K0 F 1

0K0 F2
0K0 ⋯

H1 ∶ F0
1 K1 F 1

1K1 F2
1 K1 ⋯

H2 ∶ F0
2 K2 F 1

2K2 F2
2K2 ⋯

⋮ ⋮ ⋮ ⋮

j
0

j
1

j
2

j0

j
00

j00

j
01

j01

j
02

j02

j1

j
10

j10

j
11

j11

j
12

j12

j2

j
20

j20

j
21

j21

j
22

j22

Assume that J has a colimit (κ, ϕ) ∶ J ⇒ (K∞ , k∞ , F∞). We must show that the cocone
(Ω(κ, ϕ),Ω(K∞ , k∞ , F∞)) is a colimit of ΩJ ∶ ω → ω-Cat [ω → K]. By proposition 4.2.4, κ ∶
V0 ⇒ K∞ and ϕ ∶ Φ⇒ F∞ are colimiting, where Φ = F0

η0
Ô⇒ F1

η1
Ô⇒ ⋯. We can see each Vn as a

diagram V̂n

F
n

0 ○ (∆K0)
j01
Ô⇒ F

n

1 ○ (∆K1)
j11
Ô⇒ ⋯

in ω-Cat [K→ K]. By lemma 4.2.3, its colimit is Φ(n) ∗∆κ ∶ V̂n ⇒ Fn
∞ ○(∆K∞). It follows that the

cocone ϕ(n) ∗ κ ∶ Vn ⇒ Fn
∞K∞ is colimiting in K. Recall that colimits in ω-Cat [ω → K] are com-

puted component-wise, and observe that Ω(κ, ϕ)n = ϕ(n) ∗ κ and Fn
∞K∞ = Ω(K∞ , k∞ , F∞)(n).

To show that Ω(κ, ϕ) ∶ ΩJ ⇒ Ω(K∞ , k∞ , F∞) is indeed colimiting, it remains to show that
for each n, Fn

∞k∞ is amediating morphism of cocones, i.e., that the following diagram commutes
for all n:

Vn Vn+1

Fn
∞K∞ Fn+1

∞ K∞ .

j
n

ϕ
(n)∗κ ϕ

(n+1)∗κ
F
n

∞k∞

(36)

Observe that the following diagram commutes for all m:

Fn
mKm Fn

∞Km Fn
∞K∞

Fn+1
m Km Fn

∞FmKm Fn+1
∞ K∞

(ϕ
(n)
m
)
Km

F
n

m
km

F∞κm

F
n

∞km F
n

∞k∞

(ϕ
(n)
m
)
FmKm F

n

∞(ϕm∗κm)

(37)

Indeed, the left square commutes by naturality of ϕ
(n)
m ∶ Fn

m ⇒ Fn
∞. To see that the right square

commutes, recall that by definition of colimit in LinksK, the following square commutes:

Km K∞

FmKm F∞K∞ .

κm

km k∞

ηm∗κm

4.2. FUNCTORIALITY OF FIXED POINTS 71

Functors (including F∞) preserve commuting diagrams, so the right square commutes. We recog-
nize the perimeter of diagram 37 as:

Vnm Fn
∞K∞

Vn+1m Fn+1
∞ K∞ .

(ϕ
(n)∗κ)

m

j
mn

F
n

∞k∞

(ϕ
(n+1)∗κ)

m

Because this square commutes for all m, we conclude that diagram 36 commutes. So Fn
∞k∞ is a

mediating morphism of cocones.
It follows that Ω(κ, ϕ) ∶ ΩJ ⇒ Ω(K∞ , k∞ , F∞) is colimiting, i.e., that Ω is an ω-functor.

4.2.1. General FixedPoints. We define a generalized-fixed-point ω-functor, i.e., an ω-functor
GFIX ∶ LinksK → K such that for each link (K , k, F), there is an isomorphism GFIX(K , k, F) ≅
F(GFIX(K , k, F)). We assume that whenever K is an ω-category, an ω-colimit has been chosen
for each ω-chain. This choice determines an ω-colimit functor colimω ∶ ω-Cat [ω → K]→ K, itself
an ω-functor. The following result generalizes [LS81, Theorem 4.1]:

Proposition 4.2.8. Let K be an ω-category. The following composition defines an ω-functor:

GFIX = colimω ○Ω ∶ LinksK → K.

Proof. The functor Ω is ω-cocontinuous by proposition 4.2.7. The colimit functor is a left ad-
joint [Rie16, Proposition 4.5.1], and left adjoints preserve colimits [Rie16, Theorem 4.5.3]. The result
then immediately follows from the fact that ω-functors are closed under composition.

We claim that the isomorphism GFIX(K , k, F) ≅ F(GFIX(K , k, F)) is natural in the link
(K , k, F). To show this, we begin by defining an “unfolding” functor:

Proposition 4.2.9. LetK be an ω-category. The following defines an ω-functorUNF ∶ LinksK →
K:

● On objects: UNF(K , k, F) = F(GFIX(K , k, F)),
● on morphisms: UNF(f , η) = η ∗GFIX(f , η).

Proof. It clearly defines a functor. We show that it is ω-cocontinuous. Let J = (K0 , k0 , F0)
(f0 ,η0)
ÐÐÐ→

(K1 , k1 , F1)
(f1 ,η1)
ÐÐÐ→ ⋯ be an arbitrary ω-chain in LinksK. Let ((κ, ϕ), (K∞ , k∞ , F∞)) be colimiting

for J. Wemust show that UNF(κ, ϕ) ∶ UNFJ ⇒ UNF(K∞ , k∞ , F∞) is colimiting in K, i.e., that
the following diagram is colimiting:

F0(GFIX(K0 , k0 , F0)) F1(GFIX(K1 , k1 , F1)) F2(GFIX(K2 , k2 , F2)) ⋯

F∞(GFIX(K∞ , k∞ , F∞))

η0∗GFIX(f0 ,η0)

ϕ0∗GFIX(κ0 ,ϕ0)

η1∗GFIX(f1 ,η1)

ϕ1∗GFIX(κ1 ,ϕ1)

η2∗GFIX(f2 ,η2)

ϕ2∗GFIX(κ2 ,ϕ2)

(38)

We can recognize the above cocone as the image of an ω-colimit under an ω-functor. Define
the ω-chainW ∶ ω → ω-Cat [K→ K] × ω-Cat [1→ K] by:

Wn = (Fn , ∆(GFIX(Kn , kn , Fn))),
W(n → n + 1) = (ηn , ∆(GFIX(fn , ηn))),

where ∆ ∶ K→ ω-Cat [1→ K] is the constant-diagram functor. Colimits in product categories are
computed component-wise. By proposition 4.2.4, (ϕ, F∞) is colimiting in the first component.
Because GFIX is an ω-functor, and (∆(GFIX(κ, ϕ)), ∆(GFIX(K∞ , k∞ , F∞))) is colimiting in the
second component. So ((ϕ, ∆(GFIX(κ, ϕ))) , (F∞ , ∆(GFIX(K∞ , k∞ , F∞)))) is colimiting for W .
The composition functor ○ ∶ ω-Cat [K→ K]×ω-Cat [1→ K]→ ω-Cat [1→ K] is ω-cocontinuous

72 4. FIXED POINTS OF FUNCTORS

by proposition 4.A.14. The evaluation functor ω-Cat [1→ K] × 1 → K is ω-cocontinuous by
lemma 4.A.8, so ev● ∶ ω-Cat [1→ K]→ K is ω-cocontinuous. The image ofW and its colimiting
cocone under the composition ev● ○ (○) is exactly diagram 38. Because the composition is ω-
cocontinuous, we conclude that diagram 38 is colimiting.

We now construct a natural isomorphismGFIX ≅ UNF. Each of its components is amediating
morphism of cocones induced by “shifting” the ω-chain the link generates. When J ∶ ω → K,
write ▸J for the ω-chain induced by shifting J by one, i.e., by taking ▸J(n) = J(n + 1). Observe
that inclusion determines a natural transformation▷J ∶ J ⇒ ▸J, and every cocone (γ,G) on ▸J
induces a cocone (γ ○ ▷J ,G) on J. Also observe that ▸Ω(K , k, F) = FΩ(K , k, F). Building on
these observations, we get the desired natural isomorphism:

Proposition 4.2.10. Let K be an ω-category. There exists a natural isomorphism unfold ∶
GFIX ⇒ UNF with inverse fold ∶ UNF ⇒ GFIX. Where κ ∶ Ω(K , k, F) ⇒ GFIX(K , k, F))
is colimiting, the (K , k, F)-component of unfold is the unique morphism (κ,GFIX(K , k, F)) →
(Fκ ○ ▷Ω(K ,k ,F) , F(GFIX(K , k, F))) in ∫ Cone(Ω(K , k, F),−).

Proof. We begin by showing that the components are all isomorphisms. Fix some arbitrary link
(K , k, F). Then Ω(K , k, F) generates the ω-chain at the bottom of the following diagram:

GFIX(K , k, F) F(GFIX(K , k, F))

K FK F2K F3K ⋯

unfold(K ,k ,F)

fold(K ,k ,F)

k Fk F
2
k F

3
k

The colimit cocone (κ,GFIX(K , k, F)) is in red on the left. Because F is an ω-functor, the
blue cocone (Fκ, F(GFIX(K , k, F))) on the right is again colimiting. It defines a cocone (Fκ ○
▷Ω(K ,k ,F) , F(GFIX(K , k, F))) on Ω(K , k, F) through composition. Let κ+ be the restriction of κ
to FΩ(K , k, F), i.e., κ+n = κn+1.

Consider the following mediating coconemorphisms

unfold(K ,k ,F) ∶ (κ,GFIX(K , k, F))→ (Fκ ○ ▷Ω(K ,k ,F) , F(GFIX(K , k, F)))

fold(K ,k ,F) ∶ (Fκ, F(GFIX(K , k, F)))→ (κ+ ,GFIX(K , k, F))

in ∫ Cone(Ω(K , k, F),−) and ∫ Cone(FΩ(K , k, F),−), respectively. We show that these two
morphisms aremutual inverses in K.

We begin by showing that fold(K ,k ,F) ○ unfold(K ,k ,F) = idGFIX(K ,k ,F). To do so, we show
that fold(K ,k ,F) ○ unfold(K ,k ,F) is a cocone morphism (κ,GFIX(K , k, F)) → (κ,GFIX(K , k, F)).
Because (κ,GFIX(K , k, F)) is initial in ∫ Cone(Ω(K , k, F),−), it will immediately follow that the
morphismmust be equal to the identitymorphism. Wemust show for all n that κn = (fold(K ,k ,F) ○
unfold(K ,k ,F)) ○ κn . We compute:

(fold(K ,k ,F) ○ unfold(K ,k ,F)) ○ κn

= fold(K ,k ,F) ○ (unfold(K ,k ,F) ○ κn)

= fold(K ,k ,F) ○ (Fκ ○ ▷Ω(K ,k ,F))n
= fold(K ,k ,F) ○ (Fκ)n ○Ω(K , k, F)(n → n + 1)

= κ+n ○Ω(K , k, F)(n → n + 1)
= κn+1 ○Ω(K , k, F)(n → n + 1)
= κn .

We conclude that fold(K ,k ,F) ○ unfold(K ,k ,F) = idGFIX(K ,k ,F).

4.2. FUNCTORIALITY OF FIXED POINTS 73

Next, we show that unfold(K ,k ,F) ○ fold(K ,k ,F) = idF(GFIX(K ,k ,F)) using an analogous argument.
We compute:

(unfold(K ,k ,F) ○ fold(K ,k ,F)) ○ (Fκ)n

= unfold(K ,k ,F) ○ (fold(K ,k ,F) ○ (Fκ)n)

= unfold(K ,k ,F) ○ κ
+
n

= unfold(K ,k ,F) ○ κn+1

= (Fκ)−n+1

= (Fκ)n .

We conclude that each of unfold is an isomorphism.
Next, we show that unfold is natural. Let (f , η) ∶ (K , k, F) → (L, l ,G) be an arbitrary

morphismof Linksk. Let (κ,GFIX(K , k, F)) and (λ,GFIX(L, l ,G)) respectively be the colimiting
cocones of Ω(K , k, F) and Ω(L, l ,G). We show that the following diagram commutes in K:

Ω(K , k, F) FΩ(K , k, F)

GFIX(K , k, F) F(GFIX(K , k, F))

GFIX(L, l ,G) G(GFIX(L, l ,G))

Ω(L, l ,G) GΩ(L, l ,G)

κ

Ω(f ,η)

▷Ω(K ,k ,F)

Fκ

η∗Ω(f ,η)GFIX(f ,η)

unfold(K ,k ,F)

UNF(f ,η)=η∗GFIX(f ,η)
unfold(L , l ,G)

λ

▷Ω(L , l ,G)

Gλ

(39)

The top, left, and bottom trapezoids commute by definition of unfold and GFIX. To see that the
right trapezoid commutes, observe that the following diagram commutes by definition of GFIX:

GFIX(K , k, F) Ω(K , k, F)

GFIX(L, l ,G) Ω(L, l ,G)

GFIX(f ,η)

κ

Ω(f ,η)

λ

commutes by definition of GFIX. Its image under F is the top rectangle in the following diagram;
the bottom rectangle commutes by naturality of η:

FGFIX(K , k, F) FΩ(K , k, F)

FGFIX(L, l ,G) FΩ(L, l ,G)

GGFIX(L, l ,G) GΩ(L, l ,G)

FGFIX(f ,η)

Fκ

FΩ(f ,η)

ηFGFIX(L , l ,G)

Fλ

ηΩ(L , l ,G)

Gλ

The outer perimeter of this rectangle is exactly the right trapezoid of diagram 39. To see that the
outer perimeter of diagram 39 commutes, wemust show that it commutes at each component n.
Observe that for arbitrary n,

Ω(K , k, F)(n) = Fnk FΩ(K , k, F)(n) = FFnk

Ω(L, l ,G)(n) = GnL GΩ(L, l ,G)(n) = GGnL

(▷Ω(K ,k ,F))n=Ω(K ,k ,F)(n→n+1)

Ω(f ,n)n (η∗Ω(f ,n))n=Ω(f ,n)n+1
(▷Ω(L , l ,G))n=Ω(L , l ,G)(n→n+1)

74 4. FIXED POINTS OF FUNCTORS

is exactly the square given by the functoriality of Ω. So we conclude that the outer perimeter
of diagram 39 commutes. It follows that the two paths around the outer perimeter define equal
cocones:

(Gλ ○ (η ∗Ω(f , η)) ○ ▷Ω(K ,k ,F) ,G(GFIX(L, l ,G)))
= (Gλ ○ ▷Ω(L , l ,G) ○Ω(f , n),G(GFIX(L, l ,G))).

The inner rectangle of diagram 39 then describes two coconemorphisms

(κ,GFIX(K , k, F))→ (Gλ ○ ▷Ω(L , l ,G) ○Ω(f , n),G(GFIX(L, l ,G)))

in ∫ Cone(Ω(K , k, F),−). Because (κ,GFIX(K , k, F)) is initial, these two cocone morphisms
must be equal, i.e., the inner rectangle commutes. We conclude that unfold is natural.

We can specialize the above constructions to produce initial functor algebras. Indeed, given
an IFP-category K, the category IFP [K→ K] embeds fully and faithfully into LinksK via the
functor that maps objects F ∶ K→ K to the link (�, �, F) and natural transformations η ∶ F ⇒ G

to themorphism (id� , η). We define the initial-fixed-point functor FIX ∶ IFP [K→ K] → K as the
composition IFP [K→ K]↪ LinksK

GFIX
ÐÐ→ K. The following proposition is standard:

Proposition 4.2.11 ([LS81,Theorem 4.1]). The initial-fixed-point functor FIX ∶ IFP [K→ K]→
K is an ω-functor.

Proposition 4.2.12. Let K be an ω-category. Let I ∶ IFP [K→ K] → LinksK be the functor

given by I(F) = (�, �, F) and I(η) = (id� , η). Then I is a full and faithful ω-functor.

Proof. Themapping I is clearly functorial. Let η, ρ ∶ F ⇒ G be two morphisms in IFP [K→ K]
and assume I(η) = I(ρ). Then (id� , η) = (id� , ρ). It follows that η = ρ, so I is faithful.

Let F ,G ∶ K → K be two ω-functors. Let (f , η) ∶ I(F) → I(G) be a morphism in LinksK.
Then (f , η) ∶ (�, �, F) → (�, �,G). This implies that f ∶ � → �. But �s is the initial object, and
there exists a uniquemorphism �→ �, namely, id�. It follows that (f , η) = I(η). We conclude that
I is full.

Consider some diagram J ∶ ω → IFP [K→ K] with colimit κ ∶ J ⇒ F∞. Then (Iκ, IF∞) is
colimiting for IJ by proposition 4.2.4. We conclude that I is ω-cocontinuous.

We use the close relationship between cocones and functor algebras to show that FIX does
indeed produce initial fixed points. Write Fω ∶ ω → K for Ω(�, �, F). The following proposition
tells us that every F-algebra induces a cocone on Fω . This construction of cocones from algebras is
not new: it appears in the proofs of [SP82, Lemma 2; AMM18, Theorem 3.5]. However, to the best
of our knowledge, the fact that this action on objects extends to a full and faithful functor, and the
initiality result are new. These facts will be used repeatedly in proofs below.

Proposition 4.2.13. Let K be a category with an initial object, and let F ∶ K→ K be a functor.

The following defines a full and faithful functor ConeF ∶ KF → ∫ Cone(F
ω ,−) from the category KF

of F-algebras to the category ∫ Cone(F
ω ,−) of cocones on Fω :

● on objects: ConeF(A, a) = (α,A) where α ∶ Fω ⇒ A is inductively defined by α0 = �A and

αn+1 = a ○ Fαn

● on morphisms: ConeF f = f .

If F is an ω-functor and K is an IFP-category, then ConeF (FIX(F), fold(�,�,F)) is initial.

Proof. We begin by checking that the functor is well-defined on objects. Let (A, a) be an F-
algebra. We show that α is a cocone on Ω(�, �, F) with nadir A. We must show that for all n,
αn = αn+1 ○Ω(�, �, F)(n → n + 1). We do so by induction on n. When n = 0, we have by initiality
that

α0 = �A = a ○ F�A ○ �F� = α1 ○Ω(�, �, F)(0→ 1).

4.2. FUNCTORIALITY OF FIXED POINTS 75

Assume the result for some n, then

αn+1 = a ○ F (αn)

= a ○ F (αn+1 ○Ω(�, �, F)(n → n + 1))
= a ○ F(αn+1) ○ F (Ω(�, �, F)(n → n + 1))
= a ○ F(αn+1) ○Ω(�, �, F)(n + 1→ n + 2)
= αn+2 ○Ω(�, �, F)(n + 1→ n + 2).

We conclude that α is a cocone.
The action of ConeF on morphisms is clearly functorial. Let (A, a) and (B, b) be F-algebras

and let (α,A) and (β, B) be their respective images under ConeF . We must show that if f ∶
(A, a)→ (B, b) is an F-algebra homomorphism, then it is amorphism of cocones. In particular,
we must show that for all n ∈ N, f ○ αn = βn . We do so by induction on n. When n = 0, we
have by initiality that f ○ α0 = �B = β0. Assume the result for some n. Because f is an F-algebra
homomorphism, f ○ a = b ○ F f . It follows that:

f ○ αn+1 = f ○ a ○ Fαn = b ○ F f ○ Fαn = b ○ F(f ○ αn) = b ○ Fβn = βn+1 .

We conclude the result by induction.
The functor is clearly faithful. We show that it is full. Let (A, a) and (B, b) be arbitrary F-

algebras, and let f ∶ ConeF(A, a)→ ConeF(B, b) be arbitrary. We claim that f ∶ (A, a)→ (B, b) is
an F-algebra homomorphism. Wemust show that f ○ a = b ○ F f . Consider the following diagram:

A FA

� F�

B FB

f

a

F f

�A
�F�

�B

F�A

F�B
b

The top and bottom squares commute by definition of ConeF(A, a) and ConeF(B, b). The left
circular segment commutes by initiality, while the right circular segment commutes because
functors preserve commuting diagrams. So the whole diagram commutes. We conclude that
f ∶ (A, a)→ (B, b) is an F-algebra homomorphism. It follows that ConeF is full.

Assume F is an ω-functor and let κ ∶ Fω ⇒ FIX(F) be colimiting. Then (κ,FIX(F)) is initial
in ∫ Cone(Fω ,−). We show that ConeF(FIX(F), fold(�,�,F)) = (κ,FIX(F)). Set (ϕ,FIX(F)) =
ConeF(FIX(F), fold(�,�,F)). We show by induction that κn = ϕn for all n. When n = 0, the result is
immediate by initiality: κ0 = �FIX(F) = ϕ0. Now assume the result for some n. Recall that fold(�,�,F)
is by definition (proposition 4.2.10) the unique cocone morphism (Fκ ○ ▷Fω , F(FIX(F))) →
(κ,FIX(F)). This implies that perimeter of the following diagram commutes for all n:

FIX(F) F(FIX(F))

Fn� Fn+1�.

fold(�,�,F)

κn

(▷Fω)n=Fω(n→n+1)

Fκn
κn+1 (40)

The bottom triangle commutes by definition of κ. We show that the top triangle commutes. Recall
that F is an ω-functor, so Fκ ∶ FFω ⇒ F(FIX(F)) is colimiting. Observe that (κ+)n = κn+1 ∶
FFω ⇒ FIX(F) is a cocone. It follows that there exists a unique morphism (Fκ, F(FIX(F)) →
(κ+ ,FIX(F)) in ∫ Cone(FFω ,−), i.e., a unique f ∶ F(FIX(F))→ FIX(F) in K such that

f ○ Fκn = κn+1 ∶ F
n+1�→ FIX(F)

76 4. FIXED POINTS OF FUNCTORS

for all n. We claim that f = fold(�,�,F). To see that this is so, observe that the following diagram
commutes for all n:

FIX(F) F(FIX(F))

Fn� Fn+1�.

f

κn

(▷Fω)n=Fω(n→n+1)

Fκn
κn+1

Indeed, the top triangle commutes by definition of f , while the bottom triangle commutes by
definition of κ. The perimeter of this diagram implies that f is a cocone morphism (Fκ ○
▷Fω , F(FIX(F))) → (κ,FIX(F)). But fold(�,�,F) is the unique such morphism, so we have
f = fold(�,�,F). It follows that the top triangle of diagram 40 commutes, so the entire diagram
commutes.

We are now ready to show that ϕn+1 = κn+1. Recall that ϕn+1 = fold(�,�,F) ○ Fϕn by definition.
By the induction hypothesis, ϕn = κn , so ϕn+1 = fold(�,�,F) ○ Fκn . By diagram 40, it follows that
ϕn+1 = κn+1. We conclude by induction that ϕ = κ. It follows that ConeF(FIX(F), fold(�,�,F)) =
(κ,FIX(F)) is initial.

The following corollary is again standard, but its proof is new and its statement clarifies the
nature of themediating F-algebra homomorphism:

Corollary 4.2.14 ([SP82, Lemma 2; AMM18, Theorem 3.5]). Let K be an IFP-category. The

initial algebra of an ω-functor F ∶ K→ K is (FIX(F), fold(�,�,F)). Given any other F-algebra (A, a),
the unique F-algebra homomorphism (FIX(F), fold(�,�,F))→ (A, a) is the unique coconemorphism

ConeF(FIX(F), fold(�,�,F))→ ConeF(A, a).

Proof. The cocone ConeF(FIX(F), fold(�,�,F)) is initial in ∫ Cone(Fω ,−) by proposition 4.2.13.
Recall that initial objects are given by the limit of the identity functor [Rie16, Lemma 3.7.1], and that
full and faithful functors reflect any limits that are present in its codomain [Rie16, Lemma 3.3.5].
Because ConeF is full and faithful, it follows that (FIX(F), fold(�,�,F)) is initial and that the unique
morphism is as described.

4.3. 2-Categorical Structure of Parametrized Fixed Points

In this section, we explore the 2-categorical properties of the parametrized-fixed-point functor
given by Lehmann and Smyth [LS77, § 3]. This 2-categorical structure is, to the best of our
knowledge, new. From these properties, we deduce that the parametrized-fixed-point functor
defines a dagger operation that satisfies the Conway identities.

We begin by observing that their parametrized-fixed-point functor is a 2-natural transforma-
tion. This answers the first question of the introduction: the definition of (⋅)† ∶ IFP [D × E→ E]→
IFP [D→ E] is natural inD. In fact, naturality does not requireD to be an ω-category. Given a
categoryD and an IFP-category E, let Cat[D×E→ω E] be the category of parametrized ω-functors
F ∶ D × E→ E, i.e., functors such that F(D,−) ∶ E→ E is an ω-functor for all objects D ofD.

Proposition 4.3.1. Let E be an ω-category. The following family of functors forms a 2-natural

transformation (⋅)† ∶ Cat[− × E→ω E]⇒ Cat [−→ E] ∶ Catop → Cat:

(⋅)†D = Cat [idD → FIX] ○ Λ ∶ Cat[D × E→ω E]→ Cat [D→ E] .

It restricts to a 2-natural transformation (⋅)† ∶ IFP [− × E→ E]⇒ IFP [−→ E] ∶ IFPop → IFP.

Proof. We begin by showing naturality. Wemust show for allG ∶ C→ D that the following diagram
commutes:

Cat[D × E→ω E] Cat [D→ E]

Cat[C × E→ω E] Cat [C→ E]

(⋅)†D

Cat[G×E→ωE] Cat[G→E]
(⋅)†C

4.3. 2-CATEGORICAL STRUCTURE OF PARAMETRIZED FIXED POINTS 77

We first show that the two functors defined by the two paths around the square agree on objects.
Let F ∶ D × E →ω E be arbitrary and abbreviate FG = Cat[G × E →ω E](F) = F ○ (G × idE). By
naturality of Λ:

ΛFG = Λ(F ○ (G × idE)) = (ΛF) ○G .
Then by definition of (⋅)†,

(FG)
†
C

= ([idC → FIX] ○ Λ)(FG)
= [idC → FIX](ΛF ○G)
= FIX ○ ΛF ○G ○ idC
= FIX ○ ΛF ○ idD ○G
= [idD → FIX](ΛF) ○G

= F†D ○G .

Now let η ∶ F ⇒ F′ be an arbitrary natural transformation. We compute:

((⋅)†C ○Cat[G × E→ω E]) η

= (η ∗ (G × idE))
†
C

= [idC → FIX] (Λ (η ∗ (G × idE)))
= [idC → FIX] (Λη ∗G)
= FIX ∗ (Λη ∗G) ∗ idC
= FIX ∗ Λη ∗ idD ∗G

= (Λη)†D ∗G .

We conclude that the two paths around the diagram define equal functors, i.e., that (⋅)† is natural.
We show that it is 2-natural. Let α ∶ G ⇒ G′ ∶ C→ D be an arbitrary 2-cell in Cat. Wemust

show that the two following 2-cells (i.e., natural transformations) are equal in Cat:

Cat[D × E→ω E] Cat[C × E→ω E] Cat [C→ E] ,

Cat[G×E→ωE]

⇓Cat[α × E→ω E]

Cat[G′×E→ωE]

(⋅)†C

Cat[D × E→ω E] Cat [D→ E] Cat [C→ E] .
(⋅)†D

Cat[G→E]

⇓Cat [α → E]

Cat[G′→E]

For an arbitrary component F ∶ D × E→ω E, we compute:

((⋅)†C ∗Cat[α × E→ω E])
F

= (F ∗ (α × idE) ∶ F ○ (G × idE)⇒ F ○ (G′ × idE))
†
C

= ([idC → FIX] ○ Λ) (F ∗ (α × idE) ∶ F ○ (G × idE)⇒ F ○ (G′ × idE))

= [idC → FIX] (ΛF ∗ α ∶ FG ⇒ FG
′)

= FIX ∗ ΛF ∗ α
= FIX ∗ ΛF ∗ idD ∗ α

= F†D ∗ α

= (Cat [α → E] ∗ (⋅)†D)F .

We conclude 2-naturality.

78 4. FIXED POINTS OF FUNCTORS

We show that (⋅)† restricts to a 2-natural transformation IFP [− × E→ E]⇒ IFP [−→ E] ∶
IFPop → IFP. To do so, we note that eachD-component restricts to an ω-functor

IFP [idD → FIX] ○ Λ ∶ IFP [− × E→ E]⇒ IFP [−→ E] ∶ IFPop → IFP.

by lemma 4.A.8 and propositions 4.A.10 and 4.2.11. The same argument as above shows that it is
2-natural.

Explicitly, given an F ∶ D × E →ω E and an object D of D, F†DD = FIX(F(D,−)). Propo-
sition 4.3.1 implies that (⋅)† defines an external dagger operation on horizontal morphisms in
IFP:

Definition 4.3.2. Let C be a cartesian category. An external dagger operation in product form [BÉ96,
§ 3.1; BÉ95, Definition 2.6] is a family of set-theoretic functions † = (†A,B) indexed by pairs of
objects A, B in C, where †A,B ∶ C(A×B,A)→ C(B,A) is a function of hom-sets. Given an external
dagger operation †A,B ∶ C(A× B, B) → C(A, B) and amorphism f ∶ A× B → B, we write f † for
†A,B(f). ◀

We will show that (⋅)† produces parametrized fixed points. To do so, we begin by defining a
family of functors that gives their unrollings:

Proposition 4.3.3. Let E be an ω-category. The following family of functors forms a 2-natural

transformation UNR(⋅) ∶ Cat[− × E →ω E] ⇒ Cat [−→ E] ∶ Catop → Cat, where D ranges over

small categories:

UNRD(F) = F ○ ⟨idD , F†⟩

UNRD(η) = η ∗ ⟨idD , η†⟩

It restricts to a 2-natural transformation UNR(⋅) ∶ IFP [− × E→ E]⇒ IFP [−→ E] ∶ IFPop → IFP.

Proof. Each component is a well-defined functor. We first show that the components assemble into
a natural transformation. Let G ∶ C→ D be arbitrary. Wemust show that the following diagram
commutes:

Cat[D × E→ω E] Cat [D→ E]

Cat[C × E→ω E] Cat [C→ E] .

Cat[G×E→ωE]

UNRD

Cat[G→E]

UNRC

We show that the two paths around the diagram agree on objects. Let F ∶ D × E→ω E be arbitrary,
then

(Cat [G → E] ○UNRD) (F)

= UNRD(F) ○G

= F ○ ⟨idD , F†⟩ ○G

= F ○ ⟨idD ○G , F† ○G⟩

= F ○ ⟨G ○ idC , idE ○ F† ○G⟩

= (F ○ (G × idE)) ○ ⟨idC , F† ○G⟩

which by proposition 4.3.1,

= (F ○ (G × idE)) ○ ⟨idC , (F ○ (G × idE))†⟩
= UNRC(F ○ (G × idE))

= (UNRC ○Cat[G × E→ω E]) (F).

An almost identical derivation gives that the two paths around the diagram agree on morphisms.
We conclude naturality.

4.3. 2-CATEGORICAL STRUCTURE OF PARAMETRIZED FIXED POINTS 79

We now show 2-naturality. Let α ∶ G ⇒ G′ ∶ C → D be an arbitrary 2-cell in Cat. Wemust
show that the following 2-cells (i.e., natural transformations) are equal in Cat:

Cat[D × E→ω E] Cat[C × E→ω E] Cat [C→ E] ,

Cat[G×E→ωE]

⇓Cat[α × E→ω E]

Cat[G′×E→ωE]

UNR(⋅)C

Cat[D × E→ω E] Cat [D→ E] Cat [C→ E] .
UNR(⋅)D

Cat[G→E]

⇓Cat [α → E]

Cat[G′→E]

For an arbitrary component F ∶ D × E→ω E, we compute:

(UNR(⋅)C ∗Cat[α × E→ω E])
F

= UNR(F ∗ (α × idE))C

= F ∗ (α × idE) ∗ ⟨idC , (F ∗ (α × idE))†⟩

= F ∗ ⟨α, F† ∗ α⟩

= F ∗ ⟨idD , F†⟩ ∗ α
= UNR(F)D ∗ α

= (Cat [α → E] ○UNR(⋅)D)F .

We conclude 2-naturality.
To show that 2-natural transformation restricts toUNR(⋅) ∶ IFP [− × E→ E]⇒ IFP [−→ E] ∶

IFPop → IFP, we show that each component is an ω-functor. But this is obvious by proposi-
tion 4.2.11. The proof of 2-naturality carries over unchanged.

We usually expect a dagger operations to satisfy the fixed-point identity [BÉ96, p. 7]. It states
that f † = f ○ ⟨idA, f †⟩ for all f ∶ A× B → B, i.e., that a dagger operation gives parametrized fixed
points. The fixed-point identity does not hold in general for dagger operations on functors: F† and
F ○ ⟨id, F†⟩ need not be equal on the nose. However, it holds up to natural isomorphism, giving an
analog of proposition 4.2.10 for solutions to parametrized equations. Proposition 4.3.4 gives a new
2-categorical formulation of the fixed-point identity. Not only do we have a natural isomorphism
F† ≅ F ○ ⟨id, F†⟩ for each F, but these natural isomorphisms assemble to form amodification, i.e.,
amorphism between the 2-natural transformations (⋅)† and UNR.

Proposition 4.3.4 (Fixed-Point Identity). Let E be an IFP-category. There is amodification

Unfold ∶ (⋅)† → UNR ∶ Cat[− × E→ω E]⇒ Cat [−→ E] ∶ Catop → Cat

that is an isomorphism; we call its inverse Fold. For each category D, parametrized ω-functor

F ∶ D × E→ω E, and object D of D, the corresponding component is the isomorphism

(UnfoldFD)D = unfold(�,�,F(D ,−)) ∶ F
†
D → F(D, F†

D)

given by proposition 4.2.10.

Unfold restricts to amodificative isomorphism (⋅)† → UNR ∶ IFP [− × E→ E]⇒ IFP [−→ E] ∶
IFPop → IFP.
Proof (sketch). Wemust show that for each small categoryD, we have a 2-cell

UnfoldD ∶ (⋅)
†
D ⇒ UNRD ∶ Cat[D × E→ω E]→ Cat [D→ E]

such that for all G ∶ C→ D, the two following 2-cells are equal:

Cat[D × E→ω E] Cat [D→ E] Cat [C→ E] ,

(⋅)†D

⇓UnfoldD

UNRD

Cat[G→E]

80 4. FIXED POINTS OF FUNCTORS

Cat[D × E→ω E] Cat[C × E→ω E] Cat [C→ E] .
Cat[G×E→ωE]

(⋅)†C

⇓UnfoldC

UNRC

It follows easily from proposition 4.2.10 that UnfoldD is a 2-cell. To see that it satisfies the desired
equality, consider some arbitrary F ∶ D × E→ω E and object C of C. Then the F ,C-component of
the top 2-cell is

(UnfoldFDG)C

= (UnfoldFD)GC

= unfold(�,�,F(GC ,−))

= unfold(�,�,(F○(G×idE))(C ,−))

= (Unfold
F○(G×idE)
C)

C
,

which we recognize as the F ,C-component of the bottom 2-cell. Because F, C, and G were chosen
arbitrarily, we conclude the desired equality and that Unfold is a modification. It is clearly an
isomorphism, and the restriction clearly has the desired properties.

Proof. We begin by showing that Unfold is a modification. We must show that for each small
categoryD, we have a 2-cell

UnfoldD ∶ (⋅)
†
D ⇒ UNRD ∶ Cat[D × E→ω E]→ Cat [D→ E]

such that for all G ∶ C→ D, the two following 2-cells are equal:

Cat[D × E→ω E] Cat [D→ E] Cat [C→ E] ,

(⋅)†D

⇓UnfoldD

UNRD

Cat[G→E]

Cat[D × E→ω E] Cat[C × E→ω E] Cat [C→ E] .
Cat[G×E→ωE]

(⋅)†C

⇓UnfoldC

UNRC

In particular, wemust show that for all F ∶ D × E→ω E,

UnfoldFDG = Unfold
F○(G×idE)
C (41)

define equal natural transformations from F† ○G to F† ○ ⟨idD , F†⟩ ○G.
We begin by showing that UnfoldD is a 2-cell, i.e., that UnfoldFD is natural in F, i.e., that for

any natural transformation η ∶ F ⇒ G ∶ D × E→ω E, the following square commutes:

F† F ○ ⟨id, F†⟩

G† G ○ ⟨id,G†⟩

UnfoldF

D

η
†

η∗⟨id,η†⟩
UnfoldGD

This square commutes if and only if every component does, i.e., if and only if for every object D of
D, the following square commutes:

F†D (F ○ ⟨id, F†⟩)D

G†D (G ○ ⟨id,G†⟩)D.

(UnfoldF

D)D

(η†)D (η∗⟨id,η†⟩)D
(UnfoldGD)D

4.3. 2-CATEGORICAL STRUCTURE OF PARAMETRIZED FIXED POINTS 81

It is exactly the following square:

GFIX(�, �, FD) UNF(�, �, FD)

GFIX(�, �,GD) UNF(�, �,GD).

unfold(�,�,FD)

GFIX(id,(Λη)D) UNF(id,(Λη)D)
unfold(�,�,GD)

It commutes by proposition 4.2.10. Because F and D were arbitrary, we conclude that UnfoldD is a
2-cell.

We now show that Consider some arbitrary object C of C. Then the C-component is

(UnfoldFDG)C

= (UnfoldFD)GC

= unfold(�,�,F(GC ,−))

= unfold(�,�,(F○(G×idE))(C ,−))

= (Unfold
F○(G×idE)
C)

C
.

Because F and C were chose arbitrarily, we conclude eq. (41). Because G was chose arbitrarily, we
conclude that Unfold is amodification.

The modification Unfold is clearly an isomorphism: for each D, the component UnfoldD ∶
(⋅)†D ⇒ UNRD is an isomorphism. Indeed, each F-component UnfoldFD is an isomorphism, for
each of its D-components (UnfoldFD)D is an isomorphism by proposition 4.2.10.

Themodification Unfold clearly restricts to

(⋅)† → UNR ∶ IFP [− × E→ E]⇒ IFP [−→ E] ∶ IFPop → IFP,

all while remaining amodification and an isomorphism.

Proposition 4.3.4 abstracts considerable information. We unpack its definitions to get several
corollaries. The first corollary is a special case of [LMZ19, Theorem 4.4.8] when N and M are
identity functors. It will be key to defining the interpretations of recursive session types in chapter 8.

Corollary 4.3.5. Let D be a small category. Then UnfoldFD and FoldFD are natural in F, i.e.,

given any natural transformation η ∶ F ⇒ G ∶ D × E→ E, the two following squares commute:

F† F ○ ⟨id, F†⟩ F ○ ⟨id, F†⟩ F†

G† G ○ ⟨id,G†⟩ G ○ ⟨id,G†⟩ G†

UnfoldF

D

η
†

η∗⟨id,η†⟩

FoldF

D

η∗⟨id,η†⟩ η
†

UnfoldGD FoldGD

Corollary 4.3.6 gives identities that will be useful in chapter 8. Equations (42) to (44) are
immediate from the definitions of 2-natural transformation and proposition 4.3.1. Equations (45)
and (46) are immediate from the definition ofmodification and proposition 4.3.4.

Corollary 4.3.6 (Parameter Identity). Let C andD be small categories and let E be an IFP-
category. Let F ,H ∶ D × E → E be parametrized ω-functors and let G , I ∶ C → D be functors. Set

FG = F ○ (G × idE) ∶ C × E→ E, and analogously for HI . Let ϕ ∶ F ⇒ H and γ ∶ G ⇒ I be natural

transformations. Then

F
†

G
= F† ○G ∶ C→ E, (42)

FG ○ ⟨idC , F†

G
⟩ = F ○ ⟨idD , F†⟩ ○G ∶ C→ E, (43)

(ϕ ∗ (γ × idE))
†
= ϕ

† ∗ γ ∶ F†

G
⇒ H

†

I
, (44)

FoldFGC = Fold
F

DG ∶ FG ○ ⟨idC , F
†

G
⟩⇒ F

†

G
, (45)

UnfoldFGC = Unfold
F

DG ∶ F
†

G
⇒ FG ○ ⟨idC , F†

G
⟩. (46)

82 4. FIXED POINTS OF FUNCTORS

Proposition 4.3.7 generalizes corollary 4.2.14 to parametrized fixed points. Given a horizontal
morphism f ∶ A × B → B in a 2-cartesian category, an f -algebra [BÉ95, Definition 2.3] is a pair
(g , u) where g ∶ A→ B is a horizontal morphism and u ∶ f ∗ ⟨idA, g⟩⇒ g is vertical. An f -algebra
homomorphism (g , u)→ (h, v) is a vertical morphismw ∶ g ⇒ h such that w ⋅u = v ⋅(f ∗⟨idA,w⟩).
These f -algebras and f -algebra homomorphisms form a category. If we restrict our attention to
the 2-cartesian category Cat, we get the parametrized F-algebras of [Fio94, Definition 6.1.8]. By
additionally requiring A = 1, we recover the usual notion of F-algebras.

Proposition 4.3.7. Let D be a category and E be an IFP-category. Let F ∶ D × E →ω E be

a parametrized ω-functor. The initial F-algebra is (F† ,FoldFD). Given any other F-algebra (G , γ),
themediating morphism ϕ ∶ F† → G is a natural transformation. The component ϕD is the unique

F(D,−)-algebra homomorphism (F†D, (FoldFD)D)→ (GD, γD) given by corollary 4.2.14.

Proof. Let (G , γ) be an arbitrary F-algebra. We begin by showing that there exists an F-algebra
homomorphism ϕ ∶ (F† ,FoldFD)→ (G , γ). Given an object D ofD, write FD for the partial appli-
cation F(D,−). For every object D, (F†D, (FoldFD)D) is the initial FD-algebra by corollary 4.2.14.
This implies that there exists a unique FD-homomorphism ϕD ∶ F

†D → GD making the following
square commute:

FD(F
†D) F†D

FD(GD) GD.

(FoldF

D)D

FD ϕD ϕD

γD

We claim that these morphisms ϕD assemble into a natural transformation ϕ ∶ F† → G. It will
immediately follow that ϕ is an F-algebra homomorphism from (F† ,Fold) to (G , γ).

To show that ϕ is natural, let f ∶ A→ B be an arbitrarymorphism inD. Wemust show that
the following square commutes:

F†A GA

F†B GB.

ϕA

F
†
f G f

ϕB

Recall that, given an L ∶ E → E, we write Lω for the functor Ω(�, �, L). Let α ∶ Fω
A
⇒ F†A and

β ∶ Fω
B
→ F†B be colimiting. Let

(νA,GA) = Cone(,FA)(GA, γA),

(νB ,GB) = Cone(,FB)(GB, γB)

be cocones on Fω
A
and Fω

B
, respectively, induced by proposition 4.2.13. By this same proposition,

ϕA and ϕB are coconemorphisms

ϕA ∶ (α, F†A)→ (νA,GA) in ∫ Cone(Fω

A ,−),

ϕB ∶ (β, F†B)→ (νB ,GB) in ∫ Cone(Fω

B ,−).

4.3. 2-CATEGORICAL STRUCTURE OF PARAMETRIZED FIXED POINTS 83

Write F f for the natural transformation ΛF f ∶ FA⇒ FB . We then have the following diagram in E:

F†A GA

Fω
A

Fω
B

F†B GB.

ϕA

F
†
f G fF

ω

f

α
ν
A

β ν
B

ϕB

(47)

We show that ϕB ○ F
† f and G f ○ ϕA are both mediating morphisms from the colimiting cone α to

the cocone νB ○ Fω

f
. It will then follow by uniqueness ofmediating morphisms that they are equal

and that ϕ is natural.
We begin with ϕB ○ F

† f . By definition of F† f , F† f is amediating morphism from α to β ○ Fω

f
.

By the remarks above, ϕB is amediating morphism from β to νB , so it is also amediating morphism
from β ○Fω

f
to νB ○Fω

f
. So going around the left and bottom sides of diagram 47, we get amediating

morphism ϕB ○ F
† f from α to νB ○ Fω

f
.

We next show that G f ○ ϕA is a mediating morphism. By definition, ϕA is a mediating
morphism from α to νA. Wemust now show that G f is amediating morphism from νA to νB ○ Fω

f
,

i.e., wemust show that for all n,

G f ○ νAn = ν
B

n ○ (F
ω

f
)
n
∶ Fn

A�→ GB (48)

are equal morphisms. We do so by induction on n. When n = 0, initiality gives us

G f ○ νA0 = �GB = ν
B

0 ○ (F
ω

f
)
0
.

Assume the result for some n. To show the result for n + 1 wemust show that the outer rectangle of
diagram 49 commutes:

GA GB

FAGA FBGB

Fn+1
A
�E Fn+1

B
�E

G f

F(f ,G f)

γA γB

(Fω

f
)
n+1

ν
A

n+1

FA(νAn)

ν
B

n+1

FB(νBn)

(49)

The upper trapezoid commutes by definition of F-algebra and the assumption that (G , γ) was
an F-algebra. The two triangles of diagram 49 commute by definition of νAn+1 and νBn+1 (see
proposition 4.2.13). The bottom trapezoid is equal to the perimeter of diagram 50:

FAGA FAGB FBGB

Fn+1
A
�E FAF

n
B
�E Fn+1

B
�E .

FA(G f) (F f)GB

FA(νAn)

FA((Fω

f
)
n
) (F f)Fn

B
�E

FA(νBn) FB(νBn) (50)

Indeed, the top morphism of diagram 50 is exactly F(f ,G f):

F(f ,G f) = F(f , idGB) ○ F(idA,G f) = (F f)GB
○ FA(G f).

84 4. FIXED POINTS OF FUNCTORS

The bottom morphisms are equal by definition of Fω

f
(eq. (32)):

(Fω

f
)
n+1

= Ω(id� , Fω

f)n+1

= F
(n+1)
f

∗ id�E

= (F
(n+1)
f
)
�E

= (F f ∗ F
(n)
f
)
�E

= (F f)Fn

B
�E
○ FA ((F

(n)
f
)
�E
)

= (F f)Fn

B
�E
○ FA ((F

ω

f
)
n
) .

To see that diagram 50 commutes, we note that the left square commutes by applying FA to the
square given by the induction hypothesis. The right square commutes by naturality of F f . By pasting,
the perimeter commutes. So we conclude that the bottom trapezoid of diagram 49 commutes.

By pasting the two trapezoids and two triangles, we get that diagram 49 commutes. Equa-
tion (48) then holds by induction, soG f is amediatingmorphism from νA to νB○Fω

f
. By composing

around the top and right sides of diagram 47, we get amediating morphism from α to νB ○ Fω

f
.

By the remarks following diagram 47, we conclude that ϕ is a natural transformation from F†

to G.
We show that ϕ is unique. Consider any F-algebra homomorphism α ∶ (F† ,FoldFD)⇒ (G , γ),

and let D be an arbitrary object ofD. By definition of F-algebra homomorphism, the following
square then commutes:

FD(F
†D) F†D

FD(GD) GD.

(FoldF

D)D

FDαD
αD

γD

This implies that αD ∶ (F
†D, (FoldFD)D) → (GD, γD) is an FD-algebra homomorphism. But ϕD

is the unique such morphism, so αD = ϕD . Because D was an arbitrary component, we conclude
α = ϕ.

Having established that there exists a unique morphism ϕ ∶ (F† ,FoldFD) ⇒ (G , γ) for all
F-algebras (G , γ), we conclude that (F† ,FoldFD) is the initial F-algebra.

Proposition 4.3.7 presents the converse of a class of external daggers on horizontal morphisms
considered in [BÉ95, § 2.2]. Given a horizontal morphism f ∶ A × B → B in a 2-cartesian cat-
egory, they define f † = g where (g , v) is the initial f -algebra. They do not consider the action
of this dagger on vertical morphisms. In contrast, we gave a dagger operation that determines
initial f -algebras. It induces an action on both horizontal and vertical morphisms. By proposi-
tion 4.3.4 and corollary 4.3.6, its action on vertical morphisms coheres with its action on horizontal
morphisms.

4.4. Conway Identities

Semantics of programming languages should, ultimately, help users reason about programs.
To this end, it is useful to have an arsenal of identities for themathematical objects used to define
the semantics. In our case, the semantics of recursive types motivated the definition of a dagger
operation in section 4.3. In that section, we studied its 2-categorical properties. We now show how
these 2-categorical properties imply a large class of identities useful for reasoning about recursive
types. In particular,we show that they imply theConway identities [BÉ95; BÉ96] up to isomorphism.

4.4. CONWAY IDENTITIES 85

The Conway identities in turn imply a class of identities useful in the semantics of programming
languages.

The Conway identities are also of independent interest. For example, the (cartesian) Conway
identities together with an additional identity axiomatize the class of iteration theories [BÉ96, Re-
mark 3.4]. Moreover,Hasegawa [Has99,Theorem 7.1] andHyland independently discovered [BH03,
p. 281] that a cartesian category has a trace operator [JSV96] if and only if it has an external dagger
operator satisfying the (cartesian) Conway identities.

We begin by presenting the Conway identities. The identities’ names vary in the literature. We
give those of Bloom and Ésik [BÉ95; BÉ96] and of Simpson and Plotkin [SP00, Definitions 2.2
and 2.4]. An external dagger † satisfies:

(1) the parameter identity or naturality if for all f ∶ B×C → C and g ∶ A→ B, (f ○(g×idC))† =
f † ○ g.

(2) the composition identity or parametrized dinaturality if for all f ∶ P×A→ B and g ∶ P×B →
A, (g ○ ⟨πP×A

P
, f ⟩)† = g ○ ⟨idP , (f ○ ⟨πP×B

P
, g⟩)†⟩.

(3) the double dagger identity or diagonal property if for all f ∶ A × B × B → B, (f †)† =
(f ○ (idA × ⟨idB , idB⟩))†.

(4) the abstraction identity if the following diagram commutes:

[A× B × C → C] [A× [B → C] × B → C]

[A× B → C] [A→ [B → C]] [A× [B → C]→ [B → C]]

[idA×⟨πB ,evB ,C⟩→idC]

†A×B ,C Λ
Λ †A,[B→C]

(5) the power identities if for all f ∶ A× B → B and n > 1, (f n)† = f †, where f n ∶ A× B → B

is inductively defined by f 0 = πA×B
B

and f n+1 = f ○ ⟨πA×B
A

, f n⟩.
An external dagger satisfies the cartesian Conway identities if it satisfies properties 1 to 3. It satisfies
Conway identities if it additionally satisfies property 4. Theorem 4.4.1 answers the last question of
this chapter’s introduction:

Theorem 4.4.1. The external dagger operation of proposition 4.3.1 satisfies the Conway identities

and the power identities up to isomorphism.

Proof. The category IFP is 2-cartesian closed. By proposition 4.3.7, each ω-functor F ∶ D × E→ E
in IFP has an initial F-algebra (F† ,FoldFD). By corollary 4.3.6, these initial algebras are related such
that (F† ○G ,FoldFDG) is the initial (F ○ (G × idE))-algebra for each G ∶ C → D. It then follows
by [BÉ95, Theorem 7.1] that the external dagger operator induced by proposition 4.3.1 satisfies the
Conway identities and the power identities up to isomorphism.

The Conway identities imply the pairing identity, sometimes called Bekič’s identity [BÉ96, p. 10],
which relates the two main approaches for solving systems of simultaneous equations. Consider
such a system

B ≅ F(A, B,C)
C ≅ G(A, B,C).

We can solve it by pairing F and G, and solving the single equation (B,C) ≅ ⟨F ,G⟩(A, B,C).
Alternatively, we can use a Gaussian-elimination-style approach, e.g., as we did in the introduction
for the functors defining data types even and odd. The pairing identity tells us that these two
approaches yield isomorphic solutions:

Corollary 4.4.2 (Pairing Identity). Let A, B, and C be small IFP-categories, and let F ∶

A×B×C→ B and G ∶ A×B×C→ C be ω-functors. Set H = A×B
⟨idA ,G†⟩
ÐÐÐÐ→ A×B×C

F
Ð→ B. Then

⟨F ,G⟩† ≅ ⟨G† ○ ⟨idA ,H†⟩,H†⟩ ∶ A→ B ×C.

86 4. FIXED POINTS OF FUNCTORS

The Conway identities also imply the left zero identity [BÉ96, p. 10]. Semantically, it describes
the interplay between weakening and the formation of recursive types.

Corollary 4.4.3 (Left Zero Identity). Let A and B be small IFP-categories, and let F ∶ B→ A
be an ω-functor. Then

(A × B
πB
Ð→ B

F
Ð→ A)

†

≅ B
F
Ð→ A.

4.5. Canonical and Parametrized Fixed Points for O-Categories

In this section, we consider an order-theoretic variation of sections 4.2 and 4.3. We do so in
the setting ofO-categories and locally continuous functors introduced in section 2.2.2. This setting
generalizes categories of domains to provide just the amount of order-theoretic structure required
for taking fixed points of functors. O-categories aremore concrete than ω-categories, and their
order-theoretic characterization of ω-colimits and of ω-functors is useful in applications. They
also have enough structure to have canonical fixed points.

4.5.1. LocalContinuity and ω-Continuity. Locally continuous functors preserveO-colimits.
Every locally continuous functor F ∶ D→ E restricts to a functor F e ∶ De → Ee [SP82, Lemma 4].
When D is O-cocomplete, F e is an ω-functor [SP82, Theorem 3] and De is an ω-category by
proposition 2.2.63. These observations raise the question: why not use LinksKe and the results of
sections 4.2 and 4.3 to study fixed points of locally continuous functors?

The reason is that such an approach does not handle all natural transformations between
locally continuous functors, but only those between functors on Ke . This is because natural
transformations η ∶ F ⇒ G do not in general restrict to natural transformations F e ⇒ G e . By
adapting the techniques of the previous sections toO-categories and locally continuous functors,
we get fixed-point operators defined on all natural transformations between locally continuous
functors. The fixed-point operators are also themselves locally continuous.

4.5.2. Canonical Fixed Points. By slightlymodifying our category of links, we can construct
canonical fixed points. Given a functor F ∶ K→ K, we say that a fixed point f ∶ FX ≅ X is canonical
if (X , f) is an initial F-algebra and (X , f −1) is a terminal F-coalgebra. Given an O-category K, let
OLinksK be the category where

● objects are triples (K , k, F) called “links”, where K is an object of K, F ∶ K→ K is locally
continuous, and k ∶ K → FK is an embedding;
● morphisms and composition are defined as before.

Proposition 4.5.1. Equations (29) to (32) define a locally continuous functor Ω ∶ OLinksK →
O[ω → K]. For all links (K , k, F), Ω(K , k, F) ∶ ω → Ke . The natural transformation Ω(f , η) lies
in Ke whenever f and η do.

Let O[ω → Ke ↪ K] be the subcategory ofO[ω → K] whose objects are functors ω → Ke and
whosemorphisms are natural transformations in K. It is anO-category.

Proposition 4.5.2. Let K be anO-cocompleteO-category. A choice ofO-colimit in K for each

diagram ω → Ke ↪ K defines the action on objects of a locally continuous functor colimω ∶ [ω →
Ke ↪ K]→ K. Themorphism colimω η lies in Ke whenever η does.

Proof (sketch). The action of colimω on morphisms follows immediately from proposition 2.2.63.
Indeed, where ϕ ∶ Φ⇒ colimω Φ and γ ∶ Γ⇒ colimω Γ are the chosenO-colimits in K, a natural
transformation η ∶ Φ ⇒ Γ induces a cocone γ ○ η ∶ Φ ⇒ colimω Γ. By proposition 2.2.63, the
uniquemediating morphism of cocones is then:

colimω(η ∶ Φ⇒ Γ) = ⊔↑
n∈N

γn ○ ηn ○ ϕ
p

n .

This action on morphisms is easily seen to be locally continuous.

4.6. RELATED WORK 87

Remark 4.5.3. The reader may ask: why do we specify in proposition 4.5.2 and elsewhere that
“themorphism Fη lies in Ke whenever η does”? If F is locally continuous and locally continuous
functors take embeddings to embeddings, is it not an immediate Fη is an embedding whenever η
is an embedding? Indeed, it is. But our statement is more general. Onemust distinguish between
“natural families of embeddings” (natural transformationswhose every component is an embedding)
and “natural embeddings” (a natural transformation that is an embedding in the corresponding
functor category). Though every natural embedding is a natural family of embeddings, the converse
is false: the corresponding family of projections need not be natural.

Proposition 4.5.4. Let K be an O-cocomplete O-category. The functor GFIX = colimω ○Ω ∶
OLinksK → K is locally continuous. Themorphism GFIX(f , η) lies in Ke whenever f and η do.

The recipe given by proposition 4.2.9 gives a locally continuous functor UNF ∶ OLinksK → K.
Again, UNF(f , η) lies in Ke whenever f and η do. The functors GFIX and UNF are related by the
same natural isomorphism as proposition 4.2.10.

We say that an O-category K has strict morphisms if it has zero morphisms and 0AB is the least
element of K(A, B) for all objects A and B. We say that K supports canonical fixed points if it has
an initial object, strict morphisms, and is O-cocomplete. Let CFP be the full subcategory of O
whose objects areO-categories that support canonical fixed points. It is also known as Kind [Fio94,
§ 7.3.2]. It is 2-cartesian closed [Fio94, Theorem 7.3.11].

Assume K supports canonical fixed points. Then � is also the initial object of Ke , and we
can fully and faithfully embed O [K→ K] into LinksK using the same approach as before. This
embedding is locally continuous. We define the locally continuous canonical-fixed-point functor

CFIX ∶ CAT [CFP→ K]K → K as the composition CAT [CFP→ K]K ↪ LinksK
GFIX
ÐÐ→ K. The

following result is standard:

Proposition 4.5.5. If K supports canonical fixed points and F is a locally continuous functor on

K, then fold ∶ F(CFIX(F))→ FIX(F) is a canonical fixed point.

We can mimic the results of sections 4.3 and 4.4, generally replacing FIX by CFIX, ω-Cat by
O, IFP by CFP, and ω-functor by locally continuous functor. In particular, the parametrized fixed
point functor (⋅)† is locally continuous and again satisfies the Conway identities up to isomorphism.
It also produces canonical parametrized families of fixed points:

Proposition 4.5.6. Let D and E be O-categories, and assume E supports canonical fixed points.

Let F ∶ D × E→ E be a locally continuous functor. Then (F† ,Fold) and (F† ,Unfold) are respectively

the initial F-algebra and terminal F-coalgebra.

(1) Given any other F-algebra (G , γ), themediating morphism ϕ ∶ F† → G is a natural family

of embeddings whenever γ is an embedding. The component ϕD is the unique FD-algebra

homomorphism (F†D,FoldD)→ (GD, γD).
(2) Given any other F-coalgebra (Γ, γ), themediating morphism ρ ∶ Γ → F† is a natural family

of projections whenever γ is a projection. The component ρD is the unique FD-coalgebra

homomorphism (GD, γD)→ (F†D,UnfoldD).

Proof (Sketch). The key new result relative to proposition 4.3.7 is that ϕ is a natural family of
embeddings whenever γ is an embedding. By corollary 4.2.14, ϕD is amediating morphism from
an O-colimit to the cocone induced by the F-algebra (G , γ). This cocone is in Ee whenever γ is an
embedding. In this case, ϕD is an embedding by proposition 2.2.63.

4.6. RelatedWork

Scott [Sco72] introduced inverse limit constructions to construct fixed points of functors. In
particular, Scott used an inverse limit of a chain of projections to construct a continuous lattice
D ≅ [D → D], so that D is isomorphic to the lattice of continuous functions from D to D. Until
this point, the only tools for constructing fixed points were variations on Tarski’s least fixed-point

88 4. FIXED POINTS OF FUNCTORS

theorem [Leh76b, p. 9]. Lehmann [Leh76b] generalized these ideas to find fixed points of ω-
cocontinuous functors on ω-cocomplete categories. These ideas were further explored by Lehmann
and Smyth [LS77; LS81] to give semantics to data types. We built on these ideas to define a general
fixed-point functor GFIX. Using GFIX, we were able to show that a functor’s fixed points assemble
into a natural isomorphism. Their fixed-point functor is exactly FIX, while their parametrized
fixed-point functor is our (⋅)†.

Wand [Wan77] introduced the definitions ofO-categories and locally continuous functors.
Smyth and Plotkin [SP77; SP82] introduced O-(co)limits and generalized Scott’s limit-colimit
coincidence theorem toO-categories. O-categories generalize categories of domains to provide
just the structure required to solve recursive domain equations in a categorical setting. Smyth and
Plotkin’s “basic lemma” [SP82, Lemma 2] gives a recipe for constructing fixed points of covariant
locally continuous functors onO-categories.

Some took the existence of fixed points of functors as their starting point. Freyd [Fre91] studied
algebraically complete categories, that is, categories C where every covariant functor T ∶ C→ C has
an initial T-algebras. Freyd also studied properties of functors on algebraically complete categories.
Freyd [Fre92] extended this analysis to algebraically compact categories, i.e., algebraically complete
categories where initial algebra and terminal co-algebras are canonically isomorphic.

Fiore [Fio94] investigated axiomatic categorical domain theory for application to the deno-
tational semantics of deterministic programming languages. In chapter 6, Fiore used initiality
to define a dagger operation on functors between certain algebraically complete O-categories.
Under certain conditions, this dagger operation is functorial. It satisfies the parameter identity on
functors, i.e., it satisfies eq. (42) above. Our category CFP appears as the category Kind [Fio94,
Definition 7.3.11].

Dagger operation and the Conway identities arose in a separate line of research. Iteration
theories [BÉ93] were introduced to study the syntax and semantics of flowchart algorithms, and
they are defined in terms of a dagger operation. Bloom and Ésik [BÉ96] studied external dagger
operations on cartesian closed categories and showed that for many of the categories used in
semantics, the least fixed point operator induces a dagger operation satisfying the Conway identities.
They generalized this work to 2-cartesian closed categories in [BÉ95] and gave sufficient conditions
for a dagger on horizontal morphisms to satisfy the Conway identities. They did not explore the
2-cartesian structure of daggers or the action of daggers on vertical morphisms.

Simpson and Plotkin [SP00] gave an axiomatic treatment of dagger operations satisfying
Conway identities. They gave a purely syntactic account of free iteration theories. They give a
precise characterization of the circumstances in which the iteration theory axioms are complete
for categories with an iteration operator.

Linear logic enjoys other proofs-as-programs interpretations. Benton [Ben95; Ben94] intro-
duced the LNL calculus, amixed linear and non-linear calculus. It is interpreted by an “LNL” or
“adjoint” model: a symmetricmonoidal closed category and a cartesian closed category related by a
pair of adjoint functors. Benton andWadler [BW96] used this model to relate translation of the
λ-calculus in Moggi’s computational metalanguage [Mog91] and translations of intuitionistic logic
into intuitionistic linear logic. Lindenhovius,Mislove, and Zamdzhiev [LMZ19] introduced the
“linear/non-linear fixpoint calculus” (LNL-FPC), a type system with mixed linear and non-linear
recursive types. They use the dagger operator of [LS81] to model arbitrary recursive types in a
linear category and non-linear recursive types in a cartesian category. These two interpretations
are strongly related by suitablemediating functors and natural isomorphisms, which allow them to
define substructural operations on non-linear types. To give fixed points to contravariant functors,
they used standard order-theoretic techniques [LS81, Theorem 3] to reduce contravariant functors
to covariant functors.

4.A. General Results on ω-Categories

In this section, we present various results on ω-categories and IFP-categories. Many of these
results are standard and we present them only for ease of reference.

4.A. GENERAL RESULTS ON ω-CATEGORIES 89

Recall that the category IFP of small IFP-categories is a subcategory of ω-Cat, which is itself
a subcategory of the category Cat of small categories.

Proposition 4.A.1. The categories ω-Cat and IFP inherit their terminal objects from Cat.

Proof. The one-object category 1 is the terminal object of Cat and is clearly an ω-category and
an IFP-category. Given any other category C, the functor C→ 1 witnessing terminality in Cat is
clearly an ω-functor, so it lies in ω-Cat and IFP as well. Uniqueness is inherited from Cat.

Lemma 4.A.2. If A and B are categories with initial objects �A and �B, then (�A , �B) is the

initial object of the product category A × B.

Proof. Immediate from the definition ofmorphism in A × B.

Lemma 4.A.3. Let ∆ be a small category, and let A, B, and C be locally small categories.

(1) Given diagrams JA ∶ ∆ → A and JB ∶ ∆ → B, and colimiting cocones κA ∶ JA ⇒ A and

κB ∶ JB ⇒ B, the cocone (κA , κB) ∶ ⟨JA , JB⟩⇒ (A, B) is colimiting in A × B.
(2) If A and B have all ∆-colimits, then so does the product category A × B.
(3) The projection functors πA ∶ A × B→ A and πB ∶ A × B→ B preserve ∆-colimits.

(4) If A ∶ C → A and B ∶ C → B preserve ∆-colimits, then so does their pairing ⟨A, B⟩ ∶ C →
A × B, where ⟨A, B⟩C = (AC , BC) and ⟨A, B⟩(f ∶ C → C′) = (Af , B f) ∶ (AC , BC) →
(AC′ , BC′).

(5) Let ∆-Cat be the 2-category of small ∆-cocomplete categories. If A and B are small and

∆-cocomplete, then there is a 2-natural isomorphism

⟨−,−⟩ ∶ ∆-Cat(−,A) × ∆-Cat(−,B) ≅ ∆-Cat(−,A × B) ∶ ∆-Catop → CAT

inherited from Cat.
(6) Assuming the axiom of choice, if the product category A × B is non-empty and has all

∆-colimits, then so do A and B.

Proof. Let JA ∶ ∆ → A and JB ∶ ∆ → B be arbitrary diagrams of shape ∆, and assume they have
colimiting cocones κA ∶ JA ⇒ A and κB ∶ JB ⇒ B. We claim that (κA , κB) ∶ ⟨JA , JB⟩ ⇒ (A, B)
is colimiting in A × B. Let (α, β) ∶ ⟨JA , JB⟩⇒ (A, B) be any other cocone in A × B. There exist
unique cocone morphisms a ∶ (κA ,A) → (α,A) and b ∶ (κB , B) → (β, B). They assemble to
form the unique cocone morphism (a, b) ∶ ((κA , κB), (A, B)) → ((α, β), (A, B)). This means
that ((κA , κB), (A, B)) is initial in ∫ Cone(⟨JA , JB⟩,−), i.e., it is the colimit of ⟨JA , JB⟩ in A × B.

Now assume that A and B have all ∆-colimits; we show that the product category A × B has
all ∆-colimits. Let J ∶ ∆ → A × B be an arbitrary diagram of shape ∆. It determines two diagrams
of shape ∆:

JA = πA ○ J ∶ ∆ → A, (51)
JB = πB ○ J ∶ ∆ → B. (52)

By hypothesis, the colimiting cocones κA ∶ JA ⇒ colim∆ JA and κB ∶ JB ⇒ colim∆ JB exist inA and
B, respectively. By the above, they form a colimiting cocone (κA , κB) ∶ J ⇒ (colim∆ JA , colim∆ JB).
Because J was arbitrary, we conclude that A × B has all ∆-colimits.

We now show that the projection functors preserve ∆-colimits. Let J ∶ ∆ → A × B be an
arbitrary diagram of shape ∆. It determines two diagrams of shape ∆:

JA = πA ○ J ∶ ∆ → A, (53)
JB = πB ○ J ∶ ∆ → B. (54)

Let κ ∶ J ⇒ colim∆ J be its colimiting cocone in A × B. By definition of A × B, colim∆ J = (A, B)
for some objects A in A and B in B. Moreover, κ is given by a pair of cocones (κA , κB) ∶ ⟨JA , JB⟩⇒
(A, B). We show that πAκ = κA ∶ JA ⇒ A is colimiting inA; the result forBwill follow by symmetry.
Let α ∶ JA ⇒ A′ be any other cocone inA. Then (α, κB) ∶ J ⇒ (A′ , B) is a cocone inA×B and there
exists a unique coconemorphism ((a, b) ∶ ((κA , κB), (A, B))→ ((α, κB), (A′ , B)). In particular,

90 4. FIXED POINTS OF FUNCTORS

this implies there exists a unique coconemorphism a ∶ (κA ,A) → (α,A′). So πAκ ∶ πA J ⇒ A is
colimiting. We conclude that πA preserves ∆-colimits.

Assume A ∶ C → A and B ∶ C → B preserve ∆-colimits. We show that ⟨A, B⟩ ∶ C → A × B
preserves ∆-colimits. Let J ∶ ∆ → C be an arbitrary diagram of shape ∆, and assume that κ ∶ J ⇒ C

is colimiting. Then Aκ ∶ AJ ⇒ AC and Bκ ∶ BJ ⇒ BC are colimiting in A and B, respectively. By
the above, the cocone (Aκ, Bκ) ∶ ⟨AJ , BJ⟩⇒ (AC , BC) is colimiting in A × B. But this cocone is
exactly ⟨A, B⟩κ ∶ ⟨A, B⟩J ⇒ ⟨A, B⟩C, so we conclude that ⟨A, B⟩ preserves ∆-colimits.

Now let A and B be small ∆-cocomplete categories. There exists a 2-natural isomorphism

⟨−,−⟩ ∶ Cat(−,A) ×Cat(−,B) ≅ Cat(−,A × B) ∶ Catop → CAT

whose action on functors is the above-described pairing. Its inverse is given by the above-described
projections:

⟨πA , πB⟩ ∶ Cat(−,A × B) ≅ Cat(−,A) ×Cat(−,B) ∶ Catop → CAT.

We show that these 2-natural isomorphisms restrict to form a 2-natural isomorphism

∆-Cat(−,A) × ∆-Cat(−,B) ≅ ∆-Cat(−,A × B) ∶ ∆-Catop → CAT.

2-naturality is inherited from Cat, so it is sufficient to show that they give an isomorphism of
categories. Let C be an arbitrary small ∆-cocomplete category. We show that

⟨−,−⟩C ∶ ∆-Cat(C,A) × ∆-Cat(C,B) ≅ ∆-Cat(C,A × B)

and
⟨πA , πB⟩ ∶ ∆-Cat(C,A × B) ≅ ∆-Cat(C,A) × ∆-Cat(C,B) ∶ ∆-Catop → CAT.

form an isomorphism of categories. We begin by checking that their domains and codomains are
well defined. Let α ∶ A⇒ A′ ∶ C→ A and β ∶ B⇒ B′ ∶ C→ B be arbitrary 2-cells in ∆-Cat. By the
above result on pairing, ⟨A, B⟩ ∶ C→ A × B and ⟨A′ , B′⟩ ∶ C→ A × B both preserve ∆-colimits, so
they are arrows in ∆-Cat (and objects in ∆-Cat(C,A × B)). It follows that the 2-cell

⟨α, β⟩C ∶ ⟨A, B⟩C ⇒ ⟨A′ , B′⟩C ∶ C→ A × B

is amorphism in ∆-Cat(C,A × B). In the opposite direction, let δ ∶ C ⇒ C′ ∶ C → A × B be an
arbitrary 2-cell in ∆-Cat. By the above result on projections, πAδ ∶ πAC ⇒ πAC

′ ∶ C → A and
πBδ ∶ πBC ⇒ πBC

′ ∶ C→ B are again 2-cells in ∆-Cat, so

⟨πA , πB⟩δ ∶ ⟨πA , πB⟩C ⇒ ⟨πA , πB⟩C
′

is amorphism in ∆-Cat(C,A) × ∆-Cat(C,B). So the domains and codomains are all well defined.
A routine check gives that they remain mutual inverses, i.e., that they form an isomorphism of
categories.

Now assume the axiom of choice and that the product category A × B has all ∆-colimits;
we show that A and B have all ∆-colimits. In particular, we show that A has all ∆-colimits; B
will follow by symmetry. Let J ∶ ∆ → A be an arbitrary diagram of shape ∆. Because A × B is
non-empty, so is B. Choose an object B of B and let KB ∶ ∆ → B be the constant functor onto it.
Then ⟨J ,KB⟩ ∶ ∆ → A × B is a diagram of shape ∆ in A × B. It has a colimit, which is preserved by
the projection functor πA ∶ A × B→ A. We conclude that J has a colimit in A.

Proposition 4.A.4. The category ω-Cat inherits its 2-product structure from Cat.

Proof. The 2-product structure in Cat is given by the product category structure. To show that
ω-Cat inherits this structure, wemust show that if A and B are small ω-categories, then:

(1) so is A × B;
(2) the 2-natural isomorphism

ω-Cat(−,A) × ω-Cat(−,B) ≅ ω-Cat(−,A × B) ∶ ω-Catop → CAT

from Cat is also a 2-natural isomorphism in ω-Cat.

4.A. GENERAL RESULTS ON ω-CATEGORIES 91

The category A × B is an ω-category by lemma 4.A.3. The 2-natural isomorphism is inherited by
lemma 4.A.3.

Corollary 4.A.5. The category IFP inherits its 2-product structure from ω-Cat.

Proof. Immediate from lemma 4.A.2 and proposition 4.A.4.

Lemma 4.A.6 ([Leh76a, Lemma IV.2]). If A and B are ω-categories, then so is ω-Cat(A,B).

Lemma 4.A.7. If A and B are IFP-categories, then so is IFP(A,B).

Proof. Recall that limits and colimits in functor-categories are computed pointwise [Mac98, Theo-
rem V.3.1]. It follows that category IFP(A,B) has all ω-colimits (it also follows by lemma 4.A.6).
To see that it also has an initial object, note that initial objects are given by the limit of the identity
functor.

Lemma 4.A.8 ([Leh76a, Lemmas IV.5 and IV.6]). Let A, B, and C be small ω-categories. The

evaluation functor

evA,B ∶ ω-Cat(A,B) ×A→ B

and the abstraction functor

ΛA ∶ ω-Cat(A × B,C)→ ω-Cat(A, IFP(B,C))

are both ω-functors.

Corollary 4.A.9. Let A, B, and C be small IFP-categories. The evaluation functor

evA,B ∶ IFP(A,B) ×A→ B

and the abstraction functor

ΛA ∶ IFP(A × B,C)→ IFP(A, IFP(B,C))

are both ω-functors.

Proposition 4.A.10. The 2-exponential ω-Cat[A→ B] of categories A and B in ω-Cat is given
by ω-Cat(A,B).

Proof. Let A, B and C be arbitrary small ω-categories. By lemma 4.A.7, ω-Cat(B,C) is an ω-Cat,
and we write ω-Cat[B → C] for it. We claim that the abstraction functor Λ defines a 2-natural
isomorphism

ω-Cat(− × B,C)→ ω-Cat(−,ω-Cat[B→ C]). (55)

A routine check confirms that it defines a family of isomorphisms of categories. To verify
naturality, let F ∶ D → A be an arbitrary ω-functor. Wemust check that the following diagram
commutes in CAT:

ω-Cat(A × B,C) ω-Cat(A,ω-Cat[B→ C])

ω-Cat(D × B,C) ω-Cat(D,ω-Cat[B→ C]).

ΛA

ω-Cat(F×B,C) ω-Cat(F ,ω-Cat[B→C])

ΛD

(56)

We begin by showing that both paths around the square agree on objects. Let K ∶ A × B→ C
be an arbitrary ω-functor. Going around the top and the right, we get (ΛAK) ○ F. Going around
the left and bottom, we get ΛD(K ○ (F × idB)). We must show that these are equal functors
D→ ω-Cat[B→ C]. Let D and B be arbitrary objects inD and B, respectively, then

((ΛAK)○F)DB = (ΛAK)(FD)B = K(FD, B) = (K○(F×idB))(D, B) = (ΛD(K○(F×idB)))DB.

An analogous check gives that the functors agree on morphisms. So the two functors are equal.

92 4. FIXED POINTS OF FUNCTORS

Next,we show that both paths around the square agree onmorphisms. Let α ∶ K ⇒ L ∶ A×B→
C be arbitrary in ω-Cat. Going around the top and the right, we get the natural transformation

(ω-Cat(F ,ω-Cat[B→ C]) ○ ΛA) (α) (57)
= ω-Cat(F ,ω-Cat[B→ C])(ΛAα ∶ ΛAK ⇒ ΛAL ∶ A→ ω-Cat[B→ C] (58)
= (ΛAα)F ∶ (ΛAK) ○ F ⇒ (ΛAK) ○ F ∶ D→ ω-Cat[B→ C]. (59)

Going around the left and the bottom, we get the natural transformation

(ΛD ○ ω-Cat(F × B,C)) (α) (60)
= ΛD(α(F × idB)) ∶ ΛD(K ○ (F × idB))⇒ ΛD(L ○ (F × idB)) ∶ D→ ω-Cat[B→ C]. (61)

By the above, they both have equal domains and codomains. To check that they are equal natural
transformations, wemust show that they have equal components. Let D and B be arbitrary objects
ofD and B, respectively. Wemust show that

(((ΛAα)F)D)B = ((ΛD(α(F × idB)))D)B .

We compute that

(((ΛAα)F)D)B = α(FD ,B) = α(F×idB)(D ,B) = ((ΛD(α(F × idB)))D)B .

So we conclude naturality.
We now show that the isomorphism (55) is 2-natural. Let ρ ∶ F ⇒ F′ ∶ D→ A be an arbitrary

2-cell in ω-Cat. Wemust show that the two following 2-cells (natural transformations) are equal:

ω-Cat(A × B,C) ω-Cat(D × B,C) ω-Cat(D,ω-Cat[B→ C]),

ω-Cat(F×B,C)

⇓ ω-Cat(ρ × B,C)

ω-Cat(F′×B,C)

ΛD

ω-Cat(A × B,C) ω-Cat(A,ω-Cat[B→ C]) ω-Cat(D,ω-Cat[B→ C]).ΛA

ω-Cat(F ,ω-Cat[B→C])

⇓ ω-Cat(ρ,ω-Cat[B→ C])

ω-Cat(F′ ,ω-Cat[B→C])

Consider an arbitrary component G ∶ A ×B→ B. The G-component of the top natural transforma-
tion is

(ΛD ∗ ω-Cat(ρ × B,C))
G

= ΛD(G ∗ (ρ × idB)) ∶ ΛD(G(F × idB))⇒ ΛD(G(F
′ × idB)) ∶ D→ ω-Cat[B→ C].

Let D be an arbitrary object inD, then the D-component is:

(ΛD(G ∗ (ρ × idB)))D ∶ ΛD(G(F × idB))D⇒ ΛD(G(F
′ × idB))D

= G(ρD , idB) ∶ G(FD, idB)⇒ G(F′D, idB)

= ((ΛAG) ∗ ρ)
D
∶ (ΛAG)F ⇒ (ΛAG)F

′ ∶ D→ ω-Cat[B→ C],

which is we recognize as the G ,D-component of the bottom 2-cell. Because the G and D were
arbitrary components,we conclude that the two 2-cells are equal, andwe conclude 2-naturality.

Corollary 4.A.11. The 2-exponential IFP[A → B] of categories A and B in IFP is given by

IFP(A,B).

Proof. Immediate by lemma 4.A.7, corollary 4.A.9, and proposition 4.A.10.

Corollary 4.A.12. The category ω-Cat is 2-cartesian closed.

Proof. Immediate by propositions 4.A.1, 4.A.4 and 4.A.10.

Corollary 4.A.13. The category IFP is 2-cartesian closed.

Proof. Immediate by proposition 4.A.1 and corollaries 4.A.5 and 4.A.11.

4.A. GENERAL RESULTS ON ω-CATEGORIES 93

Proposition 4.A.14 ([Leh76a, Lemma VI.4]). The composition functor ○ ∶ ω-Cat[B→ C] ×
ω-Cat[A→ B]→ ω-Cat[A→ C] is an ω-functor.

Lemma 4.A.15. If J ∶ ω → ω has an colimit, then there exists a least n ∈ N such that for all k ≥ n,
Jk = Jn. The colimit of J is the cocone (j, Jn) where jk = J(k → n) ∶ Jk → Jn for k < n and jk = idJn

for k ≥ n.

Proof. A functor J ∶ ω → ω is a monotone map on the poset ω, and the colimit of J is the least
upper bound of its image. Every set of integers bounded above has a maximum element, and
this maximum element is its least upper bound. So ⊔ J is in the image of J. By the well-ordering
principle, the J-preimage of⊔ J has a least element n. Then for all k ≥ n,we have Jn ≤ Jk ≤ ⊔ J = Jn .
It follows that Jk = Jn for all k ≥ n.

The characterization of the cocone j in the statement follows readily from the definition of ω
as a poset.

Proposition 4.A.16. Every functor F ∶ ω → K preserves ω-colimits.

Proof. Let J ∶ ω → ω be arbitrary and assume it has a colimit. By lemma 4.A.15, it is of the form
(j, Jn) for the least n such that Jk = Jn for all k ≥ n. Wemust show that (F j, F Jn) is an ω-colimit
of F J ∶ ω → K.

Let (α,A) be any other cocone on F J. We must show that there exists a unique cocone
morphism a ∶ (F j, F Jn)→ (α,A). In particular,wemust show that there exists a uniquemorphism
a ∶ F Jn → A in K such that for all k, αk = a ○ F jk ∶ F Jk → A.

We begin with existence. Set a = αn . Then for all k < n,

αk = αn ○ F J(k → n) = αn ○ F jk = a ○ F jk .

For all k ≥ n, observe that

αk = αk ○ idF Jk = αk ○ idF Jn = αk ○ F J(n → k) = αn = a,

so
αk = a = a ○ idF Jn = a ○ FidJn = a ○ F jk .

This establishes that a = αn is a coconemorphism.
Next, we show uniqueness. Let b ∶ (F j, F Jn)→ (α,A) be any other coconemorphism. Then

for all k, αk = b ○ F jk ∶ F Jk → A. In particular,

αn = b ○ F jn = b ○ FidJn = b ○ idF Jn = b.

This uniquely characterizes themorphism and establishes uniqueness.
We conclude that (F j, F Jn) is the ω-colimit of F J ∶ ω → K. Because J was arbitrary, we

conclude that F preserves ω-colimits.

Part 2

Polarized SILL

CHAPTER 5

Statics and Dynamics

The Polarized SILL programming language [TCP13; PG15] cohesively integrates functional
computation and message-passing concurrent computation. Its concurrent computation layer
arises from a proofs-as-processes correspondence between intuitionistic linear logic and the session-
typed π-calculus [CP10]. We give an overview of its statics and dynamics in sections 5.1 and 5.2
before presenting the language in section 5.3. In section 5.7, we describe general properties of
relations on its programs.

5.1. Overview of Statics

Processes are computational agents that interact with their environment solely through com-
munication. In Polarized SILL, communication happens over named channels, which we can
intuitively think of as wires that carrymessages. Moreover, communication on channels is bidirec-
tional: in general, a process can both send and receive communications along the same channel.
Each channel has an associated session type A. Session types [THK94; Hon93] specify communica-
tion protocols, i.e., rules for communicating along channels. Equivalently, we can think of session
types as classifying communications, analogously to how data types classify values. A channel’s
session type then specifies which communications are permitted on that channel. The type system
for processes ensures that communication on a channel of type A respects the protocol specified
by the session type A.

Processes in Polarized SILL are organized according to a client-server architecture, and we
can think of session types as describing services provided or used along channels. A process P
always provides or is a server for a service A on a channel c, and it uses or is a client of zero or
more services A i on channels c i . We write c ∶ A to mean that the channel c has type A. The used
services form a linear context ∆ = c1 ∶ A1 , . . . , cn ∶ An . The process P can use values from the
functional layer. These are abstracted by a structural context Ψ of functional variables. These data
are captured by the inductively defined judgment Ψ ; ∆ ⊢ P ∶∶ c ∶ A. We say that the process P is
closed if it does not depend on any free variables, i.e., if ⋅ ; ∆ ⊢ P ∶∶ c ∶ A. This judgment is both
generic and parametric (see section 2.5): it is closed under renaming of channel names in ∆, c ∶ A,
and it is closed under renaming and substitution of functional variables in Ψ.

At any given point in a computation, communication flows in a single direction on a chan-
nel c ∶ A. The direction of communication is determined by the polarity of the type A,where session
types arepartitioned as positive or negative [PG15]. Consider aprocess judgmentΨ ; ∆ ⊢ P ∶∶ c0 ∶ A0.
Communication on positively typed channels flows from left-to-right in this judgment: if A0 is
positive, then P can only send output on c0, while if A i is positive for 1 ≤ i ≤ n, then P can
only receive input on c i . Symmetrically, communication on negatively typed channels flows from
right-to-left in the judgment. Bidirectional communication arises from the fact that the type of
a channel evolves over the course of a computation, sometimes becoming positive, sometimes
becoming negative. We write B type+s to mean B is positive and B type−s to mean B is negative.
Most session types have a polar-dual session type, where the direction of the communication is
reversed.

Open session types are given by the inductively defined judgment Ξ ⊢ A type
p
s , where Ξ is

a structural context of polarized type variables α i type
p i
s and p, p i ∈ {−,+}. We abbreviate the

judgment as Ξ ⊢ A types when the polarity is unambiguous. The session type A is closed if it does

97

98 5. STATICS AND DYNAMICS

λx ∶ τ.M ⇓ λx ∶ τ.M
(EV-Fun)

M ⇓ λx ∶ τ.M′ N ⇓ w [w/x]M′ ⇓ v

MN ⇓ v
(EV-App)

c0 ← {P}← c i ⇓ c0 ← {P}← c i
(EV-Proc)

[fix x .M/x]M ⇓ v
fix x .M ⇓ v

(EV-Fix)

Figure 5.1. Big-step semantics underlying Polarized SILL’s functional layer

not depend on any free variables, i.e., if ⋅ ⊢ A types. We explicitly treat the inductive definition of
open session types for two reasons. First, it is useful for expository purposes because it lets us make
polarities explicit. Second, the denotation of a session type Ξ ⊢ A types is recursively defined on its
derivation, and an explicit definition of this judgment simplifies the definition of its denotations.

The functional layer is the simply-typed λ-calculus with a fixed-point operator and a call-by-
value evaluation semantics. A judgment Ψ ⊩ M ∶ τ means the functional term M has functional
type τ under the structural context Ψ of functional variables x i ∶ τ i . This judgment’s inductive
definition is standard. We say that the term M is closed if it does not depend on any free variables,
i.e., if ⋅ ⊩ M ∶ τ. We use the judgment Ξ ⊢ τ typef?? to mean that τ is a functional type depending
on polarized type variables α i type

p i
s . The type τ is closed if it does not depend on any free variables.

New is the base type {a ∶ A← a i ∶ A i} of quoted processes, where we abbreviate ordered lists using
an overline.

We draw attention to the fundamental difference between variables and channel names. A
functional variable x ∶ τ in a context Ψ stands for a value of type τ. A channel name in ∆, c ∶ A
is a symbol: it stands not for a value, but for a channel of typed bidirectional communications.
In particular, channel names can only be renamed; unlike functional variables, nothing can be
substituted for a channel name.

5.2. Overview of Dynamics

The operational behaviour of processes in Polarized SILL is defined by a substructural opera-
tional semantics [Sim12] in the form of amultiset rewriting system. This multiset rewriting system
uses three different kinds of facts. The two most commonly encountered facts involve processes
andmessages. The fact proc(c, P)means that the closed process P provides a channel c. The fact
msg(c,m)means that themessage process m provides a channel c. Message processes represent
single messages or pieces of data sent on a channel, and they are closed processes written in a
restricted fragment of the process language. Process communication is asynchronous: processes
sendmessages without synchronizing with recipients. Messages sent on a given channel are re-
ceived in order. However, there is no global ordering on sent messages: messages sent on different
channels can be received out of order.

The behaviour of the functional layer is specified by the set F of persistent facts eval(M , v),
where eval(M , v) if and only if the closed term M evaluates to the value v under the standard
call-by-value semantics. Explicitly, eval(M , v) if and only if M ⇓ v, where M ⇓ v is the usual
evaluation semantics. It is inductively defined in fig. 5.1. We write v val if v is a value, i.e., if v ⇓ v.
The fact eval(M , v) captures an evaluation relation instead of a transition relation because we only
ever observe the process layer, andwe never need to observe individual steps in the functional layer.
For conciseness, we do not mention this set of facts in our multisets and instead treat it implicitly.

For consistency with the literature, we call amultiset-in-context in a process trace a configura-
tion. A process trace is a trace from the initial configuration of a process. The initial configuration of
⋅ ; c1 ∶ A1 , . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0 is themultiset-in-context

c0 , . . . , cn ; proc(c0 , P),

5.2. OVERVIEW OF DYNAMICS 99

where themultiset F of eval(M , v) facts is implicitly present. A fair execution of ⋅ ; ∆ ⊢ P ∶∶ c ∶ A is
a weakly fair execution from its initial configuration. By propositions 3.3.10 and 5.9.9, all weakly
fair executions are also strongly fair and über fair.

The substructural operational semantics maintains several invariants that we consider in detail
in section 5.9. Chief among these is a preservation-style property (proposition 5.9.1), where each
configuration appearing in a trace is well-typed, and where each multiset rewrite rule preserves
the type of the configuration. Concretely, we introduce a type system for configurations inspired
by one due to Gommerstadt, Jia, and Pfenning [GJP18, § 4.4]. It assigns a session type to each
free channel appearing in a configuration. The preservation property states that the types of
channels not free in the active multiset of a rule remain unchanged in the result, and that the
types of external channels remain unchanged. This approach is in contrast to the one taken by
Kavanagh [Kav20a], which conservatively extended the underlying substructural operational
semantics to track typing information at runtime. Advantageously, our approach preserves the
distinction between operational rules and typing concerns, and it requires no changes to the
original substructural operational semantics.

The typing judgment Σ ∥ Γ ∣ I ⊢ C ∶∶ ∆means that the configuration Σ ; C uses the channels
in Γ, provides the channels in ∆, and has internal channels I. Here, Γ = γ1 ∶ A1 , . . . , γn ∶ An ,
∆ = δ1 ∶ B1 , . . . , δm ∶ Bm , and I = ι1 ∶ C1 , . . . , ιk ∶ Ck are linear contexts of session-typed channel
names, with n, k ≥ 0 and m ≥ 1. Write Γ̌ for the list γ1 , . . . , γn of channel names appearing in Γ.
The judgment Σ ∥ Γ ∣ I ⊢ C ∶∶ ∆ is well-formed only if the channel names in Γ̌, ∆̌, Ǐ are pairwise
distinct and Γ̌, ∆̌, Ǐ ⊆ Σ. This judgment is parametric in Σ, i.e., it enjoys the “proliferation” and
“renaming” structural properties for channel names in Σ (see section 2.5.6 for details). For brevity,
we usually leave Σ implicit and write Γ ∣ I ⊢ C ∶∶ ∆ for Σ ∥ Γ ∣ I ⊢ C ∶∶ ∆. We also often write
Γ ⊢ C ∶∶ ∆ if Γ ∣ I ⊢ C ∶∶ ∆ for some I. We call the pair (Γ, ∆) the interface of C. In contrast
to processes, configurations can providemultiple channels. This is to allow for applications like
run-time monitoring [GJP18]. We remark that the multiset F of eval(M , v) facts is implicitly
contained in C in every judgment Σ ∥ Γ ∣ I ⊢ C ∶∶ ∆.

The above judgment is inductively defined by the rules (Conf-M), (Conf-P), and (Conf-C):

⋅ ; ∆ ⊢ m ∶∶ c ∶ A

Σ ∥ ∆ ∣ ⋅ ⊢ msg(c,m) ∶∶ (c ∶ A)
(Conf-M) ⋅ ; ∆ ⊢ P ∶∶ c ∶ A

Σ ∥ ∆ ∣ ⋅ ⊢ proc(c, P) ∶∶ (c ∶ A)
(Conf-P)

Σ, Π̌ ∥ Γ ∣ I1 ⊢ C ∶∶ ΦΠ Π̌, Σ′ ∥ ΠΛ ∣ I2 ⊢ D ∶∶ Ξ

Σ, Π̌, Σ′ ∥ ΓΛ ∣ I1ΠI2 ⊢ C ,D ∶∶ ΦΞ
(Conf-C)

The rules (Conf-M) and (Conf-P) lift closed messages and processes to message and process
facts, while preserving their used and provided channels. In (Conf-M), we assume that m ranges
over “message processes” m+ and m−

b ,c . Thesemessage processes are a restricted class of processes
defined in eqs. (62) and (63). The composition rule (Conf-C) is a “parallel composition plus hiding”
operation (cf. [Mil80, pp. 20f.]). It composes two configurations C andD so that they communicate
along some common (but potentially empty) collection of channels Π. These channels are then
hidden from external view: they do not appear in the interface (ΓΛ,ΦΞ), but instead appear
in the composition’s context I1ΠI2 of internal channels. Without loss of generality, we assume
that Σ ∩ Σ′ = ∅ (so Ǐ1 ∩ Ǐ2 = ∅) when composing C and D. This requirement ensures that the
internal channels in C do not interfere with those inD, and vice-versa. Because the hypotheses are
parametric in Σ and Σ′, we can always rename those channels to ensure that this is the case.

We can recognize (Conf-C) as a composition operator in a pluricategory.1 Indeed, consider
the pluricategory whose objects are session-typed channels, and think of a typed configuration
Γ ⊢ C ∶∶ ∆ as amorphism Γ → ∆. Then the rule (Conf-C) is a special case of the corresponding

1Pluricategories were defined in definition 2.1.11.

100 5. STATICS AND DYNAMICS

pluricategorical composition rule

Σ, Π̌ ∥ Γ ∣ I1 ⊢ C ∶∶ ΦΠΨ Π̌, Σ′ ∥ ∆ΠΛ ∣ I2 ⊢ D ∶∶ Ξ

Σ, Π̌, Σ′ ∥ ∆ΓΛ ∣ I1ΠI2 ⊢ C ,D ∶∶ ΦΞΨ

where Ψ and ∆ are both empty. The rule (Conf-C) determines an associative and partially com-
mutative partial composition operator. We study these properties and others in section 5.9.

5.3. Typing andMultiset-Rewriting Rules

In this section, we give the typing rules that inductively definewell-typed functional terms and
processes. In each case, we also give the associatedmultiset rewriting rules. With a few exceptions
and for brevity, we only give the rules for processes that provide positive session types. All rules
can be found in section 5.B.

5.3.1. ManipulatingChannels. The forwarding process b → a forwards all messages between
channels a and b of the same positive type. The process b ← a is the dual for channels of negative
type. We remark that the syntax reflects the direction in which messages flow. Though some
presentations use a single forwarding process for both polarities, it is useful for practical and
semantic concerns to syntactically differentiate between forwarding positive communications and
forwarding negative communications.

⋅ ⊢ A type+s
Ψ ; a ∶ A ⊢ a → b ∶∶ b ∶ A

(Fwd+)
⋅ ⊢ A type−s

Ψ ; a ∶ A ⊢ a ← b ∶∶ b ∶ A
(Fwd−)

These processes act on messages m+ and m−
b ,c travelling in the positive and negative directions.

Thesemessages are respectively message processes given by eqs. (62) and (63). Their meaning will
be explained below. The letters a, b, c, and d range over channel names, l ranges over labels, and v
ranges over functional values.

m
+ ∶∶= _← output a v; d → a ∣ send a shift; d ← a ∣ a.l ; d → a ∣ send a b; d → a

∣ send a unfold; d → a ∣ close a (62)

m
−
b ,c ∶∶= _← output b v; b ← c ∣ send b shift; b → c ∣ a.l ; a ← c ∣ send a b; a ← c

∣ send a unfold; a ← c (63)

The subscripts on m−
b ,c serve to indicate which channel names appear in themessage fact, and they

ensure that rule (65) is only applicable when the process fact and themessage fact have a common
channel. The operational behaviour is given by rules (64) and (65). Properly speaking, there is an
instance of these rules for each different kind ofmessage m+ and m−

b ,c . We implicitly universally
quantify on the channel names appearing in thesemultiset rewriting rules:

msg(a,m+), proc(b, a → b)→ msg(b, [b/a]m+) (64)

proc(b, a ← b),msg(c,m−b ,c)→ msg(c, [a/b]m−b ,c) (65)

Process composition a ← P; Q captures Milner’s “parallel composition plus hiding” op-
eration [Mil80, pp. 20f.]. It spawns processes P and Q that communicate over a shared private
channel a of type A. Those familiar with the π-calculus may like to think of this syntax as analogous
to the π-calculus process (νa)(P ∣ Q).

Ψ ; ∆1 ⊢ P ∶∶ a ∶ A Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C

Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C
(Cut)

∀∆1 , ∆2 , c.proc(c, a ← P; Q)→ ∃b.proc(b, [b/a]P), proc(c, [b/a]Q) (66)

We remark that in (66) we do not quantify over the channel name a. This is because the channel
name a is a bound in processes P and Q, and processes denote general binding trees (see section 2.4)
whose bound names can freely be varied.

5.3. TYPING AND MULTISET-REWRITING RULES 101

Processes can close channels of type 1. To do so, the process close a sends a “closemessage”
over the channel a and terminates. The process wait a; P blocks on a until it receives the close
message and then continues as P.

Ξ ⊢ 1 type+s
(C1)

Ψ ; ⋅ ⊢ close a ∶∶ a ∶ 1
(1R) Ψ ; ∆ ⊢ P ∶∶ c ∶ C

Ψ ; ∆, a ∶ 1 ⊢ wait a; P ∶∶ c ∶ C
(1L)

∀∆, a, c.msg(a, close a), proc(c,wait a; P)→ proc(c, P) (67)
∀a.proc(a, close a)→ msg(a, close a) (68)

The positive type 1 does not have a negative dual. It would require a detached process with no
client.

Example 5.3.1. The following process is, informally speaking, equivalent to the forwarding process
⋅ ; a ∶ 1 ⊢ a → b ∶∶ b ∶ 1 for channels of type 1:

⋅ ; a ∶ 1 ⊢ wait a; close b ∶∶ b ∶ 1.

Indeed, if no closemessage arrives on a, then neither process does anything. If a closemessage
arrives on a, then both processes send a closemessage on b and terminate:

msg(a, close a), proc(b, a → b)Ð→ msg(b, close b)

msg(a, close a), proc(b,wait a; close b)Ð→∗ msg(b, close b)

We will revisit this example when we discuss the computational interpretation of the identity
expansion theorem of intuitionistic linear logic in section 9.4. ◀

Processes can send and receive channels over channels. The protocol B ⊗ A prescribes trans-
mitting a channel of type B followed by communication of type A. The process send a b; P sends
the channel b over the channel a and continues as P. The process b ← recv a; P receives a channel
over a, binds it to the name b, and continues as P.

Ξ ⊢ A type+s Ξ ⊢ B type+s
Ξ ⊢ A⊗ B type+s

(C⊗)

Ψ ; ∆ ⊢ P ∶∶ a ∶ A

Ψ ; ∆, b ∶ B ⊢ send a b; P ∶∶ a ∶ B ⊗ A
(⊗R) Ψ ; ∆, a ∶ A, b ∶ B ⊢ P ∶∶ c ∶ C

Ψ ; ∆, a ∶ B ⊗ A ⊢ b ← recv a; P ∶∶ c ∶ C
(⊗L)

∀∆, b, a.proc(a, send a b; P)→ ∃d .proc(d , [d/a]P),msg(a, send a b; d → a) (69)
∀a, e , d , ∆, c.msg(a, send a e; d → a), proc(c, b ← recv a; P)→ proc(c, [e , d/b, a]P) (70)

Example 5.3.2. The following closed process P sends a channel a ∶ 1 over b ∶ 1⊗ 1, and closes b:

⋅ ; a ∶ 1 ⊢ send b a; close b ∶∶ b ∶ 1⊗ 1

The following closed process Q receives a channel of type 1 on b and binds it to the name d. Then
it receives a closemessage on b and forwards d over c:

⋅ ; b ∶ 1⊗ 1 ⊢ d ← recv b; wait b; d → c ∶∶ c ∶ 1.

Their composition

⋅ ; a ∶ 1 ⊢ b ← (send b a; close b) ; (d ← recv b; wait b; d → c) ∶∶ c ∶ 1

spawns P and Q and eventually forwards the channel a over c:

proc(c, b ← P; Q)

Ð→ proc(b1 , send b1 a; close b1), proc(c, d ← recv b1; wait b1; d → c)

Ð→∗ proc(b2 , close b2), proc(c,wait b2; a → c)

Ð→∗ proc(c, a → c). ◀

102 5. STATICS AND DYNAMICS

The negative dual B⊸ A of B ⊗ A is subtle: for linear-logical reasons, the polarities of A and
B differ. Indeed, though B⊸ A and A are negative, B must be positive:

Ξ ⊢ B type+s Ξ ⊢ A type−s
Ξ ⊢ B⊸ A type−s

(C⊸)

Ψ ; ∆, b ∶ B ⊢ P ∶∶ a ∶ A

Ψ ; ∆ ⊢ b ← recv a; P ∶∶ a ∶ B⊸ A
(⊸R) Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C

Ψ ; ∆, b ∶ B, a ∶ B⊸ A ⊢ send a b; P ∶∶ c ∶ C
(⊸L)

∀a, e , d , ∆, c.proc(a, b ← recv a; P),msg(d , send a e; a ← d)→ proc(d , [e , d/b, a]P) (71)
∀∆, b, a, c.proc(c, send a b; P)→ ∃d .msg(d , send a b; a ← d), proc(c, [d/a]P) (72)

5.3.2. Functional Programming and Value Transmission. The only base types in the func-
tional layer are the types {a0 ∶ A0 ← a1 ∶ A1 , . . . , an ∶ An} of quoted processes.2 These types are
formed by the rule (T{}). The functional layer also supports function types τ → σ . These are formed
by the rule (T→). We assume that types are closed whenever they appear in a typing judgment for
terms or processes.

Ξ ⊢ A i types (0 ≤ i ≤ n)
Ξ ⊢ {a0 ∶ A0 ← a1 ∶ A1 , . . . , an ∶ An} typef

(T{})
Ξ ⊢ τ typef Ξ ⊢ σ typef

Ξ ⊢ τ → σ typef
(T→)

Most of the introduction and elimination rules for functional terms are standard. New is the
introduction rule (I-{}) for quoted processes. It encapsulates a process P as a value a ← {P}← a i

of quoted process type, where we abbreviate ordered lists using an overline. Again, functional
terms are not associated with anymultiset rewriting rules: their operational behaviour is captured
by the relation eval(M , v).

Ψ, x ∶ τ ⊩ x ∶ τ
(F-Var) Ψ, x ∶ τ ⊩ M ∶ τ

Ψ ⊩ fix x .M ∶ τ
(F-Fix)

Ψ, x ∶ τ ⊩ M ∶ σ

Ψ ⊩ λx ∶ τ.M ∶ τ → σ
(F-Fun) Ψ ⊩ M ∶ τ → σ Ψ ⊩ N ∶ τ

Ψ ⊩ MN ∶ σ
(F-App)

Ψ ; a i ∶ A i ⊢ P ∶∶ a ∶ A

Ψ ⊩ a ← {P}← a i ∶ {a ∶ A← a i ∶ A i}
(I-{})

The elimination form for quoted process terms M is the process a ← {M}← a i . Operationally,
this form evaluates the quoted process term M to a value v, and then spawns the associated quoted
process. By the canonical forms lemma (proposition 5.8.2), v will always be a value of the form
a ← {P}← a i , i.e., a quoted process.

Ψ ⊩ M ∶ {a ∶ A← a i ∶ A i}

Ψ ; a i ∶ A i ⊢ a ← {M}← a i ∶∶ a ∶ A
(E-{})

∀a, a i .eval(M , a ← {P}← a i), proc(a, a ← {M}← a i)Ð→ proc(a, P) (73)

The elimination rule (E-{}) differs from the original elimination rule given by Toninho, Caires,
and Pfenning [TCP13, p. 354]. There, the elimination rule was a monadic bind similar to the
(Cut) rule below, where a quoted process could only be unquoted if it was composed with a
continuation process. Though the original rule has the advantage of enforcing amonadic discipline
on the interaction between the functional and process layers, it complicates writing and reasoning
about recursive processes. Indeed, one cannot directlymake a recursive tail call, but must instead
always compose the recursive call with a continuation process. We lose nothing by not requiring a
continuation process: the original rule is a derived rule in our setting, and our rule can be defined
as syntactic sugar in the original version of SILL.

2Polarized SILL can straightforwardly be extended to support other base types. We extend it with natural numbers in
chapter 8.

5.3. TYPING AND MULTISET-REWRITING RULES 103

Example 5.3.3. Recursive processes are implemented using the functional layer’s fixed point
operator. An important recursive process is the divergent processΨ ; ∆ ⊢ Ω ∶∶ c ∶ A,which exists for
all Ψ and ∆, c ∶ A. Let Ω′ be the term given by Ψ ⊩ fix ω.c ← {c ← {ω}← ∆̌}← ∆̌ ∶ {c ∶ A← ∆}.
Observe that eval(Ω′ , c ← {c ← {Ω′}← ∆̌}← ∆̌). The process Ω is given by:

Ψ ; ∆ ⊢ c ← {Ω′}← ∆̌ ∶∶ c ∶ A.

By rule (73), proc(c,Ω)Ð→ proc(c,Ω). ◀

Remark 5.3.4. Example 5.3.3 illustrates the subtle interplay between recursion and linearity. Though
the linearity of channel contexts ensures that no channels are discarded, linearity cannot guar-
antee that all channels are used in the presence of recursion. Indeed, the divergent process Ω
communicates on none of its channels.

Functional values can be sent over channels of type τ ∧ A. This positive protocol, formed by
the rule (C∧), specifies that the sent value has type τ and that subsequent communication has type
A. The process _← output a M; P evaluates the term M to a value v, sends v over the channel a,
and continues as P. The process x ← input a; Q receives a value v on a, binds it to the variable
x, and continues as Q. These behaviours are captured bymultiset rewrite rules (74) and (75). In
these rules, we use ∆ as a shorthand for the list of channel names that appears in the context ∆.
To ensure a queue-like structure for messages on a, we generate a fresh channel name d for the
“continuation channel” that will carry subsequent communications. Operationally, we rename a in
P to the continuation channel d carrying the remainder of the communications.

Ξ ⊢ τ typef Ξ ⊢ A type+s
Ξ ⊢ τ ∧ A type+s

(C∧)

Ψ ⊩ M ∶ τ Ψ ; ∆ ⊢ P ∶∶ a ∶ A

Ψ ; ∆ ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A
(∧R) Ψ, x ∶ τ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C

Ψ ; ∆, a ∶ τ ∧ A ⊢ x ← input a; P ∶∶ c ∶ C
(∧L)

∀a, ∆.eval(M , v), proc(a, _← output a M; P)→
→ ∃d .proc(d , [d/a]P),msg(a, _← output a v; d → a)

(74)

∀∆, a, d , c.msg(a, _← output a v; d → a), proc(c, x ← input a; P)→
→ proc(c, [d , v/a, x]P)

(75)

Example 5.3.5. The following process sends values v1 ∶ τ1, v2 ∶ τ2, and v3 ∶ τ3 on the channel a,
before divergently providing a service of type A:

⋅ ; ⋅ ⊢ _← output a v1; _← output a v2; _← output a v3; Ω ∶∶ a ∶ τ1 ∧ (τ2 ∧ (τ3 ∧ A)).

The queue-like structure ofmessage processes _← output a v; d → a is analogous to the queues
to example 3.1.6. Combined with rule (75), it ensures that messages are received in order. Indeed,
consider the following trace of the above process:

proc(a, _← output a v1; _← output a v2; _← output a v3; Ω)
Ð→ proc(b, _← output a v2; _← output a v3; Ω),msg(a, _← output a v1; b → a)

Ð→ (proc(c, _← output c v3; Ω),msg(b, _← output b v2; c → b),
msg(a, _← output a v1; b → a))

Ð→ (proc(d ,Ω),msg(c, _← output c v3; d → c),msg(b, _← output b v2; c → b),
msg(a, _← output a v1; b → a)) .

Though multisets do not impose an order on their elements, any process P using the channel a
will receive the values v1, v2, and v3 in that order. This is because P cannot know the name of the
continuation channel b carrying v2 until it has received the value v1. Similarly, it cannot know the
name of the continuation channel c carrying v3 until it has received the value v2. ◀

104 5. STATICS AND DYNAMICS

Example 5.3.6. The following closed process P receives a function f of type τ → σ and a value x
of type τ on the channel a. It evaluates f (x) and sends the corresponding value of type σ on b,
before forwarding a to b.

⋅ ; a ∶ (τ → σ) ∧ (τ ∧ A) ⊢ f ← input a; x ← input a; _← output b f (x); a → b ∶∶ b ∶ σ ∧ A

If we take τ = σ = (δ → δ) for some type δ, then the following execution shows that sending P the
process the values λx ∶ τ.x and λx ∶ δ.x on a causes it to send the value λx ∶ δ.x on b:

(msg(c, _← output b (λx ∶ δ.x); d → b),
msg(a, _← output a (λx ∶ τ.x); c → a), proc(b, P))

Ð→ (msg(c, _← output b (λx ∶ δ.x); d → b),
proc(b, x ← input c; _← output b (λx ∶ τ.x)x; c → b))

Ð→ proc(b, _← output b (λx ∶ τ.x)(λx ∶ δ.x); d → b)

Ð→ proc(e , d → e),msg(b, _← output c (λx ∶ δ.x); e → c) ◀

Example 5.3.7. The following process receives a quoted process p of type {c ∶ C ← a ∶ B} over a
channel a. After receipt of p, the channel a has type B. The continuation process unquotes p to
provide a channel c of type C using the channel a:

Ψ ; a ∶ {c ∶ C ← a ∶ B} ∧ B ⊢ p ← input a; c ← {p}← a ∶∶ c ∶ C . ◀

The protocol τ ⊃ A is the negative dual of τ ∧ A. Recall that polar-dual session types prescribe
the same kind of communications, but in opposite directions. In this case, where a provider of type
τ ∧ A sends a value of type τ, a provider of type τ ⊃ A receives a value of type τ. The session type
τ ⊃ A is formed by the rule (C⊃). The inference rules forming processes and themultiset rewrite
rules describing their behaviour are the obvious duals of those for τ ∧ A:

Ξ ⊢ τ typef Ξ ⊢ A type−s
Ξ ⊢ τ ⊃ A type−s

(C⊃)

Ψ, x ∶ τ ; ∆ ⊢ P ∶∶ a ∶ A

Ψ ; ∆ ⊢ x ← input a; P ∶∶ a ∶ τ ⊃ A
(⊃R) Ψ ⊩ M ∶ τ Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C

Ψ ; ∆, a ∶ τ ⊃ A ⊢ _← output a M; P ∶∶ c ∶ C
(⊃L)

∀∆, a, d , c.proc(a, x ← input a; P),msg(d , _← output a v; a ← d)→

→ proc(d , [d , v/a, x]P)
(76)

∀a, ∆.eval(M , v), proc(c, _← output a M; P)→
→ ∃d .msg(d , _← output a v; a ← d), proc(c, [d/a]P)

(77)

5.3.3. Choices. Processes can choose between services. An internal choice type ⊕{l ∶ A l}l∈L
prescribes a choice between session types {A l}l∈L (L finite). The process a.k; P chooses to provide
the service Ak by sending the label k on a, and then continues as P. The process case a {l ⇒ Pl}l∈L
blocks until it receives a label k on a and then continues as Pk .

Ξ ⊢ A l type
+
s (∀l ∈ L)

Ξ ⊢ ⊕{l ∶ A l}l∈L type
+
s

(C⊕)
Ψ ; ∆ ⊢ P ∶∶ a ∶ Ak (k ∈ L)

Ψ ; ∆ ⊢ a.k; P ∶∶ a ∶ ⊕{l ∶ A l}l∈L
(⊕R)

Ψ ; ∆, a ∶ A l ⊢ Pl ∶∶ c ∶ C (∀l ∈ L)

Ψ ; ∆, a ∶ ⊕{l ∶ A l}l∈L ⊢ case a {l ⇒ Pl}l∈L ∶∶ c ∶ C
(⊕L)

∀∆, a.proc(a, a.k; P)→ ∃d .proc(d , [d/a]P),msg(a, a.k; d → a) (78)
∀a, d , ∆, c.msg(a, a.k; d → a), proc(c, case a {l ⇒ Pl}l∈L)→ proc(c, [d/a]Pk) (79)

The polar dual of the internal choice type ⊕{l ∶ A l}l∈L is the external choice type &{l ∶ A l}l∈L .

Example 5.3.8. The following process P diverges if it receives the label div on a, and it forwards a
to b if it receives the label fwd:

⋅ ; a ∶ ⊕{div ∶ A, fwd ∶ B} ⊢ case a {div⇒ Ω ∣ fwd⇒ a → b} ∶∶ b ∶ B.

5.3. TYPING AND MULTISET-REWRITING RULES 105

Indeed, if a carries the label div, then:

msg(a, a.div; c), proc(b, P)Ð→ proc(b,Ω).

If a carries the label fwd, then:

msg(a, a.fwd; c), proc(b, P)Ð→ proc(b, c → b). ◀

5.3.4. Shifts in Polarity. Process communication is asynchronous. Synchronization on a
channel is encoded using “polarity shifts” [PG15]. The positive protocol ↓A prescribes a synchro-
nization (a shift message) followed by communication satisfying the negative type A. The process
send a shift; P signals that it is ready to receive on a by sending a “shift message” on a, and con-
tinues as P. The process shift← recv a; P blocks until it receives the shift message and continues
as P.

Ξ ⊢ A type−s
Ξ ⊢ ↓A type+s

(C↓)

Ψ ; ∆ ⊢ P ∶∶ a ∶ A

Ψ ; ∆ ⊢ send a shift; P ∶∶ a ∶ ↓A
(↓R) Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C

Ψ ; ∆, a ∶ ↓A ⊢ shift← recv a; P ∶∶ c ∶ C
(↓L)

∀∆, a.proc(a, send a shift; P)→ ∃d .proc(d , [d/a]P),msg(a, send a shift; d ← a) (80)
∀∆, a, d , c.msg(a, send a shift; d ← a), proc(c, shift← recv a; P)→ proc(c, [d/a]P) (81)

The dual of the positive type ↓A is the negative type ↑A.
At first glance, polarity shifts may appear to be special cases of choice types. The key difference

is that the direction of communication does not change with choice types: the label and subsequent
communications travel in the same direction. In contrast, the shift message and subsequent
communications travel in opposite directions.

5.3.5. Recursive Types. The recursive type ρα.A prescribes an “unfold” message followed
by communication of type [ρα.A/α]A. To ensure that unfolding a recursive type is well-defined,
we require that the type variable α have the same polarity as the recursive type. The process
send a unfold; P sends an unfoldmessage and continues as P. The process unfold ← recv a; P
receives an unfoldmessage and continues as P.

Ξ, α type
p
s ⊢ α type

p
s

(CVar) Ξ, α type+s ⊢ A type+s
Ξ ⊢ ρα.A type+s

(Cρ+)

Ψ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A ⋅ ⊢ ρα.A type+s
Ψ ; ∆ ⊢ send a unfold; P ∶∶ a ∶ ρα.A

(ρ+R)

Ψ ; ∆, a ∶ [ρα.A/α]A ⊢ P ∶∶ c ∶ C ⋅ ⊢ ρα.A type+s
Ψ ; ∆, a ∶ ρα.A ⊢ unfold← recv a; P ∶∶ c ∶ C

(ρ+L)

∀∆, a.proc(a, send a unfold; P)→ ∃d .proc(d , [d/a]P),msg(a, send a unfold; d → a) (82)
∀∆, a, d .msg(a, send a unfold; d → a), proc(c, unfold← recv a; P)→ proc(c, [d/a]P) (83)

Example 5.3.9. The set of conatural numbers is given by N ∪ {ω}, where N is the usual set of
natural numbers, and ω corresponds to a countably infinite stack of successors s(s(s(⋯))). The
protocol conat = ρα. ⊕ {z ∶ 1, s ∶ α} encodes conatural numbers. Indeed, a communication is
either an infinite sequence of successor labels s, or some finite number of s labels followed by the
zero label z and termination. The following recursive process outputs ω on o:

⋅ ; ⋅ ⊢ fix ω.send o unfold; s.o; ω ∶∶ o ∶ conat.

It has an infinite fair execution where for n ≥ 1, the (3n − 2)-th, (3n − 1)-th, and 3n-th rules are
respectively instantiations of rules (70), (82), and (69). ◀

106 5. STATICS AND DYNAMICS

Example 5.3.10. Consider the type bits = ρβ. ⊕ {0 ∶ β, 1 ∶ β} of bit streams. Its communications
consist of potentially infinite sequences of unfoldmessages interleaved with labels 0 and 1. The
following process receives a bit stream on i, flips its bits, and outputs the result on o:

Ψ ; i ∶ bits ⊢ o ← {fix f .o ← {unfold← recv i;
send o unfold;
case i {0⇒ o.1; o ← { f }← i

∣ 1⇒ o.0; o ← { f }← i}

}← i}← x ∶∶ o ∶ bits ◀

We refer the reader to [TCP13] for further example processes.

5.4. Static Properties of Session Types

Session types are closed under substitution. Substitutions are context morphisms (defini-
tion 2.5.7). Concretely, a context morphism σ ∶s Θ ↝ α1 type

p1
s , . . . , αn type

pn
s for session types is

a list σ of session types A1 , . . . ,An such that Θ ⊢ A i type
p i
s for 1 ≤ i ≤ n.

Proposition 5.4.1 (Syntactic Substitution of Session Types). Let σ ∶s Θ ↝ Ξ be an arbitrary

context morphism. If Ξ ⊢ A type
p
s , then Θ ⊢ [σ]A type

p
s .

5.5. Static Properties of Terms and Processes

We review several static properties about terms and processes. Though mundane, they will be
used frequently and implicitly. The key ideas from this section are that terms and processes are
closed under substitution, and that we can partition the free channels of a process as input channels

and output channels.

5.5.1. Substitution. Typing for SILL terms and processes is closed under substitution, and
the typing judgment is parametric. A context morphism σ ∶f Φ ↝ x1 ∶ τ1 , . . . , xn ∶ τn is a list σ of
terms N1 , . . . ,Nn satisfying Φ ⊩ N i ∶ τ i for all 1 ≤ i ≤ n.

Proposition 5.5.1 (Syntactic Substitution of Terms). Let σ ∶f Φ ↝ Ψ be arbitrary.

(1) If Ψ ⊩ N ∶ τ, then Φ ⊩ [σ]N ∶ τ.
(2) If Ψ ; ∆ ⊢ P ∶∶ c ∶ C, then Φ ; ∆ ⊢ [σ]P ∶∶ c ∶ C.

Proof. By induction on the derivation of Ψ ⊩ M ∶ τ and Ψ ; ∆ ⊢ P ∶∶ a ∶ A.

5.5.2. Free and Bound Channel Names. We begin by defining the free and bound channel
names in a process. Given a well-typed process P, let the set fc(P) of free channel names in P be
inductively defined on the structure of P by the following collection of equations:

fc(a ← P; Q) = (fc(P) ∪ fc(Q)) ∖ {a} fc(a ← {M}← a i) = {a, a i}
fc(a → b) = {a, b} fc(a ← b) = {a, b}
fc(close a) = {a} fc(wait a; P) = {a} ∪ fc(P)

fc(send a b; P) = {a, b} ∪ fc(P) fc(b ← recv a; P) = {a} ∪ fc(P) ∖ {b}

fc(a.k; P) = {a} ∪ fc(P) fc(case a {l ⇒ Pl}l∈L) = a ∪⋃
l∈L

fc(Pl)

fc(_← output a M; P) = {a} ∪ fc(P) fc(x ← input a; P) = {a} ∪ fc(P)
fc(send a unfold; P) = {a} ∪ fc(P) fc(unfold← recv a; P) = {a} ∪ fc(P)

All other channel names in P are bound and can freely be α-varied.

Proposition 5.5.2. If Ψ ; c1 ∶ A1 , . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0, then fc(P) = {c0 , . . . , cn}.

Proof. By induction on the derivation of Ψ ; c1 ∶ A1 , . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0.

5.5. STATIC PROPERTIES OF TERMS AND PROCESSES 107

5.5.3. Input and Output. We partition SILL processes as sending, receiving, and structural.
Structural processes are processes of the form a ← P; Q, a → b, a ← b, and a ← {M} ← a i .
Sending and receiving processes are respectively those in the left and right columns:

close a wait a; P
send a b; P b ← recv a; P

a.k; P case a (l ⇒ Pl)l∈L

_← output a M; P x ← input a; P
send a unfold; P unfold← recv a; P

We say that the processes in the left column send on a, while the processes in the right column
block or receive on a.

Using polarity, we can statically partition free channels into the sets oc(P) of output channel
names and ic(P) of input channel names. Intuitively, c ∈ oc(P) if the next time P communicates on
c, it sends amessage on c; themeaning of c ∈ ic(P) is symmetric. Explicitly:

Definition 5.5.3. Assume Ψ ; c1 ∶ A1 , . . . , cn ∶ An ⊢ P ∶∶ c0 ∶ A0. Let oc(P) and ic(P) be the least
subsets of fc(P) such that:

(1) c0 ∈ oc(P) if and only if A0 is positive;
(2) c0 ∈ ic(P) if and only if A0 is negative;
(3) for 1 ≤ i ≤ n, c i ∈ oc(P) if and only if A i is negative;
(4) for 1 ≤ i ≤ n, c i ∈ ic(P) if and only if A i is positive. ◀

Remark 5.5.4. That c ∈ oc(P) does not imply that P will necessarily send amessage on c. It only
implies that if P eventually communicates on c, then the first such communication will be output.
We will show for every channel name in a configuration appears as the output channel of at most
one process or message, and as the input channel of at most one process or message. This fact will
be useful in defining the observed communication semantics of chapter 6, for it will let us show
that there is at most onemessage judgment associated to each channel.

If we took an extrinsic view of type theory, then wemight want to statically determine whether
a channel c ∈ fc(P) is an output channel or an output channel, without reference to typing rules or
to the dynamics. Unfortunately, this is impossible due to the interplay between the functional and
the process layers. Indeed, there is no way of determining on which channels a quoted process
a ← {M}← a i will send or receive, short of evaluating M to a value a ← {P}← a i , or looking at
the polarities of the types appearing in the typing judgment. Despite this, we can in all other cases
statically determine the input and output channel names appearing in a process purely from its
syntax. Let ocs(P) ⊆ fc(P) be the subset of static output channel names inductively defined by:

ocs(a ← P; Q) = (ocs(P) ∪ ocs(Q)) ∖ {a}

ocs(a ← {P}← a i) = ∅

ocs(a → b) = {b} ocs(a ← b) = {a}

ocs(close a) = {a} ocs(wait a; P) = ocs(P)
ocs(send a b; P) = {a} ∪ ocs(P) ocs(b ← recv a; P) = ocs(P) ∖ {a, b}

ocs(a.k; P) = {a} ∪ ocs(P) ocs(case a (l ⇒ Pl)l∈L) = (⋃
l∈L

ocs(Pl)) ∖ {a}

ocs(_← output a M; P) = {a} ∪ ocs(P) ocs(x ← input a; P) = ocs(P) ∖ {a}
ocs(send a unfold; P) = {a} ∪ ocs(P) ocs(unfold← recv a; P) = ocs(P) ∖ {a}

108 5. STATICS AND DYNAMICS

Symmetrically, the subset ics(P) ⊆ fc(P) of static input channel names is inductively defined by:

ics(a ← P; Q) = (ics(P) ∪ ics(Q)) ∖ {a}

ics(a ← {P}← a i) = ∅

ics(a → b) = {a} ics(a ← b) = {b}

ics(close a) = ∅ ics(wait a; P) = {a} ∪ ics(P)
ics(send a b; P) = ics(P) ∖ {a} ics(b ← recv a; P) = {a} ∪ ics(P) ∖ {b}

ics(a.k; P) = ics(P) ∖ {a} ics(case a (l ⇒ Pl)l∈L) = {a} ∪ (⋃
l∈L

ics(Pl))

ics(_← output a M; P) = ics(P) ∖ {a} ics(x ← input a; P) = {a} ∪ ics(P)
ics(send a unfold; P) = ics(P) ∖ {a} ics(unfold← recv a; P) = {a} ∪ ics(P)

This static view of input and output is consistent with the one given by polarity:

Proposition 5.5.5. If Ψ ; ∆ ⊢ P ∶∶ c ∶ A, then ocs(P) ⊆ oc(P) and ics(P) ⊆ ic(P). If (E-{})
does not appear the derivation of Ψ ; ∆ ⊢ P ∶∶ c ∶ A, then the above inclusions are equalities.

Proof. By induction on the derivation of Ψ ; ∆ ⊢ P ∶∶ c ∶ A.

Proposition 5.5.6. Free channels of well-typed processes partition as input and output channels,

i.e., if Ψ ; ∆ ⊢ P ∶∶ c ∶ A, then fc(P) = ic(P) ∪ oc(P) and ic(P) ∩ oc(P) = ∅.

Proof. By induction on the derivation of Ψ ; ∆ ⊢ P ∶∶ c ∶ A.

Using definition 5.5.3,we can deduce that composed processes do not both send or both receive
on the private channel linking them, but instead one sends while the other receives:

Corollary 5.5.7. If Π ; ∆ ⊢ b ← P; Q ∶∶ c ∶ A, then fc(P)∩ fc(Q) = {b}, oc(P)∩ oc(Q) = ∅
and ic(P) ∩ ic(Q) = ∅.

Proof. The last rule used to form Π ; ∆ ⊢ b ← P; Q ∶∶ c ∶ A must have been (Cut). By well-
formedness of (Cut), fc(P) ∩ fc(Q) = {b}. By proposition 5.5.6, both of the intersections in
the statement must be subsets of {b}. If b ∈ oc(P) ∩ oc(Q) or b ∈ ic(P) ∩ ic(Q), then it is
simultaneously positive and negative by definition 5.5.3, a contradiction. So the two intersections
are empty.

5.6. Static Properties of Typed Configurations

In this section, we study various static properties of facts proc(c, P) andmsg(c,m) and of the
typing judgment Σ ∥ Γ ∣ I ⊢ C ∶∶ Φ. In section 5.6.1, we define various sets of channel names and
show how they interact with the typing judgment. We explain how the rule (Conf-C) determines
an associative and partially commutative composition operator in section 5.6.2. In section 5.6.3 we
study various structural properties for the typing judgment. We finish by proving various technical
lemmas that will be useful for proving the preservation property in section 5.9.

5.6.1. Sets of Channel Names. We lift the definitions of free and bound channel names to
configurations in the obvious way:

fc(C) =
⎛

⎝
⋃

proc(c ,P)∈C
fc(P)

⎞

⎠
∪
⎛

⎝
⋃

msg(c ,m)∈C
fc(m)

⎞

⎠
.

Lifting input and output channels to configurations is a direct adaptation of definition 5.5.3:

Definition 5.6.1. Assume c1 ∶ C1 , . . . , cn ∶ Cn ∣ I ⊢ C ∶∶ a0 ∶ A0 , . . . , am ∶ Am . Let the output
channels oc(C) and input channels ic(C) of C be the least subsets of fc(C) such that:

(1) for 0 ≤ i ≤ m, a i ∈ oc(C) if and only if A i is positive;
(2) for 0 ≤ i ≤ m, a i ∈ ic(C) if and only if A i is negative;

5.6. STATIC PROPERTIES OF TYPED CONFIGURATIONS 109

(3) for 1 ≤ i ≤ n, c i ∈ oc(C) if and only if C i is negative;
(4) for 1 ≤ i ≤ n, c i ∈ ic(C) if and only if C i is positive. ◀

Remark 5.6.2. Unlike the free channels of processes, the free channels of typed configurations are
not partitioned as input and output channels, but as input, output, and internal channels. Recall
that the internal channels of Γ ∣ I ⊢ C ∶∶ ∆ are those in I.

It is also useful to specify the channel on which amessage was sent—its “carrier channel”—as
well as its continuation channel.

Definition 5.6.3. The carrier channel of amessage fact is:

cc(msg(a, close a)) = a
cc(msg(a, send a b; d → a)) = a

cc(msg(d , send a b; a ← d)) = a

cc(msg(a, a.k; d → a)) = a

cc(msg(d , a.k; a ← d)) = a

cc(msg(a, _← output a v; d → a)) = a

cc(msg(d , _← output a v; a ← d)) = a

cc(msg(a, send a shift; d ← a)) = a

cc(msg(d , send a shift; a → d)) = a

cc(msg(a, send a unfold; d → a)) = a

cc(msg(d , send a unfold; a ← d)) = a ◀

Definition 5.6.4. The continuation channel of amessage fact, if defined, is:

kc(msg(a, send a b; d → a)) = d

kc(msg(d , send a b; a ← d)) = d

kc(msg(a, a.k; d → a)) = d

kc(msg(d , a.k; a ← d)) = d

kc(msg(a, _← output a v; d → a)) = d

kc(msg(d , _← output a v; a ← d)) = d

kc(msg(a, send a shift; d ← a)) = d

kc(msg(d , send a shift; a → d)) = d

kc(msg(a, send a unfold; d → a)) = d

kc(msg(d , send a unfold; a ← d)) = d

In particular, we remark that kc(msg(a, close a)) is undefined. ◀

Remark 5.6.5. The carrier channel of amessage fact is always an output channel, but the converse
need not be true. Consider for example themessage fact msg(a, send a shift; d ← a). Its carrier
channel is a, but its output channels are a and its continuation channel d.

5.6.2. Associativity and Partial Commutativity. The composition notation C ,D for configu-
rations does not specify along which channels two configurations C andD were composed. Indeed,
given configurations Γ ⊢ C ∶∶ Φ,Π1 ,Π2 and Γ′ ,Π1 ,Π2 ⊢ D ∶∶ Ξ, one could conceivably compose C
andD along Π1 or along Π2, giving composites C ,D with different interfaces and internal channels.
Proposition 5.6.6 states that no such choice exists, and that if the composition C ,D exists, then its
type is uniquely determined by the types of C andD. Put differently, the rule (Conf-C) determines
a partial function from pairs of configuration typing judgments to configuration judgments:

110 5. STATICS AND DYNAMICS

Proposition 5.6.6. Consider two judgments Γi∣ Ii ⊢ Ci ∶∶ Φ i for i = 1, 2. If they can be composed

in a certain order using (Conf-C), then the type of their composition is uniquely determined. Explicitly,

if the two following instantiations of (Conf-C) are valid, then their conclusions are equal:

Γ1 ∣ I1 ⊢ C1 ∶∶ Φ1 Γ2 ∣ I2 ⊢ C2 ∶∶ Φ2

Γ ∣ I ⊢ C1 , C2 ∶∶ Φ
Γ1 ∣ I1 ⊢ C1 ∶∶ Φ1 Γ2 ∣ I2 ⊢ C2 ∶∶ Φ2

Γ′ ∣ I′ ⊢ C1 , C2 ∶∶ Φ′ (84)

If Φ1 ∩ Γ2 is non-empty and the composition on the left is valid, then the one on the right is not:

Γ1 ∣ I1 ⊢ C1 ∶∶ Φ1 Γ2 ∣ I2 ⊢ C2 ∶∶ Φ2

Γ ∣ I ⊢ C1 , C2 ∶∶ Φ
Γ2 ∣ I2 ⊢ C2 ∶∶ Φ2 Γ1 ∣ I1 ⊢ C1 ∶∶ Φ1

Γ′ ∣ I′ ⊢ C2 , C1 ∶∶ Φ′ (85)

If Φ1 ∩ Γ2 and Φ2 ∩ Γ1 are both empty, then the left composition in (85) is valid if and only if the right

one is.

Proof. Consider the two compositions in (84), and let Π1 andΠ2 respectively be the channels along
which C1 and C2 are composed. It is sufficient to show that Π1 = Π2. Let c ∶ A ∈ Π1 be arbitrary.
Because it appears in Φ1 and Γ2, it must also appear in Π2. Otherwise, c ∶ Awould appear in both
Γ′ and Φ′, resulting in a judgment that is not well-formed. So Π1 ⊆ Π2. A symmetric argument
gives the opposite inclusion, whence the desired equality.

Assume Π = Φ1 ∩ Γ2 is non-empty and that the composition on the left of (85) is valid. Let
c ∶ A ∈ Π be arbitrary. Suppose to the contrary that the composition on the right is valid. Then c ∶ A
appears in both Γ′ and Φ′, resulting in a judgment that is not well-formed. So the composition on
the right is not valid.

Assume Φ1 ∩ Γ2 and Φ2 ∩ Γ1 are both empty and that the left composition in (85) is valid.
Then the channel names appearing in the left conclusion are all pairwise distinct. So the right
composition is a valid instance of (Conf-C), where Π is empty. A symmetric argument gives that
if the right composition is valid, then so is the left composition.

As in a pluricategory, composition of configurations is associative, that is to say, for all deriva-
tionsDi for 1 ≤ i ≤ 3, we identify the compositions

D1

Σ1 , Π̌12 ∥ Γ1 ∣ I1 ⊢ C1 ∶∶ Ξ1Π12

D2

Σ2 , Π̌23 ∥ Π12Γ2 ∣ I2 ⊢ C2 ∶∶ Ξ2Π23

D3

Π̌23 , Σ3 ∥ Π23Γ3 ∣ I3 ⊢ C3 ∶∶ Ξ3

Π̌12 , Σ2 , Π̌23 , Σ3 ∥ Π12Γ2Γ3 ∣ I2 I3 ⊢ C2 , C3 ∶∶ Ξ2Ξ3

Σ1 , Π̌12 , Σ2 , Π̌23 , Σ3 ∥ Γ1Γ2Γ3 ∣ I1Π12 I2Π23 I3 ⊢ C1 , C2 , C3 ∶∶ Ξ1Ξ2Ξ3

and
D1

Σ1 , Π̌12 ∥ Γ1 ∣ I1 ⊢ C1 ∶∶ Ξ1Π12

D2

Σ2 , Π̌23 ∥ Π12Γ2 ∣ I2 ⊢ C2 ∶∶ Ξ2Π23

Σ1 , Π̌12 , Σ2 , Π̌23 ∥ Γ1Π12Γ2Π23 ∣ I1 I2 ⊢ C1 , C2 ∶∶ Ξ1Ξ2Π23

D3

Π̌23 , Σ3 ∥ Π23Γ3 ∣ I3 ⊢ C3 ∶∶ Ξ3

Σ1 , Π̌12 , Σ2 , Π̌23 , Σ3 ∥ Γ1Γ2Γ3 ∣ I1Π12 I2Π23 I3 ⊢ C1 , C2 , C3 ∶∶ Ξ1Ξ2Ξ3

It is not immediately obvious that we can always reassociate compositions. Indeed, reassociat-
ing a composition could plausibly result in a different conclusion, or result in conclusions that are
notwell-formed. Fortunately, compositions can always be reassociated.We rely on proposition 5.6.6
to construct the intermediary conclusions in the following statement:

Proposition 5.6.7. The composition

Γ1 ∣ I1 ⊢ C1 ∶∶ Ξ1

Γ2 ∣ I2 ⊢ C2 ∶∶ Ξ2 Γ3 ∣ I3 ⊢ C3 ∶∶ Ξ3

Γ23 ∣ I23 ⊢ C2 , C3 ∶∶ Ξ23

Γ ∣ I ⊢ C1 , C2 , C3 ∶∶ Ξ

is valid if and only if

Γ1 ∣ I1 ⊢ C1 ∶∶ Ξ1 Γ2 ∣ I2 ⊢ C2 ∶∶ Ξ2

Γ12 ∣ I12 ⊢ C1 , C2 ∶∶ Ξ12 Γ3 ∣ I3 ⊢ C3 ∶∶ Ξ3

Γ ∣ I ⊢ C1 , C2 , C3 ∶∶ Ξ

5.6. STATIC PROPERTIES OF TYPED CONFIGURATIONS 111

is valid.

Proof. Assume that the first composition is valid. Then we recognize the right branch of the
derivation as

Γ2 ∣ I2 ⊢ C2 ∶∶ Ξ′2Π23 Π23Γ′3 ∣ I3 ⊢ C3 ∶∶ Ξ3

Γ2Γ′3 ∣ I2Π23 I3 ⊢ C2 , C3 ∶∶ Ξ′2Ξ3

for some Π23. This Π23 and the conclusion are unique by proposition 5.6.6. Set Π2 = Ξ1 ∩ Γ2 and
Π3 = Ξ1 ∩ Γ′3 . Let Ξ

′
1 be such that Ξ1 = Ξ′1 ,Π2 ,Π3, and let Γ′2 = Γ2 ∖Π2, and Γ′′3 = Γ

′
3 ∖Π3. Then we

recognize the first composition as

Γ1 ∣ I1 ⊢ C1 ∶∶ Ξ′1Π2Π3 Γ′2Π2Γ′′3 Π3 ∣ I2Π23 I3 ⊢ C2 , C3 ∶∶ Ξ′2Ξ3

Γ1Γ′2Γ
′′
3 ∣ I1Π2Π3 I2Π23 I3 ⊢ C1 , C2 , C3 ∶∶ Ξ′1Ξ

′
2Ξ3

In particular, we remark that the channel names appearing in the contexts in the conclusion are all
pairwise distinct. We show that the second composition is valid. We begin by showing that

Γ1 ∣ I1 ⊢ C1 ∶∶ Ξ1 Γ2 ∣ I2 ⊢ C2 ∶∶ Ξ2

Γ12 ∣ I12 ⊢ C1 , C2 ∶∶ Ξ12

is valid. Relying on proposition 5.6.6, we recognize it as the composition:

Γ1 ∣ I1 ⊢ C1 ∶∶ Ξ′1Π2Π3 Γ′2Π2 ∣ I2 ⊢ C2 ∶∶ Ξ′2Π23

Γ1Γ′2 ∣ I1Π2 I2 ⊢ C1 , C2 ∶∶ Ξ′1Ξ
′
2Π23Π3

By the above remark that channel names are all pairwise distinct, the conclusion is well-formed.
Next, we recognize the second composition as the composition:

Γ1Γ′2 ∣ I1Π2 I2 ⊢ C1 , C2 ∶∶ Ξ′1Ξ
′
2Π23Π3 Π23Π3Γ′′3 ∣ I3 ⊢ C3 ∶∶ Ξ3

Γ1Γ′2Γ
′′
3 ∣ I1Π2 I2Π23Π3 I3 ⊢ C1 , C2 , C3 ∶∶ Ξ′1Ξ

′
2Ξ3

Again, the conclusion is well-formed, and it is identical to the conclusion of the first derivation.
Conversely, assume the second composition is valid. We repeat an analogous argument to

show that the first composition is valid. We recognize the left branch of the derivation as

Γ1 ∣ I1 ⊢ C1 ∶∶ Ξ′1Π12 Π12Γ′2 ∣ I2 ⊢ C2 ∶∶ Ξ2

Γ1Γ′2 ∣ I1Π12 I2 ⊢ C1 , C2 ∶∶ Ξ′1Ξ2

where Π12 is the interface along which C1 and C2 are composed, and Γ′2 and Ξ
′
1 are its complement

in Γ2 and Ξ1, respectively. Again, this Π12 and the conclusion are unique. Set Π1 = Ξ′1 ∩ Γ3 and
Π2 = Ξ2 ∩ Γ3. Let Ξ′′1 = Ξ

′
1 ∖Π1 and Ξ′2 = Ξ2 ∖Π2, and let Γ′3 be such that Γ3 = Γ′3 ,Π1 ,Π2. Then we

recognize the second composition as

Γ1Γ′2 ∣ I1Π12 I2 ⊢ C1 , C2 ∶∶ Ξ′′1 Π1Ξ′2Π2 Π1Π2Γ3 ∣ I3 ⊢ C3 ∶∶ Ξ3

Γ1Γ′2Γ3 ∣ I1Π12 I2Π1Π2 I3 ⊢ C1 , C2 , C3 ∶∶ Ξ′′1 Ξ2Ξ3

Because it is well-formed, the channel names appearing in its conclusion are all pairwise distinct.
We show that the first composition is valid. Its right branch is the following uniquely determined
composition:

Π12Γ′2 ∣ I2 ⊢ C2 ∶∶ Ξ′2Π2 Π1Π2Γ3 ∣ I3 ⊢ C3 ∶∶ Ξ3

Π12Γ′2Π1Γ3 ∣ I2Π2 I3 ⊢ C2 , C3 ∶∶ Ξ′2Ξ3

Remark that Ξ1 = Ξ′′1 Π1Π12. Then we recognize the first composition as

Γ1 ∣ I1 ⊢ C1 ∶∶ Ξ′′1 Π1Π12 Π12Γ′2Π1Γ3 ∣ I2Π2 I3 ⊢ C2 , C3 ∶∶ Ξ′2Ξ3

Γ1Γ′2Γ3 ∣ I1Π1Π12 I2Π2 I3 ⊢ C1 , C2 , C3 ∶∶ Ξ′′1 Ξ
′
2Ξ3

Its conclusion is well-formed because the channel names are known to be pairwise distinct, so the
first derivation is valid. We recognize its conclusion as the conclusion of the second composition.
We conclude the result.

112 5. STATICS AND DYNAMICS

Composition is also, as in a pluricategory, partially commutative3. Given respective derivations
Di for the judgments

(1) Σ1 , Π̌1 ∥ Γ1 ∣ I1 ⊢ C1 ∶∶ Ξ1Π1,
(2) Σ2 , Π̌2 ∥ Γ2 ∣ I2 ⊢ C2 ∶∶ Ξ2Π2,
(3) Σ3 , Π̌1 , Π̌2 ∥ Π1Π2Γ3 ∣ I3 ⊢ C3 ∶∶ Ξ3,

we identify the compositions

D1

Σ1 , Π̌1 ∥ Γ1 ∣ I1 ⊢ C1 ∶∶ Ξ1Π1

D2

Σ2 , Π̌2 ∥ Γ2 ∣ I2 ⊢ C2 ∶∶ Ξ2Π2

D3

Σ3 , Π̌1 , Π̌2 ∥ Π1Π2Γ3 ∣ I3 ⊢ C3 ∶∶ Ξ3

Σ2 , Σ3 , Π̌1 , Π̌2 ∥ Π1Γ2Γ3 ∣ I2Π2 I3 ⊢ C2 , C3 ∶∶ Ξ2Ξ3

Σ1 , Σ2 , Σ3 , Π̌1 , Π̌2 ∥ Γ1Γ2Γ3 ∣ I1Π1 I2Π2 I3 ⊢ C1 , C2 , C3 ∶∶ Ξ1Ξ2Ξ3

and

D2

Σ2 , Π̌2 ∥ Γ2 ∣ I2 ⊢ C2 ∶∶ Ξ2Π2

D1

Σ1 , Π̌1 ∥ Γ1 ∣ I1 ⊢ C1 ∶∶ Ξ1Π1

D3

Σ3 , Π̌1 , Π̌2 ∥ Π1Π2Γ3 ∣ I3 ⊢ C3 ∶∶ Ξ3

Σ1 , Σ3 , Π̌1 , Π̌2 ∥ Γ1Π2Γ3 ∣ I1Π1 I3 ⊢ C1 , C3 ∶∶ Ξ1Ξ3

Σ1 , Σ2 , Σ3 , Π̌1 , Π̌2 ∥ Γ1Γ2Γ3 ∣ I1Π1 I2Π2 I3 ⊢ C2 , C1 , C3 ∶∶ Ξ1Ξ2Ξ3

Given respective derivationsDi for the judgments

(1) Σ1 , Π̌2 , Π̌3 ∥ Γ1 ∣ I1 ⊢ C1 ∶∶ Ξ1Π2Π3,
(2) Σ2 , Π̌2 ∥ Γ2Π2 ∣ I2 ⊢ C2 ∶∶ Ξ2,
(3) Σ3 , Π̌3 ∥ Γ3Π3 ∣ I3 ⊢ C3 ∶∶ Ξ3,

we identify the compositions

D1

Σ1 , Π̌2 , Π̌3 ∥ Γ1 ∣ I1 ⊢ C1 ∶∶ Ξ1Π2Π3

D2

Σ2 , Π̌2 ∥ Γ2Π2 ∣ I2 ⊢ C2 ∶∶ Ξ2

Σ1 , Σ2 , Π̌2 , Π̌3 ∥ Γ1Γ2 ∣ I1Π2 I2 ⊢ C1 , C2 ∶∶ Ξ1Ξ2Π3

D3

Σ3 , Π̌3 ∥ Γ3Π3 ∣ I3 ⊢ C3 ∶∶ Ξ3

Σ1 , Σ2 , Σ3 , Π̌2 , Π̌3 ∥ Γ1Γ2Γ3 ∣ I1Π2 I2Π3 I3 ⊢ C1 , C2 , C3 ∶∶ Ξ1Ξ2Ξ3

and

D1

Σ1 , Π̌2 , Π̌3 ∥ Γ1 ∣ I1 ⊢ C1 ∶∶ Ξ1Π2Π3

D3

Σ3 , Π̌3 ∥ Γ3Π3 ∣ I3 ⊢ C3 ∶∶ Ξ3

Σ1 , Σ3 , Π̌2 , Π̌3 ∥ Γ1Γ3 ∣ I1Π3 I3 ⊢ C1 , C3 ∶∶ Ξ1Π2Ξ3

D2

Σ2 , Π̌2 ∥ Γ2Π2 ∣ I2 ⊢ C2 ∶∶ Ξ2

Σ1 , Σ2 , Σ3 , Π̌2 , Π̌3 ∥ Γ1Γ2Γ3 ∣ I1Π2 I2Π3 I3 ⊢ C1 , C3 , C2 ∶∶ Ξ1Ξ2Ξ3

We remark that the types associated to channels remain identical after reassociation and after
commutation. This obvious fact will be repeatedly used without mention.

We conjecture that a graphical language similar to ones for monoidal categories (see sec-
tion 2.1.2) could be adapted to pluricategories: conceivably, the sole change required would be to
allowmultiple wires to be joined between boxes. Such a graphical language would significantly
simplify reasoning about our composition operator. Indeed,many proofs below involve tediously
reassociating and commuting compositions, while graphically, this simply corresponds to continu-
ously deforming diagrams. Unfortunately, developing sound graphical languages is a non-trivial
task whose subtleties have ensnaredmany who have attempted it (cf. [JS91, p. 57]) and we leave
such a graphical language for future work.

3The following statement of partial commutativity is simpler than in a general pluricategory becausewe are considering
objects drawn from a free commutativemonoid, instead of the usual case of a freemonoid.

5.6. STATIC PROPERTIES OF TYPED CONFIGURATIONS 113

5.6.3. Structural Properties. We prove several properties about the typing judgments for
multisets-in-context. Though largely technical, these structural properties will be indispensable
to showing our preservation theorem, and to relating congruence relations on configurations to
congruence relations on processes. We start by showing the subformula property and an inversion-
style principle.

Proposition 5.6.8 (Subformula Property). If Γ′ ∣ I′ ⊢ E ∶∶ ∆′ appears in the derivation of

Γ ∣ I ⊢ F ∶∶ ∆, then Γ′ ⊆ ΓI, I′ ⊆ I, and ∆′ ⊆ I∆.

Proof. By induction on the derivation of Γ ∣ I ⊢ F ∶∶ ∆.
Case (Conf-M): Then Γ′∣ I′ ⊢ E ∶∶ ∆′ is the conclusion of the rule and the result is immediate.
Case (Conf-P): Then Γ′∣ I′ ⊢ E ∶∶ ∆′ is the conclusion of the rule and the result is immediate.
Case (Conf-C):

Σ, Π̌ ∥ Γ ∣ I1 ⊢ C ∶∶ ΦΠ Π̌, Σ′ ∥ ΠΛ ∣ I2 ⊢ D ∶∶ Ξ

Σ, Π̌, Σ′ ∥ ΓΛ ∣ I1ΠI2 ⊢ C ,D ∶∶ ΦΞ
(Conf-C)

We consider three subcases:
(1) if Γ′ ∣ I′ ⊢ E ∶∶ ∆′ is the conclusion of the rule, the result is immediate.
(2) if Γ′ ∣ I′ ⊢ E ∶∶ ∆′ appears in the derivation of the left premise, then the result follows by the

induction hypothesis.
(3) if Γ′ ∣ I′ ⊢ E ∶∶ ∆′ appears in the derivation of the right premise, then the result follows by the

induction hypothesis.

The following proposition specifies an inversion principle (cf. [Har16, Lemma 8.2]) for message
facts. It also states the relationship between free channels in configuration typing judgments and
process typing judgments.

Proposition 5.6.9 (Inversion Principle). If Γ∣ I ⊢ C ∶∶ ∆, andmsg(c0 , P) ∈ C or proc(c0 , P) ∈
C, then ⋅ ; Λ ⊢ P ∶∶ c0 ∶ A for some Λ ⊆ ΓI and c0 ∶ A ∈ I∆. Concretely, if proc(c0 , P) ∈ C or

msg(c0 , P) ∈ C, then

(1) c0 ∈ fc(P);
(2) for all c i ∈ fc(P), then c i ∶ A i ∈ ΓI∆ for some A i ; and

(3) where fc(P) = {c0 , . . . , cm}, we have ⋅ ; c1 ∶ A1 , . . . , cm ∶ Am ⊢ P ∶∶ c0 ∶ A0.

Ifmsg(c0 ,m) ∈ C, then ⋅ ; Λ ⊢ m ∶∶ c0 ∶ A is given by:

● if m = close c, then ⋅ ; ⋅ ⊢ close c ∶∶ c ∶ 1;
● if m = c.l j ; d → c, then ⋅ ; d ∶ A j ⊢ c.l j ; d → c ∶∶ c ∶ ⊕{l i ∶ A i}i∈I for some A i with i , j ∈ I;
● if m = c.l j ; c ← d, then ⋅ ; c ∶ &{l i ∶ A i}i∈I ⊢ c.l j ; c ← d ∶∶ d ∶ A j for some A i with i , j ∈ I;
● if m = send c a; b → c, then ⋅ ; a ∶ A, b ∶ B ⊢ send c a; b → c ∶∶ c ∶ A⊗ B for some A

and B;

● if m = send c a; c ← b, then ⋅ ; a ∶ A, c ∶ A⊸ B ⊢ send c a; c ← b ∶∶ b ∶ B for some A

and B;

● if m = _← output c v; d → c, then ⋅ ; d ∶ A ⊢ _← output c v; d → c ∶∶ c ∶ τ ∧ A for some

A and τ such that ⋅ ⊩ v ∶ τ;

● if m = _← output c v; c ← d, then ⋅ ; c ∶ τ ⊃ A ⊢ _← output c v; c ← d ∶∶ d ∶ A for some

A and τ such that ⋅ ⊩ v ∶ τ;

● if m = send c unfold; d → c, then ⋅ ; d ∶ [ρα.A/α]A ⊢ send c unfold; d → c ∶∶ c ∶ ρα.A
for some α ⊢ A type+s ; and

● if m = send c unfold; c ← d, then ⋅ ; c ∶ ρα.A ⊢ send c unfold; c ← d ∶∶ d ∶ [ρα.A/α]A
for some α ⊢ A type−s .

Proof. By induction on Γ ∣ I ⊢ C ∶∶ ∆. In the cases (Conf-M) and (Conf-P), the result follows
by inversion on the typing judgment for the process that is the rule hypothesis. Proposition 5.6.8
gives the result in the case of (Conf-C).

114 5. STATICS AND DYNAMICS

Typing judgments assign a type to every free channel appearing in a configuration:

Proposition 5.6.10. If Σ ∥ Γ ∣ I ⊢ C ∶∶ ∆, then fc(C) ⊆ Γ̌, Ǐ, ∆̌ ⊆ Σ.

Proof. Immediate by propositions 5.5.2 and 5.6.9.

The following lemma states that shared channels in well-typedmultisets are always internal
channels:

Lemma 5.6.11. If Ψ ∣ I ⊢ E ,F ∶∶ Θ and c ∈ fc(E) ∩ fc(F), then c ∈ Ǐ.

Proof. By induction on the derivation of Ψ ∣ I ⊢ E ,F ∶∶ Θ.
Case (Conf-M): This case is impossible, for there are at least two elements in themultiset,

but the conclusion of the rule only has one element.
Case (Conf-P): Analogous to case (conf-m).
Case (Conf-C):

Σ, Π̌ ∥ Γ ∣ I1 ⊢ C ∶∶ ΦΠ Π̌, Σ′ ∥ ΠΛ ∣ I2 ⊢ D ∶∶ Ξ

Σ, Π̌, Σ′ ∥ ΓΛ ∣ I1ΠI2 ⊢ C ,D ∶∶ ΦΞ
(Conf-C)

We consider three subcases:
(1) if c ∈ fc(C) ∩ fc(D), then by the side-condition Σ ∩ Σ′ = ∅ on (Conf-C), it must be that

c ∈ Π̌. But I = I1ΠI2, so c ∈ Ǐ as desired.
(2) if c ∈ fc(C) but c ∉ fc(D), then E and F must both intersect with C. Applying the induction

hypothesis to the left premise of the rule, we get that c ∈ Ǐ1. It follows that c ∈ Ǐ.
(3) if c ∈ fc(D) but c ∉ fc(C): this subcase is symmetric to the previous one.

The following lemma specifies that message or process facts in multisets do not have shared
input channels, and that they do not have shared output channels. It will repeatedly be used in
the proof that Polarized SILL’s multiset rewriting system is non-overlapping on initial process
configurations.

Lemma 5.6.12. Let J ∈ {msg(c, P), proc(c, P)} and K ∈ {msg(d ,Q), proc(d ,Q)} be arbitrary,

and assume J ≠ K. If Γ ∣ I ⊢ E , J ,K ∶∶ Φ with E potentially empty, then oc(J) ∩ oc(K) = ∅ and

ic(J) ∩ ic(K) = ∅.

Proof. By induction on the derivation of Γ ∣ I ⊢ C , J ,K ∶∶ Φ.
Case (Conf-M): This case is impossible, for its conclusion contains a single fact.
Case (Conf-P): This case is impossible, for its conclusion contains a single fact.
Case (Conf-C): Recall the rule:

Σ, Π̌ ∥ Γ ∣ I1 ⊢ C ∶∶ ΦΠ Π̌, Σ′ ∥ ΠΛ ∣ I2 ⊢ D ∶∶ Ξ

Σ, Π̌, Σ′ ∥ ΓΛ ∣ I1ΠI2 ⊢ C ,D ∶∶ ΦΞ
(Conf-C)

We proceed by case analysis on where J and K are located. If they are both located in the same
branch, then we are done by the induction hypothesis. Assume without loss of generality that J
is in the left branch and that K is in the right branch. Suppose to the contrary that there exists
some c′ ∈ (oc(J) ∩ oc(K)) ∪ (ic(J) ∩ ic(K)). By lemma 5.6.11, we have c′ ∶ A ∈ Π for some A. By
proposition 5.6.9 we have ⋅ ; ∆ ⊢ P ∶∶ c′ ∶ A and ⋅ ; ∆′ , c′ ∶ A ⊢ Q ∶∶ d ∶ B for some ∆, ∆′, and B. By
definition 5.5.3, this implies that A is simultaneously positive and negative, a contradiction. So the
intersections are empty.

In particular, lemma 5.6.12 implies that if a channel c is already carrying amessage, then no
other process in the configuration will output on c.

Lemma 5.6.13. If Γ ∣ I ⊢ C ∶∶ ∆ andmsg(c,m) ∈ C, then cc(msg(c,m)) ∉ oc(K) for all other

K ∈ C.

Proof. Immediate by the observation that cc(msg(c,m)) ∈ oc(msg(c,m) and lemma 5.6.12.

5.6. STATIC PROPERTIES OF TYPED CONFIGURATIONS 115

Because processes are not uniquely typed, configurations do not in general have unique types.
The following lemma shows that if a subset of a well-typed configuration can be assigned a type,
then it can be assigned a type that agrees with the type of the configuration that contains it.

Lemma 5.6.14. If Ψ ∣ I ⊢ E ∶∶ Θ and F ⊆ E is such that Γ′ ∣ I′ ⊢ F ∶∶ ∆′ for some Γ′, I′, and ∆′,
then there exist Γ′′ ⊆ ΨI, I′′ ⊆ I, and ∆′′ ⊆ IΘ such that Γ′′ ∣ I′′ ⊢ F ∶∶ ∆′′.

Proof. By induction on the derivation of Γ′ ∣ I′ ⊢ F ∶∶ ∆′.

Case (Conf-M):

⋅ ; ∆ ⊢ m ∶∶ c ∶ A

Σ ∥ ∆ ∣ ⋅ ⊢ msg(c,m) ∶∶ (c ∶ A)
(Conf-M)

Then F is msg(c,m) ∈ E . Apply proposition 5.6.9 and (Conf-M) to get the result.
Case (Conf-P): Analogous to (Conf-M).
Case (Conf-C):

Σ, Π̌ ∥ Γ ∣ I1 ⊢ C ∶∶ ΦΠ Π̌, Σ′ ∥ ΠΛ ∣ I2 ⊢ D ∶∶ Ξ

Σ, Π̌, Σ′ ∥ ΓΛ ∣ I1ΠI2 ⊢ C ,D ∶∶ ΦΞ
(Conf-C)

By the induction hypotheses, Γ′ ∣ I′1 ⊢ C ∶∶ Φ
′Π′ and Π′′Λ′ ∣ I′2 ⊢ D ∶∶ Ξ

′ with

Γ′ ⊆ ΨI, Π′′Λ′ ⊆ ΨI,

I′1 ⊆ I, I′2 ⊆ I,

Φ′Π′ ⊆ IΘ, Ξ′ ⊆ IΘ.

By lemma 5.6.11, Π̌′ = Π̌′′ ⊆ Ǐ. Because I uniquely assigns types to channel names, it must be
that Π′ = Π′′. So by (conf-c), Γ′Λ′ ∣ I′1Π

′ I′2 ⊢ F ∶∶ Φ
′Ξ′. The above inclusions imply Γ′Λ′ ⊆ ΨI,

I′1 I
′
2 ⊆ I, and Φ′Ξ′ ⊆ IΘ, as desired.

To show preservation in proposition 5.9.1,wewill need to show that replacing a subset matched
by a rewriting rule with amultiset having the same interface does not affect the interface of the
whole multiset. To do so, we will need to reason about intersecting multisets, and reassociate
and commute compositions so that all elements in an intersection appear together. The following
proposition shows us that we can group elements in the intersection of two consistent multisets
together in the typing derivation. In its proof, we use three dots “⋯” to elide the unique conclusion
given by functionality of composition (proposition 5.6.6).

Proposition 5.6.15 (Intersection Property). Assume that ΓL ∣ IL ⊢ L ∶∶ ΦL and that ΓR ∣ IR ⊢
R ∶∶ ΦR . Also assume thatM = L ∩R is non-empty. Assume that the two typing judgments agree

on their intersection, i.e., that for all c ∈ fc(M), c ∶ A ∈ ΓL ILΦL if and only if c ∶ A ∈ ΓR IRΦR . Set

ΓM = ΓR ∩ (ΓL ∪ IL) Γ′L = ΓL ∖ ΓR Γ′R = (ΓR ∖ (ΓL ∪ IL)) ∪ (ΦL ∩ IR)

IM = IL ∩ IR I′L = IL ∖ (ΓR ∪ IR) I′R = IR ∖ (IL ∪ΦL)

M = L ∩R, L′ = L ∖M, R′ =R ∖M,

ΦM = ΦL ∩ (IR ∪ΦR) Φ′L = (ΦL ∖ (IR ∪ΦR)) ∪ (IL ∩ ΓR) Φ′R = ΦR ∖ΦL

Then each of the following rules is a valid instance of (Conf-C) if its premisses are both non-empty:

Γ′
L
∣ I′

L
⊢ L′ ∶∶ Φ′

L
ΓM ∣ IM ⊢M ∶∶ ΦM

ΓL ∣ IL ⊢ L ∶∶ ΦL

ΓM ∣ IM ⊢M ∶∶ ΦM Γ′
R
∣ I′

R
⊢R′ ∶∶ Φ′

R

ΓR ∣ IR ⊢R ∶∶ ΦR

If there exist derivations DL and DR for ΓL ∣ IL ⊢ L ∶∶ ΦL and ΓR ∣ IR ⊢ R ∶∶ ΦR , respec-

tively, then there exist derivationsD′
L
,DM , andD′

R
for Γ′

L
∣ I′

L
⊢ L′ ∶∶ Φ′

L
, ΓR ∣ IM ⊢M ∶∶ ΦR , and

ΓR ∣ I′
R
⊢R′ ∶∶ ΦR , respectively, whenever the respectivemultiset is non-empty.

116 5. STATICS AND DYNAMICS

Proof. We first show the result for L. IfM = L, then the result is immediate. Assume now that
M ≠ L, or equivalently, that L′ is non-empty. We begin by checking that

Γ′
L
∣ I′

L
⊢ L′ ∶∶ Φ′

L
ΓM ∣ IM ⊢M ∶∶ ΦM

Γ ∣ I ⊢ C ∶∶ Φ

is a valid instance of (Conf-C). In particular, we observe that the channel names appearing in
Γ′
L
I′
L
Φ′

L
are all pairwise-distinct, as are those appearing in ΓM IMΦM . We also observe that the

channel names in Φ′
L
ΓM not in the intersection Φ′

L
∩ ΓM are all pairwise distinct. Indeed, if c ∶ A is

not in the intersection but c ∶ A ∈ Φ′
L
, then if c ∶ B ∈ ΓM for some B, then by hypothesis we have

both c ∶ A ∈ ΓL ILΦL and c ∶ B ∈ ΓL ILΦL . Then A = B because the judgment for L is well formed.
So c ∶ A is in the intersection Φ′

L
∩ ΓM , a contradiction. An identical argument covers the case

when c ∶ A is not in the intersection but c ∶ A ∈ ΓM .
Next, we check that the conclusion is ΓL ∣ IL ⊢ L ∶∶ ΦL . We compute:

ΓM ∖Φ′L = (ΓR ∩ (ΓL ∪ IL)) ∖Φ′L
= ((ΓR ∩ ΓL) ∖Φ′L) ∪ ((ΓR ∩ IL) ∖Φ′L)

because ΓR ∩ IL ⊆ Φ′L :

= (ΓR ∩ ΓL) ∖Φ′L
because ΓL ∩ IL = ΓL ∩ΦL = ∅:

= (ΓR ∩ ΓL).

Γ = Γ′L ∪ (ΓM ∖Φ
′
L)

= (ΓL ∖ ΓR) ∪ (ΓR ∩ ΓL)
= ΓL .

Φ′L ∩ ΓM = ((ΦL ∖ (IR ∪ΦR)) ∪ (IL ∩ ΓR)) ∩ (ΓR ∩ (ΓL ∪ IL))
= ((ΦL ∖ (IR ∪ΦR)) ∪ (IL ∩ ΓR)) ∩ ((ΓR ∩ ΓL) ∪ (ΓR ∩ IL))
= ((ΦL ∖ (IR ∪ΦR)) ∩ (ΓR ∩ ΓL)) ∪ ((ΦL ∖ (IR ∪ΦR)) ∩ (ΓR ∩ IL)) ∪
∪ ((IL ∩ ΓR) ∩ (ΓR ∩ ΓL)) ∪ ((IL ∩ ΓR) ∩ (ΓR ∩ IL))

because ΦL ∩ IL = IL ∩ ΓL = ∅:

= ((ΦL ∖ (IR ∪ΦR)) ∩ (ΓR ∩ ΓL)) ∪ (IL ∩ ΓR)

by DeMorgan’s law:

= ((ΦL ∖ IR) ∩ (ΦL ∖ΦR) ∩ ΓR ∩ ΓL) ∪ (IL ∩ ΓR)

because ΦL ∩ ΓL = ∅:

= IL ∩ ΓR .

I = I′L ∪ (Φ
′
L ∩ ΓM) ∪ IM

= IL ∖ (ΓR ∪ IR) ∪ (IL ∩ ΓR) ∪ (IL ∩ IR)

= IL ∖ (ΓR ∪ IR) ∪ (IL ∩ (ΓR ∪ IR))

= IL .

C = L′ ,M
= L ∖M,M
= L.

Φ′L ∖ ΓM = ((ΦL ∖ (IR ∪ΦR)) ∪ (IL ∩ ΓR)) ∖ (ΓR ∩ (ΓL ∪ IL))
= (ΦL ∖ (IR ∪ΦR)) ∖ (ΓR ∩ (ΓL ∪ IL))

5.6. STATIC PROPERTIES OF TYPED CONFIGURATIONS 117

because ΦL ∩ (ΓL ∪ IL) = ∅:

= ΦL ∖ (IR ∪ΦR).

Φ = ΦM ∪ (Φ′L ∖ ΓM)
= (ΦL ∩ (IR ∪ΦR)) ∪ΦL ∖ (IR ∪ΦR)

= ΦL .

We conclude that the conclusion is indeed ΓL ∣ IL ⊢ L ∶∶ ΦL .
Next, assume that there exists a derivationDL for ΓL ∣ IL ⊢ L ∶∶ ΦL . We show that there exist

derivationsD′
L
andDM such that

D′
L

Γ′
L
∣ I′

L
⊢ L′ ∶∶ Φ′

L

DM

ΓM ∣ IM ⊢M ∶∶ ΦM

ΓL ∣ IL ⊢ L ∶∶ ΦL

(Conf-C)

is a valid derivation. To do so, we proceed by induction onDL . Because we assumed thatM ≠ L,
the last rule inDL is an instance of (Conf-C):

DF

ΓF ∣ IF ⊢ F ∶∶ ΦF

DG

ΓG ∣ IG ⊢ G ∶∶ ΦG

ΓL ∣ IL ⊢ L ∶∶ ΦL

(Conf-C)

We proceed by case analysis on the relationship between its hypotheses andM:
(1) If F = L′ and G =M, then we are done by the subformula property: takeD′

L
= DF and

DM = DG .
(2) IfM ⊊ G, then by the induction hypothesis applied toDG we have derivationsD′

G
and

DM such that

D′
G

Γ′
G
∣ I′

G
⊢ G′ ∶∶ Φ′

G

DM

ΓM ∣ IM ⊢M ∶∶ ΦM

ΓG ∣ IG ⊢ G ∶∶ ΦG

(Conf-C)

ReplacingDG inD by this derivation and reassociating gives the derivation

DF

ΓF ∣ IF ⊢ F ∶∶ ΦF

D′
G

Γ′
G
∣ I′

G
⊢ G′ ∶∶ Φ′

G

Γ′′
L
∣ I′′

L
⊢ L′ ∶∶ Φ′′

L

DM

ΓM ∣ IM ⊢M ∶∶ ΦM

ΓL ∣ IL ⊢ L ∶∶ ΦL

(Conf-C)

By the subformula property, we deduce that Γ′′
L
∣ I′′

L
⊢ L′ ∶∶ Φ′′

L
is Γ′

L
∣ I′

L
⊢ L′ ∶∶ Φ′

L
. Let

D′
L
be the derivation for the left branch of this derivation tree.

(3) IfM ⊊ F , then by the induction hypothesis onDF , we get a derivation

D′
F

Γ′
F
∣ I′

F
⊢ F ′ ∶∶ Φ′

F

DM

ΓM ∣ IM ⊢M ∶∶ ΦM

ΓF ∣ IF ⊢ F ∶∶ ΦF

DG

ΓG ∣ IG ⊢ G ∶∶ ΦG

ΓL ∣ IL ⊢ L ∶∶ ΦL

We reassociate to get the derivation

D′
F

Γ′
F
∣ I′

F
⊢ F ′ ∶∶ Φ′

F

DM

ΓM ∣ IM ⊢M ∶∶ ΦM

DG

ΓG ∣ IG ⊢ G ∶∶ ΦG

⋯M,G⋯
ΓL ∣ IL ⊢ L ∶∶ ΦL

By proposition 5.6.6 we can swap the two premisses in the right tree because ΦM ∩ ΓG
and ΓM ∩ ΦG are both empty. Indeed, they are disjoint because they have no channel

118 5. STATICS AND DYNAMICS

names in common. Reassociating gives the derivation

D′
F

Γ′
F
∣ I′

F
⊢ F ′ ∶∶ Φ′

F

DG

ΓG ∣ IG ⊢ G ∶∶ ΦG

Γ′
L
∣ I′

L
⊢ L ∶∶ Φ′

L

DM

ΓM ∣ IM ⊢M ∶∶ ΦM

ΓL ∣ IL ⊢ L ∶∶ ΦL

We recognize that Γ′
L
∣ I′

L
⊢ L ∶∶ Φ′

L
is ΓL ∣ IL ⊢ L ∶∶ ΦL by the subformula property. Let

D′
L
be the derivation of the left branch, andDM be as given.

(4) IfMF =M∩F =R∩F andMG =M∩G =R∩G has a non-empty intersection with
both branches of the derivation, then we assume first F ∖MF and G ∖MG are both
non-empty. We apply the induction hypothesis to both branches to get a derivation

D′
F

Γ′
F
∣ I′

F
⊢ F ′ ∶∶ Φ′

F

DMF

ΓMF ∣ IMF ⊢MF ∶∶ ΦMF

ΓF ∣ IF ⊢ F ∶∶ ΦF

D′
G

Γ′
G
∣ I′

G
⊢ G′ ∶∶ Φ′

G

DMG

ΓMG ∣ IMG ⊢MG ∶∶ ΦMG

ΓG ∣ IG ⊢ G ∶∶ ΦG

ΓL ∣ IL ⊢ L ∶∶ ΦL

Reassociating twice gives the derivation:

D′
F

Γ′
F
∣ I′

F
⊢ F ′ ∶∶ Φ′

F

DMF

ΓMF ∣ IMF ⊢MF ∶∶ ΦMF

D′
G

Γ′
G
∣ I′

G
⊢ G′ ∶∶ Φ′

G

⋯MF ,G′⋯
DMG

ΓMG ∣ IMG ⊢MG ∶∶ ΦMG

⋯G ,MF⋯

ΓL ∣ IL ⊢ L ∶∶ ΦL

By proposition 5.6.6 we can swap the two premisses in themiddle tree becauseΦMF ∩ Γ′G
and ΓMF ∩Φ′G are both empty. Indeed,

ΦMF = ΦF ∩ (IR ∪ΦR)

Γ′G = ΓG ∖ ΓR

ΓMF = ΓR ∩ (ΓF ∪ IF)

Φ′G = (ΦG ∖ (IR ∪ΦR)) ∪ (IG ∩ ΓR)

and the two intersections are empty because

ΦF ∩ ΓG = ΓF ∩ΦG = IF ∩ΦG = IG ∩ IF = ∅.

Swapping the premisses gives:

D′
F

Γ′
F
∣ I′

F
⊢ F ′ ∶∶ Φ′

F

D′
G

Γ′
G
∣ I′

G
⊢ G′ ∶∶ Φ′

G

DMF

ΓMF ∣ IMF ⊢MF ∶∶ ΦMF

⋯MF ,G′⋯
DMG

ΓMG ∣ IMG ⊢MG ∶∶ ΦMG

⋯G ,MF⋯

ΓL ∣ IL ⊢ L ∶∶ ΦL

Finally, reassociating twice gives the derivation:

D′
F

Γ′
F
∣ I′

F
⊢ F ′ ∶∶ Φ′

F

D′
G

Γ′
G
∣ I′

G
⊢ G′ ∶∶ Φ′

G

⋯F ′ ,G′⋯

DMF

ΓMF ∣ IMF ⊢MF ∶∶ ΦMF

DMG

ΓMG ∣ IMG ⊢MG ∶∶ ΦMG

⋯MF ,MG⋯

ΓL ∣ IL ⊢ L ∶∶ ΦL

5.6. STATIC PROPERTIES OF TYPED CONFIGURATIONS 119

Applying the subformula property and observing thatM =MF ,MG and L′ = F ′ ,G′,
we recognize the above derivation as:

D′
F

Γ′
F
∣ I′

F
⊢ F ′ ∶∶ Φ′

F

D′
G

Γ′
G
∣ I′

G
⊢ G′ ∶∶ Φ′

G

Γ′
L
∣ I′

L
⊢ L′ ∶∶ Φ′

L

DMF

ΓMF ∣ IMF ⊢MF ∶∶ ΦMF

DMG

ΓMG ∣ IMG ⊢MG ∶∶ ΦMG

ΓM ∣ IM ⊢M ∶∶ ΦM

ΓL ∣ IL ⊢ L ∶∶ ΦL

LetD′
L
andDM respectively be the left and right derivations. If one ofF ∖MF or G∖MG

is empty, then applying the induction hypothesis to the other branch and reassociating
gives the result. If both are empty, thenM = L, a contradiction.

This completes the proof for the rule on the left of the statement.
We now consider the rule on the right of the statement. The same argument as for the rule on

left gives that
ΓM ∣ IM ⊢M ∶∶ ΦM Γ′

R
∣ I′

R
⊢R′ ∶∶ Φ′

R

Γ ∣ I ⊢R ∶∶ Φ
is a valid instance of (Conf-C). Next, we check that its conclusion is ΓR ∣ IR ⊢R ∶∶ ΦR . But this is
follows by symmetry with the previous rule, noticing that the derivations are identical, except that
we exchange every appearance of a Φ and a Γ, and every L and R. For example, the derivation to
check that Γ = ΓR in this rule is identical to the derivation to check that Φ = ΦL in the previous
rule:

Γ′R ∖ΦM = ((ΓR ∖ (ΓL ∪ IL)) ∪ (ΦL ∩ IR)) ∖ (ΦL ∩ (IR ∪ΦR))

= (ΓR ∖ (ΓL ∪ IL)) ∖ (ΦL ∩ (IR ∪ΦR))

because ΓR ∩ (ΦR ∪ IR) = ∅:

= ΓR ∖ (IL ∪ ΓL).

Γ = ΓM ∪ (Γ′R ∖ΦM)

= (ΓR ∩ (ΓL ∪ IL)) ∪ (ΓR ∖ (IL ∪ ΓL))
= ΓR .

The check that I = IR and Φ = ΦR is analogous. The construction of the desired derivations is also
an analogously straightforward adaptation of the construction for the previous rule.

There are two remaining ingredients to showing that we can replace subsets of well-typed
configurations without affecting the interface of the whole configuration, provided the replaced
multiset and replacement multiset share the same interface. The first involves showing that given a
hypothetical derivation, we can freely replace the hypothesis, provided that the new hypothesis has
the same interface and that its internal channels do not conflict with those in the conclusion. It is
given by lemma 5.6.16. The second involves showing that we can always reassociate a configuration
so that a well-typedmultiset appears as a conclusion in the configuration’s typing derivation, i.e.,
showing that we can a always reassociate a configuration so that we can apply lemma 5.6.16 to
replace themultiset of interest. We do so using “LMR derivations”, introduced below.

Lemma 5.6.16. Assume Γ′ ∣ IF ⊢ F ∶∶ Θ′ ▸ Γ ∣ IE IF ⊢ E ,F ∶∶ Θ. If Γ′ ∣ IG ⊢ G ∶∶ Θ′ is
well-formed and ǏG is disjoint from Γ̌, ǏE , Θ̌, then Γ′ ∣ IG ⊢ G ∶∶ Θ′ ▸ Γ ∣ IE IG ⊢ E ,G ∶∶ Θ.

Proof. By induction on thehypotheticalderivation Γ′ ∣ IF ⊢ F ∶∶ Θ′ ▸ Γ ∣ IE IF ⊢ E ,F ∶∶ Θ,where
we replace the hypothesis Γ′ ∣ IF ⊢ F ∶∶ Θ′ with the hypothesis Γ′ ∣ IG ⊢ G ∶∶ Θ′.

It is often useful to reassociate a typing derivation such that a given subset appears as a
conclusion in the derivation. Assume Ψ ∣ I ⊢ E ,M ∶∶ Ξ and ΓΓ′ ∣ IM ⊢M ∶∶ ∆′∆ with Γ ⊆ Ψ,
Γ′ , IM , ∆′ ⊆ I, and ∆ ⊆ Ξ. An LMRderivation (left-middle-right derivation) ofΨ∣ IE IM ⊢ E ,M ∶∶ Ξ
forM is a derivation ofΨ∣ IE IM ⊢ E ,M ∶∶ Ξ that decomposes E into (potentially empty) multisets

120 5. STATICS AND DYNAMICS

L andR such that L andR do not share any channels, and all channels that L provides are used
byM. Explicitly,

(1) if Γ′ is non-empty and ∆ ≠ Ξ, then L andR are both non-empty and the LMR derivation
is of the form:

Λ ⊢ L ∶∶ Γ′ Γ′Γ ⊢M ∶∶ ∆∆′

ΛΓ ⊢ L,M ∶∶ ∆∆′
(Conf-C)

P∆′ ⊢R ∶∶ Φ
Ψ ∣ IE IM ⊢ E ,M ∶∶ Ξ

(Conf-C)

(2) if Γ′ is non-empty and ∆ = Ξ, then L is non-empty,R is empty, and the LMR derivation
is of the form:

Λ ⊢ L ∶∶ Γ′ ΓΓ′ ⊢M ∶∶ ∆
Ψ ∣ IE IM ⊢ E ,M ∶∶ Ξ

(Conf-C)

(3) if Γ′ is empty and ∆ ≠ Ξ, then L is empty,R is non-empty, and the LMR derivation is of
the form:

Γ ⊢M ∶∶ ∆∆′ P∆′ ⊢R ∶∶ Φ
Ψ ∣ IE IM ⊢ E ,M ∶∶ Ξ

(Conf-C)

(4) If Γ′ is empty and ∆ = Ξ, then E is empty, so so are L andR, and the LMR derivation is
ΓΓ′ ∣ IM ⊢M ∶∶ ∆′∆.

Proposition 5.6.17. Assume Ψ ∣ I ⊢ E ,M ∶∶ Ξ and ΓΓ′ ∣ IM ⊢ M ∶∶ ∆′∆ with Γ ⊆ Ψ,
Γ′ , IM , ∆′ ⊆ I, and ∆ ⊆ Ξ. There exists an LMR derivation of Ψ ∣ I ⊢ E ,M ∶∶ Ξ for ΓΓ′ ∣ IM ⊢M ∶∶
∆′∆.

Proof. We proceed by induction on the derivation of Ψ ∣ I ⊢ E ,M ∶∶ Ξ.
Case (Conf-M): Then E must be empty, and the LMR derivation is ΓΓ′ ∣ IM ⊢M ∶∶ ∆′∆.
Case (Conf-P): Analogous to the case (Conf-M).
Case (Conf-C): Recall the rule schema:

Σ, Π̌ ∥ Γ ∣ I1 ⊢ C ∶∶ ΦΠ Π̌, Σ′ ∥ ΠΛ ∣ I2 ⊢ D ∶∶ Ξ

Σ, Π̌, Σ′ ∥ ΓΛ ∣ I1ΠI2 ⊢ C ,D ∶∶ ΦΞ
(Conf-C)

Assume first thatM is contained in the left premise. By the induction hypothesis, there is an LMR
derivation of that premise for ΓΓ′ ∣ IM ⊢M ∶∶ ∆′∆. If L andR are both empty, then we are done,
for the left premise is ΓΓ′ ∣ IM ⊢M ∶∶ ∆′∆. If L is non-empty butR is empty, then we are done,
for we have an LMR derivation. If L is empty andR is non-empty, then we are in the situation

⋯M⋯ ⋯R⋯
⋯M,R⋯ ⋯R′⋯

Ψ ∣ I ⊢ E ,M ∶∶ Ξ

where we use three dots “⋯” to elide the unique conclusion given by functionality of composition
(proposition 5.6.6). We can rotate this derivation counter-clockwise to get the desired LMR
derivation:

⋯M⋯
⋯R⋯ ⋯R′⋯
⋯R,R′⋯

Ψ ∣ I ⊢ E ,M ∶∶ Ξ
If L andR are both non-empty, then we are in the situation

⋯L⋯ ⋯M⋯
⋯L,M⋯ ⋯R⋯

⋯L,M,R⋯ ⋯R′⋯

Ψ ∣ I ⊢ E ,M ∶∶ Ξ

Then we can rotate this derivation counter-clockwise to get the desired LMR derivation:

⋯L⋯ ⋯M⋯
⋯L,M⋯

⋯R⋯ ⋯R′⋯
⋯R,R′⋯

Ψ ∣ I ⊢ E ,M ∶∶ Ξ

5.6. STATIC PROPERTIES OF TYPED CONFIGURATIONS 121

Assume next thatM is contained in the right premise. By the induction hypothesis, there is an
LMR derivation of that premise for ΓΓ′ ∣ IM ⊢M ∶∶ ∆′∆. The analysis is analogous, except in the
case when L andR given by the induction hypothesis are both non-empty: in this case, we will
need two clockwise rotations.

Composing that hypothetical derivationwith (conf-c) and the other premise gives the desired
hypothetical derivation.

Assume first thatM has a non-empty intersection with both premises. Call the intersections
with the left and right premises ML andMR respectively (soM = ML ,MR), and let their
respective complements in C andD be L andR. Assume that L andR are both non-empty. Then
by proposition 5.6.15 there exists a hypothetical derivation

⋯L⋯ ⋯ML⋯

⋯C⋯

⋯MR⋯ ⋯R⋯

⋯D⋯
Ψ ∣ I ⊢ E ,M ∶∶ Ξ

By proposition 5.6.7, we can twice rotate this derivation to get the following derivation.

⋯L⋯

⋯ML⋯ ⋯MR⋯

⋯M⋯
⋯L,M⋯ ⋯R⋯

Ψ ∣ I ⊢ E ,M ∶∶ Ξ

We know that the interface forM in the derivation remains ΓΓ′∣ IM ⊢M ∶∶ ∆′∆ by the subformula
property (proposition 5.6.8). This gives the desired LMR derivation. If either L orR is empty, then
applying the induction hypothesis to the other branch and rotating the tree will give the result. If
both are empty, then the LMR derivation is just the derivation ofM.

The following proposition, combined with lemma 5.6.16, shows that we can replace any subset
of amultiset with one that has the same interface:

Proposition 5.6.18 (Replacement Property). Assume F is non-empty. If Γ ∣ IE IF ⊢ E ,F ∶∶ Θ
and Γ′ ∣ IF ⊢ F ∶∶ Θ′ with Γ′ ⊆ ΓIE and Θ′ ⊆ IEΘ, then there exists a hypothetical derivation

Γ′ ∣ I3 ⊢ G ∶∶ Θ′ ▸ Γ ∣ IE I3 ⊢ E ,G ∶∶ Θ for all G and I3 for which the conclusion is well-formed.

Proof. If E is empty, then Γ ∣ IE IF ⊢ E ,F ∶∶ Θ is Γ′ ∣ IF ⊢ F ∶∶ Θ′ and I3 is empty, and we are
done by the fact that hypothetical derivability is reflexive. Assume now that E is not empty.

By proposition 5.6.17, there exists an LMR derivation for Γ′∣ IF ⊢ F ∶∶ Θ′ in Γ∣ IE IF ⊢ E ,F ∶∶
Θ. Pruning the LMR derivation at Γ′ ∣ IF ⊢ F ∶∶ Θ′ gives the hypothetical derivation. The result
follows by lemma 5.6.16.

Every configuration can be decomposed as the composition of independent “simply branched”
configurations with no common channels. The absence of common channels implies that these
simply branched subconfigurations do not interact during executions. We will use this fact to
reduce proofs about arbitrary configurations to proofs about simply branched configurations.

Definition 5.6.19. A configuration Γ ∣ I ⊢ C ∶∶ ∆ is simply branched if it has a derivation in which
every instance of the rule

Σ, Π̌ ∥ Γ ∣ I1 ⊢ C ∶∶ ΦΠ Π̌, Σ′ ∥ ΠΛ ∣ I2 ⊢ D ∶∶ Ξ

Σ, Π̌, Σ′ ∥ ΓΛ ∣ I1ΠI2 ⊢ C ,D ∶∶ ΦΞ
(Conf-C)

has exactly one channel in the context Π. ◀

Proposition 5.6.20. Every configuration Γ ⊢ C ∶∶ d0 ∶ D0 , . . . , dn ∶ Dn is the composition

Γ0 , . . . , Γn ∣ I0 , . . . , In ⊢ C0 , . . . , Cn ∶∶ d0 ∶ D0 , . . . , dn ∶ Dn of simply-branched configurations

Γi ∣ Ii ⊢ Ci ∶∶ d i ∶ D i for 0 ≤ i ≤ n.

Proof. We proceed by induction on the derivation of Γ ⊢ C ∶∶ d0 ∶ D0 , . . . , dn ∶ Dn .
Case (Conf-M): Immediate.

122 5. STATICS AND DYNAMICS

Case (Conf-P): Immediate.
Case (Conf-C): By assumption, both branches of the rule

Σ, Π̌ ∥ Γ ∣ I1 ⊢ C ∶∶ ΦΠ Π̌, Σ′ ∥ ΠΛ ∣ I2 ⊢ D ∶∶ Ξ

Σ, Π̌, Σ′ ∥ ΓΛ ∣ I1ΠI2 ⊢ C ,D ∶∶ ΦΞ
(Conf-C)

can be decomposed into the composition of simply-branched configurations. Iterating the compo-
sition using an induction on the number of channels in the intersection Π gives the result. Indeed,
if there are no channels in the intersection Π, then we are done. Assume the result for some n, and
assume Π has n + 1 channels. Leave one of the configurations of the left branch’s decomposition
out. By the induction hypothesis, the composition of the remainder can be given the desired
decomposition. Applying (Conf-C) to the branch left-out and the decomposition given by the
induction hypothesis gives the result.

Finally, we can characterize simply branched configurations by looking at their provided
channels:

Proposition 5.6.21. A configuration Γ ∣ I ⊢ C ∶∶ ∆ is simply branched if and only if ∆ contains

exactly one channel.

Proof. Assume first that Γ ∣ I ⊢ C ∶∶ ∆ is simply branched. We proceed by induction on one of its
simply-branched derivations to show that ∆ contains exactly one channel.

Case (Conf-M): Immediate.
Case (Conf-P): Immediate.
Case (Conf-C): By assumption, both branches of the rule

Σ, Π̌ ∥ Γ ∣ I1 ⊢ C ∶∶ ΦΠ Π̌, Σ′ ∥ ΠΛ ∣ I2 ⊢ D ∶∶ Ξ

Σ, Π̌, Σ′ ∥ ΓΛ ∣ I1ΠI2 ⊢ C ,D ∶∶ ΦΞ
(Conf-C)

are simply branched. By the induction hypothesis, this means that ΦΠ contains exactly one
channel, and by assumption, that channel must be contained in Π. So Φ is empty. By the induction
hypothesis, we also have that Ξ contains exactly one channel. Because ∆ = ΦΞ, we conclude that ∆
also contains exactly one channel.

The converse is given by proposition 5.6.20.

5.7. Type-Indexed Relations

Our ultimate goal is to relate programs that are equivalent or that somehow approximate each
other. We define various desirable properties for relations on programs and configurations.

Polarized SILL and its configurations do not have unicity of typing, and processes could
be equivalent at one type but not at another. Accordingly, we would like our relations to be
type-indexed:

Definition 5.7.1. Type-indexed (binary) relations are families of relations indexed by typing sequents.
Explicitly:

(1) A type-indexed relation R on configurations is a family of relations (R∆⊢Φ)∆,Φ where
(C ,D) ∈R∆⊢Φ only if ∆ ⊢ C ∶∶ Φ and ∆ ⊢ D ∶∶ Φ. In this case, we write ∆ ⊢ C R D ∶∶ Φ.

(2) A type-indexed relation R on processes is a family of relations (RΨ;∆⊢c∶A)Ψ,∆,c∶A where
(P,Q) ∈ RΨ,∆⊢c∶A only if Ψ ; ∆ ⊢ P ∶∶ c ∶ A and Ψ ; ∆ ⊢ Q ∶∶ c ∶ A. In this case, we write
Ψ ; ∆ ⊢ P R Q ∶∶ c ∶ A.

(3) A type-indexed relation R on terms is a family of relations (RΨ⊢τ)Ψ,τ where (M ,N) ∈
RΨ⊢τ only if Ψ ⊩ M ∶ τ and Ψ ⊩ N ∶ τ. In this case, we write Ψ ⊩ M R N ∶ τ.

Type-indexed relations are assumed to satisfy the exchange, renaming, and weakening struc-
tural properties whenever their underlying judgments do. The renaming property for type-indexed
relations on configurations is subtle because we elided internal channels. Explicitly, it is the
property:

5.7. TYPE-INDEXED RELATIONS 123

● If Γ ⊢ C R D ∶∶ ∆, Γ ∣ I1 ⊢ C ∶∶ ∆, and Γ ∣ I2 ⊢ D ∶∶ ∆, and σ ∶ Γ∆↔ Γ′∆′, σ1∶ I1 ↔ I′1, and
σ2∶ I2 ↔ I′2 are renamings, then Γ′ ⊢ [σ , σ1]C R [σ , σ2]D ∶∶ ∆′. ◀

We will study the effects of running “equivalent programs” in various program contexts.
Contexts are programs with holes:

Definition 5.7.2. A (typed) term context Ψ ⊩ C[⋅]Γσ ∶ τ is a term formed by the rules of section 5.A.1
plus one instance of the axiom (F-Hole):

Γ ⊩ [⋅]Γσ ∶ σ
(F-Hole)

Given a term context Ψ ⊩ C[⋅]Γσ ∶ τ and a term Γ ⊩ M ∶ σ , the result of “plugging” M into the
hole is the term Ψ ⊩ C[M]Γσ ∶ τ obtained by replacing the axiom (F-Hole) by the derivation of
Γ ⊩ M ∶ σ . ◀

Definition 5.7.3. A (typed) process context Ψ ; ∆ ⊢ C[⋅]Γ;Λ
b∶B ∶∶ a ∶ A is a process formed by the rules

of section 5.A.2 plus one instance of the axiom (P-Hole):

Γ ; Λ ⊢ [⋅]Γ;Λ
b∶B ∶∶ b ∶ B

(P-Hole)

Given a process context Ψ ; ∆ ⊢ C[⋅]Γ;Λ
b∶B ∶∶ a ∶ A and a process Γ ; Λ ⊢ P ∶∶ b ∶ B, the result of

“plugging” P into the hole is the term Ψ ; ∆ ⊢ C[P]Γ;Λ
b∶B ∶∶ a ∶ A obtained by replacing the axiom

(P-Hole) by the derivation of Γ ; Λ ⊢ P ∶∶ b ∶ B. ◀

Wemost oftenwork onlywith closed terms and processes, and listing empty functional contexts
becomes tiresome. Consequently, we write C[⋅]Λ

b∶B and C[⋅]σ for C[⋅]⋅ ; Λ
b∶B and C[⋅]

⋅
σ , respectively.

Definition 5.7.4. A (typed) configuration context Γ ∣ I ⊢ C[⋅]ΛΞ ∶∶ ∆ is a configuration formed by the
rules of section 5.2 plus one instance of the axiom (Conf-H):

Λ ∣ ⋅ ⊢ [⋅]ΛΞ ∶∶ Ξ
(Conf-H)

Consider a configuration context Γ ∣ I ⊢ C[⋅]ΛΞ ∶∶ ∆ and a configuration Λ ∣ I′ ⊢ D ∶∶ Ξ such that
Ǐ
′
is disjoint from Γ̌, Ǐ, ∆̌. The result of “plugging”D into the hole is the configuration Γ ∣ I, I′ ⊢
C[D]ΛΞ ∶∶ ∆ given by lemma 5.6.16, where we replace the axiom (Conf-H) by the derivation of
Λ ∣ I′ ⊢ D ∶∶ Ξ and thread the added internal channels I′ through the derivation. ◀

Remark 5.7.5. We can always plug a configuration in a hole with amatching interface in defini-
tion 5.7.4 by suitably renaming the internal channel names in I′.

Definition 5.7.6. A type-indexed relation is contextual if it is closed under contexts. Explicitly:
(1) A type-indexed relationR on configurations is contextual if Λ ⊢ C R D ∶∶ Ξ implies that

Γ ⊢ E[C]ΛΞ R E[D]ΛΞ ∶∶ ∆ for all Γ ⊢ E[⋅]ΛΞ ∶∶ ∆.
(2) A type-indexed relationR on processes is contextual if Ψ ; ∆ ⊢ P R Q ∶∶ c ∶ A implies

that Ψ′ ; ∆′ ⊢ C[P]Ψ;∆
c∶A R C[Q]Ψ;∆

c∶A ∶∶ b ∶ B for all Ψ′ ; ∆′ ⊢ C[⋅]Ψ;∆
c∶A ∶∶ b ∶ B.

(3) A type-indexed relationR on terms is contextual if Ψ ⊩ M R N ∶ τ implies that
Ψ′ ⊩ C[M]Ψτ R C[N]Ψτ ∶ τ

′ for all Ψ′ ⊩ C[⋅]Ψτ ∶ τ
′. ◀

Definition 5.7.7. The contextual interiorRc of a type-indexed relationR is the greatest contextual
type-indexed relation contained inR. ◀

Lemma 5.7.8. Taking the contextual interior of a relation is amonotone operation, and it preserves

arbitrary intersections.

Simply branched configuration contexts closely mirror the “observation contexts” used to
observe processes in section 7.5. The concept of a simply branched context is subtle: given a simply
branched configuration context, we would like the result of filling its hole to again be simply
branched. However, this need not always be the case: the context [⋅]Γ

a∶A,b∶B satisfies definition 5.6.19,
but proposition 5.6.21 implies that for no C is [C]Γ

a∶A,b∶B simply branched. Instead, we use the
characterization of proposition 5.6.21 to define simply branched configuration contexts:

124 5. STATICS AND DYNAMICS

Definition 5.7.9. A configuration context Λ ⊢ B[⋅]Γ∆ ∶∶ Ξ is simply branched if Ξ contains exactly
one channel. ◀

Definition 5.7.10. A typed relationR on configurations is simply branched contextual if Γ ⊢ C R D ∶∶
∆ implies that Φ ⊢ B[C]Γ∆ R B[D]Γ∆ ∶∶ c ∶ C for all simply branched contexts Φ ⊢ B[⋅]Γ∆ ∶∶ c ∶ C. ◀

Definition 5.7.11. The simply branched contextual interiorRb of a typed relationR on configurations
is the greatest simply branched contextual typed relation contained inR. ◀

For most of the relations R considered below,Rb andRc coincide. This fact, reminiscent of
Milner’s context lemma [Mil77], reduces our proof burden when showing that configurations are
related by contextual preorders: we only need to quantify over simply branched contexts instead of
over all contexts. Contextual preorders are called precongruences:

Definition 5.7.12. A typed relationR on configurations is a precongruence if:

(1) each relation in the family is a preorder; and
(2) the relation respects composition: if Γ ⊢ C R C′ ∶∶ ΦΣ and ΣΛ ⊢ D R D′ ∶∶ Ξ, then

ΓΛ ⊢ C ,D R C′ ,D′ ∶∶ ΦΞ.

It is a congruence if it is also an equivalence relation. ◀

Congruence relations are desirable because they let us “replace equals by equals”. The following
proposition is standard:

Proposition 5.7.13. A typed equivalence relationR on configurations is a precongruence if and

only if it is a contextual preorder.

Proof. It is obvious that every precongruence is contextual. To show that every contextual preorder
is a precongruence, assume Γ ⊢ C R C′ ∶∶ ΦΣ and ΣΛ ⊢ D R D′ ∶∶ Ξ. By contextuality, ΓΛ ⊢
C ,D R C′ ,D ∶∶ ΦΞ and ΓΛ ⊢ C′ ,D R C′ ,D′ ∶∶ ΦΞ. By transitivity, ΓΛ ⊢ C ,D R C′ ,D′ ∶∶ ΦΞ.

We can use contextual interiors and proposition 5.7.13 to extract precongruences frompreorders
(cf. [Mil80, Theorem 7.5]). Proposition 5.7.13 and the definitions of precongruence and congruence
translate from configurations to processes and terms in the obvious way.

5.8. Dynamic Properties of Terms

The following preservation result for the functional layer and its proof are standard:

Proposition 5.8.1 (Preservation). If ⋅ ⊩ M ∶ τ and M ⇓ v, then ⋅ ⊩ M ∶ v.

Proposition 5.8.2 (Canonical Forms). If M val, then

(1) if ⋅ ⊩ M ∶ τ → τ′, then M is λx ∶ τ.M′ for some term M′;

(2) if ⋅ ⊩ M ∶ {c0 ∶ A0 ← c i ∶ A i}, then M is c0 ← {P}← c i for some process P.

Proof. By case analysis on M val and inversion on the typing judgment.

5.9. Dynamic Properties of Typed Configurations

In this section, we prove two important properties about Polarized SILL. The first, in sec-
tion 5.9.1, is that the substructural operational semantics for Polarized SILL enjoys a type preserva-
tion property. The second, in section 5.9.2, is that all well-typed processes and configurations have
fair executions.

5.9. DYNAMIC PROPERTIES OF TYPED CONFIGURATIONS 125

5.9.1. Preservation. Let P beMRS for Polarized SILL, i.e., theMRS given by the rules of
section 5.B.We prove various invariants maintained by process traces and traces from well-typed
configurations. Our first goal is to show that the substructural operational semantics preserves
interfaces, and that it does not change the types of internal channel names. To do so, we use the
fact that multiset rewriting onlymakes local changes to amultiset, and these local changes do not
affect the type of amultiset. In particular, we show that whenever a rule replaces the activemultiset
with a newmultiset, then the newmultiset has the same interface as the activemultiset. Moreover,
the type of the stationarymultiset remains unchanged.

We formulate our preservation result in terms of configuration contexts. In particular, our
formulation makes explicit the fact that the type of the stationarymultiset (seen as a configuration
context) does not change, and the fact that the activemultiset and its replacement have the same
interface.

Proposition 5.9.1 (Preservation). Assume Σ ∥ Γ ∣ I ⊢ C ∶∶ ∆. If Σ ; C Ð→ Σ′ ; C′ by some rule

instance E Ð→ E ′, then there exist Ψ ⊆ ΓI, IL ⊆ I, and Θ ⊆ I∆ such that

(1) Ψ ∣ IL ⊢ E ∶∶ Θ,

(2) Ψ ∣ IR ⊢ E
′ ∶∶ Θ for some IR whose channel names are disjoint from those in ΓIL∆,

(3) C is given by Σ ∥ Γ ∣ IL I′ ⊢ D[E]ΨΘ ∶∶ ∆ for some configuration context Γ ∣ I′ ⊢ D[⋅]ΨΘ ∶∶ ∆
and some I′, and

(4) C′ is given by Σ, ǏR ∥ Γ ∣ IR I′ ⊢ D[E ′]ΨΘ ∶∶ ∆ and Σ′ = Σ, ǏR .

Proof. We will proceed by case analysis on the rule below. By lemma 5.6.14, there exist Ψ ⊆ ΓI,
IL ⊆ I, andΘ ⊆ I∆ such that Ψ∣ IL ⊢ E ∶∶ Θ. By proposition 5.6.18,Ψ∣ IL ⊢ E ∶∶ Θ▸ Γ∣ IL I′ ⊢ C ∶∶ ∆.
Replacing the hypothesis Ψ ∣ IL ⊢ E ∶∶ Θ by the axiom (Conf-H) gives a configuration context
Γ ∣ I′ ⊢ D[⋅]ΨΘ ∶∶ ∆ such that Σ ∥ Γ ∣ IL I′ ⊢ D[E]ΨΘ ∶∶ ∆, where C = D[E]

Ψ
Θ . In each case below, we

show that there exists an IR such that Ψ∣ IR ⊢ E
′ ∶∶ Θ, and its channel names are the fresh channel

names generated by the rule instance. The action of themultiset rewrite rule E Ð→ E ′ replaces E by
E ′ in C to give themultiset C′ = D[E ′]ΨΘ . In particular, this implies Σ, ǏR ∥ Γ ∣ IR I′ ⊢ D[E ′]ΨΘ ∶∶ ∆
and Σ′ = Σ, ǏR .

We proceed by case analysis on the rule used to make the step. In each case, we freely use the
fact that parametric hypothetical derivations are closed under renaming of channel names. We
omit cases that follow by analogy with others.

Case (64): The rule is:

msg(a,m+), proc(b, a → b)→ msg(b, [b/a]m+)

The typing judgment for the left-hand side is, by inversion:

⋅ ; ∆ ⊢ m+ ∶∶ a ∶ A

∆ ∣ ⋅ ⊢ msg(a,m+) ∶∶ a ∶ A
(Conf-M) ⋅ ; a ∶ A ⊢ a → b ∶∶ b ∶ A

(Fwd+)

a ∶ A∣ ⋅ ⊢ a → b ∶∶ b ∶ A
(Conf-P)

∆ ∣ a ∶ A ⊢ msg(a,m+), proc(b, a → b) ∶∶ b ∶ A
(Conf-C)

The right-hand side is:
⋅ ; ∆ ⊢ [b/a]m+ ∶∶ b ∶ A

∆ ∣ ⋅ ⊢ msg(b, [b/a]m+) ∶∶ b ∶ A
(Conf-M)

Both sides share the same interface, so this completes the case.
Case (65): The rule is:

proc(b, a ← b),msg(c,m−b ,c)→ msg(c, [a/b]m−b ,c)

The typing judgment for the left-hand side is, by inversion:

⋅ ; a ∶ A ⊢ a ← b ∶∶ b ∶ A
(Fwd−)

a ∶ A∣ ⋅ ⊢ proc(b, a ← b) ∶∶ b ∶ A
(Conf-P)

⋅ ; b ∶ A ⊢ m−
b ,c ∶∶ c ∶ C

b ∶ A∣ ⋅ ⊢ msg(c,m−
b ,c) ∶∶ c ∶ C

(Conf-M)

a ∶ A∣ b ∶ A ⊢ proc(b, a ← b),msg(c,m−
b ,c) ∶∶ c ∶ C

(Conf-C)

126 5. STATICS AND DYNAMICS

The right-hand side is:

⋅ ; a ∶ A ⊢ [a/b]m−
b ,c ∶∶ c ∶ C

a ∶ A∣ ⋅ ⊢ msg(c, [a/b]m−
b ,c) ∶∶ c ∶ C

(Conf-M)

Both sides share the same interface, so this completes the case.
Case (66): The rule is:

∀∆1 , ∆2 , c.proc(c, a ← P; Q)→ ∃b.proc(b, [b/a]P), proc(c, [b/a]Q)

The typing judgment for the left-hand side is, by inversion:
⋅ ; ∆1 ⊢ P ∶∶ a ∶ A ⋅ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C

⋅ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C
(Cut)

∆1∆2 ∣ ⋅ ⊢ proc(c, a ← P; Q) ∶∶ c ∶ C
(Conf-P)

By substitution, the right-hand side is:

⋅ ; ∆1 ⊢ [b/a]P ∶∶ b ∶ A

∆1 ∣ ⋅ ⊢ proc(b, [b/a]P) ∶∶ b ∶ A
(Conf-P)

⋅ ; b ∶ A, ∆2 ⊢ [b/a]Q ∶∶ c ∶ C

b ∶ A, ∆2 ∣ ⋅ ⊢ proc(c, [b/a]Q) ∶∶ c ∶ C
(Conf-P)

∆1∆2 ∣ b ∶ A ⊢ proc(b, [b/a]P), proc(c, [b/a]Q) ∶∶ c ∶ C
(Conf-C)

Both sides share the same interface, so this completes the case.
Case (73): The rule is:

∀a, a i .eval(M , a ← {P}← a i), proc(a, a ← {M}← a i)Ð→ proc(a, P)

The typing judgment for the left-hand side is, by inversion:

⋅ ⊩ M ∶ {a ∶ A← a i ∶ A i}

⋅ ; a i ∶ A i ⊢ a ← {M}← a i ∶∶ a ∶ A
(E-{})

a i ∶ A i ∣ ⋅ ⊢ proc(a, a ← {M}← a i) ∶∶ a ∶ A
(Conf-P)

By proposition 5.8.1, ⋅ ⊩ a ← {P}← a i ∶ {a ∶ A← a i ∶ A i}. By inversion, ⋅ ; a i ∶ A i ⊢ P ∶∶ a ∶ A. The
right-hand side is:

⋅ ; a i ∶ A i ⊢ P ∶∶ a ∶ A

a i ∶ A i ∣ ⋅ ⊢ proc(a, P) ∶∶ a ∶ A
(Conf-P)

Both sides share the same interface, so this completes the case.
Case (68): The rule is:

∀a.proc(a, close a)→ msg(a, close a)

The typing judgment for the left-hand side is, by inversion:

⋅ ; ⋅ ⊢ close a ∶∶ a ∶ 1
(1R)

⋅ ∣ ⋅ ⊢ proc(a, close a) ∶∶ a ∶ 1
(Conf-P)

The right-hand side is:

⋅ ; ⋅ ⊢ close a ∶∶ a ∶ 1
(1R)

⋅ ∣ ⋅ ⊢ msg(a, close a) ∶∶ a ∶ 1
(Conf-M)

Both sides share the same interface, so this completes the case.
Case (80): The rule is:

∀∆, a.proc(a, send a shift; P)→ ∃d .proc(d , [d/a]P),msg(a, send a shift; d ← a)

The typing judgment for the left-hand side is, by inversion:
⋅ ; ∆ ⊢ P ∶∶ a ∶ A

⋅ ; ∆ ⊢ send a shift; P ∶∶ a ∶ ↓A
(↓R)

∆ ∣ ⋅ ⊢ proc(a, send a shift; P) ∶∶ a ∶ ↓A
(Conf-P)

5.9. DYNAMIC PROPERTIES OF TYPED CONFIGURATIONS 127

The right-hand side is:

⋅ ; ∆ ⊢ [d/a]P ∶∶ d ∶ A
∆ ∣ ⋅ ⊢ proc(d , [d/A]P) ∶∶ d ∶ A

(Conf-P)

⋅ ; d ∶ A ⊢ d ← a ∶∶ a ∶ A
(Fwd−)

⋅ ; d ∶ A ⊢ send a shift; d ← a ∶∶ a ∶ ↓A
(↓R)

d ∶ A∣ ⋅ ⊢ msg(a, send a shift; d ← a) ∶∶ a ∶ ↓A
(Conf-M)

∆ ∣ d ∶ A ⊢ proc(d , [d/a]P),msg(a, send a shift; d ← a) ∶∶ a ∶ ↓A
(Conf-C)

Both sides share the same interface, so this completes the case.
Case (81): The rule is:

∀∆, a, d , c.msg(a, send a shift; d ← a), proc(c, shift← recv a; P)→ proc(c, [d/a]P)

The typing judgment for the left-hand side is, by inversion:

⋅ ; d ∶ A ⊢ d ← a ∶∶ a ∶ A
(Fwd−)

⋅ ; d ∶ A ⊢ send a shift; d ← a ∶∶ a ∶ ↓A
(↓R)

d ∶ A∣ ⋅ ⊢ msg(a, send a shift; d ← a) ∶∶ a ∶ ↓A
(Conf-M)

⋅ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C

⋅ ; ∆, a ∶ ↓A ⊢ shift← recv a; P ∶∶ c ∶ C
(↓L)

∆, a ∶ ↓A∣ ⋅ ⊢ proc(c, shift← recv a; P) ∶∶ c ∶ C
(Conf-P)

∆, d ∶ A∣ a ∶ ↓A ⊢ msg(a, send a shift; d ← a), proc(c, shift← recv a; P) ∶∶ a ∶ ↓A
(Conf-C)

The right-hand side is:

⋅ ; ∆, d ∶ A ⊢ [d/a]P ∶∶ c ∶ C
∆, d ∶ A∣ ⋅ ⊢ proc(c, [d/a]P) ∶∶ c ∶ C

(Conf-P)

Both sides share the same interface, so this completes the case.
Case (5.B): The rule is:

∀∆, a.proc(a, shift← recv a; P),msg(d , send a shift; a → d)→ proc(d , [d/a]P)

The typing judgment for the left-hand side is, by inversion:

⋅ ; ∆ ⊢ P ∶∶ a ∶ A

⋅ ; ∆ ⊢ shift← recv a; P ∶∶ a ∶ ↑A
(↑R)

∆ ∣ ⋅ ⊢ proc(a, shift← recv a; P) ∶∶ a ∶ ↑A
(Conf-P)

⋅ ; a ∶ A ⊢ a → d ∶∶ d ∶ A
(Fwd+)

⋅ ; a ∶ ↑A ⊢ send a shift; a → d ∶∶ d ∶ A
(↑L)

a ∶ ↑A∣ ⋅ ⊢ msg(d , send a shift; a → d) ∶∶ d ∶ A
(Conf-M)

∆ ∣ a ∶ ↑A ⊢ proc(a, shift← recv a; P),msg(d , send a shift; a → d) ∶∶ d ∶ A
(Conf-C)

The right-hand side is:

⋅ ; ∆ ⊢ [d/a]P ∶∶ d ∶ A
∆ ∣ ⋅ ⊢ proc(d , [d/a]P) ∶∶ d ∶ A

(Conf-P)

Both sides share the same interface, so this completes the case.
Case (5.B): The rule is:

∀∆, a, c.proc(c, send a shift; P)→ ∃d .msg(d , send a shift; a → d), proc(c, [d/a]P)

The typing judgment for the left-hand side is, by inversion:

⋅ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C

⋅ ; ∆, a ∶ ↑A ⊢ send a shift; P ∶∶ c ∶ C
(↑L)

∆, a ∶ ↑A∣ ⋅ ⊢ proc(c, send a shift; P) ∶∶ c ∶ C
(Conf-P)

The right-hand side is:

⋅ ; a ∶ A ⊢ a → d ∶∶ d ∶ A
(Fwd+)

⋅ ; a ∶ ↑A ⊢ send a shift; a → d ∶∶ d ∶ A
(↑L)

a ∶ ↑A∣ ⋅ ⊢ msg(a, send a shift; a → d) ∶∶ d ∶ A
(Conf-M)

⋅ ; ∆, d ∶ A ⊢ [d/a]P ∶∶ c ∶ C
∆, d ∶ A∣ ⋅ ⊢ proc(d , [d/A]P) ∶∶ c ∶ C

(Conf-P)

∆, a ∶ ↑A∣ d ∶ A ⊢ msg(d , send a shift; a → d), proc(c, [d/a]P) ∶∶ c ∶ C
(Conf-C)

Both sides share the same interface, so this completes the case.

128 5. STATICS AND DYNAMICS

Case (78): The rule is:

∀∆, a.proc(a, a.k; P)→ ∃d .proc(d , [d/a]P),msg(a, a.k; d → a)

The typing judgment for the left-hand side is, by inversion:

⋅ ; ∆ ⊢ P ∶∶ a ∶ Ak

⋅ ; ∆ ⊢ a.k; P ∶∶ a ∶ ⊕{l ∶ A l}l∈L
(⊕R)

∆ ∣ ⋅ ⊢ proc(a, a.k; P) ∶∶ a ∶ ⊕{l ∶ A l}l∈L
(Conf-P)

The right-hand side is:

⋅ ; ∆ ⊢ [d/a]P ∶∶ d ∶ Ak

∆ ∣ ⋅ ⊢ proc(d , [d/a]P) ∶∶ d ∶ Ak

(Conf-P)

⋅ ; d ∶ Ak ⊢ d → a ∶∶ a ∶ Ak

(Fwd+)

⋅ ; d ∶ Ak ⊢ a.k; d → a ∶∶ a ∶ ⊕{l ∶ A l}l∈L
(⊕R)

d ∶ Ak ∣ ⋅ ⊢ msg(a, a.k; d → a) ∶∶ a ∶ ⊕{l ∶ A l}l∈L
(Conf-M)

∆ ∣ d ∶ Ak ⊢ proc(d , [d/a]P),msg(d , a.k; d → a) ∶∶ a ∶ ⊕{l ∶ A l}l∈L
(Conf-C)

Both sides share the same interface, so this completes the case.
Case (79): The rule is:

∀a, d , ∆, c.msg(a, a.k; d → a), proc(c, case a {l ⇒ Pl}l∈L)→ proc(c, [d/a]Pk)

The typing judgment for the left-hand side is, by inversion:

⋅ ; d ∶ Ak ⊢ d → a ∶∶ a ∶ Ak

(Fwd+)

⋅ ; d ∶ Ak ⊢ a.k; d → a ∶∶ a ∶ ⊕{l ∶ A l}l∈L
(⊕R)

d ∶ Ak ∣ ⋅ ⊢ msg(a, a.k; d → a) ∶∶ a ∶ ⊕{l ∶ A l}l∈L
(Conf-M)

⋅ ; ∆, a ∶ A l ⊢ Pl ∶∶ c ∶ C (∀l ∈ L)

⋅ ; ∆, a ∶ ⊕{l ∶ A l}l∈L ⊢ case a {l ⇒ Pl}l∈L ∶∶ c ∶ C
(⊕L)

∆, a ∶ ⊕{l ∶ A l}l∈L ∣ ⋅ ⊢ proc(c, case a {l ⇒ Pl}l∈L) ∶∶ c ∶ C
(Conf-P)

∆, d ∶ Ak ∣ a ∶ ⊕{l ∶ A l}l∈L ⊢ msg(a, a.k; d → a), proc(c, case a {l ⇒ Pl}l∈L) ∶∶ c ∶ C
(Conf-C)

The right-hand side is:

⋅ ; ∆, d ∶ Ak ⊢ [d/a]Pk ∶∶ c ∶ C

∆, d ∶ Ak ∣ ⋅ ⊢ proc(c, [d/a]Pk) ∶∶ c ∶ C
(Conf-P)

Both sides share the same interface, so this completes the case.
Case (69): The rule is:

∀∆, b, a.proc(a, send a b; P)→ ∃d .proc(d , [d/a]P),msg(a, send a b; d → a)

The typing judgment for the left-hand side is, by inversion:

⋅ ; ∆ ⊢ P ∶∶ a ∶ A

⋅ ; ∆, b ∶ B ⊢ send a b; P ∶∶ a ∶ B ⊗ A
(⊗R)

∆, b ∶ B ∣ ⋅ ⊢ proc(a, send a b; P) ∶∶ a ∶ B ⊗ A
(Conf-P)

The right-hand side is:

⋅ ; ∆ ⊢ [d/a]P ∶∶ d ∶ A
∆ ∣ ⋅ ⊢ proc(d , [d/a]P) ∶∶ d ∶ A

(Conf-P)

⋅ ; d ∶ A ⊢ d → a ∶∶ a ∶ A
(Fwd+)

⋅ ; b ∶ B, d ∶ A ⊢ send a b; d → a ∶∶ a ∶ B ⊗ A
(⊗R)

b ∶ B, d ∶ A∣ ⋅ ⊢ msg(a, send a b; d → a) ∶∶ a ∶ B ⊗ A
(Conf-M)

∆, b ∶ B ∣ d ∶ A ⊢ proc(d , [d/a]P),msg(a, send a b; d → a) ∶∶ a ∶ B ⊗ A
(Conf-C)

Both sides share the same interface, so this completes the case.
Case (70): The rule is:

∀a, e , d , ∆, c.msg(a, send a e; d → a), proc(c, b ← recv a; P)→ proc(c, [e , d/b, a]P)

The typing judgment for the left-hand side is, by inversion:

⋅ ; d ∶ A ⊢ d → a ∶∶ a ∶ A
(Fwd+)

⋅ ; e ∶ B, d ∶ A ⊢ send a e; d → a ∶∶ a ∶ B ⊗ A
(⊗R)

e ∶ B, d ∶ A∣ ⋅ ⊢ msg(a, send a e; d → a) ∶∶ a ∶ B ⊗ A
(Conf-M)

⋅ ; ∆, a ∶ A, b ∶ B ⊢ b ← recv a; P ∶∶ c ∶ C
⋅ ; ∆, a ∶ B ⊗ A ⊢ b ← recv a; P ∶∶ c ∶ C

(⊗L)

∆, a ∶ B ⊗ A∣ ⋅ ⊢ proc(c, b ← recv a; P) ∶∶ c ∶ C
(Conf-P)

∆, d ∶ A, e ∶ B ∣ a ∶ B ⊗ A ⊢ msg(a, send a e; d → a), proc(c, b ← recv a; P) ∶∶ c ∶ C
(Conf-C)

5.9. DYNAMIC PROPERTIES OF TYPED CONFIGURATIONS 129

The right-hand side is:

⋅ ; ∆, d ∶ A, e ∶ B ⊢ [e , d/b, a]P ∶∶ c ∶ C
∆, d ∶ A, e ∶ B ∣ ⋅ ⊢ proc(c, b ← recv a; P) ∶∶ c ∶ C

(Conf-P)

Both sides share the same interface, so this completes the case.
Case (74): The rule is:

∀a, ∆.eval(M , v), proc(a, _← output a M; P)→
→ ∃d .proc(d , [d/a]P),msg(a, _← output a v; d → a)

The typing judgment for the left-hand side is, by inversion:

⋅ ⊩ M ∶ τ ⋅ ; ∆ ⊢ P ∶∶ a ∶ A
⋅ ; ∆ ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A (∧R)

∆ ∣ ⋅ ⊢ proc(a, _← output a M; P) ∶∶ a ∶ τ ∧ A
(Conf-P)

By proposition 5.8.1, ⋅ ⊩ v ∶ τ. The right-hand side is:

⋅ ; ∆ ⊢ [d/a]P ∶∶ d ∶ A
∆ ∣ ⋅ ⊢ proc(d , [d/a]P) ∶∶ d ∶ A

(Conf-P)

⋅ ⊩ v ∶ τ ⋅ ; d ∶ A ⊢ d → a ∶∶ a ∶ A
(Fwd+)

⋅ ; d ∶ A ⊢ _← output a v; d → a ∶∶ a ∶ τ ∧ A
(∧R)

d ∶ A∣ ⋅ ⊢ msg(a, _← output a v; d → a) ∶∶ a ∶ τ ∧ A
(Conf-M)

∆ ∣ d ∶ A ⊢ proc(d , [d/a]P),msg(a, _← output a v; d → a) ∶∶ a ∶ τ ∧ A
(Conf-C)

Both sides share the same interface, so this completes the case.
Case (75): The rule is:

∀∆, a, d , c.msg(a, _← output a v; d → a), proc(c, x ← input a; P)→
→ proc(c, [d , v/a, x]P)

The typing judgment for the left-hand side is, by inversion:

⋅ ⊩ v ∶ τ ⋅ ; d ∶ A ⊢ d → a ∶∶ a ∶ A
(Fwd+)

⋅ ; d ∶ A ⊢ _← output a v; d → a ∶∶ a ∶ τ ∧ A
(∧R)

d ∶ A∣ ⋅ ⊢ msg(a, _← output a v; d → a) ∶∶ a ∶ τ ∧ A
(Conf-M)

x ∶ τ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C
⋅ ; ∆, a ∶ τ ∧ A ⊢ x ← input a; P ∶∶ c ∶ C (∧L)

∆, a ∶ τ ∧ A∣ ⋅ ⊢ proc(c, x ← input a; P) ∶∶ c ∶ C
(Conf-P)

∆, d ∶ A∣ a ∶ τ ∧ A ⊢ msg(a, _← output a v; d → a), proc(c, x ← input a; P) ∶∶ c ∶ C
(Conf-C)

The right-hand side is:

⋅ ; ∆, d ∶ A ⊢ [d , v/a, x]P ∶∶ c ∶ C
∆, d ∶ A∣ ⋅ ⊢ proc(c, [d , v/a, x]P) ∶∶ c ∶ C

(Conf-P)

Both sides share the same interface, so this completes the case.
Case (82): The rule is:

∀∆, a.proc(a, send a unfold; P)→ ∃d .proc(d , [d/a]P),msg(a, send a unfold; d → a)

The typing judgment for the left-hand side is, by inversion:

⋅ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A ⋅ ⊢ ρα.A type+s
⋅ ; ∆ ⊢ send a unfold; P ∶∶ a ∶ ρα.A

(ρ+R)

∆ ∣ ⋅ ⊢ proc(a, send a unfold; P) ∶∶ a ∶ ρα.A
(Conf-P)

The right-hand side is:

⋅ ; ∆ ⊢ [d/a]P ∶∶ d ∶ [ρα.A/α]A
∆ ∣ ⋅ ⊢ proc(d , [d/a]P) ∶∶ d ∶ [ρα.A/α]A

(Conf-P)

⋅ ; d ∶ [ρα.A/α]A ⊢ d → a ∶∶ a ∶ [ρα.A/α]A
(Fwd+)

⋅ ⊢ ρα.A type+s
⋅ ; d ∶ [ρα.A/α]A ⊢ send a unfold; d → a ∶∶ a ∶ ρα.A

(ρ+R)

d ∶ [ρα.A/α]A∣ ⋅ ⊢ msg(a, send a unfold; d → a) ∶∶ a ∶ ρα.A
(Conf-M)

∆ ∣ d ∶ [ρα.A/α]A ⊢ proc(d , [d/a]P),msg(a, send a unfold; d → a) ∶∶ a ∶ ρα.A
(Conf-C)

Both sides share the same interface, so this completes the case.

130 5. STATICS AND DYNAMICS

Case (83): The rule is:

∀∆, a, d .msg(a, send a unfold; d → a), proc(c, unfold← recv a; P)→ proc(c, [d/a]P)

The typing judgment for the left-hand side is, by inversion:

⋅ ; d ∶ [ρα.A/α]A ⊢ d → a ∶∶ a ∶ [ρα.A/α]A
(Fwd+)

⋅ ⊢ ρα.A type+s
⋅ ; d ∶ [ρα.A/α]A ⊢ send a unfold; d → a ∶∶ a ∶ ρα.A

(ρ+R)

d ∶ [ρα.A/α]A∣ ⋅ ⊢ msg(a, send a unfold; d → a) ∶∶ a ∶ ρα.A
(Conf-M)

⋅ ; ∆, a ∶ [ρα.A/α]A ⊢ P ∶∶ c ∶ C ⋅ ⊢ ρα.A type+s
⋅ ; ∆, a ∶ ρα.A ⊢ unfold← recv a; P ∶∶ c ∶ C

(ρ+L)

∆, a ∶ ρα.A∣ ⋅ ⊢ proc(c, unfold← recv a; P) ∶∶ c ∶ C
(Conf-P)

∆, d ∶ [ρα.A/α]A∣ a ∶ ρα.A ⊢ msg(a, send a unfold; d → a), proc(c, unfold← recv a; P) ∶∶ c ∶ C
(Conf-C)

The right-hand side is:
⋅ ; ∆, d ∶ [ρα.A/α]A ⊢ [d/a]P ∶∶ c ∶ C

∆, d ∶ [ρα.A/α]A∣ ⋅ ⊢ proc(c, [d/a]P) ∶∶ c ∶ C
(Conf-P)

Both sides share the same interface, so this completes the case.

As a corollary of proposition 5.9.1, we know that in a trace T = (M0 , (r i ; δ i)i) from a well-
typed Σ ∥ Γ∣ I0 ⊢ M0 ∶∶ ∆, we have for all i some Σ i and Ii such that Σ i ∥ Γ∣ Ii ⊢ M i ∶∶ ∆. Indeed,
Σ i and Ii are given by induction on n,where each step is given by an application of proposition 5.9.1.
We also know that every channel appearing in a process trace has an associated session type, a
fact that we will use repeatedly when reasoning about process traces. Definition 5.9.2 captures this
relationship between traces, channels, and types:

Definition 5.9.2. Consider a trace T = (M0 , (r i ; δ i)i) from Σ ∥ Γ ∣ I0 ⊢ M0 ∶∶ ∆. We write
T ⊢ c ∶ A to mean that c ∶ A appears in Γ, ∆, or Ii for some i. ◀

By proposition 5.6.10, T ⊢ c ∶ A is an entire relation from free channel names appearing in
⋃i fc(M i) to session types. In fact, it is a total function:

Corollary 5.9.3. Let T = (M0 , (r i ; δ i)i) be a trace from Σ ∥ Γ ∣ I0 ⊢ M0 ∶∶ ∆. For all c, if

T ⊢ c ∶ A and T ⊢ c ∶ A′, then A = A′.

Proof. It is sufficient to show that if c ∶ A is in Γ, In , ∆ and c ∶ A′ is in Γ, Ik , ∆ for some k ≤ n, then
A = A′. We do so by induction on n.

Case n = 0: Then 0 ≤ k ≤ n implies that k = 0. The result is immediate by well-formedness
of Σ ∥ Γ ∣ I ⊢ M0 ∶∶ ∆.

Case n = n′ + 1: Assume the result for n′. If k = n, then A = A′ by well-formedness of
Σ ∥ Γ ∣ In ⊢ Mn ∶∶ ∆. Otherwise k < n, so in particular, k ≤ n′. By proposition 5.9.1, c ∶ A is in
Γ, In′ , ∆ (preservation implies that a channel cannot reappear in a trace after having disappeared).
By the induction hypothesis, A = A′ as desired.

The following proposition further confirms that the types assigned by T ⊢ c ∶ A are consistent
with those for message and process facts appearing in the trace T :

Proposition 5.9.4. Let T = (M0 , (r i ; δ i)i) be a trace from Σ0 ∥ Γ ∣ I0 ⊢ M0 ∶∶ ∆0, and let Σ i

and Ii be given by recursion on n and proposition 5.9.1. For all n, if proc(c0 , P) ∈ Mn , then

(1) c0 ∈ fc(P);
(2) for all c i ∈ fc(P), then T ⊢ c i ∶ A i for some A i ; and

(3) where fc(P) = {c0 , . . . , cm}, we have ⋅ ; c1 ∶ A1 , . . . , cm ∶ Am ⊢ P ∶∶ c0 ∶ A0.

Ifmsg(c0 ,m) ∈ Mn , then

● if m = close c, then T ⊢ c ∶ 1;
● if m = c.l j ; d → c, then T ⊢ c ∶ ⊕{l i ∶ A i}i∈I for some A i (i ∈ I), and T ⊢ d ∶ A j for some

j ∈ I;
● if m = c.l j ; c ← d, then T ⊢ c ∶ &{l i ∶ A i}i∈I for some A i (i ∈ I), and T ⊢ d ∶ A j for some

j ∈ I;
● if m = send c a; b → c, then T ⊢ c ∶ A⊗ B, T ⊢ a ∶ A, and T ⊢ b ∶ B for some A and B;

● if m = send c a; c ← b, then T ⊢ c ∶ A⊸ B, T ⊢ a ∶ A, and T ⊢ b ∶ B for some A and B;

5.9. DYNAMIC PROPERTIES OF TYPED CONFIGURATIONS 131

● if m = _ ← output c v; d → c, then T ⊢ c ∶ τ ∧ A and T ⊢ d ∶ A for some A and τ such

that ⋅ ⊩ v ∶ τ;

● if m = _ ← output c v; c ← d, then T ⊢ c ∶ τ ⊃ A and T ⊢ d ∶ A for some A and τ such

that ⋅ ⊩ v ∶ τ;

● if m = send c unfold; d → c, then T ⊢ c ∶ ρα.A and T ⊢ d ∶ [ρα.A/α]A for some

α ⊢ A type+s ; and

● if m = send c unfold; c ← d, then T ⊢ c ∶ ρα.A and T ⊢ d ∶ [ρα.A/α]A for some

α ⊢ A type−s .

Proof. By assumption, we have Σ i ∥ ∆ ∣ Ii ⊢ M i ∶∶ (c ∶ A) for all i. Assume proc(c0 , P) ∈ Mn or
msg(c,m) ∈ Mn . Then the result is immediate by proposition 5.6.9 and inversion on the typing
judgment for processes.

5.9.2. Fairness. We show that every well-typed configuration has a fair execution, and that
its fair executions are all union-equivalent (recall definition 3.3.22). These two facts will follow
easily from the fact that theMRS P is non-overlapping on well-typed configurations. The proof of
non-overlapping property depends on the following sequence of technical results.

The first technical lemma characterizes the input and output channel names for facts appearing
in rules.

Lemma 5.9.5. If F(k⃗)
(r ;(k⃗ , a⃗))
ÐÐÐÐ→ G(k⃗, a⃗) by a rule r ∈ P , then

(1) ifmsg(c,m) ∈ F(k⃗), then

(a) F(k⃗) = msg(c,m), proc(d , P) for some d and P,

(b) cc(msg(c,m)) ∈ ics(proc(d , P)), and
(c) cc(msg(c,m)) ∉ fc(G(k⃗, a⃗));

(2) if F(k⃗) = proc(c, P), then

(a) G(k⃗, a⃗) = msg(d ,m), proc(e ,Q) for some d, m, e, and Q, and

(b) cc(msg(d ,m)) ∈ ocs(proc(c, P));
(3) if G(k⃗, a⃗) = msg(c,m), then

(a) proc(d , P) ∈ F(k⃗) for some d and P, and

(b) cc(msg(c,m)) ∈ ocs(proc(d , P));
(4) if G(k⃗, a⃗) = msg(c,m), proc(d , P), then

(a) proc(e ,Q) ∈ F(k⃗) for some e and Q,

(b) ocs(proc(d , P)) ⊆ ocs(proc(e ,Q)) ∪ a⃗,
(c) kc(msg(c,m)) ∈ a⃗,
(d) kc(msg(c,m)) ∈ fc(proc(d , P)),
(e) cc(msg(c,m)) ∈ ocs(proc(d , P)), and
(f) cc(msg(c,m)) ∉ fc(proc(d , P));

(5) if G(k⃗, a⃗) = proc(c, P), proc(d ,Q), then

(a) r is (66),
(b) F(k⃗) = proc(d , c ← P; Q), where without loss of generality, a⃗ = c, and

(c) ocs(G(k⃗, a⃗)) ⊆ ocs(F(k⃗)) ∪ {c}.
The above enumeration of cases for G(k⃗, a⃗) is exhaustive.

Proof. Immediate by a case analysis on the rules, using proposition 5.5.5 to simplify reasoning.

Remark 5.9.6. We avoided the question of configurations being well-typed in lemma 5.9.5 by using
static input and output channel names, which lift to facts in the obvious way.

Corollary 5.9.7 shows that a configuration never consumes a message that it sends on its
interface:

Corollary 5.9.7. If Γ ∣ I ⊢ C ∶∶ ∆ and C Ð→ C′, then for allmsg(c,m) ∈ C, if cc(msg(c,m)) ∈
Γ̌, ∆̌, thenmsg(c,m) ∈ C′.

132 5. STATICS AND DYNAMICS

Proof. Let msg(c,m) ∈ C with cc(msg(c,m)) ∈ Γ̌, ∆̌ be arbitrary. The only way for msg(c,m) ∈ C
but msg(c,m) ∉ C′ is for the step to be by a rule with msg(c,m) in its active multiset F(k⃗).
By lemma 5.9.5, this implies that there exists some proc(d , P) ∈ F(k⃗) with cc(msg(c,m)) ∈
ics(proc(d , P)). By proposition 5.5.5, this implies that cc(msg(c,m)) ∈ ic(proc(d , P)). But then
by lemma 5.6.11, cc(msg(c,m)) ∈ I. This implies that cc(msg(c,m)) ∉ Γ̌, ∆̌, a contradiction.

As a second corollary, each channel in a trace appears as the carrier channel of at most one
message judgment:

Corollary 5.9.8. Let T = (M0 , (r i ; δ i)i) be a trace from Γ ∣ I0 ⊢ M0 ∶∶ ∆0. For all j ≤ k, if
msg(c j ,m j) ∈ M j and K ∈ Mk , then cc(msg(c j ,m j)) ∉ oc(K) or K = msg(c j ,m j).

Proof. We proceed by induction on k to show that if K ∈ Mk , then for all 0 ≤ j ≤ k, ifmsg(c j ,m j) ∈
M j , then cc(msg(c j ,m j)) ∉ oc(K) or K = msg(c j ,m j).

Case k = 0: The base case is given by lemma 5.6.13.
Case k = k′ + 1: Assume the result for some k′. Assume that Mk′ Ð→ Mk by some rule

instantiation F(h⃗)
(r ;(h⃗ , a⃗))
ÐÐÐÐ→ G(h⃗, a⃗). Let msg(c j ,m j) ∈ M j and K ∈ Mk be arbitrary, where

0 ≤ j ≤ k. If K = msg(c j ,m j), then we are done. Now assume that K ≠ msg(c j ,m j). We proceed
by case analysis j ≤ k:
Subcase j = k: Then cc(msg(c j ,m j)) ∉ oc(K) by lemma 5.6.12 and proposition 5.9.1.
Subcase j < k: If K is in the stationary subset, then K ∈ Mk′ and we are done by the induction
hypothesis. Otherwise, K ∈ G(h⃗, a⃗). We proceed by case analysis on the fact K:
Subsubcase K = proc(ck , Pk): By lemma 5.9.5, oc(proc(ck , Pk)) ⊆ ocs(proc(d , P)) ∪ a⃗ for
some proc(d , P) ∈ Mk′ . By the induction hypothesis, cc(msg(c j ,m j)) ∉ oc(proc(d , P)). By
proposition 5.5.5, ocs(proc(d , P)) ⊆ oc(proc(d , P)). So cc(msg(c j ,m j)) ∉ ocs(proc(d , P)).
By freshness, cc(msg(c j ,m j)) ∉ a⃗. So cc(msg(c j ,m j)) ∉ ocs(proc(d , P)) ∪ a⃗. It follows that
cc(msg(c j ,m j)) ∉ oc(proc(ck , Pk)) as desired.
Subsubcase K = msg(ck ,mk): By lemma 5.9.5, cc(msg(ck ,mk)) ∈ ocs(proc(d , P)) for some
proc(d , P) ∈ Mk′ . By the induction hypothesis, cc(msg(c j ,m j)) ∉ oc(proc(d , P)). By proposi-
tion 5.5.5, ocs(proc(d , P)) ⊆ oc(proc(d , P)). It follows that cc(msg(ck ,mk)) ∉ oc(msg(c j ,m j))
as desired.

Next, we use our technical results to show the that themultiset rewriting system for Polarized
SILL is non-overlapping on well-typed configurations:

Proposition 5.9.9. If Γ ∣ I ⊢ C ∶∶ ∆, then theMRS P is non-overlapping on C.

Proof. It is sufficient to show that if s1(ϕ1) and s2(ϕ2) are distinct instantiations applicable to C,
then F1(ϕ1) and F2(ϕ2) are disjoint multisets: F1(ϕ1) ∩ F2(ϕ2) = ∅. Indeed, if this is the case and
s1(ϕ1), . . . , sk(ϕk) are the distinct rule instantiations applications to Mn , then F1(ϕ1), . . . , Fk(ϕk)
are all pairwise-disjoint multisets. It follows that F1(ϕ1), . . . , Fk(ϕk) ⊆ Mn , so the overlap in C is
empty: ΩC(F1(ϕ1), . . . , Fk(ϕk)) = ∅.

We proceed by case analysis on the possible judgments in F1(ϕ1) ∩ F2(ϕ2).
Case msg(d ,m): By lemma 5.9.5, there exist proc(d i , Pi) ∈ Fi(ϕ i) with cc(msg(d ,m)) ∈

ic(Pi) for i = 1, 2. If P1 = P2, then an inspection of the rules reveals that s1 = s2 and ϕ1 = ϕ2, so
we are done. Suppose to the contrary that P1 ≠ P2. So cc(msg(d ,m)) ∈ ic(P1) ∩ ic(P2). This is a
contradiction by lemma 5.6.12.

Case proc(e , P): Then s1 = s2 by a case analysis on the rules. We show that ϕ1 = ϕ2. If s1 is
one of (5.B), (66) to (69), (72), (73), (77), (78), (80), (82), (87) and (89), then ϕ1 = ϕ2 because all
constants matched by ϕ1 and ϕ2 appear in proc(e , P). If s1 is one of (5.B), (64), (65), (70), (71), (76),
(79), (81), (83), (86) and (88), then for i = 1, 2, themultiset Fi(ϕ i) contain a fact msg(d i ,m i)where
there is a channel name e i ∈ m i that appears in ϕ i , but not in proc(c, P) (explicitly, e i is the name
of the continuation channel). If m1 = m2, then we are done, for an inspection of the rules reveals
that ϕ1 = ϕ2. Suppose to the contrary that m1 ≠ m2. By lemma 5.6.14, ⋅ ; ∆′i ⊢ m i ∶∶ d i ∶ D i for some

5.10. RELATED WORK 133

∆′i and d i ∶ D i . Inspection of the rules reveals that cc(msg(d1 ,m1)) = cc(msg(d2 ,m2)) ∈ ic(P).
This is a contradiction by lemma 5.6.12.

Corollary 5.9.10. Every configuration Γ ∣ I ⊢ C ∶∶ ∆ has a fair execution. Its fair executions

are all permutations of each other and they are all union-equivalent.

Proof. By propositions 5.9.1 and 5.9.9, P is non-overlapping from C. By proposition 3.3.9, this
implies that it commutes from C, so a fair execution exists by proposition 3.3.7. All of its fair
executions are permutations of each other by proposition 3.3.21. They are union-equivalent by
corollary 3.3.24.

Corollary 5.9.11. Every process ⋅ ; ∆ ⊢ P ∶∶ c ∶ A has a fair execution. Its fair executions are all

permutations of each other and they are all union-equivalent.

Proof. Immediate by corollary 5.9.10 with the initial configuration ∆ ∣ ⋅ ⊢ proc(c, P) ∶∶ c ∶ A.

5.10. RelatedWork

Honda [Hon93] andTakeuchi,Honda, andKubo [THK94] introduced session types to describe
sessions of interaction. Caires and Pfenning [CP10] observed a proofs-as-programs correspondence
between the session-typed π-calculus and intuitionistic linear logic, where the (Cut) rule captures
process communication. Toninho, Caires, and Pfenning [TCP13] built on this correspondence
and introduced SILL’s monadic integration between functional and synchronous message-passing
programming. They specified SILL’s operational behaviour using a substructural operational
semantics (SSOS). Gay and Vasconcelos [GV10] introduced asynchronous communication for
session-typed languages. They used an operational semantics and buffers to model asynchronicity.
Pfenning and Griffith [PG15] observed that the polarity of a type determines the direction of
communication along a channel. They observed that synchronous communication can be encoded
in an asynchronous setting using explicit shift operators. They gave a computational interpretation
to polarized adjoint logic. In this interpretation, linear propositions, affine propositions, and
unrestricted propositions correspond to different modes in which resources can be used.

There are several process calculi and session-typed programming languages that are closely
related to Polarized SILL, and to which we conjecture our techniques could be extended. Wadler
[Wad14] introduced “Classical Processes” (CP), a proofs-as-programs interpretation of classical
linear logic that builds on the ideas of Caires and Pfenning [CP10]. CP supports replication but
not recursion. Though CP does not natively support functional programming,Wadler gives a
translation for GV, a linear functional language with pairs but no recursion, into CP. In contrast,
Polarized SILL uniformly integrates functional programming andmessage-passing concurrency.
CP has a synchronous communication semantics and does not have an explicit treatment of
polarities. Polarized SILL has an asynchronous communication semantics, and synchronous
communication is encoded using polarity shifts, even though we do not detail this construction
here.

Kokke,Montesi, and Peressotti [KMP19] introduced “hypersequent classical processes” (HCP).
HCP is a revised proofs-as-processes interpretation between classical linear logic and the π-calculus.
Building on Atkey’s [Atk17] semantics for CP, they gave HCP a denotational semantics using
Brzozowski derivatives [Brz64]. HCP does not include recursion, shifts, or functional value
transmission.

Gommerstadt, Jia, and Pfenning [GJP18] introduced run-time monitors for a dependent
version of Polarized SILL. Our type system for configurations is inspired by theirs [GJP18, p. 786].

Pruiksma and Pfenning [PP21] gave a message passing interpretation to adjoint logic. It
supports richer communication topologies than Polarized SILL. For example, it supports multicast,
replicable services, and cancellation. Its operational semantics is specified by amultiset rewriting
system. It enjoys session-fidelity and deadlock-freedom.

134 5. STATICS AND DYNAMICS

5.A. Complete Listing of Typing Rules for Polarized SILL

For ease of reference, we collect all of the rules for Polarized SILL in this appendix.

5.A.1. Rules for Term Formation.

Ψ ; a i ∶ A i ⊢ P ∶∶ a ∶ A

Ψ ⊩ a ← {P}← a i ∶ {a ∶ A← a i ∶ A i}
(I-{})

Ψ, x ∶ τ ⊩ x ∶ τ
(F-Var) Ψ, x ∶ τ ⊩ M ∶ τ

Ψ ⊩ fix x .M ∶ τ
(F-Fix)

Ψ, x ∶ τ ⊩ M ∶ σ

Ψ ⊩ λx ∶ τ.M ∶ τ → σ
(F-Fun) Ψ ⊩ M ∶ τ → σ Ψ ⊩ N ∶ τ

Ψ ⊩ MN ∶ σ
(F-App)

5.A.2. Rules for Process Formation.
⋅ ⊢ A type+s

Ψ ; a ∶ A ⊢ a → b ∶∶ b ∶ A
(Fwd+)

⋅ ⊢ A type−s
Ψ ; a ∶ A ⊢ a ← b ∶∶ b ∶ A

(Fwd−)

Ψ ; ∆1 ⊢ P ∶∶ a ∶ A Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C

Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C
(Cut)

Ψ ⊩ M ∶ {a ∶ A← a i ∶ A i}

Ψ ; a i ∶ A i ⊢ a ← {M}← a i ∶∶ a ∶ A
(E-{})

Ψ ; ⋅ ⊢ close a ∶∶ a ∶ 1
(1R) Ψ ; ∆ ⊢ P ∶∶ c ∶ C

Ψ ; ∆, a ∶ 1 ⊢ wait a; P ∶∶ c ∶ C
(1L)

Ψ ; ∆ ⊢ P ∶∶ a ∶ A

Ψ ; ∆ ⊢ send a shift; P ∶∶ a ∶ ↓A
(↓R) Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C

Ψ ; ∆, a ∶ ↓A ⊢ shift← recv a; P ∶∶ c ∶ C
(↓L)

Ψ ; ∆ ⊢ P ∶∶ a ∶

Ψ ; ∆ ⊢ shift← recv a; P ∶∶ a ∶ ↑A
(↑R) Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C

Ψ ; ∆, a ∶ ↑A ⊢ send a shift; P ∶∶ c ∶ C
(↑L)

Ψ ; ∆ ⊢ P ∶∶ a ∶ Ak (k ∈ L)

Ψ ; ∆ ⊢ a.k; P ∶∶ a ∶ ⊕{l ∶ A l}l∈L
(⊕R)

Ψ ; ∆, a ∶ A l ⊢ Pl ∶∶ c ∶ C (∀l ∈ L)

Ψ ; ∆, a ∶ ⊕{l ∶ A l}l∈L ⊢ case a {l ⇒ Pl}l∈L ∶∶ c ∶ C
(⊕L)

Ψ ; ∆ ⊢ Pl ∶∶ a ∶ A l (∀l ∈ L)

Ψ ; ∆ ⊢ case a {l ⇒ Pl}l∈L ∶∶ a ∶ &{l ∶ A l}l∈L
(&R)

Ψ ; ∆, a ∶ Ak ⊢ P ∶∶ c ∶ C (k ∈ L)

Ψ ; ∆, a ∶ &{l ∶ A l}l∈L ⊢ a.k; P ∶∶ c ∶ C
(&L)

Ψ ; ∆ ⊢ P ∶∶ a ∶ A

Ψ ; ∆, b ∶ B ⊢ send a b; P ∶∶ a ∶ B ⊗ A
(⊗R) Ψ ; ∆, a ∶ A, b ∶ B ⊢ P ∶∶ c ∶ C

Ψ ; ∆, a ∶ B ⊗ A ⊢ b ← recv a; P ∶∶ c ∶ C
(⊗L)

Ψ ; ∆, b ∶ B ⊢ P ∶∶ a ∶ A

Ψ ; ∆ ⊢ b ← recv a; P ∶∶ a ∶ B⊸ A
(⊸R) Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C

Ψ ; ∆, b ∶ B, a ∶ B⊸ A ⊢ send a b; P ∶∶ c ∶ C
(⊸L)

Ψ ⊩ M ∶ τ Ψ ; ∆ ⊢ P ∶∶ a ∶ A

Ψ ; ∆ ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A
(∧R) Ψ, x ∶ τ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C

Ψ ; ∆, a ∶ τ ∧ A ⊢ x ← input a; P ∶∶ c ∶ C
(∧L)

Ψ, x ∶ τ ; ∆ ⊢ P ∶∶ a ∶ A

Ψ ; ∆ ⊢ x ← input a; P ∶∶ a ∶ τ ⊃ A
(⊃R) Ψ ⊩ M ∶ τ Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C

Ψ ; ∆, a ∶ τ ⊃ A ⊢ _← output a M; P ∶∶ c ∶ C
(⊃L)

Ψ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A ⋅ ⊢ ρα.A type+s
Ψ ; ∆ ⊢ send a unfold; P ∶∶ a ∶ ρα.A

(ρ+R)
Ψ ; ∆, a ∶ [ρα.A/α]A ⊢ P ∶∶ c ∶ C ⋅ ⊢ ρα.A type+s

Ψ ; ∆, a ∶ ρα.A ⊢ unfold← recv a; P ∶∶ c ∶ C
(ρ+L)

Ψ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A ⋅ ⊢ ρα.A type−s
Ψ ; ∆ ⊢ unfold← recv a; P ∶∶ a ∶ ρα.A

(ρ−R)
Ψ ; ∆, a ∶ [ρα.A/α]A ⊢ P ∶∶ c ∶ C ⋅ ⊢ ρα.A type−s

Ψ ; ∆, a ∶ ρα.A ⊢ send a unfold; P ∶∶ c ∶ C
(ρ−L)

5.A.3. Rules for Type Formation.

Ξ ⊢ 1 type+s
(C1)

Ξ, α type
p
s ⊢ α type

p
s

(CVar)

Ξ, α type+s ⊢ A type+s
Ξ ⊢ ρα.A type+s

(Cρ+)
Ξ, α type−s ⊢ A type−s

Ξ ⊢ ρα.A type−s
(Cρ−)

5.B. COMPLETE LISTING OF MULTISET-REWRITING RULES FOR POLARIZED SILL 135

Ξ ⊢ A type−s
Ξ ⊢ ↓A type+s

(C↓)
Ξ ⊢ A type+s
Ξ ⊢ ↑A type−s

(C↑)

Ξ ⊢ A l type
+
s (∀l ∈ L)

Ξ ⊢ ⊕{l ∶ A l}l∈L type
+
s

(C⊕)
Ξ ⊢ A l type

−
s (∀l ∈ L)

Ξ ⊢ &{l ∶ A l}l∈L type
−
s

(C&)

Ξ ⊢ A type+s Ξ ⊢ B type+s
Ξ ⊢ A⊗ B type+s

(C⊗)
Ξ ⊢ B type+s Ξ ⊢ A type−s

Ξ ⊢ B⊸ A type−s
(C⊸)

Ξ ⊢ τ typef Ξ ⊢ A type+s
Ξ ⊢ τ ∧ A type+s

(C∧)
Ξ ⊢ τ typef Ξ ⊢ A type−s

Ξ ⊢ τ ⊃ A type−s
(C⊃)

Ξ ⊢ A i types (0 ≤ i ≤ n)
Ξ ⊢ {a0 ∶ A0 ← a1 ∶ A1 , . . . , an ∶ An} typef

(T{})
Ξ ⊢ τ typef Ξ ⊢ σ typef

Ξ ⊢ τ → σ typef
(T→)

The following two rules are not part of Polarized SILL proper, and they will only be used in
chapter 8 as technical tools to define the denotations of recursion. There is an instance of each rule
for each n ∈ N:

Ξ, α type+s ⊢ A type+s
Ξ ⊢ ρnα.A type+s

(Cρ+n)
Ξ, α type−s ⊢ A type−s
Ξ ⊢ ρnα.A type−s

(Cρ−n)

5.B. Complete Listing ofMultiset-Rewriting Rules for Polarized SILL

msg(a,m+), proc(b, a → b)→ msg(b, [b/a]m+) (64)

proc(b, a ← b),msg(c,m−b ,c)→ msg(c, [a/b]m−b ,c) (65)
∀∆1 , ∆2 , c.proc(c, a ← P; Q)→ ∃b.proc(b, [b/a]P), proc(c, [b/a]Q) (66)
∀a, a i .eval(M , a ← {P}← a i), proc(a, a ← {M}← a i)Ð→ proc(a, P) (73)

∀a.proc(a, close a)→ msg(a, close a) (68)
∀∆, a, c.msg(a, close a), proc(c,wait a; P)→ proc(c, P) (67)

∀∆, a.proc(a, send a shift; P)→ ∃d .proc(d , [d/a]P),msg(a, send a shift; d ← a) (80)
∀∆, a, d , c.msg(a, send a shift; d ← a), proc(c, shift← recv a; P)→ proc(c, [d/a]P) (81)
∀∆, a.proc(a, shift← recv a; P),msg(d , send a shift; a → d)→ proc(d , [d/a]P)
∀∆, a, c.proc(c, send a shift; P)→ ∃d .msg(d , send a shift; a → d), proc(c, [d/a]P)

∀∆, a.proc(a, a.k; P)→ ∃d .proc(d , [d/a]P),msg(a, a.k; d → a) (78)
∀a, d , ∆, c.msg(a, a.k; d → a), proc(c, case a {l ⇒ Pl}l∈L)→ proc(c, [d/a]Pk) (79)
∀a, d , ∆.proc(a, case a {l ⇒ Pl}l∈L),msg(d , a.k; a ← d)→ proc(d , [d/a]Pk) (86)

∀∆, a, c.proc(c, a.k; P)→ ∃d .msg(d , a.k; a ← d), proc(c, [d/a]P) (87)
∀∆, b, a.proc(a, send a b; P)→ ∃d .proc(d , [d/a]P),msg(a, send a b; d → a) (69)

∀a, e , d , ∆, c.msg(a, send a e; d → a), proc(c, b ← recv a; P)→ proc(c, [e , d/b, a]P) (70)
∀a, e , d , ∆, c.proc(a, b ← recv a; P),msg(d , send a e; a ← d)→ proc(d , [e , d/b, a]P) (71)
∀∆, b, a, c.proc(c, send a b; P)→ ∃d .msg(d , send a b; a ← d), proc(c, [d/a]P) (72)

∀a, ∆.eval(M , v), proc(a, _← output a M; P)→
→ ∃d .proc(d , [d/a]P),msg(a, _← output a v; d → a)

(74)

∀∆, a, d , c.msg(a, _← output a v; d → a), proc(c, x ← input a; P)→
→ proc(c, [d , v/a, x]P)

(75)

∀∆, a, d , c.proc(a, x ← input a; P),msg(d , _← output a v; a ← d)→

→ proc(d , [d , v/a, x]P)
(76)

136 5. STATICS AND DYNAMICS

∀a, ∆.eval(M , v), proc(c, _← output a M; P)→
→ ∃d .msg(d , _← output a v; a ← d), proc(c, [d/a]P)

(77)

∀∆, a.proc(a, send a unfold; P)→ ∃d .proc(d , [d/a]P),msg(a, send a unfold; d → a) (82)
∀∆, a, d .msg(a, send a unfold; d → a), proc(c, unfold← recv a; P)→ proc(c, [d/a]P) (83)
∀∆, a, d .proc(a, unfold← recv a; P),msg(d , send a unfold; a ← d)→ proc(d , [d/a]P) (88)
∀∆, a, c.proc(c, send a unfold; P)→ ∃d .msg(d , send a unfold; a ← d), proc(c, [d/a]P) (89)

CHAPTER 6

Observed Communication Semantics

A longstanding idea in concurrency theory is that processes can only interact with their
environments through communication, and that we can only observe systems by communicating
with them. Indeed, as far back as 1980,Milner [Mil80, p. 2] wrote “we suppose that the only way to
observe a [concurrent] system is to communicate with it”.

In this chapter, we make the above intuitions mathematically rigorous by giving Polarized
SILL an observed communication semantics. Observed communication semantics, introduced by
Atkey [Atk17], define themeaning of a process to be the communications observed on its channels.

In section 6.1, we make the notion of a session-typed communication explicit. We endow
session-typed communications with a notion of approximation. This approximation will be used
later to relate various notions of equivalence. We also characterize infinite communications by
their finite approximations.

In section 6.2 we show how to observe communications on free channels of configurations.
We first do so using a coinductively defined judgment that observes communications on fair
executions. We show that the choice of fair trace does not matter. We also show that we can instead
consider only finite prefixes of fair executions. The communications observed on the finite prefixes
approximate and determine those observed on the complete fair execution.

We generalize from single channels to sets of channels in section 6.3.

6.1. Session-Typed Communications qua Communications

We begin by defining session-typed communications. Let a communication v be a (potentially
infinite) tree generated by the following grammar, where k ranges over labels and f ranges over
functional values such that ⋅ ⊩ f ∶ τ for some τ. We explain these communications v below when
we associate them with session types.

v , v′ ∶∶= � empty communication
∣ close closemessage
∣ (unfold, v) unfolding message
∣ (k, v) choicemessage

∣ (v , v′) channel message
∣ (shift, v) shift message
∣ (val f , v) functional valuemessage

137

138 6. OBSERVED COMMUNICATION SEMANTICS

The judgment v ε A means that the syntactic communication v has closed type A. It is
coinductively defined by the following rules:

⋅ ⊢ A types
� ε A

(C-�)
close ε 1

(C-1)
v ε [ρα.A/α]A
(unfold, v) ε ρα.A

(C-ρ)

vk ε Ak (k ∈ L)

(k, vk) ε ⊕{l ∶ A l}l∈L
(C-⊕)

vk ε Ak (k ∈ L)

(k, vk) ε &{l ∶ A l}l∈L
(C-&)

v ε A v′ ε B

(v , v′) ε A⊗ B
(C-⊗) v ε A v′ ε B

(v , v′) ε A⊸ B
(C-⊸)

v ε A

(shift, v) ε ↓A
(C-↓) v ε A

(shift, v) ε ↑A
(C-↑)

⋅ ⊩ f ∶ τ v ε A

(val f , v) ε τ ∧ A
(C-∧)

⋅ ⊩ f ∶ τ v ε A

(val f , v) ε τ ⊃ A
(C-⊃)

Every closed session type A has an empty communication � representing the absence of commu-
nication of that type. The communication close represents the closemessage. A communication
of type ⊕{l ∶ A l}l∈L or &{l ∶ A l}l∈L is a label k ∈ L followed by a communication vk of type Ak ,
whence the communication (k, vk). Though by itself the communication (k, vk) does not capture
the direction in which the label k travelled, this poses no problem to our development: we almost
never consider communications without an associated session type, and the polarity of the type
specifies the direction in which k travels. We cannot directly observe channels, but we can observe
communications over channels. Consequently, we observe a communication of type A⊗ B or
A⊸ B as a pair (v , v′) of communications v of type A and v′ of type B. This is analogous to the
semantics of A⊗ B in the “folklore” relational semantics of classical linear logic proofs [Atk17;
Bar91]. A communication of type ρα.A is an unfold message followed by a communication of
type [ρα.A/α]A. A communication of type τ ∧ A or τ ⊃ A is a value f of type τ followed by a
communication of type A.

We will consider various relations on communications, and we expect these to be “type-
indexed”:

Definition 6.1.1. A type-indexed relationR on communications is a family of relations (RA)A in-
dexed by session types A, where (v ,w) ∈ RA only if v ε A and w ε A. In this case, we write
v R w ε A. ◀

Given some relation ⩽ on terms,we can endow session-typed communications with a notion of
simulation t/⩽. Intuitively, u t/⩽ wmeans that u approximatesw, or thatw carries at least as much
information as u. Functional values aside, it suggests that u is a potentially incomplete version ofw.
In this regard, it is analogous to the ordering on domains of lazy natural numbers [Fre90; Esc93].
Though we intend for ⩽ to be a preorder, it is not required to be one. This relaxation is for purely
technical reasons: it simplifies the task of relating t/⩽ to other relations on communications.

Definition 6.1.2. Let ⩽ be a type-indexed relation on terms. Communication simulation tmodulo ⩽
is the largest type-indexed family t/⩽ of relations (tA)A on session-typed communications defined

6.1. SESSION-TYPED COMMUNICATIONS QUA COMMUNICATIONS 139

by the following rules. When ⩽ is clear from context, we write t for t/⩽.

w ε A

� t w ε A
(CS-�)

close t close ε 1
(CS-1)

v t w ε [ρα.A/α]A
(unfold, v) t (unfold,w) ε ρα.A

(CS-ρ)

vk t wk ε Ak (k ∈ L)

(k, vk) t (k,wk) ε ⊕{l ∶ A l}l∈L
(CS-⊕)

vk t wk ε Ak (k ∈ L)

(k, vk) t (k,wk) ε &{l ∶ A l}l∈L
(CS-&)

v t w ε A v′ t w′ ε B
(v , v′) t (w ,w′) ε A⊗ B

(CS-⊗) v t w ε A v′ t w′ ε B
(v , v′) t (w ,w′) ε A⊸ B

(CS-⊸)

v t w ε A

(shift, v) t (shift,w) ε ↓A
(CS-↓) v t w ε A

(shift, v) t (shift,w) ε ↑A
(CS-↑)

⋅ ⊩ f ⩽ f ′ ∶ τ v t w ε A

(val f , v) t (val f ′ ,w) ε τ ∧ A
(CS-∧)

⋅ ⊩ f ⩽ f ′ ∶ τ v t w ε A

(val f , v) t (val f ′ ,w) ε τ ⊃ A
(CS-⊃)

◀

Remark 6.1.3. We do not ask for t to be a partial order. This is because antisymmetry forces com-
munication equivalence for communications of type τ∧A to hold only when the transmitted values
are equal on the nose. This is too fine of an equivalence: we would like to allow communications of
type τ ∧A to be “equivalence” whenever the values of type τ are in some sense “equivalent”, without
insisting that that equivalence be syntactic equality.

Proposition 6.1.4. The function t/(−) is monotone, ω-continuous, and ω-cocontinuous. The

relation t/⩽ is respectively reflexive or transitive whenever ⩽ is reflexive or transitive. It is a type-

indexed relation.

Proof. We begin by showing that the function is well-defined. LetR be the complete lattice of all
type-indexed relations on session-typed communications, and let F be the complete lattice of all
type-indexed relations on functional terms. For each F ∈ F , the above rules define a rule functional
Φ(F,−) ∶ R → R. It is ω-cocontinuous by [San12, Theorem 2.9.4]. It extends to a monotone
function Φ ∶ F ×R → R. We observe that t/(−) is given by ((Φop)

†
)
op
∶ F → R. Indeed, the

greatest fixed point of Φ(F,−) is the initial fixed point (Φop)
†
(F) of Φop(F,−) ∶ Rop → Rop,

where Φop ∶ F op ×Rop → Rop, and (Φop)
†
∶ F op → Rop is given by proposition 4.3.1. By the

same proposition, t/(−) is monotone, ω-continuous, and ω-cocontinuous.
We use the coinduction proof principle to show that t is reflexive. Let ∆ be the identity relation

on session-typed communications. A case analysis on the rules shows that ∆ ⊆ Φ(⩽, ∆). Because
t/⩽ is the greatest post-fixed point ofΦ(⩽,−),we conclude that it contains ∆, i.e., that it is reflexive.

Assume now that ⩽ is a preorder. We use the same technique to show that t/⩽ is a preorder.
Now let t+ be the transitive closure of t/⩽. Recall that the transitive closureR+ of a relationR
can be calculated by

R+ =
∞
⋃
n=1

Rn ,

whereRn is the n-fold composition ofR with itself. The functional Φ(⩽,−) is ω-continuous by
[San12, Exercise 2.9.2]. In particular, this implies that

Φ(⩽,R+) =
∞
⋃
n=1

Φ(⩽,Rn).

Thus, to show that R+ ⊆ Φ(⩽,R+), it is sufficient to show that Rn ⊆ Φ(⩽,Rn) for all n. Recall
that t is the greatest post-fixed point of Φ(⩽,Rn). This means that to show that t is transitive, i.e.,
t+ ⊆ t, it is sufficient to show that t+ ⊆ Φ(⩽, t+). We proceed by case analysis on n to show that
tn ⊆ Φ(⩽, tn). The case n = 1 is immediate by definition of t as the greatest fixed point ofΦ(⩽,−).
We now show the case n = m + 1. Assume that u tn w ε A because u t v ε A and v tm w ε A. We
show that u Φ(⩽, tn) w ε A. We proceed by case analysis on the rule that formed u t v ε A, giving
several illustrative cases:

140 6. OBSERVED COMMUNICATION SEMANTICS

Case (CS-�): Then u = �, and w ε A because we assumed that t was a type-indexed relation
on session-typed communications. So u Φ(⩽, tn) w ε A thanks to (CS-�).

Case (CS-⊕): Then A = ⊕{l ∶ A l}l∈L , u = (k, u′), and v = (k, v′) for some u′ and v′. By
hypothesis, u′ t v′ ε Ak . And induction on m reveals that w = (k,w′) for some v′ tm w′ ε Ak . So
u′ tn w′ ε Ak . By (CS-⊕), we then get u Φ(⩽, tn) w ε A as desired.

Case (CS-∧): Then A = τ ∧ B, u = (val f , u′), and v = (val g , v′) for some f , g, u′, and v′.
By hypothesis, u′ t v′ ε B and ⋅ ⊩ f ⩽ g ∶ τ. And induction on m reveals that w = (val h,w′) for
some v′ tm w′ ε B and ⋅ ⊩ g ⩽m h ∶ τ. So ⋅ ⊩ f ⩽ h ∶ τ and u′ tn w′ ε B. By (CS-∧), we then get
u Φ(⩽, tn) w ε A as desired.

Definition 6.1.5. Let ≡ be a type-indexed relation on terms. Communication equivalence ≐modulo
≡, written ≐/≡, is given by v ≐/≡ w ε A if and only if both v t/≡ w ε A and w t/≡ v ε A. When ≡
is clear from context, we write ≐ for ≐/≡. ◀

Proposition 6.1.6. Communication equivalence ≐/≡ is a type-indexed relation. It is an equiva-

lence relation whenever ≡ is a preorder.

Proof. It follows from proposition 6.1.4 that it is type-indexed. Assume now that ≡ is a preorder.
By proposition 6.1.4, t/≡ is a preorder. Then by definition, ≐/≡ is the intersection of a preorder
and its opposite. But in general < ∩ <op is an equivalence relation whenever < is a preorder. We
conclude that ≐/≡ is an equivalence relation.

Communication equivalencemodulo = holds if and only if two communications are equal on
the nose:

Proposition 6.1.7. For all A, u ≐/= v ε A if and only if u = v.

Proof. Necessity is immediate by reflexivity of ≐/=. Sufficiency comes from recognizing ≐/=
as the notion of bisimulation given by the coinductive definition of w ε A, and that by [JR12,
Theorem 2.7.2], bisimilar elements of the terminal coalgebra are equal.

Proposition 6.1.8. “Communication simulation modulo” and “communication equivalence

modulo” are related by the identity (t/⩽ ∩ (t/⩽)
op
) = (≐/(⩽ ∩ ⩽op)).

Proof. Let Φ be the functional defining t/(−), and set I = ⩽ ∩ ⩽op. Observe for all relations X,Y,
Z that Φ(X ∩Y,Z) = Φ(X,Z) ∩Φ(Y,Z). We compute, where we use the syntax νX .F(X) for
the greatest fixed point of F, that:

≐/I

= (t/I) ∩ (t/I)
op

= (νV.Φ(I,V)) ∩ (νV.Φ(I,V))op

= (νV.Φ(I,V)) ∩ νV.(Φ(I,V))op

= νV.Φ(⩽,V) ∩Φ(⩽op ,V) ∩ (Φ(⩽,V))op ∩ (Φ(⩽op ,V))op ,
and analogously,

(t/⩽ ∩ (t/⩽)
op
)

= νV.Φ(⩽,V) ∩ (Φ(⩽,V))op .

To show that the fixed points are equal, it is sufficient to show that they have the same post-fixed
points. Set

L(V) = Φ(⩽,V) ∩Φ(⩽op ,V) ∩ (Φ(⩽,V))op ∩ (Φ(⩽op ,V))op ,

R(V) = Φ(⩽,V) ∩ (Φ(⩽,V))op .

Clearly every post-fixed point of L is a post-fixed point of R: L(V) ⊆ R(V) for allV. Conversely,
assume that V is a post-fixed point of R, i.e., V ⊆ R(V). We show that V is a post-fixed point
of L by showing that R(V) ⊆ L(V). Assume that v R(V) w ε A. Then v Φ(⩽,V) w ε A. A case

6.1. SESSION-TYPED COMMUNICATIONS QUA COMMUNICATIONS 141

analysis then reveals that v (Φ(⩽,V))op w ε A by the same rule. The result follows by case analysis
on this rule. We give a few illustrative cases.

Case (CS-�): Then v = w = �, and a straightforward check gives � L(V) � ε A.
Case (CS-⊕): Then v = (k, v′), w = (k,w′), v′ V w′ ε Ak , and w′ V v′ ε Ak . A straightfor-

ward check again gives v L(V) w ε A.
Case (CS-∧): Then A = τ ∧ B, v = (val f , v′), w = (val g ,w′), f ⩽ g, g ⩽ f , v′ V w′ ε B, and

w′ V v′ ε B. A straightforward check gives that v L(V) w ε A.

We now show that communications are uniquely determined by their finite approximations.
This opens the door to reasoning about t/⩽ using inductive techniques.

Definition 6.1.9. The height n approximation ⌊w⌋n of a communication w is defined by induction
on n and recursion on w:

⌊w⌋0 = � ⌊�⌋n+1 = �

⌊close⌋n+1 = close ⌊(val f , v)⌋n+1 = (val f , ⌊v⌋n)
⌊(k, v)⌋n+1 = (k, ⌊v⌋n) ⌊(u, v)⌋n+1 = (⌊u⌋n , ⌊v⌋n)

⌊(shift, v)⌋n+1 = (shift, ⌊v⌋n) ⌊(unfold, v)⌋n+1 = (unfold, ⌊v⌋n) ◀

Proposition 6.1.10. If w ε A, then ⌊w⌋n ε A for all n.

Proof. By induction on n. The base case is immediate. The inductive step follows by a case analysis
on the rule used to form w ε A.

Proposition 6.1.11. For all reflexive ⩽, all n, and all w ε A, ⌊w⌋n t/⩽ ⌊w⌋n+1 ε A.

Proof. By induction on n. The base case is given by (CS-�). The inductive step is given by case
analysis on w ε A. Reflexivity of ⩽ is required for the cases A = τ ∧ B and A = τ ⊃ B.

Proposition 6.1.12. For allw ε Aandu ε A, u t/⩽ w ε A if and only if, for all n, ⌊u⌋n t/⩽ w ε A.

Proof. We proceed by induction on n to show that for all n ∈ N and for all w ε A and u ε A,
u t/⩽ w ε A implies ⌊u⌋n t/⩽ w ε A. The base case is immediate by (CS-�). Assume the result for
some n. We show that ⌊u⌋n+1 t/⩽ w ε A by case analysis on the rule used to form u t/⩽ w ε A. We
give two illustrative cases; the rest follow by analogy.

Case (CS-�): Then u = � and ⌊u⌋n+1 = �. We are done by (CS-�).
Case (CS-∧): Then A = τ ∧ B, u = (val f , u′), and w = (val g ,w′) with ⋅ ⊩ f ⩽ g ∶ τ and

u′ t/⩽ w′ ε B. By definition, ⌊u⌋n+1 = (val f , ⌊u′⌋n). By the induction hypothesis, ⌊u′⌋n t/⩽ w′ ε
B. By (CS-∧), (val f , ⌊u′⌋n) t/⩽ (val g ,w′) ε A as desired.

To show the converse, let T be the set of triples {(u,w ,A) ∣ ∀n ∈ N . ⌊u⌋n t/⩽ w ε A}. We
want to show that if (u,w ,A) ∈ T , then u t/⩽ w ε A. By the coinduction proof principle [San12,
p. 49], it is sufficient to show that T is “closed backwards” under the rules defining t/⩽. Let
(u, v ,A) ∈ T be arbitrary. We proceed by case analysis on u and A to show that there is a rule
whose conclusion is (u, v ,A) and whose premises are in T . If u = �, then we are done by (CS-�),
so assume that u ≠ �. We proceed by case analysis on A. We show two cases; the rest follow by
analogy.

Case A = 1: The only possible value for u and v is u = v = close. So (u,w , 1) ∈ T by (CS-1).
Case A = τ ∧ B: Then u = (val f , u′) for some value ⋅ ⊩ f ∶ τ and some u′ ε B, and v =

(val g , v′) for some value ⋅ ⊩ g ∶ τ and some v′ ε B. By assumption, ⌊(val f , u′)⌋n t/⩽ (val g , v′) ε
A for all n. By inversion, for all n = m + 1 ≥ 1, the last rule in the derivation must have been (CS-∧)
with ⌊u′⌋m t/⩽ v′ ε B and with its side condition ⋅ ⊩ f ⩽ g ∶ τ satisfied. So (u′ ,w′ , B) ∈ T . Then
(u,w ,A) ∈ T by (CS-∧) with the premise (u′ ,w′ , B) ∈ T and the side condition ⋅ ⊩ f ⩽ g ∶ τ.

Definition 6.1.13. Where ⩽ is a type-indexed preorder on functional values, let ⟪A⟫⩽ be the set of
communications w ε A ordered by the preorder t/⩽. ◀

142 6. OBSERVED COMMUNICATION SEMANTICS

Corollary 6.1.14. If ⩽ is a preorder, then for all w ε A, w is a
1
least upper bound of (⌊w⌋n)n∈N

in the preorder ⟪A⟫⩽.

6.2. Session-Typed Communications on Single Channels

In this section, we show how to observe session-typed communications v ε A on a single
channel c in a trace T . We capture these observations using a coinductively defined judgment
T ↝ v ε A / c. This judgment defines a total function from free channel names in T to session-
typed communications v ε A. We show that the type of the observed communications agrees
with the type of the channel, i.e., that T ↝ v ε A / c implies T ⊢ c ∶ A.2 We will also show that
the communication observed on c is independent of the choice of trace T , provided that T is fair.
Finally, we show that the communications observed from finite prefixes of T both approximate
and determine the observations on the entirety of T .

Given a trace T = (M0 , (r i ; (θ i , ξ i))i), we write T for the support of T , that is, x ∈ T if and
only if x ∈ M i for some i. The judgment T ↝ v ε A / c is coinductively defined by the following
rules, i.e., it is the largest set of triples (v , c,A) closed under the following rules.

We observe no communications on a channel c if and only if c carried no message. Subject to
the side condition that c ≠ cc(msg(d ,m)) for allmsg(d ,m) ∈ T , we have the rule

T ⊢ c ∶ A
T ↝ � ε A / c

(O-�) whenever ∀msg(d ,m) ∈ T . c ≠ cc(msg(d ,m)).

We observe a closemessage on c if and only if the closemessage was sent on c:

msg(c, close c) ∈ T
T ↝ close ε 1 / c

(O-1)

We observe label transmission as labelling communications on the continuation channel. We rely
on the judgment T ⊢ c ∶ ⊕{l ∶ A l}l∈L or T ⊢ c ∶ &{l ∶ A l}l∈L to determine the type of c:

msg(c, c.l ; d → c) ∈ T T ↝ v ε A l / d T ⊢ c ∶ ⊕{l ∶ A l}l∈L

T ↝ (l , v) ε ⊕{l ∶ A l}l∈L / c
(O-⊕)

msg(d , c.l ; c ← d) ∈ T T ↝ v ε A l / d T ⊢ c ∶ &{l ∶ A l}l∈L

T ↝ (l , v) ε &{l ∶ A l}l∈L / c
(O-&)

As described above, we observe channel transmission as pairing of communications:

msg(c, send c a; d → c) ∈ T T ↝ u ε A / a T ↝ v ε B / d

T ↝ (u, v) ε A⊗ B / c
(O-⊗)

msg(d , send c a; c ← d) ∈ T T ↝ u ε A / a T ↝ v ε B / d

T ↝ (u, v) ε A⊸ B / c
(O-⊸)

We observe the unfold and shift messages directly:

msg(c, send c unfold; d → c) ∈ T T ↝ v ε [ρα.A/α]A / d
T ↝ (unfold, v) ε ρα.A / c

(O-ρ+)

msg(d , send c unfold; c ← d) ∈ T T ↝ v ε [ρα.A/α]A / d
T ↝ (unfold, v) ε ρα.A / c

(O-ρ−)

msg(c, send c shift; d ← c) ∈ T T ↝ v ε A / d

T ↝ (shift, v) ε ↓A / c
(O-↓)

msg(d , send c shift; c → d) ∈ T T ↝ v ε A / d

T ↝ (shift, v) ε ↑A / c
(O-↑)

1In contrast to least upper bounds in partial orders, least upper bounds in preorders are not necessarily unique.
2Recall definition 5.9.2.

6.2. SESSION-TYPED COMMUNICATIONS ON SINGLE CHANNELS 143

Finally, we observe functional values:

msg(c, _← output c f ; d → c) ∈ T T ↝ v ε A / d T ⊢ c ∶ τ ∧ A

T ↝ (val f , v) ε τ ∧ A / c
(O-∧)

msg(d , _← output c f ; c ← d) ∈ T T ↝ v ε A / d T ⊢ c ∶ τ ∧ A

T ↝ (val f , v) ε τ ⊃ A / c
(O-⊃)

We set out to show that for any process trace T , the judgment T ↝ v ε A / c defines a total
function from channel names c in T to session-typed communications v ε A.

We begin by showing that if T ↝ v ε A / c, then this session-typed communication v ε A is
unique. We use a bisimulation approach and follow standard techniques to define bisimulations
for T ↝ v ε A / c. We interpret the premises the rules defining T ↝ v ε A / c that are not of the
form T ↝ w ε B / d as side conditions, giving an instance of the rule for each such premise. For
example, the rule (O-⊕) should be seen as a family of rules (O-⊕-c-d-l), where we have a rule

T ↝ v ε A l / d

T ↝ (l , v) ε ⊕{l ∶ A l}l∈L / c
(O-⊕-c-d-l)

for eachmsg(c, c.l ; c ← d) ∈ T such that T ⊢ c ∶ ⊕{l ∶ A l}l∈L . A symmetric binary relationR on
observed communications in T is a bisimulation if:

● if (T ↝ � ε A / c, T ↝ w ε A′ / c) ∈ R and T ↝ � ε A / c by the instance of (O-�) for
T ⊢ c ∶ A, then w = � and A′ = A;
● if (T ↝ close ε 1 / c, T ↝ w ε A / c) ∈R, then w = close and A = 1;
● if (T ↝ (l , v) ε ⊕{l ∶ A l}l∈L / c, T ↝ w ε A / c) ∈ R and T ↝ (l , v) ε ⊕{l ∶ A l}l∈L / c
by the instance of (O-⊕) for msg(c, c.l ; d → c) ∈ T , then w = (l , v′) for some v′,
A = ⊕{l ∶ A l}l∈L , and (T ↝ v ε A l / d , T ↝ w ε A l / d) ∈R;

● if (T ↝ (l , v) ε &{l ∶ A l}l∈L / c, T ↝ w ε A / c) ∈ R and T ↝ (l , v) ε &{l ∶ A l}l∈L / c
by the instance of (O-&) for msg(c, c.l ; c ← d) ∈ T , then w = (l , v′) for some v′,
A = &{l ∶ A l}l∈L , and (T ↝ v ε A l / d , T ↝ w ε A l / d) ∈R;

● if (T ↝ (u, v) ε A⊗ B / c, T ↝ w ε C / c) ∈ R and T ↝ (u, v) ε A⊗ B / c was
formed by the instance of (O-⊗) for msg(c, send c a; d → c) ∈ T , then v = (u′ , v′) and
C = A′ ⊗ B′ for some u′ , v′ ,A′ , B′, and (T ↝ u ε A / a, T ↝ u′ ε A′ / a) ∈ R and
(T ↝ v ε A / d , T ↝ v′ ε A′ / d) ∈R;
● if (T ↝ (u, v) ε A⊸ B / c, T ↝ w ε C / c) ∈ R and T ↝ (u, v) ε A⊸ B / c was
formed by the instance of (O-⊸) for msg(c, send c a; c ← d) ∈ T , then v = (u′ , v′) and
C = A′ ⊸ B′ for some u′ , v′ ,A′ , B′, and (T ↝ u ε A / a, T ↝ u′ ε A′ / a) ∈ R and
(T ↝ v ε A / d , T ↝ v′ ε A′ / d) ∈R;
● if (T ↝ (unfold, v) ε ρα.A / c, T ↝ w ε B / c) ∈ R and T ↝ (unfold, v) ε ρα.A / c
was formed by the instance of (O-ρ+) for msg(c, send c unfold; d → c) ∈ T , then
w = (unfold, v′) for some v′ and ρα′ .A′ such that (T ↝ v ε [ρα.A/α]A / d , T ↝ v′ ε

[ρα′ .A′/α′]A′ / d) ∈R;
● if (T ↝ (unfold, v) ε ρα.A / c, T ↝ w ε B / c) ∈ R and T ↝ (unfold, v) ε ρα.A / c
was formed by the instance of (O-ρ−) for msg(c, send c unfold; c ← d) ∈ T , then
w = (unfold, v′) for some v′ and ρα′ .A′ such that (T ↝ v ε [ρα.A/α]A / d , T ↝ v′ ε

[ρα′ .A′/α′]A′ / d) ∈R;
● if (T ↝ (shift, v) ε ↓A / c, T ↝ w ε B / c) ∈ R and T ↝ (shift, v) ε ↓A / c was formed
by the instance of (O-↓) for msg(c, send c shift; d ← c) ∈ T , then w = (shift, v′) and
B = ↓B′ for some v′ and B′ such that (T ↝ v ε A′ / d , T ↝ v′ ε B′ / d) ∈R;
● if (T ↝ (shift, v) ε ↓A / c, T ↝ w ε B / c) ∈ R and T ↝ (shift, v) ε ↑A / c was formed
by the instance of (O-↑) for msg(c, send c shift; c → d) ∈ T , then w = (shift, v′) and
B = ↑B′ for some v′ and B′ such that (T ↝ v ε A′ / d , T ↝ v′ ε B′ / d) ∈R;
● if (T ↝ (val f , v) ε τ ∧ A / c, T ↝ w ε B / c) ∈ R and T ↝ (val f , v) ε τ ∧ A / c
was formed by the instance of (O-∧) for msg(c, _ ← output c f ; d → c) ∈ T , then

144 6. OBSERVED COMMUNICATION SEMANTICS

w = (val f , v′) and B = τ ∧ B′ for some v′ and B′ such that (T ↝ v ε A′ / d , T ↝ v′ ε

B′ / d) ∈R;
● if (T ↝ (val f , v) ε τ ⊃ A / c, T ↝ w ε B / c) ∈ R and T ↝ (val f , v) ε τ ⊃ A / c
was formed by the instance of (O-⊃) for msg(c, _ ← output c f ; c ← d) ∈ T , then
w = (val f , v′) and B = τ ⊃ B′ for some v′ and B′ such that (T ↝ v ε A′ / d , T ↝ v′ ε

B′ / d) ∈R.

Proposition 6.2.1. If T is a trace from a well-typed configuration, then for all c, if T ↝ v ε A / c
and T ↝ w ε B / c, then v = w and A = B. Moreover, if T ↝ v ε A / c, then its derivation is unique.

Proof. Fix some trace T and let R be the relation

R = {(T ↝ v ε A / c, T ↝ w ε B / c) ∣ ∃v ,w , c,A, B.T ↝ v ε A / c ∧ T ↝ w ε B / c}.

We show that it is a bisimulation. Let (T ↝ v ε A / c, T ↝ w ε B / c) ∈R be arbitrary. It follows
from corollaries 5.9.3 and 5.9.8 that at most one rule is applicable to form a judgment of the form
T ↝ ⋅ ε ⋅ / c (with c fixed), so T ↝ v ε A / c and T ↝ w ε B / c were both formed by the same
rule. We proceed by case analysis on this rule. We only give a few illustrative cases; the rest will
follow by analogy.

Case (O-�): The conclusions are equal, so we are done.
Case (O-⊗) for msg(c, send c a; d → c): Then there exist r, r′ , u, u′ ,C ,C′ ,D,D′ such that

v = (r, u), w = (r′ , u′), A = C ⊗ D, B = C′ ⊗ D′, T ↝ r ε C / a, T ↝ r′ ε C′ / a, T ↝ u ε D / d,
and T ↝ u′ ε D′ / d. But (T ↝ r ε C / a, T ↝ r′ ε C′ / a) ∈ R and (T ↝ u ε D / d , T ↝ u′ ε

D′ / d) ∈R, so we are done.
Case (O-∧) for msg(c, _ ← output c f ; d → c): Then there exist v′ ,w′ ,A′ , B′ such that

v = (val f , v′), w = (val f ,w′), A = τ ∧ A′, B = τ ∧ B′, T ↝ v′ ε A′ / d, and T ↝ w′ ε B′ / d. But
(T ↝ v′ ε A′ / d , T ↝ w′ ε B′ / d) ∈R, so we are done.
It follows that R is a bisimulation.

Consider arbitrary T ↝ v ε A / c and T ↝ w ε B / c. They are related by R, so they are
bisimilar. By [JR12,Theorem 2.7.2], bisimilar elements of the terminal coalgebra are equal. It follows
that v = w and A = B as desired.

To see that the derivation of T ↝ v ε A / c is unique, recall from above that at most one rule
is applicable to form a judgment of the form T ↝ ⋅ ε ⋅ / c (with c fixed). Because each rule has only
judgments of this form as its hypotheses, it follows that at each step in the derivation, exactly one
rule instance can be applied to justify a given hypothesis. So the derivation is unique.

Next, we set out to show that an observed communication exists for every channel appearing
in a trace. This involves explicitly constructing a potentially infinite proof tree. The following
definition of a tree in terms of its rooted paths is useful for doing so:

Definition6.2.2 ([San12,Remark 2.11.1]). A tree over a set X is a set T ofnon-empty finite sequences
of elements of X such that

(1) there is only one sequence of length one (corresponding to the root of the tree); and
(2) if the sequence x0 , . . . , xn+1 is in T , then so is x0 , . . . , xn . ◀

We generalize it to allow us to order branches, e.g., to talk about “left” and “right” branches.

Definition 6.2.3. An ordered tree over a set X is a tree over N × X such that
(1) there is only one sequence of length one;
(2) if the sequence (n0 , x0), . . . , (nm−1 , xm−1), (nm + 1, xm) is in T (m ≥ 0), then so is
(n0 , x0), . . . , (nm−1 , xm−1), (nm , x) for some x. ◀

Definition 6.2.4. Let T be a tree over a set X. The subtree rooted at x0 , . . . , xn is the tree

{xn , . . . , xn+m ∣ x0 , . . . , xn , . . . , xn+m ∈ X}. ◀

6.2. SESSION-TYPED COMMUNICATIONS ON SINGLE CHANNELS 145

Next, we characterize communications v ε A as trees. Let L be the set of labels that can be sent
in communications. The set of communication tags is given by:

CommTags = {�, close, pair, unfold, shift} ∪ {val f ∣ f val ∧ ∃τ.(⋅ ⊩ f ∶ τ)} ∪ L

Communications represent ordered trees, e.g., the communications (v , v′) and (v′ , v) are distinct
whenever v ≠ v′.

Lemma 6.2.5. Assume all labels are drawn from some set L. The following corecursive function

ψ is well-defined and it injectivelymaps set of communications into the setA of ordered trees over

CommTags:

ψ(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(0, �)} v = �

{(0, close)} v = close

⋃0≤i≤1{(0, pair), (i , t), σ ∣ ((_, t), σ) ∈ ψ(v i)} v = (v0 , v1)
{(0, unfold), x ∣ x ∈ ψ(v′)} v = (unfold, v′)
{(0, shift), x ∣ x ∈ ψ(v′)} v = (shift, v′)
{(0, val f), x ∣ x ∈ ψ(v′)} v = (val f , v′)
{(0, l), x ∣ x ∈ ψ(v′)} v = (l , v′)

If T is a subtree rooted at some x0 , . . . , xn in ψ(v), then it is the image of some communication w

that is a subphrase of v.

Proof. This function is clearly injective. Indeed, the only point of subtlety is ensuring that (v1 , v2)
and (v2 , v1) do not map to the same tree, but this is ensured by the left branch with l and the right
branch with r.

Proposition 6.2.6. If T is a trace from Γ ∣ I ⊢ C ∶∶ ∆, then for all c, if T ⊢ c ∶ A, then

T ↝ v ε A / c for some v.

Proof. We explicitly construct the proof tree as an ordered tree over the set of rules forming
T ↝ v ε A / c.

Assume first that T ⊢ c ∶ A but that c = cc(msg(a0 ,m0)) for no msg(a0 ,m0) ∈ T . In this
case, T ↝ � ε A / c by (O-�) and we are done.

Otherwise, assume that T ⊢ c ∶ A and that c = cc(msg(a0 ,m0)) for some msg(a0 ,m0) ∈
T . The proof is subtle, for we must show that the potentially infinite communication v ε A

exists, and then construct a potentially infinite proof tree whose conclusion already contains this
communication. We proceed as follows:

(1) We describe how the message facts in T describe a tree M in message facts rooted at
msg(a0 ,m0).

(2) We convert this tree M into an ordered tree S over the set CommTags × (T ∪ Chans),
where Chans is the set of free channel names appearing in T . This tree S will act as a sort
of “skeleton” or “outline” for the proof that T ↝ v ε A / c for some v.

(3) We use lemma 6.2.5 to extract a communication v′ from the first component of the
elements in the paths in S.

(4) We use S to construct a proof tree that T ↝ v′ ε A / c.
We begin by describing the tree M over T rooted at msg(a0 ,m0). By corollary 5.9.8, T

contains at most one fact msg(d0 ,m0) such that c = cc(msg(d0 ,m0)) for all c . The sequence
msg(a0 ,m0) of length one exists by assumption. The sequences x0 , . . . , xn+1 in M are given by all
sequences msg(a0 ,m0), . . . ,msg(an+1 ,mn+1 .) where for 0 ≤ i < i + 1 ≤ n + 1, both

(1) cc(msg(a i+1 ,m i+1)) ⊆ fc(msg(a i ,m i)), and
(2) msg(a i+1 ,m i+1) ≠ msg(a i ,m i).

Observe that a sequence x1 , . . . , xn ∈ M is maximally long in M if and only if one of the following
two conditions holds:

146 6. OBSERVED COMMUNICATION SEMANTICS

(1) xn = msg(an , close an) is the closemessage, or
(2) xn = msg(an ,mn) and there is no other message fact in c whose carrier channel appears

free inmsg(an ,mn).
Next,we translate the treeM into an ordered tree3

S over CommTags×(T ∪Chans) as follows:
(1) if x1 , . . . , xn ∈ M, then y1 , . . . , yn ∈ S, where for 1 ≤ i ≤ n, y i is given by:

y i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

((t, close), x i) x i = msg(a i , close a i)
((t, pair), x i) x i = msg(a i , send a i b i ; d i → a i)

((t, pair), x i) x i = msg(a i , send a i b i ; d i → a i)

((t, pair), x i) x i = msg(d i , send a i b i ; a i ← d i)

((t, unfold), x i) x i = msg(a i , send a i unfold; d i → a i)

((t, unfold), x i) x i = msg(d i , send a i unfold; a i ← d i)

((t, shift), x i) x i = msg(a i , send a i shift; d i ← a i)

((t, shift), x i) x i = msg(d i , send a i shift; a i → d i)

((t, val f), x i) x i = msg(a i , _← output a i f ; d i → a i)

((t, val f), x i) x i = msg(d i , _← output a i f ; a i ← d i)

((t, l), x i) x i = msg(a i , a i .l ; d i → a i)

((t, l), x i) x i = msg(d i , a i .l ; a i ← d i)

where the tag t is given by

t =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 i = j + 1 ∧ x j = msg(a j , send a j b j ; d j → a j) ∧ cc(x i) = {d j}

1 i = j + 1 ∧ x j = msg(d j , send a j b j ; a j ← d j) ∧ cc(x i) = {d j}

0 otherwise

(2) if x1 , . . . , xn ∈ M and xn ≠ msg(an , close an) and there exists a d ∈ fc(xn) such that
d ≠ cc(msg(e ,m)) for allmsg(e ,m) ∈ T , then y1 , . . . , yn , yn+1 ∈ S where for 1 ≤ i ≤ n,
where y i is given by the recipe above for 1 ≤ i ≤ n, and yn+1 = ((t, �), d) where t = 0 or
t = 1 is determined from xn as above.

Taking the first projection of each element in each sequence in S gives a tree M′ over the
set CommTags. It is clearly in the image of the set of communications under the injection from
lemma 6.2.5. Taking the preimage ofM′, we get a communication v.

Next, we show that T ↝ v ε A / c. By [San12, Theorem 2.12.5], it is sufficient to give a winning
strategy to the verifier for the coinductive game induced by the rules defining T ↝ v ε c / A [San12,
§ 2.12]. The refuter makes the first move, playing x0 = T ↝ v ε c / A. The verifier must provide a
set J0 such that T ↝ v ε c / A is the conclusion of some rule with hypotheses J0. The refuter then
chooses an x1 ∈ J0, to which the verifier must provide a set J1 such that x1 is the conclusion of some
rulewith hypotheses J1. The game proceeds in this way, producing a sequence x0 , J0 , . . . , xn , Jn ,
The verifier wins if this sequence is infinite, or if Jn = ∅ for some n.

At the outset, we observe that:
(1) T ⊢ c ∶ A by hypothesis,
(2) v is the preimage of the subtree S0 = S rooted at the root s0 of S.

For all i ≥ 0, the verifier chooses J i satisfying the following conditions:
(1) x i is the conclusion of a rule with hypotheses J i ;
(2) for all T ↝ d ε w / A ∈ J i ,

(a) T ⊢ d ∶ A,
(b) w is the preimage of a subtree Sw of S rooted at sw , and s i is a prefix of sw ,
(c) if w = �, then the root of Sw is ((_, �), c),

3We reassociated the parentheses of elements in this tree for convenience.

6.2. SESSION-TYPED COMMUNICATIONS ON SINGLE CHANNELS 147

(d) if w ≠ �, then the root of Sw is (_,msg(e ,m)) for some msg(e ,m) with d =
cc(msg(e ,m)), and

(e) where (_,msg(e ,m)) is the last element4 of s i , d ∈ fc(msg(e ,m)).
Given a choice x i+1 ∈ J i by the verifier, let the sequence s i+1 be given by the corresponding sw

guaranteed by item 2b.
Given an x i = T ↝ w ε c / B chosen by the refuter, the verifier’s choice of J i is given by case

analysis on w. We give the illustrative cases:
Case �: We proceed by case analysis on i:

Subcase i = 0: This case is impossible by the assumption made at the beginning of this proof.
Subcase i = j + 1: Then � is the preimage of ((_, �), c) by lemma 6.2.5 and item 2c. We choose
J i = ∅. Then T ↝ � ε c / B by (O-�). We check that the rule is in fact applicable:
(1) T ⊢ c ∶ B because T ↝ w ε c / B ∈ J j , and J j satisfies assumption item 2a by construction.
(2) c ≠ cc(msg(d ,m)) for all msg(d ,m) ∈ T . Indeed, by assumption item 2c, the root of

sw is ((_, �), c). By construction of S, ((_, �), c) appears in a sequence if and only if c ≠
cc(msg(d ,m)) for allmsg(d ,m) ∈ T .

We conclude that the rule is applicable. Because J i is empty, the conditions stipulated by item 2
hold vacuously.

Case close: By construction and by lemma 6.2.5, the root of Sw is ((_, close),msg(e , close e)).
By item 2d, c = cc(msg(e , close e)) = e, so c = e. By proposition 5.9.4, T ⊢ c ∶ 1. By item 2a,
T ⊢ d ∶ B, so by corollary 5.9.3, B = 1. Pick J i = ∅. Then T ↝ close ε c / 1 by (O-1).

Case (u, u′): By construction and by lemma 6.2.5, the root of Sw is ((_, pair),msg(g ,m)).
By item 2d, the carrier channel ofmsg(g ,m) is c. By construction of S,msg(g ,m)must be one of
the following:
Subcasemsg(c, send c e; d → c): By proposition 5.9.4, T ⊢ c ∶ E ⊗ D, T ⊢ e ∶ E, and T ⊢ d ∶ D.
Pick J i = {T ↝ u ε e / E , T ↝ u′ ε d / D}. Then T ↝ (u, u′) ε E ⊗ D / c by (O-⊗).
Subcasemsg(d , send c e; c ← d): By proposition 5.9.4, T ⊢ c ∶ E ⊸ D, T ⊢ e ∶ E, and T ⊢ d ∶ D.
Pick J i = {T ↝ u ε e / E , T ↝ u′ ε d / D}. Then T ↝ (u, u′) ε E ⊸ D / c by (O-⊸).
We show this choice of J i satisfies the invariant. We show that T ⊢ e ∶ E satisfies item 2; the analysis
for T ⊢ d ∶ D is analogous. By the above case analysis, we have T ⊢ e ∶ E, satisfying item 2a. By
assumption, (u, u′) is the preimage of a subtree Sw rooted at sw . By lemma 6.2.5, u is the preimage
of a subtree Su rooted at su = sw , ((l, _), _) for some ((l, _), _). By construction of S, the root
((l, _), _) of Su satisfies items 2c and 2d. Item 2e is also satisfied by construction of S.

Case (unfold, u): By construction andby lemma 6.2.5, the root of Sw is ((_, unfold),msg(g ,m)).
By item 2d, the carrier channel ofmsg(g ,m) is c. By construction of S,msg(g ,m)must be one of
the following:
Subcase msg(c, send c unfold; d → c): By proposition 5.9.4, T ⊢ c ∶ ρδ.D and T ⊢ d ∶
[ρδ.D/δ]D. Pick J i = {T ↝ u ε d / [ρδ.D/δ]D}. Then T ↝ u ε [ρδ.D/δ]D / d by (O-ρ+).
Subcase msg(d , send c unfold; c ← d): By proposition 5.9.4, T ⊢ c ∶ ρδ.D and T ⊢ d ∶
[ρδ.D/δ]D. Pick J i = {T ↝ u ε d / [ρδ.D/δ]D}. Then T ↝ u ε [ρδ.D/δ]D / d by (O-ρ−).
We show this choice of J i satisfies the invariant. Item 2a is satisfied by the above case analysis.
By assumption, (unfold, u) is the preimage of a subtree Sw rooted at sw . By lemma 6.2.5, u is the
preimage of a subtree Su rooted at su = sw , ((u, _), _) for some ((u, _), _). By construction of S,
the root ((u, _), _) of Su satisfies items 2c and 2d. Item 2e is also satisfied by construction of S.
The above describes a winning strategy for the verifier, for in each case the verifier can always make
amove.

The converse of proposition 6.2.6 also holds:

Corollary 6.2.7. If T is a trace from Γ ∣ I ⊢ C ∶∶ ∆, then for all c, if T ↝ v ε A / c, then

T ⊢ c ∶ A.

4We can assume that it is of this form and not (�, a) because we are giving the verifier a winning strategy, and the
verifier would lose were it not the case.

148 6. OBSERVED COMMUNICATION SEMANTICS

Proof. Assume T ↝ v ε A / c. The judgment T ↝ v ε A / c is only defined for channel names
that appear free in T . Because T ⊢ c ∶ (⋅) is a total function from these channel to types, there
exists a B such that T ⊢ c ∶ B. By proposition 6.2.6, there exists a w such that T ↝ w ε B / c. By
proposition 6.2.1, A = B, so T ⊢ c ∶ A.

So far, we have checked that T ↝ v ε A / c defines a function from free channels c to
communications v and types A. We now check that these communications are actually session-
typed communications:

Proposition 6.2.8. If T ↝ v ε A / c, then v ε A.

Proof. By coinduction on the rules defining v ε A. Set P = {v ε A ∣ ∃c.T ↝ v ε A / c}. Wemust
show that for all v ε A ∈ P, there exists a rule with conclusion v ε A and hypotheses H ⊆ P. Let
v ε A ∈ P be arbitrary. We proceed by case analysis on v ε A, giving only the illustrative cases:

Case � ε A: Note that T ↝ v ε A / c is only defined when ⋅ ⊢ A types. So ⋅ ⊢ A types by
definition of P and because � ε A ∈ P. So we are done by (C-�).

Case close ε 1: Immediate by (C-1).
Case (l , v) ε ⊕{l ∶ A l}l∈L : This case arises because T ↝ (l , v) ε ⊕{l ∶ A l}l∈L / c for some c.

But T ↝ (l , v) ε ⊕{l ∶ A l}l∈L / c must have been formed by (O-⊕) applied to T ↝ v ε A l / d for
some d. This implies v ε A l ∈ P. So we are done by (C-⊕).

Case (val f , v) ε τ ∧ A: Then (val f , v) ε τ ∧ A because T ↝ (val f , v) ε τ ∧ A / c for some
c. This last judgment must have been formed by (O-∧) applied to some T ↝ v ε d / A. This implies
v ε A ∈ P. We are done by (C-∧) if ⋅ ⊩ f ∶ τ. Because (O-∧) formed T ↝ (val f , v) ε τ ∧ A / c,
we know that T ⊢ c ∶ τ ∧ A and that msg(c, _ ← output c f ; d → c) ∈ T . By proposition 5.9.4
and corollary 5.9.3 we deduce ⋅ ⊩ f ∶ τ as desired.

Combining propositions 6.2.1, 6.2.6 and 6.2.8, we get:

Corollary 6.2.9. The judgment T ↝ v ε A / c defines a total function from channel names c

appearing free in T to session-typed communications v ε A.

The following theorem is an immediate consequence of corollary 6.2.9:

Theorem 6.2.10. Let T be a fair execution of Γ ∣ I ⊢ C ∶∶ ∆. For all c ∶ A ∈ Γ, I, ∆, there exist

unique v such that v ε A and T ↝ v ε A / c.

Proof. By assumption, T ⊢ c ∶ A for all c ∶ A ∈ Γ, I, ∆. Then by proposition 6.2.6, there exists a v
such that T ↝ v ε A / c, and v ε A by proposition 6.2.8. By proposition 6.2.1, each such v is unique
determined.

The following theorem captures the confluence property typically enjoyed by SILL-style lan-
guages:

Theorem 6.2.11. Let T and T ′ be a fair executions of Γ ∣ I ⊢ C ∶∶ ∆. For all c ∶ A ∈ Γ, I, ∆, if
T ↝ v ε A / c and T ′ ↝ w ε A / c, then v = w.

Proof. Assume T ↝ v ε A / c and T ′ ↝ w ε A / c. By corollary 5.9.11, traces T and T ′ are
union-equivalent, i.e., T = T ′. It easily follows that T ′ ↝ w ε A / c if and only if T ↝ w ε A / c.
So v = w by theorem 6.2.10.

Theorem 6.2.11 crucially depends on fairness. Indeed, without fairness a process can have
infinitelymany observations. To see this, let Ω be the divergent process given by example 5.3.3 and
let B be given by

⋅ ; a ∶ 1 ⊢ fix p.send b unfold; b.l ; p ∶∶ b ∶ ρβ. ⊕ {l ∶ β}

Rule (66) is the first step of any execution of their composition ⋅ ; ⋅ ⊢ a ← Ω; B ∶∶ b ∶ ρβ. ⊕ {l ∶ β}. It
spawns Ω and B as separate processes. Without fairness, an execution could then consist exclusively
of applications of rule (70) to Ω. This would give the observed communication � on b. Alternatively,

6.2. SESSION-TYPED COMMUNICATIONS ON SINGLE CHANNELS 149

B could take finitelymany steps, leading to observations where b is a tree of correspondingly finite
height. Fairness ensures that B and Ω both take infinitely many steps, leading to the unique
observation (unfold, (l , (unfold, . . .))) on b.

This notion of observed communication scales to support language extensions. Indeed, for
each new session type one first defines its corresponding session-typed communications. Then,
one specifies how to observemessage judgments msg(c,m) in a trace as communications.

So far, our approaches for observing communications on channels have had a strictly coin-
ductive flavour. We now show how we can construct them as the least upper bounds of sequences
of approximations. Recall from definition 6.1.13 that ⟪A⟫= is the set of communications of type
A ordered by t/=. Given some trace T , we let Tn be its prefix of n steps. Then, where vn is given
by Tn ↝ vn ε A / c for each n, and v is given by T ↝ v ε A / c, we show that v is the least upper
bound of the ascending chain of vn in ⟪A⟫=.

We begin by showing that the vn form an ascending chain, i.e., that observing communications
is monotone in the length of a trace.

Proposition 6.2.12. For all n and all channels c, if Tn ↝ vn ε A / c and Tn+1 ↝ vn+1 ε A / c,
then vn t/= vn+1 ε A.

Proof. All communications observed from a finite prefix are finite. We proceed by strong induction
on the size of the derivation of Tn ↝ vn ε A / c. The base cases for vn ε A are given by the axioms:

Case (O-�): Then vn = �. We are done by (CS-�).
Case (O-1): Then vn = close. Extending the trace by a single step does not affect the observed

communication on c, so vn+1 = close as well. We are done by (CS-1).
Now we proceed to the inductive step. We show several illustrative cases; the remainder are
analogous.

Case (O-⊗): Then Tn ↝ (un ,wn) ε A⊗ B / c becausemsg(c, send c a; d → c) appears in
Tn , and Tn ↝ un ε A / a and Tn ↝ wn ε B / d. Let un+1 andwn+1 be given by Tn+1 ↝ un+1 ε A / a
and Tn+1 ↝ wn+1 ε B / d. By the induction hypothesis, un t/= un+1 ε A and wn t/= wn+1 ε B. By
(O-⊗), Tn+1 ↝ (un+1 ,wn+1) ε A⊗ B / c. We are done by (CS-⊗).

Case (O-∧): Then Tn ↝ (val f ,wn) ε τ ∧ A / c because msg(c, _ ← output c f ; d → c)
appears in Tn , and Tn ↝ wn ε A / d. Let wn+1 be given by Tn+1 ↝ wn+1 ε A / d. By the
induction hypothesis, wn t/= wn+1 ε A. By (O-∧), Tn+1 ↝ (val f ,wn+1) ε τ ∧ A / c. We are done
by (CS-∧).

Proposition 6.2.13. Let T be a trace, and let v be given by T ↝ v ε A / c. For each n, let Tn be

the prefix of length n of T , and let vn be given by Tn ↝ vn ε A / c. Then v = ⊔↑n vn in ⟪A⟫=.

Proof. It is sufficient to show that:
(1) for all l , there exists an m such that ⌊v⌋l t/= vm ; and
(2) for all m, there exists an u such that vm t/= ⌊v⌋u .

Indeed, item 1 implies that every upper bound of the vm is an upper bound of the ⌊v⌋m ,while item 2
implies that every upper bound of the ⌊v⌋m is an upper bound of the vm . So ⊔↑m⌊v⌋m ≐/= ⊔↑m vm ε

A. By proposition 6.1.7, this is an equality. By corollary 6.1.14, ⊔↑m⌊v⌋m = v. So v = ⊔↑n vn as
desired.

We begin with item 1. Consider some l , and let m be any m such that all of the messages
appearing in the derivation of ⌊v⌋l appear in Tm . For item 2, consider some m, and let u be height
of vm plus one.

We now state a few basic properties of observations on single channels.

Definition 6.2.14. Let T be a trace of some configuration C. Amessage factmsg(a,m) is observable
from c in T if appears in the derivation of T ↝ v ε A / c. ◀

The following proposition captures the intuitive fact that observed communications on c

are entirely determined by the set ofmessage facts observable from c. Recall from section 3.1.3

150 6. OBSERVED COMMUNICATION SEMANTICS

that a refreshing substitution for a trace T = (M0 , (r i ; (θ i , ξ i))i) is a collection of fresh-constant
substitutions η = (η i)i such that [η]T = (M0 , (r i ; (θ i , η i))i) is also a trace.

Proposition 6.2.15. Let T and T ′ be fair traces of C and C′, respectively. For all c, let v and v′

be given by T ↝ v ε A / c and T ′ ↝ v′ ε A / c. If T can be refreshed to T ′′ such that T ′′ and T ′ have

the same sets of observablemessage facts from c, then v = v′.

Proof. Immediate from the fact that T ↝ v ε A / c is entirely determined by the set ofmessages
observable from c, and that it is invariant under refreshing of channel names.

Configurations with no common channels do not interfere with each other:

Proposition 6.2.16. Consider multisets Γ ⊢ C ∶∶ ∆ and Φ ⊢ D ∶∶ Ξ with disjoint sets of free

channels, i.e., such that ΓΦ ⊢ C ,D ∶∶ ∆Ξ is well formed. Then for all fair traces T of C ,D and T ′ of C
and all c ∈ fc(C), T ↝ v ε A / c if and only if T ′ ↝ v ε A / c.

Proof. We claim that every fair trace T of C ,D induces a fair trace T ′ of C. Explicitly, we use
preservation (proposition 5.9.1) to show that

(1) everymultiset in T is of the form ΓΦ ⊢ C′ ,D′ ∶∶ ∆Ξ for some Γ ⊢ C′ ∶∶ ∆ andΦ ⊢ D′ ∶∶ Ξ;
(2) every step in T is of the form C′[D′]ΦΞ Ð→ C

′[D′′]ΦΞ orD′[C′]Γ∆ Ð→ D
′[C′′]Γ∆ .

It is sufficient to show that these properties hold for every finite prefix of T . We do so by induction
on the number n of steps in the prefix. The result is immediate when n = 0. Assume the result
for some n, then the last multiset is of the form ΓΦ ∣ I ⊢ C′ ,D′ ∶∶ ∆Ξ for some Γ ⊢ C′ ∶∶ ∆ and
Φ ⊢ D′ ∶∶ Ξ. Assume some rule instance r(θ) is applicable to C′ ,D′. If its activemultiset intersects
with both C′ and D′, then a case analysis on the rules reveals that it contains amessage fact. By
lemma 5.9.5, this implies that C′ andD′ have a free channel in common, a contradiction. So the
activemultiset of r(θ) is contained in C′ or inD′. We are done by preservation.

Taking the subsequence of steps of the form D′[C′]Γ∆ Ð→ D
′[C′′]Γ∆ gives a trace T ′ of C. It is

fair because T is fair. Let c ∈ fc(C) be arbitrary. Every message fact observable from c in T is
observable from c in T ′, and vice-versa. It follows that T ↝ v ε A / c if and only if T ′ ↝ v ε A / c.
The choice of trace T ′ for C does not matter by theorem 6.2.11.

6.3. Observed Communications of Configurations

We use theorems 6.2.10 and 6.2.11 to define observations on channels in a configuration,
independently of the trace:

Definition 6.3.1. Given Ψ ⊆ Γ, I, ∆, the observed communication on Ψ of Γ ∣ I ⊢ C ∶∶ ∆ is the tuple

jΓ ∣ I ⊢ C ∶∶ ∆oΨ = (c ∶ vc)c∈Ψ̌
of observed communications, where T ↝ vc ε A / c for c ∶ A ∈ Ψ for some fair execution T of
Γ ∣ I ⊢ C ∶∶ ∆. If c ∈ Ψ̌, then we occasionally write jΓ ∣ I ⊢ C ∶∶ ∆oΨ(c) for the communication vc

observed on c. ◀

Definition 6.3.1 is well-defined. Indeed, a fair execution T exists by corollary 5.9.11, and the
observed communications do not depend on the choice of T by theorem 6.2.11. The v such that
T ↝ v ε A / c exist and are unique by theorem 6.2.10.

Definition 6.3.1 is simplified by the fact that themultiset rewriting rules defining Polarized
SILL are non-overlapping, so its fair traces are union-equivalent. Indeed, it was this fact that was
used in the proof of theorem 6.2.11 to show that the communication on a channel was independent
of the fair trace. In language extensions that do not satisfy this property, observed communications
will be sets of tuples, instead of single tuples, but we conjecture that this should pose no significant
difficulty to the theory.

Generally,we deem internal channels to be private and unobservable, andwe only interactwith
configurations over their interfaces. However, definition 6.3.1 allows us to observe communications

6.3. OBSERVED COMMUNICATIONS OF CONFIGURATIONS 151

on a configuration’s internal channels. This lets us observe communications between configurations
and experiments when defining “internal” observational equivalence in chapter 7.

Observed communications do not take into account the order in which a process sends on
channels. For example, the following configurations have the same observed communications
(a ∶ (l , �), b ∶ (r, �)) on a and b, even though they send on a and on b in different orders:

a ∶ &{l ∶ 1} ⊢ proc(b, a.l ; b.r; a → b) ∶∶ b ∶ ⊕{r ∶ 1}
a ∶ &{l ∶ 1} ⊢ proc(b, b.r; a.l ; a → b) ∶∶ b ∶ ⊕{r ∶ 1}.

The order in which channels are used is not reflected in observations for several reasons. First,
messages are only ordered on a per-channel basis, andmessages sent on different channels can arrive
out of order. Second, each channel has a unique pair of endpoints, and the (Conf-C) rule organizes
processes in a forest-like structure (cf. proposition 5.6.20). This means that two configurations
communicating with a configuration C at the same time cannot directly communicate with each
other to compare the order inwhich C sent themmessages. In otherwords, the ordering ofmessages
on different channels cannot be distinguished by configurations.

We lift the notion of communication simulation and equivalence to tuples of communications
component-wise:

(c ∶ vc)c∶C∈Γ t/⩽ (c ∶ wc)c∶C∈Γ ⇐⇒ ∀c ∶ C ∈ Γ . vc t/⩽ wc ε C ,
(c ∶ vc)c∶C∈Γ ≐/≡ (c ∶ wc)c∶C∈Γ ⇐⇒ ∀c ∶ C ∈ Γ . vc ≐/≡ wc ε C .

CHAPTER 7

Observational Preorders and Equivalences

We adopt an extensional view of process equivalence, where we say that two processes are
equivalent if we cannot differentiate them through experimentation. Recall that communication
is our solemeans of interacting with processes, and that we can only observe communications.
This suggests that processes should be deemed equivalent if, whenever we subject them to “com-
municating experiments”, we observe equivalent communications. Because our substructural
operational semantics and observed communication semantics are defined on configurations and
not on processes, it is more natural to define observational equivalence on configurations instead
of on processes. We will later show how to restrict our observational equivalences to processes.

We follow Milner [Mil80, chap. 2] and Hoare [Hoa85, p. 65] in identifying experimenting
agents with processes themselves (strictly speaking, with configuration contexts). We also build on
the “testing equivalences” framework introduced byDeNicola andHennessy [DH84; Hen83;De 85].
Roughly speaking, this framework subjected processes to experiments that could potentially suc-
ceed, and it deemed two processes to be equivalent if they succeeded the same experiments. Their
notion of experimental success was based on observing a “success” state. Instead of determining the
success of experiments from process states, we determine it by observing communications. The fol-
lowing definition adapts Hennessy’s state-based “computational systems” ([Hen83, Definition 2.1.1])
to our communication-based setting:

Definition 7.0.1. An observation system S on configurations is a pair (X , ⩽), where
● X = (XΓ⊢∆)Γ ,∆ is a type-indexed family of sets,whereXΓ⊢∆ is a set of pairs (E ,C),where
Λ ∣ I ⊢ E[⋅]Γ∆ ∶∶ Ξ is a context and C ⊆ Λ, I, Ξ is a subset of the channels free in E[⋅]Γ∆ ;
● ⩽ is a type-indexed relation on terms.

We assume that X is closed under exchange: if Γ′ and ∆′ are permutations of Γ and ∆, respectively,
then XΓ′⊢∆′ = XΓ⊢∆ . We also assume that X is closed under renaming. ◀

Intuitively, XΓ⊢∆ is a set of experiments E and observation channels C on configurations with
interface (Γ, ∆). In our development, we assume that the experiments E of observation systems
are configuration contexts written in the same language as the configurations on which we are
experimenting. However, this is not a necessary assumption: experiments could be written in
any language, so long as its multiset rewriting semantics does not interfere with the hypotheses
underlying the observed communication semantics of chapter 6.

Definition 7.0.2. Let S = (X , ⩽) be an observation system and ⩽ a preorder. Observational S-
simulation is the type-indexed relation tS on configurations such that Γ ⊢ C tS D ∶∶ ∆ if and only
if for all (Λ ⊢ E[⋅]Γ∆ ∶∶ Ξ, Ψ) ∈ XΓ⊢∆ ,

jΛ ⊢ E[C]Γ∆ ∶∶ ΞoΨ t/⩽ jΛ ⊢ E[D]
Γ
∆ ∶∶ ΞoΨ .

In this case, we say that C and D are observationally S-similar. We call (tS)
c observational S-

precongruence. ◀

Observational S-simulation is a preorder by proposition 6.1.4. We define observational S-
equivalence analogously:

Definition 7.0.3. Let S = (X , ⩽) be an observation system and ⩽ a preorder. Observational S-
equivalence is the type-indexed relation ≐S on configurations such that Γ ⊢ C ≐S D ∶∶ ∆ if and only

153

154 7. OBSERVATIONAL PREORDERS AND EQUIVALENCES

if for all (Λ ⊢ E[⋅]Γ∆ ∶∶ Ξ,C) ∈ XΓ⊢∆ ,

jΛ ⊢ E[C]Γ∆ ∶∶ ΞoC ≐/⩽ jΛ ⊢ E[D]
Γ
∆ ∶∶ ΞoC .

In this case, we say that C and D are observationally S-equivalent. We call (≐S)
c observational

S-congruence. ◀

Observational S-equivalence is an equivalence relation by proposition 6.1.6. Apart from in-
stances inwhichwewant to emphasize the symmetry of a result, wewill not consider observational
S-equivalence. This does not restrict the applicability of our results in light of proposition 7.0.4,
and the general fact that ⩽ ∩ ⩽op is an equivalence relation whenever ⩽ is a preorder.

Proposition 7.0.4. Let S = (X , ⩽) be an observation system. S-simulation and S-equivalence

and their (pre)congruences are related as follows:

(1) Γ ⊢ C ≐S D ∶∶ Ξ if and only if Γ ⊢ C tS D ∶∶ Ξ and Γ ⊢ D tS C ∶∶ Ξ;

(2) Γ ⊢ C (≐S)
c
D ∶∶ Ξ if and only if Γ ⊢ C (tS)

c
D ∶∶ Ξ and Γ ⊢ D (tS)

c
C ∶∶ Ξ.

Though S-simulation and S-equivalence are defined using contexts, it is important to note
that, unlike contextual-equivalence-style relations, they are stable under language extension. In-
deed, extending the process language with new language constructs does not affect X ’s ability
to discriminate between pre-existing programs. However, S-precongruence and S-congruence
need not be stable under language extension. This is because subjecting previously precongruent
configurations to new language constructs could have effects that are discernible by X .

There are three natural1 families of observation systems, and each reflects a different outlook on
program testing. The first is an “external”notion of experimentation,wherewe imagine experiments
as black boxes intowhichwe place configurations, andwhere the result of the experiment is reported
on its exterior channels. Because values in Polarized SILL are unobservable (they are all of function
or quoted process type), we do not differentiate between values observed on experiments’ exterior
channels. This gives:

Definition 7.0.5. The external observation system E is given by (X E ,U), where U is the universal
relation and X E is the family

X E

Γ⊢∆ = {(E[⋅]
Γ
∆ ,ΛΞ) ∣ Λ ⊢ E[⋅]

Γ
∆ ∶∶ Ξ}. ◀

Alternatively, we could adopt an “internal” view of experimentation, where experiments
question their subjects, and we observe their answers. This approach is reminiscent of the process
equivalence Darondeau [Dar82] gave to a calculus inspired byCCS. This internal view is well-suited
to synchronous settings like Classical Processes [Wad14], where processes cannot communicate
unless we give them communication partners. Accordingly, it is the approach Atkey [Atk17] took
when defining process equivalence for CP.

Definition 7.0.6. The internal observation system I is given by (X I ,U), where U is the universal
relation and X I is the family

X I

Γ⊢∆ = {(E[⋅]
Γ
∆ , Γ∆) ∣ Λ ⊢ E[⋅]

Γ
∆ ∶∶ Ξ}. ◀

The final approach takes a “total” view on experimentation,wherewe observe communications
on all channels in the experimental context. We use it strictly as a technical tool for relating
observation systems. We will see that total observational simulation implies both internal and
external observational simulations.

Definition 7.0.7. The (strict) total observation system T is given by (X T , =), whereX T is the family

X T

Γ⊢∆ = {(E[⋅]
Γ
∆ ,ΛIΞ) ∣ Λ ∣ I ⊢ E[⋅]Γ∆ ∶∶ Ξ}. ◀

1We use “natural” in the same sense as in “natural transformation”,where the choice of observed channels C is uniform
across all contexts.

7. OBSERVATIONAL PREORDERS AND EQUIVALENCES 155

We respectively call tE , tI , and tT external, internal, and total observational simulation.
Our observation system framework lets us prove general properties that hold for simulations

induced by the above observation systems. For example, we can use the fact that experiments are
written in the same language as configurations to give an easy check that observational simulations
are precogruences. We say that an experiment set X is closed under composition with contexts if
for all contexts Λ ⊢ C[⋅]Γ∆ ∶∶ Ξ and all experiments (E[⋅]ΛΞ ,C) ∈ X , there exists a C′ ⊇ C such that
(E[C[⋅]Γ∆]

Λ
Ξ ,C

′) ∈ X .

Proposition 7.0.8. Let S = (X , ⩽) be an observation system. If X is closed under composition

with contexts, then tS is a precongruence, i.e., Γ ⊢ C tS D ∶∶ ∆ if and only if Γ ⊢ C (tS)
c
D ∶∶ ∆.

Proof. Assume that Γ ⊢ C tS D ∶∶ ∆. Let Λ ∣ F[⋅]Γ∆ ⊢ Ξ ∶∶ be an arbitrary context and let
(Φ ⊢ E[⋅]ΛΞ ∶∶ Ψ,C) ∈ X be an arbitrary experiment. Wemust show that

jΦ ⊢ E[F[C]Γ∆]
Λ
Ξ ∶∶ ΨoC t/⩽ jΦ ⊢ E[F[D]

Γ
∆]

Λ
Ξ ∶∶ ΨoC .

By closure under composition with contexts, (Φ ⊢ E[F[⋅]Γ∆]
Λ
Ξ ∶∶ Ψ,C

′) ∈ X for some C′ ⊇ C. This
implies

jΦ ⊢ E[F[C]Γ∆]
Λ
Ξ ∶∶ ΨoC′ t/⩽ jΦ ⊢ E[F[D]

Γ
∆]

Λ
Ξ ∶∶ ΨoC′ .

The result is immediate from the fact that C′ ⊇ C.

Corollary 7.0.9. Total observational simulation tT and external observational simulation tE
are precongruences.

Recall simply branched contexts from definition 5.7.9. It is sometimes sufficient to consider
only simply branched experiments, i.e., experiments where the context is simply branched. This
result is reminiscent ofMilner’s “context lemma” [Mil77]. We begin with the following lemma:

Lemma 7.0.10. Let (Λ ∣ I ⊢ E[⋅]Γ∆ ∶∶ Ξ,C) be an arbitrary experiment. There exists a simply

branched context Λ ∣ I, Ξ ⊢ B[⋅]Γ∆ ∶∶ a ∶ 1 such that for all Γ ⊢ C ∶∶ ∆,

jΛ ∣ I, Ξ ⊢ B[C]Γ∆ ∶∶ a ∶ 1oC = jΛ ∣ I ⊢ E[C]Γ∆ ∶∶ ΞoC ,

jΛ ∣ I, Ξ ⊢ B[C]Γ∆ ∶∶ a ∶ 1oa = (a ∶ �).

Proof. Recall from example 5.3.3 that there exists a divergent process ⋅ ; Ξ ⊢ Ω ∶∶ c ∶ 1. Let
Λ ∣ I, Ξ ⊢ B[⋅]Γ∆ ∶∶ a ∶ 1 be given by the composition E[⋅]Γ∆ , proc(c,Ω). Let Γ ⊢ C ∶∶ ∆ be arbitrary.
Let T be an arbitrary fair trace of Λ∣ I ⊢ E[C]Γ∆ ∶∶ Ξ. Let T ′ be the trace of Λ∣ I, Ξ ⊢ B[C]Γ∆ ∶∶ a ∶ 1
given by interleaving each step of T with an application of rule (73) to proc(c,Ω). It is fair. The
two traces are union equivalent, so they have the same observed communications on all channels.
In particular, no message is sent on a, so T ′ ↝ a ε 1 / �.

Proposition 7.0.11. Let S = (X , ⩽) range over observation systems I and T . Let SB = (X
B , ⩽)

be its restriction to simply branched contexts, where X B = {(E ,C) ∈ X ∣ E is simply branched}.
Then Γ ⊢ C tS D ∶∶ ∆ if and only if Γ ⊢ C tSB

D ∶∶ ∆.

Proof. Sufficiency is immediate for both properties: every simply branched experiment is an
experiment. To see necessity, assume that Γ ⊢ C tSB

D ∶∶ ∆. Let (Λ ⊢ E[⋅]Γ∆ ∶∶ Ξ,C) ∈ X be an
arbitrary experiment. Wemust show that

jΛ ⊢ E[C]Γ∆ ∶∶ ΞoC t/⩽ jΛ ⊢ E[D]
Γ
∆ ∶∶ ΞoC .

By lemma 7.0.10, there exists a simply branched experiment (Λ ⊢ B[⋅]Γ∆ ∶∶ a ∶ 1,D) ∈ X with C ⊆ D.
In either case,

jΛ ⊢ B[C]Γ∆ ∶∶ a ∶ 1oD t/⩽ jΛ ⊢ B[D]
Γ
∆ ∶∶ a ∶ 1oD

by assumption. Because C ⊆ D,

jΛ ⊢ B[C]Γ∆ ∶∶ a ∶ 1oC t/⩽ jΛ ⊢ B[D]
Γ
∆ ∶∶ a ∶ 1oC .

By the lemma,
jΛ ⊢ E[C]Γ∆ ∶∶ ΞoC t/⩽ jΛ ⊢ E[D]

Γ
∆ ∶∶ ΞoC .

156 7. OBSERVATIONAL PREORDERS AND EQUIVALENCES

Recall simply branched contextual interiors from definition 5.7.3. Our first “context lemma”
(cf. [Mil77, pp. 6–7]) states that, in the cases of external and total simulations, it is sufficient to
quantify over simply branched contexts to show that configurations are S-precongruent:

Proposition 7.0.12. Let S = (X , ⩽) range over observation systems E and T . Then Γ ⊢ C (tS)
c

D ∶∶ a ∶ A if and only if Γ ⊢ C (tS)
b
D ∶∶ a ∶ A.

Proof. Sufficiency is immediate: every simply branched context is a context. To see necessity,
assume that Γ ⊢ C (tS)

b
D ∶∶ a ∶ A, i.e., that

jΛ ⊢ E[B[C]Γa∶A]
Φ
b∶B ∶∶ ΞoC t/⩽ jΛ ⊢ E[B[D]

Γ
a∶A]

Φ
b∶B ∶∶ ΞoC (90)

for all simply branched contexts Φ ⊢ B[⋅]Γ
a∶A ∶∶ b ∶ B and experiments (Λ ⊢ E[⋅]Φ

b∶B ∶∶ Ξ,C) ∈ X .
Let Φ ∣ IF ⊢ F[⋅]Γa∶A ∶∶ Ψ be an arbitrary context, and let (Λ ∣ IE ⊢ E[⋅]ΦΨ ∶∶ Ξ,C) ∈ X be an
arbitrary experiment. Wemust show that

jΛ ⊢ E[F[C]Γa∶A]
Φ
Ψ ∶∶ ΞoC t/⩽ jΛ ⊢ E[F[D]

Γ
a∶A]

Φ
Ψ ∶∶ ΞoC . (91)

The contextE[F[⋅]Γ
a∶A]

Φ
Ψ appears as the experiments (E[F[⋅]Γ

a∶A]
Φ
Ψ ,ΛΞ) ∈ X

E and (E[F[⋅]Γ
a∶A]

Φ
Ψ ,ΛIF IEΞ) ∈

X T . Instantiating (90) with B = [⋅]Γ
a∶A gives the result.

In this dissertation, we focus on external observational simulation. It is better behaved than
internal observational simulation (it is a precongruence). It is also, in some sense, easier to work
with. This is because we can use the fact that we never observe input on external channels. As a
result, the observed communications are simpler: they are never bidirectional.

In section 7.1, we show that total observational equivalence is closed under execution. We
show in section 7.2 that internal observational precongruence implies external observational
precongruence. In section 7.3, we develop external observational simulation. We relate it to weak
barbed precongruence. Figure 7.1 of section 7.4 summarizes the relationships between these different
relations on configurations. We show in section 7.5 how to relate relations on configurations and
relations on processes. This will give certain precongruences for processes.

7.1. Total Observations for Configurations

Total observational equivalence is useful for showing properties that hold of all observational
S-simulations and S-equivalences. This is because total observational equivalence is the finest
notion of equivalence based on observed communications:

Proposition 7.1.1. Let Si = (Xi , ⩽i) for i = 1, 2 be observation systems. Then Γ ⊢ C tS1 D ∶∶ ∆
implies Γ ⊢ C tS2 D ∶∶ ∆ whenever both:

(1) for all (Λ∣ I ⊢ E[⋅]Γ∆ ∶∶ Ξ,C) ∈ X2, there exists C′ ⊇ C such that (Λ∣ I ⊢ E[⋅]Γ∆ ∶∶ Ξ,C
′) ∈

X1, and

(2) ⩽1 ⊆ ⩽2.

Proof. Assume that Γ ⊢ C tS1 D ∶∶ ∆. Let (Λ ∣ I ⊢ E[⋅]Γ∆ ∶∶ Ξ,C) ∈ X2 be arbitrary. Wemust show
that

jΛ ⊢ E[C]Γ∆ ∶∶ ΞoC t/⩽2 jΛ ⊢ E[D]
Γ
∆ ∶∶ ΞoC .

By assumption, (Λ ∣ I ⊢ E[⋅]Γ∆ ∶∶ Ξ,C
′) ∈ X1 for some C′ ⊇ C. This implies that

jΛ ⊢ E[C]Γ∆ ∶∶ ΞoC′ t/⩽1 jΛ ⊢ E[D]
Γ
∆ ∶∶ ΞoC′ .

Because C ⊆ C′,
jΛ ⊢ E[C]Γ∆ ∶∶ ΞoC t/⩽1 jΛ ⊢ E[D]

Γ
∆ ∶∶ ΞoC .

Bymonotonicity (proposition 6.1.4),

jΛ ⊢ E[C]Γ∆ ∶∶ ΞoC t/⩽2 jΛ ⊢ E[D]
Γ
∆ ∶∶ ΞoC .

Corollary 7.1.2. Let T = (X T , =) be given by definition 7.0.7. For all observation systems

S = (X , ⩽),

7.1. TOTAL OBSERVATIONS FOR CONFIGURATIONS 157

● if Γ ⊢ C tT D ∶∶ ∆, then Γ ⊢ C tS D ∶∶ ∆;

● if Γ ⊢ C t(X T ,⩽) D ∶∶ ∆, then Γ ⊢ C tS D ∶∶ ∆.

Total observational equivalence is closed under multiset rewriting:

Proposition 7.1.3. If Γ ∣ C ⊢ ∆ ∶∶ and C Ð→ C′, then Γ ⊢ C ≐T C
′ ∶∶ ∆.

Proof. Consider an arbitrary experiment (Φ ∣ I ⊢ E[⋅]Γ∆ ∶∶ Λ,ΦIΛ), and let T be a fair trace of
E[C]Γ∆ . By fairness and preservation, we can assume without loss of generality that the first step of
T is E[C]Γ∆ Ð→ E[C

′]Γ∆ . If everymessage fact in C appears in C′, then we are done. Indeed, the tail
T ′ of T is a fair trace of E[C′]Γ∆ by the fair tail property (proposition 3.3.1). Both T and T ′ have the
same sets ofmessage facts, so they induce the same observations for each channel in Φ, I, ∆.

Now assume that C Ð→ C′ consumes a message fact, i.e., that there is some message fact
msg(c,m) ∈ C that is not in C′. We must show that it is not observable from any channel d in
Φ, I,Λ in T , i.e., that it does not appear in any derivation of T ↝ u ε A / d for d in Φ, I,Λ.

A case analysis on the rules defining T ↝ u ε A / d shows that if T ↝ v ε B / a appears as a
premise of a rule, then

(1) the rule is due to amsg(b,m) with a ∈ fc(msg(b,m)), and
(2) the conclusion of the rule is of the form T ↝ w ε C / c, where c = cc(msg(b,m)).

Suppose to the contrary that msg(c,m) is observable from some d in Φ, I,Λ in T . We
proceed by induction on the height h ofmsg(c,m) in the derivation of observed communication.
Set a = cc(msg(c,m)).

Case h = 1: Then msg(c,m) is observable because cc(msg(c,m)) = d is in Φ, I,Λ. We
have msg(c,m) ∉ C′ only if msg(c,m) was in the active portion of the rule used to make the
step. However, by lemma 5.9.5, this implies that d ∈ ics(proc(b, P)) for some proc(b, P) ∈ C. This
implies that d is an internal channel of C by lemma 5.6.11, which in turn implies that d is not in
Φ, I, Γ, ∆,Λ. This is a contradiction.

Case h = h′+1: Assume the result for h′. Thenmsg(c,m) appears at height h in the derivation,
and there is a msg(b,m′) at height h′ in the derivation such that a ∈ fc(msg(b,m′)). Because
msg(c,m) ∈ C but msg(c,m) ∉ C′, we know that msg(c,m) was in the activemultiset of the rule
used to make the step C Ð→ C′. By lemma 5.9.5, a was an internal channel and it does not appear
free on the right side of the rule. By preservation, it follows that a is not free in E[C′]Γ∆ . It follows
that a cannot appear free inmsg(b,m′), a contradiction.

To see that a cannot appear free inmsg(b,m′), we consider two cases:
Subcasemsg(b,m′) ∈ C: A case analysis on the rules shows that we also havemsg(b,m′) ∈ C′, a
contradiction of a ∉ fc(E[C′]Γ∆).
Subcasemsg(b,m′) ∉ C: Thenmsg(b,m′)must appear in some C′′ such that E[C′]Γ∆ Ð→

∗ C′′. But
each free channel inmsg(b,m′) ∈ C′′ is either already in E[C′]Γ∆ , or it is freshly generated, so not
in E[C]Γ∆ or E[C′]Γ∆ . Both of these possibilities contradict the assumption that a ∈ fc(msg(b,m′)).

The following proposition shows that forwarding has no observable effect on communications,
and that it acts only to rename channels:

Proposition 7.1.4. For all Γ ⊢ C ∶∶ ∆, c ∶ C and Γ, c ∶ A ⊢ A ∶∶ ∆, respectively,

(1) if C is positive, then Γ ⊢ [d/c]C ≐T C , proc(d , c → d) ∶∶ ∆, d ∶ C;

(2) if A is positive, then Γ, d ∶ A ⊢ [d/c]A ≐T proc(c, d → c),A ∶∶ ∆;

(3) if A is negative, then Γ, d ∶ A ⊢ [d/c]A ≐T proc(c, d ← c),A ∶∶ ∆;

(4) if C is negative, then Γ ⊢ [d/c]C ≐T C , proc(d , c ← d) ∶∶ ∆, d ∶ C.

Proof. Assume first that Γ ⊢ C ∶∶ ∆, c ∶ C and that C is positive. Let (E[⋅]Γ∆,c∶C ,D) be an arbitrary
experiment. Then E[C]Γ∆,c∶C Ð→

∗ E ′[msg(c,m)]Γ
′

∆′ ,c∶C for some E ′ if and only if

([d/c]E) [[d/c]C]Γ∆,d ∶C Ð→
∗ ([d/c]E ′)[msg(d , [d/c]m)]Γ

′

∆′ ,d ∶C ,

158 7. OBSERVATIONAL PREORDERS AND EQUIVALENCES

and an induction shows that this holds if and only if

([d/c]E) [C , proc(d , c → d)]Γ∆,d ∶C Ð→
∗ ([d/c]E ′) [msg(c,m), proc(d , c → d)]Γ

′

∆′ ,d ∶C .

But this last multiset in turn steps to ([d/c]E ′)[msg(d , [d/c]m)]Γ
′

∆′ ,d ∶C by rule (64):

([d/c]E ′) [msg(c,m), proc(d , c → d)]Γ
′

∆′ ,d ∶C Ð→ ([d/c]E
′)[msg(d , [d/c]m)]Γ

′

∆′ ,d ∶C .

So if this collection of logical equivalences hold, we are done by proposition 7.1.3 and the fact that
≐T is reflexive.

Ifmsg(c,m) appears in no fair trace of E[C]Γ∆,c∶C , then an induction shows that every trace of
E[C]Γ∆,c∶C is a trace of ([d/c]E) [C , proc(d , c → d)]Γ∆,d ∶C (modulo the presence of the forwarding
process), and that they have the same sets ofmessage facts. So they induce the same observations
on all channels and we are done.

The remaining cases are analogous.

7.2. Internal Observations for Configurations

Atkey [Atk17, p. 79] states without proof that his internal-style observational equivalence is
a congruence. Internal observational equivalence is not a congruence in our setting because of
value transmission, and our choice to compare functional values using the universal relation U. As
described above, we use U because of philosophical objections to inspecting values of function
type. Unfortunately, it is these values of function type that cause observational equivalence to not
be a congruence. We conjecture that replacing U by a suitable refinement would cause internal
observational equivalence to be a congruence.

Proposition 7.2.1. Internal observational simulation (equivalence) is not a precongruence (con-

gruence).

Proof. We construct an explicit counter-example. Let the processes P and Q respectively be:

⋅ ; ⋅ ⊢_← output c (λx ∶ τ.x); close c ∶∶ c ∶ (τ → τ) ∧ 1,
⋅ ; ⋅ ⊢_← output c (λx ∶ τ.fix y.y); close c ∶∶ c ∶ (τ → τ) ∧ 1.

Then for all experiments (Λ ⊢ E[⋅]
c∶(τ→τ)∧1 ∶∶ Ξ, c) ∈ X

I ,

jΛ ⊢ E[proc(c, P)]
c∶(τ→τ)∧1 ∶∶ Ξoc

= (c ∶ (val λx ∶ τ.x , close))
≐/U (c ∶ (val λx ∶ τ.fix y.y, close))
= jΛ ⊢ E[proc(c,Q)]

c∶(τ→τ)∧1 ∶∶ Ξoc .

So ⋅ ⊢ proc(c, P) ≐I proc(c,Q) ∶∶ c ∶ (τ → τ) ∧ 1. By proposition 7.0.4, ⋅ ⊢ proc(c, P) tI
proc(c,Q) ∶∶ c ∶ (τ → τ) ∧ 1. Take τ to be ρ → ρ for some ρ, and consider the process R given by

⋅ ; c ∶ (τ → τ) ∧ 1 ⊢ x ← input c; _← output b (x(λz ∶ ρ.z)); c → b ∶∶ b ∶ τ ∧ 1.

Set C[⋅]
c∶(τ→τ)∧1 = [⋅]c∶(τ→τ)∧1 , proc(b, R). Then the experiment ([⋅]

b∶τ∧1 , b) ∈ X
I can differentiate

C[proc(c, P)]⋅
c∶(τ→τ)∧1 and C[proc(c,Q)]

⋅
c∶(τ→τ)∧1. Intuitively, this is because (λx ∶ τ.x)(λz ∶ ρ.z)

will converge in the first case, but (λx ∶ τ.fix y.y)(λz ∶ ρ.z) will diverge in the second. Explicitly,

j⋅ ⊢ C[proc(c, P)]⋅
c∶(τ→τ)∧1 ∶∶ b ∶ τ ∧ 1ob

= (b ∶ (val (λz ∶ ρ.z), close))
/t/U (b ∶ �)

= j⋅ ⊢ C[proc(c,Q)]⋅
c∶(τ→τ)∧1 ∶∶ b ∶ τ ∧ 1ob .

So tI is not a precongruence. It follows from proposition 7.0.4 that ≐I is not a congruence.

7.3. EXTERNAL OBSERVATIONS FOR CONFIGURATIONS 159

Proposition 7.2.2. Let X I and X T be given by definition 7.0.6 and definition 7.0.7, respectively.

Then for all ⩽, if Γ ⊢ C (t(X I ,⩽))
c
D ∶∶ ∆, then Γ ⊢ C (t(X T ,⩽))

c
D ∶∶ ∆.

Proof. Let Λ ⊢ F[⋅]Γ∆ ∶∶ Ξ be an arbitrary context and (Φ∣ I ⊢ E[⋅]ΛΞ ∶∶ Ψ,ΦIΨ) ∈ X T an arbitrary
experiment. Wemust show that

kΦ ⊢ E[F[C]Γ∆]
Λ
Ξ ∶∶ ΨpΦIΨ

t/⩽ kΦ ⊢ E[F[D]Γ∆]
Λ
Ξ ∶∶ ΨpΦIΨ .

This is the case if and only if for all c ∶ C ∈ Φ, I, Ξ,

kΦ ⊢ E[F[C]Γ∆]
Λ
Ξ ∶∶ ΨpΦIΨ(c)

t/⩽ kΦ ⊢ E[F[D]Γ∆]
Λ
Ξ ∶∶ ΨpΦIΨ(c). (92)

Fix some arbitrary such c ∶ C. Induction on Φ ∣ I ⊢ E[⋅]ΛΞ ∶∶ Ψ gives a decomposition of E
as a composition of contexts E[⋅]ΛΞ = E

′[E ′′[⋅]ΛΞ]
Λ′
Ξ′ such that c ∶ C ∈ Λ′ , Ξ′. Observe that the

composition E ′′[F[⋅]Γ∆]
Λ
Ξ is again a context, and that (E ′[⋅]Λ

′

Ξ′ ,Λ
′Ξ′) ∈ X I . Then by assumption,

lΦ ⊢ E ′[(E ′′[F[C]Γ∆]
Λ
Ξ)]

Λ′
Ξ′ ∶∶ ΨqΛ′Ξ′

t/⩽ lΦ ⊢ E ′[(E ′′[F[D]Γ∆]
Λ
Ξ)]

Λ′
Ξ′ ∶∶ ΨqΛ′Ξ′ .

Because c ∶ C ∈ Λ′ , Ξ′, this implies (92) and we are done.

Combining proposition 7.2.2 and corollary 7.1.2, we conclude:

Corollary 7.2.3. If C ⊢ D (tI)
c ∆ ∶∶, then Γ ⊢ C (tE)

c
D ∶∶ ∆.

7.3. External Observations for Configurations

We show that external observational precongruence coincides with weak barbed precongru-
ence. We first show some general properties about observations on external channels.

Proposition 7.3.1. Assume that Γ ⊢ C ∶∶ ∆. We observe no communication on its input channels,

i.e., jΓ ⊢ C ∶∶ ∆o(c) = � for all c ∈ ic(C).

Proof. Let c ∈ ic(C) be arbitrary, let T be a fair trace, and let T be the union of all facts appearing
in T . Suppose to the contrary that some msg(d ,m) ∈ T has c as its carrier channel. Then by
remark 5.6.5, c is an output channel of msg(d ,m). By preservation, the subformula property
(proposition 5.6.8) and definition 5.6.1, c must also be an output channel of Γ ⊢ C ∶∶ ∆. But the sets
of input and output channels are disjoint, so this is a contradiction. It follows that T has c as its
carrier, so vc = � by (O-�).

Definition 7.3.2. Assume Γ ⊢ C ∶∶ ∆, and consider a trace T of C. Amessage fact msg(a,m) is
externally observable in T if it is observable from some c ∈ Γ̌, ∆̌ in T . ◀

Definition 7.3.3. Two configurations Γ ⊢ C ∶∶ ∆ and Γ ⊢ C′ ∶∶ ∆ have the same externally observable
message facts if for some fair traces T and T ′ of C and C′, respectively, for all channels c ∈ Γ̌, ∆̌, the
sets ofmessages observable from c in T and in T ′ are equal. ◀

Proposition 7.3.4. If Γ ⊢ C ∶∶ ∆ and Γ ⊢ D ∶∶ ∆ have the same sets of externally observable

message facts, then jΓ ⊢ C ∶∶ ∆o = jΓ ⊢ D ∶∶ ∆o.

Proof. This is an immediate corollary of proposition 6.2.15.

7.3.1. BarbedSimulation andPrecongruence. Barbed bisimulations and congruences [MS92;
San92] are the canonical notion of equivalence for process calculi. Abarb is an observation predicate
↓ defined on terms in a calculus that specifies themost basic behavioural observable: the ability to
perform an observable action. When defining the barb predicate,

the global observer [. . .] can also recognize the production of an observable
action, but in this case he cannot see neither the identity of the action produced
nor the state reached. [MS92, p. 691]

160 7. OBSERVATIONAL PREORDERS AND EQUIVALENCES

Concretely,we follow Sangiorgi [San92, § 3.2] and define barbs on a per-channel basis: the predicate
(⋅) ↓a specifies the ability to perform an observable action on channel a.

This minimalist approach to defining barbs contrasts with some recent approaches [YHB07;
Ton15; KMP19] whose barbs distinguish between different kinds of actions. For example, Yoshida,
Honda, and Berger [YHB07] found it necessary to observe which label was sent to ensure that
barbed bisimulation was a congruence. By using a different barb for each kind of typed commu-
nication, Toninho [Ton15, § 6.2] was able to give a binary logical relation that was consistent by
construction with barbed equivalence.

We prefer theminimalist approach for its conceptual simplicity and generality: it is calculus
agnostic. Instead of modifying the concept of a barb to ensure that barbed bisimulation is a
congruence, we follow the original approach and extract “barbed congruences” from barbed
bisimulations using contextual interiors (cf. [MS92, Definition 8; San92, Definition 3.2.6]).

Definition 7.3.5. A barb is the channel-indexed predicate (⋅) ↓a on processes and configurations
inductively defined by:

● close a ↓a ;
● a.k; P ↓a ;
● send a shift; P ↓a ;
● _← output a M; P ↓a ifM ⇓ v for some v;
● send a b; P ↓a ;
● send a unfold; P ↓a ;
● proc(c, P) ↓a whenever P ↓a ;
● msg(a,m) ↓a whenever m ↓a ;
● (proc(b, a ← b),msg(c,m−

b ,c)) ↓a and (msg(a,m+), proc(b, a → b)) ↓b ; and
● (C[D]Γ∆) ↓a wheneverD ↓a .

A weak barb is the channel-indexed predicate (⋅) ⇓
a
on configurations defined by the composition

of relationsÐ→∗ (⋅) ↓a . We write (⋅)⇓̸
a
for the negation of (⋅) ⇓

a
. ◀

WriteÐ→r for the reflexive closure ofÐ→.

Proposition 7.3.6. For all configurations C, C ↓a if and only if C Ð→
r C′ ,msg(c,m) for some

msg(c,m) with cc(msg(c,m)) = a.

Proof. Sufficiency follows by a case analysis on why C ↓a . To see necessity, assume first that
msg(c,m) ∈ C. Then a case analysis on m gives the result. Ifmsg(c,m) ∉ C, then a case analysis
on the (non-reflexive) step gives the result.

Corollary 7.3.7. For all Γ ⊢ C ∶∶ ∆ and a ∈ fc(C), C ⇓
a
if and only if jΓ ⊢ C ∶∶ ∆oa(a) ≠ �.

The barbed simulation game requires the simulating configuration to match the simulated
configuration’s barbs:

Definition 7.3.8. A typed relation R on configurations is a (weak) barbed simulation if ∆ ⊢ C R
D ∶∶ Ψ implies

(1) if C Ð→ C′, thenD Ð→∗ D′ with ∆ ⊢ C′ R D′ ∶∶ Ψ; and
(2) for all channels a ∶ A ∈ ∆,Ψ, if C ⇓

a
, thenD ⇓

a
.

(Weak) barbed similarity, ⪷, is the largest barbed simulation. Two configurations ∆ ⊢ C ∶∶ Ψ and
∆ ⊢ D ∶∶ Ψ are (weak) barbed similar, ∆ ⊢ C ⪷ D ∶∶ Ψ, if ∆ ⊢ C R D ∶∶ Ψ for some barbed simulation
R. ◀

We can define barbed bisimulation from barbed simulation in the usual manner:

Definition 7.3.9. A typed relationR on configurations is a (weak) barbed bisimulation if bothR
andR−1 are barbed simulations. (Weak) barbed bisimilarity, ≈, is the largest barbed bisimulation.
Two configurations ∆ ⊢ C ∶∶ Ψ and ∆ ⊢ D ∶∶ Ψ are (weak) barbed bisimilar, ∆ ⊢ C ≈ D ∶∶ Ψ, if
∆ ⊢ C R D ∶∶ Ψ for some barbed bisimulationR. ◀

7.3. EXTERNAL OBSERVATIONS FOR CONFIGURATIONS 161

Barbed bisimulation is an equivalence relation. We do not develop its theory any further.

Example 7.3.10. The following two configurations are barbed bisimilar:

⋅ ⊢ proc(b, a ← close a; (wait a; close b)) ∶∶ b ∶ 1 (93)
⋅ ⊢ proc(b, close b) ∶∶ b ∶ 1 (94)

The unique execution of (93) is:

proc(b, a ← close a; (wait a; close b)) (95)
Ð→ proc(a, close a), proc(b,wait a; close b) (96)
Ð→ msg(a, close a), proc(b,wait a; close b) (97)
Ð→ proc(b, close b) (98)
Ð→ msg(b, close b), (99)

while the unique execution of (94) is:

proc(b, close b) (100)
Ð→ msg(b, close b). (101)

Where the numbers refer to the configurations in the above executions, the following relation is a
barbed bisimulation:

R = {((95), (100)), ((96), (100)), ((97), (100)), ((98), (100)), ((99), (101))}

Indeed, it ensures that the two configurations remain related throughout the stepping game. It
also satisfies the requirement that related configurations have the same barbs for channels in their
interfaces: in each pair, both configurations satisfy the weak barb (⋅) ⇓

b
. ◀

Lemma 7.3.11. If Γ ⊢ C ∶∶ ∆ and C Ð→ C′, then for all c ∈ Γ̌, ∆̌, we have C ⇓
c
if and only if C′ ⇓

c
.

Proof. This is a consequence of proposition 7.1.3 and corollary 7.3.7.

We can characterize barbed similarity using proposition 7.3.12.

Proposition 7.3.12. Two configurations are barbed similar, ∆ ⊢ C ⪷ D ∶∶ Ψ, if and only if for all

c ∈ ∆̌, Ψ̌, if C ⇓
c
, thenD ⇓

c
.

Proof. Sufficiency is obvious. To see necessity, let R be the relation given by {(C′ ,D′) ∣ C Ð→∗

C′ ∧D Ð→∗ D′}. It is a barbed bisimulation. Indeed, it is closed under stepping by construction.
Moreover, if C′ R D′ and C′ ⇓

c
for some c ∈ ∆̌, Ψ̌, thenD′ ⇓

c
. To see that this is so, observe that if

C′ ⇓
c
, then C ⇓

c
, soD ⇓

c
by assumption. ThenD′ ⇓

c
by lemma 7.3.11.

Proposition 7.3.13. Barbed similarity not a precongruence relation on configurations.

Proof. Recall the process Ω from example 5.3.3. Consider the processes P, Q, and R respectively
given by:

⋅ ; a ∶ ⊕{l ∶ 1, r ∶ 1} ⊢ case a {l ⇒ wait a; close c ∣ r⇒ Ω} ∶∶ c ∶ 1,
⋅ ; a ∶ ⊕{l ∶ 1, r ∶ 1} ⊢ case a {l ⇒ Ω ∣ r⇒ wait a; close c} ∶∶ c ∶ 1,
⋅ ; ⋅ ⊢ a.l ; close a ∶∶ a ∶ ⊕{l ∶ 1, r ∶ 1}.

We have the following pairs of barbed bisimilar configurations:

a ∶ ⊕{l ∶ 1, r ∶ 1} ⊢ proc(c, P) ≈ proc(c,Q) ∶∶ c ∶ 1
⋅ ⊢ proc(a, R) ≈ proc(a, R) ∶∶ (a ∶ ⊕{l ∶ 1, r ∶ 1})

However, barbed similarity is not contextual (so not a congruence relation), for

⋅ ⊢ proc(a, R), proc(c, P) /⪷ proc(a, R), proc(c,Q) ∶∶ c ∶ 1.

Indeed, the left side steps to the configuration proc(c, close c) which satisfies the barb (⋅)⇓
c
, while

right side cannot step to a configuration satisfying this barb.

162 7. OBSERVATIONAL PREORDERS AND EQUIVALENCES

Definition 7.3.14. (Weak) barbed precongruence ⪷c is the contextual interior of barbed similarity,
i.e., Γ ⊢ C ⪷c D ∶∶ Ξ if and only if if ∆ ⊢ E[C]ΓΞ ⪷ E[C]

Γ
Ξ ∶∶ Λ for all contexts ∆ ⊢ E[⋅]ΓΞ ∶∶ Λ. ◀

7.3.2. Relating Barbed Simulations and External-style Observational Simulations. We
relate barbed simulation ⪷ and external observational simulation tE . In fact, we show a more
general result. Let E = (X E ,U) be given by definition 7.0.5, and let ⩽ be a preorder such that
(X E , ⩽) is an observation system. We relate ⪷ and t(X E ,⩽). The result for tE follows as a special
case.

Proposition 7.3.15. If Γ ⊢ C t(X E ,⩽) D ∶∶ ∆, then Γ ⊢ C ⪷ D ∶∶ ∆.

Proof. Assume that Γ ⊢ C t(X E ,⩽) D ∶∶ ∆. Let c ∈ Γ̌, ∆̌ be arbitrary. By corollary 7.3.7, C ⇓
c
if and

only if jΓ ⊢ C ∶∶ Ξo(c) ≠ �. In this case, jΓ ⊢ D ∶∶ ∆o(c) ≠ �, which holds if and only ifD ⇓
c
. We

conclude that Γ ⊢ C ⪷ D ∶∶ ∆ by proposition 7.3.12.

Corollary 7.3.16. If Γ ⊢ C (t(X E ,⩽))
c
D ∶∶ ∆, then Γ ⊢ C ⪷c D ∶∶ ∆.

The converse of proposition 7.3.15 is false. This is because barbs do not distinguish between
sent messages, but only identify that amessage was sent. Concretely,

⋅ ⊢ proc(c, c.0; close c) ⪷ proc(c, c.1; close c) ∶∶ c ∶ ⊕{0 ∶ 1, 1 ∶ 1},

but

j⋅ ⊢ proc(c, c.0; close c) ∶∶ c ∶ ⊕{0 ∶ 1, 1 ∶ 1}o
= (c ∶ (0, close))
/t/⩽ (c ∶ (1, close))
= j⋅ ⊢ proc(c, c.1; close c) ∶∶ c ∶ ⊕{0 ∶ 1, 1 ∶ 1}o.

Despite this, the converse of corollary 7.3.16holds under certain reasonablehypotheses. Assume
that Γ ⊢ C ⪷c D ∶∶ Ξ. We must show that Λ ⊢ C (t(X E ,⩽))

c
D ∶∶ Ξ. By proposition 7.0.8, it is

sufficient to show that Λ ⊢ C t(X E ,⩽) D ∶∶ Ξ. We reduce this problem to the following:

Problem 7.3.17. Consider an observed communications jΓ ⊢ C ∶∶ ∆o = (c ∶ vc)c . Can we construct
an experiment context2 Γ̂ ⊢ E[⋅]Γ∆ ∶∶ ∆̂ (for some Γ̂ and ∆̂ determined from Γ and ∆) such that for
all Γ ⊢ D ∶∶ ∆, E[D]Γ∆ ⇓ĉ for all ĉ ∶ Â ∈ Γ̂, ∆̂ if and only if Γ ⊢ C t(X E ,⩽) D ∶∶ ∆? ◀

Indeed, given a solution to problem 7.3.17, we can show that Λ ⊢ C t(X E ,⩽) D ∶∶ Ξ as follows.
By reflexivity, Λ ⊢ C t(X E ,⩽) C ∶∶ Ξ. By construction, E[C]Γ∆ ⇓ĉ for all ĉ ∶ Â ∈ Γ̂, ∆̂. By assumption,
Γ̂ ⊢ E[C]Γ∆ ⪷ E[D]

Γ
∆ ∶∶ Ξ̂. So by proposition 7.3.12, E[D]Γ∆ ⇓ĉ for all ĉ ∶ Â ∈ Γ̂, ∆̂. Then Γ ⊢ C t(X E ,⩽)

D ∶∶ ∆ by construction of E[⋅]Γ∆ .
The answer to problem 7.3.17 is “no, but almost”. A finite number of experiment contexts is

insufficient in the presence of recursion and channel transmission (cf. [Hen83, p. 38]). We will
instead construct a families of contexts, one for each height n approximation of the communications
in (c ∶ vc)c . The general result will then follow by proposition 6.1.12.

For brevity, we write t for t/⩽ in the remainder of this section.
Before giving the full construction of experiment contexts, we illustrate the approach by a

sequence of examples. In these examples, we only consider configurations of the form ⋅ ⊢ C ∶∶ a ∶ A.
Given a channel name a, let â be a globally fresh channel name. Let Y+ be the “positive answer
type” ⊕{y ∶ 0+}, where 0+ is the positive empty type ⊕{}. We will construct non-empty sets
E(n, v ε A) of processes of type ⋅ ; a ∶ A ⊢ E ∶∶ â ∶ Y+. They will satisfy the following weakened
form of proposition 7.3.22:

Proposition. Fix some v ε A. Let ⋅ ⊢ C ∶∶ a ∶ A be arbitrary, and set w = j⋅ ⊢ C ∶∶ a ∶ Ao(a). For

all n, ⌊v⌋n+1 t w ε A if and only if for all E ∈ E(n, v ε A), j⋅ ⊢ C , proc(â, E) ∶∶ â ∶ Y+o(â) = (y, �).

2Though they serve similar purposes, these should not be confused with the experiments of observation systems.

7.3. EXTERNAL OBSERVATIONS FOR CONFIGURATIONS 163

In particular, by proposition 7.3.6, j⋅ ⊢ C , proc(â, E) ∶∶ â ∶ Y+o(â) = (y, �) if and only if
(C , proc(â, E)) ⇓

â
. The set E(n, v ε A) checks that ⌊v⌋n+1 t w ε A instead of ⌊v⌋n t w ε A because

it is always the case that ⌊w⌋0 t v ε A, and doing so simplifies the definition. These sets of processes
induce sets of experiment contexts in the obvious way. Let Yc be the process c.y; Ω, where Ω is
given at each type by example 5.3.3.

Example 7.3.18. Set v = (k, close) and A = ⊕{k ∶ 1, l ∶ 1}. Set w = j⋅ ⊢ C ∶∶ a ∶ ⊕{k ∶ 1, l ∶ 1}o(a)
for some configuration C.

Recall that ⌊v⌋1 = (k, �), and observe that ⌊(k, close)⌋1 t w ε A if and only if C sent the label
k on a, so if and only if

j⊢ C , proc(â, case a {k⇒ Yâ ∣ _⇒ Ω}) ∶∶ â ∶ Y+o(â) = (y, �).

Take E(0, v ε A) = {case a {k⇒ Yĉ ∣ _⇒ Ω}}.
Now observe that ⌊v⌋2 t w ε A if and only if

j⊢ C , proc(â, case a {k⇒ wait c; Yĉ ∣ _⇒ Ω}) ∶∶ â ∶ Y+o(â) = (y, �).

Take E(1, v ε A) = {case a {k ⇒ wait a; Yĉ ∣ _ ⇒ Ω}}. Because ⌊v⌋n = ⌊v⌋2 for n ≥ 2, take
E(n, v ε A) = E(1, v ε A) for all n ≥ 1. ◀

Next, we illustrate why E(n, v ε A)must be a set.

Example 7.3.19. Set v = ((l, close), (r, �)) and A = (⊕{l ∶ 1})⊗ (⊕{r ∶ 1}). Set w = j⊢ C ∶∶ a ∶
Ao(a) for some configuration C. Clearly, ⌊v⌋1 = (�, �) t w ε A if and only if

j⊢ C , proc(â, a ← recv c; Yĉ) ∶∶ â ∶ Y+o(â) = (y, �).

Our task becomes harder when we consider ⌊v⌋2 = ((l, �), (r, �)): wemust somehow inspect the
communications on a and also those on c, and return a result on â ∶ Y+. We do so by using two
experiment contexts. Indeed, ⌊v⌋2 t w ε A if and only if both

j⊢ C , proc(â, a ← recv c; case c {l⇒ Yâ}) ∶∶ â ∶ Y+o(â) = (y, �),
j⊢ C , proc(â, a ← recv c; case a {r⇒ Yâ}) ∶∶ â ∶ Y+o(â) = (y, �).

Accordingly, we take

E(1, v ε A) = {a ← recv c; case c {l⇒ Yâ}, a ← recv c; case a {r⇒ Yâ}} ◀

Having illustrated the approach,we define the family ER(n, i , r, v ε A) of experiment processes
by induction on n and recursion on v ε A,where i is the “input channel”whose communicationswe
are examining (a in the above examples), and r is the “results channel” (â in the above examples).
We can lift these experiment processes to testing contexts in the obvious manner. The family
ER(n, i , r, v ε A) checks that communications w on i satisfy ⌊v⌋n+1 t w ε A.

Wemaintain the invariant that if E ∈ ER(n, i , r, v ε A), then ⋅ ; i ∶ A ⊢ E ∶∶ r ∶ Y+ and E can be
weakened3 to ⋅ ; ∆, i ∶ A ⊢ E ∶∶ r ∶ Y+ for all ∆ not mentioning i or r. In particular, the processes
in ER(n, i , r, v ε A) always listen from left and report results on the right; we will consider the
symmetric case EL(n, i , r, v ε A) later. We also maintain the invariant that E ∈ ER(n, i , r, v ε A) if

3Though the type system is linear, the present of unbounded recursion allows us to ignore channels in non-terminating
processes.

164 7. OBSERVATIONAL PREORDERS AND EQUIVALENCES

and only if [i′/i]E ∈ ER(n, i′ , r, v ε A) for i ≠ r and i′ ≠ r.

ER(n, i , r, � ε A) = {Yr}

ER(n, i , r, close ε 1) = {wait i; Yr}

ER(0, i , r, (k, _) ε ⊕{l ∶ A l}l∈L) = {case i {k⇒ Yr ∣ _⇒ Ω}}
ER(n + 1, i , r, (k, v) ε ⊕{l ∶ A l}l∈L) = {case i {k⇒ E ∣ _⇒ Ω} ∣ E ∈ ER(n, i , r, v ε Ak)}

ER(0, i , r, (unfold, _) ε ρα.A) = {unfold← recv i; Yr}

ER(n + 1, i , r, (unfold, v) ε ρα.A) = {unfold← recv i; E ∣ E ∈ ER(n, i , r, v ε [ρα.A/α]A)}
ER(0, i , r, (shift, _) ε ↑A) = {shift← recv i; Yr}

ER(n + 1, i , r, (shift, v) ε ↑A) = {shift← recv i; E ∣ E ∈ ER(n, i , r, v ε A)}

ER(0, i , r, (_, _) ε A⊗ B) = {_← recv i; Yr}

ER(n + 1, i , r, (u, v) ε A⊗ B) = {_← recv i; E ∣ E ∈ ER(n, i , r, v ε B)}∪

∪ {a ← recv i; E ∣ E ∈ ER(n, a, r, u ε A)}

Conspicuously absent are negative protocols. Because any provided channel with a negative
protocol is an input channel,we can only observe� on that channel by proposition 7.3.1. Accordingly,
we define:

ER(n, i , r, v ε A
−) =

⎧⎪⎪
⎨
⎪⎪⎩

{Yr} v = �

{Ω} v ≠ �

Also absent are sets of experiment processes for the protocol τ ∧ A. We use an oracle process
to check if two transmitted values are related by ⩽.

Definition 7.3.20. Let P be a predicate on functional values of type τ. An oracle process for P is a
process ⋅ ; ⋅ ⊢ O ∶∶ c ∶ τ ⊃ ↑⊕ {tt ∶ 1, ff ∶ 1} that receives a functional value w and a shift message4

over c, and sends tt if P(w), and ff otherwise; and closes the channel in both cases. Explicitly,

proc(c,O),msg(d , _← output c w; c ← d),msg(e , send d shift; d → e)Ð→∗

Ð→∗ ∃ f .
⎧⎪⎪
⎨
⎪⎪⎩

msg(f , close f),msg(e , e .tt; f → e) P(w)

msg(f , close f),msg(e , e .ff ; f → e) otherwise
◀

Assumption 7.3.21. Assume that for all τ and values ⋅ ⊩ v ∶ τ, there is an oracle O⩽v∶τ for the predicate
⋅ ⊩ v ⩽ (−) ∶ τ.

Using the oracle, we define:

ER(0, i , r, (val f , _) ε τ ∧ A) = {c ← O f ∶τ ; x ← input i; _← output c x; send c shift;
case c {tt⇒ wait c; Yr ∣ ff⇒ Ω}}

ER(n + 1, i , r, (val f , u) ε τ ∧ A) = {c ← O f ∶τ ; x ← input i; _← output c x; send c shift;
case c {tt⇒ wait c; E ∣ ff⇒ Ω} ∣ E ∈ ER(n, i , r, u ε A)}

Proposition 7.3.22. Let Γ ⊢ C ∶∶ a ∶ A and v ε A be arbitrary. Set w = jΓ ⊢ C ∶∶ ∆, a ∶ Ao(a)
and let â be globally fresh. Then for all n, ⌊v⌋n+1 t w ε A if and only if for all E ∈ ER(n, a, â, v ε A),

jΓ ⊢ C , proc(â, E) ∶∶ ∆, â ∶ Y+o(â) = (y, �).
Proof. By induction on n. Assume first that n = 0. Then we proceed by case analysis on v ε A. We
give the representative cases; the rest will follow by analogy.

Case � ε A: The result is immediate.
Case v ε A−: Then w = � by proposition 7.3.1. If v = �, then the result is immediate. If v ≠ �,

then it is not the case that v t w ε A, and the result also follows from the definition of the divergent
process Ω.

4Because types are polarized, the up shift is required to ensure that the type is well-formed.

7.3. EXTERNAL OBSERVATIONS FOR CONFIGURATIONS 165

Case close ε 1: Then ⌊close⌋1 = close. By inversion, close t w ε A if and only if w = close.
This is the case if and only if msg(a, close a) appears in a fair trace of C. The only element of
ER(n, a, â, close ε 1) is {wait a; Yâ}. The fact msg(a, close a) appears in a fair trace of C if and
only if every fair trace of C , proc(â,wait a; Yâ) has an instantiation

msg(a, close a), proc(â,wait a; Yâ)Ð→ proc(â,Yâ)

of rule (67). By fairness, Yâ produces the observation (y, �) on â. Somsg(a, close a) appears in a
fair trace of C if and only if jΓ ⊢ C , proc(â,wait a; Yâ) ∶∶ â ∶ Y+o(â) = (y, �). This gives the result.

Case (k, u) ε ⊕{l ∶ A l}l∈L : Then ⌊(k, u)⌋1 = (k, �). By inversion, (k, �) t w ε A if and only
if w = (k,w′) for some w′. This is the case if and only ifmsg(a, a.k; _→ a) appears in a fair trace
of C. The only element of ER(0, a, â, (k, u) ε A is case a {k⇒ Yâ ∣ _⇒ Ω}. The aforementioned
fact appears in a fair trace of C if and only if every fair trace of C , proc(â, case a {k⇒ Yâ ∣ _⇒ Ω})
has an instantiation

msg(a, a.k; _→ a), proc(â, case a {k⇒ Yâ ∣ _⇒ Ω})Ð→ proc(â,Yâ)

of rule (79). The remainder is analogous to the previous case.
Case (val f , u) ε τ ∧ A: Then ⌊(val f , u)⌋1 = (val f , �). By inversion, (val f , �) t w ε τ ∧ B

if and only if w = (val g ,w′) for some g and w′ and ⋅ ⊩ f ⩽ g ∶ τ. This is the case if and only if
msg(a, _ ← output a g; _ → a) appears in a fair trace of C with g satisfying the above relation.
The only element of ER(0, a, â, (val f , u) ε A) is

c ← O f ∶τ ; x ← input a; _← output c x; send c shift; case c {tt⇒ wait c; Yr ∣ ff⇒ Ω}.

Every fair trace of C has an instantiation

proc(â, c ← O f ∶τ ; x ← input a;
_← output c x; send c shift; case c {tt⇒ wait c; Yr ∣ ff⇒ Ω})Ð→

Ð→ proc(c′ , [c′/c]O f ∶τ), proc(â, x ← input a;

_← output c′ x; send c
′ shift; case c′ {tt⇒ wait c′; Yr ∣ ff⇒ Ω})

of rule (66). The aforementionedmessage fact appears in a fair trace of C if and only if the trace
contains the following instantiation of rule (75):

(msg(a, _← output a g; _→ a), proc(â, x ← input a;

_← output c′ x; send c
′ shift; case c′ {tt⇒ wait c′; Yr ∣ ff⇒ Ω}))Ð→

Ð→ (proc(â, _← output c′ g; send c
′ shift; case c′ {tt⇒ wait c′; Yr ∣ ff⇒ Ω})) ,

and of rules (5.B) and (77) (not necessarily in immediate succession of each other):

(proc(â, _← output c′ g; send c
′ shift; case c′ {tt⇒ wait c′; Yr ∣ ff⇒ Ω}))Ð→∗

Ð→∗ (msg(d , _← output c′ g; c′ ← d),msg(e , send d shift; d → e),
proc(â, case e {tt⇒ wait e; Yr ∣ ff⇒ Ω})) .

By fairness and the definition of the oracle, the above hold if and only if the oracle takes the steps

(proc(c′ , [c′/c]O f ∶τ),msg(d , _← output c′ g; c′ ← d),msg(e , send d shift; d → e))Ð→∗

Ð→∗ msg(h, close h),msg(c′ , c′ .tt; h → c
′).

From here, the proof is analogous to the previous cases.
Now assume that the result holds for some n. We show the inductive step n + 1, again by case

analysis on v ε A. We give the representative case; the rest follow by analogy with this case or with
base cases.

Case (k, u) ε ⊕{l ∶ A l}l∈L : The elements of ER(n + 1, a, â, (k, u) ε ⊕{l ∶ A l}l∈L) are of the
form case a {k ⇒ E ∣ _⇒ Ω} for E ∈ ER(n, a, â, u ε Ak). Recall that ⌊(k, u)⌋n+2 = (k, ⌊u⌋n+1).
By inversion, (k, ⌊u⌋n+1) t w ε ⊕{l ∶ A l}l∈L if and only if w = (k,w′) and ⌊u⌋n+1 t w′ ε Ak . But
w = (k,w′) if and only if there is an observablemessagemsg(a, a.k; d → a) in a fair trace of C

166 7. OBSERVATIONAL PREORDERS AND EQUIVALENCES

for some channel d with T ↝ w′ ε Ak / d. There is amessagemsg(a, a.k; d → a) in a fair trace
of C if and only if there is such amessage in a fair trace of C , proc(â, case a {k ⇒ E ∣ _⇒ Ω}).
Fairness implies that a fair trace of C , proc(â, case a {k⇒ E ∣ _⇒ Ω}) has an instantiation

msg(a, a.k; d → a), proc(â, case a {k⇒ E ∣ _⇒ Ω})Ð→ proc(â, [d/a]E)

of rule (79) if and only ifmsg(a, a.k; d → a) appears in the trace. If this is the case, then we apply
the induction hypothesis: T ↝ (y, �) ε Y+ / â for all [d/a]E ∈ ER(n, d , â, u ε Ak) if and only if
⌊u⌋n+1 t w

′ ε Ak , where we recall that w′ is given by T ↝ w′ ε Ak / d. It follows that

jC , proc(â, T)o(â) = (y, �),

for all processes T ∈ ER(n + 1, a, â, (k, u) ε ⊕{l ∶ A l}l∈L if and only if both w = (k,w′) and
⌊u⌋n+1 t w

′ ε Ak , i.e., if and only if ⌊(k, u)⌋n+2) t w ε ⊕{l ∶ A l}l∈L .

Let 0− be the negative empty type &{} and let Y− be the “negative answer type” &{y ∶ 0−}.
We can dualize the definition of ER to get a family EL of processes that listens on the right and
reports on the left. In fact, the processes carry over unchanged:5

EL(n, i , r, � ε A) = ER(n, i , r, � ε A)
EL(n, i , r, (k, v) ε &{l ∶ A l}l∈L) = ER(n, i , r, (k, v) ε ⊕{l ∶ A l}l∈L)

EL(n, i , r, (unfold, v) ε ρα.A) = ER(n, i , r, (unfold, v) ε ρα.A)
EL(n, i , r, (shift, v) ε ↓A) = ER(n, i , r, (shift, v) ε ↑A)
EL(n, i , r, (u, v) ε A⊸ B) = ER(n, r, (u, v) ε A⊗ B)

EL(n, i , r, v ε A
+) = ER(n, i , r, v ε B

−)

EL(n, i , r, (val f , u) ε τ ∧ A) = ER(n, i , r, (val f , u) ε τ ⊃ A).

The proof of the following proposition is analogous to the proof of proposition 7.3.22.

Proposition 7.3.23. Let Γ, a ∶ A ⊢ C ∶∶ ∆ and v ε A be arbitrary. Set w = jΓ, a ∶ A ⊢ C ∶∶ ∆o(a)
and let â be globally fresh. Then for all n, ⌊v⌋n+1 t w ε A if and only if for all E ∈ EL(n, a, â,w ε A),

jΓ, â ∶ Y− ⊢ proc(â, E), C ∶∶ ∆o(â) = (y, �).

We combine propositions 7.3.22 and 7.3.23 to build families of experiment contexts. Given
n observations v i ε A i/a i and m observations w j ε C j/c j with n ≥ 0 and m ≥ 1, define the set of
configuration contexts:

E (n, v i ε A i/a i ,w j ε C j/c j)

= {proc(a1 , L1), . . . , proc(an , Ln), [⋅]a i ∶Ai
c j ∶C j

, proc(ĉ1 , R1), . . . , proc(ĉm , Rm) ∣

∣ L i ∈ EL (n, a i , â i , v i ε A i) , R j ∈ ER (n, c j , ĉ j ,w j ε C j) }.

Proposition 7.3.24. Let Γ ⊢ C ∶∶ ∆ and Γ ⊢ D ∶∶ ∆ be arbitrary. If τ ∧ A is a subphrase of a type

in ∆ or τ ⊃ A is a subphrase of a type in Γ, then for each value ⋅ ⊩ v ∶ τ assume the existence of an

oracle process O⩽v∶τ satisfying assumption 7.3.21. Let v i and w j be given by:

jΓ ⊢ C ∶∶ ∆oΓ = (a i ∶ v i)a i ∶A i∈Γ ,
jΓ ⊢ C ∶∶ ∆o∆ = (c j ∶ w j)c j ∶C j∈∆ .

Then

jΓ ⊢ C ∶∶ ∆oΓ ,∆ t/⩽ jΓ ⊢ D ∶∶ ∆oΓ ,∆
if and only if for all n and F[⋅]Γ∆ ∈ E(n, v i ε A i/a i ,w j ε C j/c j),

kâ i ∶ Y− ⊢ F[D]Γ∆ ∶∶ ĉ j ∶ Y+p(b) = (y, �)

for all b ∈ â i , ĉ j .

5Here, we are taking an extrinsic [Rey98, § 15.4] or “Curry-style” view of process typing.

7.4. SUMMARY OF RELATIONS 167

Ð→∗ tI (tI)
c

≐T tT (tT)
c

tE (tE)
c

⪷ ⪷c

proposition 7.1.3

def.

corollary
7.2.3

proposition 7.0.4 corollary 7.0.9

corollary 7.1.2

corollary 7.1.2

mono
t.

monot.

corollary 7.0.9

proposition 7.3.15 theorem 7.3.27

co
nj
.

def.

Figure 7.1. Relationship between relations of section 7.3

Proof. By definition,
jΓ ⊢ C ∶∶ ∆oΓ ,∆ t/⩽ jΓ ⊢ D ∶∶ ∆oΓ ,∆

if and only if
(a i ∶ v i , c j ∶ w j)a i ∶A i∈Γ ,c j ∶C j∈∆ t/⩽ jΓ ⊢ D ∶∶ ∆oΓ ,∆ .

By proposition 6.1.12, this is the case if and only if for all n,

(a i ∶ ⌊v i⌋n , c j ∶ ⌊w j⌋n)a i ∶A i∈Γ ,c j ∶C j∈∆ t/⩽ jΓ ⊢ D ∶∶ ∆oΓ ,∆ .

The result then follows by fairness and propositions 7.3.22 and 7.3.23.

Proposition 7.3.24 and the analysis following problem 7.3.17 imply:

Corollary 7.3.25. For each value ⋅ ⊩ v ∶ τ assume the existence of an oracle process O⩽v∶τ
satisfying assumption 7.3.21. If Γ ⊢ C ⪷c D ∶∶ ∆, then Γ ⊢ C t(X E ,⩽) D ∶∶ ∆.

Corollary 7.3.26. If Γ ⊢ C ⪷c D ∶∶ ∆, then Γ ⊢ C tE D ∶∶ ∆.

Proof. By corollary 7.3.25. The oracle OU
v∶τ assumed by corollary 7.3.25 is given by:

⋅ ; ⋅ ⊢ _← input c; shift← recv c; c.tt; close c ∶∶ c ∶ τ ⊃ ↑⊕ {tt ∶ 1, ff ∶ 1}.

Combining corollary 7.3.26 and proposition 7.3.15 gives:

Theorem 7.3.27. For all Γ ⊢ C ∶∶ ∆ and Γ ⊢ D ∶∶ ∆, Γ ⊢ C ⪷c D ∶∶ ∆ if and only if Γ ⊢ C tE D ∶∶ ∆.

7.4. Summary of Relations

Figure 7.1 summarizes themain results for relations on configurations. Double arrows denote
implications. Dashed arrows denote conjectured implications. Missing arrows (when not implied
by transitivity) indicate falsehoods. We recall that:

● Ð→∗ is the reflexive, transitive closure ofÐ→;
● tI is internal observational simulation;
● (tI)

c is internal observational precongruence;
● ≐T is total observational equivalence;
● tT is total observational simulation;
● (tT)

c is total observational precongruence;
● tE is external observational simulation;
● (tE)

c is external observational precongruence;
● ⪷ is barbed simulation;
● ⪷c is barbed precongruence.

168 7. OBSERVATIONAL PREORDERS AND EQUIVALENCES

7.5. Precongruences for Processes

In this section, we relate relations on configurations to relations on processes. Recall that to
show that two configurations are total or external precongruent, it is sufficient by proposition 7.0.12
to consider only simply branched contexts. In section 7.5.1, we show that simply branched configu-
ration contexts closelymirror “observation contexts” for processes. In section 7.5.2, we show how
to lift relations from configurations to processes.

7.5.1. Relating SimplyBranchedContexts andObservationContexts. Observation contexts
characterize the idea of processes experimenting on processes through communication:

Definition 7.5.1. An observation context is a typed context derived using exactly one instance of
the axiom (P-Hole), plus zero or more instances of the derived rules (Hole-Cut-L) and (Hole-
Cut-R),

⋅ ; ∆1 ⊢ O[⋅]∆
a∶A ∶∶ b ∶ B ⋅ ; ∆2 , b ∶ B ⊢ P ∶∶ c ∶ C

⋅ ; ∆1 , ∆2 ⊢ b ← O[⋅]∆
a∶A; P ∶∶ c ∶ C

(Hole-Cut-L)

⋅ ; ∆1 ⊢ P ∶∶ b ∶ B ⋅ ; b ∶ B, ∆2 ⊢ O[⋅]∆
a∶A ∶∶ c ∶ C

⋅ ; ∆1 , ∆2 ⊢ b ← P; O[⋅]∆
a∶A ∶∶ c ∶ C

(Hole-Cut-R)

such that the context satisfies the grammar:

O[⋅]∆a∶A ∶∶= [⋅]
∆
a∶A ∣ b ← O[⋅]∆a∶A; P ∣ b ← P; O[⋅]∆a∶A. ◀

Recall from definition 5.7.6 the definition of a contextual relation on processes. “Observational
contextuality” weakens this notion from arbitrary contexts to observation contexts:

Definition 7.5.2. A typed-indexed relation R on processes is an observationally contextual if
⋅ ; ∆ ⊢ P R Q ∶∶ a ∶ A implies ⋅ ; Λ ⊢ O[P]∆

a∶A R O[Q]∆
a∶A ∶∶ b ∶ B for all observation contexts

⋅ ; Λ ⊢ O[⋅]∆
a∶A ∶∶ b ∶ B. ◀

Definition 7.5.3. The observationally contextual interior of a typed relationR on processes is the
greatest observationally contextual typed relationRO contained inR. ◀

There is an obvious translation from observation contexts to configuration contexts, where we
inductivelymap (P-Hole) to (Conf-H), and (Hole-Cut-L) and (Hole-Cut-R) to (Conf-C):

Proposition 7.5.4. Let ⋅ ; Λ ⊢ O[⋅]∆
a∶A ∶∶ c ∶ C be an observation context. There exists a

configuration context Λ ∣ I ⊢ O[⋅]∆
a∶A ∶∶ c ∶ C such that proc(c,O[Q]∆

a∶A) Ð→
∗ O[proc(a,Q)]∆

a∶A
for all processes ⋅ ; ∆ ⊢ Q ∶∶ a ∶ A.

Proof. By induction on the derivation of the observation context.
Case (P-Hole): LetO be given by (Conf-H). The step is given by reflexivity.
Case (Hole-Cut-L): The observation context is ⋅ ; ∆1 , ∆2 ⊢ b ← O[⋅]∆

a∶A; P ∶∶ c ∶ C, and it is
formed by:

⋅ ; ∆1 ⊢ O[⋅]∆
a∶A ∶∶ b ∶ B ⋅ ; ∆2 , b ∶ B ⊢ P ∶∶ c ∶ C

⋅ ; ∆1 , ∆2 ⊢ b ← O[⋅]∆
a∶A; P ∶∶ c ∶ C

(Hole-Cut-L)

By the induction hypothesis, there exists a configuration context ∆1 ∣ I′ ⊢ O′[⋅]∆
a∶A ∶∶ b ∶ B such

that proc(b,O[Q]∆
a∶A)Ð→

∗ O′[proc(a,Q)]∆
a∶A. This implies that

proc(c, b ← O[Q]∆a∶A; P)

Ð→ proc(b,O[Q]∆a∶A), proc(c, P)

Ð→∗ O′[proc(a,Q)]∆a∶A, proc(c, P).

7.5. PRECONGRUENCES FOR PROCESSES 169

LetO be given by:

∆1 ∣ I′ ⊢ O′[⋅]∆
a∶A ∶∶ b ∶ B

⋅ ; ∆2 , b ∶ B ⊢ P ∶∶ c ∶ C

∆2 , b ∶ B ∣ ⋅ ⊢ proc(c, P) ∶∶ c ∶ C
(Conf-P)

∆1 , ∆2 ∣ I′ , b ∶ B ⊢ O′[⋅]∆
a∶A, proc(c, P) ∶∶ c ∶ C

(Conf-C)

Plugging proc(a,Q) intoO gives the configuration

∆1 , ∆2 ∣ I′ , b ∶ B ⊢ O′[proc(a,Q)]∆a∶A, proc(c, P) ∶∶ c ∶ C

that we recognize as the result of the above sequence of rewrite steps. We conclude that

proc(c, b ← O[Q]∆a∶A; P)Ð→∗ O[proc(a,Q)]∆a∶A.

Case (Hole-Cut-R): This case is symmetric to the previous case.

The translation in the opposite direction is more subtle. To translate configuration contexts to
observation contexts, onemust be able to translate configurations to processes. Naïvely, one would
hope that:

Falsehood. If Γ ∣ I ⊢ C ∶∶ c ∶ C, then there exists a process ⋅ ; Γ ⊢ P ∶∶ c ∶ C such that

proc(c, P)Ð→∗ C.

This is often impossible when configurations contain message facts. Consider, for example,
the configuration d ∶ A∣ ⋅ ⊢ msg(c, send c k; d → c) ∶∶ c ∶ ⊕{k ∶ A}. The only plausible solutions
are variations on the theme ⋅ ; d ∶ A ⊢ c.k; d → c ∶∶ d ∶ c ∶ ⊕{k ∶ A}. However,

proc(c, c.k; d → c)Ð→ proc(d′ , d → d
′),msg(c, send c k; d′ → c)

and there is no way to get rid of the forwarding process fact. Instead, we settle for:

Proposition 7.5.5. If ∆ ⊢ P ∶∶ c ∶ A, then there exists a process ⋅ ; ∆ ⊢ P ∶∶ c ∶ A such that

∆ ⊢ P ≐T proc(a, P) ∶∶ c ∶ A.

Proof. By proposition 5.6.21, ∆ ⊢ P ∶∶ c ∶ A has a simply-branched derivation. We proceed by
induction on this derivation. We give only the illustrative cases.

Case (Conf-M): We proceed by case analysis on the particular message fact in
⋅ ; ∆ ⊢ m ∶∶ c ∶ A

Σ ∥ ∆ ∣ ⋅ ⊢ msg(c,m) ∶∶ (c ∶ A)
(Conf-M)

Subcase m = close c: Take P = close c and apply rule (68) and proposition 7.1.3.
Subcase m = c.k; d → c: Take P = m and apply rule (78) and proposition 7.1.3 to get:

d ∶ Ak ⊢ proc(c, c.k; d → c) ≐T proc(e , d → e),msg(c, c.k; e → c) ∶∶ c ∶ ⊕{l ∶ A l}l∈L .

By proposition 7.1.4,

d ∶ Ak ⊢ msg(c, c.k; d → c) ≐T proc(e , d → e),msg(c, c.k; e → c) ∶∶ c ∶ ⊕{l ∶ A l}l∈L .

We conclude the result by transitivity and symmetry.
Case (Conf-P): Immediate.
Case (Conf-C): By assumption, both branches of the rule

Σ, Π̌ ∥ Γ ∣ I1 ⊢ C ∶∶ ΦΠ Π̌, Σ′ ∥ ΠΛ ∣ I2 ⊢ D ∶∶ Ξ

Σ, Π̌, Σ′ ∥ ΓΛ ∣ I1ΠI2 ⊢ C ,D ∶∶ ΦΞ
(Conf-C)

are simply branched, and Π = b ∶ B contains a single channel. By the induction hypothesis, there
exist processes C and D such that

Γ ⊢ C ≐T proc(b,C) ∶∶ b ∶ B
b ∶ B,Λ ⊢ D ≐T proc(c,D) ∶∶ c ∶ A

Take the process ⋅ ; ΓΛ ⊢ b ← C; D ∶∶ c ∶ A. Then

proc(a, b ← D; C)Ð→ proc(b,C), proc(c,D),

170 7. OBSERVATIONAL PREORDERS AND EQUIVALENCES

so ΓΛ ⊢ proc(a, b ← C; D) ≐T proc(b,C), proc(c,D) ∶∶ c ∶ A by proposition 7.1.3. Because ≐T is a
congruence,

ΓΛ ⊢ proc(a, b ← C; D) ≐T C ,D ∶∶ c ∶ A
as desired.

Proposition 7.5.6 extends proposition 7.5.4 to give the correspondence between observation
contexts for processes and simply branched configuration contexts.

Proposition 7.5.6.
(1) For all configuration contexts Λ ⊢ O[⋅]∆

a∶A ∶∶ c ∶ C, there exists an observation context

⋅ ; Λ ⊢ O[⋅]∆
a∶A ∶∶ c ∶ C such that for all ⋅ ; ∆ ⊢ Q ∶∶ a ∶ A,

Λ ⊢ O[proc(a,Q)]∆a∶A ≐T proc(c,O[Q]∆a∶A) ∶∶ c ∶ C .

(2) For all observation contexts ⋅ ; Λ ⊢ O[⋅]∆
a∶A ∶∶ c ∶ C, there exists a configuration context

Λ ⊢ O[⋅]∆
a∶A ∶∶ c ∶ C such that for all ⋅ ; ∆ ⊢ Q ∶∶ a ∶ A,

Λ ⊢ O[proc(a,Q)]∆a∶A ≐T proc(c,O[Q]∆a∶A) ∶∶ c ∶ C .

Proof. We show the first part of the proposition. Let Λ ⊢ O[⋅]∆
a∶A ∶∶ c ∶ C be arbitrary. By

proposition 5.6.21, it has a simply-branched derivation. We proceed by induction on this derivation
to construct ⋅ ; Λ ⊢ O[⋅]∆

a∶A ∶∶ c ∶ C. The possible cases are:
Case (Conf-H): IfO is a hole, then let O = [⋅]∆

a∶A.
Case (Conf-C): Then the context is formed by an instance of

Σ, Π̌ ∥ Γ ∣ I1 ⊢ C ∶∶ ΦΠ Π̌, Σ′ ∥ ΠΛ ∣ I2 ⊢ D ∶∶ Ξ

Σ, Π̌, Σ′ ∥ ΓΛ ∣ I1ΠI2 ⊢ C ,D ∶∶ ΦΞ
(Conf-C)

By simple-branching, Π = b ∶ B contains a single channel. If the hole is in the left branch, i.e.,
if C = O′[⋅]∆

a∶A, then by the induction hypothesis, there exists an observation context ⋅ ; Λ ⊢
O′[⋅]∆

a∶A ∶∶ b ∶ B such that for all ⋅ ; ∆ ⊢ Q ∶∶ a ∶ A,

Λ ⊢ O′[proc(a,Q)]∆a∶A ≐T proc(c,O′[Q]∆a∶A) ∶∶ b ∶ B.

Let D be given for D by proposition 7.5.5 such that b ∶ B,Λ ⊢ D ≐T proc(c,D) ∶∶ c ∶ A. Take
⋅ ; Λ ⊢ O[⋅]∆

a∶A ∶∶ c ∶ C to be given by b ← O′[⋅]∆
a∶A; D. Then for all ⋅ ; ∆ ⊢ Q ∶∶ a ∶ A,

proc(c,O[Q]∆a∶A)Ð→ proc(b,O′[Q]∆a∶A), proc(c,D),

so by proposition 7.1.3,

Λ ⊢ proc(c,O[Q]∆a∶A) ≐T proc(b,O′[Q]∆a∶A), proc(c,D) ∶∶ c ∶ C .

But ≐T is a congruence, so

Λ ⊢ proc(c,O[Q]∆a∶A) ≐T O
′[proc(a,Q)]∆a∶A,D ∶∶ c ∶ C ,

i.e., Λ ⊢ proc(c,O[Q]∆
a∶A) ≐T O[proc(a,Q)]∆a∶A ∶∶ c ∶ C. The result follows by symmetry. The case

for when the hole is in the right branch is analogous.
The second part of the proposition is immediate by propositions 7.1.3 and 7.5.4.

7.5.2. Relating Precongruences on Configurations and Processes. We show how to lift
relations ≼ on configurations to relations on open processes. We frequently assume that ≐T ⊆ ≼.
Recall from fig. 7.1 that this assumption is satisfied by all observational preorders ≼ that we have
considered thus far.

Definition 7.5.7. A closing substitution is a substitution (a context morphism) σ ∶f ⋅↝ Ψ such that
σ(x) val for all x ∶ τ ∈ Ψ. ◀

We lift type-indexed relations on configurations to type-indexed relations on open processes
using an approach reminiscent ofHowe’s “open extensions” [How96, Definition 2.2]:

7.5. PRECONGRUENCES FOR PROCESSES 171

Definition 7.5.8. Let R be a type-indexed relation on configurations. Write Ψ ; ∆ ⊢ P ⌈R⌉ Q ∶∶
c ∶ C if ∆ ⊢ proc(c, [σ]P)R proc(c, [σ]Q) ∶∶ c ∶ C for all closing substitutions σ ∶f ⋅↝ Ψ. ◀

Recall the definition of simply branched contextual interior Rb of a relation from defini-
tion 5.7.11. The simply branched contextual interior and observationally contextual interiors coin-
cide:

Proposition 7.5.9. Let ≼ be a transitive type-indexed relation on configurations such that ≐T ⊆ ≼.
The following are equivalent:

(1) Ψ ; ∆ ⊢ P ⌈≼b⌉ Q ∶∶ c ∶ C;

(2) Ψ ; ∆ ⊢ P ⌈≼⌉
O

Q ∶∶ c ∶ C.

Proof. Remark that, because ≐T is a congruence, ≐T ⊆ ≼ implies ≐T ⊆ ≼
b . Observe that Ψ ; ∆ ⊢

P ⌈≼⌉
O

Q ∶∶ c ∶ C if and only if both
(i) Ψ ; ∆ ⊢ P ⌈≼⌉ Q ∶∶ c ∶ C; and
(ii) ⋅ ; Γ ⊢ O[[σ]P]∆

c∶C ⌈≼⌉ O[[σ]Q]
∆
c∶C ∶∶ b ∶ B for all closing substitutions σ ∶f ⋅↝ Ψ and all

observation contexts ⋅ ; Γ ⊢ O[⋅]∆
c∶C ∶∶ b ∶ B.

To see that item 1 implies item 2, assume that Ψ ; ∆ ⊢ P ⌈≼b⌉ Q ∶∶ c ∶ C. This implies that
⋅ ; ∆ ⊢ [σ]P ⌈≼b⌉ [σ]Q ∶∶ c ∶ C for all σ ∶f ⋅ ↝ Ψ. Let ⋅ ; Γ ⊢ O[⋅]∆

c∶C ∶∶ b ∶ B be an arbitrary
observation context, and let σ ∶f ⋅↝ Ψ be an arbitrary closing substitution. Wemust show that

⋅ ; Γ ⊢ O[[σ]P]∆c∶C ⌈≼⌉ O[[σ]Q]
∆
c∶C ∶∶ b ∶ B. (102)

By proposition 7.5.6, there exists a simply branched context Γ ⊢ O[⋅]∆
c∶C ∶∶ b ∶ B such that

Γ ⊢ O[proc(c, [σ]P)]∆c∶C ≐T proc(b,O[[σ]P]∆c∶C) ∶∶ b ∶ B,

Γ ⊢ O[proc(c, [σ]Q)]∆c∶C ≐T proc(b,O[[σ]Q]∆c∶C) ∶∶ b ∶ B.

Because Ψ ; ∆ ⊢ P ⌈≼b⌉ Q ∶∶ c ∶ C and ≼b is simply branched contextual,

Γ ⊢ O[proc(c, [σ]P)]∆c∶C ≼
b O[proc(c, [σ]Q)]∆c∶C ∶∶ b ∶ B.

By assumption, the symmetric relation ≐T is contained in ≼b . By transitivity of ≼b ,

Γ ⊢ proc(b,O[[σ]P]∆c∶C) ≼
b proc(b,O[[σ]Q]∆c∶C) ∶∶ b ∶ B.

But ≼b ⊆ ≼, so we conclude eq. (102).
To see that item 2 implies item 1, assume that Ψ ; ∆ ⊢ P ⌈≼⌉

O
Q ∶∶ c ∶ C, and let Γ ⊢

O[⋅]∆
c∶C ∶∶ b ∶ B and σ ∶f ⋅ ↝ Ψ be arbitrary. We must show that Γ ⊢ O[proc(c, [σ]P)]∆

c∶C ≼
O[proc(c, [σ]Q)]∆

c∶C ∶∶ b ∶ B. By proposition 7.5.6, there exists an observation context Γ ⊢ O[⋅]∆
c∶C ∶∶

b ∶ B such that

Γ ⊢ O[proc(c, [σ]P)]∆c∶C ≐T proc(b,O[[σ]P]∆c∶C) ∶∶ b ∶ B,

Γ ⊢ O[proc(c, [σ]Q)]∆c∶C ≐T proc(b,O[[σ]Q]∆c∶C) ∶∶ b ∶ B.

The symmetric relation ≐T is contained in ≼, so

Γ ⊢ O[proc(c, [σ]P)]∆c∶C ≼ proc(b,O[[σ]P]
∆
c∶C) ∶∶ b ∶ B,

Γ ⊢ proc(b,O[[σ]Q]∆c∶C) ≼ O[proc(c, [σ]Q)]
∆
c∶C ∶∶ b ∶ B.

By assumption, Γ ⊢ proc(b,O[[σ]P]∆
c∶C) ≼ proc(b,O[[σ]Q]

∆
c∶C) ∶∶ b ∶ B. We are done by transitiv-

ity of ≼.

We would like to strengthen the correspondence to give a full precongruence:

Conjecture 7.5.10. Let ≼ be a transitive type-indexed relation on configurations such that ≐T ⊆ ≼.

Then Ψ ; ∆ ⊢ P ⌈≼⌉
O

Q ∶∶ a ∶ A if and only if Ψ ; ∆ ⊢ P ⌈≼⌉
c

Q ∶∶ a ∶ A.

172 7. OBSERVATIONAL PREORDERS AND EQUIVALENCES

A proof of conjecture 7.5.10 is elusive because of the subtle interplay between the process and
functional layers. We havemade preliminary attempts to generalizeHowe’s method [How96] to
prove this result, but do not present these attempts here. This generalization is non-trivial because
a single relation on processes is insufficient: we also need a relation on terms. Wemust show that
these two relations agree with each other, and that all constructions in Howe’s method preserve
this agreement.

Despite these difficulties, we can still significantly generalize proposition 7.5.9 to handle
contexts whose hole does not cross the boundary between processes and functional programs. We
call these contexts “pure process contexts”:

Definition 7.5.11. A pure process context Ψ ; ∆ ⊢ Cp[⋅]
Γ;Λ
b∶B ∶∶ a ∶ A is a process context with exactly

one hole such that its instance of (P-Hole) does not appear in a subderivation of (E-{}). ◀

Definition 7.5.12. A typed-indexed relation R on processes is an purely process contextual if
Ψ ; ∆ ⊢ P R Q ∶∶ a ∶ A implies Φ ; Λ ⊢ Cp[P]

Ψ;∆
a∶A R Cp[Q]

∆
a∶A ∶∶ b ∶ B for all pure process contexts

Φ ; Λ ⊢ Cp[⋅]
Ψ;∆
a∶A ∶∶ b ∶ B. The purely process contextual interior of a typed relationR on processes

is the greatest purely process contextual typed relationRp contained inR. ◀

Theorem 7.5.13. Let ≼ be a transitive type-indexed relation on configurations such that ≐T ⊆ ≼.

Then Ψ ; ∆ ⊢ P ⌈≼⌉
O

Q ∶∶ a ∶ A if and only if Ψ ; ∆ ⊢ P ⌈≼⌉
p

Q ∶∶ a ∶ A.

Proof. Necessity is immediate, so we show sufficiency. Assume that Ψ ; ∆ ⊢ P ⌈≼⌉O Q ∶∶ c ∶ C. By
proposition 7.5.9, this implies for all simply branched contexts Λ ⊢ B[⋅]∆

c∶C ∶∶ b ∶ B and all closing
substitutions σ ∶f ⋅↝ Φ that

Λ ⊢ B[proc(c, [σ]P)]∆c∶C ≼ B[proc(c, [σ]Q)]
∆
c∶C ∶∶ b ∶ B.

We show the stronger property that Ψ ; ∆ ⊢ P ⌈≼b⌉
p

Q ∶∶ a ∶ A. This means that wemust show for
all pure process contexts Γ ; Φ ⊢ C[⋅]Ψ;∆

a∶A ∶∶ b ∶ B and all σ ∶f ⋅↝ Γ that

Φ ⊢ proc(b, [σ](C[P]Ψ;∆
a∶A)) ≼

b proc(b, [σ](C[Q]Ψ;∆
a∶A)) ∶∶ b ∶ B.

This in turn requires that we show for all simply branched contexts Λ ⊢ B[⋅]Φ
b∶B ∶∶ d ∶ D that:

Λ ⊢ B[proc(b, [σ](C[P]Ψ;∆
a∶A))]

Φ
b∶B ≼ B[proc(b, [σ](C[Q]

Ψ;∆
a∶A))]

Φ
b∶B ∶∶ d ∶ D

Let Λ ⊢ B[⋅]Φ
b∶B ∶∶ d ∶ D be an arbitrary simply branched context. We proceed by induction on

⋅ ; Φ ⊢ C[⋅]Ψ;∆
a∶A ∶∶ b ∶ B, and give only the illustrative cases.

Case (P-Hole): The result is immediate by assumption.
Case (Fwd+): This case is impossible because there is no hole.
Case (Cut): Then C is either e ← C′[⋅]Ψ;∆

a∶A ; R or e ← L; C′[⋅]Ψ;∆
a∶A for some C′ and L or R.

Assume that we fall in the first case. Let e′ be globally fresh. Then by rule (66),

B[proc(b, [σ]C[P]Ψ;∆
a∶A)]

Φ
b∶B Ð→

Ð→ B[proc(e′ , [e′/e] ([σ](C′[P]Ψ;∆
a∶A))), proc(b, [e

′/e] ([σ]R))]Φb∶B .

By proposition 7.1.3,

Λ ⊢ B[proc(b, [σ]C[P]Ψ;∆
a∶A)]

Φ
b∶B

≐T B[proc(e
′ , [e′/e] ([σ](C′[P]Ψ;∆

a∶A))), proc(b, [e
′/e] ([σ]R))]Φb∶B ∶∶ d ∶ D.

We recognize the right side as B′[proc(e′ , [e′/e](C′[P]∆
a∶A))] where B

′ is the simply branched
context B[[⋅]∆

a∶A, proc(b, [e
′/e]R)]Φ

b∶B . Analogously,

Λ ⊢ B[proc(b, [σ]C[Q]Ψ;∆
a∶A)]

Φ
b∶B ≐T B

′[proc(e′ , [e′/e] ([σ](C′[Q]Ψ;∆
a∶A)))] ∶∶ d ∶ D.

By the induction hypothesis and the fact that ≼ is type-indexed, so closed under renamings of
channels,

Λ ⊢ B′[proc(e′ , [e′/e] ([σ](C′[P]Ψ;∆
a∶A)))] ≼ B

′[proc(e′ , [e′/e] ([σ](C′[Q]Ψ;∆
a∶A)))] ∶∶ d ∶ D.

7.5. PRECONGRUENCES FOR PROCESSES 173

We are done by transitivity, the assumption that ≐T ⊆ ≼, and symmetry of ≐T . The case of
e ← L; C′[⋅]Ψ;∆

a∶A for some C′ and L is analogous.
Case (⊕L): Then C is of the form case e {l ⇒ Pl}l∈L where Pk = C′[⋅]Ψ;∆

a∶A for some unique
k ∈ L. We observe that

B[proc(b, [σ](C[P]Ψ;∆
a∶A))]

Φ
b∶B Ð→ B

′[msg(e , e .l ; e′ → e), proc(b, [σ](C[P]Ψ;∆
a∶A))]

Φ′
b∶B

if and only if

B[proc(b, [σ](C[Q]Ψ;∆
a∶A))]

Φ
b∶B Ð→ B

′[msg(e , e .l ; e′ → e), proc(b, [σ](C[Q]Ψ;∆
a∶A))]

Φ′
b∶B .

If this is the case and l ≠ k, then both

B[proc(b, [σ](C[P]Ψ;∆
a∶A))]

Φ
b∶B Ð→ B

′[proc(b, [e′/e] ([σ]Pl))]Φ
′

b∶B ,

B[proc(b, [σ](C[Q]Ψ;∆
a∶A))]

Φ
b∶B Ð→ B

′[proc(b, [e′/e] ([σ]Pl))]Φ
′

b∶B .

We are done by proposition 7.1.3, transitivity, and the inclusion ≐T ⊆ ≼. If l = k, then

B[proc(b, [σ](C[P]Ψ;∆
a∶A))]

Φ
b∶B Ð→ B

′[proc(b, [e′/e] ([σ](C′[P]Ψ;∆
a∶A)))]

Φ′
b∶B ,

B[proc(b, [σ](C[Q]Ψ;∆
a∶A))]

Φ
b∶B Ð→ B

′[proc(b, [e′/e] ([σ](C′[Q]Ψ;∆
a∶A)))]

Φ′
b∶B .

By the induction hypothesis and the fact that ≼ is type-indexed, so closed under renamings of
channels,

Λ ⊢ B′[proc(b, [e′/e] ([σ](C′[P]Ψ;∆
a∶A)))]

Φ′
b∶B ≼ B

′[proc(b, [e′/e] ([σ](C′[Q]Ψ;∆
a∶A)))]

Φ′
b∶B ∶∶ d ∶ D.

We are done by proposition 7.1.3, transitivity, the assumption that ≐T ⊆ ≼, and symmetry of ≐T .
Finally, assume that in no fair trace do we get amessage fact msg(e , e .l ; e′ → e). Then by case

analysis on the rules, no rule ever applies to proc(b, [σ](C[P]Ψ;∆
a∶A)) or proc(b, [σ](C[P]Ψ;∆

a∶A)). It
follows thatB[proc(b, [σ](C[P]Ψ;∆

a∶A))]
Φ
b∶B andB[proc(b, [σ](C[Q]

Ψ;∆
a∶A))]

Φ
b∶B have the same traces

(modulo the unused process fact), so the same observablemessages and observed communications.
This completes the case.

Case (∧L): Then C is of the form x ← input e; C′[⋅]Ψ;∆
a∶A . We observe that

B[proc(b, [σ](C[P]Ψ;∆
a∶A))]

Φ
b∶B Ð→ B

′[msg(e , _← output e v; e′ → e), proc(b, [σ](C[P]Ψ;∆
a∶A))]

Φ′
b∶B

if and only if

B[proc(b, [σ](C[P]Ψ;∆
a∶A))]

Φ
b∶B Ð→ B

′[msg(e , _← output e v; e′ → e), proc(b, [σ](C[Q]Ψ;∆
a∶A))]

Φ′
b∶B .

If this is the case, then both

B[proc(b, [σ](C[P]Ψ;∆
a∶A))]

Φ
b∶B Ð→ B

′[proc(b, [e′ , v/e , x] ([σ](C′[P]Ψ;∆
a∶A)))]

Φ′
b∶B , (103)

B[proc(b, [σ](C[Q]Ψ;∆
a∶A))]

Φ
b∶B Ð→ B

′[proc(b, [e′ , v/e , x] ([σ](C′[Q]Ψ;∆
a∶A)))]

Φ′
b∶B . (104)

We remark that the composition [v/x] ○ σ determines a closing substitution σ ′ ∶f ⋅↝ Γ, x ∶ τ for
C′[⋅]Ψ;∆

a∶A . So the right sides of (103) and (104) are respectively equal to:

B′[proc(b, [e′/e] ([σ ′](C′[P]Ψ;∆
a∶A)))]

Φ′
b∶B ,

B′[proc(b, [e′/e] ([σ ′](C′[Q]Ψ;∆
a∶A)))]

Φ′
b∶B .

By the induction hypothesis and the fact that ≼ is type-indexed, so closed under renamings of
channels,

Λ ⊢ B′[proc(b, [e′/e] ([σ ′](C′[P]Ψ;∆
a∶A)))]

Φ′
b∶B ≼ B

′[proc(b, [e′/e] ([σ ′](C′[Q]Ψ;∆
a∶A)))]

Φ′
b∶B ∶∶ d ∶ D.

We are done by proposition 7.1.3, transitivity, the assumption that ≐T ⊆ ≼, and symmetry of ≐T .
Finally, assume that in no fair trace do we get amessage fact msg(e , _← output e v; d → e). Then
the analysis is the same as in the previous case.

174 7. OBSERVATIONAL PREORDERS AND EQUIVALENCES

All other cases are analogous to the above. Explicitly, (Fwd−), (1R), and (E-{}) are analogous to
(Fwd+). All of the cases in which the hole sends amessage are analogous to (Cut). All of the cases
in which the hole receives amessage are analogous to (⊕L) or (∧L), depending on whether or not
themessage carries a functional value.

We summarize our results for the precongruences of fig. 7.1:

Corollary 7.5.14. Let ≼ be a transitive, type-indexed precongruence on configurations such that

≐T ⊆ ≼. The following are equivalent:

(1) Ψ ; ∆ ⊢ P ⌈≼⌉ Q ∶∶ a ∶ A;

(2) Ψ ; ∆ ⊢ P ⌈≼⌉O Q ∶∶ b ∶ B;

(3) Ψ ; ∆ ⊢ P ⌈≼⌉p Q ∶∶ b ∶ B.

Proof. Observe that ((≼)c)
b
= ≼c . The result follows from proposition 7.5.9 and theorem 7.5.13.

CHAPTER 8

Denotational Approaches to Equivalence

From the outset, denotational semantics are a promising approach for reasoning about Po-
larized SILL and its programs. Indeed, denotational semantics are compositional by construction.
This means that we can reason about parts of a program at a time, instead of having to reason about
whole programs at once. They also induce a semantic equivalence, and as described in chapter 1,
program equivalences underliemany techniques for reasoning about programs. Moreover, Polar-
ized SILL has a functional layer and recursive types and programs, and denotational semantics have
historically excelled at reasoning about these features in a variety of settings. Finally, a recurring
observation in programming languages research is that beautiful and elegant techniques work
best, and it is our opinion that denotational semantics are amathematically elegant approach to
programming languages semantics.

There are several challenges in giving Polarized SILL a denotational semantics. We illustrate
these using the bit flipping process flip from example 5.3.10. Fair executions ensure that processes
have deterministic input-output behaviour. This suggests that flip denotes a function ⟦flip⟧
from bit streams on b to bit streams on f. This processes-as-functions interpretation raises many
questions. The process providing the bit stream on b could get stuck and only send a finite prefix of
this bit stream. How should ⟦flip⟧ handle these finite prefixes? Computationally, ⟦flip⟧ should
bemonotone: a longer input prefix should result in no less output. It should also be continuous:
⟦flip⟧ should not be able to observe an entire infinitely-long bit stream before sending output.
This suggests that ⟦flip⟧ denotes a continuous function between dcpos of bit streams. These
questions and answers have been known for close to fifty years: Kahn [Kah74] answered them
when giving a semantics to dataflow networks.

Real challenges arise when we realize that bit streams and flip are not representative ofmany
SILL protocols and processes: they do not involve bidirectional communication. The questions are
then: ifmonotonicity and continuity capture important computational properties, can we use still
continuous functions to model processes with bidirectional communications? If so, what should be
the functions’ domains and codomains? A natural idea is to decompose bidirectional session-typed
communications into pairs of unidirectional communications, and then to define functions on
these decomposed communications. But how do we decompose bidirectional communications
in a principled way, so that we do not lose any information? And how do we ensure that the
denotations of processes respect this decomposition, i.e., that they do not produce output that,
according to the decomposition, is inconsistent with their input? Finally, what does it mean to
compose communicating processes in this setting?

We show that a domain-theoretic denotational semantics elucidates the structure of higher-
order session-typed languages with recursion. Wemake the following contributions:

(1) A new style of denotational semantics called CYO semantics. CYO semantics are a
general denotational framework for processes and bidirectional communication. In CYO
semantics, communication protocols denote decompositions of bidirectional commu-
nications into unidirectional communications. Processes denote continuous functions
from unidirectional communications (their inputs) to completed bidirectional communi-
cations. The semantic framework is designed such that processes and communication
decompositions form a coherent whole. We give an overview of CYO semantics in
section 8.1, and we give the details in section 8.2.

175

176 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

(2) An order-theoretic analysis of polarized session types. The decomposition of bidirec-
tional communication into “inputs” and “outputs” is linked to polarity. We show that this
decomposition is given by a natural family of embeddings.

(3) A denotational semantics for Polarized SILL.We give Polarized SILL a CYO semantics
in section 8.3. We interpret session types as dI-domains, and processes and terms as
stable functions. These interpretations validate expected equivalences. We show that the
semantics is well-defined in section 8.4, that it satisfies expected semantic properties in
section 8.5, and that it is sound in section 8.6.

We hope this work will help bridge the gap between two research communities and bodies
of work. For readers familiar with session types, we hope they can take away the high-level ideas
of their semantic interpretation in the presence of (nonlinear) functions and arbitrary recursion
and how it might be used to reason about process equivalence. A particular phenomenon not
usually addressed is that processesmay fail to communicate along a given channel in the presence of
recursively defined types and processes. This phenomenon is easily addressed domain-theoretically:
because processes denote continuous (so monotone) functions, they uniformly treat complete and
incomplete communications.

For readers familiar with denotational semantics, we hope they can take away the ideas behind
its application to bidirectional, session-typed communication in the presence of recursion. The
key insights here, when compared to the denotational semantics of functional languages, are that
(session) types denote decompositions of complete communications into pairs of unidirectional
communications instead of denoting domains of values, and that program (process) composition
is given by a trace operator instead of by function composition.

8.1. Overview of the Semantics

We first give an overview of our semantics for processes. We do so through a sequence of false
starts, where each successive attempt will capture an essential feature of our semantics. Then, we
give an overview of our semantics for the functional layer.

Our starting point is Kahn’s semantics [Kah74] for dataflow networks. In dataflow networks,
processes are computational agents that communicated over unidirectional channels. These chan-
nels carry sequences (streams) of values, e.g., natural numbers. It is assumed that these channels
are the onlymeans processes have to communicate. It is also assumed that if amessage is sent,
then it is transmitted within an unpredictable but finite amount of time. In Kahn’s semantics,
communication channels denote dcpos of prefix-ordered sequences of values. Processes denote
continuous functions on the dcpos of input channels to the dcpos of output channels. Kahn used a
least fixed point construction to capture process composition.

This approach guarantees several desirable semantic properties. First, processes aremonotone:
giving a process more input will result in no less output. Second, continuity ensures that processes
cannot wait until they have received all of their input before they start computing.

In contrast to processes in dataflow networks, session-typed processes communicate on
bidirectional channels. At first glance, this poses no difficulty: we can imagine each bidirectional
channel as being a pair of bidirectional channels, with one channel for each direction. Using the
terminology of section 5.1, one of the channels carries communications in the positive direction,
while the other carries communications in the negative direction. Ifwewrite ⟦A⟧+ and ⟦A⟧− for the
pointed1 dcpos of communications that respectively flow in the positive and negative direction on a
channel of type A, a process Ψ ; a1 ∶ A1 , . . . , an ∶ An ⊢ P ∶∶ a0 ∶ A0 denotes a continuous function2

⟦Ψ ; a1 ∶ A1 , . . . , an ∶ An ⊢ P ∶∶ a0 ∶ A0⟧ ∶ (
n

∏
i=1
⟦A i⟧

+) × ⟦A0⟧
− → (

n

∏
i=1
⟦A i⟧

−) × ⟦A0⟧
+ . (105)

1The bottom element represents the absence of communication.
2We ignore the presence of Ψ and of the functional layer for the time being.

8.1. OVERVIEW OF THE SEMANTICS 177

In this setting, process composition is exactly as it was in Kahn’s semantics. Indeed, we can
interpret (Cut) as:

⟦Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C⟧(δ+1 , δ
+
2 , c
−) = (δ−1 , δ

−
2 , c
+)

where δ−1 , δ
−
2 , a

−, a+, and c+ form the least solution3 to the equations

(δ−1 , a
+) = ⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧(δ+1 , a

−),

(δ−2 , a
− , c+) = ⟦Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C⟧(δ+2 , a

+ , c−).

We recognize this fixed point as the trace of the interpretations of P and Q:

⟦Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C⟧

= Tra
+×a− (⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧ × ⟦Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C⟧) .

Informally, the trace operator Tra
+×a− fixes and then hides the internal communications between

P and Q on ⟦a ∶ A⟧+ × ⟦a ∶ A⟧−.
We remark that the process interpretation (105) exists within a “wave”-style [Abr96] ge-

ometry of interaction (GoI) construction [AHS02, Definition 2.6]. Indeed, the objects of the
GoI construction G(DCPO�) are pairs (A+ ,A−) of objects A+ and A− of DCPO�. Morphisms
f ∶ (A+ ,A−)→ (B+ , B−) of G(DCPO�) aremorphisms f̂ ∶ A+ ×B− → A− ×B+ ofDCPO�. Given
amorphism g ∶ (B+ , B−)→ (C+ ,C−), the composition g ○ f is defined by TrB

−×B+
A+×C− ,A−×C+(ĝ × f̂).

The interpretation of process composition is then exactly the composition ⟦Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶
c ∶ C⟧u ○ ⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧u in G(DCPO�).

Though this approach seems promising and intuitive reasonable, it raises several questions.
We address these in turn.

Question 8.1.1. What does it mean to decompose communications satisfying A into their positive
and negative “aspects”, i.e., into dcpos ⟦A⟧+ and ⟦A⟧−, and to do so in a principled way? ◀

To answer question 8.1.1,we define a third pointed dcpo, ⟦A⟧, of bidirectional communications
satisfying A. Informally, we treat this dcpo as the ground truth of what it means to be a communi-
cation satisfying A. A decomposition of A into its polarized aspects is then given by a (continuous)
embedding jAo ∶ ⟦A⟧→ ⟦A⟧+ × ⟦A⟧−. This embedding ensures that there exists a faithful copy of
the bidirectional communications ⟦A⟧ in the dcpo of decomposed communications ⟦A⟧+ × ⟦A⟧−.
Its projection associates to each (a+ , a−) ∈ ⟦A⟧+ × ⟦A⟧− the largest bidirectional communication
a ∈ ⟦A⟧ whose decomposition jAo(a) is consistent with (a+ , a−).

To help build intuition for this semantics of processes and communication decompositions,
we make an analogy between communications and interactive surveys. Interactive surveys are
questionnaires that may, based on an answer to a given question, instruct you to skip certain
questions. Imagine that a session type A specifies an interactive survey, and let ⟦A⟧ be the dcpo
of partially or fully completed surveys under a prefix-ordering. The embedding jAo ∶ ⟦A⟧ →
⟦A⟧+ × ⟦A⟧− decomposes surveys a ∈ ⟦A⟧ into pairs (a+ , a−), where a− is the collection of
questions answered and a+ is the collection of answers.4 Consider a process Ψ ; ⋅ ⊢ P ∶∶ s ∶ A
that completes a survey over the channel s. It denotes a continuous function ⟦A⟧− → ⟦A⟧+ from
sequences of survey questions to survey answers.

Question 8.1.2. Consider a sequence of survey questions a−, and set a+ = ⟦Ψ ; ⋅ ⊢ P ∶∶ s ∶ A⟧(a−).
How do we semantically ensure that P’s answers a+ correspond to the questions a− it received? ◀

We cannot insist that jAo(a) = (a+ , a−) for some a, for the process P may not have answered
all the questions. Indeed, the process P could have gotten stuck in an infinite loop and only
consumed part of its input a−. However, it is semantically reasonable to require that there be a least

3By the Kleene fixed-point characterization of traces, corollary 2.3.3, we can think of this least solution as the limit of
a sequence of finite approximations, where each approximation represents one additional exchange between processes.

4The choice to treat questions as negative and answers as positive was arbitrary. The symmetric choice is equally valid.

178 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

a−0 ⊑ a
− such that ⟦Ψ ; ⋅ ⊢ P ∶∶ s ∶ A⟧(a−0) = a

+: this a−0 corresponds to the prefix of the questions
a− that P actually answered. Moreover, it is semantically reasonable to require that there exist
an a0 ∈ ⟦A⟧ such that jAo(a0) = (a+ , a−0): it is the partially completed survey consisting of the
questions a−0 that P answered, along with P’s answers a+.

Our answer to question 8.1.2 comes in two parts: first, a change to the semantics, and second,
a property we call junk-freedom.

We start by revising our semantics so that processes denote continuous functions from partial
communications to bidirectional communications. Explicitly, a process Ψ ; a1 ∶ A1 , . . . , an ∶ An ⊢
P ∶∶ a0 ∶ A0 now denotes a continuous function of type

⟦Ψ ; a1 ∶ A1 , . . . , an ∶ An ⊢ P ∶∶ a0 ∶ A0⟧ ∶ (
n

∏
i=1
⟦A i⟧

+) × ⟦A0⟧
− →

n

∏
i=0
⟦A i⟧. (106)

We can recover our previous semantics, (105), by composing this new denotation (106) with the
appropriate embeddings and projections. As before, process composition is defined using a trace
operator, i.e., it is given by a least fixed point.

Next, we require that processes denote junk-free functions. To make this rigorous, set jAo− =
π2 ○ jAo ∶ ⟦A⟧→ ⟦A⟧

− and p = ⟦Ψ ; ⋅ ⊢ P ∶∶ s ∶ A⟧ ∶ ⟦A⟧− → ⟦A⟧. Write f ↾ A′ for the restriction of
f a function f ∶ A→ B to a subset A′ ⊆ A, and write f ○ ∶ A→ im(f) for the corestriction of f to its
image. We say that a function p ∶ ⟦A⟧− → ⟦A⟧ is junk-free (relative to jAo) if (jAo− ↾ im(p), p○)
is an e-p-pair ofmonotonemaps.5 Junk-freedom captures several desirable semantic facts:

(1) Bidirectional communications in the image of p agree with the input p used to generate
them, or alternatively, the questions in a survey completed by p are a prefix of the ones p
received as input. Indeed, if a− is a sequence of questions, then the questions completed
by p are a−0 = (jAo

− ○ p)(a−),6 and the definition of e-p-pair ensures that a−0 ⊑ a
−.

(2) Bidirectional communications in the image of p are uniquely determined by aminimal
piece of input. This property follows from the fact that projection preserve existing infima
by proposition 2.2.19 and that, as we will see, dcpos of communications will be bounded
complete.

By using functions of type (106), we can also easily state another desirable semantic property:
completeness. Completeness means that if p(a−) = a and jAo+(a) = a+, then jAop(a+ , a−) = a.
Intuitively, this means that a contains the first question that p left unanswered, if it exists. In
particular, it means that if p answers no questions, a contains the first question in a−. This lets us
differentiate between settings where p could have answered a question had it been presented with
one, and settings where p could not have answered such a question.

Before going any further in our analysis of denotations of processes, wemust investigate the
dcpos on which they are defined, i.e., the denotations of session-types:

Question 8.1.3. Which variety of dcpo best reflects semantic properties of session-typed commu-
nications? ◀

We claim that pointed dI-domains (definition 2.2.35) are an ideal choice for our semantics.
First, the interpretation of (CVar) forces us to use bounded-complete domains.7 Second,we believe
it important for domains of communications to satisfy the I-property. Indeed, a compact communi-
cation, which we can intuit as a finite prefix of a communication, should be approximated by only
finitelymany other compact communications. Third, ifwe retain our intuition from section 6.1 that
session-typed communications are trees ofmessages, then elements in domains of communications
should satisfy the d-property. To illustrate this fact, consider complete communications x, y, z
such that y ↑ z, i.e., such that y and z are consistent. Under the prefix ordering, the infimum of
trees is given by their intersection (their largest common prefix), while their supremum is given by

5We do not require that they form an e-p-pair of continuous morphisms. We also remark that, though the image
im(f) of f need not be a dcpo, it is a poset.

6Observe also that p(a−0) = p(a−) by proposition 2.2.19.
7We refer the reader to section 8.3.5 for a discussion of this fact.

8.1. OVERVIEW OF THE SEMANTICS 179

their union (the least tree of which they are all a prefix). The assumption y ↑ z implies that y and z
are both prefixes of some larger tree, and by bounded-completeness, their union y ⊔ z exists. The
tree x ⊓ (y ⊔ z) is then the largest prefix of both x and y ⊔ z. This prefix is given by the union of
the largest prefixes x ⊓ y of x and y and x ⊓ z of x and z. That is, x ⊓ (y ⊔ z) = (x ⊓ y) ⊔ (x ⊓ z).
Finally, we require our domains to be pointed to allow for empty communications and to ensure
the existence of least fixed points.

Question 8.1.4. Which semantic universe or categorical structures best capture Polarized SILL’s
processes and configurations? ◀

Processes compose in a tree-like structure. Semantically, we expect process composition to
be associative and partially commutative. To make these facts semantically explicit, we interpret
processes as morphisms in amulticategory. This multicategory is contained in a CYO pluricate-

gory
8,9CYO(Stab�) over the category Stab� of pointed dI-domains and stablemaps. The objects of

CYO(Stab�) are embeddings a ∶ A→ A+×A− between dI-domains. These embeddings are subject
to an additional condition—being “well-woven”—that is necessary and sufficient for it to have an
identitymorphism in CYO(Stab�). Given objects a i ∶ A i → A+i × A

−
i and b j ∶ B j → B+

j
× B−

j
, a

morphism a1 , . . . , an → b1 , . . . , bm in CYO(Stab�) is a function

(
n

∏
i=1

A
+
i) ×
⎛

⎝

m

∏
j=1

B
−
j

⎞

⎠
→ (

n

∏
i=1

A i) ×
⎛

⎝

m

∏
j=1

B j

⎞

⎠
(107)

in Stab� closed under composition with the identitymorphisms of CYO(Stab�). Composition is
given by a trace operator. Processes Ψ ; a1 ∶ A1 , . . . , an ∶ An ⊢ P ∶∶ a0 ∶ A0 now denote junk-free,
complete, frugal10 morphisms

⟦Ψ ; a1 ∶ A1 , . . . , an ∶ An ⊢ P ∶∶ a0 ∶ A0⟧ ∶ jA1o, . . . , jAno→ jA0o (108)

inCYO(Stab�),where jA io ∶ ⟦A i⟧→ ⟦A i⟧
+×⟦A i⟧

− is the denotation of the closed session type A i .
In general, we write ja1 ∶ A1 , . . . , an ∶ Ano for the object jA1o, . . . , jAno.

Until this point, we have only considered the denotations of closed session types. To be able
to define the semantics of recursive session types, wemust also give a semantic account of open
session types Ξ ⊢ A types. To do so, we generalize from a single embedding to a natural family of
well-woven embeddings11

jΞ ⊢ A typeso ∶ ⟦Ξ ⊢ A types⟧⇒ ⟦Ξ ⊢ A types⟧
+ × ⟦Ξ ⊢ A types⟧

− ∶ ⟦Ξ⟧→ Stab�! ,

where ⟦Ξ⟧ =∏α∈Ξ Stab�!. We abuse notation and write jΞ ⊢ A typeso
p for the corresponding fam-

ily of projections. This family will not, in general, be natural. The family jΞ ⊢ A typeso determines
a 2-cell in the 2-category CFP defined in section 4.5.2. In particular, the functors ⟦Ξ ⊢ A types⟧
(giving bidirectional communications), ⟦Ξ ⊢ A types⟧

+ (giving positive communications), and
⟦Ξ ⊢ A types⟧

− (giving negative communications) are locally continuous. In particular, whenever
A is closed, the family contains a single well-woven embedding

jAo ∶ ⟦A⟧→ ⟦A⟧+ × ⟦A⟧− ,

and this embedding is an object of CYO(Stab�).
The semantics of the functional layer follows the standard approach [Cro93; Gun92; Rey98;

Sto77; Ten95]. In particular, terms denote continuous functions between pointed dcpos. The
semantics of value transmission implies that these dcpos should be dI-domains, and that terms

8CYO pluricategories are named in honour of Choose Your Own Adventure book series, a kind of interactive fiction
similar to the interactive surveys described above. They are studied in section 8.2.

9We use pluricategories so that we can interpret processes and configurations in the same semantic universe.
10Frugality is discussed in section 8.2. Jointly, frugality, junk-freedom, and completeness are sufficient conditions for

functions of type eq. (107) to bemorphisms in a CYO pluricategory.
11These embeddings are not rigid, i.e., they are embeddings relative to the pointwise order. This poses no difficulties in

the treatment of recursive types. Indeed, though recursive session types are constructed using ω-colimits, these non-rigid
embeddings are not links of the corresponding ω-chain.

180 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

should denote stable functions. However, the open status of conjecture 8.2.25 complicates this
otherwise pleasant account. In particular, it is unknown whether dcpos of junk-free, complete,
frugal functions are dI-domains. This in turnmeans that it is unknownwhether the dcpo of quoted
processes—the denotation of (T{})—is a dI-domain. We escape this issue by assuming that we do
not transmit quoted processes, an assumption further justified in section 8.1.1. Even though we
cannot send or receive quoted processes, wemust nevertheless be able to work with them in the
functional layer. This leads to two denotational semantics of the functional layer, where the first is
a special case of the second. For convenience and conciseness, we call types and terms that do not
use the functional layer purely functional:

Definition 8.1.5. A functional type Ξ ⊢ τ types is purely functional if its derivation does not use
(T{}); it is impure otherwise. A functional term Ψ ⊩ τ ∶ is purely functional if all types appearing in
its derivation are purely functional. ◀

The first semantics is for purely functional types and terms. In this case, a type Ξ ⊢ τ types
denotes a constant functor ⟦Ξ ⊢ τ types⟧ ∶ ⟦Ξ⟧→ Stab�!. We use constant functions because we
assume as a simplifying assumption that functional types are closed (see assumption 8.1.7). A term
Ψ ⊩ M ∶ τ denotes a stable continuous function

⟦Ψ ⊩ M ∶ τ⟧ ∶ ⟦Ψ⟧→ ⟦τ⟧

where ⟦Ψ⟧ = ∏x ∶τ∈Ψ⟦τ⟧. Otherwise, Ξ ⊢ τ types denotes a constant functor ⟦Ξ ⊢ τ types⟧ ∶

∏α∈Ξ DCPO� → DCPO�, and ⟦Ψ ⊩ M ∶ τ⟧ is only assumed to be continuous.
Remark 8.1.6. Ifwe allow session-typed communications to denote pointed dcpos instead of pointed
dI-domains, then we could drop the above bifurcation of our semantics. Indeed, we could interpret
the entire functional layer in DCPO�!, and the process layer in CYO(DCPO�). Unfortunately,
in doing so, we lose the semantic properties captured by dI-domains that we described following
question 8.1.3.

The final iteration of our process semantics addresses the process layer’s use of contexts of
functional variables. It is given by analogy with the semantics of the functional layer: a process
Ψ ; ∆ ⊢ P ∶∶ a ∶ A denotes a continuous function

⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧ ∶ ⟦Ψ⟧→ JFC [j∆o→ jAo]

where JFC [j∆o→ jAo] is the pointed dcpo of junk-free, continuous, frugal functions from j∆o to
jAo in CYO(Stab�), stably ordered.

Finally, a configuration Γ ⊢ C ∶∶ ∆ denotes a junk-free, complete, and frugal morphism

⟦Γ ⊢ C ∶∶ ∆⟧ ∶ jΓo→ j∆o

in CYO(Stab).
To summarize the above development:
● An open session type Ξ ⊢ A types denotes a natural family of well-woven embeddings

jΞ ⊢ A typeso ∶ ⟦Ξ ⊢ A types⟧⇒ ⟦Ξ ⊢ A types⟧
+ × ⟦Ξ ⊢ A types⟧

− ∶ ⟦Ξ⟧→ Stab�! .

It is a 2-cell in the 2-category CFP defined in section 4.5.2.
● A purely functional type Ξ ⊢ τ types denotes a constant functor.

⟦Ξ ⊢ τ types⟧ ∶ ⟦Ξ⟧→ Stab�! .

● An impure functional type Ξ ⊢ τ types denotes a constant functor

⟦Ξ ⊢ τ types⟧ ∶∏
α∈Ξ

DCPO� → DCPO� .

● A configuration Γ ⊢ C ∶∶ ∆ denotes a junk-free, complete, frugal morphism

⟦Γ ⊢ C ∶∶ ∆⟧ ∶ jΓo→ j∆o

in CYO(Stab�).

8.2. CHOOSE YOUR OWN CATEGORIES 181

● A process Ψ ; ∆ ⊢ P ∶∶ a ∶ A denotes a continuous function

⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧ ∶ ⟦Ψ⟧→ JFC [j∆o→ jAo] .

In particular, for all u ∈ ⟦Ψ⟧,

⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u ∶ j∆o→ jAo

is a junk-free, continuous, frugal morphism in CYO(Stab�).
● A functional term Ψ ⊩ M ∶ τ denotes a continuous function

⟦Ψ ⊩ M ∶ τ⟧ ∶ ⟦Ψ⟧→ ⟦τ⟧

where ⟦Ψ⟧ =∏x ∶τ∈Ψ⟦τ⟧. Its denotation is stable if Ψ ⊩ M ∶ τ is purely functional.

8.1.1. Simplifying Assumptions. Our semantics makes two simplifying assumptions.
Assumption 8.1.7. All types in the functional layer are closed, i.e., that whenever Ξ ⊢ τ types, then
τ has no free variables.

Assumption 8.1.7 avoids complexities caused bymixed-variant functors, especially when it
comes to interpreting recursive types. Techniques for solving domain equations involving mixed-
variant functors are well known [AJ95, § 5.3.3], and we conjecture that extending our semantics to
handle open functional types will pose no significant technical difficulty.
Assumption 8.1.8. The rule (T{}) never appears in a derivation of (C∧) or (C⊃), i.e., all functional
types appearing in a derivation of (C∧) or (C⊃) are purely functional.

Assumption 8.1.8 is due to the open status of conjecture 8.2.25. Concretely, dcpos of session-
typed communications are assumed to be dI-domains, but it remains unknown whether the
denotations of processes form dI-domains. As a result, processes cannot (yet) be included in
session-typed communications.

Our two use-dependent interpretations of the functional layer do not pose any semantic
difficulties. This is because one interpretation is a special case of the other. Indeed, dI-domains are
special cases of dcpos, and strict stable continuous functions are special cases of strict continuous
functions. This means that we can use themore specialized interpretation in all settings where the
more relaxed interpretation is allowed.

To avoid trivializing the functional layer, we extend Polarized SILLwith eager natural numbers
as a base type:

Ξ ⊢ nat typef
(T-N)

Ψ ⊩ 0 ∶ nat
(F-Z) Ψ ⊩ M ∶ nat

Ψ ⊩ s(M) ∶ nat
(F-S)

0 ⇓ 0
(EV-Zero)

M ⇓ v

s(M) ⇓ s(v)
(EV-Succ)

This provides us with suitable base type when we cannot use (T{}). In general, we expect the
functional layer to be extended with whichever base types the user desires.

8.2. Choose Your Own Categories

Remark 8.2.1. Recall that a collection d i ∶ D i → D+i × D
−
i , 1 ≤ i ≤ n, of embeddings determines an

embedding (d1 , . . . , dn) ∶∏n

i=1 D i → (∏
n

i=1 D
+
i) × (∏

n

i=1 D
−
i) by lemma 2.2.49.

Definition 8.2.2. Let C be a traced cartesian O-category. The CYO pluricategory CYO(C) is the
pluricategory given by the following data:

● Objects are embeddings a = ⟨a+ , a−⟩ ∶ A→ A+ × A− such that

TrA
+×A−

A,A (⟨ap , a+ ○ ap⟩ × ⟨a− ○ ap , ap⟩) = ⟨ap , ap⟩.

We often abuse notation and write A, A+, A−, and Ap for a, a+, a−, and ap , respectively.
Object lists are ranged over by capital Greek letters.

182 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

● Morphisms f ∶ A1 , . . . ,An → B1 , . . . , Bm with n,m ≥ 0 aremorphisms

(
n

∏
i=1

A
+
i) ×
⎛

⎝

m

∏
j=1

B
−
j

⎞

⎠
→ (

n

∏
i=1

A i) ×
⎛

⎝

m

∏
j=1

B j

⎞

⎠

of C that are closed under composition with the identitymorphisms of CYO(C).
● The identitymorphism for a ∶ A→ A+ × A− is ida = ⟨ap , ap⟩.
● The composition g ○ f ∶ Λ,Φ, Ξ → Γ, Ξ, ∆ of f ∶ Φ → Γ,Π, ∆ and g ∶ Λ,Π, Σ → Ξ is12

TrΠ
+×Π− (((idΦ×Γ×∆ ×Π+) ○ f) × ((Π− × idΛ×Σ×Ξ) ○ g)) . ◀

Remark 8.2.3. The object corresponding to the empty list ofCYO(C) is determined by the terminal
object ⊺ of C: ε ∶ ⊺→ ⊺ × ⊺.

Proposition 8.2.4. The data of definition 8.2.2 determines a pluricategory.

Proof. By straightforward string diagrammanipulations in the underlying category, using proper-
ties of traces.

Given a list ∆ of objects in CYO(C), we abuse notation and write ∆, ∆p , ∆+, and ∆− for the
associated embedding and projection given by remark 8.2.1, and their associated projections.
Remark 8.2.5. Every object A→ A+ × A− in CYO(C) determines a dual object (A→ A+ × A−) =
(A→ A+×A− ≅ A−×A+). As a result, everymorphism f ∶ Γ → ∆ can equivalently13 be thought of as
amorphism f ∶ ε → Γ , ∆ or f ∶ Γ, ∆ → ε.Wewill use this observation below to simplify calculations
below. In particular, it will be sufficient to consider only compositions of the form g ○ f ∶ Φ → Γ
for f ∶ Φ → ∆ and g ∶ ∆ → Γ. This is becausemorphisms f ∶ Φ → Φ1 ,Π,Φ2 and g ∶ Γ1 ,Π, Γ2 → Γ
can be thought of as morphisms Φ,Φ1 ,Φ2 → Π and Π → Γ, Γ1 , Γ2 , respectively. The resulting
composition Φ,Φ1 ,Φ2 → Γ, Γ1 , Γ2 is equal to the composition g ○ f ∶ Γ1 ,Φ, Γ2 → Φ1 , Γ,Φ2 modulo
the required symmetry isomorphisms.

8.2.1. CYO Categories Over Categories of Pointed DCPOs. We study sufficient conditions
for embeddings and morphisms of DCPO� to be objects and morphisms of CYO(DCPO�).
Several of these were semanticallymotivated in section 8.1. Whenever we speak of functions of
the form p ∶ ∆+ → ∆ or p ∶ Γ+ × ∆− → Γ × ∆, we assume that embeddings ∆ → ∆+ × ∆− and
Γ → Γ+ × Γ− have been fixed.

We use corollary 2.3.8 to explicitly characterize sequential composition in CYO(DCPO�).
Consider morphisms p ∶ ∆ → Γ and q ∶ Γ → Ψ, and let (δ+ ,ψ−) ∈ ∆+ × Ψ− be arbitrary. Then
(q ○ p)(δ+ ,ψ−) = (δ,ψ) where (δ, γ+ , γ− ,ψ) areminimum satisfying

p(δ+ , γ−) = (δ, γp), Γ+(γp) ⊑ γ+ ,

q(γ+ ,ψ−) = (γq ,ψ), Γ−(γq) ⊑ γ
− .

In this case, we say that (γ+ , γ−) witness the composition q ○ p.
8.2.1.1. Objects in CYO(DCPO�). We characterize the embeddings that determine objects of

CYO(DCPO�), and we study their properties.

Definition 8.2.6. An embedding e ∶ A→ A+ × A− is well-woven if for all (a+ , a−) ∈ A+ × A−, if
(α+ , α−) ∈ A+ × A− are chosen minimal such that both

(e+ ○ e p)(a+ , α−) ⊑ α+

(e− ○ e p)(α+ , a−) ⊑ α− ,

then e p(a+ , α−) = e p(α+ , a−). We call the above system of inequalities the weaving equations for
e and (a+ , a−). ◀

12We leave the symmetry isomorphisms implicit in the trace for legibility, both here and throughout.
13Strictly speaking, there are implicit symmetry isomorphisms permuting the products, but we safely ignore these to

avoid drowning in a sea of notation and pedantry.

8.2. CHOOSE YOUR OWN CATEGORIES 183

Proposition 8.2.7. Let e ∶ A→ A+ ×A− be well-woven and let (a+ , a−) ∈ A+ ×A− be arbitrary.

If (α+ , α−) ∈ A+ × A− is minimal such that for some α1 and α2,

e
p(a+ , α−) = α1 , e

+(α1) ⊑ α
+ ,

e
p(α+ , a−) = α2 , e

−(α2) ⊑ α
− ,

then α1 = α2 and e p(a+ , a−) = e p(α+ , α−) = α1. In particular, e(α1) = (α
+ , α−).

Proof. It is immediate by the definition of well-woven embedding that α1 = α2. Using proposi-
tion 2.2.16, we recognize (α+ , α−) as the least fixed point of the function

λ(x+ , x−).((e+ ○ e p)(a+ , x−), (e− ○ e p)(x+ , a−)).

We deduce that e(α1) = (α
+ , α−). It follows bymonotonicity and properties of projections that

(α+ , α−) ⊑ (a+ , a−).
Projections preserve existing infima by proposition 2.2.19, so

e
p(α+ , α−) = e p(a+ ⊓ α+ , α− ⊓ a−) = e p(a+ , α−) ⊓ e p(α+ , a−) = α1 ⊓ α2 = α1 .

By continuity,

e
p(a+ , a−) = e p(a+ ⊔ α+ , α− ⊔ a−) = e p(a+ , α−) ⊔ e p(α+ , a−) = α1 ⊔ α2 = α1 .

Corollary 8.2.8. An embedding e ∶ A→ A+ × A− determines an object of CYO(DCPO�) if
and only if it is well-woven.

Proof. Necessity is an immediate corollary of proposition 8.2.7 and corollary 2.3.8. To see sufficiency,
assume that e is an object ofCYO(DCPO�) and let (a+ , a−) ∈ A+×A− be arbitrary. By assumption,

TrA
+×A−

A,A (⟨e p , e+ ○ e p⟩ × ⟨e− ○ e p , e p⟩) = ⟨e p , e p⟩. (109)

Let (α+ , α−) ∈ A+ × A− beminimal such that for some α1 and α2,

e
p(a+ , α−) = α1 e

+(α1) ⊑ α
+

e
p(α+ , a−) = α2 e

−(α2) ⊑ α
− .

By corollary 2.3.8,

TrA
+×A−

A,A (⟨e p , e+ ○ e p⟩ × ⟨e− ○ e p , e p⟩)(a+ , a−) = (α1 , α2).

By eq. (109),
e
p(a+ , α−) = α1 = e

p(a+ , a−) = α2 = e
p(α+ , a−).

We conclude that e is well-woven.

The following technical lemma generalizes proposition 8.2.7. It will be essential to showing
that processes sending and receiving channels aremorphisms in our semantic domain.

Lemma 8.2.9. Let e ∶ A→ A+ × A− be well-woven and let (a+ , a−) ∈ A+ × A− be arbitrary. The

minimum solution (α+1 , α
+
2 , α

−
1 , α

−
2) ∈ A

+ × A+ × A− × A− such that for some α0, α1, and α2

α0 = e
p(a+ , α−2) A

+(α0) ⊑ α
+
1

α1 = e
p(α+1 , α

−
1) A

+(α1) ⊑ α
+
2 A

−(α1) ⊑ α
−
2

α2 = e
p(α+2 , a

−) A
−(α2) ⊑ α

−
1

is (α+ , α+ , α− , α−) where (e ○ e p)(a+ , a−) = (α+ , α−).

Proof. Observe first that a solution exists: take the solution from the statement. Now consider any
minimal solution (α+1 , α

+
2 , α

−
1 , α

−
2). Looking at the system as two systems of four equations, we

deduce that α0 = α1 = α2 by proposition 8.2.7. By the same result andmonotonicity, e p(a+ , α−1) =
e p(α+1 , a

−) = α1, so

e
p(a+ , a−) = e p(a+ ⊔ α+1 , α

−
1 ⊔ a

−) = e p(a+ , α−1) ⊔ e
p(α+1 , a

−) = α1 ⊔ α1 = α1 .

184 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

By the same result, (α+1 , α
−
2) = e(α0) = e(α1) = (α

+
2 , α

−
1). This implies that theminimal solution

has the desired form. Because it is entirely determined by the above sequence of equalities, it is
minimum.

8.2.1.2. Morphisms in CYO(DCPO�). We formally define the notions of junk-freedom and
completeness that were motivated in section 8.1: They jointly with a third condition, frugality,
will be sufficient conditions for amorphism p ∶ ∆+ → ∆ of DCPO� to be amorphism ∆ → ε of
CYO(DCPO�).

Definition 8.2.10. Let ∆ → ∆+ × ∆− be an embedding. A function p ∶ ∆+ → ∆ inDCPO� is:
● junk-free if (∆+ ↾ im(p), p○) is an e-p-pair, where p○ ∶ ∆+ → im(p) is the corestriction
of p to its image;
● complete if ∆p ○ ⟨id, ∆− ○ p⟩ = p;
● frugal if for all δ+0 ∈ ∆

+, (∆ ○ p)(δ+0) is the least solution (δ+ , δ−) to the “frugality system”

(∆+ ○ ∆p)(δ+0 , δ
−) ⊑ δ+

(∆− ○ p)(δ+) ⊑ δ− .

A function p ∶ ∆+ × Ψ− → ∆ × Ψ is junk-free, complete, or frugal if p ∶ ∆+ × Ψ+ → ∆ × Ψ is
respectively junk-free, complete, or frugal. Amorphism p ∶ ∆ → Ψ in CYO(DCPO�) is junk-free,
complete, or frugal if its underlying morphism is respectively junk-free, complete, or frugal. We
say that a function is jfc if it is junk-free, complete, and frugal. ◀

We already know examples of junk-free, complete, and frugal morphisms:

Proposition 8.2.11. If a ∶ A→ A+ × A− is an object of CYO(DCPO�), then ida is junk-free,
complete, and frugal.

Proof. By definition, ida ∶ A → A is junk-free if and only if ida ∶ A+ × A− → A × A is junk-free,
and this is the case if and only if ida ∶ A+ × A+ → A × A is junk-free. So we must show that
((a+ × a+) ↾ im(ida), ida) is an e-p-pair. Observe that im(ida) = {(α, α) ∣ α ∈ A}. Fixing an
arbitrary element (α, α) of this image, we compute

(a+ × a+)(α, α) = (a+(α), a−(α)) = a(α),

so by definition of e-p-pair,

(ida ○ (a × a)
+)(α, α) = (⟨ap , ap⟩ ○ a) (α) = (α, α).

Conversely, if (α+ , α−) ∈ A+ × A+, then

((a × a)+ ○ ida)(α
+ , α−) = ((a+ ○ ap)(α+ , α−), (a− ○ ap)(α+ , α−)) ⊑ (α+ , α−)

by definition of e-p-pair. We conclude that ida is junk-free.
To see that it is complete, wemust show that

(ap × ap) ○ ⟨idA×A, (a− × a+) ○ ⟨ap , ap⟩⟩ = ⟨ap , ap⟩.

Then:

(ap × ap) ○ ⟨idA×A, (a− × a+) ○ ⟨ap , ap⟩⟩

= (ap × ap) ○ ⟨idA×A, a ○ ap⟩

= ⟨ap , ap ○ a ○ ap⟩,

which by proposition 2.2.19:

= ⟨ap , ap⟩

= ida .

We conclude that ida is complete.

8.2. CHOOSE YOUR OWN CATEGORIES 185

To show that it is frugal means to show for all α+0 ∈ A
+ × A+, that ((a, a)p ○ ida)(α+0) is the

least solution α+ , α−) to the system

((a, a)+ ○ (a, a)p)(α+0 , α
−) ⊑ α+

((a, a)− ○ ida)(α+) ⊑ α− .

If some α+0 = (a
+
0 , a

−
0), and let α

+ = (α+1 , α
−
1) ∈ A

+ × A+ and α− = (α−2 , α
+
2) ∈ A

− × A− be the least
solution to the above system. The above system is equivalent to the system

(a+ ○ ap)(a+0 , α
−
2) ⊑ α

+
1

(a− ○ ap)(α+2 , a
−
0) ⊑ α

−
1

(a− ○ ap)(α+1 , α
−
1) ⊑ α

−
2

(a+ ○ ap)(α+1 , α
−
1) ⊑ α

+
2 .

This statement has the same form as the system in the statement of lemma 8.2.9. By lemma 8.2.9,
its least solution (α+1 , α

−
1 , α

+
2 , α

−
2) is given by (α

+
1 , α

−
1) = (α

+
2 , α

−
2) = (a ○ a

p)(a+0 , a
−
0). Frugality

requires that we show

(a ○ ap)(a+0 , a
−
0) = (α

+
1 , α

−
1),

(a ○ ap)(a+0 , a
−
0) = (α

−
2 , α

+
2),

and this is now immediate.

Composition in CYO categories is defined using a trace operator, which hides the “complete”
communications on the channels on which processes or configurations communicate. Proposi-
tion 8.2.12 states that both processes induce the same complete communications on those hidden
channels.

Proposition 8.2.12. Let p ∶ ∆+ × Ψ− → ∆ × Ψ and q ∶ Ψ+ × Γ− → Ψ × Γ be junk-free, and

let (δ+ , γ−) ∈ ∆+ × Γ− be arbitrary. If (ψ+ ,ψ−) is minimum such that for some (δ,ψp ,ψq , γ),

p(δ+ ,ψ−) = (δ,ψp), Ψ+(ψp) ⊑ ψ
+ ,

q(ψ+ , γ−) = (ψq , γ), Ψ−(ψq) ⊑ ψ
− ,

then ψq = ψp .

Proof. We deduce that Ψ+(ψp) = ψ
+ and Ψ−(ψq) = ψ

− by corollary 2.3.9. By junk-freedom, we
also deduce that Ψ−(ψp) = ψ

− and Ψ+(ψq) = ψ
+. It follows that Ψ(ψp) = Ψ(ψq). But Ψ is an

embedding and embeddings are injective, so ψp = ψq .

Wenow turn our attention to showing that junk-free, frugal, complete functions aremorphisms
in CYO(DCPO�). We begin with a pair of results characterizing witnesses for compositions of
morphisms and identitymorphisms in CYO(DCPO�).

Lemma 8.2.13. Let ∆ → ∆+ × ∆− be well-woven. Let p ∶ ∆+ → ∆ and let δ+0 ∈ ∆
+ be arbitrary.

Consider the least solution (δ+1 , δ
−
2) such that for some δ1 and δ2,

∆p(δ+0 , δ
−
2) = δ1 ∆+(δ1) ⊑ δ+1

p(δ+1) = δ2 ∆−(δ2) ⊑ δ
−
2 .

If p is complete, then δ1 = δ2 and ∆(δ1) = (δ+1 , δ
−
2). If p is also frugal, then p(δ+0) = p(δ

+
1).

Proof. We recognize the above system as defining the trace of a function. By corollary 2.3.9, we
know that they are equalities:

∆p(δ+0 , δ
−
2) = δ1 ∆+(δ1) = δ+1

p(δ+1) = δ2 ∆−(δ2) = δ
−
2 .

186 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

Assume first that p is complete. We show that δ1 = δ2. Consider the least solution (a+1 , a
−
2) to the

following system:

∆p(δ+0 , a
−
2) = a1 ∆+(a1) ⊑ a+1

∆p(a+1 , δ
−
2) = a2 ∆−(a2) ⊑ a

−
2 .

The embedding ∆ → ∆+ × ∆− is well woven, so by proposition 8.2.7, a1 = a2 = ∆p(δ+0 , δ
−
2) and

∆(a1) = (a+1 , a
−
2). So a1 = a2 = δ1. We recognize the system as:

∆p(δ+0 , a
−
2) = δ1 ∆+(δ1) ⊑ δ+1

∆p(δ+1 , δ
−
2) = δ1 ∆−(δ1) ⊑ a−2 .

But p was complete, so
∆p(δ+1 , δ

−
2) = δ2 .

It follows that δ1 = δ2 and a−2 = δ
−
2 . It follows that ∆(δ1) = (δ+1 , δ

−
2).

Next, we show that p(δ+0) = p(δ
+
1) when p is also frugal. By frugality, (∆− ○ p)(δ+0) = δ

−
2 . By

completeness and this equality,

p(δ+0)

= ∆p(δ+0 , (∆
− ○ p)(δ+0))

= ∆p(δ+0 , δ
−
2)

= ∆p(δ+0 , (∆
− ○ p)(δ+1))

= p(δ+1).

Proposition 8.2.14. Let ∆ → ∆+ × ∆− and Ψ → Ψ+ × Ψ− be well-woven embeddings. Let

p ∶ ∆+ × Ψ− → ∆ × Ψ be jfc, and (δ+0 ,ψ
−
0) ∈ ∆

+ × Ψ− be arbitrary. If p(δ+0 ,ψ
−
0) = (δ,ψ),

∆(δ) = (δ+ , δ−), and Ψ(ψ) = (ψ+ ,ψ−), then

(1) ∆p(δ+0 , δ
−) = δ and Ψp(ψ+ ,ψ−0) = ψ;

(2) (δ+ , δ−) is theminimum solution (x+ , x−) such that for some x1 and x2,

∆p(δ+0 , x
−) = x1 , ∆+(x1) ⊑ x+ ,

p(x+ ,ψ−0) = (x2 , _), ∆−(x2) ⊑ x
− .

(3) (ψ+ ,ψ−) is theminimum solution (x+ , x−) such that for some x1 and x2,

p(δ+0 , x
−) = (_, x1), Ψ+(x1) ⊑ x+ ,

Ψp(x+ ,ψ−0) = x2 , Ψ−(x2) ⊑ x
− .

Proof. Item 1 is immediate by completeness of p. Indeed, completeness is exactly the claim that
(∆,Ψ)p((δ+0 ,ψ

−
0), (δ

− ,ψ+)) = (δ,ψ).
We show that (δ+ , δ−) is theminimum solution (x+ , x−) such that for some x1 and x2,

∆p(δ+0 , x
−) = x1 , ∆+(x1) ⊑ x+ ,

p(x+ ,ψ−0) = (x2 , _), ∆−(x2) ⊑ x
− .

By lemma 8.2.13, we know that

(∆,Ψ)p((δ+0 ,ψ
−
0), (δ

− ,ψ+)) = (δ,ψ), (∆,Ψ)+(δ,ψ) = (δ+ ,ψ−),

p(δ+ ,ψ−) = (δ,ψ), (∆,Ψ)−(δ,ψ) = (δ− ,ψ+),

p(δ+0 ,ψ
−
0) = (δ,ψ), (δ+ ,ψ−) ⊑ (δ+0 ,ψ

−
0).

We deduce bymonotonicity that p(δ+ ,ψ−0) = (δ,ψ). By projecting out the desired components
from four of these seven (in)equalities, we deduce that (δ+ , δ−) is a solution (x+ , x−) to the system

∆p(δ+0 , x
−) = x1 , ∆+(x1) ⊑ x+ ,

p(x+ ,ψ−0) = (x2 , _), ∆−(x2) ⊑ x
− . (110)

8.2. CHOOSE YOUR OWN CATEGORIES 187

Consider any other solution (x+ , x−) ⊑ (δ+ , δ−) to this system. Monotonicity implies that
((x+ ,ψ−), (x− ,ψ+)) is a solution to the frugality system

((∆,Ψ)+ ○ (∆,Ψ)p)((δ+0 ,ψ
−
0), (x

− ,ψ+)) ⊑ (x+ ,ψ−) (111)

((∆,Ψ)− ○ p)(x+ ,ψ−) ⊑ (x− ,ψ+) (112)

for p ∶ ∆+ × Ψ+ → ∆ × Ψ. Indeed, eq. (111) follows by properties of products. To see eq. (112),
observe that by eq. (110) andmonotonicity:

((∆,Ψ)− ○ p)(x+ ,ψ−) ⊑ ((∆,Ψ)− ○ p)(x+ ,ψ−0) ⊑ (x
− , _).

By the above system of six (in)equalities, x+ ⊑ δ+ andmonotonicity:

((∆,Ψ)− ○ p)(x+ ,ψ−) ⊑ ((∆,Ψ)− ○ p)(δ+ ,ψ−) ⊑ (δ− ,ψ+).

But x− ⊑ δ−, so eq. (112) follows from these two sequences of inequalities. So ((x+ ,ψ−), (x− ,ψ+))
is indeed a solution to the frugality system. Recall that its least solution is ((δ+ ,ψ−), (δ− ,ψ+)), so
(x+ , x−) = (δ+ , δ−). We conclude that (δ+ , δ−) is theminimum solution.

The third claim, concerning (ψ+ ,ψ−), follows by symmetry.

Corollary 8.2.15. If δ ∶ ∆ → ∆+ × ∆− is an object of CYO(DCPO�) and p ∶ ∆+ → ∆ is

continuous, complete, and frugal, then p ∶ ∆ → ε is amorphism of CYO(DCPO�).

Proof. The embedding δ is well-woven by corollary 8.2.8. It follows from proposition 8.2.14 that p
is closed under composition with identitymorphisms.

The following proposition captures the intuition given in section 8.1 that the image of complete
morphisms always includes the “the unanswered questions”. Indeed, ifwe take δ+0 to be the questions
asked to p, then ∆p(δ+0 , �) is the survey given by answering none of those questions. The statement
says that p(δ+0) is at least as big as that survey.

Proposition 8.2.16. If p ∶ ∆+ → ∆ is complete and p(δ+0) = δ, then ∆p(δ+0 , �) ⊑ δ.

Proof. Immediate by the completeness condition andmonotonicity.

We now consider properties of collections ofmorphisms in CYO(DCPO�). In particular, we
show that jfcmorphisms between bounded-complete dcpos form a dcpo.

Proposition 8.2.17. Junk-free continuous functions ∆+ → ∆, ordered pointwise, form a dcpo.

This dcpo is bounded-complete when ∆ is bounded-complete and ∆ → ∆+ × ∆− is an embedding.

Proof. We start by showing that junk-free continuous functions are closed under directed suprema.
Let M be a directed subset of DCPO� [∆+ → ∆] of junk-free functions, and set F = ⊔↑M. We
must show that

(∆+ ↾ im(F), F)

is an e-p-pair.
We begin by showing that (∆+ ↾ im(F)) ○ F ⊑ id:

(∆+ ↾ im(F)) ○ F = ∆+ ○ F = ⊔↑
f ∈M

∆+ ○ f ⊑ ⊔↑
f ∈M

id = id.

188 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

Next, we show that id = F ○ ∆+ ↾ im(F). Let δ+ ∈ ∆+ be arbitrary, and set δ = F(δ+). Then
δ = ⊔↑ f ∈M f (δ+). We compute using proposition 2.2.11:

(F ○ ∆+)(δ)

= ⊔
↑

f ∈M
(f ○ ∆+)(δ)

=
⎛

⎝
⊔
↑

f ∈M
f ○ ∆+

⎞

⎠

⎛

⎝
⊔
↑

g∈M
g(δ+)

⎞

⎠

= ⊔
↑

f ∈M
(f ○ ∆+ ○ f)(δ+)

= ⊔
↑

f ∈M
f (δ+)

= F(δ+).

Because δ+ was arbitrary, this establishes the result.
Next, assume that ∆ is bounded-complete. We show that the collection of junk-free continuous

functions ∆+ → ∆ is bounded complete. Let p, p1 , p2 ∶ ∆+ → ∆ be junk-free with p1 ⊑ p and
p2 ⊑ p. Wemust show that p1 ⊔ p2 ∶ ∆+ → ∆ exists. It follows easily from bounded-completeness
of ∆ that the supremum exists in DCPO� [∆+ → ∆] and that (p1 ⊔ p2)(δ

+) = p1(δ
+) ⊔ p2(δ

+).
We show that p1 ⊔ p2 is junk-free. We start by showing that ∆+ ○ (p1 ⊔ p2) ⊑ id. But this follows by
monotonicity and the fact that p is junk-free:

∆+ ○ (p1 ⊔ p2) ⊑ ∆+ ○ p ⊑ id.

Next, we show that id = (p1 ⊔ p2) ○ ∆+ when restricted to the image of p1 ⊔ p2, i.e., that

(p1 ⊔ p2) ○ ∆+ ○ (p1 ⊔ p2) = p1 ⊔ p2 .

Observe first that ∆+ preserves suprema. Indeed, e ∶ ∆ → ∆+ × ∆− is an embedding,14 so a lower
adjoint, and lower adjoints preserve suprema. But suprema in products, including ∆+ × ∆−, are
computed component-wise, so ∆+ = π1 ○ e also preserves suprema.15 This implies that

∆+ ○ (p1 ⊔ p2) = (∆+ ○ p1) ⊔ (∆+ ○ p2).

We deduce that

(p1 ⊔ p2) ○ ∆+ ○ (p1 ⊔ p2)

= (p1 ○ ∆+ ○ p1) ⊔ (p1 ○ ∆+ ○ p2) ⊔ (p2 ○ ∆+ ○ p1) ⊔ (p2 ○ ∆+ ○ p2)

but p1 and p2 are junk-free, so:

= p1 ⊔ (p1 ○ ∆+ ○ p2) ⊔ (p2 ○ ∆+ ○ p1) ⊔ p2 .

Recall that ∆+ ○ p i ⊑ id for i = 1, 2, so

(p1 ○ ∆+ ○ p2) ⊔ (p2 ○ ∆+ ○ p1) ⊑ p1 ⊔ p2 .

We deduce that
p1 ⊔ (p1 ○ ∆+ ○ p2) ⊔ (p2 ○ ∆+ ○ p1) ⊔ p2 = p1 ⊔ p2 .

The result follows by transitivity.

Corollary 8.2.18. Fix an embedding ∆ → ∆+ × ∆− between dI-domains. Stable junk-free

continuous functions ∆+ → ∆, stably ordered, form a bounded-complete dcpo.

14Warning: this does not imply that π1 ○ e ∶ ∆ → ∆+ is an embedding.
15We find ourselves in the unfortunate position of punning on ∆+ as a dcpo and ∆+ as a morphism in the same

sentence.

8.2. CHOOSE YOUR OWN CATEGORIES 189

Proof. Consider a directed subset M of Stab [∆+ → ∆], and assume that every function in M is
junk-free. Its directed supremum ⊔↑M exists in Stab [∆+ → ∆] because Stab [∆+ → ∆] is a dcpo.
The stable ordering implies the pointwise ordering, so M is also directed in DCPO� [∆+ → ∆].
The directed supremum ⊔↑M in Stab [∆+ → ∆] is computed pointwise, i.e., it coincides with
the directed supremum of M in DCPO� [∆+ → ∆]. We conclude that it is junk-free by proposi-
tion 8.2.17.

Now consider stable junk-free continuous functions p, p1 , p2 ∶ ∆+ → ∆ such that p i ⊑s p

for i = 1, 2. The upper bound p1 ⊔ p2 exists in Stab [∆+ → ∆] because Stab [∆+ → ∆] is bounded-
complete. The same argument as the previous paragraph gives that it is junk-free.

Proposition 8.2.19. Fix an embedding ∆ → ∆+ × ∆−. Complete continuous functions ∆+ → ∆,
ordered pointwise, form a dcpo.

Proof. An easy consequence of continuity. Let M be a directed subset of DCPO� [∆+ → ∆] of
complete functions, and set F = ⊔↑M. Wemust show that

∆p ○ ⟨id, ∆− ○ F⟩ = F .

Let δ+0 be arbitrary. We compute:

∆p(δ+0 , (∆
− ○ F)(δ+0))

= ⊔
↑

p∈M
∆p(δ+0 , (∆

− ○ p)(δ+0))

which by the assumption that p is complete:

= ⊔
↑

p∈M
p(δ+0)

= F(δ+0)

= δ.

We conclude that F is complete.

Corollary 8.2.20. Fix an embedding ∆ → ∆+ × ∆− between dI-domains. Stable complete

functions ∆+ → ∆, stably ordered, form a dcpo.

Proof. Analogous to the proof of corollary 8.2.18.

Proposition 8.2.21. Frugal continuous functions, ordered pointwise, are closed under directed

suprema.

Proof. Let M be a directed subset ofDCPO� [∆+ → ∆] of complete functions, and set F = ⊔↑M.
Let δ+0 be arbitrary. Wemust show that if

(∆p ○ F)(δ+0) = (δ
+ , δ−),

then (δ+ , δ−) is the least solution (x+ , x−) such that

(∆+ ○ ∆p)(δ+0 , x
−) ⊑ x+

(∆− ○ F)(x+) ⊑ x− .

We recognize (δ+ , δ−) as ⊓M, where

M = {(δ+1 , δ
−
2) ∣ (∆

+ ○ ∆p)(δ+0 , δ
−
2) ⊑ δ

+
1 ∧ (∆

− ○ F)(δ+1) ⊑ δ
−
2 }.

We know that ⊓M exists by proposition 2.2.16. Where p ∈ M, set

Tp = {(δ
+
1 , δ

−
2) ∣ (∆

+ ○ ∆p)(δ+0 , δ
−
2) ⊑ δ

+
1 ∧ (∆

− ○ p)(δ+1) ⊑ δ
−
2 }.

We know by frugality that for each p ∈ M,

⊓Tp = (∆ ○ p)(δ+0).

190 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

Observe that by continuity

(δ+ , δ−) = (∆ ○ F)(δ+0) = ⊔
↑

f ∈M
(∆ ○ f)(δ+0) = ⊔

↑

f ∈M
⊓T f .

This implies that, to show that (δ+ , δ−) is the least solution, it is sufficient to show that

⊔
↑

f ∈M
⊓T f ⊑⊓M.

To do so, it is sufficient to show that ⊓T f ⊑ ⊓M for all f ∈ M. It is in turn sufficient to show that
M ⊆ T f for all f ∈ M. We do so. Let f ∈ M and (d+ , d−) ∈M be arbitrary. Bymonotonicity of
composition and the definition ofM, we observe:

(∆− ○ f)(d+) ⊑ (∆− ○ F)(d+) ⊑ d− .

It is immediate by the definition ofM that (∆+ ○ ∆p)(δ+0 , d
−) ⊑ d+. It follows that (d+ , d−) ∈ T f

as desired. We conclude that F is frugal.

Corollary 8.2.22. Fix an embedding ∆ → ∆+×∆− between dI-domains. Stable frugal functions

∆+ → ∆, stably ordered, form a dcpo.

Proof. Analogous to the proof of corollary 8.2.18.

Recall that junk-free functions are, by virtue of being upper-adjoints, always stable. Proposi-
tions 8.2.17, 8.2.19 and 8.2.21 and corollaries 8.2.18, 8.2.20 and 8.2.22 then imply:

Corollary 8.2.23. The collection of junk-free, complete, frugal functions ∆ → Ψ in CYO(BC�)
forms a dcpo under the pointwise ordering. The collection of junk-free, complete, frugal, stable

functions ∆ → Ψ in CYO(Stab�) forms a dcpo JFC [∆ → Ψ] under the stable ordering.

Proposition 8.2.24. The dcpo JFC [∆ → Ψ] is pointed. Its bottom element is

λ(δ+ ,ψ−) ∈ ∆+ ×Ψ− .(∆p(δ+ , �),Ψp(�,ψ−)).

Proof. Let b be the function from the statement, and let p ∈ JFC [∆ → Ψ] be arbitrary. Wemust
show that b is an element of JFC [∆ → Ψ] and that b ⊑s p.

We show that it is junk-free. We start by showing that

b ○ (∆+ ×Ψ−) ○ b = b.

Let (δ+ ,ψ−) be arbitrary in its domain. We analyze the ∆ and Ψ components separately. By
proposition 2.2.19,

(∆p ○ ∆ ○ ∆p)(δ+ , �) = ∆p(δ+ , �).
It follows that

∆p(∆+(∆p(δ+ , �)), �) = ∆p(δ+ , �).
A similar analysis for Ψ gives the result. Next, we show that

(∆+ × Ψ−) ○ b ⊑ id.

But this is immediate from the definition of b and the fact that ∆ and Ψ are embeddings.
Next, we show that it is complete. Again, we analyze only the ∆ component, and observe that

the Ψ component will follow by symmetry. Let (δ+ ,ψ−) be arbitrary in the domain of b. Wemust
show that

∆p(δ+ , (∆− ○ ∆p(δ+ , �))) = ∆p(δ+ , �).
Observe that, by definition of e-p-pair, (∆− ○ ∆p(δ+ , �)) = �. The result is now obvious.

We turn to frugality. Let (δ+ ,ψ−) be arbitrary in the domain of b. Consider the frugality
system:

∆p(δ+ , δ−2) = δ1 ∆+(δ1) ⊑ δ+1 ∆−(δ2) ⊑ δ
−
2

Ψp(ψ+2 ,ψ
−) = ψ1 Ψ−(ψ1) ⊑ ψ

−
1 Ψ+(ψ2) ⊑ ψ

+
2

b(δ+1 ,ψ
−
1) = (δ2 ,ψ2)

8.3. SEMANTIC CLAUSES 191

The solution (δ+1 , δ
−
2 ,ψ

−
1 ,ψ

+
2) = (∆

+(δ1), �,Ψ−(ψ1), �) is minimum, and it is the one required for
b to be frugal. So b is frugal.

Finally, we show that b ⊑s p. Wemust show that for all (δ+1 ,ψ
−
1) ⊑ (δ

+
2 ,ψ

−
2),

b(δ+1 ,ψ
−
1) = b(δ

+
2 ,ψ

−
2) ⊓ p(δ

+
1 ,ψ

−
1).

Setting (δp ,ψp) = p(δ
+
1 ,ψ

−
1), this means that wemust show that:

∆p(δ+1 , �) = ∆
p(δ+2 , �) ⊓ δp ,

Ψp(�,ψ−1) = Ψ
p(�,ψ−2) ⊓ ψp .

Observe that ∆p is stable and that (δ+2 , �) and (δ
+
1 , ∆

−(δp)) are consistent. By completeness,
δp = ∆p(δ+1 , ∆

−(δp)). It follows that

∆p(δ+2 , �) ⊓ δp
= ∆p(δ+2 , �) ⊓ ∆

p(δ+1 , ∆
−(δp))

= ∆p(δ+2 ⊓ δ
+
1 , � ⊓ ∆

−(δp))

= ∆p(δ+1 , �).

The proof for the Ψ component is analogous.

The following conjecture has important consequences for our semantics of Polarized SILL.
Indeed, if conjecture 8.2.25 is true, then we can drop assumption 8.1.8. The first difficulty in proving
conjecture 8.2.25 is showing that complete and frugal functions are bounded-complete. It is also
unclear that this collection ofmorphisms has a compact basis.

Conjecture 8.2.25. The dcpo JFC [∆ → Ψ] is a dI-domain.

8.3. Semantic Clauses

We define the denotations of judgments by induction on their derivation.

8.3.1. Manipulating channels. The forwarding processes forward communications as-is.
Accordingly, they denote the identitymorphisms for jAo composed with the appropriate labelling
for channel names:

⟦Ψ ; a ∶ A ⊢ a → b ∶∶ b ∶ A⟧u = ⟨a ∶ jAop , b ∶ jAop⟩ (113)

⟦Ψ ; a ∶ A ⊢ a ← b ∶∶ b ∶ A⟧u = ⟨a ∶ jAop , b ∶ jAop⟩ (114)

Wewill see proposition 8.5.8 that the only effect of composing an arbitrary processwith a forwarding
process is to rename the forwarded channel.

Process composition is given by the obvious composition in the semantic universe:

⟦Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C⟧u = ⟦Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C⟧u ○a ⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧u (115)

Consequently, we can deduce that cut is an associative and partially commutative operation “for
free”.

Processes can close channels of type 1. The closemessage is the only communication possible
on a channel of type 1. As a result, whole communications of type 1 are elements of the two element
domain {� ⊑ close}. All communication on a channel of type 1 is positive. As a result, its positive
aspect is equal to its canonical interpretation. Its negative aspect is the constant functor onto the

192 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

one-element terminal object.

⟦Ξ ⊢ 1 type+s ⟧ = diag⟦Ξ⟧{� ⋤ close} (116)

⟦Ξ ⊢ 1 type+s ⟧
+ = diag⟦Ξ⟧{� ⋤ close} (117)

⟦Ξ ⊢ 1 type+s ⟧
− = diag⟦Ξ⟧ ⊺Stab (118)

jΞ ⊢ 1 type+s o
+ = id (119)

jΞ ⊢ 1 type+s o
− = ⊺ (120)

jΞ ⊢ 1 type+s o
p = π1 (121)

In our asynchronous setting, close a does not wait for a client before sending the closemessage.
We interpret (1R) as the constant function that sends the closemessage:

⟦Ψ ; ⋅ ⊢ close a ∶∶ a ∶ 1⟧u� = close (122)

The process wait a; P blocks until it receives the closemessage. All other communication is
handled by P. We interpret (1L) by:

⟦Ψ ; ∆, a ∶ 1 ⊢ wait a; P ∶∶ c ∶ C⟧u(δ+ , a+ , c−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ, close, c) if a+ = close
(j∆op(δ+ , �), �, jCop(�, c−)) otherwise

where (δ, c) = ⟦Ψ ; ∆ ⊢ P ∶∶ c ∶ C⟧u(δ+ , c−)

(123)

Our treatment of A⊗ B is analogous to the one from chapter 6. We treat communications of
type A⊗ B as a pair of communications: one for the sent channel and one for the continuation
channel. We account for the potential absence of communication by lifting.

⟦Ξ ⊢ A⊗ B type+s ⟧ = (⟦Ξ ⊢ A type+s ⟧ × ⟦Ξ ⊢ B type+s ⟧)� (124)

⟦Ξ ⊢ A⊗ B type+s ⟧
+ = (⟦Ξ ⊢ A type+s ⟧

+ × ⟦Ξ ⊢ B type+s ⟧
+)� (125)

⟦Ξ ⊢ A⊗ B type+s ⟧
− = ⟦Ξ ⊢ A type+s ⟧

− × ⟦Ξ ⊢ B type+s ⟧
− (126)

jΞ ⊢ A⊗ B type+s o
+ = (−)� (jΞ ⊢ A type+s o

+ × jΞ ⊢ B type+s o
+) (127)

jΞ ⊢ A⊗ B type+s o
− = down ∗ (jΞ ⊢ A type+s o

− × jΞ ⊢ B type+s o
−) (128)

The associated family of projections is:

jΞ ⊢ A⊗ B type+s o
p

ξ
([(a+ , b+)], (a− , b−))

= [(jΞ ⊢ A type+s o
p

ξ
(a+ , a−), jΞ ⊢ B type+s o

p

ξ
(b+ , b−))] (129)

We abuse notation to pattern match in eq. (129). This family is strict in the positive component.
Recall that the process send a b; P sends the channel b over the channel a and continues as P.

The complete communications of type B thatwe observe are the greatest communications consistent
with the positive and negative input of type B that the process receives. This behaviour is analogous
to the behaviour of (Fwd+) in eq. (113). The continuation P handles all other communication.

⟦Ψ ; ∆, b ∶ B ⊢ send a b; P ∶∶ a ∶ B ⊗ A⟧u(δ+ , b+ , (a−B , a
−
A))

= (δ, b, [(b, a)]) where {
⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u(δ+ , a−A) = (δ, a)

jBop(b+ , a−B) = b
(130)

The client b ← recv a; Q blocks until it receives a channel on a. When it receives a positive
communication [(b+0 , a

+
0)] on a, it unpacks it into the two positive communications a+0 and b

+
0

expected by Q. It then combines the communication Q produces on a ∶ A, b ∶ B into a single

8.3. SEMANTIC CLAUSES 193

communication on a ∶ B ⊗ A.

⟦Ψ ; ∆, a ∶ B ⊗ A ⊢ b ← recv a; P ∶∶ c ∶ C⟧u(δ+ , a+ , c−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ, [(b, a)], c) if a+ = [(b+0 , a
+
0)]

(j∆op(δ+ , �), �, jCop(�, c−)) otherwise

where ⟦Ψ ; ∆, a ∶ A, b ∶ B ⊢ P ∶∶ c ∶ C⟧u(δ+ , a+0 , b
+
0 , c
−) = (δ, a, b, c)

(131)

Example 8.3.1. The process below blocks until it receives a channel a of type 1 over the channel
b, at which point the type of b becomes 1. Then, the process waits for the close messages on a

and b before closing c. The element [(close, close)] ∈ ⟦1 ⊗ 1⟧+ = (⟦1⟧+ × ⟦1⟧+)� corresponds to
receiving the channel a, the closemessage on a, and the closemessage on b. The element [(�, �)]
corresponds to receiving a but no closemessages, while the elements [(close, �)] and [(�, close)]
correspond to receiving a and one closemessage. The element �means that a is never received. It
is clear from the denotation that the process only closes c in the first case:

⟦⋅ ; b ∶ 1⊗ 1 ⊢ a ← recv b; wait a; wait b; close c ∶∶ c ∶ 1⟧�(b+ ∶ β, c− ∶ �)

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(b ∶ [(close, close)], c ∶ close) if β = [(close, close)]
(b ∶ [(close, �)], c ∶ �) if β = [(close, �)]
(b ∶ [(�, close)], c ∶ �) if β = [(�, close)]
(b ∶ �, c ∶ �) if β = � ◀

8.3.2. Functional Programming andValue Transmission. The functional layer is the simply-
typed λ-calculus with a call-by-value semantics and a fixed-point operator. Arrow types are
interpreted as strict function spaces to enforce a call-by-value semantics. We lift these function
spaces to be able to detect divergence, e.g., to be able to denotationally differentiate the terms
Γ ⊩ λx ∶ τ.fix y.y ∶ τ → τ and Γ ⊩ fix x .x ∶ τ → τ.16 If Ξ ⊢ τ → σ typef is purely functional, then

⟦Ξ ⊢ τ → σ typef⟧ = diag⟦Ξ⟧ ((Stab�! [⟦Ξ ⊢ τ typef⟧→ ⟦Ξ ⊢ σ typef⟧])�). (132)

Otherwise,

⟦Ξ ⊢ τ → σ typef⟧ = diag⟦Ξ⟧ ((DCPO�! [⟦Ξ ⊢ τ typef⟧→ ⟦Ξ ⊢ σ typef⟧])�). (133)

The call-by-value semantics is adapted from [Gun92, chap. 6] touse dI-domains and stable functions.
We let u range over ⟦Ψ⟧ =∏x ∶τ∈Ψ⟦τ⟧. The environment [u ∣ x ↦ v] ∈ ⟦Ψ, x ∶ τ⟧maps x to v and y

to u(y) for all y ∈ Ψ. The fixed-point operator (F-Fix) is interpreted using the fixed-point operator
defined in section 2.3.

⟦Ψ, x ∶ τ ⊩ x ∶ τ⟧u = πΨ,x
x u (134)

⟦Ψ ⊩ λx ∶ τ.M ∶ τ → σ⟧u = up (strict (λv ∈ ⟦τ⟧.⟦Ψ, x ∶ τ ⊩ M ∶ σ⟧[u ∣ x ↦ v])) (135)
⟦Ψ ⊩ MN ∶ σ⟧u = down (⟦Ψ ⊩ M ∶ τ → σ⟧u) (⟦Ψ ⊩ N ∶ τ⟧u) (136)

⟦Ψ ⊩ fix x .M ∶ τ⟧u = ⟦Ψ, x ∶ τ ⊩ M ∶ τ⟧†u (137)

These denotations aremorphisms in Stab� whenever the term is purely functional. Otherwise,
they aremorphisms inDCPO�.

We interpret (T-N) as the constant functor onto the flat domain of natural numbers. We
interpret natural numbers as the corresponding element.

⟦Ξ ⊢ nat typef⟧ = diagStab�! N� (138)

⟦Ψ ⊩ 0 ∶ nat⟧u = 0 (139)

⟦Ψ ⊩ s(M) ∶ nat⟧u =
⎧⎪⎪
⎨
⎪⎪⎩

� if ⟦Ψ ⊩ M ∶ nat⟧u = �
n + 1 if ⟦Ψ ⊩ M ∶ nat⟧u = n

(140)

16If we did not lift the function spaces in eqs. (132) and (133) and also left eqs. (135) and (137) unchanged, then these
two terms would have the same denotation, even though one of them is a value and the other diverges.

194 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

We interpret quoted processes as elements of stably ordered dcpo of stable, junk-free, complete,
and frugal continuous functions between the corresponding objects in CYO(Stab�). We lift this
dcpo to account for non-termination when evaluating terms of this type: as typical in semantics
for functional languages, the bottom element � represents non-termination.17

⟦Ξ ⊢ {a0 ∶ A0 ← a1 ∶ A1 , . . . , an ∶ An} typef⟧

= (−)� ○ diag⟦Ξ⟧ (JFC [jΞ ⊢ A1 typeso� , . . . , jΞ ⊢ An typeso� → jΞ ⊢ A0 typeso�]) (141)

We take the component for the initial object � as the representative of each family jΞ ⊢ A i typeso.
This choice is arbitrary and not semanticallymeaningful thanks to the simplifying assumption
that the types appearing in (T{}) are all closed. Indeed, in this case, jΞ ⊢ A i typeso are constant
families ofmorphisms.18

The (I-{}) and (E-{}) introduction and elimination rules respectively quote and unquote
processes. Their denotations are:

⟦Ψ ⊩ a ← {P}← a i ∶ {a ∶ A← a i ∶ A i}⟧ = up ○ ⟦Ψ ; a i ∶ A i ⊢ P ∶∶ a ∶ A⟧ (142)

⟦Ψ ; a i ∶ A i ⊢ a ← {M}← a i ∶∶ a ∶ A⟧ = down ○ ⟦Ψ ⊩ M ∶ {a ∶ A← a i ∶ A i}⟧ (143)

Because these denotations involve quoted processes, we only know that they lie in DCPO. In
eq. (142), we lift the image of ⟦Ψ ; a i ∶ A i ⊢ P ∶∶ a ∶ A⟧ to differentiate the bottom element
of JFC [a i ∶ A i → a ∶ A] (the least junk-free, frugal, complete continuous function of that type)
from the bottom element of ⟦ ⊢ {a ∶ A ← a i ∶ A i} typef⟧ (the denotation of non-terminating
computations).

A communication of type τ ∧ A is one of the following:
(1) a value v ∈ ⟦τ⟧, followed by a communication a of satisfying A;
(2) a value v ≠ �, followed by no further communication;
(3) the empty communication.

They respectively correspond to elements (v , [a]), (v , [�]), and � of the smash product ⟦τ⟧⊗⟦A⟧�.
We use the smash product instead of the cartesian product to rule out communications of the form
(�, a). These communications are problematic, because sequentially executed processes should
not be able to communicate while evaluating a divergent term.19 We lift the communications of
type A to allow for the possibility that no communications follow the value of type τ. The value
travels in the positive direction, so it only appears in the positive aspect.

⟦Ξ ⊢ τ ∧ A type+s ⟧ = ⟦Ξ ⊢ τ typef⟧⊗ ⟦Ξ ⊢ A type+s ⟧� (144)

⟦Ξ ⊢ τ ∧ A type+s ⟧
+ = ⟦Ξ ⊢ τ typef⟧⊗ ⟦Ξ ⊢ A type+s ⟧

+
� (145)

⟦Ξ ⊢ τ ∧ A type+s ⟧
− = ⟦Ξ ⊢ A type+s ⟧

− (146)

jΞ ⊢ τ ∧ A type+s o
+ = id⟦Ξ⊢τ typef⟧ ⊗ (−)�jΞ ⊢ A type+s o

+ (147)

jΞ ⊢ τ ∧ A type+s o
− = down ∗ π2 ∗ jΞ ⊢ A type+s o

− (148)

jΞ ⊢ τ ∧ A type+s o
p

ξ
((v , [a+]), a−) = (v , [jΞ ⊢ A type+s o

p

ξ
(a+ , a−)]) (149)

We abuse notation to pattern match in eq. (149). This family is strict in the positive component.
The process _← output a M; P sends a functional value on a and continues as P. To send the

termM on a,we evaluate it under the current environment u to get an element ⟦Ψ ⊩ M ∶ τ⟧u ∈ ⟦τ⟧.
Divergence is represented by �⟦τ⟧; the other elements represent values of type τ. If ⟦Ψ ⊩ M ∶ τ⟧u
represents a value, then we pair it with the communications of the continuation process P on a.

17This is in contrast to role played by bottom elements in domains of communications, where � represents the absence
of communication.

18That is, the components of each family are pairwise equal.
19Recall that � is the denotation of divergent functional terms.

8.3. SEMANTIC CLAUSES 195

Otherwise, the process transmits nothing. The resulting complete communications are the least
ones compatible with the input.

⟦Ψ ; ∆ ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A⟧u(δ+ , a−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ, (v , [a])) if ⟦Ψ ⊩ M ∶ τ⟧u = v ≠ �

(j∆op(δ+ , �), jτ ∧ Aop(�, a−)) if ⟦Ψ ⊩ M ∶ τ⟧u = �

where ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u(δ+ , a−) = (δ, a)

(150)

The process x ← input a; P blocks until it receives a communication on the channel a. If a
communication (v , [α+]) arrives on a+, then the process binds v to x in the environment and
continues as P with the remaining communication α+ on a+. If it receives no message, then
we observe no communications on a, and theminimal consistent communications on the other
channels.

⟦Ψ ; ∆, a ∶ τ ∧ A ⊢ x ← input a; P ∶∶ c ∶ C⟧u(δ+ , a+ , c−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ, (v , [a]), c) if a+ = (v , [a+0])
(j∆op(δ+ , �), �, jCop(�, c−)) otherwise

where ⟦Ψ, x ∶ τ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C⟧[u ∣ x ↦ v](δ+ , a+0 , c
−) = (δ, a, c)

(151)

8.3.3. Shifts in Polarity. Recall that a communication of type ↓A is a shift message followed
by a communication of type A. By analogy with (C⊕), we couldmodel complete communications
of type ↓A using a unary coalesced sum

⟦↓A⟧ = ⊕
l∈{shift}

⟦A⟧� ,

whose elements are � and (shift, [a]) for a ∈ ⟦A⟧. This domain is isomorphic to ⟦A⟧�, so we omit
the coalesced sum for clarity. “Downshifting” A to ↓A introduces only positive communication
(the “shift” message), so the negative aspect of ↓A is the same as the negative aspect of A.

⟦Ξ ⊢ ↓A type+s ⟧ = ⟦Ξ ⊢ A type−s ⟧� (152)

⟦Ξ ⊢ ↓A type+s ⟧
+ = ⟦Ξ ⊢ A type−s ⟧

+
� (153)

⟦Ξ ⊢ ↓A type+s ⟧
− = ⟦Ξ ⊢ A type−s ⟧

− (154)

jΞ ⊢ ↓A type+s o
+ = (−)�jΞ ⊢ A type−s o

+ (155)

jΞ ⊢ ↓A type+s o
− = down ∗ jΞ ⊢ A type−s o

− (156)

jΞ ⊢ ↓A type+s o
p = (−)�jΞ ⊢ A type−s o

p
⋅ δ (157)

In our asynchronous setting, the process send a shift; P always sends the shift message on a.
This corresponds to lifting the output of P on the a component. We interpret (↓R) as:

⟦Ψ ; ∆ ⊢ send a shift; P ∶∶ a ∶ ↓A⟧u = (id × (a ∶ up)) ○ ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u (158)

The client shift ← recv a; P blocks until it receives the shift message on a+. We lower
⟦↓A⟧ = ⟦A⟧+� to ⟦A⟧+ to extract the positive communication expected by P, and then lift the output
of P on a to capture that we did, indeed, receive the shift message:

⟦Ψ ; ∆, a ∶ ↓A ⊢ shift← recv a; P ∶∶ c ∶ C⟧u(δ+ , a+ , c−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ, [a], c) if a+ = [a+0]
(j∆op(δ+ , �), �, jCop(�, c−)) otherwise

where (δ, a, c) = ⟦Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C⟧u(δ+ , a+0 , c
−)

(159)

Example 8.3.2. Upshifts are the polar duals of downshifts. The following process waits for its client
to synchronize with it before closing the channel. The protocol ↑1 has denotations ⟦↑1⟧− = ⟦1⟧−� =

196 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

{�}� and ⟦↑1⟧+ = ⟦1⟧+ = {� ⋤ close}. The element [�] ∈ ⟦↑1⟧− captures the synchronizing shift
message. The process closes a if and only if it receives the shift message:

⟦⋅ ; ⋅ ⊢ shift← recv a; close a ∶∶ a ∶ ↑1⟧�(a− ∶ α) =
⎧⎪⎪
⎨
⎪⎪⎩

(a ∶ �) if α = �
(a ∶ [∗]) if α = [�]. ◀

8.3.4. Making Choices. A communication of type ⊕{l ∶ A l}l∈L is a label k ∈ L sent in the
positive direction followed by a communication satisfying Ak . Denotationally, this corresponds
to tagging a communication ak ∈ ⟦Ak⟧ with the label k. Tagged communications (k, ak) are the
elements of the disjoint union ⊎l∈L⟦A l⟧. To account for the potential lack of communication, we
lift this disjoint union. This lifted disjoint union is isomorphic to the coalesced sum⊕l∈L⟦A l⟧�.
Coalesced sums are coproducts in Stab�!, and we define the interpretation using a coalesced sum
to make this structure evident. Explicitly, its elements are � and (k, [ak]) for k ∈ L and ak ∈ ⟦Ak⟧.
The provider sends the label on the positive aspect of the channel, justifying eq. (161). The client
does not know a priori which branch it will take: it must be ready to send negative information for
each possible branch. This justifies eq. (162).

⟦Ξ ⊢ ⊕{l ∶ A l}l∈L type
+
s ⟧ =⊕

l∈L
⟦Ξ ⊢ A l type

+
s ⟧� (160)

⟦Ξ ⊢ ⊕{l ∶ A l}l∈L type
+
s ⟧
+ =⊕

l∈L
⟦Ξ ⊢ A l type

+
s ⟧
+
� (161)

⟦Ξ ⊢ ⊕{l ∶ A l}l∈L type
+
s ⟧
− =∏

l∈L
⟦Ξ ⊢ A l type

+
s ⟧
− (162)

jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s o
+ =⊕

l∈L
(−)�jΞ ⊢ A l type

+
s o
+ (163)

jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s o
− = diag (down ∗ jΞ ⊢ A l type

+
s o
−)

l∈L (164)

jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s o

p

ξ
((k, [a+k]), (a

−
l)l∈L) = (k, [jΞ ⊢ Ak type

+
s o

p

ξ
(a+k , a

−
k)]) (165)

The category Stab�! has zero morphisms and we usematrix notation20 for morphisms from co-
products to products in eq. (164). Explicitly, each component of jΞ ⊢ ⊕{l ∶ A l}l∈L type

+
s o
− is the

strict morphism whose action on non-bottom elements is

jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s o
−
ξ
(k, [ak]) = ιk(jΞ ⊢ Ak type

+
s o
−(ak)).

We abuse notation to pattern match in eq. (165). This family is strict in the positive component.
To interpret (⊕R),we extract from a− the negative information a−

k
required by the continuation

process P. Afterwards, we tag P’s output on a with the label k.

⟦Ψ ; ∆ ⊢ a.k; P ∶∶ a ∶ ⊕{l ∶ A l}l∈L⟧u (δ
+ , (a−l)l∈L) = (δ, (k, [ak])) (166)

where ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ Ak⟧u (δ
+ , a−k) = (δ, ak)

The interpretation of (⊕L) is analogous. If the client a label, then the case statement selects the
corresponding branch, and we observe the received label.

⟦Ψ ; ∆, a ∶ ⊕{l ∶ A l}l∈L ⊢ case a {l ⇒ Pl}l∈L ∶∶ c ∶ C⟧u(δ
+ , a+ , c−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ, (l , [a l]), c) if a+ = (l , [a+
l
])

(j∆op(δ+ , �), �, jCop(�, c−)) otherwise

where ⟦Ψ ; ∆, a ∶ A l ⊢ Pl ∶∶ c ∶ C⟧u (δ
+ , a+l , c

−) = (δ, a l , c)

(167)

Example 8.3.3. We build on example 8.3.2. External choices &{l ∶ A l}l∈L are the polar duals of
internal choices. Let A = &{j ∶ ↑1, k ∶ ↑1}. A provider of A receives a label and a synchronizing
shift before closing the channel. The elements (l , [[�]]) ∈ ⟦A⟧− correspond to receiving the label l
over a followed by a shift, while the elements (l , [�]) correspond to receiving l but no shift. In the

20It is defined in section 2.1.

8.3. SEMANTIC CLAUSES 197

first case, the denotation makes clear that the channel gets closed. In the second case, we see that
no closemessage is sent:

⟦⋅ ; ⋅ ⊢ case a {l ⇒ shift← recv a; close a}
l∈{j,k} ∶∶ a ∶ A⟧�(a

− ∶ α)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a ∶ (j, [[close]])) if α = (j, [[�]])
(a ∶ (k, [[close]])) if α = (k, [[�]])
(a ∶ (j, [�])) if α = (j, [�])
(a ∶ (k, [�])) if α = (k, [�])
(a ∶ �) if α = � ◀

8.3.5. Recursive Types. The substitution property (proposition 8.5.3) determines the deno-
tation of the variable rule (CVar). Indeed, it forces eqs. (168) to (170) to be projection functors
and eqs. (171) and (172) to be given by the identity natural transformation. These interpretations
uniquely determine eq. (173). It is because of eq. (173), proposition 2.2.31, and remark 2.2.32 that
dcpos of session-typed communications must be bounded-complete domains.

⟦Ξ, α typeps ⊢ α typeps ⟧ = π
Ξ ,α
α (168)

⟦Ξ, α typeps ⊢ α typeps ⟧
+ = πΞ ,α

α (169)

⟦Ξ, α typeps ⊢ α typeps ⟧
− = πΞ ,α

α (170)

jΞ, α typeps ⊢ α typeps o
+ = id (171)

jΞ, α typeps ⊢ α typeps o
− = id (172)

jΞ, α typeps ⊢ α typeps o
p = ⊓ (173)

As a step towards defining the denotations of general recursive types, we introduce bounded
recursive types ρnα.A formed by:

Ξ, α type+s ⊢ A type+s
Ξ ⊢ ρnα.A type+s

(Cρ+n)

There are no communications of type ρ0α.A,while a communication of type ρn+1α.A consists of an
unfoldmessage followed by a communication of type [ρnα.A/α]A. Their denotations are defined
by induction on n. As in the denotations of (C↓), we use lifting to capture that an unfoldmessage
was sent, instead of an explicit unfold label. We use the following helper functor for convenience,
which specializes the functor Ω from proposition 4.5.1:

itern ∶ CAT [Stab�! → Stab�!]→ Stab�!
iternF = (Ω(�, �, F)) (n) = Fn�

itern(η ∶ F ⇒ G) = (Ω(�, �, F))
n
= (η(n))� ∶ F

n�→ G
n�.

We also use the abstraction functor Λ:21

⟦Ξ ⊢ ρ
n
α.A type+s ⟧ = itern ∗ (Λ ((−)�⟦Ξ, α type+s ⊢ A type+s ⟧)) (174)

⟦Ξ ⊢ ρ
n
α.A type+s ⟧

+ = itern ∗ (Λ ((−)�⟦Ξ, α type+s ⊢ A type+s ⟧
+)) (175)

⟦Ξ ⊢ ρ
n
α.A type+s ⟧

− = itern ∗ (Λ⟦Ξ, α type+s ⊢ A type+s ⟧
−) (176)

jΞ ⊢ ρ
n
α.A type+s o

+ = itern ∗ (Λ ((−)�jΞ, α type+s ⊢ A type+s o
+)) (177)

jΞ ⊢ ρ
n
α.A type+s o

− = itern ∗ (Λ (down ∗ jΞ, α type+s ⊢ A type+s o
−)) (178)

21Explicitly, if η ∶ F ⇒ G ∶ A × B → C is a natural transformation, then Λη ∶ ΛF ⇒ ΛG ∶ A → CAT [B→ C] is
given by ((Λη)A)B = η(A,B).

198 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

⟦Ξ ⊢ ρα.A type+s ⟧ξ

� = ⟦ρ0⟧ξ ⟦ρ1⟧ξ ⟦ρ2⟧ξ ⟦ρ3⟧ξ ⋯

� ≅ ⟦ρ0⟧±ξ ⟦ρ1⟧±ξ ⟦ρ2⟧±ξ ⟦ρ3⟧±ξ ⋯

⟦Ξ ⊢ ρα.A type+s ⟧
±ξ

jρ0oξ jρ1oξ jρ2oξ jρ3oξ

Figure 8.1. Colimit diagram defining the components of jΞ ⊢ ρα.A type+s o as
mediating morphisms of cocones

We interpret recursive types by parametrized solutions of recursive domain equations. We use
the parametrized fixed point operator of section 4.5.2 to define the domains of communications.

⟦Ξ ⊢ ρα.A type+s ⟧ = ((−)�⟦Ξ, α type+s ⊢ A type+s ⟧)
† (179)

⟦Ξ ⊢ ρα.A type+s ⟧
+ = ((−)�⟦Ξ, α type+s ⊢ A type+s ⟧

+)
† (180)

⟦Ξ ⊢ ρα.A type+s ⟧
− = (⟦Ξ, α type+s ⊢ A type+s ⟧

−)
† (181)

jΞ ⊢ ρα.A type+s o
+ = ((−)�jΞ, α type+s ⊢ A type+s o

+)
† (182)

jΞ ⊢ ρα.A type+s o
− = (down ∗ jΞ, α type+s ⊢ A type+s o

−)
† (183)

Informally, we can think of ⟦Ξ ⊢ ρα.A type+s ⟧ξ as “limn→∞⟦Ξ ⊢ ρnα.A type+s ⟧”. Indeed, the
techniques of chapter 4 defines it to be the colimiting object in the following diagram, where we
abbreviate Ξ ⊢ ρnα.A types by ρn :

⟦Ξ ⊢ ρα.A type+s ⟧ξ

� = ⟦ρ0⟧ξ ⟦ρ1⟧ξ ⟦ρ2⟧ξ ⟦ρ3⟧ξ ⋯

The elements of ⟦Ξ ⊢ ρα.A type+s ⟧ξ are elements (xn)n∈N of the infinite product∏n∈N⟦ρ
n⟧ξ such

that, where emn is the embedding ⟦ρn⟧→ ⟦ρm⟧ in the above ω-chain, e pmn(xn) = xm . The details
are given by theorem 2.2.53. The interpretations ⟦Ξ ⊢ ρα.A type+s ⟧

+ and ⟦Ξ ⊢ ρα.A type+s ⟧
− are

similarly constructed.
Given a type forming judgment J , abbreviate ⟦J ⟧+ × ⟦J ⟧− by ⟦J ⟧±. We recognize the

components of natural transformation jΞ ⊢ ρα.A type+s o as the mediating morphism of the
cocones of fig. 8.1. By construction, each component jρnoξ is an embedding, so by proposition 2.2.63,
the mediating morphism ⟦Ξ ⊢ ρα.A type+s ⟧ξ → ⟦Ξ ⊢ ρα.A type+s ⟧

±ξ is an embedding. These
embeddings assemble into a natural transformation jΞ ⊢ ρα.A type+s o ∶ ⟦Ξ ⊢ ρα.A type+s ⟧ ⇒
⟦Ξ ⊢ ρα.A type+s ⟧

±.
By proposition 4.3.4, there exists a canonical isomorphism

Unfold ∶ ⟦ ⊢ ρα.A types⟧→ (−)� ○ ⟦α ⊢ A types⟧ ○ ⟦ ⊢ ρα.A types⟧.

Using the substitution property (proposition 8.5.3), we recognize it as the isomorphism

Unfold ∶ ⟦ ⊢ ρα.A types⟧→ (−)�⟦ ⊢ [ρα.A/α]A types⟧. (184)

Its inverse isFold. Similar canonical isomorphisms exist for ⟦ ⊢ ρα.A types⟧
+ and ⟦ ⊢ ρα.A types⟧

−.
We draw attention to the fact that, in contrast to usual presentations of isorecursive types

(see, e.g., [Pie02, § 20.2]), isorecursive session types are not isomorphic to their unfolding! Indeed,

8.4. WELL-DEFINEDNESS OF INTERPRETATIONS 199

eq. (184) specifies that a recursive type is semantically equivalent to the lifting of its unfolding. This
is because isorecursive session types contain one additional message compared to their unfolding:
the “unfold” message captured by lifting. In contrast, had we used equirecursive session types, then
processes would not have needed to exchange “unfold” messages, and the denotation of a recursive
session type would have been equivalent to that of its unfolding.

We can express jρα.Ao in terms of j[ρα.A/α]Ao, Fold, and Unfold. The following diagram22

commutes by propositions 4.3.4 and 8.5.3,

⟦ρα.A⟧ (−)�⟦[ρα.A/α]A⟧

⟦ρα.A⟧+ × ⟦ρα.A⟧− (−)�⟦[ρα.A/α]A⟧+ × ⟦[ρα.A/α]A⟧−

Unfold

jρα .Ao ⟨(−)�j[ρα .A/α]Ao+ ,down∗j[ρα .A/α]Ao−⟩

Unfold×Unfold

(185)

We recognize the right morphism as the following composition, where δe is given by lemma 2.2.50:

⟨(−)�j[ρα.A/α]Ao+ , down ∗ j[ρα.A/α]Ao−⟩ = δe ○ (−)�j[ρα.A/α]Ao.

Combining these facts, we derive eq. (186). It will be useful when reasoning about recursive types.

jρα.Ao = (Fold × Fold) ○ δe ○ (−)�j[ρα.A/α]Ao ○Unfold. (186)

Taking projections throughout, we deduce:

jΞ ⊢ ρα.A type+s o
p = Fold ○ j[ρα.A/α]Aop ○ δ ○ (Unfold ×Unfold) (187)

Processes unfold recursive types by transmitting unfoldmessages. Semantically, the unfold
messages is captured by lifting subsequent communications. Unfolding and folding recursive types
is given by pre- and post-composition with the corresponding canonical isomorphisms Fold and
Unfold. We interpret (ρ+R) and (ρ+L) by:

⟦Ψ ; ∆ ⊢ send a unfold; P ∶∶ a ∶ ρα.A⟧u

= (id × (a ∶ Fold ○ up)) ○ ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A⟧u ○ (id × (a− ∶ Unfold)) (188)

⟦Ψ ; ∆, a ∶ ρα.A ⊢ unfold← recv a; P ∶∶ c ∶ C⟧u(δ+ , a+ , c−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ,Fold([a]), c) if a+ = Fold([a+0])
(j∆op(δ+ , �), �, jCop(�, c−)) otherwise

where (δ, a, c) = ⟦Ψ ; ∆, a ∶ [ρα.A/α]A ⊢ P ∶∶ c ∶ C⟧u(δ+ , a+0 , c
−)

(189)

8.4. Well-Definedness of Interpretations

The details are all included, but as usual
they are tedious and not too instructive.

Larry C. Eggan [Egg21]

We show that the denotations of section 8.3 are well-defined. A general principle in the design
of denotational semantics is given by the following slogan:

The sound categorical interpretation of notion of term formation amounts to
requiring that certain naturality conditionshold in the categoricalmodel. [Cro93,
p. 165]

These naturality conditionswill let us easily deduce that our semantics satisfies the desired structural
properties enjoyed by the language’s judgments.

Recall that denotational semantics are defined compositionally, i.e., the denotation of a term is
a function of the denotations of its subphrases. Whenworkingwith open terms, the aforementioned
naturality condition states that this function must be natural in the structural contexts appearing
in the judgment.

22It is given for positive ρα.A. An analogous diagram commutes when ρα.A in negative.

200 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

We illustrate this principle using interpretations of functional terms. Recall that judgments
Ψ ⊩ M ∶ τ involving processes denote stable functions ⟦Ψ⟧ → ⟦τ⟧ in DCPO�. Consider a
term-forming rule

Ψ,Ψ1 ; ∆1 ⊢ P1 ∶∶ c1 ∶ C1 ⋯ Ψ,Ψn ; ∆n ⊢ Pn ∶∶ cn ∶ Cn Ψ,Ψn+1 ⊩ M1 ∶ τ1 ⋯ Ψ,Ψn+m ⊩ Mm ∶ τm
Ψ ⊩ F(P1 , . . . , Pn ,M1 , . . . ,Mm) ∶ τ

Assume that its interpretation is given by

⟦Ψ ; ∆ ⊢ F(P1 , . . . , Pn ,M1 , . . . ,Mm) ∶∶ c ∶ C⟧

= ⟦F⟧⟦Ψ⟧ (⟦Ψ,Ψ1 ; ∆1 ⊢ P1 ∶∶ c1 ∶ C1⟧, . . . , ⟦Ψ,Ψn ; ∆n ⊢ Pn ∶∶ cn ∶ Cn⟧,
⟦Ψ,Ψn+1 ⊩ M1 ∶ τ1⟧, . . . , ⟦Ψ,Ψn+m ⊩ Mm ∶ τm⟧) ,

(190)

where ⟦F⟧ is a family of (set-theoretic) morphisms

⟦F⟧⟦Ψ⟧ ∶ (
n

∏
i=1

DCPO�(⟦Ψ,Ψi⟧, JFC [j∆ io→ jC io])) ×

× (
m

∏
i=1

DCPO�(⟦Ψ,Ψn+i⟧, ⟦τ i⟧))→ DCPO(⟦Ψ⟧, ⟦τ⟧). (191)

We say that interpretation (190) is natural in its environment if the family (191) is natural in ⟦Ψ⟧.
In this case, we call ⟦F⟧ a natural interpretation of the rule. The general principle requires that all
interpretations be natural in their environments.

8.4.1. Semantic Results for Types. Recall that if Ξ is a context of type variables, then we
write ⟦Ξ⟧ for the product∏α∈Ξ Stab�!.

We start by showing that the interpretations of types in the functional layer are well defined.

Proposition 8.4.1. If Ξ ⊢ τ typef is purely functional, then the interpretation ⟦Ξ ⊢ τ typef⟧ is
a constant and locally continuous functor from ⟦Ξ⟧ to Stab�!. If Ξ ⊢ τ typef is impurely functional,

then the interpretation ⟦Ξ ⊢ τ typef⟧ is a constant and locally continuous functor from∏α∈Ξ DCPO�!
to DCPO�!.

Proof. By induction on the derivation of Ξ ⊢ τ typef . We silently use the fact that Stab�! is a
subcategory ofDCPO�!. Constant functors are locally continuous, so local continuity will follow
automatically.

Case (T-N): Recall eq. (138). The flat domain of natural numbers is a dI-domain, and the
functor is by definition constant.

Case (T{}): Recall eq. (141). This functor is by definition constant, and its image is a dcpo by
corollary 8.2.23.

Case (T→): Recall eqs. (132) and (133). By the induction hypothesis, ⟦Ξ ⊢ τ typef⟧ and
⟦Ξ ⊢ σ typef⟧ are both constant, so ⟦Ξ ⊢ τ → σ typef⟧ is constant. In all cases, the image of
⟦Ξ ⊢ τ → σ typef⟧ is a dcpo. If Ξ ⊢ τ → σ typef is purely functional, then by the induction
hypothesis, ⟦Ξ ⊢ τ typef⟧ and ⟦Ξ ⊢ σ typef⟧ are both functors into Stab�!. It follows that
⟦Ξ ⊢ τ → σ typef⟧ is also a functor into Stab�!.

Recall that we interpret judgments Ξ ⊢ A types as 2-cells

jΞ ⊢ A typeso ∶ ⟦Ξ ⊢ A types⟧⇒ ⟦Ξ ⊢ A types⟧
− × ⟦Ξ ⊢ A types⟧

+ ∶ ⟦Ξ⟧→ Stab�!

in the 2-category CFP defined in section 4.5.2.
We begin by showing that the functors interpreting types are locally continuous.

Proposition 8.4.2 (Functorial Interpretations areWell-Defined). If Ξ ⊢ A types, then the

interpretations ⟦Ξ ⊢ A types⟧, ⟦Ξ ⊢ A types⟧
−, and ⟦Ξ ⊢ A types⟧

+ are functors from ⟦Ξ⟧ to Stab�!.
They are locally continuous relative to the stable ordering.

8.4. WELL-DEFINEDNESS OF INTERPRETATIONS 201

Proof. By induction on the derivations of Ξ ⊢ A types. By the simplifying assumptions of sec-
tion 8.1.1, the interpretations ⟦Ξ ⊢ τ typef⟧ are constant functors, so they are automatically locally
continuous.

Case (C1): Recall eqs. (116) to (117). Constant functors are locally continuous. Their images
are obviously dI-domains.

Case (CVar): Recall eqs. (168) to (169). The projection functors are locally continuous, and
their codomains are assumed to be dI-domains.

Case (Cρ+n): Recall eqs. (174) to (176). By the induction hypothesis, local continuity of Λ, the
obvious specialization of proposition 4.5.1, and the fact that locally continuous functors are closed
under composition.

Case (Cρ+): Recall eqs. (179) to (181). The category Stab�! is a CFP category: its initial object
is {�}, its morphisms are strict, and it is O-cocomplete. Parametrized fixed points of locally
continuous functors are then locally continuous by the results of section 4.5.2.

Case (C∧): Recall eqs. (144) to (145). By proposition 8.4.1 and the simplifying assumptions
of section 8.1.1, Ξ ⊢ τ typef is a locally continuous functor from ⟦Ξ⟧ to Stab�!. The result follows
from the fact that locally continuous functors are closed under composition.

Local continuity in the remaining cases follow either by analogy with one of the above cases,
or from the observation that they are compositions of locally continuous functors and that local
continuity is closed under composition. The fact that their codomain is Stab�! follows from the
fact that Stab�! is closed under lifting, coalesced products, and coalesced sums.

Next, we show that the 2-cells jΞ ⊢ A typeso are families of stable maps, and that each
component is an embedding relative to the pointwise ordering.

Proposition 8.4.3 (Types Denote 2-Cells). If Ξ ⊢ A types, then

jΞ ⊢ A typeso ∶ ⟦Ξ ⊢ A types⟧⇒ ⟦Ξ ⊢ A types⟧
+ × ⟦Ξ ⊢ A types⟧

− ∶ ⟦Ξ⟧→ Stab�!
is a natural transformation.

Proof. By induction on the derivation of Ξ ⊢ A types. We omit cases that follow by analogy from
others. We sometimes abuse notation and write η ⋅ ρ for the component-wise composition of
families η and ρ, even when they are not natural transformations.

Themajority of cases, naturality follows from the induction hypothesis and the following three
facts:

● natural transformations are closed under composition,
● functors preserve natural transformations, and
● the pairing of two natural transformations is a natural transformation.

Stability follows from the induction hypothesis and the fact that Stab�! is closed under lifting,
products, pairing, coalesced sums, and smash products. We omit these cases.

Case (C1): Recall eqs. (119) and (120). The constant family jΞ ⊢ 1 typeso of morphisms
between constant functors is clearly natural, and constant functions are stable.

Case (CVar): Recall eqs. (171) and (172). The family jΞ, α type
p
s ⊢ α type

p
s o is clearly natural,

and each component is clearly stable.
Case (Cρ+n): Recall eqs. (177) and (178). By the induction hypothesis and the fact that functors

preserve commuting diagrams.
Case (Cρ+): Recall eqs. (182) and (183). To see that jΞ ⊢ ρα.A type+s o is natural, observe that

jΞ ⊢ ρα.A type+s o = ⟨jΞ ⊢ ρα.A type+s o
+ , jΞ ⊢ ρα.A type+s o

−⟩,

and that jΞ ⊢ ρα.A type+s o
+ and jΞ ⊢ ρα.A type+s o

− are natural by proposition 4.3.1.

The proof that jΞ ⊢ A typeso is a family of embeddings ismost easily shown using a substitution
property. This substitution property relies on the fact that these 2-cells satisfy the appropriate
naturality conditions. We adapt the overview given at the start of section 8.4 to the setting of type
interpretations, on account of their complexity in this setting. Recall that for every 2-category C,

202 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

there exists a category CellC whose objects are the objects of C, whosemorphisms are the 2-cells
of C, and whose composition is the horizontal composition of C. Consider a type-forming rule

Ξ, Ξ1 ⊢ A1 types ⋯ Ξ, Ξn ⊢ An types
Ξ ⊢ F(A1 , . . . ,An) types

Assume that its interpretation is given by

jΞ ⊢ F(A1 , . . . ,An) typeso

= ⌜F⌝⟦Ξ⟧ (jΞ, Ξ1 ⊢ A1 typeso, . . . , jΞ, Ξn ⊢ An typeso) .
(192)

where ⌜F⌝ is a ⟦Ξ⟧-indexed family ofmorphisms

⌜F⌝⟦Ξ⟧ ∶ (
n

∏
i=1

CellCFP(⟦Ξ, Ξ i⟧, Stab�!))→ CellCFP(⟦Ξ⟧, Stab�!). (193)

Equation (192) is natural in its environment if the family ⌜F⌝⟦Ξ⟧ is natural in ⟦Ξ⟧, i.e., if for all 2-cells
σ ∶ σ̂ ⇒ σ̌ ∶ C→ D, the following diagram commutes in Set:

∏
n

i=1 CellCFP(D × ⟦Ξ i⟧, Stab�!) CellCFP(D, Stab�!)

∏
n

i=1 CellCFP(C × ⟦Ξ i⟧, Stab�!) CellCFP(C, Stab�!)

⌜F⌝D

∏n

i=1 CellCFP(σ×⟦Ξ i⟧,Stab�!) CellCFP(σ ,Stab�!)

⌜F⌝C

Concretely, this means that for all n-tuples of 2-cells (α i ∶ α̂ i ⇒ α̌ i ∶ D→ Stab�!)1≤i≤n ,

⌜F⌝C ((α i ∗ (σ × ⟦Ξ i⟧) ∶ α̂ i ○ (σ̂ × ⟦Ξ i⟧)⇒ α̌ i ○ (σ̌ × ⟦Ξ i⟧))1≤i≤n) = ⌜F⌝D ((α i)1≤i≤n) ∗ σ

Proposition 8.4.4. If Ξ ⊢ A types, then the interpretations

jΞ ⊢ A typeso
+ ∶ ⟦Ξ ⊢ A types⟧⇒ ⟦Ξ ⊢ A types⟧

+ ∶ ⟦Ξ⟧→ Stab�! ,

jΞ ⊢ A typeso
− ∶ ⟦Ξ ⊢ A types⟧⇒ ⟦Ξ ⊢ A types⟧

− ∶ ⟦Ξ⟧→ Stab�!
are natural in their environment.

Proof. By case analysis on the last rule in the derivation of Ξ ⊢ A types. We omit cases that
follow easily by duality. In most cases, the given natural transformations are clearly the desired
interpretations.

Case (C1): Recall eqs. (116) to (120). We show the positive case; the negative case is analogous.
The rule has no hypotheses, so wemust show that there exists a family ofmorphisms

ηC ∶ diagCellCFP ⊺Set ⇒ CellCFP(C, Stab�!)

natural in C such that
jΞ ⊢ 1 type+s o

+ = η⟦Ξ⟧(∗)

The family we seek is the constant family

ηC(∗) = id,

and this family is obviously natural.
Case (CVar): Recall eqs. (119), (120) and (168) to (170). We show the positive case; the

negative case is identical. The rule has no hypotheses, so wemust show that there exists a family of
morphisms

ηC ∶ diagCellCFP(⊺Set)⇒ CellCFP(C × ⟦α⟧, Stab�!)
natural in C such that

jΞ, α typeps ⊢ α typeps o
+ = η⟦Ξ⟧(∗).

The obvious choice is
ηC(∗) = id ∶ πα ⇒ πα

and it is obviously natural.

8.4. WELL-DEFINEDNESS OF INTERPRETATIONS 203

Case (Cρ+n): Recall eqs. (174) to (178). We show the positive case. Wemust show that there
exists a natural interpretation

η
+ ∶ CellCFP(− × ⟦α⟧, Stab�!)⇒ CellCFP(−, Stab�!)

such that
η
+
⟦Ξ⟧(jΞ, α type+s ⊢ A type+s o

+) = jΞ ⊢ ρ
n
α.A type+s o

+ .

Take
η
+
C(σ ∶ F ⇒ G ∶ C × ⟦α⟧→ Stab�!) = itern ∗ (Λ((−)�σ)).

To show the naturality of η+, wemust show that for all 2-cells ν ∶ H ⇒ I ∶ D→ C,

itern ∗ (Λ((−)�(σ ∗ (ν × id)))) = (itern ∗ (Λ((−)�σ))) ∗ ν.

But this is immediate by naturality of Λ. The natural interpretation in the negative case is analogous.
Explicitly, it is the natural transformation

η
− ∶ CellCFP(− × ⟦α⟧, Stab�!)⇒ CellCFP(−, Stab�!)

given by
η
−
C(σ ∶ F ⇒ G ∶ C × ⟦α⟧→ Stab�!) = itern ∗ (Λ (down ∗ σ)) .

Case (Cρ+): Recall eqs. (179) to (183). We start with the positive case. Wemust show that
there exists a natural interpretation

η
+ ∶ CellCFP(− × ⟦α⟧, Stab�!)⇒ CellCFP(−, Stab�!)

such that
η
+
⟦Ξ⟧(jΞ, α type+s ⊢ A type+s o

+) = jΞ ⊢ ρα.A type+s o
+ .

Take

η
+
C(σ ∶ F ⇒ G ∶ C × ⟦α⟧→ Stab�!) = ((−)�σ)

†
∶ ((−)�F)

†
⇒ ((−)�G)

†
∶ C→ Stab�! .

To show the naturality of η+, wemust show that for all 2-cells ν ∶ H ⇒ I ∶ D→ C,

(((−)�σ) ∗ (ν × id))
†
∶ (((−)�F) ○ (H × id))

†
⇒ (((−)�G) ○ (I × id))

†
∶ D→ Stab�!

= ((−)�σ)
†
∗ ν ∶ ((−)�F)

†
H ⇒ ((−)�G)

†
I ∶ D→ Stab�! .

This is exactly the parameter identity given by corollary 4.3.6. The negative case is analogous. The
natural interpretation is

η
−
C(σ ∶ F ⇒ G ∶ C × ⟦α⟧→ Stab�!) = (down ∗ σ)

†
∶ ((−)�F)

†
⇒ G

† ∶ C→ Stab�! .

Naturalitymeans that wemust show that for all 2-cells ν ∶ H ⇒ I ∶ D→ C,

((down ∗ σ) ∗ (ν × id))
†
∶ (((−)�F) ○ (H × id))

†
⇒ (G ○ (I × id))

†
∶ D→ Stab�!

= (down ∗ σ)
†
∗ ν ∶ ((−)�F)

†
H ⇒ G

†
I ∶ D→ Stab�! .

It too follows from corollary 4.3.6.
Case (C↓): Recall eqs. (152) to (156). Wemust show that there exist natural transformations

η
+ , η− ∶ CellCFP(−, Stab�!)⇒ CellCFP(−, Stab�!)

that are the respective natural interpretations. Take

η
−
C(σ ∶ F ⇒ G ∶ C→ Stab�!) = down ∗ σ ∶ (−)�F ⇒ G ∶ C→ Stab�!

η
+
C(σ ∶ F ⇒ G ∶ C→ Stab�!) = (−)�σ ∶ (−)�F ⇒ (−)�G ∶ C→ Stab�!

To show the naturality of η− and η+, wemust show for all 2-cells ν ∶ H ⇒ I ∶ D→ C that

η
−
D(σ ∗ ν ∶ FH ⇒ GI ∶ D→ Stab�!) = η−C(σ ∶ F ⇒ G ∶ C→ Stab�!) ∗ ν

η
+
D(σ ∗ ν ∶ FH ⇒ GI ∶ D→ Stab�!) = η+C(σ ∶ F ⇒ G ∶ C→ Stab�!) ∗ ν.

204 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

In the negative case, we have by associativity of composition:

η
−
D(σ ∗ ν ∶ FH ⇒ GI ∶ D→ Stab�!)
= down ∗ (σ ∗ ν) ∶ (−)�(FH)⇒ GI ∶ D→ Stab�!
= (down ∗ σ) ∗ ν ∶ ((−)�F)H ⇒ GI ∶ D→ Stab�!
= η−C(σ ∶ F ⇒ G ∶ C→ Stab�!) ∗ ν.

In the positive case,

η
+
D(σ ∗ ν ∶ FH ⇒ GI ∶ D→ Stab�!)
= (−)�(σ ∗ ν) ∶ (−)�(FH)⇒ (−)�(GI) ∶ D→ Stab�!
= ((−)�σ) ∗ ν ∶ ((−)�F)H ⇒ ((−)�G)I ∶ D→ Stab�!
= η+C(σ ∶ F ⇒ G ∶ C→ Stab�!) ∗ ν.

Case (C⊕): Recall eqs. (160) to (164). Wemust show that there exist natural transformations

η
+ , η− ∶ (∏

l∈L
CellCFP(−, Stab�!))⇒ CellCFP(−, Stab�!)

that are the respective natural interpretations. Take

η
−
C ((σl ∶ Fl ⇒ G l ∶ C→ Stab�!)l∈L)

= diag (down ∗ σl)l∈L ∶⊕
l∈L
(−)�Fl ⇒∏

l∈L
G l ∶ C→ Stab�!

η
+
C ((σl ∶ Fl ⇒ G l ∶ C→ Stab�!)l∈L)

=⊕
l∈L
(−)�σl ∶⊕

l∈L
(−)�Fl ⇒⊕

l∈L
(−)�G l ∶ C→ Stab�! .

The family η+ is natural by associativity of composition. To show that η− is natural, wemust show
that for any 2-cell ν ∶ H ⇒ I ∶ D→ C,

diag (down ∗ σl ∗ ν)l∈L ∶⊕
l∈L
(−)�(FlH)⇒∏

l∈L
(G l I) ∶ C→ Stab�!

= diag (down ∗ σl)l∈L ∗ ν ∶ (⊕
l∈L
(−)�Fl)H ⇒ (∏

l∈L
G l) I ∶ C→ Stab�! .

The sources and targets of these vertical morphisms are equal by associativity of functorial compo-
sition. We show that the families are equal. Let D be arbitrary inD, then

(diag (down ∗ σl ∗ ν)l∈L)D ∶⊕
l∈L
(−)�(FlH)D⇒∏

l∈L
(G l I)D

is themediating morphism in Stab�! given by the coproduct:

(−)�FlHD G l ID

⊕l∈L(−)�FlHD ∏l∈L G l ID

(−)�FlHD Gk ID

(down∗σ l∗ν)D

(diag(down∗σ l∗ν)l∈L)D

π l

πk

0 when l≠k

(194)

Expanding the definition of horizontal composition in the top morphism of diagram 194, we get
the top morphism of diagram 195, below. By definition of zero morphism, the bottom morphisms

8.4. WELL-DEFINEDNESS OF INTERPRETATIONS 205

of the two diagrams are also equal. So their perimeters are equal.

(−)�FlHD G lHD G l ID

⊕l∈L(−)�FlHD ∏l∈L G lHD ∏l∈L G l ID

(−)�FlHD GkHD Gk ID

(down∗σ l)HD (G l ν)D

(diag(down∗σ l)l∈L)HD

π l

πk

∏l∈L(G l ν)D

π l

πk

0 when l≠k (Gk ν)D

(195)

We recognize the composition of themediating morphisms in the centre of diagram 195 as

(∏
l∈L
(G l ν)D) ○ (diag (down ∗ σl)l∈L)HD

(∏
l∈L

G l(νD)) ○ (diag (down ∗ σl)l∈L)HD

= (∏
l∈L

G l) νD ○ (diag (down ∗ σl)l∈L)HD

= (diag (down ∗ σl)l∈L ∗ ν)D .

These are bothmediatingmorphismsmaking the same coproductdiagram commute. Byuniqueness
of mediating morphisms, we conclude that they must be equal. Because D was an arbitrary
component, we conclude that diag(down ∗ σl ∗ ν)l∈L and diag(down ∗ σl)l∈L ∗ ν are equal natural
transformations, i.e., that η− is a natural transformation.

Case (C⊗): Recall eqs. (124) to (128). Wemust show that there exist natural transformations

η
+ , η− ∶ CellCFP(−, Stab�!) ×CellCFP(−, Stab�!)⇒ CellCFP(−, Stab�!)

that are the respective natural interpretations. Take

η
−
C(α ∶ A⇒ C , β ∶ B⇒ D) = down ∗ (α × β) ∶ (A× B)� ⇒ C × D ∶ C→ Stab�!

η
+
C(α ∶ A⇒ C , β ∶ B⇒ D) = (α × β)� ∶ (A× B)� ⇒ (C × D)� ∶ C→ Stab�! .

We use the definition of products in CellStab�! and associativity of composition to show naturality.
Then:

η
−
C(α ∶ A⇒ C , β ∶ B⇒ D) ∗ ν

= down ∗ (α × β) ∗ ν

= down ∗ ((α ∗ ν) × (β ∗ ν))

= η−D(α ∗ ν ∶ AH ⇒ CI, β ∗ ν ∶ BH ⇒ DI).

We conclude that η− is natural. A similar argument gives that η+ is natural.
Case (C∧): Recall eqs. (144) to (148). Wemust show that there exist natural transformations

η
+ , η− ∶ CellStab�!(−, Stab�!)⇒ CellStab�!(−, Stab�!)

that are the respective natural interpretations. Take

η
−
C(σ ∶ F ⇒ G) = down ∗ π2 ∗ σ ∶ (⟦τ⟧ × F)� ⇒ F ∶ C→ Stab�!

η
+
C(σ ∶ F ⇒ G) = (⟦τ⟧ × σ)� ∶ (⟦τ⟧ × F)� ⇒ (⟦τ⟧ ×G)� ∶ C→ Stab�!

These are natural by the associativity of composition of functors.

The proof of proposition 8.4.6 relies on the substitution property, which is given by proposi-
tion 8.5.3 below. Proposition 8.5.3 is an easy corollary of proposition 8.4.6, and no circularity is
introduced between these three results. In the interest in a thematic presentation of our results,

206 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

we hope the reader will forgive our use of forward references. We encapsulate our use of the
substitution property in the following lemma:

Lemma 8.4.5. If Ξ ⊢ ρn+1α.A type+s , then

jΞ ⊢ ρ
n+1

α.A type+s o
+ = (−)�jΞ ⊢ [ρn

α.A/α]A type+s o
+ ,

jΞ ⊢ ρ
n+1

α.A type+s o
− = down ∗ jΞ ⊢ [ρn

α.A/α]A type+s o
− .

The result is symmetric when Ξ ⊢ ρn+1α.A type−s .

Proof. By induction on n. Recall eqs. (177) and (178).
Case n = 0: We show the positive case. Observe that (iter0(η) = id� for all η ∶ F ⇒ G ∶

Stab�! → Stab�!. Assume that Ξ = α1 types , . . . , αm types, and consider some arbitrary component
ξ = (ξ1 , . . . , ξm) ∈ ⟦Ξ⟧. We compute using eqs. (171) and (177):

jΞ ⊢ ρ
1
α.A typeso

+
ξ

= (iter1 ∗ (Λ ((−)�jΞ, α type+s ⊢ A type+s o
+)))

ξ

= (−)�jΞ, α type+s ⊢ A type+s o
+
ξ ,�

= ((−)�jΞ, α type+s ⊢ A type+s o
+ ∗ ⟨πα1 , . . . , παn

, ⟦Ξ ⊢ ρ
0
α.A types⟧⟩)ξ

= ((−)�jΞ, α type+s ⊢ A type+s o
+ ∗

∗ ⟨jΞ ⊢ α1 typeso
+ , . . . , jΞ ⊢ αm typeso

+ , jΞ ⊢ ρ
0
α.A typeso

+⟩)
ξ
,

which by proposition 8.5.3:
= ((−)�jΞ ⊢ [α⃗ i , ρ0

α.A/α⃗ i , α]A typeso)ξ

= ((−)�jΞ ⊢ [ρ0
α.A/α]A typeso)ξ .

The negative case is analogous.
Case n = k + 1: Assume the result holds for k. We show the positive case. Consider some

arbitrary component ξ:

jΞ ⊢ ρ
k+1

α.A typeso
+
ξ

= (iterk+1 ∗ (Λ ((−)�jΞ, α type+s ⊢ A type+s o
+)))

ξ

= ((Λ ((−)�jΞ, α type+s ⊢ A type+s o
+))

ξ
)
(k+1)
�

= ((Λ ((−)�jΞ, α type+s ⊢ A type+s o
+))

ξ
∗ ((Λ ((−)�jΞ, α type+s ⊢ A type+s o

+))
ξ
)
(k)
)
�

= ((Λ ((−)�jΞ, α type+s ⊢ A type+s o
+))

ξ
)
⟦Ξ⊢ρkα .A types⟧+ ξ

○

○ ((Λ ((−)�jΞ, α type+s ⊢ A type+s o
+))

ξ
)
(k)
�

= (−)�jΞ, α type+s ⊢ A type+s o
+
ξ ,⟦Ξ⊢ρkα .A types⟧+ ξ

○ jΞ ⊢ ρ
k
A. typeso

+
ξ

which by an argument using eq. (171) and proposition 8.5.3 similar to the one in the base case:

= (−)�jΞ ⊢ [Ξ ⊢ ρ
k
A. types/α]A typesoξ .

Again, the negative case is analogous.

Proposition 8.4.6 (Natural Family of Embeddings). If Ξ ⊢ A types, then

jΞ ⊢ A typeso ∶ ⟦Ξ ⊢ A types⟧⇒ ⟦Ξ ⊢ A types⟧
+ × ⟦Ξ ⊢ A types⟧

− ∶ ⟦Ξ⟧→ Stab�!
is a family of continuous embeddings relative to the pointwise order.

Proof. It is sufficient to show that jΞ ⊢ A typeso is a family of embeddings: lower adjoints are
continuous by [AJ95, Proposition 3.1.14].

We use a well-founded induction on the set of open session types, ordered by a relation that
captures their recursive structure. In the general recursive case, this will let us use a lemma that

8.4. WELL-DEFINEDNESS OF INTERPRETATIONS 207

holds for the related bounded recursive types. We remark that an induction on the derivation
would not permit us to use this lemma, because bounded recursive types are not structurally
smaller than general recursive types. Additionally, we highlight the fact that caremust be taken
in constructing the binary relation that orders session types, so as to not introduce any infinite
descending chains.

Concretely, consider the set T of well-formed open session types Ξ ⊢ A types, ordered by the
least transitive relation generated by the following rules:

(1) whenever Ξ1 ⊢ A1 types is a premise to a rule with conclusion Ξ2 ⊢ A2 types,

(Ξ1 ⊢ A1 types) ≺ (Ξ2 ⊢ A2 types)

(2) for all n,

(Ξ ⊢ ρnα.A types) ≺ (Ξ ⊢ ρα.A types)

(3) for all n,

(Ξ ⊢ [ρnα.A/α]A types) ≺ (Ξ ⊢ ρn+1α.A types)

This ordering has no infinite descending chains, so it is well-founded by the axiom of dependent
choice.

We proceed by well-founded induction on T . We omit cases that follow by analogy from
others. We show that there exists a corresponding family23 of projections jΞ ⊢ A typeso

p such that

jΞ ⊢ A typeso
p

ξ
○ jΞ ⊢ A typesoξ = id⟦Ξ⊢A types⟧ξ

and
jΞ ⊢ A typesoξ ○ jΞ ⊢ A typeso

p

ξ
⊑ id(⟦Ξ⊢A types⟧+×⟦Ξ⊢A types⟧−)ξ

for all components ξ. We sometimes abuse notation and write η ⋅ ρ for the component-wise
composition of families η and ρ, even when they are not natural transformations. Where it
improves legibility, wemay abbreviate Ξ ⊢ A types by A and use the abbreviation:

⟦Ξ ⊢ A types⟧
± = ⟦Ξ ⊢ A types⟧

+ × ⟦Ξ ⊢ A types⟧
− .

Case (C1): Recall eqs. (119) to (121). The constant family jΞ ⊢ 1 typeso ofmorphisms between
constant functors is clearly natural. Because ⟦Ξ ⊢ 1 type+s ⟧ = ⟦Ξ ⊢ 1 type+s ⟧+, we compute:

jΞ ⊢ 1 type+s o
p
⋅ jΞ ⊢ 1 type+s o = π1 ⋅ ⟨id, ⊺⟩ = id.

Next consider some arbitrary component ξ and element

(x− , x+) ∈ ⟦Ξ ⊢ 1 types⟧
±
ξ,

then
(jΞ ⊢ 1 type+s oξ ○ jΞ ⊢ 1 type

+
s o

p

ξ
) (x− , x+) = j1o(x+) = (�, x+) ⊑ (x− , x+).

The components are all clearly stable and strict.
Case (CVar): Recall eqs. (171) to (173). The family jΞ, α type

p
s ⊢ α type

p
s o is clearly natural,

and each component is clearly stable. The components of eq. (173) are continuous by proposi-
tion 2.2.31. To show that they are stable, it is sufficient to show that they are projections.

It is obvious that

jΞ, α typeps ⊢ α typeps o
p
⋅ jΞ, α typeps ⊢ α typeps o = id

and
jΞ, α typeps ⊢ α typeps o ⋅ jΞ, α typeps ⊢ α typeps o

p ⊑ id.

23This family need not be natural.

208 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

Case (C↓): Recall eqs. (155) to (157). By the induction hypothesis, jΞ ⊢ A type−s o is a natural
family of stable embeddings,with associated projections jΞ ⊢ A type−s o

p . It is sufficient to recognize
jΞ ⊢ ↓A type+s o as δ

e
⋅ jΞ ⊢ A type−s o, recall that e-p-pairs and stablemorphisms are closed under

composition, and that the lifting functor is locally continuous. Indeed,

jΞ ⊢ ↓A type+s o
p
⋅ jΞ ⊢ ↓A type+s o

= (−)�jΞ ⊢ A type−s o ⋅ δ ⋅ δ
e
⋅ jΞ ⊢ A type−s o

= (−)� (jΞ ⊢ A type−s o ⋅ jΞ ⊢ A type−s o)

= id.

The proof that jΞ ⊢ ↓A type+s o ⋅ jΞ ⊢ ↓A type+s o
p ⊑ id is analogous.

Case (Cρ+n): Recall eqs. (177) and (178). We proceed by case analysis on n. If n = 0, then
jΞ ⊢ ρ0α.A typesoξ(�) = (�, �) is a constant family of constant functions. For each component,
the domain and codomain each contain exactly one element, so each component is clearly an
embedding. If n = k + 1, then by lemma 8.4.5,

jΞ ⊢ ρ
k+1

α.A type+s o
+ = (−)�jΞ ⊢ [ρk

α.A/α]A type+s o
+ ,

jΞ ⊢ ρ
k+1

α.A type+s o
− = down ∗ jΞ ⊢ [ρk

α.A/α]A type+s o
− .

Observe that
(Ξ ⊢ [ρk

α.A/α]A type+s) ≺ (Ξ ⊢ ρ
k+1

α.A type+s),

so by the well-founded induction hypothesis, jΞ ⊢ [ρkα.A/α]A type+s o is a natural family of
embeddings. The remainder of the case is identical to the case for (C↓).

Case (Cρ+): Recall eqs. (182) and (183). Themorphism jΞ ⊢ ρα.A type+s oξ is given by the
mediating morphism of cocones in fig. 8.1 . The top ω-chain lies in Stab�! e (relative to the stable
ordering) by proposition 4.5.1, and the top cocone is colimiting by definition. By corollary 2.2.64, it
is also colimiting inDCPO. The bottom ω-chain is the product of two ω-chains and also lies in
Stab�! e . The cocone on the bottom ω-chain is colimiting because because left-adjoints preserve
colimits [Rie16, Theorem 4.5.3; Mac98, p. 119], so it too lies in Stab�! e . The natural transformation
between the two ω-chains is a family of embeddings by the induction hypothesis. The lower cocone
on the top ω-chain then lies inDCPOe . It follows that themediating morphism is an embedding
(relative to the pointwise ordering) by proposition 2.2.63. By proposition 2.2.63, it is the directed
supremum of compositions of stablemaps, so it is stable. To see that jΞ ⊢ ρα.A type+s o is natural,
observe that

jΞ ⊢ ρα.A type+s o = ⟨jΞ ⊢ ρα.A type+s o
+ , jΞ ⊢ ρα.A type+s o

−⟩,

and that jΞ ⊢ ρα.A type+s o
+ and jΞ ⊢ ρα.A type+s o

− are natural by proposition 4.3.1.
Case (C⊕): Recall eqs. (163) to (165). We first show that jΞ ⊢ ⊕{l ∶ A l}l∈L type

+
s o is a natural

transformation in DCPO�!. To do so, it is sufficient to show that jΞ ⊢ ⊕{l ∶ A l}l∈L type+s o
+

and jΞ ⊢ ⊕{l ∶ A l}l∈L type+s o
− are natural. The case jΞ ⊢ ⊕{l ∶ A l}l∈L type+s o

+ follows by the
induction hypothesis and the fact that functors preserve commuting diagrams. The case jΞ ⊢
⊕{l ∶ A l}l∈L type

+
s o
− follows by the induction hypothesis and an easy computation.

Next, we show that the components of jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s o are stable. Consider some

arbitrary component ξ, and assume that x ↑ y in ⟦Ξ ⊢ ⊕{l ∶ A l}l∈L type
+
s ⟧ξ. Wemust show that

jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s oξ(x⊓y) = jΞ ⊢ ⊕{l ∶ A l}l∈L type

+
s oξ(x)⊓jΞ ⊢ ⊕{l ∶ A l}l∈L type

+
s oξ(y).

Three cases are possible. The first, that x = y, is immediate. The second is that, without loss of
generality, x = �. In this case, the result follows easily from the fact that embeddings are strict
(proposition 2.2.21). The final is that x = (l , [x l]) and y = (l , [y l]). Then:

jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s oξ(x ⊓ y)

= jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s oξ(l , [x l ⊓ y l])

= ((l , [jΞ ⊢ A l type
+
s o
+(x l ⊓ y l)]), ι l(jΞ ⊢ A l type

+
s o
−(x l ⊓ y l))),

8.4. WELL-DEFINEDNESS OF INTERPRETATIONS 209

which by the induction hypothesis:
= ((l , [jΞ ⊢ A l type

+
s o
+(x l) ⊓ jΞ ⊢ A l type

+
s o
+(y l)]),

ι l(jΞ ⊢ A l type
+
s o
−(x l) ⊓ jΞ ⊢ A l type

+
s o
−(y l))),

= ((l , [jΞ ⊢ A l type
+
s o
+(x l)]), ι l(jΞ ⊢ A l type

+
s o
−(x l))) ⊓

⊓ ((l , [jΞ ⊢ A l type
+
s o
+(y l)]), ι l(jΞ ⊢ A l type

+
s o
−(y l)))

= jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s oξ(x) ⊓ jΞ ⊢ ⊕{l ∶ A l}l∈L type

+
s oξ(y).

Finally, we show that the components of jΞ ⊢ ⊕{l ∶ A l}l∈L type+s o are embeddings. Con-
sider some component ξ, and let (l , [a l]) ∈ ⟦Ξ ⊢ ⊕{l ∶ A l}l∈L type

+
s ⟧ξ be arbitrary.

24 Then, by
computation and the induction hypothesis:

(jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s o

p

ξ
○ jΞ ⊢ ⊕{l ∶ A l}l∈L type

+
s oξ) (l , [a l])

= jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s o

p

ξ
((l , [jΞ ⊢ A l type

+
s o
+
ξ
a l]), ι l(jΞ ⊢ A l type

+
s o
−
ξ
a l))

= (l , [jΞ ⊢ A l type
+
s o

p

ξ
(jΞ ⊢ A l type

+
s o
+
ξ
a l , jΞ ⊢ A l type

+
s o
−
ξ
a l)])

= (l , [a l]) .

The proof that

(jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s oξ ○ jΞ ⊢ ⊕{l ∶ A l}l∈L type

+
s o

p

ξ
) ⊑ id

is similar.
Case (C⊗): Recall eqs. (127) to (129). It follows from the induction hypothesis and general

categorical properties that jΞ ⊢ A⊗ B type+s o is natural. To show that its components are stable,
it is sufficient to show that jΞ ⊢ A⊗ B type+s o

+ and jΞ ⊢ A⊗ B type+s o
− are stable. Stability of

jΞ ⊢ A⊗ B type+s o
+ follows from the induction hypothesis and the fact that Stab�! is closed under

lifting and products. Stability of jΞ ⊢ A⊗B type+s o
− follows from the induction hypothesis, the fact

that Stab�! is closed under products, and the fact down is stable. Finally, it follows easily from the
induction hypothesis and lemma 2.2.50 that the components of jΞ ⊢ A⊗B type+s o are embeddings.

Case (C∧): Recall eqs. (147) to (149). It follows from the induction hypothesis that jΞ ⊢
τ ∧ A type+s o is natural. Stability follows from the induction hypothesis and the fact that Stab�!
is closed under smash products. An uninteresting computation reveals that the components of
jΞ ⊢ τ ∧ A type+s o are embeddings.

Lemma 8.4.7. Let a ∶ A → A+ × A− be a well-woven embedding, and let δe ∶ (A+ × A−)� →
A+� × A

− be given by lemma 2.2.50. Then δe ○ a� ∶ A� → A+� × A
− is a well-woven embedding.

Proof. It is clearly an embedding, for embeddings are closed under composition. Set w = δe ○ a�,
and let (a+ , a−) ∈ A+� × A

− be arbitrary in its codomain. If a+ = �, then theminimum solution
(α+ , α−) to the weaving equations

(w+ ○w p)(a+ , α−) ⊑ α+

(w− ○w p)(α+ , a−) ⊑ α−

is (α+ , α−) = (�, �), and in this case,

w
p(a+ , α−) = � = w p(α+ , a−)

as desired. If a+ = [a+0], then let (β+ , β−) be theminimum solution to the weaving equations

(a+ ○ ap)(a+0 , β
−) ⊑ β+

(a− ○ ap)(β+ , a−) ⊑ β− .

Then ([β+], β− is the least solution to the weaving equations for w+, and

w
p(a+ , β−) = [a(a+0 , β

−)] = [a(β+ , a−)] = w p([β+], a−).

24Becausemorphisms in Stab�! are strict, it is sufficient to consider only non-bottom elements.

210 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

We conclude that w is well-woven.

Proposition 8.4.8. If Ξ ⊢ A types, then each component of jΞ ⊢ A typeso is well-woven.

Proof. By well-founded induction on the set of open session types, using the order defined in the
proof of proposition 8.4.6.

Case (C1): Recall:
jΞ ⊢ 1 type+s o

p = π1 (121)
Consider some arbitrary component ξ, and let (a+ , a−) be arbitrary in its domain. A case analysis
a+ = � or a+ = close gives the result. In both cases, (a+ , a−) is theminimal solution.

Case (CVar): Recall:
jΞ, α typeps ⊢ α typeps o

p = ⊓ (173)
Consider some arbitrary component ξ, and let (a+ , a−) be arbitrary in its domain. Then (�, �) is
theminimal solution to the weaving equations, and it is clear that

jΞ, α typeps ⊢ α typeps o
p

ξ
(a+ , �) = � = jΞ, α typeps ⊢ α typeps o

p

ξ
(�, a−).

Case (Cρ+n): We proceed by case analysis on n. The case n = 0 is obvious: the domain and
codomain of jΞ ⊢ ρ0α.A typesoξ are one-element domains. Assume now that n = k + 1. By
lemma 8.4.5,

jΞ ⊢ ρ
k+1

α.A type+s o
+ = (−)�jΞ ⊢ [ρk

α.A/α]A type+s o
+ ,

jΞ ⊢ ρ
k+1

α.A type+s o
− = down ∗ jΞ ⊢ [ρk

α.A/α]A type+s o
− .

We recognize jΞ ⊢ ρk+1α.A type+s o as

jΞ ⊢ ρ
k+1

α.A type+s o = δ
e
⋅ jΞ ⊢ [ρk

α.A/α]A type+s o,

where δe is given by lemma 2.2.50. By the induction hypothesis, each component of

jΞ ⊢ [ρk
α.A/α]A type+s o

is well-woven. We are done by lemma 8.4.7.
Case (Cρ+): Fix some component ξ. We want to show that jΞ ⊢ ρα.A type+s oξ is well-woven.

Abbreviate Ξ ⊢ ρα.A type+s by ρ. By corollary 8.2.8, it is sufficient to show that

Tr(⟦ρ⟧+ × ⟦ρ⟧− × ⟦ρ⟧+ × ⟦ρ⟧−
⟨jρop ,jρo+○jρop⟩×⟨jρo−○jρop ,jρop⟩
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→

⟦ρ⟧ × ⟦ρ⟧+ × ⟦ρ⟧− × ⟦ρ⟧
id×σ×id
ÐÐÐÐ→ ⟦ρ⟧ × ⟦ρ⟧− × ⟦ρ⟧+ × ⟦ρ⟧) = ⟨jρop , jρop⟩, (196)

where σ is the obvious product-permuting isomorphism. We recognize the right hand side as the
mediating morphism of cocones

⟦ρ⟧+ × ⟦ρ⟧− ⟦ρ⟧ × ⟦ρ⟧

(⟦ρm⟧+)m × (⟦ρ
m⟧−)m (⟦ρm⟧)m × (⟦ρ

m⟧)m
⟨jρmop ,jρmop⟩

pm×nm cm×cm

where the bottom left corner of the diagram is the bottom ω-chain of fig. 8.1, the bottom right
corner is the product of the top ω-chain of fig. 8.1 with itself, the bottom morphism is the obvious
pairing ofmorphisms from the same figure, and the two vertical families ofmorphisms are the
corresponding colimits. In particular, pn , nm , cm are the legs of the canonical colimiting cones of
fig. 8.1:

cm ∶ ⟦Ξ, α type+s ⊢ A type+s ⟧ξ → ⟦Ξ ⊢ ρα.A type+s ⟧ξ,

pm ∶ ⟦Ξ, α type+s ⊢ A type+s ⟧
+
ξ → ⟦Ξ ⊢ ρα.A type+s ⟧

+
ξ,

nm ∶ ⟦Ξ, α type+s ⊢ A type+s ⟧
−
ξ → ⟦Ξ ⊢ ρα.A type+s ⟧

−
ξ.

8.4. WELL-DEFINEDNESS OF INTERPRETATIONS 211

We begin with a few simplifying computations. By proposition 2.2.63,

jρo = ⊔
↑

m∈N
(pm × nm) ○ jρ

mo ○ c
p

m ,

jρop = ⊔
↑

m∈N
cm ○ jρ

mop ○ (p
p

m × n
p

m), (197)

so using proposition 2.2.11 and continuity, we calculate that:

jρo+ ○ jρop

= π+ ○ (⊔
↑

m∈N
(pm × nm) ○ jρ

mo ○ c
p

m) ○ (⊔
↑

m∈N
cm ○ jρ

mop ○ (p
p

m × n
p

m))

= ⊔
↑

m∈N
π+ ○ (pm × nm) ○ jρ

mo ○ c
p

m ○ cm ○ jρ
mop ○ (p

p

m × n
p

m)

= ⊔
↑

m∈N
pm ○ π1 ○ jρ

mo ○ jρmop ○ (p
p

m × n
p

m),

and symmetrically, that

jρo− ○ jρop = ⊔
↑

m∈N
nm ○ π2 ○ jρ

mo ○ jρmop ○ (p
p

m × n
p

m).

The left-hand side of eq. (196) is then equal to:

Tr ((id × σ × id) ○ (⟨jρop , jρo+ ○ jρop⟩ × jρo− ○ jρop , jρop⟩))

= ⊔
↑

m∈N
Tr ((id × σ × id) ○ (⟨cm ○ jρ

mop ○ (p
p

m × n
p

m), pm ○ π1 ○ jρ
mo ○ jρmop ○ (p

p

m × n
p

m)⟩ ×

× ⟨nm ○ π2 ○ jρ
mo ○ jρmop ○ (p

p

m × n
p

m), cm ○ jρmop ○ (p
p

m × n
p

m)⟩))

= ⊔
↑

m∈N
Tr ((id × σ × id) ○ (⟨cm ○ jρ

mop , pm ○ π1 ○ jρ
mo ○ jρmop⟩ ×

× ⟨nm ○ π2 ○ jρ
mo ○ jρmop , cm ○ jρmop⟩) ○ (p

p

m × n
p

m × p
p

m × n
p

m)) ,

which by naturality of trace operators:

= ⊔
↑

m∈N
(cm × cm) ○ Tr ((id × σ × id) ○ (⟨jρmop , pm ○ π1 ○ jρ

mo ○ jρmop⟩ ×

× ⟨nm ○ π2 ○ jρ
mo ○ jρmop , jρmop⟩) ○ (id × n

p

m × p
p

m × id)) ○ (p
p

m × n
p

m) ,

which by dinaturality of trace operators:

= ⊔
↑

m∈N
(cm × cm) ○ Tr ((id × np

m × p
p

m × id) ○ (id × σ × id) ○ (⟨jρmop , pm ○ π1 ○ jρ
mo ○ jρmop⟩ ×

× ⟨nm ○ π2 ○ jρ
mo ○ jρmop , jρmop⟩)) ○ (p

p

m × n
p

m)

= ⊔
↑

m∈N
(cm × cm) ○ Tr ((id × σ × id) ○ (id × p

p

m × n
p

m × id) ○ (⟨jρ
mop , pm ○ π1 ○ jρ

mo ○ jρmop⟩ ×

× ⟨nm ○ π2 ○ jρ
mo ○ jρmop , jρmop⟩)) ○ (p

p

m × n
p

m)

= ⊔
↑

m∈N
(cm × cm) ○ Tr ((id × σ × id) ○ (⟨jρmop , π1 ○ jρ

mo ○ jρmop⟩ ×

× ⟨π2 ○ jρ
mo ○ jρmop , jρmop⟩)) ○ (p

p

m × n
p

m)

= ⊔
↑

m∈N
(cm × cm) ○ Tr ((id × σ × id) ○ (⟨jρmop , jρmo+ ○ jρmop⟩ ×

× ⟨jρmo− ○ jρmop , jρmop⟩)) ○ (p
p

m × n
p

m) ,

which by the induction hypothesis:

= ⊔
↑

m∈N
(cm × cm) ○ ⟨jρ

mop , jρmop⟩ ○ (p
p

m × n
p

m)

= ⊔
↑

m∈N
⟨cm ○ jρ

mop ○ (p
p

m × n
p

m) , cm ○ jρmop ○ (p
p

m × n
p

m)⟩,

212 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

which by continuity of pairing and eq. (197):

= ⟨jρop , jρop⟩.

Case (C⊕): Recall:

jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s o

p

ξ
((k, [a+k]), (a

−
l)l∈L) = (k, [jΞ ⊢ Ak type

+
s o

p

ξ
(a+k , a

−
k)]) (165)

Consider some arbitrary component ξ, and let (a+ , (a−
l
)l∈L) be arbitrary in its domain. If a+ = �,

then (�, �) is theminimal solution to the weaving equations. In this case,

jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s o

p

ξ
(�, �) = � = jΞ ⊢ ⊕{l ∶ A l}l∈L type

+
s o

p

ξ
(�, a−).

Otherwise, a+ = (k, [a+
k
]). Observe that the least solution to the weaving equations for jΞ ⊢

⊕{l ∶ A l}l∈L type
+
s o

p

ξ
((k, [a+

k
]), (a−

l
)l∈L) and (a+ , a−) is ((k, [α+]), (k ∶ α− , l ≠ k ∶ �)l), where

(α+ , α−) is the least solution to the weaving equations for jΞ ⊢ Ak typeso
p

ξ
and (a+

k
, a−

k
). By the

induction hypothesis, it follows that:

jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s o

p

ξ
((k, [a+k]), (a

−
l)l∈L)((k, [a

+
k]), (k ∶ α

− , l ≠ k ∶ �)l)

= (k, [jΞ ⊢ Ak typeso
p

ξ
(a+k , α

−)]

= (k, [jΞ ⊢ Ak typeso
p

ξ
(α+ , a−k)])

= jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s o

p

ξ
((k, [a+k]), (a

−
l)l∈L)((k, [α

+]), (a−l)l∈L).

Case (C∧): Recall:

jΞ ⊢ τ ∧ A type+s o
p

ξ
((v , [a+]), a−) = (v , [jΞ ⊢ A type+s o

p

ξ
(a+ , a−)]) (149)

Consider some arbitrary component ξ, and let (a+ , a−) be arbitrary in its domain. If a+ = �, then
(�, �) is theminimal solution to the weaving equations. Otherwise, a+ is of the form (v , [a+0]).
Observe that the least solution to the weaving equations for jΞ ⊢ τ ∧ A type+s o

p

ξ
((v , [a+]), a−)

and (a+0 , a
−) is ((v , [α+]), α−), where (α+ , α−) is the least solution to the weaving equations for

jΞ ⊢ τ typefo
p

ξ
and (a+0 , a

−). By the induction hypothesis, it follows that:

jΞ ⊢ τ ∧ A type+s o
p

ξ
((v , [a+]), a−)((v , [a+0]), α

−)

= (v , jΞ ⊢ τ typefo
p

ξ
(a+0 , α

−))

= (v , jΞ ⊢ τ typefo
p

ξ
(α+ , a−))

= jΞ ⊢ τ ∧ A type+s o
p

ξ
((v , [a+]), a−)((v , [α+]), a−).

The remaining cases follow easily by symmetry or analogy with the above cases.

8.4.2. SemanticResults for Terms andProcesses. We show that the denotations of terms and
processes are well-defined. Because the definitions of terms and processes aremutually recursive,
the proofs of properties of terms and processes will be intertwined.

We start by showing that processes denote junk-freemorphisms in CYO(Stab�). This entails
showing that the processes and terms denote continuous functions, and that processes are junk-free,
complete, and frugal. Afterwards, we show that the denotations of processes and terms satisfy the
appropriate naturality conditions.

Proposition 8.4.9. If Ψ ; ∆ ⊢ P ∶∶ a ∶ A, then ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u is junk-free for all u ∈ ⟦Ψ⟧.

Proof. By induction on the derivation Ψ ; ∆ ⊢ P ∶∶ a ∶ A. Recall the definition of junk-freedom
from definition 8.2.10. We omit cases that follow easily by symmetry or by analogy with other cases.
Where u ∈ ⟦Ψ⟧ is arbitrary and p = ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u, wemust show that

((j∆o+ × ja ∶ Ao−) ↾ im(p), p)

is an e-p-pair.

8.4. WELL-DEFINEDNESS OF INTERPRETATIONS 213

Case (Fwd+): Recall eq. (113). We compute:

(jAo+ × jAo−) ○ ⟦Ψ ; a ∶ A ⊢ a → b ∶∶ b ∶ A⟧u

= (jAo+ × jAo−) ○ ⟨jAop , jAop⟩
⊑ id

by definition of e-p-pair. Let (a, a) ∈ im(⟦Ψ ; a ∶ A ⊢ a → b ∶∶ b ∶ A⟧u) be arbitrary, then:

(⟦Ψ ; a ∶ A ⊢ a → b ∶∶ b ∶ A⟧u ○ (jAo+ × jAo−))(a, a) = (a, a)

by definition of e-p-pair.
Case (Cut): Recall eq. (115). We first show that the two functions form an adjunction. We

use one of the alternate characterizations of proposition 2.2.19: l ⊣ u if and only if for all x, u(x) =
max(l−1(↓x)). Let (δ+1 , δ

+
2 , c
−) be arbitrary in the domain of ⟦Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C⟧u,

and let (a+ , a−) beminimum such that

⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧u(δ+1 , a
−) = (δ1 , a1) jAo+(a1) ⊑ a

+

⟦Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C⟧u(δ+2 , a
+ , c−) = (δ2 , a2 , c) jAo−(a2) ⊑ a

− .

Then
⟦Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C⟧u(δ+1 , δ

+
2 , c
−) = (δ1 , δ2 , c).

By the induction hypothesis,

(δ1 , a1) = max ((j∆1o
+ × jAo−) (↓(δ+1 , a

−)))

(δ2 , a2 , c) = max ((j∆2 ,Ao+ × jCo−) (↓(δ+1 , a
+ , c−))) .

The ordering of products is determined point-wise, so it immediately follows that

(δ1 , δ2 , c) = max ((j∆1 , ∆2o
+ × jCo−) ↓(δ+1 , δ

+
2 , c
−))

as desired.
Next, we show that

(⟦Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C⟧u ○ (j∆1 , ∆2o
+ × jCo−))(δ1 , δ2 , c) = (δ1 , δ2 , c).

By the induction hypothesis,

(⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧u ○ (j∆1o
+ × jAo−))(δ1 , a1) = (δ1 , a1),

(⟦Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C⟧u ○ (j∆2 , a ∶ Ao+ × jCo−))(δ2 , a2 , c) = (δ2 , a2 , c).

But by corollary 2.3.9,

(⟦Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C⟧u ○ (j∆1 , ∆2o
+ × jCo−))(δ1 , δ2 , c)

= (π∆1 ,∆2 ,C ○ (⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧u × ⟦Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C⟧u) ○

○ (j∆1 , a ∶ A, ∆2o
+ × ja ∶ A, c ∶ Co−))(δ1 , a1 , δ2 , a2 , c)

= π∆1 ,∆2 ,C(δ1 , a1 , δ2 , a2 , c)
= (δ1 , δ2 , c).

Case (1R): Recall eq. (122). It only has one element in its domain, so it is immediate that

j1o− ○ ⟦Ψ ; ⋅ ⊢ close a ∶∶ a ∶ 1⟧u = id.

It only has one element in its image, so it is immediate that

⟦Ψ ; ⋅ ⊢ close a ∶∶ a ∶ 1⟧u ○ j1o− = id.

Case (1L): Recall eqs. (119) and (123). We show that

(j∆, a ∶ 1o+ × jCo−) ○ ⟦Ψ ; ∆, a ∶ 1 ⊢ wait a; P ∶∶ c ∶ C⟧u ⊑ id.

214 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

Let (δ+ , a+ , c−) be arbitrary in its domain. Assume first that a+ = close. All components except
for the channel a are immediate by the induction hypothesis. The a component is immediate from
the fact that

((j∆, a ∶ 1o+ × jCo−) ○ ⟦Ψ ; ∆, a ∶ 1 ⊢ wait a; P ∶∶ c ∶ C⟧u) (δ+ , close, c−) = (_, close, _).

If a+ = �, then we calculate

((j∆, a ∶ 1o+ × jCo−) ○ ⟦Ψ ; ∆, a ∶ 1 ⊢ wait a; P ∶∶ c ∶ C⟧u) (δ+ , �, c−)

= (j∆, a ∶ 1o+ × jCo−) (j∆op(δ+ , �), �, jCop(�, c−))

⊑ (δ+ , �, c−)

by definition of e-p-pair.
Conversely, we show that

id = ⟦Ψ ; ∆, a ∶ 1 ⊢ wait a; P ∶∶ c ∶ C⟧u ○ (j∆, a ∶ 1o+ × jCo−)

when restricted to the image of ⟦Ψ ; ∆, a ∶ 1 ⊢ wait a; P ∶∶ c ∶ C⟧. Let (δ, a, c) be arbitrary in this
image. We consider two cases. First, assume that it is the image of (δ+ , close, c−). All components
except the one for the channel a are immediate by the induction hypothesis. The a component is
immediate from the fact that

(⟦Ψ ; ∆, a ∶ 1 ⊢ wait a; P ∶∶ c ∶ C⟧u ○ (j∆, a ∶ 1o+ × jCo−)) (δ, close, c) = (_, close, _).

Next, assume that it is the image of (δ+ , �, c−). We show the inequality for the δ component;
the c component is analogous. By assumption, δ = j∆op(δ+ , �), so by definition of e-p-pair,
j∆o(δ) = (δ+0 , �) for some δ+0 . It follows, again by definition of e-p-pair, that j∆op(δ+0 , �) = δ. We
deduce that

(⟦Ψ ; ∆, a ∶ 1 ⊢ wait a; P ∶∶ c ∶ C⟧u ○ (j∆, a ∶ 1o+ × jCo−)) (δ, �, c) = (δ, �, c).

Case (⊕R): Recall eqs. (164) and (166). We show that

(j∆o+ × j⊕{l ∶ A l}l∈Lo
−) ○ ⟦Ψ ; ∆ ⊢ a.k; P ∶∶ a ∶ ⊕{l ∶ A l}l∈L⟧u ⊑ id.

Let (δ+ , (a−
l
)l∈L) be arbitrary in its domain. Observe that

((j∆o+ × j⊕{l ∶ A l}l∈Lo
−) ○ ⟦Ψ ; ∆ ⊢ a.k; P ∶∶ a ∶ ⊕{l ∶ A l}l∈L⟧u) (δ

+ , (a−l)l∈L) = (δ̂
+ , ιk(â−k))

where
((j∆o+ × jAko

−) ○ ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ Ak⟧u)(δ
+ , a−k) = (δ̂

+ , â−k).

By the induction hypothesis, (δ̂+ , â−
k
) ⊑ (δ+ , a−

k
). It follows that (δ̂+ , ιk(â−k)) ⊑ (δ

+ , (a−
l
)l∈L) as

desired.
Conversely, we show that

id = ⟦Ψ ; ∆ ⊢ a.k; P ∶∶ a ∶ ⊕{l ∶ A l}l∈L⟧u ○ (j∆o
+ × j⊕{l ∶ A l}l∈Lo

−)

when restricted to the image of ⟦Ψ ; ∆ ⊢ a.k; P ∶∶ a ∶ ⊕{l ∶ A l}l∈L⟧u. Let (δ
+ , (a−

l
)l∈L) be arbitrary

in the domain of ⟦Ψ ; ∆ ⊢ a.k; P ∶∶ a ∶ ⊕{l ∶ A l}l∈L⟧u, and set

⟦Ψ ; ∆ ⊢ a.k; P ∶∶ a ∶ ⊕{l ∶ A l}l∈L⟧u(δ
+ , (a−l)l∈L) = (δ, (k, [ak])).

Set
(δ̂, âk) = (⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ Ak⟧u ○ (j∆o+ × jAko

−))(δ, ak).

By the induction hypothesis, (δ, ak) = (δ̂, âk). But a computation reveals that

(⟦Ψ ; ∆ ⊢ a.k; P ∶∶ a ∶ ⊕{l ∶ A l}l∈L⟧u ○ (j∆o
+ × j⊕{l ∶ A l}l∈Lo

−))(δ, (k, [ak])) = (δ̂, (k, [âk])).

The result is now obvious.

8.4. WELL-DEFINEDNESS OF INTERPRETATIONS 215

Case (&R): Recall eqs. (206) and (230). We begin by showing that

(j∆o+ × j&{l ∶ A l}l∈Lo
−) ○ ⟦Ψ ; ∆ ⊢ case a {l ⇒ Pl}l∈L ∶∶ a ∶ &{l ∶ A l}l∈L⟧u ⊑ id.

Let (δ+ , a−) be arbitrary in the domain of ⟦Ψ ; ∆ ⊢ case a {l ⇒ Pl}l∈L ∶∶ a ∶ &{l ∶ A l}l∈L⟧u. If
a− = �, then the proof is identical to the case (1L). If a− = (l , [a−

l
]), then set

(δ̂, â−l) = ((j∆o
+ × jA l o

−) ○ ⟦Ψ ; ∆, a ∶ A l ⊢ Pl ∶∶ c ∶ C⟧u)(δ
+ , a−l).

By the induction hypothesis, (δ̂+ , â−
l
) ⊑ (δ+ , a−

l
). By computation,

((j∆o+ × j&{l ∶ A l}l∈Lo
−) ○ ⟦Ψ ; ∆ ⊢ case a {l ⇒ Pl}l∈L ∶∶ a ∶ &{l ∶ A l}l∈L⟧u)(δ

+ , (l , [a−l]))

= (δ̂+ , (l , [â−l])).

It is immediate that (δ̂+ , (l , [â−
l
])) ⊑ (δ+ , (l , [a−

l
])).

Conversely, we show that

id = ⟦Ψ ; ∆ ⊢ case a {l ⇒ Pl}l∈L ∶∶ a ∶ &{l ∶ A l}l∈L⟧u ○ (j∆o
+ × j&{l ∶ A l}l∈Lo

−).

Let (δ+ , a−) be arbitrary in the domain of ⟦Ψ ; ∆ ⊢ case a {l ⇒ Pl}l∈L ∶∶ a ∶ &{l ∶ A l}l∈L⟧u, and
set

(δ, a) = ⟦Ψ ; ∆ ⊢ case a {l ⇒ Pl}l∈L ∶∶ a ∶ &{l ∶ A l}l∈L⟧u(δ
+ , a−).

We consider two cases. If a− = �, then a = �, and the proof is identical to the case (1L). If
a− = (l , [a−

l
]), then a = (l , [a l]) for some a l . Set

(δ̂, â l) = (⟦Ψ ; ∆ ⊢ Pl ∶∶ a ∶ A l⟧u ○ (j∆o+ × jA l o
−)(δ, a l).

By the induction hypothesis, (δ, a l) = (δ̂, â l). We compute that

(⟦Ψ ; ∆ ⊢ case a {l ⇒ Pl}l∈L ∶∶ a ∶ &{l ∶ A l}l∈L⟧u ○ (j∆o
+ × j&{l ∶ A l}l∈Lo

−))(δ, (l , [a l]))

= (δ̂, (l , [â l]).

The result is now obvious.
Case (∧R): Recall eqs. (148) and (150). The result follows by the induction hypothesis when

⟦Ψ ⊩ M ∶ τ⟧u ≠ �. When ⟦Ψ ⊩ M ∶ τ⟧u is �, then the proof is identical to the case (1L).
Case (⊃R): Recall eqs. (211) and (242). We start by showing that

((j∆o+ × jτ ⊃ Ao−) ○ ⟦Ψ ; ∆ ⊢ x ← input a; P ∶∶ a ∶ τ ⊃ A⟧u) ⊑ id.

Let (δ+ , a−) be arbitrary in its domain. If a− = �, then the proof is identical to the case (1L). If
a− = (v , [a−0]), then set

(δ̂+ , â−0) = ((j∆o
+ × jAo−) ○ ⟦Ψ, x ∶ τ ; ∆ ⊢ P ∶∶ a ∶ A⟧[u ∣ x ↦ v])(δ+ , a−0).

By the induction hypothesis,25 (δ̂+ , â−0) ⊑ (δ
+ , a−0). By computation,

((j∆o+ × jτ ⊃ Ao−) ○ ⟦Ψ ; ∆ ⊢ x ← input a; P ∶∶ a ∶ τ ⊃ A⟧u)(δ+ , a−) = (δ̂+ , (v , [â−0])).

The result is now obvious.
Conversely, we show that

id = ⟦Ψ ; ∆ ⊢ x ← input a; P ∶∶ a ∶ τ ⊃ A⟧u ○ (j∆o+ × jτ ⊃ Ao−)

when restricted to the image of ⟦Ψ ; ∆ ⊢ x ← input a; P ∶∶ a ∶ τ ⊃ A⟧u. Let (δ+ , a−) be arbitrary
in the domain of ⟦Ψ ; ∆ ⊢ x ← input a; P ∶∶ a ∶ τ ⊃ A⟧u, and set

(δ, a) = ⟦Ψ ; ∆ ⊢ x ← input a; P ∶∶ a ∶ τ ⊃ A⟧u(δ+ , a−).

If a− = �, then the proof is identical to the case (1L). If a− = (v , [a−0], then set

(δ̂, â0) = (⟦Ψ, x ∶ τ ; ∆ ⊢ P ∶∶ a ∶ A⟧u ○ (j∆o+ × jAo−))(δ, a).

25The induction hypothesis quantifies over all environments u, including [u ∣ x ↦ v].

216 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

By the induction hypothesis, (δ, a) = (δ̂, â0). By computation,

(⟦Ψ ; ∆ ⊢ x ← input a; P ∶∶ a ∶ τ ⊃ A⟧u ○ (j∆o+ × jτ ⊃ Ao−))(δ, a) = (δ̂, (v , [â0])).

The result is now obvious.
Case (↓R): Recall eqs. (156) and (158). The result is immediate from the induction hypothesis,

and the fact that adjoints are closed under composition.
Case (↑R): Recall eqs. (204) and (224). We begin by showing that

(j∆o+ × j↑Ao−) ○ ⟦Ψ ; ∆ ⊢ shift← recv a; P ∶∶ a ∶ ↑A⟧u ⊑ id.

Let (δ+ , a−) be arbitrary in its domain. If a− = �, then the proof is identical to the case (1L). If
a− = [a−0], then set

(δ̂+ , â−0) = ((j∆o
+ × jAo−) ○ ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶⟧u)(δ+ , a−0).

By the induction hypothesis, (δ̂+ , â−0) ⊑ (δ
+ , a−0). By computation,

(δ̂+ , [â−0]) = ((j∆o
+ × j↑Ao−) ○ ⟦Ψ ; ∆ ⊢ shift← recv a; P ∶∶ a ∶ ↑A⟧u)(δ+ , a−).

The result is now obvious.
Conversely, we show that

id = ⟦Ψ ; ∆ ⊢ shift← recv a; P ∶∶ a ∶ ↑A⟧u ○ (j∆o+ × j↑Ao−)

when restricted to the image of ⟦Ψ ; ∆ ⊢ shift← recv a; P ∶∶ a ∶ ↑A⟧u. Let (δ+ , a−) be arbitrary in
the domain of ⟦Ψ ; ∆ ⊢ shift ← recv a; P ∶∶ a ∶ ↑A⟧u. If a− = �, then the proof is identical to the
case (1L). If a− = [a−0], then set

(δ, [a0]) = ⟦Ψ ; ∆ ⊢ shift← recv a; P ∶∶ a ∶ ↑A⟧u(δ+ , a−).

Set
(δ̂, â0) = (⟦Ψ ; ∆ ⊢ P ∶∶ a ∶⟧u ○ (j∆o+ × jAo−))(δ, a0).

By the induction hypothesis, (δ, a0) = (δ̂, â0). By computation,

(δ̂, [â0]) = (⟦Ψ ; ∆ ⊢ shift← recv a; P ∶∶ a ∶ ↑A⟧u ○ (j∆o+ × j↑Ao−))(δ, [a0]).

The result is now obvious.
Case (⊗R): Recall eqs. (128) and (130). We begin by showing that

(j∆o+ × jB ⊗ Ao−) ○ ⟦Ψ ; ∆, b ∶ B ⊢ send a b; P ∶∶ a ∶ B ⊗ A⟧u ⊑ id.

Let (δ+ , b+ , (a−
B
, a−

A
) be arbitrary in its domain. Set

(δ̂+ , â−A) = ((j∆o
+ × jAo−) ○ ⟦Ψ ; ∆, b ∶ B ⊢ send a b; P ∶∶ a ∶ B ⊗ A⟧u)(δ+ , a−A).

By the induction hypothesis, (δ̂+ , â−
A
) ⊑ (δ+ , a−

A
). By computation,

((j∆o+ × jB ⊗ Ao−) ○ ⟦Ψ ; ∆, b ∶ B ⊢ send a b; P ∶∶ a ∶ B ⊗ A⟧u)(δ+ , b+ , (a−B , a
−
A))

= (δ̂+ , b̂+ , (â+B , â
−
A))

where (b̂+ , â−
B
) = (jBo ○ jBop)(b+ , a−

B
). By definition of e-p-pair, (b̂+ , â−

B
) ⊑ (b+ , a−

B
). The result

is now obvious.
Conversely, we show that

id = ⟦Ψ ; ∆, b ∶ B ⊢ send a b; P ∶∶ a ∶ B ⊗ A⟧u ○ (j∆o+ × jB ⊗ Ao−)

when restricted to the image of ⟦Ψ ; ∆, b ∶ B ⊢ send a b; P ∶∶ a ∶ B ⊗ A⟧u. Let (δ+ , b+ , (a−
B
, a−

A
))

be arbitrary in the domain of ⟦Ψ ; ∆, b ∶ B ⊢ send a b; P ∶∶ a ∶ B ⊗ A⟧u, and set

(δ, b, [(b, a)]) = ⟦Ψ ; ∆, b ∶ B ⊢ send a b; P ∶∶ a ∶ B ⊗ A⟧u(δ+ , b+ , (a−B , a
−
A)).

Set
(δ̂, â) = (⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u ○ (j∆o+ × jAo−))(δ, a).

8.4. WELL-DEFINEDNESS OF INTERPRETATIONS 217

By the induction hypothesis, (δ, a) = (δ̂, â). By computation,

(⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u ○ (j∆o+ × jB ⊗ Ao−))(δ, b, [(b, a)]) = (δ̂, b̂, [(b̂, â)])

where b̂ = jBop(jBo+(b), jBo−(b)). But b was in the image of jBop , so b̂ = b. The result is now
obvious.

Case (⊸R): Recall eqs. (208) and (236). We show that

(j∆o+ × jB⊸ Ao−) ○ ⟦Ψ ; ∆ ⊢ b ← recv a; P ∶∶ a ∶ B⊸ A⟧u ⊑ id.

Let (δ+ , a−) be arbitrary in the domain. If a− = �, then the proof is identical to the case (1L). If
a− = [(b−0 , a

−
0)], then the result follows easily from the induction hypothesis.

Conversely, we show that

id = ⟦Ψ ; ∆ ⊢ b ← recv a; P ∶∶ a ∶ B⊸ A⟧u ○ (j∆o+ × jB⊸ Ao−)

when restricted to the image of ⟦Ψ ; ∆ ⊢ b ← recv a; P ∶∶ a ∶ B⊸ A⟧u. Let (δ+ , a−) be arbitrary
in the domain of ⟦Ψ ; ∆ ⊢ b ← recv a; P ∶∶ a ∶ B⊸ A⟧u, and set

(δ, a) = ⟦Ψ ; ∆ ⊢ b ← recv a; P ∶∶ a ∶ B⊸ A⟧u(δ+ , a−).

If a− = �, then a = � and the proof is identical to the case (1L). If a− = [(b+0 , a−0)], then a =
[(b0 , a0)]. Set

(δ̂, b̂, â) = (⟦Ψ ; ∆, b ∶ B ⊢ P ∶∶ a ∶ A⟧u ○ (j∆, Bo+ × jAo−))(δ, b0 , a0).

By the induction hypothesis, (δ, b, a) = (δ̂, b̂, â). By computation,

(⟦Ψ ; ∆ ⊢ b ← recv a; P ∶∶ a ∶ B⊸ A⟧u ○ (j∆o+ × jB⊸ Ao−))(δ, a) = (δ̂, [(b̂, â)]).

The result is now obvious.
Case (ρ+R): Recall eqs. (183) and (188). By corollary 4.3.5, we recognize jΞ ⊢ ρα.A type+s o

−

as
Fold ○ j[ρα.A/α]Ao− ○Unfold ○ down

We compute:

(j∆o+ × jρα.Ao−) ○ ⟦Ψ ; ∆ ⊢ send a unfold; P ∶∶ a ∶ ρα.A⟧u

= (j∆o+ × (Fold ○ j[ρα.A/α]Ao− ○Unfold ○ down)) ○

○ (id × (a ∶ up ○ Fold)) ○ ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A⟧u ○ (id × (a− ∶ Unfold))

= (j∆o+ × (Fold ○ j[ρα.A/α]Ao−)) ○

○ ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A⟧u ○ (id × (a− ∶ Unfold))

which by the induction hypothesis,

⊑ (id × (Fold ○Unfold))

= id.

We use a similar approach to show that

id = ⟦Ψ ; ∆ ⊢ send a unfold; P ∶∶ a ∶ ρα.A⟧u ○ (j∆o+ × jρα.Ao−)

when restricted to the image of ⟦Ψ ; ∆ ⊢ send a unfold; P ∶∶ a ∶ ρα.A⟧u. Let (δ+ , a−) be arbitrary
in the domain of ⟦Ψ ; ∆ ⊢ send a unfold; P ∶∶ a ∶ ρα.A⟧u, and set

(δ, [Fold(a)]) = ⟦Ψ ; ∆ ⊢ send a unfold; P ∶∶ a ∶ ρα.A⟧u(δ+ , a−).

Observe that (δ, [Fold(a)]) is in the image of ⟦Ψ ; ∆ ⊢ send a unfold; P ∶∶ a ∶ ρα.A⟧u if and only
if (δ, a) is in the image of ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A⟧u. We compute using the above identities

218 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

and the induction hypothesis:

(⟦Ψ ; ∆ ⊢ send a unfold; P ∶∶ a ∶ ρα.A⟧u ○ (j∆o+ × jρα.Ao−))(δ, [Fold(a)])
= (id × (a ∶ up ○ Fold)) (δ, a)
= (δ, [Fold(a)]).

Case (E-{}): Recall eq. (143). The result is then immediate from the fact that down ○ ⟦Ψ ⊩
M ∶ {a ∶ A ← a i ∶ A i}⟧u is (by definition and construction) an element of a dcpo of junk-free
functions.

Proposition 8.4.10. If Ψ ; ∆ ⊢ P ∶∶ a ∶ A, then ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u is complete for all u ∈ ⟦Ψ⟧.

Proof. By induction on the derivation Ψ ; ∆ ⊢ P ∶∶ a ∶ A. Recall the definition of completeness
from definition 8.2.10. In each case, wemust show that two functions between products are equal.
To do so, we show that both functions agree in each component of their image. In themajority of
cases, agreement in all but one of the components (typically the provided channel) will be given by
the induction hypothesis. The remaining component will follow by a computation. We omit cases
that follow easily by symmetry or by analogy with other cases.

Case (Fwd+): Recall eq. (113). Wemust show that:

jA,Aop ○ ⟨id, jA,Ao− ○ ⟨jAop , jAop⟩⟩ = ⟨jAop , jAop⟩.

For all (a+ , a−) in their domain,

(jA,Ao ○ jA,Aop)(a+ , a− , a− , a+)

⊑ ⟨id, jA,Ao− ○ ⟨jAop , jAop⟩⟩(a+ , a−)

⊑ (a+ , a− , a− , a+)

by definition e-p-pair andmonotonicity. By proposition 2.2.19,

jAop ○ jAo ○ jAop = jAop .

Bymonotonicity, it follows that if f is such that jAo○jAop ⊑ f ⊑ id, then jAop ○ f = jAop . The result
follows easily from this observation instantiatedwith the above inequalities, and a component-wise
analysis.

Case (Cut): Recall:

⟦Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C⟧u = ⟦Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C⟧u ○a ⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧u (115)

Let (δ+1 , δ
+
2 , c
−) be arbitrary in its domain, and let (a+ , a−) be the witnesses for the above compo-

sition at (δ+1 , δ
+
2 , c
−). Then

⟦Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C⟧u(δ+1 , δ
+
2 , c
−) = (δ1 , δ2 , c)

where

⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧u(δ+1 , a
−) = (δ1 , _)

⟦Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C⟧u(δ+2 , a
+ , c−) = (δ2 , _, c).

The result follows by the induction hypothesis.
Case (1R): Recall eq. (122). The only element in its domain is �. Completeness follows from

the fact that j1op(close, �) = close.
Case (1L): Recall eq. (123). Let (δ+ , a+ , c−) be arbitrary in its domain. We proceed by case

analysis on a+.
Subcase a+ = close: The ∆ and c components are immediate by the induction hypothesis. The a
component of ⟦Ψ ; ∆, a ∶ 1 ⊢ wait a; P ∶∶ c ∶ C⟧u(δ+ , a+ , c−) is close. Completeness follows from
the observation that j1o(a) = (close, �) and j1op(close, �) = close.

8.4. WELL-DEFINEDNESS OF INTERPRETATIONS 219

Subcase a+ = �: The interpretation is complete in the a component: j1o(�) = (�, �), and
j1op(�, �) = �. The other two components are complete by monotonicity and the definition
of e-p-pair. Taking the ∆ component as a concrete example, let δ− = (j∆o− ○ j∆op)(δ+ , �).
Then δ− = � bymonotonicity and properties of e-p-pairs. The result then follows by reflexivity:
j∆op(δ+ , δ−) = j∆op(δ+ , �).

Case (⊕R): Recall eqs. (163), (165) and (166). Let (δ+ , (a−
l
)l∈L) be arbitrary in the domain of

eq. (166). Set

(δ, ak) = ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ Ak⟧u (δ
+ , a−k) ,

(δ− , a+k) = (j∆o
− × jAko

+)(δ, ak).

By the induction hypothesis,
j∆op(δ+ , δ−) = δ,

so eq. (166) is complete in the ∆ component. As for the a component,

jAko
p(a+k , a

−
k) = ak

by the induction hypothesis. By definition,

j⊕{l ∶ A l}l∈Lo(k, [ak]) = (k, [a+k]).

It follows that:

j⊕{l ∶ A l}l∈Lo
p ((k, [a+k]), (a

−
l)l∈L) = (k, [jAko

p(a+k , a
−
k)]) = (k, [ak]).

Completeness is now immediate.
Case (&R): Recall eqs. (206), (229) and (231). Let (δ+ , a−) be arbitrary in the domain of

eq. (206). As in case (1L), we proceed by case analysis on a−. If a− = (l , [a−
l
]), then set

(δ, a l) = ⟦Ψ ; ∆ ⊢ Pl ∶∶ a ∶ A l⟧u(δ
+ , a−l).

Completeness of eq. (206) in the ∆ component follows by the induction hypothesis. By definition,

j&{l ∶ A l}l∈Lo
+(l , [a l]) = ι l(a+l)

where a+
l
= jA l o

+(a l). By the induction hypothesis, jA l o
p(a+

l
, a−

l
) = a l . It follows that

j&{l ∶ A l}l∈Lo
p (ι l(a

+
l), (l , [a

+
l])) = (l , [jA l o

p(a+l , a
−
l)]) = (l , [a l]).

Completeness in the a component is now immediate. When a− = �, the proof is analogous to case
(1L).

Case (∧R): Recall eqs. (148) to (150). The result follows easily by the induction hypothesis
when ⟦Ψ ⊩ M ∶ τ⟧u ≠ �. When ⟦Ψ ⊩ M ∶ τ⟧u = �, the proof is analogous to case (1L).

Case (⊃R): Recall eqs. (211), (241) and (243). Let (δ+ , a−) be arbitrary in the domain of
eq. (211). If a− = �, then the proof is analogous to case (1L). If a− = (v , [a−0]), then the result
follows by the induction hypothesis.

Case (↓R): Recall eqs. (156) to (158). The result follows easily from the induction hypothesis.
Case (↑R): Recall eqs. (204), (223) and (225). Let (δ+ , a−) be arbitrary in the domain of

eq. (204). If a− = �, then the proof is analogous to case (1L). If a− = [a−0], then set

(δ, [a0]) = ⟦Ψ ; ∆ ⊢ shift← recv a; P ∶∶ a ∶ ↑A⟧u(δ+ , a−),

a
+ = jAo+(a0).

Completeness in the ∆ component is immediate by the induction hypothesis. Completeness in the a
component also follows straightforwardly from the induction hypothesis. Indeed, jAop(a+ , a−0) =
a0 by the induction hypothesis, so j↑Aop(a+ , [a−0]) = [a0] as desired.

Case (⊗R): Recall eqs. (128) to (130). Let (δ+ , b+ , (a−
B
, a−

A
)) be arbitrary in the domain of

eq. (130). Completeness in the ∆ component and the A portion of the a component follows by the
induction hypothesis. Wemust show completeness in the b ∶ B component and the B portion of

220 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

the a component. In particular, where b = jBop(b+ , aB) and (a+B , b
−) = jBo(b), it is sufficient to

show that:

jBop(b+ , b−) = b,

jBop(a+B , a
−
B) = b.

Both of these equations hold by the definition of e-p-pair,monotonicity, antisymmetry. In the first
case:

b = jBop(a+B , b
−) ⊑ jBop(b+ , b−) ⊑ jBop(b+ , a−B) = b.

In the second case:

b = jBop(a+B , b
−) ⊑ jBop(a+B , a

−
B) ⊑ jBo

p(b+ , a−B) = b.

Case (⊸R): Recall eqs. (208), (235) and (237). Let (δ+ , a−) be arbitrary in the domain of
eq. (208). If a− = �, then the proof is analogous to case (1L). If a− = [(b+0 , a−0)], then the result
follows easily by the induction hypothesis.

Case (ρ+R): Recall eqs. (182) and (188). Let (δ+ , a−) be arbitrary in the domain of eq. (188),
and set

(δ, a) = ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A⟧u(δ+ ,Unfold(a−)).
Then

⟦Ψ ; ∆ ⊢ send a unfold; P ∶∶ a ∶ ρα.A⟧u(δ+ , a−) = (δ,Fold([a])).
Completeness in the ∆ component follows by the induction hypothesis. To show that it is complete
in the a component, wemust show that

jρα.Aop(jρα.Ao+(Fold([a]), a−) = Fold([a]).

By the induction hypothesis,

j[ρα.A/α]Aop(j[ρα.A/α]Ao+(a),Unfold(a−)) = a.

By proposition 8.5.3 and corollary 4.3.6,

jρα.Ao+(Fold([a])) = Fold([j[ρα.A/α]Ao+(a)]).

By eq. (186),

jρα.Aop = Fold ○ (−)�j[ρα.A/α]Aop ○ δ ○ (Unfold ×Unfold).

We compute, using the above identities:

jρα.Aop(jρα.Ao+(Fold([a]), a−)

= jρα.Aop(Fold([j[ρα.A/α]Ao+(a)]), a−)

= (Fold ○ (−)�j[ρα.A/α]Aop ○ δ ○ (Unfold ×Unfold)) (Fold([j[ρα.A/α]Ao+(a)]), a−)

= (Fold ○ (−)�j[ρα.A/α]Aop) ([(j[ρα.A/α]Ao+(a),Unfold(a−))])

= Fold([j[ρα.A/α]Aop(j[ρα.A/α]Ao+(a),Unfold(a−))])
= Fold([a]).

Case (ρ−R): Recall eqs. (212) and (217). We proceed by case analysis on a−: it is either �
or Fold([a−0]) for some a−0 ∈ ⟦[ρα.A/α]A⟧

−. If a− = �, then the proof is analogous to case (1L).
If a− = Fold([a−0]), the proof is analogous to the case (ρ+R). Indeed, completeness in the ∆
components follows by the induction hypothesis. To see completeness in the a component, set

(δ, a) = ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A⟧u(δ+ , a−0)

and observe that by the induction hypothesis,

j[ρα.A/α]Aop(j[ρα.A/α]Ao+(a), a−0) = a.

Wemust show that

jρα.Aop(jρα.Ao+(Fold([a])),Fold([a−0])) = Fold([a]).

8.4. WELL-DEFINEDNESS OF INTERPRETATIONS 221

By proposition 8.5.3 and corollary 4.3.6,

jρα.Ao+(Fold([a])) = Fold(j[ρα.A/α]Ao+(a)).

By the negative analog of eq. (186),

jρα.Aop = Fold ○ (−)�j[ρα.A/α]Ao ○ δ ○ (Unfold ×Unfold).

We now compute using the above identities:

jρα.Aop(jρα.Ao+(Fold([a])),Fold([a−0]))

jρα.Aop (Fold(j[ρα.A/α]Ao+(a)),Fold([a−0]))

= (Fold ○ (−)�j[ρα.A/α]Ao ○ δ) (j[ρα.A/α]Ao+(a), [a−0])

= Fold ([j[ρα.A/α]Ao (j[ρα.A/α]Ao+(a), a−0)])
= Fold ([a]) .

Case (E-{}): Recall eq. (143). The result follows from the fact that for all u ∈ ⟦Ψ⟧, ⟦Ψ ; a i ∶ A i ⊢
a ← {M}← a i ∶∶ a ∶ A⟧u is defined to be an element of a dcpo of complete functions.

Lemma 8.4.11. Let f ∶ A+ → A be frugal relative to α ∶ A→ A+ ×A−. Then, where β, β+, and β−

are isomorphisms, β−1 ○ f ○ (β+)−1 ∶ B+ → B is frugal relative to

B
β

Ð→ A
α
Ð→ A

+ × A−
β
+×β−
ÐÐÐ→ B

+ × B− .

Proof. Let b+0 ∈ B
+ be arbitrary. The frugality system for β−1 ○ f ○ (β+)−1 and b+0 is:

((β+ ○ α+ ○ β) ○ ((β+ × β−) ○ α ○ β)
p
) (b+0 , b

−) ⊑ b+

((β− ○ α− ○ β) ○ (β−1 ○ f ○ (β+)
−1
)
p

) (b+) ⊑ b− .

Wemust show that its least solution (b+ , b−) is given by

(((β+ × β−) ○ α ○ β) ○ (β−1 ○ f ○ (β+)
−1
)) (b+0).

Cancelling out inverses, we observe that minimizing (b+ , b−) in this system is equivalent to
minimizing it in the system

(β+ ○ α+ ○ αp ○ (β+ × β−)
−1
) (b+0 , b

−) ⊑ b+

(β− ○ α− ○ f ○ ((β+)
−1
)
p

) (b+) ⊑ b− .

The functions β, β+, and β− are isomorphisms, so (b+ , b−) is the least solution to the above system
if and only if (a+ , a−) = (β+ × β−)−1 (b+ , b−) is the least solution to the system

(α+ ○ αp) ((β+)
−1
(b+0), a

−) ⊑ a+

(α− ○ f) (a+) ⊑ a− .

But f is frugal, so the least solution to this system is (a+ , a−) = (α ○ f) ((β+)−1 (b+0)). It follows
that:

(b+ , b−) = ((β+ × β−) ○ α ○ f) ((β+)−1 (b+0))

= ((β+ × β−) ○ α ○ β ○ β−1 ○ f ○ (β+)
−1
) (b+0).

This is what we wanted to show.

Recall the notation given in remark 8.2.1 for combining embeddings α ∶ A → A+ × A− and
β ∶ B → B+ × B− to form an embedding (α, β) ∶ A× B → (A+ × B+) × (A− × B−).

222 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

Lemma 8.4.12. Consider embeddings α ∶ A→ A+ × A− and β ∶ B → B+ × B−. If f ∶ A+ × B+ →
A× B is frugal relative to (α, β), then the function F given by

(id × up) ○ f ∶ A+ × B+ → A× B�

is frugal relative to the embedding γ given by

A× B�
α×β�
ÐÐÐ→ (A+ × A−) × (B+ × B−)�

id×δ e
ÐÐÐ→ (A+ × A−) × (B+ × B−�) ≅ (A

+ × B+) × (A− × B−�)

where δe is given by lemma 2.2.50.

Proof. Let (a+0 , b
+
0) ∈ A

+ × B+ be arbitrary. We show that the least solution ((a+ , b+), (a− , b−))
to the frugality system

(γ+ ○ γp) ((a+0 , b
+
0), (a

− , b−)) ⊑ (a+ , b+)

(γ− ○ F) (a+ , b+) ⊑ (a− , b−)

is given by (γ○F)(a+0 , b
+
0). For convenience,we start by expanding and simplifying the expressions

in this system. Observe that

(γ+ ○ γp) ((a+0 , b
+
0), (a

− , b−)) = ((α+ ○ αp)(a+0 , a
−), (down ○ β+� ○ β

p

� ○ δ)(b
+
0 , b

−))

and that if ((α, β)− ○ f)(a+ , b+) = (a−1 , b
−
1), then

(γ− ○ F)(a+ , b+) = (a−1 , [b
−
1]).

We claim that the least solution to the above frugality system is ((a+1 , b
+
1), (a

−
1 , [b

−
1])), where

((a+1 , b
+
1), (a

−
1 , b

−
1)) is the least solution to the frugality system

((α, β)+ ○ (α, β)p) ((a+0 , b
+
0), (a

−
1 , b

−
1)) ⊑ (a

+
1 , b

+
1)

((α, β)− ○ f) (a+1 , b
+
1) ⊑ (a

−
1 , b

−
1).

Indeed, by the above, it is a solution:

(γ+ ○ γp) ((a+0 , b
+
0), (a

−
1 , [b

−
1]))

= ((α+ ○ αp)(a+0 , a
−
1), (down ○ β

+
� ○ β

p

� ○ δ)(b
+
0 , [b

−
1]))

= ((α+ ○ αp)(a+0 , a
−
1), down([(β

+ ○ βp)(b+0 , b
−
1)]))

= ((α+ ○ αp)(a+0 , a
−
1), (β

+ ○ βp)(b+0 , b
−
1))

⊑ (a+1 , b
+
1)

and (γ− ○ F)(a+1 , b
+
1) = (a

−
1 , [b

−
1]). It is also least: any smaller solution would induce a smaller

solution to the frugality system for f , contradicting theminimality of ((a+1 , b
+
1), (a

−
1 , b

−
1)).

We check that it is given by (γ ○ F)(a+0 , b
+
0). By assumption,

((a+1 , b
+
1), (a

−
1 , b

−
1)) = ((α, β) ○ f)(a

+
0 , b

+
0).

In particular, where (a0 , b0) = f (a+0 , b
+
0),

α(a0) = (a
+
1 , a

−
1), β(b0) = (b

+
1 , b

−
1).

Finally, observe that

(γ ○ F)(a+0 , b
+
0) = γ(a0 , [b0]) = ((a

+
1 , b

+
1), (a

−
1 , [b

−
1])).

This is what we wanted to show.

Lemma 8.4.13. Consider embeddings α ∶ A→ A+ × A− and β ∶ B → B+ × B−. If f ∶ A+ × B+ →
A× B is frugal relative to (α, β), then the function F ∶ A+ × B+� → A× B� given by

F(a+ , b+) =
⎧⎪⎪
⎨
⎪⎪⎩

(a, [b]) if b+ = [b+0]

(αp(a+ , �), �) if b+ = �

where (a, b) = f (a+ , b+0)

8.4. WELL-DEFINEDNESS OF INTERPRETATIONS 223

is frugal relative to the embedding γ given by

A× B�
α×β�
ÐÐÐ→ (A+ × A−) × (B+ × B−)�

id×δ e
ÐÐÐ→ (A+ × A−) × (B+� × B

−) ≅ (A+ × B+�) × (A
− × B−)

where δe is given by lemma 2.2.50.

Proof. An arbitrary element of A+ × B+� is either of the form (a+0 , �) or of the form (a+0 , [b
+
0]) for

some (a+0 , b
+
0) ∈ A

+ × B+. We proceed by case analysis on these two possibilities. In each case, the
frugality system is

(γ+ ○ γp) ((a+0 , �), (a
− , b−)) ⊑ (a+ , b+)

(γ− ○ F) (a+ , b+) ⊑ (a− , b−).

Case (a+0 , �): Wemust show the least solution ((a+ , b+), (a− , b−)) to the frugality system is
given by (γ○F)(a+0 , �). Observe that (γ○F)(a+0 , �) = ((a

+
1 , �), (�, �)where a

+
1 = (α

+○αp)(a+0 , �).
We check that it is a solution:

(γ+ ○ γp) ((a+0 , �), (�, �))

= γ+(αp(a+0 , �), �)

= (a+1 , �)

and

(γ− ○ F) (a+1 , �)

= γ−(αp(a+1 , �), �)

= ((α− ○ αp)(a+1 , �), �)
= (�, �).

It is also clearlyminimum. This gives the result.
Case (a+0 , [b

+
0]): Wemust show the least solution ((a+ , b+), (a− , b−)) to the frugality system

is given by (γ ○ F)(a+0 , [b
+
0]). By the first inequality in the frugality system, if ((a+ , b+), (a− , b−))

is the least solution, then b+ = [b+1] for some b+1 . It follows that minimizing ((a+ , b+), (a− , b−))
in the frugality system is equivalent to minimizing ((a+1 , b

+
1), (a

−
1 , b

−
1)) in the system

((α, β)+ ○ (α, β)p) ((a+0 , b
+
0), (a

−
1 , b

−
1)) ⊑ (a

+
1 , b

+
1)

((α, β)− ○ f) (a+1 , b
+
1) ⊑ (a

−
1 , b

−
1)

and taking ((a+ , b+), (a− , b−)) = ((a+1 , [b
+
1]), (a

−
1 , b

−
1)). But f was assumed to be frugal, so the

least solution to this second system is

((a+1 , b
+
1), (a

−
1 , b

−
1)) = ((α, β) ○ f)(a

+
0 , b

+
0).

We check that
((a+1 , [b

+
1]), (a

−
1 , b

−
1)) = (γ ○ F)(a

+
0 , [b

+
0]).

Set (a0 , b0) = f (a+0 , b
+
0). We compute:

(γ ○ F)(a+0 , [b
+
0])

= γ(a0 , [b0])

= ((a+1 , [b
+
1]), (a

−
1 , b

−
1)).

This is what we wanted to show.

Proposition 8.4.14. If Ψ ; ∆ ⊢ P ∶∶ a ∶ A, then ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u is frugal for all u ∈ ⟦Ψ⟧.

Proof. By induction on the derivation Ψ ; ∆ ⊢ P ∶∶ a ∶ A. Recall the definition of frugality from
definition 8.2.10. In each case, wemust characterize the least solution to a system of inequalities
on elements of products. Elements of products are ordered component-wise, so it is sufficient to
characterize the least solution on a component-by-component basis. Most components (typically

224 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

the used channels) will follow immediately from the induction hypothesis, while some (typically
the provided channel) will follow by a straightforward computation.

For convenience, we will often name intermediate values in the frugality system. In particular,
to show that p ∶ ∆+ → ∆ is frugal relative to ∆ → ∆+ × ∆− given some δ+0 ∈ ∆

+, we will minimize
(δ+ , δ−) in the system

∆p(δ+0 , δ
−) = δ1 ∆+(δ1) ⊑ δ+

p(δ+) = δ2 ∆−(δ2) ⊑ δ
− .

It is obvious that doing so is equivalent to minimizing (δ+ , δ−) in the system given by defini-
tion 8.2.10.

We omit cases that follow easily by symmetry or by analogy with other cases.
Case (Fwd+): Recall eq. (113). It is immediate from the definitions that every well-woven

embedding is frugal. By proposition 8.4.8, jAo is well-woven. The result is now clear.
Case (Cut): Recall eq. (115):

⟦Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C⟧u = ⟦Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C⟧u ○a ⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧u (115)

Let (δ+1 , δ
+
2 , c
−) be arbitrary in its domain, and let (a+ , a−) be the witnesses for the above compo-

sition at (δ+1 , δ
+
2 , c
−). Then

⟦Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C⟧u(δ+1 , δ
+
2 , c
−) = (δ1 , δ2 , c)

where

⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧u(δ+1 , a
−) = (δ1 , _)

⟦Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C⟧u(δ+2 , a
+ , c−) = (δ2 , _, c).

The result follows by the induction hypothesis.
Case (1R): Recall eq. (122). The only element in its domain is �. Frugality is given by the fact

that (close, �) is theminimum solution to (x+ , x−) to the system26

j1op(x+ , �) = x1 , j1o−(x1) ⊑ x− ,

⟦Ψ ; ⋅ ⊢ close a ∶∶ a ∶ 1⟧ux− = x2 , j1o+(x2) ⊑ x
+ .

Indeed, x2 = close, so x+ = close, so x1 = close and x− = �.
Case (1L): Recall eq. (123). Let (δ+ , a+ , c−) be arbitrary in its domain. We proceed by case

analysis on a+. If a+ = close, then the least solution ((δ+1 , a
+
1 , c
−
1), (δ

−
2 , a

−
2 , c
+
2) to the system

j∆, a ∶ 1op((δ+ , a+), (δ−2 , a
−
2)) = (δ1 , a1) j∆, a ∶ 1o+(δ1 , a1) ⊑ (δ+1 , a

+
1)

jCop(c+2 , c
−) = c1 jCo−(c1) ⊑ c

−
1

⟦Ψ ; ∆, a ∶ 1 ⊢ wait a; P ∶∶ c ∶ C⟧u(δ+1 , a
+
1 , c
−
1) = (δ2 , a2 , c2) j∆, a ∶ 1o−(δ2 , a2) ⊑ (δ

−
2 , a

−
2)

jCo+(c2) ⊑ c
+
2

is ((δ+1 , close, c
−
1), (δ

−
2 , �, c

+
2)), where ((δ

+
1 , c
−
1), (δ

−
2 , c
+
2)) is the least solution to the system of

equations for (δ+ , c−) and ⟦Ψ ; ∆ ⊢ P ∶∶ c ∶ C⟧u. To see this, it is sufficient tonote that a+ = close im-
plies that a1 = close and a+1 = close, and then expanding the definition of ⟦Ψ ; ∆, a ∶ 1 ⊢ wait a; P ∶∶
c ∶ C⟧u. Frugality in the components ∆ and c ∶ C follows by the induction hypothesis. Frugality
in the component a ∶ 1 follows from the fact that ⟦Ψ ; ∆, a ∶ 1 ⊢ wait a; P ∶∶ c ∶ C⟧u(δ+ , a+ , c−) =
(_, close, _) and that j1o(close) = (close, �) is theminimal (a+1 , a

−
2) satisfying the above system.

If a+ = �, then a1 = �, a+1 = � and a2 = �, so δ2 = j∆op(δ+1 , �) and c2 = jCo
p(�, c−1) by

eq. (122). By properties of e-p-pair, theminimal δ−2 and c
+
2 satisfying the equations are then both �,

and so δ1 = j∆op(δ+ , �) and c1 = jCop(�, c−). The elements δ+1 = j∆o
+(δ1) and c−1 = jCo

−(c1) are
clearly theminimal elements satisfying the system. The result is now immediate from inspection
of eq. (122).

26Note that polarities have appropriately been swapped relative to definition 8.2.10.

8.4. WELL-DEFINEDNESS OF INTERPRETATIONS 225

As an aside, we remark that the case a+ = � alternatively follows straightforwardly from
propositions 8.2.16 and 8.4.10.

Case (⊕R): Recall eqs. (163) to (166). Fix some arbitrary (δ+0 , a
−
0) in the domain of eq. (166).

The least solution ((δ+ , a−), (δ− , a+)) to frugality system

j∆op(δ+0 , δ
−) = δ1 j∆o+(δ1) ⊑ δ+

j⊕{l ∶ A l}l∈Lo
p(a+ , a−0) = a1 j⊕{l ∶ A l}l∈Lo

−(a1) ⊑ a
−

⟦Ψ ; ∆ ⊢ a.k; P ∶∶ a ∶ ⊕{l ∶ A l}l∈L⟧u(δ
+ , a−) = (δ2 , a2) j∆o−(δ2) ⊑ δ

−

j⊕{l ∶ A l}l∈Lo
+(a2) ⊑ a

+

is ((δ+ , ιk(a−k)), (δ
− , (k, [a+

k
]))), where we take ((δ+ , a−

k
), (δ− , a+

k
)) to be the least solution

((δ+ , a−), (δ− , a+)) to the frugality system

j∆op(δ+0 , δ
−) = δ1 j∆o+(δ1) ⊑ δ+

jAko
p(a+ , πk(a

−
0)) = a1 jAko

−(a1) ⊑ a
−

⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ Ak⟧u(δ
+ , a−) = (δ2 , a2) j∆o−(δ2) ⊑ δ

−

jAko
+(a2) ⊑ a

+ .

By the induction hypothesis, where ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ Ak⟧u(δ
+
0 , πk(a

−
0)) = (δ0 , a0),

j∆o(δ0) = (δ+ , δ−),

jAko(a0) = (a
+
k , a

−
k).

It is then easy to check that, where ⟦Ψ ; ∆ ⊢ a.k; P ∶∶ a ∶ ⊕{l ∶ A l}l∈L⟧u(δ
+
0 , a

−
0) = (δ0 , (k, [a0])),

j∆o(δ0) = (δ+ , δ−),

j⊕{l ∶ A l}l∈Lo((k, [a0])) = ((k, [a+k]), ιk(a
−
k)).

This is what we wanted to show.
Case (&R): Recall eqs. (206) and (229) to (231). Let (δ+ , a−) be arbitrary in the domain

of eq. (206). When a− = �, the proof is analogous to case (1L). If a− = (l , [a−
l
]), then the least

solution to the frugality system is ((δ̂+ , (l , [â−
l
])), (δ− , ι l(a+l))) where ((δ̂

+ , â−
l
), (δ− , a+

l
)) is the

least solution to the frugality system for ⟦Ψ ; ∆ ⊢ Pl ∶∶ a ∶ A l⟧u and (δ+ , a−l). By the induction
hypothesis, where ⟦Ψ ; ∆ ⊢ Pl ∶∶ a ∶ A l⟧u(δ

+ , a−
l
) = (δ, a l),

j∆o(δ) = (δ̂+ , δ−),

jA l o(a l) = (a
+
l , â

−
l).

It is then easy to check, where ⟦Ψ ; ∆ ⊢ case a {l ⇒ Pl}l∈L ∶∶ a ∶ &{l ∶ A l}l∈L⟧u(δ
+ , a−) =

(δ, (l , [a l])), that

j∆o(δ) = (δ̂+ , δ−),

j&{l ∶ A l}l∈Lo((l , [a l])) = (ι l(a+l), (l , [â
−
l])).

This is what we wanted to show.
Case (⊗R): Recall eqs. (127) to (130). Let (δ+ , b+ , (a−

B
, a−

A
)) be arbitrary in the domain of

eq. (130). The frugality system is:

j∆, b ∶ B, a ∶ B ⊗ Aop((δ+ , b+)), (δ−1 , b
−
1)) = (δ1 , b1)

ja ∶ B ⊗ Aop(a+1 , (a
−
B , a

−
A)) = a1

⟦Ψ ; ∆, b ∶ B ⊢ send a b; P ∶∶ a ∶ B ⊗ A⟧u(δ+2 , b
+
2 , (a

−
2B , a

−
2A)) = (δ2 , b2 , [(b2 , a2)])

j∆, b ∶ Bo+(δ1 , b1) ⊑ (δ+2 , b
+
2) jB ⊗ Ao−(a1) ⊑ (a

−
2B , a

−
2A)

j∆, b ∶ Bo−(δ2 , b2) ⊑ (δ
−
2 , b

−
2) jB ⊗ Ao+([(b2 , a2)]) ⊑ a

+
1 .

226 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

We deduce from the definition of jB ⊗ Ao+ that a+1 = [(a
+
B
, a+

A
)] for some a+

B
and a+

A
. It follows

that
a1 = [(jBo

p(a+B , a
−
B), jAo

p(a+A, a
−
A))].

We recognize the equations involving jBo as an instance of the system given in lemma 8.2.9.
Accordingly, the least solution ((δ+2 , b

+
2 , (a

−
2B , a

−
2A)), (δ

−
1 , b

−
1 , [(a

+
B
, a+

A
)])) to the system is

((δ+2 , β
+ , (β− , α−)), (δ−1 , β

− , [(β+ , α+)]))

where (jBo ○ jBop)(b+ , a−
B
) = (β+ , β−), and where ((δ+2 , α

−), (δ−1 , α
+)) is the least solution to the

frugality system for ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u and (δ+ , a−
A
). We compute that

(j∆, b ∶ B, a ∶ B ⊗ Ao ○ ⟦Ψ ; ∆, b ∶ B ⊢ send a b; P ∶∶ a ∶ B ⊗ A⟧u)(δ+ , b+ , (a−B , a
−
A))

= ((δ̂+ , β+ , [(β+ , a+)]), (δ− , β− , (β− , â−A)))

where
(j∆, a ∶ Ao ○ ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u)(δ+ , a−A) = ((δ̂

+ , a+), (δ− , â−A)).

By the induction hypothesis,

(j∆, a ∶ Ao ○ ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u)(δ+ , a−A) = ((δ
+
2 , α

+), (δ−1 , α
−)).

Taking the collection of these equations, we conclude the result.
Case (⊸R): Recall eqs. (208) and (235) to (237). Let (δ+ , a−) be arbitrary in the domain. If

a− = �, then the proof is analogous to case (1L). If a− = [(b+0 , a−0)], then the result follows easily
by the induction hypothesis.

Case (⊃R): Recall eqs. (211) and (241) to (243). The result follows straightforwardly from the
induction hypothesis. We illustrate the case nevertheless. Let (δ+0 , a

−
0) be arbitrary in the domain.

If a−0 = �, then the proof is analogous to case (1L). If (a−0 = (v , [a−]), then the completeness system
is:

j∆, a ∶ τ ⊃ Aop((δ+0 , a
−
0), (δ

− , a+)) = (δ1 , a1)

⟦Ψ ; ∆ ⊢ x ← input a; P ∶∶ a ∶ τ ⊃ A⟧u(δ+1 , a
−
1) = (δ2 , a2)

j∆o+(δ1) ⊑ δ+ jτ ⊃ Ao−(a1) ⊑ a
−
1

j∆o−(δ2) ⊑ δ
− jτ ⊃ Ao+(a2) ⊑ a

+ .

We seek to minimize (δ− , a+ , δ+1 , a
−
1), and show that this solution is appropriately related to

(⟦Ψ ; ∆ ⊢ x ← input a; P ∶∶ a ∶ τ ⊃ A⟧u)∗(δ+0 , a
−
0). Expanding the definitions of j∆, a ∶ τ ⊃ Aop

and ⟦Ψ ; ∆ ⊢ x ← input a; P ∶∶ a ∶ τ ⊃ A⟧u, we see that minimizing (δ− , a+ , δ+1 , a
−
1) is equivalent

to minimizing (δ− , a+ , δ+1 , a
−
3) in

j∆, a ∶ Aop((δ+0 , a
−), (δ− , a+)) = (δ1 , a3)

⟦Ψ, x ∶ τ ; ∆ ⊢ P ∶∶ a ∶ A⟧[u ∣ x ↦ v](δ+1 , [a
−
3]) = (δ2 , a2)

j∆o+(δ1) ⊑ δ+ jAo−(a3) ⊑ a
−
3

j∆o−(δ2) ⊑ δ
− jAo+(a2) ⊑ a

+ .

Indeed, given aminimum solution (δ− , a+ , δ+1 , a
−
3) to the second system, theminimum solution

to the first system is (δ+ , a+ , δ+1 , (v , [a
−
3])). By the induction hypothesis, this minimum solution

satisfies

(⟦Ψ, x ∶ τ ; ∆ ⊢ P ∶∶ a ∶ A⟧[u ∣ x ↦ v])∗(δ
+
0 , a

−) = (((δ+1 , a
−
3), (δ

− , a+)), _).

But

(⟦Ψ ; ∆ ⊢ x ← input a; P ∶∶ a ∶ τ ⊃ A⟧u)∗(δ+0 , a
−
0) = (((δ

+
1 , (v , [a

−
3])), (δ

− , a+)), _).

This is exactly what we wanted to show.

8.4. WELL-DEFINEDNESS OF INTERPRETATIONS 227

Case (ρ+R): Recall eqs. (182), (183) and (188). By applying lemma 8.4.12 to the induction
hypothesis, we deduce that

(id × up) ○ ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A⟧u

is frugal relative to the embedding

j∆o, (δe ○ (−)�j[ρα.A/α]Ao) ∶ ⟦∆⟧ × (−)�⟦[ρα.A/α]A⟧→

→ (⟦∆⟧+ × (−)�⟦[ρα.A/α]A⟧+) × (⟦∆⟧− × ⟦[ρα.A/α]A⟧−).

By lemma 8.4.11,

(id × (a ∶ Fold ○ up)) ○ ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A⟧u ○ (id × (a− ∶ Unfold))

is frugal relative to the embedding

⟦∆⟧ × ⟦ρα.A⟧
id×Unfold
ÐÐÐÐÐ→ ⟦∆⟧ × (−)�⟦[ρα.A/α]A⟧

j∆o,(δ e○(−)�j[ρα .A/α]Ao)
ÐÐÐÐÐÐÐÐÐÐÐÐÐ→ (⟦∆⟧+ × (−)�⟦[ρα.A/α]A⟧+) × (⟦∆⟧− × ⟦[ρα.A/α]A⟧−)

(id×Fold)×(id×Fold)
ÐÐÐÐÐÐÐÐÐÐ→ (⟦∆⟧+ × ⟦ρα.A⟧+) × (⟦∆⟧− × ⟦ρα.A⟧−).

We recognize this embedding as (j∆o, jρα.Ao) by eq. (186).
Case (ρ−R): Recall eqs. (212), (217) and (218). By applying lemma 8.4.13 to the induction

hypothesis, we deduce that

F(δ+ , a−) =
⎧⎪⎪
⎨
⎪⎪⎩

(δ, [a]) if a− = [a−0]
(j∆op(δ+ , �), �) otherwise

where (δ, a) = ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A⟧u(δ+ , a−0)

is sound relative to the embedding

j∆o, (δe ○ (−)�j[ρα.A/α]Ao) ∶ ⟦∆⟧ × (−)�⟦[ρα.A/α]A⟧→

→ (⟦∆⟧+ × ⟦[ρα.A/α]A⟧+) × (⟦∆⟧− × (−)�⟦[ρα.A/α]A⟧−).

By lemma 8.4.11,
⎧⎪⎪
⎨
⎪⎪⎩

(δ,Fold([a])) if a− = Fold([a−0])
(j∆op(δ+ , �), �) otherwise

where (δ, a) = ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A⟧u(δ+ , a−0)

is frugal relative to the embedding

⟦∆⟧ × ⟦ρα.A⟧
id×Unfold
ÐÐÐÐÐ→ ⟦∆⟧ × (−)�⟦[ρα.A/α]A⟧

j∆o,(δ e○(−)�j[ρα .A/α]Ao)
ÐÐÐÐÐÐÐÐÐÐÐÐÐ→ (⟦∆⟧+ × ⟦[ρα.A/α]A⟧+) × (⟦∆⟧− × (−)�⟦[ρα.A/α]A⟧−)

(id×Fold)×(id×Fold)
ÐÐÐÐÐÐÐÐÐÐ→ (⟦∆⟧+ × ⟦ρα.A⟧+) × (⟦∆⟧− × ⟦ρα.A⟧−).

We recognize this embedding as (j∆o, jρα.Ao) by the negative analog of eq. (186).
Case (E-{}): Recall eq. (143). The result follows from the fact that for all u ∈ ⟦Ψ⟧, ⟦Ψ ;

a i ∶ A i ⊢ a ← {M}← a i ∶∶ a ∶ A⟧u is defined to be an element of a dcpo of frugal functions.

Corollary 8.4.15. If Ψ ; ∆ ⊢ P ∶∶ a ∶ A, then ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u is stable for all u ∈ ⟦Ψ⟧.

Proof. Stability is immediate by the definition of junk-freedom, proposition 8.4.9, and the fact that
upper-adjoints preserve existing infima (proposition 2.2.19).

Recall from corollary 8.2.23 the DCPO JFC [∆ → Ψ] of junk-free, complete, frugal, stable
functions ∆ → Ψ in CYO(Stab�).

228 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

Proposition 8.4.16. If Ψ ⊩ M ∶ τ, then ⟦Ψ ⊩ M ∶ τ⟧ is continuous. It is stable if Ψ ⊩ M ∶ τ
does not use (I-{}) or any variables whose type involves (T{}). If Ψ ; ∆ ⊢ P ∶∶ a ∶ A, then

⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧ ∶ ⟦Ψ⟧→ JFC [∆ → a ∶ A]

is continuous.

Proof. By induction on the derivation. The proofs for the cases in the functional layer are routine
(see, e.g., [Gun92]), apart for:

Case (I-{}): Recall eq. (142). Continuity is immediate by the induction hypothesis. Stability is
vacuous.
In themajority of cases for the process layer:

● Continuity of ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u follows from the induction hypothesis and the fact
that continuous functions are closed under composition.
● Stability of ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u is a corollary of propositions 2.2.19 and 8.4.9: junk-free
functions are projections, and projections preserve existing infima.
● Junk-freedom, completeness, and frugality of ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u are given by proposi-

tions 8.4.9, 8.4.10 and 8.4.14.
● The function ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u is then amorphism inCYO(Stab�) by corollary 8.2.15.
● Continuity of ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧ follows from the induction hypothesis.

The interesting cases in the process layer are:
Case (Fwd+): Recall eq. (113). Constant functions are continuous, so ⟦Ψ ; a ∶ A ⊢ a →

b ∶∶ b ∶ A⟧ is continuous. Continuity of ⟦Ψ ; a ∶ A ⊢ a → b ∶∶ b ∶ A⟧u is a consequence of
proposition 8.4.6.

Case (∧R): Recall eq. (150). We show that ⟦Ψ ; ∆ ⊢ _ ← output a M; P ∶∶ a ∶ τ ∧ A⟧ is
continuous. Let U ⊆ ⟦Ψ⟧ be directed. Wemust show that

⟦Ψ ; ∆ ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A⟧ (⊔↑U)

= ⊔
↑⟦Ψ ; ∆ ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A⟧U .

We consider two cases. Assume first that ⟦Ψ ⊩ M ∶ τ⟧ (⊔↑U) = �. Then ⟦Ψ ⊩ M ∶ τ⟧u = � for all
u ∈ U bymonotonicity, and so ⟦Ψ ; ∆ ⊢ _ ← output a M; P ∶∶ a ∶ τ ∧ A⟧u = (j∆op(δ+ , �), jτ ∧
Aop(�, a−)) for all u ∈ U . Continuity is now clear:

⟦Ψ ; ∆ ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A⟧ (⊔↑U)

= (j∆op(δ+ , �), jτ ∧ Aop(�, a−))

= ⊔
↑

u∈U
(j∆op(δ+ , �), jτ ∧ Aop(�, a−))

= ⊔
↑

u∈U
⟦Ψ ; ∆ ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A⟧u.

Otherwise, assume that ⟦Ψ ⊩ M ∶ τ⟧ (⊔↑U) ≠ �. Then the set U ′ = {u ∈ U ∣ ⟦Ψ ⊩ M ∶ τ⟧u ≠ �}

is non-empty. Recall that in general, ifM is directed, then ⊔↑M = ⊔↑(M ∪ {�}). It follows that

⟦Ψ ; ∆ ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A⟧ (⊔↑U)

= ⟦Ψ ; ∆ ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A⟧ (⊔↑U ′)

and by proposition 8.2.24 that

⊔
↑⟦Ψ ; ∆ ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A⟧U

= ⊔
↑⟦Ψ ; ∆ ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A⟧U ′ .

It is thus sufficient to show that:

⟦Ψ ; ∆ ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A⟧ (⊔↑U ′)

= ⊔
↑⟦Ψ ; ∆ ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A⟧U ′ .

8.4. WELL-DEFINEDNESS OF INTERPRETATIONS 229

But by restricting our attention to U ′, we have eliminated the case analysis in the definition of
⟦Ψ ; ∆ ⊢ _ ← output a M; P ∶∶ a ∶ τ ∧ A⟧. We recognize it as the composition of continuous
functions, and we conclude the result.

Case (⊃R): Recall eq. (211). Continuity of ⟦Ψ ; ∆ ⊢ x ← input a; P ∶∶ a ∶ τ ⊃ A⟧ follows
from the induction hypothesis and closure of continuous functions under composition: it is the
composition of ⟦Ψ, x ∶ τ ; ∆ ⊢ P ∶∶ a ∶ A⟧ with pairing and application. Continuity of ⟦Ψ ; ∆ ⊢ x ←
input a; P ∶∶ a ∶ τ ⊃ A⟧u follows similarly.

Case (ρ+R): Recall eq. (188). The functions Fold and Unfold are isomorphisms by proposi-
tion 4.3.4, so they are continuous. The result then follows from the induction hypothesis, and the
fact that continuous functions are closed under composition.

Case (E-{}): Recall eq. (143). By the induction hypothesis and eq. (141).

Proposition 8.4.17. If Ψ ⊩ M ∶ τ, then the interpretation ⟦Ψ ⊩ M ∶ τ⟧ is natural in its

environment. If Ψ ; ∆ ⊢ P ∶∶ a ∶ A, then the interpretation ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧ is natural in its

environment.

Proof. By case analysis on the last rule in the derivation of Ψ ⊩ M ∶ τ and Ψ ; ∆ ⊢ P ∶∶ a ∶ A. In the
functional layer, we use C to range over DCPO� or Stab�, depending on whether or not ⟦Ψ ⊩ M ∶
τ⟧ is stable.27 We repeatedly use the following consequence of the Yoneda lemma [Rie16, chap. 2]:
if f ∶ A→ B is amorphism of D, then D(−, f) is a natural transformation D(−,A)⇒ D(−, B).
We omit cases that follow by analogy from others.

Case (I-{}): Recall eq. (142). The corresponding natural interpretation is:

DCPO�(−, up) ∶ DCPO�(−, JFC(a i ∶ A i , a ∶ A))⇒ DCPO�(−, ⟦{a ∶ A← a i ∶ A i}⟧).

Case (F-Var): Recall eq. (134). The corresponding natural interpretation is the family:

(λ_.λu ∈ ⟦Ψ, x ∶ τ⟧.πΨ,x
x u)⟦Ψ⟧ ∶ {∗}→ C(⟦Ψ, x ∶ τ⟧, ⟦τ⟧)

Case (F-Fix): Recall eq. (137). Observe that

⟦Ψ ⊩ fix x .M ∶ τ⟧u

= ⟦Ψ, x ∶ τ ⊩ M ∶ τ⟧†u

= lfp (λv ∈ ⟦τ⟧.⟦Ψ, x ∶ τ ⊩ M ∶ τ⟧[u ∣ x ↦ v])

= (lfp ○Λ (⟦Ψ, x ∶ τ ⊩ M ∶ τ⟧)) (u),

where Λ is the currying natural isomorphism given by the adjunction for the exponential. The
corresponding natural interpretation is then:

C(−, lfp) ○ Λ ∶ C(− × ⟦x ∶ τ⟧, τ)⇒ C(−, τ).

Case (F-Fun): Recall eq. (135). Observe that

⟦Ψ ⊩ λx ∶ τ.M ∶ τ → σ⟧ = up ○ strict ○Λ(⟦Ψ, x ∶ τ ⊩ M ∶ σ⟧),

where Λ is the currying natural isomorphism.28 The corresponding natural interpretation is:

C(−, up ○ strict) ○ Λ ∶ C(− × ⟦x ∶ τ⟧, ⟦σ⟧)⇒ C(−, ⟦τ → σ⟧).

Case (F-App): Recall eq. (136). There is a canonical natural isomorphism (see [Rie16, § 3.4])

α ∶ C(−, ⟦τ → σ⟧) ×C(−, τ)⇒ C(−, ⟦τ → σ⟧ × ⟦τ⟧)

whose D-component is αD(m, n)(u) = (mu, nu). The counit ev of the exponential adjunction is
a natural transformation whose ⟦τ⟧, ⟦σ⟧ component is

ev⟦τ⟧,⟦σ⟧ ∶ C [⟦τ⟧→ ⟦σ⟧] × ⟦τ⟧→ ⟦σ⟧.

27Recall that it is assumed to be stable if it does not use (I-{}) or any variables whose types involve (T{}).
28In contrast to the previous case, we are here taking the Λ that is the right closure [Rie16, p. 129] of the cartesian

product. Concretely, in this case Λ ∶ C(− × ⟦x ∶ τ⟧, ⟦σ⟧)⇒ C(−,C [⟦τ⟧→ ⟦σ⟧]).

230 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

sending (f , v) to f (v). The corresponding natural interpretation for (F-App) is then

C(−, ev⟦τ⟧,⟦σ⟧ ○ (down × id)) ○ α ∶ C(−, ⟦τ → σ⟧) ×C(−, ⟦τ⟧)⇒ C(−, ⟦σ⟧).

Case (F-S): Recall eq. (140). Let f ∶ ⟦nat⟧→ ⟦nat⟧ be given by

f (x) =

⎧⎪⎪
⎨
⎪⎪⎩

� if x = �
x + 1 otherwise

The natural interpretation for (F-S) is C(−, f) ∶ C(−, ⟦nat⟧)⇒ C(−, ⟦nat⟧).
Case (Fwd+): Recall eq. (113). The natural interpretation is

(λ_.λ_ ∈ ⟦Ψ⟧.⟨a ∶ jAop , b ∶ jAop⟩)⟦Ψ⟧ ∶ {∗}⇒ DCPO�(⟦Ψ⟧, JFC [∆ → a ∶ A]).

This family is natural is because it is a constant family.
Case (Cut): Recall eq. (115). Composition of morphisms p ∶ ∆1 → A and q ∶ ∆2 ,A → C

in CYO(Stab�) determines a continuous operation ○A ∶ JFC [∆1 → A] × JFC [∆2 ,A→ C] →
JFC [∆1 , ∆2 → C]. There exists a canonical natural isomorphism

α ∶ DCPO�(−, JFC [⟦∆1⟧→ ⟦a ∶ A⟧]) ×DCPO�(−, JFC [⟦∆2 , a ∶ A⟧→ ⟦C⟧])⇒
⇒ DCPO�(−, JFC [⟦∆1⟧→ ⟦a ∶ A⟧] × JFC [⟦∆2 , a ∶ A⟧→ ⟦C⟧]).

The natural interpretation is

DCPO�(−, ○a)○α ∶ DCPO�(−, JFC [⟦∆1⟧→ ⟦a ∶ A⟧])×DCPO�(−, JFC [⟦∆2 , a ∶ A⟧→ ⟦C⟧])⇒
⇒ DCPO�(−, JFC [⟦∆1 , ∆2⟧→ ⟦C⟧]).

Case (1R): Recall eq. (122). The natural interpretation is

(λ_.λ_ ∈ ⟦Ψ⟧.close)⟦Ψ⟧ ∶ {∗}⇒ DCPO�(−, JFC [⋅→ ⟦a ∶ 1⟧]).

This family is natural is because it is a constant family.
Case (1L): Recall eq. (123). Let f ∶ JFC [⟦∆⟧→ ⟦c ∶ C⟧] → JFC [⟦∆, a ∶ 1⟧→ ⟦c ∶ C⟧] be the

continuous function given by

f (p)(δ+ , a+ , c−) =
⎧⎪⎪
⎨
⎪⎪⎩

(δ, close, c) if a+ = close
(j∆op(δ+ , �), �, jCop(�, c−)) otherwise

where (δ, c) = p(δ+ , c−).

The natural interpretation is then

DCPO�(−, f) ∶ DCPO�(−, JFC [⟦∆⟧→ ⟦c ∶ C⟧])⇒ DCPO�(−, JFC [⟦∆, a ∶ 1⟧→ ⟦c ∶ C⟧]).

Case (∧R): Recall eq. (150). Let f ∶ ⟦τ⟧ × JFC [⟦∆⟧→ ⟦a ∶ A⟧] → JFC [⟦∆⟧→ ⟦a ∶ τ ∧ A⟧]
be given by

f (v , p)(δ+ , a−) =
⎧⎪⎪
⎨
⎪⎪⎩

(δ, (v , [a])) if v ≠ �
(j∆op(δ+ , �), jτ ∧ Aop(�, a−)) if v = �

where p(δ+ , a−) = (δ, a).

The proof that is continuous closely follows the proof given in proposition 8.4.16. Let V ⊆ ⟦τ⟧ and
P ⊆ JFC [⟦∆⟧→ ⟦a ∶ A⟧] be directed. Wemust show that

f (⊔
↑
V , ⊔↑P) = ⊔↑ f (V , P).

We consider two cases. Assume first that ⊔↑V = �. Then v = � for all v ∈ V , and

f (v , p)(δ+ , a−) = (j∆op(δ+ , �), jτ ∧ Aop(�, a−))

for all v ∈ V and all p. It follows that

f (⊔
↑
V , ⊔↑P) = (j∆op(δ+ , �), jτ ∧ Aop(�, a−)) = ⊔↑ f (�, P) = ⊔↑ f (V , P).

8.5. SEMANTIC PROPERTIES 231

Otherwise, assume that ⊔↑V ≠ �. Then the set V ′ = V ∖ {�} is non-empty. Recall that in general,
ifM is directed, then ⊔↑M = ⊔↑(M ∪ {�}). It follows that

f (⊔
↑
V , ⊔↑P) = f (⊔

↑
V
′ , ⊔↑P)

and by proposition 8.2.24 that ⊔↑ f (V , P) = ⊔↑ f (V ′ , P). It is thus sufficient to show that:

f (⊔
↑
V
′ , ⊔↑P) = ⊔↑ f (V ′ , P).

But by restricting our attention to U ′, we have eliminated the case analysis in the definition of f .
We now recognize f as the composition of continuous functions, so it is continuous.

The natural interpretation is then

DCPO�(−, f) ○ α ∶ DCPO�(−, ⟦τ⟧) ×DCPO�(−, JFC [∆ → ⟦a ∶ A⟧])⇒
⇒ DCPO�(−, JFC [∆ → ⟦a ∶ τ ∧ A⟧])

where α is the canonical natural isomorphism

α ∶ DCPO�(−, ⟦τ⟧) ×DCPO�(−, JFC [∆ → ⟦a ∶ A⟧])⇒ DCPO�(−, ⟦τ⟧ × JFC [∆ → ⟦a ∶ A⟧]).

The remaining cases follow by analogy with one of the previous cases.

8.5. Semantic Properties

We show that the denotations of types, terms, and processes satisfy various structural proper-
ties.

8.5.1. Semantic Properties of Types. We show that the denotations of types respect the
structural properties. It is immediate that they respect the exchange rule: contexts of type variables
denote indexed products, so ⟦Ξ⟧ = ⟦Ξ′⟧ and ⟦Ξ ⊢ A types⟧ = ⟦Ξ

′ ⊢ A types⟧ whenever Ξ
′ is a

permutation of Ξ.
Weakening is semantically well-behaved, i.e., the semantic clauses are coherent [Ten95, p. 218]:

Proposition 8.5.1 (Coherence). Let Θ, Ξ be a context of type variables. If Ξ ⊢ A type
p
s , then

the following diagram commutes in CellCFP for q ∈ {−,+}:

⟦Θ, Ξ⟧

⟦Ξ⟧ Stab�!

jΘ,Ξ⊢A typeps o
q

π
Θ,Ξ
Ξ

jΞ⊢A typeps o
q

Proof. By induction on the derivation of Ξ ⊢ A type
q
s .

Case (CVar): Recall eqs. (168) to (172). We compute, using the definitions of products and
horizontal composition:

jΘ, Ξ, α types ⊢ α typeso
q

= id
π

Θ,Ξ ,αα
α

∶ πΘ,Ξ ,α
α ⇒ π

Θ,Ξ ,α
α

= id
π
Ξ ,α
α
π

Θ,Ξ ,α
Ξ ,α ∶ πΞ ,α

α π
Θ,Ξ ,α
Ξ ,α ⇒ π

Ξ ,α
α π

Θ,Ξ ,α
Ξ ,α

= jΞ, α types ⊢ α typeso
q
π

Θ,Ξ ,α
Ξ ,α ∶ ⟦Ξ, α types ⊢ α types⟧π

Θ,Ξ ,α
Ξ ,α ⇒

⇒ ⟦Ξ, α types ⊢ α types⟧
q
π

Θ,Ξ ,α
Ξ ,α .

This is what we wanted to show.
Case (C1): Recall eqs. (116) to (120). This case follows from the fact that the interpretations

constant functors onto the same domain.

232 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

The other cases follow from the induction hypothesis and proposition 8.4.4. Explicitly, consider
a type-forming rule

Ξ, Ξ1 ⊢ A1 types ⋯ Ξ, Ξn ⊢ An types
Ξ ⊢ F(A1 , . . . ,An) types

Assume that its interpretation is given by
jΞ ⊢ F(A1 , . . . ,An) typeso

q

= ⟦F⟧⟦Ξ⟧ (jΞ, Ξ1 ⊢ A1 typeso
p , . . . , jΞn ⊢ An typeso

q) .

where ⟦F⟧ is a natural interpretation

⟦F⟧⟦Ξ⟧ ∶ (
n

∏
i=1

CellCFP(⟦Ξ, Ξ i⟧, Stab�!))→ CellCFP(⟦Ξ⟧, Stab�!).

Given any other context of type variables Θ disjoint from Ξ, we would like to show that

jΘ, Ξ ⊢ F(A1 , . . . ,An) typeso
q = jΞ ⊢ F(A1 , . . . ,An) typeso

q ∗ πΘ,Ξ
Ξ .

By the induction hypothesis, we have for all 1 ≤ i ≤ n,

jΘ, Ξ, Ξ i ⊢ A i typeso
q = jΞ, Ξ i ⊢ A i typeso

q ∗ πΘ,Ξ ,Ξ i

Ξ ,Ξ i
.

Using these facts we compute:

jΘ, Ξ ⊢ F(A1 , . . . ,An) typeso
q

= ⟦F⟧⟦Θ,Ξ⟧ (jΘ, Ξ, Ξ1 ⊢ A1 typeso
q , . . . , jΘ, Ξ, Ξn ⊢ An typeso

q)

which by the induction hypothesis,

= ⟦F⟧⟦Θ,Ξ⟧ (jΞ, Ξ1 ⊢ A1 typeso
q ∗ πΘ,Ξ ,Ξ1

Ξ ,Ξ1
, . . . , jΞ, Ξn ⊢ An typeso

q ∗ πΘ,Ξ ,Ξn

Ξ ,Ξn
)

= ⟦F⟧⟦Θ,Ξ⟧ (jΞ, Ξ1 ⊢ A1 typeso
q ∗ (πΘ,Ξ

Ξ × ⟦Ξ1⟧), . . . , jΞ, Ξn ⊢ An typeso
q ∗ (πΘ,Ξ

Ξ × ⟦Ξn⟧))

which by naturality of ⟦F⟧,
= ⟦F⟧⟦Ξ⟧ (jΞ, Ξ1 ⊢ A1 typeso

q , . . . , jΞ, Ξn ⊢ An typeso
q) ∗ πΘ,Ξ

Ξ

= jΞ ⊢ F(A1 , . . . ,An) typeso
q ∗ πΘ,Ξ

Ξ .

This is what we wanted to show.

Next, we show that substitution is given by composition. Recall context morphisms from
definition 2.5.7. We write σ ∶s Θ ↝ Ξ for context morphisms of session types to differentiate them
from context morphisms at the term level, below. Context morphisms σ ∶s Θ ↝ Ξ denote 2-cells

jA1 , . . . ,An ∶s Θ ↝ α1 type
q1
s , . . . , αn type

qn

s o
q = ⟨α i ∶ jΘ ⊢ A i type

q i

s o
q⟩1≤i≤n

where q ∈ {−,+}. In particular,

j⋅ ∶s Θ ↝ ⋅oq = id ∶ ⊺⇒ ⊺ ∶ ⟦Θ⟧→ ⊺CFP ,

where ⊺CFP is the nullary product in CFP, and ⊺ ∶ ⟦Θ⟧→ ⊺CFP is the unique functor from ⟦Θ⟧ to
it.

Lemma 8.5.2 (Weakening of Context Morphisms). Let σ ∶s Θ ↝ Ξ be arbitrary and Θ,Ω a

context. Then σ ∶s Ω,Θ ↝ Ξ and where q ranges over {−,+},

jσ ∶s Ω,Θ ↝ Ξoq = jσ ∶s Θ ↝ ΞoqπΩ ,Θ
Θ .

Proof. We consider two cases. The first case is when σ is empty, i.e., σ ∶s Ω,Θ ↝ ⋅. That

jσ ∶s Ω,Θ ↝ ⋅op = jσ ∶s Θ ↝ ⋅opπΩ ,Θ
Θ

follows immediately from the fact that ⊺CFP is terminal.
Assume now that σ is A1 , . . . ,An ∶s Θ ↝ α1 type

q1
s , . . . , αn type

qn

s . By weakening, Ω,Θ ⊢
A i type

q i

s for all 1 ≤ i ≤ n, and by proposition 8.5.1

jΩ,Θ ⊢ A i type
q i

s o
q = jΘ ⊢ A i type

q i

s o
q
π
Ω ,Θ
Θ .

8.5. SEMANTIC PROPERTIES 233

We then compute:

jσ ∶s Ω,Θ ↝ Ξoq

= ⟨α i ∶ jΩ,Θ ⊢ A i type
q i

s o
q⟩1≤i≤n

= ⟨α i ∶ jΘ ⊢ A i type
q i

s o
q
π
Ω ,Θ
Θ ⟩1≤i≤n

= ⟨α i ∶ jΘ ⊢ A i type
q i

s o
q⟩1≤i≤nπ

Ω ,Θ
Θ

= jσ ,A ∶s Θ ↝ Ξ, α typeq

s o
p
π
Ω ,Θ
Θ .

Proposition 8.5.3 (Semantic Substitution of Session Types). Let σ ∶s Θ ↝ Ξ be arbitrary and

let q range over {−,+}. If Ξ ⊢ A type
p
s , then

⟦Θ ⊢ [σ]A typeps ⟧ = ⟦Ξ ⊢ A typeps ⟧ ○ ⟦σ ∶s Θ ↝ Ξ⟧,

⟦Θ ⊢ [σ]A typeps ⟧
q = ⟦Ξ ⊢ A typeps ⟧

q ○ ⟦σ ∶s Θ ↝ Ξ⟧q ,

jΘ ⊢ [σ]A typeps o
q = jΞ ⊢ A typeps o

q ∗ jσ ∶s Θ ↝ Ξoq .

Proof. By induction on the derivation of Ξ ⊢ A types. Each case follows the same pattern. Consider
a type-forming rule

Ξ, Ξ1 ⊢ A1 types ⋯ Ξ, Ξn ⊢ An types
Ξ ⊢ F(A1 , . . . ,An) types

By proposition 8.4.4, jΞ ⊢ F(A1 , . . . ,An) typeso
q is given by a natural interpretation

jFo
q

⟦Ξ⟧ ∶ (
n

∏
i=1

CellCFP(⟦Ξ, Ξ i⟧, Stab�!))→ CellCFP(⟦Ξ⟧, Stab�!).

We need to show that

jΘ ⊢ [σ](F(A1 , . . . ,An)) typeso
q

= jΞ ⊢ F(A1 , . . . ,An) typeso
q ∗ jσ ∶s Θ ↝ Ξoq .

From this fact, it will immediately follow that the source and target horizontal morphisms will
respect substitution. By the definition of syntactic substitution, we know that

[σ](F(A1 , . . . ,An)) = F([σ]A1 , . . . , [σ]An).

For each 1 ≤ i ≤ n, let σi be given by σ , Ξ i ∶s Θ, Ξ i ↝ Ξ, Ξ i . Observe that [σ]A i = [σi]A i for all
1 ≤ i ≤ n. By lemma 8.5.2, properties of products, and the interpretations of (CVar),

jσ , Ξ i ∶s Θ, Ξ i ↝ Ξ, Ξ io = jσ ∶s Θ ↝ Ξo × id⟦Ξ i⟧ . (198)

By the induction hypothesis, we know for 1 ≤ i ≤ n that

jΘ ⊢ [σi]A i typeso
q = jΞ, Ξ i ⊢ A i typeso

p ∗ jσ , Ξ i ∶s Θ ↝ Ξ, Ξ io
q . (199)

Using these facts, we get:

jΘ ⊢ [σ](F(A1 , . . . ,An)) typeso
q

= jΘ ⊢ F([σ]A1 , . . . , [σ]An) typeso
q

= jΘ ⊢ F([σ1]A1 , . . . , [σn]An) typeso
q

= jFo
q

⟦Θ⟧ ((jΘ, Ξ i ⊢ [σi]A i typeso
q)1≤i≤n)

which by eqs. (198) and (199),

= jFo
q

⟦Θ⟧ ((jΞ, Ξ i ⊢ A i typeso
q ∗ (jσ ∶s Θ ↝ Ξoq × id⟦Ξ i⟧))1≤i≤n)

which by naturality of jFoq ,
= jFo

p

⟦Ξ⟧ (jΞ ⊢ A i typeso
q)1≤i≤n ∗ jσ ∶s Θ ↝ Ξoq

= jΞ ⊢ F(A1 , . . . ,An) typeso
q ∗ jσ ∶s Θ ↝ Ξoq .

This is what we wanted to show.

234 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

8.5.2. Semantic Properties of Terms and Processes. Our semantics respects the exchange
rule because we interpret structural contexts as indexed products. It also respects weakening and
substitution.

Proposition 8.5.4 (Coherence of Terms and Processes). If Ψ ⊩ M ∶ τ, then ⟦Φ,Ψ ⊩ M ∶ τ⟧ =

⟦Ψ ⊩ M ∶ τ⟧ ○ πΦ,Ψ
Ψ . If Ψ ; ∆ ⊢ P ∶∶ a ∶ A, then ⟦Φ,Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧ = ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧ ○ πΦ,Ψ

Ψ .

Proof. By induction on the derivation of Ψ ⊩ M ∶ τ and Ψ ; ∆ ⊢ P ∶∶ a ∶ A.
Case (F-Var): Recall eq. (134). We use properties of products to compute:

⟦Φ,Ψ, x ∶ τ ⊩ x ∶ τ⟧ = πΦ,Ψ,x
x = πΨ,x

x ○ πΦ,Ψ,x
Ψ,x = ⟦Ψ, x ∶ τ ⊩ x ∶ τ⟧ ○ πΦ,Ψ,x

Ψ,x .

Case (1R): Recall eq. (122). The result is obvious.
The remaining cases all follow an identical proof outline. This outline the direct analog of the one
given in the proof proposition 8.5.1, and it is not reproduced here.

We write σ ∶f Φ ↝ Ψ for context morphisms in the functional layer. Context morphisms
σ ∶f Φ ↝ Ψ denote continuous morphisms ⟦σ ∶f Φ ↝ Ψ⟧ ∶ ⟦Φ⟧→ ⟦Ψ⟧. In particular,

⟦M1 , . . . ,Mn ∶f Ψ ↝ x1 ∶ τ1 , . . . , xn ∶ τn⟧ = ⟨x i ∶ ⟦Ψ ⊩ M i ∶ τ i⟧⟩1≤i≤n .

Lemma 8.5.5 (Weakening of Context Morphisms). Let σ ∶f Φ ↝ Ψ be arbitrary and Γ,Φ a

context. Then σ ∶f Γ,Φ ↝ Ψ and ⟦σ ∶f Γ,Φ ↝ Ψ⟧ = ⟦σ ∶f Φ ↝ Ψ⟧ ○ πΓ ,Φ
Φ .

Proof. Analogous to the proof of lemma 8.5.2.

Proposition 8.5.6 (Semantic Substitution of Terms). Let σ ∶f Φ ↝ Ψ be arbitrary.

(1) If Ψ ⊩ N ∶ τ, then ⟦Φ ⊩ [σ]N ∶ τ⟧ = ⟦Ψ ⊩ N ∶ τ⟧ ○ ⟦σ ∶f Φ ↝ Ψ⟧.
(2) If Ψ ; ∆ ⊢ P ∶∶ c ∶ C, then ⟦Φ ; ∆ ⊢ [σ]P ∶∶ c ∶ C⟧ = ⟦Ψ ; ∆ ⊢ P ∶∶ c ∶ C⟧ ○ ⟦σ ∶f Φ ↝ Ψ⟧.

Proof. Analogous to the proof of proposition 8.5.3.

Proposition 8.5.7 (Renaming of channels). If Ψ ; ∆ ⊢ P ∶∶ a ∶ A and σ ∶∆, a↔ Γ, b, then for

all u ∈ ⟦Ψ⟧,
⟦Ψ ; Γ ⊢ [σ]P ∶∶ b ∶ A⟧u = ⟦σ⟧−1 ○ ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u ○ ⟦σ⟧± ,

where ⟦σ⟧ ∶ ⟦Γ, b ∶ A⟧→ ⟦∆, a ∶ A⟧ and ⟦σ⟧± ∶ ⟦Γ⟧+ × ⟦b ∶ A⟧− → ⟦∆⟧+ × ⟦a ∶ A⟧− are the obvious

relabelling isomorphisms of indexed products.

Proof. By induction on Ψ ; ∆ ⊢ P ∶∶ a ∶ A.

The following proposition states that forwarding acts to rename channels:

Proposition 8.5.8. For all processes Ψ ; ∆ ⊢ P ∶∶ c ∶ C with C positive or negative, respectively,

⟦Ψ ; ∆ ⊢ c ← P; c → d ∶∶ d ∶ C⟧ = ⟦Ψ ; ∆ ⊢ [d/c]P ∶∶ d ∶ C⟧,
⟦Ψ ; ∆ ⊢ c ← P; c ← d ∶∶ d ∶ C⟧ = ⟦Ψ ; ∆ ⊢ [d/c]P ∶∶ d ∶ C⟧.

For all processes Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C with A positive or negative, respectively,

⟦Ψ ; ∆, b ∶ B ⊢ a ← (b → a); P ∶∶ c ∶ C⟧ = ⟦Ψ ; ∆, b ∶ B ⊢ [b/a]P ∶∶ d ∶ C⟧,
⟦Ψ ; ∆, b ∶ B ⊢ a ← (b ← a); P ∶∶ c ∶ C⟧ = ⟦Ψ ; ∆, b ∶ B ⊢ [b/a]P ∶∶ d ∶ C⟧.

Proof. We show the first equality; the other three will follow analogously. Let u ∈ ⟦Ψ⟧ be arbitrary.
We compute, using eqs. (113) and (115), proposition 8.5.7, and the fact that id⟦C⟧ is ⟨jCop , jCop⟩:

⟦Ψ ; ∆ ⊢ c ← P; c → d ∶∶ d ∶ C⟧u

= ⟦Ψ ; c ∶ C ⊢ c → d ∶∶ d ∶ C⟧u ○ ⟦Ψ ; ∆ ⊢ P ∶∶ c ∶ C⟧u

= id⟦C⟧ ○ ⟦Ψ ; ∆ ⊢ [d/c]P ∶∶ d ∶ C⟧u
= ⟦Ψ ; ∆ ⊢ [d/c]P ∶∶ d ∶ C⟧u.

The environment u was arbitrary, so we conclude the result.

8.6. SOUNDNESS 235

8.6. Soundness

In this section, we show that our denotational semantics is sound. In the case of the functional
layer, this means that our denotational semantics agrees with evaluation. In the case of the process
layer, this means that denotational equivalence implies barbed congruence. As summarized by
fig. 7.1, barbed congruence implies external equivalence and external congruence.

Soundness of the functional interpretation is analogous to soundness of the (stable) fixed-point
semantics of PCF [Gun92, Theorems 4.23 and 5.23].

Proposition 8.6.1 (Soundness of Functional Interpretation). Let M and v be closed terms of

type τ, i.e., such that ⋅ ⊩ M ∶ τ and ⋅ ⊩ v ∶ τ.

(1) If v val, then ⟦⋅ ⊩ v ∶ τ⟧� ≠ �.
(2) If M ⇓ v, then ⟦⋅ ⊩ M ∶ τ⟧ = ⟦⋅ ⊩ v ∶ τ⟧.

Proof. Assume first that τ is not a quoted process type and that v val. We show that ⟦⋅ ⊩ v ∶ τ⟧� ≠ �
by case analysis on τ:

Case {a ∶ A← a i ∶ A i}: By the canonical forms lemma (proposition 5.8.2), v = a ← {P}← a i

for some process P. It is immediate from eq. (142) that ⟦⋅ ⊩ a ← {P}← a i ∶ {a ∶ A← a i ∶ A i}⟧� ≠
�.

Case nat: An inductive argument extends the canonical forms lemma to state that values of
type nat are either 0 or s(v) for some value of type nat. In the first case, it is clear that ⟦⋅ ⊩ 0 ∶
nat⟧� = 0 ≠ �. In the second case, ⟦⋅ ⊩ s(v) ∶ nat⟧� = ⟦⋅ ⊩ v ∶ nat⟧� + 1 ≠ �.

Case σ → σ ′: By the canonical forms lemma (proposition 5.8.2), v = λx ∶ σ .M′ for some term
x ∶ σ ⊩ M ∶ σ ′. It is immediate from eq. (135) that ⟦⋅ ⊩ λx ∶ σ .M′ ∶ σ → σ ′⟧u ≠ �.

Assume next that M ⇓ v. The fact that ⟦⋅ ⊩ M ∶ τ⟧ = ⟦⋅ ⊩ v ∶ τ⟧ follows mutatis mutandis from
the soundness proof for the fixed-point semantics of PCF [Gun92, Theorem 4.23]. Two changes are
required. First,we add an axiom case for quoted processes: it is immediate. Second,we drop several
cases from the proof (the cases involving the predecessor, zero test, and conditional operators).

Though the introduction of quoted values to the functional layer poses no problems for
soundness, it breaks particularly generous forms of adequacy (cf. [Gun92, Theorem 4.24]):

Falsehood ((Generous) Adequacy of Functional Interpretation). If τ is a base type and M is

a term and v is a value such that ⋅ ⊩ M ∶ τ, ⋅ ⊩ v ∶ τ, and ⟦⋅ ⊩ M ∶ τ⟧ = ⟦⋅ ⊩ v ∶ τ⟧, then M ⇓ v.

Proof. We provide a counter-example. Consider processes P and Q given by:

P = b ← (a → b); (c ← (b → c); (c → d)),
Q = c ← (b ← (a → b); (b → c)); c → d .

They are denotationally equivalent processes, so quoting them gives denotationally equivalent
values:

⟦⋅ ⊩ d ← {P}← a ∶ {d ∶ A← a ∶ A}⟧ = ⟦⋅ ⊩ d ← {Q}← a ∶ {d ∶ A← a ∶ A}⟧.

However, it is not the case that d ← {P}← a ⇓ d ← {Q}← a.

We can nevertheless show an adequacy result analogous to the one for PCF [Gun92, Theo-
rem 6.12]:

Proposition 8.6.2 (Adequacy of Functional Interpretation). If ⋅ ⊩ M ∶ τ is a purely functional

closed term and ⟦⋅ ⊩ M ∶ τ⟧� ≠ �, then there exists a value v such that M ⇓ v.

Proof. The proof carries over unchanged from [Gun92, Theorem 6.12]. It uses a logical relation
between closed terms of type τ and elements of ⟦τ⟧. It is not reproduced here.

We turn our attention to soundness of the process layer. Recall that our observational notions
of equivalence are defined on configurations, but on configurations. However, we have so far only
defined our denotational semantics for processes and functional terms. We remedy this by lifting

236 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

denotations from processes to configurations. The interpretation of (Conf-C) generalizes the
interpretation of (Cut) in the obvious way:

⟦Σ ∥ ∆ ∣ ⋅ ⊢ proc(c, P) ∶∶ (c ∶ A)⟧ = ⟦⋅ ; ∆ ⊢ P ∶∶ c ∶ A⟧�, (200)
⟦Σ ∥ ∆ ∣ ⋅ ⊢ msg(c,m) ∶∶ (c ∶ A)⟧ = ⟦⋅ ; ∆ ⊢ m ∶∶ c ∶ A⟧�, (201)

⟦Σ, Π̌, Σ′ ∥ ΓΛ ∣ I1ΠI2 ⊢ C ,D ∶∶ ΦΞ⟧

= ⟦Π̌, Σ′ ∥ ΠΛ ∣ I2 ⊢ D ∶∶ Ξ⟧ ○ ⟦Σ, Π̌ ∥ Γ ∣ I1 ⊢ C ∶∶ ΦΠ⟧. (202)

Definition 8.6.3. Denotational equivalence on configurations is given by Γ ⊢ C ≡ D ∶∶ ∆ if and only
if ⟦Γ ⊢ C ∶∶ ∆⟧ = ⟦Γ ⊢ D ∶∶ ∆⟧. Write Γ ⊢ C ⊑ D ∶∶ ∆ if and only if ⟦Γ ⊢ C ∶∶ ∆⟧ ⊑ ⟦Γ ⊢ D ∶∶ ∆⟧. ◀

Three new concepts play a pivotal role in our proof of soundness: stability, denotational barbs,
and bounded recursion. Stable configurations29 are the process analogs of functional values:

Definition 8.6.4. A configuration C is stable if no rules are applicable to it. It stabilizes if there
exists a C′ such that C Ð→∗ C′ and C′ is stable. ◀

Denotational barbs are a denotational characterization of definition 7.3.5:

Definition 8.6.5. If Γ ⊢ C ∶∶ ∆, then write ⟦Γ ⊢ C ∶∶ ∆⟧ ⇓
a
if (πa ○ ⟦Γ ⊢ C ∶∶ ∆⟧)(�) ≠ �. ◀

Bounded fixed point operators will let us express unbounded fixed point operators in terms of
their finite unfoldings. This will give us an inductive handle on general recursion. We introduce
the following auxiliary typing and evaluation rules and denotation.

Ψ, x ∶ τ ⊩ M ∶ τ

Ψ ⊩ fixn x .M ∶ τ
(F-Fixn)

[fixn x .M/x]M ⇓ v
fixn+1 x .M ⇓ v

(EV-fixn+1)

⟦Ψ ⊩ fixn x .M ∶ τ⟧u = (λx ∈ ⟦τ⟧.⟦Ψ, x ∶ τ ⊩ M ∶ τ⟧(u, x))n �.

Intuitively, the bounded fixed point operator fixn x .M behaves like the fixed point operator fix x .M,
except that it can only be unfolded up to n times. Its denotation is natural in its environment and
so enjoys the same substitution properties as the rest of Polarized SILL.

At a high-level, our proof of soundness has the following structure:
(1) We show that configurations without unbounded recursion are stabilizing.
(2) We show that definitions 7.3.5 and 8.6.5 coincide on stabilizing configurations.
(3) We show that the denotations of arbitrary configurations are the directed suprema of the

denotations of stabilizing configurations below it.
(4) We show that if a stabilizing configuration below C has a denotational barb, then so does
C.

(5) We deduce that denotational equivalence of configurations is a weak barbed congruence.
Our soundness proof relies on the following simplifying assumption:

Assumption 8.6.6. The rule (E-{}) does not appear in the right premise of (F-Fun), i.e., (E-{}) never
appears in the argument of a function abstraction.

We start by showing that configurations without (F-Fix) are stabilizing. The proof is syntax-
driven and uninspired, but sufficient thanks to assumption 8.6.6. Roughly, the approach is to
establish a simulation between a configuration C and the configuration ⌜C⌝ inwhich every bounded
fixed-point operator has been completely unrolled. We show that each configuration with no fixed-
point operators whatsoever is stabilizing; this establishes a bound on the number of steps C can
take.

Proposition 8.6.7. If Γ ⊢ C ∶∶ ∆ contains no instances of (F-Fix) or (F-Fixn), then it is

stabilizing.

29This use of the adjective “stable” is unrelated to its use in “stablemorphisms”.

8.6. SOUNDNESS 237

Proof. By induction on the number of process operators in proc(c, P) facts in C. It is obvious that
each multiset rewriting rule decreases the number of process operators, except potentially the
rules rule (73) (unquoting), rules (74) and (77) (sending values), and rules (75) and (76) (receiving
values). Those for sending and receiving values also decrease the number of process operators by
assumption 8.1.8. Rule (73) also decreases the number of process operators. Indeed, assumeM ⇓ v
and that M contains no instances of (F-Fix) or (F-Fixn). If we also assume assumption 8.6.6, then
v contains at most as many process operators as M. Then the left hand side of the rule,

eval(M , a ← {P}← a i), proc(a, a ← {M}← a i)

has at least one process operator more than the right hand side of the rule, proc(a, P). This gives
the result.

Next, we give a translation on configurations that unrolls bounded fixed-point operators.30 It
is given by induction on the configuration, where all cases are structure-preserving except for:

⌜fixn+1 x .M⌝ = [⌜fixn x .M⌝/x]⌜M⌝.

This unfolding operation respects substitution (cf. [Gun92, Lemma 4.28]):

Lemma 8.6.8. For all M and N , ⌜[M/x]N⌝ = [⌜M⌝/x]⌜N⌝.

Proof. By well-founded induction on the set ofwell-formed terms, ordered by the transitive closure
of the least relation ≺ generated by:

(1) ifM is a subphrase of N , then M ≺ N ; and
(2) fixn x .N ≺ fixn+1 x .N for all n.

We induct on N . The variable and zero cases are immediate, and the abstraction, application,
successor, and nullary bounded fixed-point operator cases follow immediately by the induction
hypothesis. The only mildly interesting case involves a bounded fixed-point operator with a
non-zero bound, which follows by a computation and the induction hypothesis:

⌜[M/x]fixn+1 y.N⌝

= ⌜fixn+1 y.[M/x]N⌝

= [⌜fixn y.[M/X]N⌝/y]⌜[M/x]N⌝
which by the induction hypothesis:

= [[⌜M⌝/x]⌜fixn y.N⌝/y]([⌜M⌝/x]⌜N⌝)

= [⌜M⌝/x]([⌜fixn y.N⌝/y]N)

= [⌜M⌝/x]⌜fixn+1 y.N⌝.

We use lemma 8.6.8 to show that unfolded bounded fixed points simulate bounded fixed
points:

Lemma 8.6.9. If Γ ⊩ M ∶ τ contains no instances of (F-Fix) and M ⇓ v, then ⌜M⌝ ⇓ ⌜v⌝.

Proof. By induction on M ⇓ v. The value cases are immediate, while the case (EV-Succ) follows
easily from the induction hypothesis.

Case (EV-App): Assume MN ⇓ v because M ⇓ λx ∶ τ.M′, N ⇓ w, and [w/x]M′ ⇓ v. By
the induction hypothesis, ⌜M⌝ ⇓ λx ∶ τ.⌜M′⌝, ⌜N⌝ ⇓ ⌜w⌝, and ⌜[w/x]M′⌝ ⇓ ⌜v⌝. By lemma 8.6.8,
[⌜w⌝/x]⌜M′⌝ ⇓ ⌜v⌝. We conclude that ⌜MN⌝ ⇓ ⌜v⌝ as desired.

Case (EV-fixn+1): Assume fixn+1 x .M ⇓ v because [fixn x .M/x]M ⇓ v. Wemust show that
⌜fixn+1 x .M⌝ ⇓ ⌜v⌝. Observe that ⌜fixn+1 x .M⌝ = [⌜fixn x .M⌝/x]⌜M⌝. By the induction hypothesis,
⌜[fixn x .M/x]M⌝ ⇓ ⌜v⌝. By lemma 8.6.8, ⌜[fixn x .M/x]M⌝ = [⌜fixn x .M⌝/x]⌜M⌝. It then follows
that ⌜fixn+1 x .M⌝ ⇓ ⌜v⌝, as desired.

30It is similar to the unrolling operator given byGunter [Gun92, p. 139], except that we do define ⌜fix0 x .M⌝ = fix x .x.
This is to simplify the statement of results below, where we need to talk about configurations that do not use (F-Fix).

238 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

Proposition 8.6.10. If Γ ⊢ C ∶∶ ∆ contains no instances of (F-Fix) and C Ð→ C′, then ⌜C⌝Ð→ ⌜C′⌝.

Proof. By case analysis on the rule used for the step C Ð→ C′. All cases are obvious except those
involving the functional layer. The cases involving sending values or unquoting processes follow
by lemma 8.6.9. The cases involving receiving values follow by lemma 8.6.8.

Corollary 8.6.11. If Γ ⊢ C ∶∶ ∆ contains no instances of (F-Fix), then it is stabilizing.

Proof. Each step C makes is matched by a step ⌜C⌝ can make. But ⌜C⌝ is stabilizing, so it can
only make finitely many steps. It follows that C can only take finitely many steps, i.e., that it is
stabilizing.

Next, we show that our two notions of barbs, definitions 7.3.5 and 8.6.5, coincide on stabilizing
configurations. To do so, we will need the fact that denotational equivalence is closed under
multiset rewriting. Proposition 8.6.12 is the denotational analogue of proposition 7.1.3. We remark
that it can be used to generate a long list of semantic equivalences.

Proposition 8.6.12. If Γ ⊢ C ∶∶ ∆ and C Ð→ C′, then Γ ⊢ C ≡ C′ ∶∶ ∆.

Proof. By proposition 5.9.1 and compositionality, it is sufficient to show that if E Ð→ E ′ is an
instance of a rule in P and Λ ⊢ E ∶∶ Ξ, then Λ ⊢ E ≡ E ′ ∶∶ Ξ. A case analysis on this rule using
propositions 8.5.8, 9.1.1 and 9.1.2 gives the result. The only subtle cases involves value transmission.
We treat these cases explicitly:

Case (74): Then Γ ⊢ C ∶∶ ∆ is Γ ⊢ proc(a, _← output aM; P) ∶∶ a ∶ τ∧A. By proposition 8.6.1,
eval(M , v) implies that ⟦⊩ M ∶ τ⟧� = ⟦⊩ v ∶ τ⟧� ≠ �. By eq. (200):

⟦Γ ⊢ proc(a, _← output a M; P) ∶∶ a ∶ τ ∧ A⟧
= ⟦⋅ ; Γ ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A⟧�,

which by compositionality and proposition 8.5.8:
= ⟦⋅ ; Γ ⊢ _← output a M; d ← [d/a]P; d → a ∶∶ a ∶ τ ∧ A⟧�,

which by proposition 9.1.2:
= ⟦⋅ ; Γ ⊢ d ← [d/a]P; _← output a M; d → a ∶∶ a ∶ τ ∧ A⟧�,

which by eq. (115):
= ⟦⋅ ; d ∶ A ⊢ _← output a M; d → a ∶∶ a ∶ τ ∧ A⟧� ○ ⟦⋅ ; Γ ⊢ [d/a]P ∶∶ d ∶ A⟧�

which by compositionality:
= ⟦⋅ ; d ∶ A ⊢ _← output a v; d → a ∶∶ a ∶ τ ∧ A⟧� ○ ⟦⋅ ; Γ ⊢ [d/a]P ∶∶ d ∶ A⟧�

which by eqs. (200) and (201):
= ⟦b ∶ A ⊢ msg(a, _← output a v; d → a) ∶∶ a ∶ τ ∧ A⟧ ○ ⟦Γ ⊢ proc(d , [d/a]P) ∶∶ bA⟧

which by eq. (202):
= ⟦Γ ⊢ proc(d , [d/a]P),msg(a, _← output a M; d → a) ∶∶ a ∶ τ ∧ A⟧.

This is what we wanted to show.
Case (75): Then Γ ⊢ C ∶∶ ∆ is Γ, d ∶ A ∣ a ∶ τ ∧ A ⊢ msg(a, _ ← output a v; d →

a), proc(c, x ← input a; P) ∶∶ c ∶ C. By assumption, msg(a, _ ← output a v; d → a) is well-
formed, so v val. By proposition 8.6.1, this implies that ⟦⋅ ⊩ v ∶ τ⟧ ≠ �. By eq. (202):

⟦Γ, d ∶ A ⊢ msg(a, _← output a v; d → a), proc(c, x ← input a; P) ∶∶ c ∶ C⟧
= ⟦Γ, a ∶ τ ∧ A ⊢ proc(c, x ← input a; P) ∶∶ c ∶ C⟧ ○ ⟦d ∶ A ⊢ msg(a, _← output a v; d → a) ∶∶ a ∶ τ ∧ A⟧,
which by eqs. (200) and (201):
= ⟦⋅ ; Γ, a ∶ τ ∧ A ⊢ x ← input a; P ∶∶ c ∶ C⟧� ○ ⟦⋅ ; d ∶ A ⊢ _← output a v; d → a ∶∶ a ∶ τ ∧ A⟧�,
which by eq. (115):
= ⟦⋅ ; Γ, d ∶ A ⊢ a ← _← output a v; d → a; x ← input a; P ∶∶ c ∶ C⟧�,

8.6. SOUNDNESS 239

which by proposition 9.1.1:
= ⟦⋅ ; Γ, d ∶ A ⊢ a ← a → d; [v/x]P ∶∶ c ∶ C⟧�,

which by proposition 8.5.8:
= ⟦⋅ ; Γ, d ∶ A ⊢ [d , v/a, x]P ∶∶ c ∶ C⟧�,

which by eq. (200):
= ⟦Γ, d ∶ A ⊢ proc(c, [d , v/a, x]P) ∶∶ cC⟧.

This is what we wanted to show.

Lemma 8.6.13. If f ∶ A× X → B × X is continuous and TrX(f)(�) ≠ �, then f (�) ≠ �.

Proof. By corollary 2.3.8,

TrX(f)(�) = πB×X
B (⊔

↑

n∈N
(λ (b, x) . f (�, x))n (�B , �X)) .

Suppose to the contrary that f (�) = �, then an induction shows that

(λ (b, x) . f (�, x))n (�B , �X) = �

for all n. The result is now obvious from the definitions of least upper bound and of projection.

Proposition 8.6.14. If Γ ⊢ C ∶∶ ∆ is stabilizing, then for all a ∶ A ∈ Γ, ∆, C ⇓
a
if and only

if ⟦Γ ⊢ C ∶∶ ∆⟧ ⇓
a
.

Proof. LetD be such that C Ð→∗ D andD is stable. By proposition 5.9.1, Γ ⊢ D ∶∶ ∆. By induction
on C Ð→∗ D using proposition 8.6.12, ⟦Γ ⊢ C ∶∶ ∆⟧ ⇓

a
if and only if ⟦Γ ⊢ D ∶∶ ∆⟧ ⇓

a
. Analogously,

by lemma 7.3.11, C ⇓
a
if and only if D ⇓

a
. It is therefore sufficient to show the result for stable

configurations. Assume without loss of generality that C is stable.
We begin with sufficiency. The configuration C is stable, so no rules can be applied to C. It

follows that if C ⇓
a
, then C ↓a . We proceed by induction on the derivation of Γ ⊢ C ∶∶ ∆.

Case (Conf-M): Immediate by a case analysis on C ↓a .
Case (Conf-P): A case analysis on C ↓a shows that this case is vacuously true.
Case (Conf-C): Then C = D, E is the composition of some configurations Γ1 ⊢ D ∶∶ ∆1 ,Π

and Π, Γ2 ⊢ E ∶∶ ∆2. A case analysis on C ↓a reveals that the barb is due to a message fact with
carrier a, i.e., it does not involve forwarding processes. The responsible message fact must be
contained in one of the two premisses. Assume that it is contained in D; the case where it is in
E will follow by symmetry. By assumption, a ∈ Γ̌, ∆̌, so a ∈ Γ̌1 , ∆̌1. By the induction hypothesis,
⟦Γ1 ⊢ D ∶∶ ∆1 ,Π⟧ ⇓a . Monotonicity and the Kleene fixed-point formulation of the trace operator
corollary 2.3.8 imply that Γ ⊢ C ∶∶ ∆ ⇓

a
.

Next, we show necessity. We proceed by induction on the derivation of Γ ⊢ C ∶∶ ∆.
Case (Conf-M): A case analysis on themessage fact gives the result.
Case (Conf-P): A case analysis on the process fact shows that the result is vacuously true.

Indeed, if ⟦Σ ∥ ∆ ∣ ⋅ ⊢ proc(c, P) ∶∶ (c ∶ A)⟧ ⇓
a
, then ⟦⋅ ; ∆ ⊢ P ∶∶ c ∶ A⟧�� ≠ �. Because the

configuration is stable, we know that the process must be waiting to receive amessage or be an
instance of Ω. But in each of these cases, ⟦⋅ ; ∆ ⊢ P ∶∶ c ∶ A⟧�� = �. So it cannot be the case that
⟦Σ ∥ ∆ ∣ ⋅ ⊢ proc(c, P) ∶∶ (c ∶ A)⟧ ⇓

a
.

Case (Conf-C): Then C = D, E is the composition of some configurations Γ1 ⊢ D ∶∶ ∆1 ,Π
and Π, Γ2 ⊢ E ∶∶ ∆2. By lemma 8.6.13, ⟦Γ1 ⊢ D ∶∶ ∆1 ,Π⟧ ⇓a or ⟦Π, Γ2 ⊢ E ∶∶ ∆2⟧ ⇓a . The result
follows readily from the induction hypothesis.

We claim that if a configuration C has a denotational barb, then there exists a stabilizing
configuration C′ that is denotationally below C and that has the same barb. Intuitively, if C has a
denotational barb on a, then it is because C sent amessage on a after a finite number of steps. In
particular, it must be because C sent amessage on a after some finite number n of unrollings of its

240 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

fixed points. The stabilizing configuration C′ is then given by replacing all unbounded fixed point
operators in C with bounded fixed point operators allowing n unrollings.

Let the n-fold truncation [⋅]n of terms, processes, and terms be an assignment of n units of
potential to each instance of fix x .M. The truncation is inductively defined on the syntax. All cases
are structure-preserving except for:

[fix x .M]n = fixn x .[M]n .

Conversely, let the bound erasure e(⋅) replace all occurrences of fixn x .M in a term, process,
or configuration by fix x .M. It is defined by induction on the syntax of terms, processes, or
configurations in the obvious way.

These operations preserve typing:

Proposition 8.6.15. If Ψ ⊩ M ∶ τ,Ψ ; ∆ ⊢ P ∶∶ c ∶ C, or Γ ⊢ C ∶∶ ∆, then for all n,Ψ ⊩ [M]n ∶ τ,
Ψ ; ∆ ⊢ [P]n ∶∶ c ∶ C, or Γ ⊢ [C]n ∶∶ ∆, respectively. Conversely, if Ψ ⊩ M ∶ τ, Ψ ; ∆ ⊢ P ∶∶ c ∶ C,
or Γ ⊢ C ∶∶ ∆ have instances of (F-Fixn) in their derivations, thenΨ ⊩ e(M) ∶ τ,Ψ ; ∆ ⊢ e(P) ∶∶ c ∶ C,
or Γ ⊢ e(C) ∶∶ ∆, respectively.

Proof. By induction on the derivation.

The denotation of an arbitrary configuration C is the directed supremum of its n-fold trunca-
tions. Each of these truncations is stabilizing by corollary 8.6.11.

Proposition 8.6.16. For all terms Ψ ⊩ M ∶ τ, processes Ψ ; ∆ ⊢ P ∶∶ c ∶ C, and configurations

Γ ⊢ C ∶∶ ∆,

⟦Ψ ⊩ M ∶ τ⟧ = ⊔
↑

n∈N
⟦Ψ ⊩ [M]n ∶ τ⟧,

⟦Ψ ; ∆ ⊢ P ∶∶ c ∶ C⟧ = ⊔
↑

n∈N
⟦Ψ ; ∆ ⊢ [P]n ∶∶ c ∶ C⟧,

⟦Γ ⊢ C ∶∶ ∆⟧ = ⊔↑
n∈N
⟦Γ ⊢ [C]n ∶∶ ∆⟧.

Proof. By induction on the derivation of the term, process, or configuration. For terms and
processes, all cases except (F-Fix) follow by continuity and proposition 8.4.17. We give one of these
cases to illustrate.

Case (F-Fun): Assume Ψ ⊩ λx ∶ τ.M ∶ τ → σ because Ψ, x ∶ τ ⊩ M ∶ σ . By the induction
hypothesis,

⟦Ψ, x ∶ τ ⊩ M ∶ σ⟧ = ⊔
↑

n∈N
⟦Ψ, x ∶ τ ⊩ [M]n ∶ σ⟧.

Let η be the natural interpretation of (F-Fun) given by proposition 8.4.17,

⟦Ψ ⊩ λx ∶ τ.M ∶ τ → σ⟧

= η⟦Ξ⟧ (⟦Ψ, x ∶ τ ⊩ M ∶ σ⟧)

= η⟦Ξ⟧ (⊔
↑

n∈N
⟦Ψ, x ∶ τ ⊩∶⟧[M]nσ)

= ⊔
↑

n∈N
η⟦Ξ⟧ (⟦Ψ, x ∶ τ ⊩ [∶]Mn⟧σ)

= ⊔
↑

n∈N
⟦Ψ ⊩ λx ∶ τ.[M]n ∶ τ → σ⟧

= ⊔
↑

n∈N
⟦Ψ ⊩ [λx ∶ τ.M]n ∶ τ → σ⟧.

Case (F-Fix): Assume that Ψ ⊩ fix x .M ∶ τ because Ψ, x ∶ τ ⊩ M ∶ τ. By the induction
hypothesis,

⟦Ψ, x ∶ τ ⊩ M ∶ τ⟧ = ⊔
↑

n∈N
⟦Ψ, x ∶ τ ⊩ [M]n ∶ τ⟧. (203)

8.6. SOUNDNESS 241

By eq. (137) and corollary 2.3.3,

⟦Ψ ⊩ fix x .M ∶ τ⟧u

= ⟦Ψ, x ∶ τ ⊩ M ∶ τ⟧†u

= ⊔
↑

m∈N
(λx ∈ ⟦τ⟧.⟦Ψ, x ∶ τ ⊩ M ∶ τ⟧(u, x))m (�)

= ⊔
↑

m∈N
(λx ∈ ⟦τ⟧. ⊔↑

n∈N
⟦Ψ, x ∶ τ ⊩ [M]n ∶ τ⟧(u, x))

m

(�)

= ⊔
↑

m∈N
⊔
↑

n∈N
(λx ∈ ⟦τ⟧.⟦Ψ, x ∶ τ ⊩ [M]n ∶ τ⟧(u, x))

m
(�),

which by proposition 2.2.11:
= ⊔

↑

n∈N
(λx ∈ ⟦τ⟧.⟦Ψ, x ∶ τ ⊩ [M]n ∶ τ⟧(u, x))

n
(�)

= ⊔
↑

n∈N
⟦Ψ ⊩ fixn [M]n . ∶ τ⟧u

= ⊔
↑

n∈N
⟦Ψ ⊩ [fix x .M]n ∶ τ⟧u.

For configurations, the cases (Conf-M) and (Conf-P) are immediate by the induction hy-
pothesis, while (Conf-C) is analogous to (Cut).

We show that C has a barb on a whenever one of its n-fold truncations does. Observe first
that erasing bounds on bounded fixed-point operators does not affect evaluation (cf. [Gun92,
Lemma 4.32]):

Proposition 8.6.17. If M ⇓ v, then e(M) ⇓ e(v).

Proof. By induction on the derivation of M ⇓ v. The base cases (EV-Fun), (EV-Proc), and
(EV-Zero) are obvious. The remaining cases are:

Case (EV-Succ): Assume that s(M) ⇓ s(n) because M ⇓ n. By the induction hypothesis,
e(M) ⇓ e(n). By (EV-Succ), s(e(M)) ⇓ s(e(n)). But this is exactly e(s(M)) ⇓ e(s(n)).

Case (EV-Fix): Assume that fix x .M ⇓ v because [fix x .M/x]M ⇓ v. By the induction
hypothesis, e([fix x .M/x]M) ⇓ e(v). Observe that e([fix x .M/x]M) = [fix x .e(M)/x]e(M). So
by (EV-Fix) again, e(fix x .M) ⇓ e(v).

Case (EV-fixn+1): Assume that fixn+1 x .M ⇓ v because [fixn x .M/x]M ⇓ v. By the induction
hypothesis, e([fixn x .M/x]M) ⇓ e(v). Observe that e([fixn x .M/x]M) = [fix x .e(M)/x]e(M).
Also observe that e(fixn+1 x .M) = fix x .e(M). So by (EV-Fix), e(fixn+1 x .M) ⇓ e(v).

Case (EV-App): Assume that MN ⇓ v because M ⇓ λx ∶ τ.M′, N ⇓ w, and [w/x]M′ ⇓ v.
By the induction hypothesis, e(M) ⇓ λx ∶ τ.e(M′), e(N) ⇓ e(w), and e([w/x]M′) ⇓ e(v).
Observe that e([w/x]M′) = [e(w)/x]e(M′), and that e(MN) = (e(M))(e(N)). We conclude
that e(MN) ⇓ e(v) by (EV-App).

Erasing bounds also does not affect barbs or multiset rewriting:

Proposition 8.6.18. If C ↓a , then e(C) ↓a .

Proof. By case analysis on C ↓a . The only interesting case is _ ← output a M; P ↓a when M ⇓ v
for some v. It follows by proposition 8.6.17.

Proposition 8.6.19. If C Ð→ C′, then e(C)Ð→∗ e(C′).

Proof. By case analysis on the rule used to make the step. The only interesting cases are those
involving the functional layer:

Case (73): The rule is

∀a, a i .eval(M , a ← {P}← a i), proc(a, a ← {M}← a i)Ð→ proc(a, P)

The result follows immediately from proposition 8.6.17.

242 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

Case (74): The rule is

∀a, ∆.eval(M , v), proc(a, _← output a M; P)→
→ ∃d .proc(d , [d/a]P),msg(a, _← output a v; d → a)

The result follows immediately from proposition 8.6.17.
Case (76): The rule is

∀∆, a, d , c.proc(a, x ← input a; P),msg(d , _← output a v; a ← d)→

→ proc(d , [d , v/a, x]P)

The result follows immediately from proposition 8.6.17 and a substitution property.

Corollary 8.6.20. If C ⇓
a
, then e(C) ⇓

a
.

Proof. The first sentence follows induction on the number of steps needed to produce the barb. The
base case is given by proposition 8.6.18, while the inductive step is given by proposition 8.6.19.

Proposition 8.6.21. If Γ ⊢ C ∶∶ ∆, then for all a ∶ A ∈ Γ, ∆, if C ↓a , then ⟦Γ ⊢ C ∶∶ ∆⟧ ⇓
a
.

Proof. By induction on the derivation Γ ⊢ C ∶∶ ∆.

Case (Conf-M): By a case analysis on C ↓a .
Case (Conf-P): By a case analysis on C ↓a .
Case (Conf-C): Assume first that C ↓a because (proc(b, a ← b),msg(c,m−

b ,c)) ↓a . By
proposition 8.5.8,

Γ′ , a ∶ A ⊢ proc(b, a ← b),msg(c,m−b ,c) ≡ [a/b]m
−
b ,c ∶∶ c ∶ C .

The result then follows by a case analysis on m−
b ,c .

If C ↓a because (msg(a,m+), proc(b, a → b)) ↓b , then we can apply an analogous argument.
Otherwise, C ↓a because C is of the form E[D] and D ↓a . Without loss of generality, D is

contained in one of the two premisses to (Conf-C). The result then follows by the induction
hypothesis on that premise,monotonicity, and eq. (202).

Going forward, we assume that Γ ⊢ C ∶∶ ∆ is a configuration Polarized SILL processes, i.e., that
(F-Fixn) does not appear in the derivation of C.

Proposition 8.6.22 (Soundness). If Γ ⊢ C ∶∶ ∆, then for all a ∶ A ∈ Γ, ∆, C ⇓
a
if and only

if ⟦Γ ⊢ C ∶∶ ∆⟧ ⇓
a
.

Proof. Sufficiency is immediate by propositions 8.6.12 and 8.6.21. To see necessity, we observe
that by proposition 8.6.16, ⟦Γ ⊢ [C]n ∶∶ ∆⟧ ⇓a for some n. The configuration [C]n is stabilizing by
corollary 8.6.11, so [C]n ⇓a by proposition 8.6.14. By corollary 8.6.20, e([C]n) ⇓a . But e([C]n) = C
because C was assumed not to contain any bounded fixed point operators. So we conclude that
C ⇓

a
.

Theorem 8.6.23. If Γ ⊢ C ≡ D ∶∶ ∆, then Γ ⊢ C ≈c D ∶∶ ∆.

Proof. We start by showing that ≡ is a weak barbed bisimulation. The relation ≡ is closed under
multiset stepping by proposition 8.6.12. Proposition 8.6.22 implies that for all a ∈ Γ̌, ∆̌,

C ⇓
a
⇐⇒ ⟦Γ ⊢ C ∶∶ ∆⟧ ⇓

a
⇐⇒ ⟦Γ ⊢ D ∶∶ ∆⟧ ⇓

a
⇐⇒ D ⇓

a
.

To see that denotational equivalence is contained in weak barbed congruence, it is then
sufficient to observe that denotational equivalence is a congruence.

8.8. SUMMARY OF INTERPRETATIONS 243

8.7. RelatedWork

Atkey [Atk17] gave a denotational semantics for CP, where types are interpreted as sets and
processes are interpreted as relations over these. Because processes in CP are proof terms for
classical linear logic, the interpretation of processes is identical to the relational semantics of proofs
in classical linear logic [Bar91]. Our jump from sets and relations to domains and continuous
functions was motivated by two factors. First, domains provide a natural setting for studying
recursion. Second, we believe that monotonicity and continuity are essential properties for a
semantics of processes with infinite data, and it is unclear how to capture these properties in a
relational setting. Our transition to domains and functions required polarized interpretations
of types. In the case of recursive types, defining the relating natural families of embeddings and
showing that they satisfied the structural rules required significant generalizations of the techniques
found in [SP82]. Atkey interpreted process composition as relational composition. Our use of
traces is more complex, but we believe that known trace identities make it tractable. We believe
that the extra complexity is justified by SILL’s more complex behavioural phenomena.

Our semantics generalizes Kahn’s stream-based semantics for deterministic networks [Kah74].
A deterministic network is graph whose nodes are deterministic processes, and whose edges are
unidirectional channels. Each channel carries values of a single fixed simple type, e.g., integers or
booleans. Semantically, channels denote domains of sequences of values, and processes denote
continuous functions from input channels to output channels. Our semantics generalizes this
to allow for bidirectional, session-typed communication channels. Satisfactorily generalizing
Kahn-style semantics to handle non-determinism is difficult [Bro88; KP85; Pan85; PS92; Sta87;
Sta90], partly due to the Keller [Kel77] and Brock and Ackerman [BA81] anomalies.

Castellan and Yoshida [CY19] gave a game semantics interpretation of the session π-calculus
with recursion. It is fully abstract relative to a barbed congruence notion of behavioural equivalence.
Session types denote event structures that encode games and that are endowed with an ω-cpo
structure. Open types denote continuous maps between these and recursive types are interpreted
as least fixed points. Open processes are interpreted as continuous maps that describe strategies.
We conjecture that our semantics could be related via barbed congruence.

Kokke, Montesi, and Peressotti [KMP19] gave a denotational semantics using Brzozowski
derivatives [Brz64] to a proofs-as-processes interpretation between classical linear logic and the
π-calculus. It does not handle recursion or the transmission of functional values.

8.8. Summary of Interpretations

For ease of reference, we give all of the semantic clauses (including omitted clauses).

8.8.1. Clauses for Term Formation (section 5.A.1).
Rule (I-{}):

⟦Ψ ⊩ a ← {P}← a i ∶ {a ∶ A← a i ∶ A i}⟧ = up ○ ⟦Ψ ; a i ∶ A i ⊢ P ∶∶ a ∶ A⟧ (142)

Rule (F-Var):
⟦Ψ, x ∶ τ ⊩ x ∶ τ⟧u = πΨ,x

x u (134)
Rule (F-Fix):

⟦Ψ ⊩ fix x .M ∶ τ⟧u = ⟦Ψ, x ∶ τ ⊩ M ∶ τ⟧†u (137)
Rule (F-Fun):

⟦Ψ ⊩ λx ∶ τ.M ∶ τ → σ⟧u = up (strict (λv ∈ ⟦τ⟧.⟦Ψ, x ∶ τ ⊩ M ∶ σ⟧[u ∣ x ↦ v])) (135)

Rule (F-App):

⟦Ψ ⊩ MN ∶ σ⟧u = down (⟦Ψ ⊩ M ∶ τ → σ⟧u) (⟦Ψ ⊩ N ∶ τ⟧u) (136)

Rule (F-Z):
⟦Ψ ⊩ 0 ∶ nat⟧u = 0 (139)

244 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

Rule (F-S):

⟦Ψ ⊩ s(M) ∶ nat⟧u =
⎧⎪⎪
⎨
⎪⎪⎩

� if ⟦Ψ ⊩ M ∶ nat⟧u = �
n + 1 if ⟦Ψ ⊩ M ∶ nat⟧u = n

(140)

8.8.2. Clauses for Process Formation (section 5.A.2).
Rule (Fwd+):

⟦Ψ ; a ∶ A ⊢ a → b ∶∶ b ∶ A⟧u = ⟨a ∶ jAop , b ∶ jAop⟩ (113)
Rule (Fwd−):

⟦Ψ ; a ∶ A ⊢ a ← b ∶∶ b ∶ A⟧u = ⟨a ∶ jAop , b ∶ jAop⟩ (114)
Rule (Cut):

⟦Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C⟧u = ⟦Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C⟧u ○a ⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧u (115)

Rule (1R):
⟦Ψ ; ⋅ ⊢ close a ∶∶ a ∶ 1⟧u� = close (122)

Rule (1L):

⟦Ψ ; ∆, a ∶ 1 ⊢ wait a; P ∶∶ c ∶ C⟧u(δ+ , a+ , c−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ, close, c) if a+ = close
(j∆op(δ+ , �), �, jCop(�, c−)) otherwise

where (δ, c) = ⟦Ψ ; ∆ ⊢ P ∶∶ c ∶ C⟧u(δ+ , c−)

(123)

Rule (↓R):

⟦Ψ ; ∆ ⊢ send a shift; P ∶∶ a ∶ ↓A⟧u = (id × (a ∶ up)) ○ ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u (158)

Rule (↓L):

⟦Ψ ; ∆, a ∶ ↓A ⊢ shift← recv a; P ∶∶ c ∶ C⟧u(δ+ , a+ , c−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ, [a], c) if a+ = [a+0]
(j∆op(δ+ , �), �, jCop(�, c−)) otherwise

where (δ, a, c) = ⟦Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C⟧u(δ+ , a+0 , c
−)

(159)

Rule (↑R):

⟦Ψ ; ∆ ⊢ shift← recv a; P ∶∶ a ∶ ↑A⟧u(δ+ , a−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ, [a]) if a− = [a−0]
(j∆op(δ+ , �), �) otherwise

where (δ, a) = ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶⟧u(δ+ , a−0)

(204)

Rule (↑L):

⟦Ψ ; ∆, a ∶ ↑A ⊢ send a shift; P ∶∶ c ∶ C⟧u = (id × (a ∶ up)) ○ ⟦Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C⟧u (205)

Rule (⊕R):

⟦Ψ ; ∆ ⊢ a.k; P ∶∶ a ∶ ⊕{l ∶ A l}l∈L⟧u (δ
+ , (a−l)l∈L) = (δ, (k, [ak])) (166)

where ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ Ak⟧u (δ
+ , a−k) = (δ, ak)

Rule (⊕L):

⟦Ψ ; ∆, a ∶ ⊕{l ∶ A l}l∈L ⊢ case a {l ⇒ Pl}l∈L ∶∶ c ∶ C⟧u(δ
+ , a+ , c−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ, (l , [a l]), c) if a+ = (l , [a+
l
])

(j∆op(δ+ , �), �, jCop(�, c−)) otherwise

where ⟦Ψ ; ∆, a ∶ A l ⊢ Pl ∶∶ c ∶ C⟧u (δ
+ , a+l , c

−) = (δ, a l , c)

(167)

8.8. SUMMARY OF INTERPRETATIONS 245

Rule (&R):

⟦Ψ ; ∆ ⊢ case a {l ⇒ Pl}l∈L ∶∶ a ∶ &{l ∶ A l}l∈L⟧u(δ
+ , a−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ, (l , [a l])) if a− = (l , [a−
l
])

(j∆op(δ+ , �), �) otherwise

where ⟦Ψ ; ∆, a ∶ Ak ⊢ P ∶∶ c ∶ C⟧u (δ+ , a−l) = (δ, a l)

(206)

Rule (&L):

⟦Ψ ; ∆, a ∶ &{l ∶ A l}l∈L ⊢ a.k; P ∶∶ c ∶ C⟧u(δ+ , (a+l)l∈L , c
−) = (δ, (k, [ak]) , c) (207)

where ⟦Ψ ; ∆, a ∶ Ak ⊢ P ∶∶ c ∶ C⟧u(δ+ , a+k , c
−) = (δ, ak , c)

Rule (⊗R):

⟦Ψ ; ∆, b ∶ B ⊢ send a b; P ∶∶ a ∶ B ⊗ A⟧u(δ+ , b+ , (a−B , a
−
A))

= (δ, b, [(b, a)]) where {
⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u(δ+ , a−A) = (δ, a)

jBop(b+ , a−B) = b
(130)

Rule (⊗L):

⟦Ψ ; ∆, a ∶ B ⊗ A ⊢ b ← recv a; P ∶∶ c ∶ C⟧u(δ+ , a+ , c−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ, [(b, a)], c) if a+ = [(b+0 , a
+
0)]

(j∆op(δ+ , �), �, jCop(�, c−)) otherwise

where ⟦Ψ ; ∆, a ∶ A, b ∶ B ⊢ P ∶∶ c ∶ C⟧u(δ+ , a+0 , b
+
0 , c
−) = (δ, a, b, c)

(131)

Rule (⊸R):

⟦Ψ ; ∆ ⊢ b ← recv a; P ∶∶ a ∶ B⊸ A⟧u(δ+ , a−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ, [(b, a)]) if a− = [(b+0 , a
−
0)]

(j∆op(δ+ , �), �) otherwise

where ⟦Ψ ; ∆, b ∶ B ⊢ P ∶∶ a ∶ A⟧u(δ+ , b+0 , a
−
0) = (δ, b, a)

(208)

Rule (⊸L):

⟦Ψ ; ∆, b ∶ B, a ∶ B⊸ A ⊢ send a b; P ∶∶ c ∶ C⟧u(δ+ , b+ , (a−B , a
+
A), c

−)

= (δ, [(b, a)], c) where {
⟦Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C⟧u(δ+ , a+A, c

−) = (δ, a)

jBop(b+ , a−B) = b
(209)

Rule (∧R):

⟦Ψ ; ∆ ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A⟧u(δ+ , a−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ, (v , [a])) if ⟦Ψ ⊩ M ∶ τ⟧u = v ≠ �

(j∆op(δ+ , �), jτ ∧ Aop(�, a−)) if ⟦Ψ ⊩ M ∶ τ⟧u = �

where ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ A⟧u(δ+ , a−) = (δ, a)

(150)

Rule (∧L):

⟦Ψ ; ∆, a ∶ τ ∧ A ⊢ x ← input a; P ∶∶ c ∶ C⟧u(δ+ , a+ , c−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ, (v , [a]), c) if a+ = (v , [a+0])
(j∆op(δ+ , �), �, jCop(�, c−)) otherwise

where ⟦Ψ, x ∶ τ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C⟧[u ∣ x ↦ v](δ+ , a+0 , c
−) = (δ, a, c)

(151)

246 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

Rule (⊃L):

⟦Ψ ; ∆, a ∶ τ ⊃ A ⊢ _← output a M; P ∶∶ c ∶ C⟧u(δ+ , a+ , c−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ, (v , [a]) , c) if ⟦Ψ ⊩ M ∶ τ⟧u = v ≠ �

(j∆op(δ+ , �), jτ ⊃ Aop(a+ , �), jCop(�, c−)) if ⟦Ψ ⊩ M ∶ τ⟧u = �

where ⟦Ψ ; ∆, a ∶ A ⊢ P ∶∶ c ∶ C⟧u(δ+ , a+ , c−) = (δ, a, c)

(210)

Rule (⊃R):

⟦Ψ ; ∆ ⊢ x ← input a; P ∶∶ a ∶ τ ⊃ A⟧u(δ+ , a−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ, (v , [a])) if a− = (v , [a−0])
(j∆op(δ+ , �), �) otherwise

where ⟦Ψ, x ∶ τ ; ∆ ⊢ P ∶∶ a ∶ A⟧[u ∣ x ↦ v](δ+ , a−0) = (δ, a)

(211)

Rule (ρ+R):

⟦Ψ ; ∆ ⊢ send a unfold; P ∶∶ a ∶ ρα.A⟧u

= (id × (a ∶ Fold ○ up)) ○ ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A⟧u ○ (id × (a− ∶ Unfold)) (188)

Rule (ρ+L):

⟦Ψ ; ∆, a ∶ ρα.A ⊢ unfold← recv a; P ∶∶ c ∶ C⟧u(δ+ , a+ , c−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ,Fold([a]), c) if a+ = Fold([a+0])
(j∆op(δ+ , �), �, jCop(�, c−)) otherwise

where (δ, a, c) = ⟦Ψ ; ∆, a ∶ [ρα.A/α]A ⊢ P ∶∶ c ∶ C⟧u(δ+ , a+0 , c
−)

(189)

Rule (ρ−R):

⟦Ψ ; ∆ ⊢ unfold← recv a; P ∶∶ a ∶ ρα.A⟧u(δ+ , a−)

=

⎧⎪⎪
⎨
⎪⎪⎩

(δ,Fold([a])) if a− = Fold([a−0])
(j∆op(δ+ , �), �) otherwise

where (δ, a) = ⟦Ψ ; ∆ ⊢ P ∶∶ a ∶ [ρα.A/α]A⟧u(δ+ , a−0)

(212)

Rule (ρ−L):

⟦Ψ ; ∆, a ∶ ρα.A ⊢ send a unfold; P ∶∶ c ∶ C⟧u

= (id × (a ∶ Fold ○ up)) ○ ⟦Ψ ; ∆, a ∶ [ρα.A/α]A ⊢ P ∶∶ c ∶ C⟧u ○ (id × (a+ ∶ Unfold)) (213)

Rule (E-{}):

⟦Ψ ; a i ∶ A i ⊢ a ← {M}← a i ∶∶ a ∶ A⟧ = down ○ ⟦Ψ ⊩ M ∶ {a ∶ A← a i ∶ A i}⟧ (143)

8.8.3. Clauses for Type Formation (section 5.A.3).
Rule (C1):

⟦Ξ ⊢ 1 type+s ⟧ = diag⟦Ξ⟧{� ⋤ close} (116)

⟦Ξ ⊢ 1 type+s ⟧
+ = diag⟦Ξ⟧{� ⋤ close} (117)

⟦Ξ ⊢ 1 type+s ⟧
− = diag⟦Ξ⟧ ⊺Stab (118)

jΞ ⊢ 1 type+s o
+ = id (119)

jΞ ⊢ 1 type+s o
− = ⊺ (120)

jΞ ⊢ 1 type+s o
p = π1 (121)

8.8. SUMMARY OF INTERPRETATIONS 247

Rule (CVar):

⟦Ξ, α typeps ⊢ α typeps ⟧ = π
Ξ ,α
α (168)

⟦Ξ, α typeps ⊢ α typeps ⟧
+ = πΞ ,α

α (169)

⟦Ξ, α typeps ⊢ α typeps ⟧
− = πΞ ,α

α (170)

jΞ, α typeps ⊢ α typeps o
+ = id (171)

jΞ, α typeps ⊢ α typeps o
− = id (172)

jΞ, α typeps ⊢ α typeps o
p = ⊓ (173)

Rule (Cρ+):

⟦Ξ ⊢ ρα.A type+s ⟧ = ((−)�⟦Ξ, α type+s ⊢ A type+s ⟧)
† (179)

⟦Ξ ⊢ ρα.A type+s ⟧
+ = ((−)�⟦Ξ, α type+s ⊢ A type+s ⟧

+)
† (180)

⟦Ξ ⊢ ρα.A type+s ⟧
− = (⟦Ξ, α type+s ⊢ A type+s ⟧

−)
† (181)

jΞ ⊢ ρα.A type+s o
+ = ((−)�jΞ, α type+s ⊢ A type+s o

+)
† (182)

jΞ ⊢ ρα.A type+s o
− = (down ∗ jΞ, α type+s ⊢ A type+s o

−)
† (183)

jΞ ⊢ ρα.A type+s o
p = Fold ○ j[ρα.A/α]Aop ○ δ ○ (Unfold ×Unfold) (187)

Rule (Cρ−):

⟦Ξ ⊢ ρα.A type−s ⟧ = ((−)�⟦Ξ, α type+s ⊢ A type+s ⟧)
† (214)

⟦Ξ ⊢ ρα.A type−s ⟧
+ = (⟦Ξ, α type−s ⊢ A type−s ⟧

+)
† (215)

⟦Ξ ⊢ ρα.A type−s ⟧
− = ((−)�⟦Ξ, α type−s ⊢ A type−s ⟧

−)
† (216)

jΞ ⊢ ρα.A type−s o
+ = (down ∗ jΞ, α type−s ⊢ A type−s o

+)
† (217)

jΞ ⊢ ρα.A type−s o
− = ((−)�jΞ, α type−s ⊢ A type−s o

−)
† (218)

jΞ ⊢ ρα.A type+s o
p = Fold ○ j[ρα.A/α]Aop ○ δ ○ (Unfold ×Unfold) (219)

Rule (C↓):

⟦Ξ ⊢ ↓A type+s ⟧ = ⟦Ξ ⊢ A type−s ⟧� (152)

⟦Ξ ⊢ ↓A type+s ⟧
+ = ⟦Ξ ⊢ A type−s ⟧

+
� (153)

⟦Ξ ⊢ ↓A type+s ⟧
− = ⟦Ξ ⊢ A type−s ⟧

− (154)

jΞ ⊢ ↓A type+s o
+ = (−)�jΞ ⊢ A type−s o

+ (155)

jΞ ⊢ ↓A type+s o
− = down ∗ jΞ ⊢ A type−s o

− (156)

jΞ ⊢ ↓A type+s o
p = (−)�jΞ ⊢ A type−s o

p
⋅ δ (157)

Rule (C↑):

⟦Ξ ⊢ ↑A type−s ⟧ = ⟦Ξ ⊢ A type+s ⟧� (220)

⟦Ξ ⊢ ↑A type−s ⟧
+ = ⟦Ξ ⊢ A type−s ⟧

+ (221)

⟦Ξ ⊢ ↑A type−s ⟧
− = ⟦Ξ ⊢ A type−s ⟧

−
� (222)

jΞ ⊢ ↑A type−s o
+ = down ∗ jΞ ⊢ A type−s o

+ (223)

jΞ ⊢ ↑A type−s o
− = (−)�jΞ ⊢ A type−s o

− (224)

jΞ ⊢ ↑A type−s o
p = (−)�jΞ ⊢ A type+s o

p
⋅ δ (225)

248 8. DENOTATIONAL APPROACHES TO EQUIVALENCE

Rule (C⊕):

⟦Ξ ⊢ ⊕{l ∶ A l}l∈L type
+
s ⟧ =⊕

l∈L
⟦Ξ ⊢ A l type

+
s ⟧� (160)

⟦Ξ ⊢ ⊕{l ∶ A l}l∈L type
+
s ⟧
+ =⊕

l∈L
⟦Ξ ⊢ A l type

+
s ⟧
+
� (161)

⟦Ξ ⊢ ⊕{l ∶ A l}l∈L type
+
s ⟧
− =∏

l∈L
⟦Ξ ⊢ A l type

+
s ⟧
− (162)

jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s o
+ =⊕

l∈L
(−)�jΞ ⊢ A l type

+
s o
+ (163)

jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s o
− = diag (down ∗ jΞ ⊢ A l type

+
s o
−)

l∈L (164)

jΞ ⊢ ⊕{l ∶ A l}l∈L type
+
s o

p

ξ
((k, [a+k]), (a

−
l)l∈L) = (k, [jΞ ⊢ Ak type

+
s o

p

ξ
(a+k , a

−
k)]) (165)

Rule (C&):

⟦Ξ ⊢ &{l ∶ A l}l∈L type
−
s ⟧ =⊕

l∈L
⟦Ξ ⊢ A l type

−
s ⟧� (226)

⟦Ξ ⊢ &{l ∶ A l}l∈L type
−
s ⟧
+ =∏

l∈L
⟦Ξ ⊢ A l type

−
s ⟧
+ (227)

⟦Ξ ⊢ &{l ∶ A l}l∈L type
−
s ⟧
− =⊕

l∈L
⟦Ξ ⊢ A l type

−
s ⟧
−
� (228)

jΞ ⊢ &{l ∶ A l}l∈L type
−
s o
+ = diag (down ∗ jΞ ⊢ A l type

−
s o
+)

l∈L (229)

jΞ ⊢ &{l ∶ A l}l∈L type
−
s o
− =⊕

l∈L
(−)�jΞ ⊢ A l type

−
s o
− (230)

jΞ ⊢ &{l ∶ A l}l∈L type
−
s o

p

ξ
((a+l)l∈L , (k, [a

−
k])) = (k, [jΞ ⊢ Ak type

+
s o

p

ξ
(a+k , a

−
k)]) (231)

Rule (C⊗):

⟦Ξ ⊢ A⊗ B type+s ⟧ = (⟦Ξ ⊢ A type+s ⟧ × ⟦Ξ ⊢ B type+s ⟧)� (124)

⟦Ξ ⊢ A⊗ B type+s ⟧
+ = (⟦Ξ ⊢ A type+s ⟧

+ × ⟦Ξ ⊢ B type+s ⟧
+)� (125)

⟦Ξ ⊢ A⊗ B type+s ⟧
− = ⟦Ξ ⊢ A type+s ⟧

− × ⟦Ξ ⊢ B type+s ⟧
− (126)

jΞ ⊢ A⊗ B type+s o
+ = (−)� (jΞ ⊢ A type+s o

+ × jΞ ⊢ B type+s o
+) (127)

jΞ ⊢ A⊗ B type+s o
− = down ∗ (jΞ ⊢ A type+s o

− × jΞ ⊢ B type+s o
−) (128)

jΞ ⊢ A⊗ B type+s o
p

ξ
([(a+ , b+)], (a− , b−))

= [(jΞ ⊢ A type+s o
p

ξ
(a+ , a−), jΞ ⊢ B type+s o

p

ξ
(b+ , b−))] (129)

Rule (C⊸):

⟦Ξ ⊢ B⊸ A type−s ⟧ = (⟦Ξ ⊢ B type+s ⟧ × ⟦Ξ ⊢ A type−s ⟧)� (232)

⟦Ξ ⊢ B⊸ A type−s ⟧
+ = ⟦Ξ ⊢ B type+s ⟧

− × ⟦Ξ ⊢ A type−s ⟧
+ (233)

⟦Ξ ⊢ B⊸ A type−s ⟧
− = (−)� (⟦Ξ ⊢ B type+s ⟧

+ × ⟦Ξ ⊢ A type−s ⟧
−) (234)

jΞ ⊢ B⊸ A type−s o
+ = down ∗ (jΞ ⊢ B type+s o

− × jΞ ⊢ A type−s o
+) (235)

jΞ ⊢ B⊸ A type−s o
− = (−)� (jΞ ⊢ B type+s o

+ × jΞ ⊢ A type−s o
−) (236)

jΞ ⊢ B⊸ A type−s o
p

ξ
((b− , a+), [(b+ , a−)])

= [(jΞ ⊢ A type+s o
p

ξ
(b+ , b−), jΞ ⊢ B type+s o

p

ξ
(a+ , a−))] (237)

8.8. SUMMARY OF INTERPRETATIONS 249

Rule (C∧):

⟦Ξ ⊢ τ ∧ A type+s ⟧ = ⟦Ξ ⊢ τ typef⟧⊗ ⟦Ξ ⊢ A type+s ⟧� (144)

⟦Ξ ⊢ τ ∧ A type+s ⟧
+ = ⟦Ξ ⊢ τ typef⟧⊗ ⟦Ξ ⊢ A type+s ⟧

+
� (145)

⟦Ξ ⊢ τ ∧ A type+s ⟧
− = ⟦Ξ ⊢ A type+s ⟧

− (146)

jΞ ⊢ τ ∧ A type+s o
+ = id⟦Ξ⊢τ typef⟧ ⊗ (−)�jΞ ⊢ A type+s o

+ (147)

jΞ ⊢ τ ∧ A type+s o
− = down ∗ π2 ∗ jΞ ⊢ A type+s o

− (148)

jΞ ⊢ τ ∧ A type+s o
p

ξ
((v , [a+]), a−) = (v , [jΞ ⊢ A type+s o

p

ξ
(a+ , a−)]) (149)

Rule (C⊃):

⟦Ξ ⊢ τ ⊃ A type−s ⟧ = ⟦Ξ ⊢ τ typef⟧⊗ ⟦Ξ ⊢ A type−s ⟧� (238)

⟦Ξ ⊢ τ ⊃ A type−s ⟧
+ = ⟦Ξ ⊢ A type−s ⟧

+ (239)

⟦Ξ ⊢ τ ⊃ A type−s ⟧
− = ⟦Ξ ⊢ τ typef⟧⊗ ⟦Ξ ⊢ A type−s ⟧

−
� (240)

jΞ ⊢ τ ⊃ A type−s o
+ = down ∗ π2 ∗ jΞ ⊢ A type−s o

+ (241)

jΞ ⊢ τ ⊃ A type−s o
− = id⟦Ξ⊢τ typef⟧ ⊗ (−)�jΞ ⊢ A type−s o

− (242)

jΞ ⊢ τ ⊃ A type−s o
p

ξ
(a+ , (v , [a−])) = (v , [jΞ ⊢ A type−s o

p

ξ
(a+ , a−)]) (243)

Rule (T{}):

⟦Ξ ⊢ {a0 ∶ A0 ← a1 ∶ A1 , . . . , an ∶ An} typef⟧

= (−)� ○ diag⟦Ξ⟧ (JFC [jΞ ⊢ A1 typeso� , . . . , jΞ ⊢ An typeso� → jΞ ⊢ A0 typeso�]) (141)

Rule (T→): When the derivation of Ξ ⊢ τ → σ typef respectively does and does not use (T{}):

⟦Ξ ⊢ τ → σ typef⟧ = diag⟦Ξ⟧ ((DCPO�! [⟦Ξ ⊢ τ typef⟧→ ⟦Ξ ⊢ σ typef⟧])�) (133)

⟦Ξ ⊢ τ → σ typef⟧ = diag⟦Ξ⟧ ((Stab�! [⟦Ξ ⊢ τ typef⟧→ ⟦Ξ ⊢ σ typef⟧])�) (132)

CHAPTER 9

Equivalence, Applied

In this chapter, we apply our denotational techniques to show various program equivalences.
In particular, we show that our denotational semantics satisfies a collection of η-style properties
and commuting conversions in section 9.1. We characterize the denotations of purely positive and
negative types in section 9.2. In section 9.3, we revisit example 5.3.10 to show that flipping the bits
in a bit stream twice is equivalent to forwarding the bit stream. We show that the computational
interpretation of the identity expansion of intuitionistic linear logic coincides with forwarding in
section 9.4. Finally, we study binary arithmetic in section 9.5.

Many of the equivalences involvemanipulating string diagrams for process compositions in the
tracedmonoidal category Stab�!. Given processes Ψ ; ∆1 ⊢ P ∶∶ a ∶ A and Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ C
and an environment u ∈ ⟦Ψ⟧, the morphisms ⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧u and ⟦Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶
c ∶ C⟧u respectively denote the string diagrams

P

⟦∆1⟧
+ ⟦∆1⟧

⟦A⟧− ⟦A⟧

Q

⟦A⟧+ ⟦A⟧

⟦∆2⟧
+ ⟦∆2⟧

⟦C⟧− ⟦C⟧

Here, we’ve abbreviated themultiple input and output wires associated with each component of
∆1 and ∆2 by triple lines. In general, we will group together wires that are not of interest in this
manner. We will also generally elide the object labels on wires: they will be clear from context.

Using these conventions, the composition Ψ ; ∆1 , ∆2 ⊢ a ← P; Q ∶∶ c ∶ C then denotes the
string diagram:1

P

Q

jAo+

jAo−

We adopt some convenient notation for string diagrams denoting compositions of processes. We
are free to position the positive and negative projections anywhere along the wire thanks to the
sliding axiom. As a result, we use red dashed wires “ ” to represent wires with an (implicit)
positive projection, and blue dashed and dottedwires “ ” for wires with an (implicit) negative
projection. Wemay label these wires with their associated type. In light of theorem 2.3.6, we also

1In this diagram, we have implicitly used the vanishing axiom to depict fixing the component ⟦A⟧+ × ⟦A⟧− as fixing
the components ⟦A⟧+ and ⟦A⟧− separately.

251

252 9. EQUIVALENCE, APPLIED

allow ourselves a significant liberty with the layout of our string diagrams.2 Consequently, wemay
depict the above diagram as follows:

P

Q

9.1. η-Style Properties

Règle très appréciée des étudiants, car elle
sert à étoffer des thèses peu fournies : un
chapitre sur « η » amène son lot de
complications techniques prévisibles et
fastidieuses, 100% de transpiration, 0%
d’inspiration ; bref, cela consomme du
papier.

Jean-Yves Girard [Gir06, p. 166]

η-style properties capture the fact that we have enough communication destructors for each
communication constructor. They correspond to the principal or key cases of the cut-elimination
algorithm that drives communication in Polarized SILL. Though their proof requires no inspiration,
it also requires no perspiration (cf. the epigraph). This is because each η-style property follows
from an easymanipulation of string diagrams.

Proposition 9.1.1 (η-style Properties). The following semantic equivalences hold for appropri-

ately typed processes P, Q, Pl , and Q l :

Ψ ; ∆ ⊢ P ≡ a ← close a; wait a; P ∶∶ c ∶ C (244)
Ψ ; ∆ ⊢ a ← P; Q ≡ a ← (send a shift; P); (shift← recv a; Q) ∶∶ c ∶ C (245)
Ψ ; ∆ ⊢ a ← P; Q ≡ a ← (shift← recv a; P); (send a shift; Q) ∶∶ c ∶ C (246)

Ψ ; ∆ ⊢ a ← P; Qk ≡ a ← (a.k; P); case a {l ⇒ Q l} ∶∶ c ∶ C (247)
Ψ ; ∆ ⊢ a ← Pk ; Q ≡ a ← case a {l ⇒ Pl}; (a.k; Q) ∶∶ c ∶ C (248)

Ψ ; ∆, b ∶ B ⊢ a ← P; Q ≡ a ← (send a b; P); (b ← recv a; Q) ∶∶ c ∶ C (249)
Ψ ; ∆, b ∶ B ⊢ a ← P; Q ≡ a ← (b ← recv a; Q); (send a b; P) ∶∶ c ∶ C (250)

Ψ ; ∆ ⊢ a ← P; [M/x]Q ≡ a ← (_← output a M; P); (x ← input Q;) ∶∶ c ∶ C (251)
Ψ ; ∆ ⊢ a ← [M/x]P; Q ≡ a ← (x ← input P;); (_← output a M; Q) ∶∶ c ∶ C (252)

Ψ ; ∆ ⊢ a ← P; Q ≡ a ← (send a unfold; P); (unfold← recv a; Q) ∶∶ c ∶ C (253)
Ψ ; ∆ ⊢ a ← P; Q ≡ a ← (unfold← recv a; P); (send a unfold; Q) ∶∶ c ∶ C (254)

Equivalences (251) and (252) are subject to the side condition that ⟦Ψ ⊩ M ∶ τ⟧u ≠ � for all u ∈ ⟦Ψ⟧.

Proof. Each equivalence follows by amanipulation of string diagrams. We show the cases for cuts
along positive channels. The cases for cuts along negative channels will follow by symmetry.

2In all cases, our diagrams will bemorally correct, i.e., their wires and boxes can be rearranged into technically correct
diagrams.

9.1. η-STYLE PROPERTIES 253

We start with eq. (244). Fix some arbitrary u ∈ ⟦Ψ⟧. The composition ⟦Ψ ; ∆ ⊢ a ←
close a; wait a; P ∶∶ c ∶ C⟧u denotes the string diagram

close a

wait a; P

where the boxes respectively represent themorphisms ⟦Ψ ; ⋅ ⊢ close a ∶∶ a ∶ 1⟧u and ⟦Ψ ; ∆, a ∶ 1 ⊢
wait a; P ∶∶ c ∶ C⟧u. By eq. (119), the positive wire is the identitymorphism, while by eq. (120), the
negative wire is the constantly bottom morphism.

close a
wait a; P

By eq. (123), we recognize the composition in the shaded area as ρ−1 ○ ⟦Ψ ; ∆ ⊢ P ∶∶ c ∶ C⟧u ○ ρ, so
the diagram is equal to:

P

where the box P is themorphism ⟦Ψ ; ∆ ⊢ P ∶∶ c ∶ C⟧u. But the trace is fixing themonoidal unit,
so by vanishing the diagram is equal to:

P

We conclude that

⟦Ψ ; ∆ ⊢ a ← close a; wait a; P ∶∶ c ∶ C⟧u = ⟦Ψ ; ∆ ⊢ P ∶∶ c ∶ C⟧u

as desired.
Now we show eq. (245). Fix some arbitrary u ∈ ⟦Ψ⟧. The composition ⟦Ψ ; ∆1 , ∆2 ⊢ a ←

send a shift; P; shift← recv a; Q ∶∶ c ∶ C⟧u denotes the string diagram

send a shift; P

shift← recv a; Q

where the boxes respectively represent themorphisms ⟦Ψ ; ∆1 ⊢ send a shift; P ∶∶ a ∶ ↓A⟧u and
⟦Ψ ; ∆2 , a ∶ ↓A ⊢ shift ← recv a; Q ∶∶ c ∶ C⟧u. Expanding eq. (158), we see that this diagram is

254 9. EQUIVALENCE, APPLIED

equal to:

P

shift← recv a; Q

up

where the box P is themorphism ⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧u. By diagram 2 and eq. (155), j↓Ao+ ○ up =
up ○ jAo+. Using this fact and rearranging the diagram, we get:

P

shift← recv a; Q

up

where the positive projection is jAo+. Expanding eq. (159), the diagram becomes

P

Q

up

where the box Q is themorphism ⟦Ψ ; ∆2 , a ∶ A ⊢ Q ∶∶ c ∶ C⟧u. Taking into account the definition
of j↓Ao− (eq. (156)), the diagram is equal to:

P

Q

This is what we wanted to show.
Next, we show eq. (247). The composition ⟦Ψ ; ∆1 , ∆2 ⊢ a ← a.k; P; case a {l ⇒ Q l}l∈L ∶∶

c ∶ C⟧u denotes the string diagram

a.k; P

case a {l ⇒ Q l}l∈L

where the boxes respectively represent themorphisms ⟦Ψ ; ∆1 ⊢ a.k; P ∶∶ a ∶ ⊕{l ⇒ A l}l∈L⟧u and
⟦Ψ ; ∆2 , a ∶ ⊕{l ⇒ A l}l∈L ⊢ case a {l ⇒ Q l}l∈L ∶∶ c ∶ C⟧u. Expanding the definition of a.k; P,

9.1. η-STYLE PROPERTIES 255

the above diagram is equal to:

P

ιk ○upπk

case a {l ⇒ Q l}l∈L

where the box P is ⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ Ak⟧u. Observe that

j⊕{l ⇒ A l}l∈Lo
+ ○ ιk ○up = ιk ○up ○ jAko

+ .

So the diagram is equal to:

P

ιk ○upπk

case a {l ⇒ Q l}l∈L

where the positive projection used is now jAko
+. Rearranging the diagram gives:

P

case a {l ⇒ Q l}l∈L
ιk ○up

πk

Expanding eq. (167), this diagram is in turn equal to:

P

Qk

ιk ○up
πk

where the box Qk is ⟦Ψ ; ∆2 , a ∶ Ak ⊢ Qk ∶∶ c ∶ C⟧u. Expanding the definition of the negative
projection (eq. (163)) and observing that

j⊕{l ⇒ A l}l∈Lo
− ○ ιk ○up = ιk ○jAko

− ,

the diagram becomes equal to:

P

Qk

ιk

πk

256 9. EQUIVALENCE, APPLIED

where negative projection is now jAko
−. Rearranging this diagram to place ιk to the left of πk , we

observe that they cancel out, and the diagram then becomes:

P

Qk

This is what we wanted to show.
We now show the η-style property for tensors, i.e., eq. (249). Fix some arbitrary u ∈ ⟦Ψ⟧. The

composition ⟦Ψ ; ∆1 , ∆2 , b ∶ B ⊢ a ← send a b; P; b ← recv a; Q ∶∶ c ∶ C⟧u denotes the string
diagram

send a b; P

b ← recv a; Q

⟦B⟧+ ⟦B⟧

(255)

where the boxes respectively represent themorphisms ⟦Ψ ; ∆1 , b ∶ B ⊢ send a b; P ∶∶ a ∶ B ⊗ A⟧u
and ⟦Ψ ; ∆2 , a ∶ B ⊗ A ⊢ b ← recv a; Q ∶∶ c ∶ C⟧u. We begin by expanding the definitions of each
box. By eq. (130), the diagram

send a b; P

is equal to

P

⟨jBop , jBop⟩id id up (jBo+ × jAo+)�

In this diagram, we use the identitymorphism as a convenient notation to shuttle between the two
roles of the categorical product: A× B is simulatenously the tensor of A and B (represented by a
pair of wires) and the categorical product of A and B (represented by a single wire). By diagram 2,
(jBo+ × jAo+)� ○up = up ○ (jBo

+ × jAo+), so the sequence of threemorphisms in the bottom right
corner can be rewritten to give:

P

⟨jBop , jBop⟩

jAo+

jBo+id id up

9.1. η-STYLE PROPERTIES 257

i.e., the diagram

P

⟨jBop , jBop⟩id id up

By eq. (131), the diagram

b ← recv a; Q

up

is equal to

Q

id id up

which by eq. (128) is equal to

Q

id id

Using these observations, we deduce that diagram 255 is equal to:

P

⟨jBop , jBop⟩id id up

b ← recv a; Q

By sliding and action, we can move the rightmost up the to left of b ← recv a; Q, and the diagram
then simplifies to:

P

⟨jBop , jBop⟩id id

Q

id id

258 9. EQUIVALENCE, APPLIED

We can now use vanishing and action to shift the identitymorphisms to be side by side, and we
observe that they cancel out. The diagram becomes:

P

⟨jBop , jBop⟩

Q

Recall that jBo is well-woven and that ⟦Ψ ; ∆2 , a ∶ A, b ∶ B ⊢ Q ∶∶ c ∶ C⟧u is a morphism of
CYO(Stab). This implies that

⟦Ψ ; ∆2 , a ∶ A, b ∶ B ⊢ Q ∶∶ c ∶ C⟧u ○ idjBo = ⟦Ψ ; ∆2 , a ∶ A, b ∶ B ⊢ Q ∶∶ c ∶ C⟧u,

i.e., that the above diagram is equal to:

P

Q

This is exactly what we wanted to show.
Next,we show eq. (251). Fix some environment u ∈ ⟦Ψ⟧. By assumption, ⟦Ψ ⊩ M ∶ τ⟧u = v for

some v ≠ �. The composition ⟦Ψ ; ∆1 , ∆2 ⊢ a ← _ ← output a M; P; x ← input a; Q ∶∶ c ∶ C⟧u
denotes the string diagram

_← output a M; P

x ← input a; Q

where the boxes respectively represent themorphisms ⟦Ψ ; ∆1 ⊢ _← output a M; P ∶∶ a ∶ τ ∧ A⟧u
and ⟦Ψ ; ∆2 , a ∶ τ ∧ A ⊢ x ← input a; Q ∶∶ c ∶ C⟧u. Expanding eq. (150), this diagram is equal to:

P

x ← input a; Q

ϕ

9.1. η-STYLE PROPERTIES 259

where ϕ = λa ∈ ⟦A⟧.(v , [a]) and P is the morphism ⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧u. Observe that
jτ ∧ Ao+ ○ ϕ = ϕ ○ jAo+, so after sliding, the diagram is equal to:

P

x ← input a; Q

ϕ

By semantic substitution (proposition 8.5.6),

⟦Ψ, x ∶ τ ; ∆2 , a ∶ A ⊢ Q ∶∶ c ∶ C⟧[u ∣ x ↦ v] = ⟦Ψ ; ∆2 , a ∶ A ⊢ [M/x]Q ∶∶ c ∶ C⟧u.

Expanding eq. (151), we can simplify the bottom portion of the diagram to get:

P

[M/x]Q
ϕ

where the box [M/x]Q is themorphism ⟦Ψ ; ∆2 , a ∶ A ⊢ [M/x]Q ∶∶ c ∶ C⟧u. Finally, observe that
jτ ∧ Ao− ○ ϕ = jAo−, so the diagram is equal to to

P

[M/x]Q

This is what we wanted to show.
Equation (253) is the final η-style property that we must show. Again, fix some arbitrary

u ∈ ⟦Ψ⟧. The composition ⟦Ψ ; ∆1 , ∆2 ⊢ a ← send a unfold; P; unfold ← recv a; Q ∶∶ c ∶ C⟧u
denotes the string diagram

send a unfold; P

unfold← recv a; Q

where the boxes respectively represent themorphisms ⟦Ψ ; ∆1 ⊢ send a unfold; P ∶∶ a ∶ ρα.A⟧u
and ⟦Ψ ; ∆2 , a ∶ ρα.A ⊢ unfold← recv a; Q ∶∶ c ∶ C⟧u. Expanding eq. (188), this diagram is equal

260 9. EQUIVALENCE, APPLIED

to:

P

unfold← recv a; Q

Fold ○ upUnfold

where P is themorphism ⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ [ρα.A/α]A⟧u. By diagrams 2 and 185,

jρα.Ao+ ○ Fold ○ up

= Fold ○ (−)�j[ρα.A/α]Ao+ ○Unfold ○ Fold ○ up

= Fold ○ (−)�j[ρα.A/α]Ao+ ○ up

= Fold ○ up ○ j[ρα.A/α]Ao+ .

Combining this fact with sliding, the above diagram is equal to:

P

unfold← recv a; Q

Fold ○ up

Unfold

We can simplify the bottom composition by expanding eq. (189) to get:

P

Q

Unfold

Fold ○ up

where Q is themorphism ⟦Ψ ; ∆2 , a ∶ [ρα.A/α]A ⊢ Q ∶∶ c ∶ C⟧u. By diagram 185,

jρα.Ao− ○ Fold ○ up

= (Fold ○ j[ρα.A/α]Ao+ ○ down ○Unfold) ○ Fold ○ up

= Fold ○ j[ρα.A/α]Ao+ .

So the diagram is equal to

P

Q

Unfold

Fold

9.1. η-STYLE PROPERTIES 261

By sliding the foldmorphism to the left of the unfoldmorphism, we see that they cancel out and
the diagram becomes:

P

Q

This is what we wanted to show.

Proposition 9.1.2 captures the semantic identities that arise from the commutation cases in the
cut-elimination proof.

Proposition 9.1.2 (Commuting Conversions). The following semantic equivalences hold for

appropriately typed processes P and Q:

Ψ ; ∆ ⊢ a ← P; (send c shift; Q) ≡ send c shift; a ← P; Q ∶∶ c ∶ ↓C (256)
Ψ ; ∆, b ∶ ↑B ⊢ a ← (send b shift; P); Q ≡ send b shift; a ← P; Q ∶∶ c ∶ C (257)

Ψ ; ∆ ⊢ a ← P; (c.k; Q) ≡ c.k; a ← P; Q ∶∶ c ∶ ⊕{l ∶ C l}l∈L (258)
Ψ ; ∆, b ∶ &{l ∶ B l}l∈L ⊢ a ← (b.k; P); Q ≡ b.k; a ← P; Q ∶∶ c ∶ C (259)

Ψ ; ∆, d ∶ D ⊢ a ← P; (send c d; Q) ≡ send c d; a ← P; Q ∶∶ c ∶ D ⊗ C (260)
Ψ ; ∆, d ∶ D, b ∶ D ⊗ B ⊢ a ← (send b d; P); Q ≡ send b d; a ← P; Q ∶∶ c ∶ C (261)

Ψ ; ∆ ⊢ a ← P; (_← output c M; Q) ≡ _← output c M; a ← P; Q ∶∶ c ∶ τ ∧ C (262)
Ψ ; ∆, b ∶ τ ⊃ B ⊢ a ← (_← output b M; P); Q ≡ _← output b M; a ← P; Q ∶∶ c ∶ C (263)

Ψ ; ∆ ⊢ a ← P; (send c unfold; Q) ≡ send c unfold; a ← P; Q ∶∶ c ∶ ρα.C (264)
Ψ ; ∆, b ∶ ρβ.B ⊢ a ← (send b unfold; P); Q ≡ send b unfold; a ← P; Q ∶∶ c ∶ C (265)

Equivalences (262) and (263) are subject to the side condition that ⟦Ψ ⊩ M ∶ τ⟧u ≠ � for all u ∈ ⟦Ψ⟧.

Proof. By string diagrammanipulations.
We start with eq. (256). Let u ∈ ⟦Ψ⟧ be arbitrary. The composition ⟦Ψ ; ∆1 , ∆2 ⊢ a ←

P; (send c shift; Q) ∶∶ c ∶ ↓C⟧u represents the string diagram

P

send c shift; Q

262 9. EQUIVALENCE, APPLIED

where the morphisms are respectively ⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧u and ⟦Ψ ; a ∶ A, ∆2 ⊢ Q ∶∶ c ∶ ↓C⟧u.
Expanding the definition of eq. (158), the diagram is seen to be equal to:

P

Q

up

By tightening, this diagram is equal to:

P

Q

up

We recognize it as the diagram for ⟦Ψ ; ∆1 , ∆2 ⊢ send c shift; a ← P; Q ∶∶ c ∶ ↓C⟧u. It follows that

⟦Ψ ; ∆1 , ∆2 ⊢ a ← P; (send c shift; Q) ∶∶ c ∶ ↓C⟧u

= ⟦Ψ ; ∆1 , ∆2 ⊢ send c shift; a ← P; Q ∶∶ c ∶ ↓C⟧u.

But u was arbitrary, so we conclude eq. (256).
The proof of eq. (258) uses an analogous sequence of diagrams as the proof of eq. (256), except

that all upmorphisms are replaced by λc ∈ ⟦C⟧. ιk([c]). Analogously, the proof of eq. (262) replaces
upmorphisms by λc ∈ ⟦C⟧.(v , [c]) where v = ⟦Ψ ⊩ M ∶ τ⟧u.

The proof of eq. (260) is only marginally more complex. Fix some arbitrary u ∈ ⟦Ψ⟧. The
composition ⟦Ψ ; ∆1 , ∆2 , d ∶ D ⊢ a ← P; send c d; Q ∶∶ c ∶ D ⊗ C⟧u denotes the string diagram

P

send c d; Q

where the boxes respectively represent themorphisms ⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧u and ⟦Ψ ; ∆2 , d ∶ D ⊢
send c d; Q ∶∶ c ∶ D ⊗ C⟧u. From top to bottom, the wires on the left and right rides of send c d; Q

correspond to the channels a ∶ A, ∆2, d ∶ D, and c ∶ D ⊗ C. We begin by expanding the definitions

9.1. η-STYLE PROPERTIES 263

of each box. By eq. (130), the diagram is equal to:

P

Q

⟨jDop , jDop⟩id id up

By the tightening and strength axioms, this is diagram is equal to:

P

Q

⟨jDop , jDop⟩id id up

We recognize this as the diagram for ⟦Ψ ; ∆1 , ∆2 , d ∶ D ⊢ send c d; a ← P; Q ∶∶ c ∶ D ⊗ C⟧u. This
is what we wanted to show.

Finally, we show eq. (264). Let u ∈ ⟦Ψ⟧ be arbitrary. The composition ⟦Ψ ; ∆1 , ∆2 ⊢ a ←
P; (send c unfold; Q) ∶∶ c ∶ ρα.C⟧u represents the string diagram

P

send c unfold; Q

264 9. EQUIVALENCE, APPLIED

where the morphisms are respectively ⟦Ψ ; ∆1 ⊢ P ∶∶ a ∶ A⟧u and ⟦Ψ ; ∆2 ⊢ send c unfold; Q ∶∶
c ∶ ρα.C⟧u. Expanding eq. (188), we get the diagram:

P

Q

Fold ○ upUnfold

where Q is ⟦Ψ ; ∆2 ⊢ Q ∶∶ c ∶ [ρα.C/α]C⟧u. By tightening, this diagram is equal to:

P

Q

Fold ○ upUnfold

We recognize it as the diagram for ⟦Ψ ; ∆1 , ∆2 ⊢ send c unfold; a ← P; Q ∶∶ c ∶ ρα.C⟧u. This is
what we wanted to show.

9.2. Purely Polarized Session Types

We say that a session type A is purely positive if it is constructed using only positive types. This
means that A is generated by the grammar

A,A l ∶∶= α ∣ ρα.A ∣ 1 ∣ ⊕{l ∶ A l}l∈L ∣ A1 ⊗ A2 ∣ τ ∧ A

where all session types are positive, i.e. that its derivation uses only the rules (CVar) (on a positive
variable), (Cρ+), (C1), (C⊕), (C⊗), and (C∧). A session type A is purely negative if it is constructed
using only negative types. This means that A is generated by the grammar

A,A l ∶∶= α ∣ ρα.A ∣ &{l ∶ A l}l∈L ∣ τ ⊃ A

where all session types are negative, i.e., if it is generated using only the rules (CVar) (on a negative
variable), (Cρ−), (C&), and (C⊃). We remark that B⊸ A is not purely negative because the type B
must be positive. We say that a type is purely polarized if it is purely positive or purely negative.

Purely polarized types capture unidirectional communication on channels: the direction of
communication never changes. This fact is reflected in our semantics: if a type is purely polarized,
then it has a trivial negative aspect, and vice-versa. Recall that we write � for the initial object.

Proposition 9.2.1. If Ξ ⊢ A types is a purely positive session type, then

jΞ ⊢ A typeso
+ = id ∶ ⟦Ξ ⊢ A types⟧→ ⟦Ξ ⊢ A types⟧

+

and ⟦Ξ ⊢ A types⟧
−(�, . . . , �) ≅ �. If Ξ ⊢ A types is a purely negative session type, then

jΞ ⊢ A typeso
− = id ∶ ⟦Ξ ⊢ A types⟧→ ⟦Ξ ⊢ A types⟧

−

and ⟦A⟧+(�, . . . , �) ≅ �.

Proof. Assume first that Ξ ⊢ A types is purely positive. We proceed by induction on the derivation,
noting that every subderivation of Ξ ⊢ A types is of a purely positive type.

Case (CVar): Immediate by eqs. (168) to (171).

9.3. FLIPPING BIT STREAMS 265

Case (Cρ+): Assume that Ξ ⊢ ρα.A type+s because Ξ, α type+s ⊢ A type+s . By the induction
hypothesis, ⟦Ξ, α type+s ⊢ A type+s ⟧ = ⟦Ξ, α type+s ⊢ A type+s ⟧

+. It is then immediate by eqs. (179)
and (180) that ⟦Ξ ⊢ ρα.A type+s ⟧ = ⟦Ξ ⊢ ρα.A type+s ⟧

+. By the induction hypothesis, jΞ, α type+s ⊢
A type+s o

+ = id. It then follows from eq. (182) and functoriality that jΞ, α type+s ⊢ A type+s o
+ =

id. By the induction hypothesis, ⟦Ξ, α type+s ⊢ A type+s ⟧
−(�, . . . , �) = �. It follows that the ω-

chain used to construct ⟦Ξ ⊢ ρα.A type+s ⟧
−(�, . . . , �) is constantly � (see the remarks preceding

proposition 4.2.11, and proposition 4.3.1), so its colimit is �. But this colimit is exactly ⟦Ξ ⊢
ρα.A type+s ⟧

−(�, . . . , �), so we conclude the result.
Case (C1): Immediate by eqs. (116) to (119).
Case (C⊕): The first part is immediate by eqs. (160), (161) and (163), the induction hypothesis,

and functoriality. The second part is immediate by eq. (162), the induction hypothesis, and the fact
that � ×⋯ × � ≅ �.

Case (C⊗): The first part is immediate by eqs. (124) and (125), the induction hypothesis, and
functoriality. The second part is immediate by eq. (126), the induction hypothesis, and the fact that
� × � ≅ �.

Case (C∧): The first part is immediate by eqs. (144) and (145), the induction hypothesis, and
functoriality. The second part is immediate by eq. (146) and the induction hypothesis.

The proof for purely negative types is analogous.

We can use proposition 9.2.1 and eqs. (113) and (114) to characterize forwarding on purely
polarized channels:

Corollary 9.2.2. If A is purely positive, then

⟦⋅ ; a ∶ A ⊢ a → b ∶∶ b ∶ A⟧�(a+ , _) = (a+ , a+).

If A is purely negative, then

⟦⋅ ; a ∶ A ⊢ a ← b ∶∶ b ∶ A⟧�(_, b−) = (b− , b−).

9.3. Flipping Bit Streams

In example 5.3.10, we defined a process flip that flips bits in a bit stream. In this section, we
show that flipping bits in a bit stream twice is semantically equivalent to forwarding the bit stream
unchanged. Our approach involves a coinduction principle due to Pitts [Pit94], as presented by
Abramsky and Jung [AJ95, § 5.4.4]. We illustrate this coinduction principle using a simpler example
in section 9.3.1: we show that the positive projection of bit streams is given by the identity function.

Recall that flip was given by

⋅ ; i ∶ bits ⊢ o ← {fix f .o ← {unfold← recv i;
send o unfold;
case i {0⇒ o.1; o ← { f }← i

∣ 1⇒ o.0; o ← { f }← i}

}← i}← x ∶∶ o ∶ bits,

and that the bit stream protocol was specified by the session type

bits = ρβ. ⊕ {0 ∶ β, 1 ∶ β}.

Concretely, we show that3

⋅ ; i ∶ bits ⊢ c ← flip; flip ≡ i → o ∶∶ o ∶ bits.

3Note that we are using the fact that process judgments are closed under renaming of symbols to implicitly rename
the shared channel to c in the composition c ← flip; flip.

266 9. EQUIVALENCE, APPLIED

9.3.1. Reasoning About Bit Streams. When computing denotations of processes, it is gen-
erally useful to first determine the denotations of the session types they use: they will form the
domains and codomains of the process denotations. When working with recursive types, this also
involves computing the denotations of their unfoldings.

The unfolding of bits is the session type

BITS = ⊕{0 ∶ bits, 1 ∶ bits}.

The types bits and BITS denote the dI-domains:

⟦bits⟧ = FIX (X ↦ ((0 ∶ X�)⊕ (1 ∶ X�))�) ⟦BITS⟧ = (0 ∶ ⟦bits⟧�)⊕ (1 ∶ ⟦bits⟧�)

⟦bits⟧+ = FIX (X ↦ ((0 ∶ X�)⊕ (1 ∶ X�))�) ⟦BITS⟧+ = (0 ∶ ⟦bits⟧+�)⊕ (1 ∶ ⟦bits⟧
+
�)

⟦bits⟧− = {�} ⟦BITS⟧− = {�}.

These dI-domains are equipped with the following canonical isomorphisms:

Unfold ∶ ⟦bits⟧→ ⟦BITS⟧�

Unfold+ ∶ ⟦bits⟧+ → ⟦BITS⟧+�

Unfold− ∶ {�}→ {(0 ∶ �, 1 ∶ �)}

Their respective inverses are Fold, Fold+, and Fold−.
Remark that ⟦bits⟧ = ⟦bits⟧+ and ⟦BITS⟧ = ⟦BITS⟧+. Theorem 2.2.53 and the remarks

preceding proposition 4.2.11 explicitly characterizes their elements as infinite tuples. We use the
following suggestive notation for the elements of ⟦bits⟧ = ⟦bits⟧+:

∶∶� = Fold([�]), 0∶∶α = Fold([(0, [α])]), 1∶∶α = Fold([(1, [α])]).

We show that jbitso+ = id. This fact is a special case of proposition 9.2.1. However, we prove
it directly to illustrate the coinduction principle on dcpos. We will use this coinduction principle
in more complex settings later.

Definition 9.3.1 ([Pit96, p. 70]). A pointed dcpo constructor Φ(α) is a formal expression built up
from the variable α and from constants K ranging over objects ofDCPO� using operators (−)�
(lifting),× (product),⊗ (smash product), and⊕ (coalesced sum). A pointed dcpo constructorΦ(α)
induces a functor Φ ∶ DCPO� → DCPO� where the dcpo Φ(D) is obtained by replacing each
occurrence of α by D and interpreting each operator as the obvious corresponding constructor. ◀

Given a dcpo D, write D↓ for the set D↓ = {d ∈ D ∣ d ≠ �} of non-bottom elements.

Definition 9.3.2 ([Pit96, p. 85]). Let Φ(α) be a pointed dcpo constructor, andR a binary relation
on a pointed dcpo D. The binary relation Φ(R) on Φ(D) is inductively defined on the structure
of Φ as follows:

(d , d′) ∈ α(R) ⇐⇒ (d , d′) ∈R (266)

(d , d′) ∈ K(R) ⇐⇒ d ⊑K d
′ (267)

(d , d′) ∈ Φ�(R) ⇐⇒ d = [d0] ⊃ ∃d
′
0 .d
′ = [d′0] ∧ (d0 , d

′
0) ∈ Φ(R) (268)

((d , e), (d′ , e′)) ∈ (Φ1 ×Φ2)(R) ⇐⇒ (d , d′) ∈ Φ1(R) ∧ (e , e′) ∈ Φ2(R) (269)

(u, u′) ∈ (Φ1 ⊗Φ2)(R) ⇐⇒ ∀d ∈ (Φ1(D))↓ .∀e ∈ (Φ2(D))↓ . (270)

u = (d , e) ⊃ ∃d′ ∈ (Φ1(D))↓ .∃e′ ∈ (Φ2(D))↓ .

u
′ = (d′ , e′) ∧ (d , d′) ∈ Φ1(R) ∧ (e , e′) ∈ Φ2(R)

(u, u′) ∈ (Φ1 ⊕Φ2)(R) ⇐⇒ (∀d ∈ (Φ1(D))↓ .u = ι1(d) ⊃ ∃d′ ∈ (Φ1(D))↓ . (271)

u
′ = ι1(d′) ∧ (d , d′) ∈ Φ1(R))

(∀d ∈ (Φ2(D))↓ .u = ι2(d) ⊃ ∃d′ ∈ (Φ2(D))↓ .

u
′ = ι2(d′) ∧ (d , d′) ∈ Φ2(R)) ◀

9.3. FLIPPING BIT STREAMS 267

Definition 9.3.3. Let Φ(α) be a pointed dcpo constructor. A Φ-simulation is a binary relation
R ⊆ FIX(Φ) × FIX(Φ) satisfying (Unfold(x),Unfold(x′)) ∈ Φ(R) for all (x , x′) ∈R. ◀

Theorem 9.3.4 ([Pit96, Corollary 6.13]). Let Φ(α) be a pointed dcpo constructor. For any

d , d′ ∈ FIX(Φ), to prove d ⊑ d′ it suffices to show (d , d′) ∈R for some Φ-simulationR.

Remark 9.3.5. Pitts’s [Pit96] original results also account for mixed-variance pointed dcpo con-
structors. We have specialized his results to constructors Φ(α) where the variable α only occurs
in positive positions. This special case is sufficient for reasoning about the denotations of session
types: assumption 8.1.7 implies that α only appears in positive positions in constructors for session
types.

Proposition 9.3.6. The positive projection of bits is given by the identitymorphism: jbitso+ =
id.

Proof. To show jbitso+ = id, it is sufficient to show that jbitso+s = s for all s ∈ ⟦bits⟧. The
constructor defining the interpretations of ⟦bits⟧ = ⟦bits⟧+ is

Φ(β) = ((0 ∶ β)� ⊕ (1 ∶ β)�)� .

Let R ⊆ ⟦bits⟧ × ⟦bits⟧ be the relation

R = {(jbitso+s, s) ∣ s ∈ ⟦bits⟧}.

To show our result, it is sufficient by theorem 9.3.4 to show that R andRop are Φ-simulations. Let
s ∈ ⟦bits⟧ be arbitrary. We proceed by case analysis on s to show that

(Unfold(jbitso+s),Unfold(s)) ∈ Φ(R),

i.e., that R is a simulation.
Case s = �: It follows from the fact that Unfold is an isomorphism and jbitso an embedding

that
(Unfold(jbitso+s),Unfold(s)) = (�, �).

It is immediate from (268) that (�, �) ∈ Φ(R).
Case s = ∶∶�: By diagram 185,

jbitso+ = Fold ○ (−)�jBITSo
+ ○Unfold.

But jBITSo+ is strict, so jbitso+s = s. It follows that

(Unfold(jbitso+s),Unfold(s)) = ([�], [�]).

It is immediate from (268) and (271) that ([�], [�]) ∈ Φ(R).
Case s = 0∶∶s′: We compute:

jbitso+s

= (Fold ○ (−)�jBITSo
+ ○Unfold)(Fold([(0, [s′])]))

= (Fold ○ (−)�jBITSo
+)[(0, [s′])])

= Fold([(0, [jbitso+s
′])]).

Then
(Unfold(jbitso+s),Unfold(s)) = ([(0, [jbitso+s

′])], [(0, [s′])]) .
It is immediate from the definition ofR, (268), and (271) that

([(0, [jbitso+s
′])], [(0, [s′])]) ∈ Φ(R).

Case s = 1∶∶s′: Analogous to the previous case.
A symmetric argument will give that Rop is also a simulation. We conclude the result.

Corollary 9.3.7. Forwarding of bit streams is given by:

⟦⋅ ; i ∶ bits ⊢ i → o ∶∶ o ∶ bits⟧�(i+ , _) = (i+ , i+).

268 9. EQUIVALENCE, APPLIED

9.3.2. Reasoning About Bit Flipping. The next step is to give a typing derivation for the
process. This is because the denotations of processes are defined by induction on their typing
derivation. Let τ abbreviate {i ∶ bits← o ∶ bits}. Let B0 be the 0 branch:

f ∶ τ ⊩ F ∶ τ
(F-Var)

f ∶ τ ; i ∶ bits ⊢ o ← { f }← i ∶∶ o ∶ bits
(E-{})

f ∶ τ ; i ∶ bits ⊢ o.1; o ← { f }← i ∶∶ o ∶ BITS
(⊕R)

and let B1 be the 1 branch. The typing derivation of flip is then

f ∶ τ ; i ∶ bits ⊢ B l ∶∶ o ∶ BITS (∀l ∈ {0, 1})
f ∶ τ ; i ∶ BITS ⊢ case i {l ⇒ B l}l∈{0,1} ∶∶ o ∶ BITS

(⊕L)

f ∶ τ ; i ∶ BITS ⊢ send o unfold; case i {l ⇒ B l}l∈{0,1} ∶∶ o ∶ bits
(ρ+R)

f ∶ τ ; i ∶ bits ⊢ unfold← recv i; send o unfold; case i {l ⇒ B l}l∈{0,1} ∶∶ o ∶ bits
(ρ+L)

f ∶ τ ⊩ o ← {unfold← recv i; send o unfold; case i {l ⇒ B l}l∈{0,1}}← i ∶ τ
(I-{})

⊩ fix f .o ← {unfold← recv i; send o unfold; case i {l ⇒ B l}l∈{0,1}}← i ∶ τ
(F-Fix)

⋅ ; i ∶ bits ⊢ o ← {fix f .o ← {unfold← recv i; ⋯}← i}← i ∶∶ o ∶ bits
(E-{})

Typing derivation in hand,we can now compute the denotation of flip in a top-downmanner.
The denotation of the branch B0 is:4

⟦ f ∶ τ ; i ∶ bits ⊢ o.1; o ← { f }← i ∶∶ o ∶ BITS⟧ f (i+ , o−) = (I, (1, [O]))

where down(f)(i+ , o−) = (I,O).

The denotation of the 1 branch is analogous. The denotation of the case statement is then:

⟦ f ∶ τ ; i ∶ BITS ⊢ case i {l ⇒ B l}l∈{0,1} ∶∶ o ∶ BITS⟧ f (i
+ , o−)

=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

(�, �) if i = �
((0, [I]) , (1, [O])) if i = (0, [i′])
((1, [I]) , (0, [O])) if i = (1, [i′])

where down(f))(i′ , o−) = (I,O).

Next, we consider the denotation of sending and receiving unfoldmessages:

⟦ f ∶ τ ; i ∶ bits ⊢ unfold← recv i; send o unfold; case i {l ⇒ B l}l∈{0,1} ∶∶ o ∶ bits⟧ f (i
+ , o−)

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(�, �) if i+ = �
(∶∶�, ∶∶�) if i+ = ∶∶�
(0∶∶I, 1∶∶O) if i+ = 0∶∶i′

(1∶∶I, 0∶∶O) if i+ = 1∶∶i′

where down(f)(i′ , o−) = (I,O).

The four cases in the above denotation respectively correspond to:
(1) receiving nothing on i+;
(2) receiving unfold on i+ followed by nothing;
(3) receiving unfold on i+, followed by a bit stream starting with 0; and
(4) receiving unfold on i+, followed by a bit stream starting with 1.

Next, we compute the denotation of the functional term fix f .o ← {⋯}← i. It is given by the least
fixed point

⟦⊩ fix f .o ← {unfold← recv i; send o unfold; case i {l ⇒ B l}l∈{0,1}}← i ∶ τ⟧� = lfp(Φ)

4Strictly speaking, f is an environment u = (f ∶ v). We identify this unary tuple with its single entry for convenience.

9.3. FLIPPING BIT STREAMS 269

where Φ ∶ ⟦τ⟧→ ⟦τ⟧ is the function

Φ(f) = up

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ(i+ , o−) ∈ ⟦bits⟧+ × ⟦bits⟧− .

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(�, �) if i+ = �
(∶∶�, ∶∶�) if i+ = ∶∶�
(0∶∶I, 1∶∶O) if i+ = 0∶∶i′

(1∶∶I, 0∶∶O) if i+ = 1∶∶i′

where down(f)(i′ , o−) = (I,O)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(272)

Finally, unquoting this functional term gives us the denotation of flip:

⟦⋅ ; i ∶ bits ⊢ flip ∶∶ o ∶ bits⟧� = down(lfp(Φ)).

We turn our attention to showing that the composition of flip with itself is denotationally
equivalent to the forwarding process. We start by computing the denotation of c ← flip; flip. It
is given by the string diagram

flip

flip

Rearranging the above string diagram, we see that the composition is given by

flip
flip

Recall that Stab�! is a symmetricmonoidal category with a right unit isomorphism ρ ∶ ⟦bits⟧+ ×
⟦bits⟧−, and that we do not drawmonoidal units in string diagrams. Let

ϕ(i+) = down(lfp(Φ))(i+ , �) ∶ ⟦bits⟧+ → ⟦bits⟧ × ⟦bits⟧

Then flip = ϕ ○ ρ. We also recognize jbitso+ = id and jbitso− = �. We now recognize the above
diagram as:

ϕ ○ ρ

ϕ ○ ρ

But the trace is fixing themonoidal unit, so by vanishing, the diagram is equal to:

ϕ

ϕ ○ ρ

We conclude that

⟦⋅ ; i ∶ bits ⊢ c ← flip; flip ∶∶ o ∶ flip⟧�(i+ , o−) = (I,O)

where ϕ(i+) = (I,O′) and ϕ(O′) = (_,O).
(273)

270 9. EQUIVALENCE, APPLIED

We can characterize ϕ using the fixed-point identity lfp(Φ) = Φ(lfp(Φ)):

ϕ(i+) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(�, �) if i+ = �
(∶∶�, ∶∶�) if i+ = ∶∶�
(0∶∶I, 1∶∶O) if i+ = 0∶∶i′

(1∶∶I, 0∶∶O) if i+ = 1∶∶i′

where ϕ(i′) = (I,O).

Using this characterization and eq. (272), we can directly express eq. (273):

⟦⋅ ; i ∶ bits ⊢ c ← flip; flip ∶∶ o ∶ flip⟧�(i+ , o−) (274)

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(�, �) if i+ = �
(∶∶�, ∶∶�) if i+ = ∶∶�
(0∶∶I, 0∶∶O) if i+ = 0∶∶i′

(1∶∶I, 1∶∶O) if i+ = 1∶∶i′

where ⟦⋅ ; i ∶ bits ⊢ c ← flip; flip ∶∶ o ∶ flip⟧�(i′ , �) = (I,O).

We are now in a position to prove our result:

Proposition 9.3.8. Flipping bits in a bit stream twice is equivalent to forwarding it:

⋅ ; i ∶ bits ⊢ c ← flip; flip ≡ i → o ∶∶ o ∶ bits.

Proof. Wemust show that

⟦⋅ ; i ∶ bits ⊢ c ← flip; flip ∶∶ o ∶ bits⟧� = ⟦⋅ ; i ∶ bits ⊢ i → o ∶∶ o ∶ bits⟧�.

To do so, let (i+ , o−) be arbitrary in their domain. By corollary 9.2.2, it is sufficient to show that

⟦⋅ ; i ∶ bits ⊢ c ← flip; flip ∶∶ o ∶ bits⟧�(i+ , o−) = (i+ , i+).

Set
F = ⟦⋅ ; i ∶ bits ⊢ c ← flip; flip ∶∶ o ∶ bits⟧�.

We start by showing that if F(i+ , o−) = (I, _), then i+ = I. Let

R = {(i+ , I) ∣ i+ ∈ ⟦bits⟧+ , F(i+) = (I, _)}.

We show that R andRop are Φ-simulations by case analysis on i+ ∈ ⟦bits⟧+:
Case i+ = �: Then F(i+) = (�, _) by eq. (274). Observe that

(Unfold(�),Unfold(�)) = (�, �).

It is immediate from (268) that (�, �) ∈ Φ(R) and (�, �) ∈ Φ(Rop).
Case i+ = ∶∶�: Then F(i+) = (∶∶�, _) by eq. (274). Observe that

(Unfold(∶∶�),Unfold(∶∶�)) = ([�], [�]).

It is immediate from (268) and (271) that ([�], [�]) ∈ Φ(R) and ([�], [�]) ∈ Φ(Rop).
Case i+ = 0∶∶i′: Then by eq. (274), F(i+) = (0∶∶I, _ where F(i′) = (I, _). Observe that

(Unfold(0∶∶i′),Unfold(0∶∶I)) = ([(0, [i′])], [(0, [I])]).

It is immediate from the definition ofR, (268), and (271) that

([(0, [i′])], [(0, [I])]) ∈ Φ(R) ∩Φ(Rop).

Case i+ = 1∶∶i′: Analogous to the previous case.

9.4. IDENTITY EXPANSION 271

We conclude that R andRop are Φ-simulations. We conclude by theorem 9.3.4 that for all (i+ ∈
⟦bits⟧+, if F(i+ , o−) = (I, _), then i+ = I.

An identical argument shows that the relations

S = {(i+ ,O) ∣ i+ ∈ ⟦bits⟧+ , F(i+) = (_,O)}

andSop areΦ-simulations. We conclude by theorem9.3.4 that for all (i+ ∈ ⟦bits⟧+, if F(i+ , o−) =
(_,O), then i+ = O.

Combining these results, we deduce that F(i+ , o−) = (i+ , i+) for all (i+ , o−).

9.4. Identity Expansion

Identity expansion theorems for sequent calculi state that if a sequent is provable, then we can
give it a proof that only uses the identity rule on atomic propositions. Computationally, this corre-
sponds to reducing channel forwarding at complex types to forwarding at simpler types [CPT12,
p. 3].

Lemma 9.4.1. If A type+s , then jAop(�, _) = �. If A type−s , then jAop(_, �) = �.

Proof. By case analysis on the last rule of the derivation of ⋅ ⊢ A types.
Case (C1): Immediate by eq. (121).
Case (Cρ+): Recall eq. (187). By proposition 2.2.21 and the definition of δ,

jρα.A type+s o
p(�, _)

= (Fold ○ j[ρα.A/α]Aop ○ δ ○ (Unfold ×Unfold)) (�, _)

= (Fold ○ j[ρα.A/α]Aop ○ δ) (�, _)

= (Fold ○ j[ρα.A/α]Aop))�
= �.

Case (C↓): Recall eq. (157). By definition of δ and the action of the lifting functor,

j↓A type+s o
p(�, _)

= ((−)�jΞ ⊢ A type−s o
p
⋅ δ) (�, _)

= ((−)�jΞ ⊢ A type−s o
p) (�, �)

= �.

Case (C⊕): Recall eq. (165). It is by definition strict in the positive component.
Case (C∧): Recall eq. (149). It is by definition strict in the positive component.

The remaining cases follow by analogy with those above.

A session type Ξ ⊢ A types is morally recursion-free if whenever (Cρ+) or (Cρ−) appears in its
derivation with conclusion Ξ′ ⊢ ρβ.B types, then β does not appear free in B. We prove identity
expansion for the morally recursion-free fragment of Polarized SILL. This fragment contains
the logical fragment Polarized SILL, i.e., all session types that correspond to propositions in
intuitionistic linear logic.

Theorem 9.4.2. For all morally recursion-free closed session types A type+s , there exists a cut-free

process IA whose derivation does not use (Fwd+), (Fwd−), or (E-{}) such that

⋅ ; a ∶ A ⊢ IA ≡ a → b ∶∶ b ∶ A.

For all morally recursion-free closed session types A type−s , there exists a cut-free process IA whose

derivation does not use (Fwd+), (Fwd−), or (E-{}) such that

⋅ ; a ∶ A ⊢ IA ≡ a ← b ∶∶ b ∶ A.

272 9. EQUIVALENCE, APPLIED

We do not directly prove theorem 9.4.2: it will be an immediate corollary of theorem 9.4.3. We
conjecture that we can extend theorem 9.4.2 to support general recursive types. Though a complete
proof remains elusive, we present a compelling proof sketch. Then, we then discuss the difficulties
involved in completing this proof skeleton.

At a high level, we believe that the expanded forwarding process IA should be defined by
induction on the derivation of A, and that forwarding for ρα.A should be captured by a recursive
process. To define IA by induction on the derivation of A, we must account for open session
types. Indeed, in the case of recursive session types, the rule hypothesis is an open session type,
so our induction hypothesis cannot be restricted to closed session types. Here arises the first
difficulty: processes cannot communicate over open session types. Put differently, we cannot define
a forwarding Ψ ; a ∶ A ⊢ a ← b ∶∶ b ∶ A for an open session type Ξ ⊢ A types.

To address this, we show that for all open session types Ξ ⊢ A types and closing substitutions
σ ∶s ⋅ ↝ Ξ, there exists an open identity expansion process I[σ]A that is (almost) denotationally
equivalent to the forwarding process for [σ]A. In the case of Ξ ⊢ ρα.A types, we can apply
the induction hypothesis for Ξ, α ⊢ A types to the substitution (σ , ρα.[σ]A) ∶s ⋅ ↝ Ξ, α to
get an identity expansion process I[ρα .[σ]A/α]([σ]A). Wrapping this process in the appropriate
fold and unfold process constructors is still insufficient to define the identity expansion process
I[σ]ρα .A. Indeed, after enough computation, the process I[ρα .[σ]A/α]([σ]A) may have to forward
communications of type ρα.([σ]A). We escape this circularity by defining I[σ](ρα .A) as a recursive
process in terms of I[ρα .[σ]A/α]([σ]A). It is defined such every time I[ρα .[σ]A/α]([σ]A) has to forward
communications of type [σ](ρα.A), it makes a recursive call to I[σ](ρα .A).

We make these vague intuitions clear by explicitly constructing the processes I[σ]A. Given
Ξ = α1 , . . . , αn with n ≥ 0, the context Ψσ of functional variables is given by

Ψσ = α̂1 ∶ {a ∶ σ(α1)← b ∶ σ(α1)}, . . . , α̂n ∶ {a ∶ σ(αn)← b ∶ σ(αn)}.

Let uσ ∈ ⟦Ψσ⟧ be the environment that maps the functional variable α̂ i to the quoted forwarding
process for the type σ(α i). Explicitly, it is the environment such that

uσ(α̂ i) = ⟦⋅ ⊩ b ← {a → b}← a ∶ {a ∶ σ(α i)← b ∶ σ(α i)}⟧�

whenever α i is positive, and

uσ(α̂ i) = ⟦⋅ ⊩ b ← {a ← b}← a ∶ {a ∶ σ(α i)← b ∶ σ(α i)}⟧�

otherwise.

Theorem 9.4.3 (Identity Expansion). For all session types Ξ ⊢ A types and closing substitutions

σ ∶s ⋅↝ Ξ, there exists a cut-free process Ψσ ; a ∶ [σ]A ⊢ I[σ]A ∶∶ b ∶ [σ]Awhose derivation does not

use (Fwd+) or (Fwd−). If A is positive andmorally recursion-free, then

⟦Ψσ ; a ∶ [σ]A ⊢ I[σ]A ∶∶ b ∶ [σ]A⟧uσ = ⟦⋅ ; a ∶ [σ]A ⊢ a → b ∶∶ b ∶ [σ]A⟧�,

and if A is negative andmorally recursion-free, then

⟦Ψσ ; a ∶ [σ]A ⊢ I[σ]A ∶∶ b ∶ [σ]A⟧uσ = ⟦⋅ ; a ∶ [σ]A ⊢ a → b ∶∶ b ∶ [σ]A⟧�.

If the derivation of ⋅ ⊢ [σ]A types does not use (CVar), then I[σ]A does not use (E-{}).

Proof. By well-founded induction on the set of derivations of session-types, ordered by the smallest
strict preorder ≺ generated by:

● D1 ≺ D2 ifD1 is a subderivation5 ofD2; and
● D1 ≺ D2 ifD2 is obtained by weakeningD1.

We proceed by case analysis on the last rule used to form Ξ ⊢ A types. We show the positive cases,
and the negative cases will follow by analogy.

5That is, a subtree.

9.4. IDENTITY EXPANSION 273

Case (CVar): Then conclusion is Ξ ⊢ α i types for some α i ∈ Ξ. By definition, [σ]α i = σ(α i).
We show the case for positive α i ; the negative case follows by symmetry. Let I[σ]α i

given by

Ψσ ⊩ α̂ i ∶ {a ∶ σ(α i)← b ∶ σ(α i)}
(F-Var)

Ψσ ; a ∶ σ(α i) ⊢ b ← {α̂ i}← a ∶∶ b ∶ σ(α i)
(E-{})

By construction of uσ :

⟦Ψσ ; a ∶ σ(α i) ⊢ b ← {α̂ i}← a ∶∶ b ∶ σ(α i)⟧uσ

= down ○ ⟦Ψσ ⊩ α̂ i ∶ {a ∶ σ(α i)← b ∶ σ(α i)}⟧uσ

= down(uσ(α̂ i))

= down(up(⟦⋅ ⊩ b ← {a → b}← a ∶ {a ∶ σ(α i)← b ∶ σ(α i)}⟧�))

= ⟦⋅ ⊩ b ← {a → b}← a ∶ {a ∶ σ(α i)← b ∶ σ(α i)}⟧�.

This is what we wanted to show.
Case (C1): Observe that [σ]1 = 1. Let I[σ]1 be given by

Ψσ ; ⊢ close b ∶∶ b ∶ 1
(1R)

Ψσ ; a ∶ 1 ⊢ wait a; close b ∶∶ b ∶ 1
(1L)

Recall eqs. (113) and (121) to (123). Wemust show that

⟦Ψσ ; a ∶ 1 ⊢ I[σ]1 ∶∶ b ∶ 1⟧uσ = ⟦⋅ ; a ∶ 1 ⊢ a → b ∶∶ b ∶ 1⟧�

are equal functions. It is sufficient to proceed by case analysis on the elements in their domain.
There are two possibilities: (�, �) or (close, �). In the first case,

⟦Ψσ ; a ∶ 1 ⊢ wait a; close b ∶∶ b ∶ 1⟧uσ(�, �)
= (�, �)
= ⟦⋅ ; a ∶ 1 ⊢ a → b ∶∶ b ∶ 1⟧�(�, �).

In the second case,

⟦Ψσ ; a ∶ 1 ⊢ wait a; close b ∶∶ b ∶ 1⟧uσ(close, �)
= (close, close)
= ⟦⋅ ; a ∶ 1 ⊢ a → b ∶∶ b ∶ 1⟧�(close, �).

This gives the result.
Case (C⊗): Assume that Ξ ⊢ A⊗ B type+s because Ξ ⊢ A type+s and Ξ ⊢ B type+s . By the

induction hypothesis, there is a process Ψσ ; a ∶ [σ]B ⊢ I[σ]B ∶∶ b ∶ [σ]B satisfying the theorem
statement. Observe that [σ](B ⊗ A) = ([σ]B)⊗ ([σ]A). Let I[σ](A⊗B) be given by

Ψσ ; a ∶ [σ]A ⊢ I[σ]B ∶∶ b ∶ [σ]A

Ψσ ; a ∶ [σ]A, c ∶ [σ]B ⊢ send b c; I[σ]B ∶∶ b ∶ [σ](B ⊗ A)
(⊗R)

Ψσ ; a ∶ [σ](B ⊗ A) ⊢ c ← recv a; send b c; I[σ]B ∶∶ b ∶ [σ](B ⊗ A)
(⊗L)

Recall eqs. (113) and (129) to (131). Assume that B ⊗ A is morally recursion-free. We show that
the denotation of I[σ](B⊗A) is suitably equivalent to a → b. As in previous cases, we proceed by
case analysis on an arbitrary element in their domain:
Subcase (�, (b− , a−)): We compute:

⟦Ψσ ; a ∶ [σ](B ⊗ A) ⊢ c ← recv a; send b c; I[σ]B ∶∶ b ∶ [σ](B ⊗ A)⟧u(�, (b− , a−))

= (�, j[σ](B ⊗ A)op(�, (b− , a−)))

274 9. EQUIVALENCE, APPLIED

which by lemma 9.4.1:
= (�, �)

= (j[σ](B ⊗ A)op(�, (b− , a−)), j[σ](B ⊗ A)op(�, (b− , a−)))

= ⟦⋅ ; a ∶ [σ](B ⊗ A) ⊢ a → b ∶∶ b ∶ [σ](B ⊗ A)⟧�(�, (b− , a−)).

Subcase ([(b+ , a+)], (b− , a−)): Set

(β, β) = ⟦⋅ ; a ∶ [σ]A ⊢ a → b ∶∶ b ∶ [σ]A⟧�(b+ , b−).

By the induction hypothesis,

⟦Ψσ ; a ∶ [σ]A ⊢ I[σ]B ∶∶ b ∶ [σ]A⟧uσ(b
+ , b−) = (β, β).

It follows that

⟦Ψσ ; a ∶ [σ]A, c ∶ [σ]B ⊢ send b c; I[σ]B ∶∶ b ∶ [σ](B ⊗ A)⟧uσ(b
+ , a+ , (b− , a−))

= (β, α, [(β, α)])

where α = jAop(a+ , a−). Using this, we compute that

⟦Ψσ ; a ∶ [σ](B ⊗ A) ⊢ c ← recv a; send b c; I[σ]B ∶∶ b ∶ [σ](B ⊗ A)⟧uσ([(b
+ , a+)], (b− , a−))

= ([(β, α)], [(β, α)]).

But

⟦⋅ ; a ∶ [σ](B ⊗ A) ⊢ a → b ∶∶ b ∶ [σ](B ⊗ A)⟧�([(b+ , a+)], (b− , a−)) = ([(β, α)], [(β, α)]),

so we conclude the result.
Case (C⊕): Assume that Ξ ⊢ ⊕{l ∶ A l}l∈L types because Ξ ⊢ A l types for l ∈ L. By the

induction hypothesis, there exist processes Ψσ ; a ∶ [σ]A l ⊢ I[σ]A l
∶∶ b ∶ [σ]A l satisfying the

theorem statement for l ∈ L. Observe that [σ](⊕{l ∶ A l}l∈L) = ⊕{l ∶ [σ]A l}l∈L . Let I[σ](⊕{l ∶A l}l∈L)
be given by

Ψσ ; a ∶ [σ]A l ⊢ I[σ]A l
∶∶ b ∶ [σ]A l

Ψσ ; a ∶ [σ]A l ⊢ b.l ; I[σ]A l
∶∶ b ∶ [σ](⊕{l ∶ A l}l∈L)

(⊕R)
(l ∈ L)

Ψσ ; a ∶ [σ](⊕{l ∶ A l}l∈L) ⊢ case a {b.l ; I[σ]A l
}l∈L ∶∶ b ∶ [σ](⊕{l ∶ A l}l∈L)

(⊕L)

Recall eqs. (113) and (165) to (167). Assume that Ξ ⊢ ⊕{l ∶ A l}l∈L types is morally recursion-
free. We show that I[σ](⊕{l ∶A l}l∈L) is suitably equivalent to a → b. As in previous cases, we proceed
by case analysis on an arbitrary element in their domain:
Subcase (�, (a−

l
)
l∈L): We compute:

⟦Ψσ ; a ∶ [σ](⊕{l ∶ A l}l∈L) ⊢ case a {b.l ; I[σ]A l
}l∈L ∶∶ b ∶ [σ](⊕{l ∶ A l}l∈L)⟧uσ (�, (a−l)l∈L)

= (�, j[σ](⊕{l ∶ A l}l∈L)o
p (�, (a−l)l∈L))

which by lemma 9.4.1:
= (�, �)

= (j[σ](⊕{l ∶ A l}l∈L)o
p (�, (a−l)l∈L) , j[σ](⊕{l ∶ A l}l∈L)o

p (�, (a−l)l∈L))

= ⟦⋅ ; a ∶ [σ](⊕{l ∶ A l}l∈L) ⊢ a → b ∶∶ b ∶ [σ](⊕{l ∶ A l}l∈L)⟧� (�, (a−l)l∈L) .

Subcase ((k, [a+
k
]) , (a−

l
)
l∈L): Set

(β, β) = ⟦⋅ ; a ∶ [σ]Ak ⊢ a → b ∶∶ b ∶ [σ]Ak⟧�(a
+
k , a

−
k).

By the induction hypothesis,

⟦Ψσ ; a ∶ [σ]Ak ⊢ I[σ]Ak
∶∶ b ∶ [σ]Ak⟧uσ(a

+
k , a

−
k) = (β, β).

It follows from eq. (166) that

⟦Ψσ ; a ∶ [σ]A l ⊢ b.l ; I[σ]A l
∶∶ b ∶ [σ](⊕{l ∶ A l}l∈L)⟧uσ (a

+
k , (a

−
l)l∈L) = (β, (l , [β]))

9.4. IDENTITY EXPANSION 275

for all l ∈ L. Then by eq. (167),

⟦Ψσ ; a ∶ [σ](⊕{l ∶ A l}l∈L) ⊢

case a {b.l ; I[σ]A l
}l∈L ∶∶ b ∶ [σ](⊕{l ∶ A l}l∈L)⟧uσ ((k, [a+k]) , (a

−
l)l∈L)

= ((l , [β]) , (l , [β])) .

But

⟦⋅ ; a ∶ [σ](⊕{l ∶ A l}l∈L) ⊢ a → b ∶∶ b ∶ [σ](⊕{l ∶ A l}l∈L)⟧uσ ((k, [a+k]) , (a
−
l)l∈L)

= ((l , [β]) , (l , [β]))

by eqs. (113) and (165), so we conclude the result.
Case (C↓): Assume that Ξ ⊢ ↓A types because Ξ ⊢ A types. By the induction hypothesis,

there is a process Ψσ ; a ∶ [σ]A ⊢ I[σ]A ∶∶ b ∶ [σ]A satisfying the theorem statement. Observe that
[σ](↓A) = ↓[σ]A. Let I[σ](↓A) be given by

Ψσ ; a ∶ [σ]A ⊢ I[σ]A ∶∶ b ∶ [σ]A

Ψσ ; a ∶ [σ]A ⊢ send b shift; I[σ]A ∶∶ b ∶ [σ](↓A)
(↓R)

Ψσ ; a ∶ [σ](↓A) ⊢ shift← recv a; send b shift; I[σ]A ∶∶ b ∶ [σ](↓A)
(↓L)

Recall eqs. (113) and (157) to (159). Assume that Ξ ⊢ ↓A types is morally recursion-free. We show
that I[σ](↓A) is suitably equivalent to a → b. A case analysis analogous to the case analysis for case
(C⊕) gives the result.

Case (C∧): Assume that Ξ ⊢ τ ∧ A types because Ξ ⊢ A types and τ typef . By the induction
hypothesis, there is a process Ψσ ; a ∶ [σ]A ⊢ I[σ]A ∶∶ b ∶ [σ]A satisfying the theorem statement.
We can weaken it to a process Ψσ , x ∶ τ ; a ∶ [σ]A ⊢ I[σ]A ∶∶ b ∶ [σ]A, where we assume without
loss of generality that the variable x is fresh. Observe that [σ](τ ∧ A) = τ ∧ [σ]A. Let I[σ](τ∧A) be
given by

Ψσ , x ∶ τ ; a ∶ [σ]A ⊢ I[σ]A ∶∶ b ∶ [σ]A

Ψσ , x ∶ τ ; a ∶ [σ]A ⊢ _← output b x; I[σ]A ∶∶ b ∶ [σ](τ ∧ A)
(∧R)

Ψσ ; a ∶ [σ](τ ∧ A ⊢ x ← input a; _← output b x; I[σ]A ∶∶ b ∶ [σ](τ ∧ A)
(∧L)

Recall eqs. (113) and (149) to (151). Assume that Ξ ⊢ τ ∧ A types is morally recursion-free.
We show that I[σ](τ∧A) is suitably equivalent to a → b. As in previous cases, we proceed by case
analysis on elements of their domains.
Subcase (�, a−): We compute:

⟦Ψσ ; a ∶ [σ](τ ∧ A ⊢ x ← input a; _← output b x; I[σ]A ∶∶ b ∶ [σ](τ ∧ A)⟧uσ(�, a−)

= (�, j[σ](τ ∧ A)op(�, a−))

which by lemma 9.4.1:

= (�, �)

= (j[σ](τ ∧ A)op(�, a−), j[σ](τ ∧ A)op(�, a−))

= ⟦⋅ ; a ∶ [σ](τ ∧ A) ⊢ a → b ∶∶ b ∶ [σ](τ ∧ A)⟧� (�, a−)

Subcase ((v , [a+]) , a−): Set

(β, β) = ⟦⋅ ; a ∶ [σ]A ⊢ a → b ∶∶ b ∶ [σ]A⟧�(a+ , a−).

By the induction hypothesis,

⟦Ψσ ; a ∶ [σ]A ⊢ I[σ]A ∶∶ b ∶ [σ]A⟧uσ(a
+ , a−) = (β, β).

By coherence (proposition 8.5.4),

⟦Ψσ , x ∶ τ ; a ∶ [σ]A ⊢ I[σ]A ∶∶ b ∶ [σ]A⟧[uσ ∣ x ↦ v](a+ , a−) = (β, β).

276 9. EQUIVALENCE, APPLIED

It follows from eq. (150) that

⟦Ψσ , x ∶ τ ; a ∶ [σ]A ⊢ _← output b x; I[σ]A ∶∶ b ∶ [σ](τ ∧ A)⟧[uσ ∣ x ↦ v](a+ , a−)
= (β, (v , [β])).

Then by eq. (151),

⟦Ψσ ; a ∶ [σ](τ ∧ A ⊢ x ← input a; _← output b x; I[σ]A ∶∶ b ∶ [σ](τ ∧ A)⟧uσ ((v , [a+]) , a−)
= ((v , [β]) , (v , [β])) .

But

⟦⋅ ; a ∶ [σ](τ ∧ A) ⊢ a → b ∶∶ b ∶ [σ](τ ∧ A)⟧� ((v , [a+]) , a−) = ((v , [β]) , (v , [β]))

by eqs. (113) and (149), so we conclude the result.
Case (Cρ+): Then the conclusion is Ξ ⊢ ρα.A types. We consider two subcases: when α

appears free in A, and when α is does not appear free in A. This case analysis ensures that if the
derivation of ⋅ ⊢ [σ]A types does not use (CVar), then I[σ]A does not use (E-{}).

In the first case, observe that [σ](ρα.A) = ρα.[σ]A. Let η = σ , ρα.[σ]A ∶s ⋅↝ Ξ, α type+s be
the context morphism that extends σ to substitute ρα.[σ]A for α, so that

[η]A = [σ(α1), . . . , σ(αn), ρα.[σ]A/α1 , . . . , αn , α]A = [ρα.[σ]A/α]([σ]A).

By the induction hypothesis, there is a process Ψη ; a ∶ [η]A ⊢ I[η]A ∶∶ b ∶ [η]A satisfying the
theorem statement. Let the process

I[σ](ρα .A) = b ← {fix α̂.b ← {unfold← recv a; send b unfold; I[η]A}← a}← a

be given by:

Ψη ; a ∶ [η]A ⊢ I[η]A ∶∶ b ∶ [η]A

Ψη ; a ∶ [η]A ⊢ send b unfold; I[η]A ∶∶ b ∶ ρα.[σ]A
(ρ+R)

Ψη ; a ∶ ρα.[σ]A ⊢ unfold← recv a; send b unfold; I[η]A ∶∶ b ∶ ρα.[σ]A
(ρ+L)

Ψη ⊩ b ← {unfold← recv a; ⋯}← a ∶ {b ∶ ρα.[σ]A← b ∶ ρα.[σ]A}
(I-{})

Ψσ ⊩ fix α̂.b ← {unfold← recv a; ⋯}← a ∶ {b ∶ ρα.[σ]A← b ∶ ρα.[σ]A}
(F-Fix)

Ψσ ; a ∶ ρα.[σ]A ⊢ b ← {fix α̂.b ← {unfold← recv a; ⋯}← a}← a ∶∶ b ∶ ρα.[σ]A
(E-{})

At this point, we have nothing left to show: ρα.A is not morally recursion-free. Nevertheless, we
conjecture that I[σ](ρα .A) is suitably equivalent to forwarding a → b. We suspect that a coinduction-
style argument could be applied to show this equivalence, but such an argument unfortunately
remains elusive.

Assume next that α does not appear free in A. Then the hypothesis Ξ, α ⊢ A types used to
form Ξ ⊢ ρα.A types can obtained by weakening Ξ ⊢ A types. By the induction hypothesis, there
is a process Ψσ ; a ∶ [σ]A ⊢ I[σ]A ∶∶ b ∶ [σ]A satisfying the theorem statement. Let I[σ](ρα .A) be
given by

Ψσ ; a ∶ [σ]A ⊢ I[σ]A ∶∶ b ∶ [σ]A

Ψσ ; a ∶ [σ]A ⊢ send b unfold; I[σ]A ∶∶ b ∶ [σ](ρα.A)
(ρ+R)

Ψσ ; a ∶ [σ](ρα.A) ⊢ unfold← recv a; send b unfold; I[σ]A ∶∶ b ∶ [σ](ρα.A)
(ρ+L)

Additionally assume that ρα.A is morally recursion-free. We show that I[σ](ρα .A) is suitably equiv-
alent to a → b. As in previous cases, we proceed by case analysis on elements of their domain. We
use the fact that

Fold ∶ (−)�⟦ ⊢ [ρα.A/α]A types⟧
+ → ⟦ ⊢ ρα.A types⟧

+

is an isomorphism of dcpos (see the remarks surrounding eq. (184)) to represent the elements of
⟦ ⊢ ρα.A types⟧

+ in terms of elements of (−)�⟦ ⊢ [ρα.A/α]A types⟧
+. Similarly, we represent

elements of ⟦ ⊢ ρα.A types⟧
− in terms of elements of ⟦ ⊢ [ρα.A/α]A types⟧

−.

9.5. BINARY ARITHMETIC 277

Subcase (Fold(�),Fold(a−)): Then Fold(�) = � and the analysis is identical to previous cases,
using eq. (189) and lemma 9.4.1.
Subcase (Fold([a+]),Fold(a−)): Set

(β, β) = ⟦⋅ ; a ∶ [σ]A ⊢ a → b ∶∶ b ∶ [σ]A⟧�(a+ , a−).

By the induction hypothesis,

⟦Ψσ ; a ∶ [σ]A ⊢ I[σ]A ∶∶ b ∶ [σ]A⟧uσ(a
+ , a−) = (β, β).

It follows from eq. (188) that

⟦Ψσ ; a ∶ [σ]A ⊢ send b unfold; I[σ]A ∶∶ b ∶ [σ](ρα.A)⟧(a+ ,Fold(a−)) = (β,Fold([β])).

Then by eq. (189),

⟦Ψσ ; a ∶ [σ](ρα.A) ⊢

unfold← recv a; send b unfold; I[σ]A ∶∶ b ∶ [σ](ρα.A)⟧(Fold([a+]),Fold(a−))
= (Fold ([β]) ,Fold ([β])) .

But

⟦Ψσ ; a ∶ [σ](ρα.A) ⊢ a → b ∶∶ b ∶ [σ](ρα.A)⟧(Fold([a+]),Fold(a−))
= (Fold ([β]) ,Fold ([β]))

by eqs. (113) and (187), so we conclude the result.

9.5. Binary Arithmetic

In this section, we consider an encoding of binary arithmetic. Let binary natural numbers be
encoded using the session type

bin = ρβ. ⊕ {0 ∶ β, 1 ∶ β, $ ∶ 1}.

We assume that binary numbers are transmitted with the least significant bit first. Though it is the
opposite of the usual network order, in which themost significant bit is sent first, it simplifies the
definition of processes. This session type is very similar to the session type bits of bit streams
given in section 9.3. The key difference is the introduction of the label $, which signals the end of
the sequence of bits.

Let ⌈ ⋅ ⌉ be the “ceiling” or greatest integer function. Recall that every natural number n has a
unique base-2 representation (ak , . . . , a0)2 where ak = 1 and a i ∈ {0, 1} for 0 ≤ i ≤ k are such that
n = ∑

k

i=0 a i2
i . We use this base-2 representation to define a process ⋅ ; ⋅ ⊢ [n]2 ∶∶ b ∶ bin that sends

the base two representation of n on the channel b. It is given by

⋅ ; ⋅ ⊢ send b unfold; b.a0; ⋯; send b unfold; b.ak; send b unfold; b.$; close b ∶∶ b ∶ bin

where ai is the obvious label 0 or 1 corresponding to the coefficient a i .

Example 9.5.1. The processes ⋅ ; ⋅ ⊢ [4]2 ∶∶ b ∶ bin and ⋅ ; ⋅ ⊢ [5]2 ∶∶ b ∶ bin are respectively given
by:

send b unfold; b.0; send b unfold; b.0; send b unfold; b.1; send b unfold; b.$; close b,
send b unfold; b.1; send b unfold; b.0; send b unfold; b.1; send b unfold; b.$; close b. ◀

Remark 9.5.2. Binary numbers do not have a unique representation as sequences of bit labels. For
example, the following two processes transmit different representations of zero:

⋅ ; ⋅ ⊢ send b unfold; b.0; send b unfold; b.$; close b ∶∶ b ∶ bin,
⋅ ; ⋅ ⊢ send b unfold; b.0; send b unfold; b.0; send b unfold; b.$; close b ∶∶ b ∶ bin.

Remark 9.5.3. There are communications satisfying the type bin that do not represent legitimate
base-2 representations of natural numbers, e.g., the infinite stream of labels 1.

278 9. EQUIVALENCE, APPLIED

Assume now thatwewant to increment a binary natural number given its base-2 representation
(ak , . . . , a0)2. By the grade-school addition algorithm, we proceed from right-to-left along the bits
a i . If a bit is zero, then we set it to one, and copy the remaining bits unchanged; if it is one, then we
set it to zero and carry the one over. For example, in grade school, we wrote out the addition of
(1, 0, 1, 1)2 and one like so:

1 1

10 1 1
+ 1

1 1 00

We can extract a recursive algorithm from this procedure. To do so, we temporarily extend
the notion of base-2 representations to allow the empty sequence ()2 to also represent zero.6

Proposition 9.5.4. The base-2 representation of the successor of the natural number with base-2

representation ()2 is (1)2. The base-2 representation of the successor of the natural number with

base-2 representation (ak , . . . , a0)2 is:

● (ak , . . . , a1 , 1)2 if a0 = 0;

● (βc , . . . , β0 , 0)2 if a0 = 1, where (βc , . . . , β0)2 is the base-2 representation of the successor

of the natural number whose base-2 representation is (ak , . . . , a1)2.

Proof. By induction on k. The base case is immediate, so assume the result holds for some k′

and consider the base-2 representation (ak+1 , . . . , a1 , a0)2. It represents the natural number n =
∑

k+1
i=0 a i2

i . If a0 = 0, then it is immediate that the base-2 representation of n + 1 is (ak , . . . , a1 , 1)2.
Assume now that a0 = 1. Then n + 1 is given by:

(
k+1
∑
i=0

a i2i) + 1

= (
k+1
∑
i=1

a i2i) + 2

= (2
k

∑
i=0

a i+12i) + 2

= 2(1 +
k

∑
i=0

a i+12i)

but we recognize the parenthesized expression as the successor of the natural number whose base-2
representation is (ak , . . . , a1)2, so:

= 2(
c

∑
i=0

β i2i)

=
c

∑
i=0

β i2i+1 .

It follows that the base-2 representation of n + 1 is (βc , . . . , β0 , 0)2.

6Though this breaks the uniqueness of base-2 representations for zero, it is consistent with the original definition: a
nullary sum is equal to zero.

9.5. BINARY ARITHMETIC 279

The following process succ implements the recursive algorithm of proposition 9.5.4. It incre-
ments a binary natural number received on a and sends the result on b:

⋅ ; a ∶ bin ⊢ b ← {fix s.b ← {unfold← recv a;
send b unfold;
case a {0⇒ b.1; a → b

∣ 1⇒ b.0; b ← {s}← a

∣ $⇒ b.1; b.$; a → b}

}← a}← a ∶∶ b ∶ bin

Operationally, it implements the grade school addition algorithm. It works by checking each
successive component in the bit stream. If a component is zero, then it sets it to one, and then
leaves the remaining components unchanged. If a component is one, then it sets it to zero and
carries the one using a recursive call.

Our goal is to show that succ correctly implements the successor function, i.e., that

⋅ ; ⋅ ⊢ a ← [n]2 ; succ ≡ [n + 1]2 ∶∶ b ∶ bin

for all n ∈ N.
We begin by computing the denotation of the type bin and of its unfolding

BIN = ⊕{0 ∶ bin, 1 ∶ bin, $ ∶ 1}.

They denote the dI-domains:

⟦bin⟧ = FIX(X ↦ ((0 ∶ X�)⊕ (1 ∶ X�)⊕ ($ ∶ ⟦1⟧)))

⟦bin⟧+ = FIX(X ↦ ((0 ∶ X�)⊕ (1 ∶ X�)⊕ ($ ∶ ⟦1⟧+)))

⟦bin⟧− = {�}

⟦BIN⟧ = (0 ∶ ⟦bin⟧�)⊕ (1 ∶ ⟦bin⟧�)⊕ ($ ∶ ⟦1⟧)

⟦BIN⟧+ = (0 ∶ ⟦bin⟧+�)⊕ (1 ∶ ⟦bin⟧
+
�)⊕ ($ ∶ ⟦1⟧

+)

⟦BIN⟧− = {�}.

By proposition 9.2.1, we know that jbino+ and jBINo+ are both given by the identitymorphism.
These dI-domains are equipped with the natural isomorphisms These dI-domains are equipped
with the following canonical isomorphisms:

Unfold ∶ ⟦bin⟧→ ⟦BIN⟧�

Unfold+ ∶ ⟦bin⟧+ → ⟦BIN⟧+�

Unfold− ∶ {�}→ {(0 ∶ �, 1 ∶ �, $ ∶ �)}

Their respective inverses are Fold, Fold+, and Fold−.
We use the following suggestive notation for elements of ⟦bin⟧ = ⟦bin⟧+:

((β, 0))2 = Fold ([(0, [β])])
((β, 1))2 = Fold ([(1, [β])])
((�))2 = Fold([�])

(($�))2 = Fold([($, [�)])])
(($))2 = Fold([($, [close])]).

In particular, write ((bk , . . . , b0))2 for ((⋯(((($))2 , bk))2⋯, b0))2.
Next, we observe the correspondence between the process that sends n and the base-2 repre-

sentation of n:

280 9. EQUIVALENCE, APPLIED

Proposition 9.5.5. For all n ∈ N ,

⟦⋅ ; ⋅ ⊢ [n]2 ∶∶ a ∶ bin⟧�� = ((bk , . . . , b0))2

where (bk , . . . , b0)2 is the base-2 representation of n.

Proof. By induction on k. If k = 0, then the result follows by computation using eqs. (122), (166)
and (188). Assume the result for some k, and consider the case where n has a base-2 representa-
tion (bk+1 , . . . , b0)2. Then (bk+1 , . . . , b1)2 is also a base-2 representation, and by the induction
hypothesis,

⟦⋅ ; ⋅ ⊢ [
k+1
∑
i=1

b i2i]
2

∶∶ a ∶ bin⟧�� = ((bk+1 , . . . , b1))2 .

But

[n]2 = send b unfold; b.b0; [
k+1
∑
i=1

b i2i]
2

.

The result then follows by a computation using eqs. (166) and (188).

Now we turn our attention to computing the denotation of succ. To do so, we first compute
the denotations of each branch of the case statement. Let τ = {b ∶ bin← a ∶ bin}. The branch 0
has the derivation

s ∶ τ ; a ∶ bin ⊢ a → b ∶∶ b ∶ bin
(Fwd+)

s ∶ τ ; a ∶ bin ⊢ b.1; a → b ∶∶ b ∶ BIN
(⊕R)

and, by eqs. (113) and (166) and corollary 9.2.2, its denotation is the stable function

⟦s ∶ τ ; a ∶ bin ⊢ b.1; a → b ∶∶ b ∶ BIN⟧_(a+ , _) = (a+ , (1, [a+])) .

Similarly, the denotation of the $ branch is:

⟦s ∶ τ ; a ∶ bin ⊢ b.1; b.$; a → b ∶∶ b ∶ BIN⟧_(a+ , _) = (a+ , (1, [($, [a+])])) .

The case of the 1 branch is more interesting because of its interaction with the functional layer. Its
derivation is

s ∶ τ ⊩ s ∶ τ
(F-Var)

s ∶ τ ; a ∶ bin ⊢ b ← {s}← a ∶∶ b ∶ bin
(E-{})

s ∶ τ ; a ∶ bin ⊢ b.0; b ← {s}← b ∶∶ b ∶ BIN
(⊕R)

Its denotation is

⟦s ∶ τ ; a ∶ bin ⊢ b.0; b ← {s}← b ∶∶ b ∶ BIN⟧s(a+ , _) = (a, (0, [b]))

where down(s)(a+ , �) = (a, b).

Strictly speaking, the first argument s is an environment u = (s ∶ v) ∈ ⟦s ∶ τ⟧. We identify this
unary tuple with its single entry for convenience.

Write B l for the branch corresponding to the label l . Combining these three branches, we can
compute the denotation of the case statement using eq. (167):

⟦s ∶ τ ; a ∶ BIN ⊢ case a {l ⇒ B l}l∈{0,1,$} ∶∶ b ∶ BIN⟧s(a
+ , _)

=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(�, �) if a+ = �
((0, [α+]), (1, [α+])) if a+ = (0, [α+])
((1, a), (0, [b])) if a+ = (1, [α+])
(($, α+), (1, [($, [α+])])) if a+ = ($, [α+])

where down(s)(α+ , �) = (a, b).

9.5. BINARY ARITHMETIC 281

By eqs. (188) and (189), we then deduce:

⟦s ∶ τ ; a ∶ bin ⊢ unfold← recv a; send b unfold; case a {l ⇒ B l}l∈{0,1,$} ∶∶ b ∶ bin⟧s(a
+ , _)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(�, �) if a+ = �
(((α+ , 0))2 , ((α+ , 1))2) if a+ = ((α+ , 0))2

(((a, 1))2 , ((b, 0))2) if a+ = ((α+ , 1))2

((($�))2 , (($� , 1))2) if a+ = (($�))2

((($))2 , (($, 1))2) if a+ = (($))2

where down(s)(α+ , �) = (a, b).

Finally, we compute the denotation of succ. By eqs. (137) and (143), it is given

⟦⋅ ; a ∶ bin ⊢ succ ∶∶ b ∶ bin⟧� = down(lfp(Φ))

where Φ ∶ ⟦τ⟧→ ⟦τ⟧ is the function

Φ(s) = up

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ(a+ , _) ∈ ⟦bin⟧+ × ⟦bin⟧− .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(�, �) if a+ = �
(((α+ , 0))2 , ((α+ , 1))2) if a+ = ((α+ , 0))2

(((a, 1))2 , ((b, 0))2) if a+ = ((α+ , 1))2

((($�))2 , (($� , 1))2) if a+ = (($�))2

((($))2 , (($, 1))2) if a+ = (($))2

where down(s)(α+ , �) = (a, b).

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

By proposition 9.5.5 and an argument similar to the one establishing eq. (273), we deduce that:

⟦⋅ ; ⋅ ⊢ a ← [n]2 ; succ ∶∶ a ∶ bin⟧�_ = down(lfp(Φ))((bk , . . . , b0))2 (275)

where (bk , . . . , b0)2 is the base-2 representation of n.

Proposition 9.5.6. The process succ implements the successor function, i.e.,

⋅ ; ⋅ ⊢ a ← [n]2 ; succ ≡ [n + 1]2 ∶∶ b ∶ bin

for all n ∈ N.

Proof. Consider some arbitrary n ∈ N. By eq. (275), it is sufficient to show that

down(lfp(Φ))((bk , . . . , b0))2 = ((βm , . . . , β0))2

where (bk , . . . , b0)2 and (βm , . . . , β0)2 are respectively the base-2 representations of n and n + 1.
We know that (βm , . . . , β0)2 can be computed from (bk , . . . , b0)2 using the recursive algo-

rithm given in proposition 9.5.4. As a result, it is sufficient to show that for any (bk , . . . , b0)2,
if

down(lfp(Φ))((bk , . . . , b0))2 = ((βm , . . . , β0))2 ,
then (βm , . . . , β0)2 is the result of applying proposition 9.5.4 to (bk , . . . , b0)2.

We proceed by induction on the number of bits in (bk , . . . , b0)2. If it is the empty sequence,
then it corresponds to the element (($))2, and

down(lfp(Φ))(($))2 = down(Φ(lfp(Φ)))(($))2 = (($, 1))2 ,

as desired.
Assume the result for sequences of length k, and consider a sequence (bk , . . . , b0)2. We

proceed by case analysis on b0. If b0 = 0, then

down(lfp(Φ))((bk , . . . , b1 , b0))2 = down(Φ(lfp(Φ)))((bk , . . . , b1 , 0))2 = ((bk , . . . , b1 , 1))2 ,

as desired. If b1 = 1, then

down(lfp(Φ))((bk , . . . , b1 , b0))2 = down(Φ(lfp(Φ)))((bk , . . . , b1 , 1))2 = ((δc , . . . , δ0 , 0))2

282 9. EQUIVALENCE, APPLIED

where down(lfp(Φ))((bk , . . . , b1))2 = ((δc , . . . , δ0))2. By the induction hypothesis, (δc , . . . , δ0)2
is the result of applying proposition 9.5.4 to ((bk , . . . , b1))2. It follows that (δc , . . . , δ0 , 0)2 is the
result of applying proposition 9.5.4 to ((bk , . . . , b1 , b0))2. This completes the case b1 = 1. We
conclude the result.

CHAPTER 10

Summary and Future Research

In this dissertation, we developed a variety of techniques for reasoning about Polarized SILL
and its programs, and wemade contributions to themathematical foundations of programming
semantics to support them. We summarize these contributions and we discuss their potential
applications to future research. We also discuss remaining open problems that are directly related
to our contributions.

In chapter 6, we developed an observed communication semantics for Polarized SILL.We
defined themeaning of a session type to be the set of communications it allows, andwe showed that
this set could be endowed with a notion of approximation. Then, we showed how to observe the
communications sent by processes and configurations in the course of an execution. Importantly,
we showed that all fair executions of configurations resulted in the same observed communications.
This fact reflects the confluence property satisfied by Polarized SILL.

We introduced a framework for extensional, observational notions of equivalence for Polarized
SILL in chapter 7. It was inspired by the “testing equivalences” framework of De Nicola and
Hennessy [DH84; Hen83; De 85]. Both frameworks are similar in that they deem processes to
be equivalent whenever they are indistinguishable through experimentation. The frameworks
differ, however, in the notion of experimentation. Subjecting processes to classical experiments
could potentially result in a “success” state, and two processes were equivalent if they succeeded
the same experiments. Instead of defining experimental indistinguishability using observed states,
we defined it in terms of observed communications. In particular, our experiments communicated
with processes (strictly speaking, with configurations of processes), and we deemed processes to
be equivalent if we could not observe any differences in their communications. We had a certain
latitude in choosing which communications to observe, and this latitude resulted in different
notions of process equivalence. One of these, “external observational equivalence”, coincided with
barbed congruence. We showed how to lift observational congruences on configurations to certain
restricted forms of congruences on processes.

We introduced CYO pluricategories to model systems with bidirectional communication in
section 8.2. Intuitively, objects in CYO pluricategories represent bidirectional communication pro-
tocols, whilemorphisms represent communicating processes. Concretely, objects are embeddings
A→ A+ × A− in an underlying category, where A captures bidirectional communications allowed
by a protocol, and the embedding describes a decomposition of bidirectional communications into
unidirectional communications. Morphisms ∆ → Γ represent communicating systems that use
communications ∆ to provide communications Γ. They aremorphisms ∆+ × Γ− → ∆ × Γ in the
underlying category that describe how to complete unidirectional input received on ∆+ and Γ−

into complete bidirectional communications.
We used CYO pluricategories to give Polarized SILL a denotational semantics in chapter 8.

To capture desirable computational properties, we interpreted protocols and processes in a CYO
pluricategory over the category Stab of dI-domains and stable maps. The functional layer had
the usual stable semantics. Our denotational semantics is notable for being the first to handle
general recursion at the protocol and process layers, combined with a functional layer and value
transmission, and other rich protocols.

The unifying theme of these contributions is that we have defined themeaning of processes
in terms of their communications. In doing so, we have stayed faithful to the process abstraction:

283

284 10. SUMMARY AND FUTURE RESEARCH

communication is the only phenomenon of processes. Together, they serve as compelling proof of
the following thesis statement:

Communication-based semantics elucidate the structure of session-typed

languages and allow us to reason about programs written in these languages.

These contributions requiredmajor extensions to their underlying mathematical foundations.
For our observed communication semantics to be well-defined and for it to capture our semantic
intuitions,we had to first develop fairness formultiset rewriting systems in chapter 3. We discovered
three independent varieties of fairness—rule fairness, fact fairness, and instantiation fairness—and
saw how each subdivided along the axis of weak and strong fairness. All six forms of fairness are
subsumed by a particularly strong form of fairness called über fairness. We studied properties of
fair traces, constructed a scheduler, and gave sufficient conditions for multiset rewriting systems
to have fair traces. We observed that under certain conditions, all varieties of fairness coincided.
We introduced a notion of trace equivalence called “union equivalence” and studied the effects
of permutations on fairness. In particular, we showed that, subject to certain conditions, all fair
executions are permutations of each other and that all fair executions are union-equivalent.

To define the denotations of recursive session types, we first had to explore the 2-categorical
structure of parametrized fixed points of functors in chapter 4. We showed that parametrized
fixed points of ω-functors could be given by a Conway operator, and we showed that unfolding
parametrized fixed points was given by amodification. We used these facts repeatedly in chapter 8
when reasoning about recursive types.

There are many open questions related to the above contributions. We highlight the most
important.

(1) Do junk-free, frugal, complete functions form a dI-domain? If so, then we could drop
assumption 8.1.8 and allow quoted processes to be sent by session-typed processes. An
affirmative answer would also simplify the semantics of the functional layer: we could
interpret all types in the functional layer as dI-domains and all functional terms as stable
maps, instead of being forced to interpret some types as dcpos and some functions as
only continuous.

(2) How do we lift observational congruences on configurations to (full) congruences on pro-

cesses? We showed in section 7.5 that observational congruences on configurations induced
certain restricted classes of congruences on processes. However, the subtle interplay be-
tween the process and functional layers prevented us from showing that they induced full
congruences. We conjecture that we could develop a version of Howe’s method [How96]
for languages with adjunctions to show this result.

This question has important implications for practical applications of our observa-
tional congruences. Indeed, the reason congruence relations are so sought after is that
they allow us to replace equals by equals. If we could do so, then we could use them to
reason about, e.g., program optimizations.

(3) What is the relationship between the partial orders of session-typed communications given

in section 6.1 and the dI-domains of complete session-typed communications given in

section 8.3? Are they isomorphic? How are the observed communications of processes
related to the complete communications in the image of their denotations? We conjecture
that answers to these questions could result in a new soundness proof for our denotational
semantics.

(4) What general structure underlies initial fixed point categories and canonical fixed point

categories? In sections 4.2 and 4.3, we studied initial fixed points and parametrized fixed
points of ω-functors. These results carried over, almost unchanged, to locally continuous
functors and O-categories in section 4.5. How can we unify these two analyses into a
single framework?

10. SUMMARY AND FUTURE RESEARCH 285

(5) Can we use a graphical language to reason about typing derivations for configurations? If so,
then we would be spared from having to tediously reassociate or commute compositions
of configurations using syntactic arguments.

There are alsomany directions inwhich our contributions could be extended. Themost interest-
ing directions include reasoning about dependent session types and reasoning about computational
interpretations of adjoint logic.

Dependent protocols are an important class of real-world protocols unsupported by Polarized
SILL. Dependent protocols prescribe communications where some messages may depend on
previousmessages. An example dependent protocol is the 3-way handshake [Tom75; SD78; RFC793]
used to negotiate TCP connections. In the first step of a 3-way handshake, a process sends its peer
a natural number n. Its peer must then reply with the natural number n + 1, i.e., with a value that
depends on a previously received value. The Heartbeat TLS protocol extension is another example
of a dependent protocol. It is used by processes to ensure that their peers are still reachable. They
do so by exchanging “heartbeat” messages. Roughly speaking, a process sends its peer themessage
“Here are n bits of data”, followed by said data. Its peer replies with “Here are those n bits”, followed
by the data it received. The dependency arises from the fact that the only data allowed in the reply
is the data that it received.

There already exist dependently session-typed languages that support various sorts of depen-
dent protocols [TY18; TV19; TCP11; DP20], but it is unclear how to combine these different kinds
of dependency in a single language. It is also unclear how to extend these languages to support
general recursion.

Our various semantics provide an ideal framework in which to study these questions. Indeed,
program equivalence is the crux of any dependently typed language, and our observational and
denotational semantics both provide notions of program equivalence. Moreover, denotational
semantics have historically excelled at capturing recursion, and we believe ours could be used to
study the interactions between general recursion and various forms of dependency.

Adjoint logic gives a framework for conservatively combining multiple intuitionistic logics
with varying structural properties [Pru+18]. Its computational interpretations uniformly combine
message-passing concurrency, shared-memory functionality, and sequential computation [PP19b].
Its message-passing interpretation is notable because it permits communication patterns not
possible in Polarized SILL or in other languages that use binary session types [PP21]. These include
multicast, i.e., sending one message to multiple clients, and replicable services, where a service
replicates itself on-demand to handle requests from multiple clients. These richer communication
patterns are found in real-world software, and we would like to extend our semantics to be able to
reason about them.

Bibliography

[81] Proceedings of the Sixth IBM Symposium on Mathematical Foundations of Com-

puter Science: Logic Aspects of Programs. 6th IBM Symposium on Mathematical
Foundations of Computer Science (Hakone, Japan,May 25–27, 1981). Tokyo, Japan:
Corporate & Scientific Programs, IBM Japan, 1981. 431 pp. (cit. on p. 296).

[Abr07] Samson Abramsky. “Event Domains, Stable Functions and Proof-Nets”. In: Elec-
tronic Notes in Theoretical Computer Science 172 (Apr. 1, 2007): Computation,Mean-

ing, and Logic: Articles dedicated to Gordon Plotkin, pp. 33–67. issn: 1571-0661. doi:
10.1016/j.entcs.2007.02.003 (cit. on p. 23).

[Abr96] Samson Abramsky. “Retracing Some Paths in Process Algebra”. In: CONCUR ’96:

Concurrency Theory. Concur ’96 : 7th International Conference on Concurrency
Theory (Pisa, Italy, Aug. 26–29, 1996).Ed. byUgoMontanari andVladimiro Sassone.
Lecture Notes in Computer Science 1119. Springer-Verlag Berlin Heidelberg, 1996.
isbn: 978-3-540-70625-0. doi: 10.1007/3-540-61604-7 (cit. on pp. 4, 177).

[AGM95] S. Abramsky, DovM. Gabbay, and T. S. E. Maibaum, eds. Handbook of Logic in
Computer Science. Vol. 3: Semantic Structures. 5 vols. New York: Oxford University
Press Inc., June 15, 1995. xv+490 pp. isbn: 0-19-853762-X.

[AHS02] Samson Abramsky, Esfandiar Haghverdi, and Philip Scott. “Geometry of Inter-
action and Linear Combinatory Algebras”. In:Mathematical Structures in Com-

puter Science 12.5 (Oct. 2002), pp. 625–665. issn: 1469-8072. doi: 10 . 1017 /
s0960129502003730 (cit. on pp. 29, 177).

[AJ94] S.Abramsky andR. Jagadeesan. “NewFoundations for theGeometry of Interaction”.
In: Information and Computation 111.1 (May 15, 1994), pp. 53–119. issn: 0890-5401.
doi: 10.1006/inco.1994.1041 (cit. on p. 4).

[AJ95] Samson Abramsky and Achim Jung. “Domain Theory”. In: Handbook of Logic in
Computer Science. Vol. 3: Semantic Structures. Ed. by S. Abramsky, DovM. Gabbay,
and T. S. E. Maibaum. 5 vols. New York: Oxford University Press Inc., June 15, 1995,
pp. 1–168. isbn: 0-19-853762-X (cit. on pp. 18–23, 25–27, 63, 181, 206, 265).

[AL91] Andrea Asperti and Giuseppe Longo. Categories, Types, and Structures. An Intro-

duction to Category Theory for the Working Computer Scientist. Foundations of
Computing. Cambridge, Massachusetts: The MIT Press, 1991. xi+306 pp. isbn:
0-262-01125-5 (cit. on p. 9).

[AMM18] Jiří Adámek, Stefan Milius, and Lawrence S. Moss. “Fixed Points of Functors”. In:
Journal of Logical and AlgebraicMethods in Programming 95 (Feb. 2018), pp. 41–81.
issn: 2352-2208. doi: 10.1016/j.jlamp.2017.11.003 (cit. on pp. 74, 76).

[AO82] Krzysztof R. Apt and Ernst-Rüdiger Olderog. “Proof Rules DealingWith Fairness”.
Extended Abstract. In: Logics of Programs. Logics of Programs Workshop (York-
town Heights, New York, May 4–6, 1981). Ed. by Dexter Kozen. Lecture Notes
in Computer Science 131. Springer-Verlag Berlin Heidelberg, 1982, pp. 1–8. isbn:
978-3-540-39047-3. doi: 10.1007/BFb0025770 (cit. on p. 61).

[Atk17] Robert Atkey. “Observed Communication Semantics for Classical Processes”. In:
Programming Languages and Systems. 26th European Symposium on Programming.
ESOP 2017 (Uppsala, Sweden, Apr. 22–29, 2017). Ed. byHongseok Yang. Lecture

287

https://doi.org/10.1016/j.entcs.2007.02.003
https://doi.org/10.1007/3-540-61604-7
https://doi.org/10.1017/s0960129502003730
https://doi.org/10.1017/s0960129502003730
https://doi.org/10.1006/inco.1994.1041
https://doi.org/10.1016/j.jlamp.2017.11.003
https://doi.org/10.1007/BFb0025770

288 BIBLIOGRAPHY

Notes in Computer Science 10201. Berlin, Germany: Springer-Verlag GmbH Ger-
many, 2017, pp. 56–82. isbn: 978-3-662-54434-1. doi: 10.1007/978- 3- 662-
54434-1_3 (cit. on pp. iii, 2–4, 133, 137, 138, 154, 158, 243).

[BA81] J.Dean Brock andWilliam B.Ackerman. “Scenarios: AModel ofNon-Determinate
Computation”. In: Formalization of Programming Concepts. International Collo-
quiumon the Formalization of ProgrammingConcepts. ICFPC’81 (Peniscola, Spain,
Apr. 19–25, 1981). Ed. by Josep Díaz and Isidro Ramos. Lecture Notes in Computer
Science 107. Springer-Verlag Berlin Heidelberg, 1981, pp. 252–259. isbn: 978-3-540-
38654-4. doi: 10.1007/3-540-10699-5_102 (cit. on p. 243).

[Bar91] Michael Barr. “∗-Autonomous Categories and Linear Logic”. In: Mathematical

Structures in Computer Science 1.2 (July 1991), pp. 159–178. issn: 1469-8072. doi:
10.1017/s0960129500001274 (cit. on pp. 3, 138, 243).

[BÉ93] Stephen L. Bloom and Zoltán Ésik. Iteration Theories. The Equational Logic of

Iterative Processes. EATCS Monographs on Theoretical Computer Science. Springer-
Verlag Berlin Heidelberg, 1993. xv+630 pp. isbn: 978-3-642-78034-9. doi: 10.1007/
978-3-642-78034-9 (cit. on p. 88).

[BÉ95] Stephen L. Bloom and Zoltán Ésik. “Some Equational Laws of Initiality in 2CCC’s”.
In: International Journal of Foundations of Computer Science 6.2 (1995), pp. 95–118.
doi: 10.1142/S0129054195000081 (cit. on pp. 3, 12, 63, 78, 82, 84, 85, 88).

[BÉ96] Stephen L. Bloom and Zoltán Ésik. “Fixed-Point Operations on ccc’s. Part I”. In:
Theoretical Computer Science 155.1 (Feb. 25, 1996), pp. 1–38. issn: 0304-3975. doi:
10.1016/0304-3975(95)00010-0 (cit. on pp. 3, 4, 28, 63, 64, 78, 79, 84–86, 88).

[BÉ98] L. Bernátsky and Z. Ésik. “Semantics of Flowchart Programs and the Free Conway
Theories”. In: Informatique théorique et Applications / Theoretical Informatics and

Applications 32.1-2-3 (1998), pp. 35–78. issn: 0988-5004 (cit. on p. 64).
[Bek84] Hans Bekić. “Definable Operations in General Algebras, and the Theory of Au-

tomata and Flowcharts”. In: Hans Bekič. Programming Languages and Their Defini-

tion. Selected Papers. Ed. by C. B. Jones.With an intro. by Cliff B. Jones. Lecture
Notes in Computer Science 177. Springer-Verlag Berlin Heidelberg, 1984, pp. 30–55.
isbn: 978-3-540-38933-0. doi: 10.1007/bfb0048939 (cit. on p. 63).

[Ben94] P. N. Benton. A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models.
Preliminary Report. Tech. rep. UCAM-CL-TR-352. Cambridge, United Kingdom:
Computer Laboratory, University of Cambridge, Oct. 1994. 65 pp. (cit. on p. 88).

[Ben95] P. N. Benton. “AMixed Linear and Non-Linear Logic: Proofs, Terms andModels”.
Extended Abstract. In: Computer Science Logic. 8thWorkshop, CSL ’94. Annual
Conference of the European Association for Computer Science Logic, CSL ’94
(Kazimierz, Poland, Sept. 25–30, 1994). Ed. by Leszek Pacholski and Jerzy Tiuryn.
Lecture Notes in Computer Science 933. Springer-Verlag Berlin Heidelberg, 1995,
pp. 121–135. isbn: 978-3-540-49404-1. doi: 10.1007/BFb0022251 (cit. on p. 88).

[Ber94] Claude Bertrand. “A Natural Semantics of First-Order Type Dependency”. In:
Theoretical Computer Science 123.1 (Jan. 17, 1994), pp. 31–53. issn: 0304-3975. doi:
10.1016/0304-3975(94)90067-1 (cit. on p. 26).

[BH03] Nick Benton andMartin Hyland. “Traced Premonoidal Categories”. In: RAIRO -

Theoretical Informatics and Applications 37.4 (Oct.–Dec. 2003), pp. 273–299. issn:
1290-385X. doi: 10.1051/ita:2003020 (cit. on pp. 28, 29, 64, 85).

[Boc78] Gregor V. Bochmann. “Finite State Description of Communication Protocols”.
In: Computer Networks 2.4-5 (Sept.–Oct. 1978), pp. 361–372. issn: 0376-5075. doi:
10.1016/0376-5075(78)90015-6 (cit. on p. 1).

[BP17] Stephanie Balzer and Frank Pfenning. “Manifest SharingWith Session Types”. In:
Proceedings of the ACM on Programming Languages 1.ICFP, 37 (Sept. 2017). issn:
2475-1421. doi: 10.1145/3110281 (cit. on p. 60).

https://doi.org/10.1007/978-3-662-54434-1_3
https://doi.org/10.1007/978-3-662-54434-1_3
https://doi.org/10.1007/3-540-10699-5_102
https://doi.org/10.1017/s0960129500001274
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1142/S0129054195000081
https://doi.org/10.1016/0304-3975(95)00010-0
https://doi.org/10.1007/bfb0048939
https://doi.org/10.1007/BFb0022251
https://doi.org/10.1016/0304-3975(94)90067-1
https://doi.org/10.1051/ita:2003020
https://doi.org/10.1016/0376-5075(78)90015-6
https://doi.org/10.1145/3110281

BIBLIOGRAPHY 289

[Bro88] Manfred Broy. “Nondeterministic Data Flow Programs:How To Avoid theMerge
Anomaly”. In: Science of Computer Programming 10.1 (Feb. 1988), pp. 65–85. issn:
0167-6423. doi: 10.1016/0167-6423(88)90016-0 (cit. on p. 243).

[BRW85] Stephen D. Brookes, AndrewWilliam Roscoe, and GlynnWinskel, eds. Seminar on

Concurrency. Seminar on Semantics of Concurrency (Carnegie-Mellon University,
Pittsburgh, Pennsylvania, July 9–11, 1984). Lecture Notes in Computer Science 197.
Springer-Verlag Berlin Heidelberg, 1985. x+523 pp. isbn: 978-3-540-39593-5. doi:
10.1007/3-540-15670-4.

[Brz64] Janusz A. Brzozowski. “Derivatives of Regular Expressions”. In: Journal of the ACM

11.4 (Nov. 1964), pp. 481–494. issn: 0004-5411. doi: 10.1145/321239.321249
(cit. on pp. 133, 243).

[BW96] Nick Benton and PhilipWadler. “Linear Logic,Monads and the Lambda Calculus”.
In: Proceedings. 11th Annual IEEE Symposium on Logic in Computer Science.
LICS’96 (New Brunswick, New Jersey, July 27–30, 1996). IEEE Computer Society
Technical Committee on Mathematical Foundations of Computing. Los Alamitos,
California: IEEE Computer Society Press, 1996, pp. 420–431. isbn: 0-8186-7463-6.
doi: 10.1109/LICS.1996.561458 (cit. on p. 88).

[BW99] Michael Barr and Charles Wells. Category Theory for Computing Science. 3rd ed.
Montreal, Quebec: Les Publications CRM, 1999. xvii+526 pp. isbn: 2-921120-31-3
(cit. on pp. 9, 13).

[CAA84] J. P. Courtiat, J. M. Ayache, and B. Algayres. “Petri Nets Are Good for Protocols”.
In: ACM SIGCOMM Computer Communication Review 14.2 (June 1984), pp. 66–74.
issn: 0146-4833. doi: 10.1145/639624.802062 (cit. on p. 1).

[CBB54] T.W. Chaundy, P. R. Barrett, and Charles Batey. The Printing ofMathematics. Aids

for Authors and Editors and Rules for Compositors and Readers at the University

Press, Oxford. London, United Kingdom: Oxford University Press, 1954. ix+105 pp.
(cit. on p. 5).

[Cer+00] I. Cervesato et al. “Interpreting Strands in Linear Logic”. In: 2000 Workshop on

Formal Methods and Computer Security (Chicago, Illinois, July 2000). 2000 (cit. on
p. 60).

[Cer+03] Iliano Cervesato et al. A Concurrent Logical Framework II: Examples and Applica-

tions. Research rep. CMU-CS-02-102. Pittsburgh, Pennsylvania: School of Com-
puter Science, CarnegieMellon University,May 2003. 74 pp. (cit. on p. 49).

[Cer+05] Iliano Cervesato et al. “A Comparison Between Strand Spaces andMultiset Rewrit-
ing for Security Protocol Analysis”. In: Journal of Computer Security 13.2 (Apr. 1,
2005), pp. 265–316. issn: 0926-227X. doi: 10.3233/JCS-2005-13203 (cit. on
pp. 39, 41, 43, 60).

[Cer+99] I. Cervesato et al. “A Meta-Notation for Protocol Analysis”. In: Proceedings of

the 12th IEEE Computer Security Foundations Workshop. 12th IEEE Computer
Security Foundations Workshop. CSFW’99 (Mordano, Italy, June 28–30, 1999). Los
Alamitos, California: IEEE Computer Society, 1999, pp. 55–69. isbn: 0-7695-0201-6.
doi: 10.1109/CSFW.1999.779762 (cit. on p. 60).

[Cer01] Iliano Cervesato. “TypedMultiset Rewriting Specifications of Security Protocols”.
In: Electronic Notes in Theoretical Computer Science 40 (Mar. 2001):MFCSIT2000,

The First Irish Conference on theMathematical Foundations of Computer Science

and Information Technology, pp. 8–51. issn: 1571-0661. doi: 10.1016/s1571-
0661(05)80035-0 (cit. on pp. 39, 47).

[CGW88] Thierry Coquand, Carl Gunter, and GlynnWinskel. “dI-Domains As aModel of
Polymorphism”. In:Mathematical Foundations of Programming Language Seman-

tics. 3rdWorkshop on theMathematical Foundations of Programming Language
Semantics. MFPS’87 (New Orleans, Louisiana, Apr. 8–10, 1987). Lecture Notes

https://doi.org/10.1016/0167-6423(88)90016-0
https://doi.org/10.1007/3-540-15670-4
https://doi.org/10.1145/321239.321249
https://doi.org/10.1109/LICS.1996.561458
https://doi.org/10.1145/639624.802062
https://doi.org/10.3233/JCS-2005-13203
https://doi.org/10.1109/CSFW.1999.779762
https://doi.org/10.1016/s1571-0661(05)80035-0
https://doi.org/10.1016/s1571-0661(05)80035-0

290 BIBLIOGRAPHY

in Computer Science 298. Springer Berlin Heidelberg, 1988, pp. 344–363. isbn:
9783540389200. doi: 10.1007/3-540-19020-1_18 (cit. on p. 26).

[Chu40] Alonzo Church. “A Formulation of the Simple Theory of Types”. In: Journal of

Symbolic Logic 5.2 (June 1940), pp. 56–68. issn: 1943-5886. doi: 10.2307/2266170
(cit. on pp. 9, 31).

[CP10] Luís Caires and Frank Pfenning. “Session Types as Intuitionistic Linear Proposi-
tions”. In: CONCUR 2010—Concurrency Theory. 21st International Conference,
CONCUR 2010 (Paris, France, Aug. 31–Sept. 3, 2010). Ed. by Paul Gastin and
François Laroussinie. Lecture Notes in Computer Science 6269. Springer-Verlag
Berlin Heidelberg, 2010, pp. 222–236. isbn: 978-3-642-15374-7. doi: 10.1007/978-
3-642-15375-4_16 (cit. on pp. 97, 133).

[CPT12] Luís Caires, Frank Pfenning, and Bernardo Toninho. “Towards Concurrent Type
Theory”. In: TLDI’12. 8th ACM SIGPLANWorkshop on Types in Language Design
and Implementation (Philadelphia, Pennsylvania, Jan. 28, 2012). New York, New
York: Association for Computing Machinery, Inc., 2012, pp. 1–12. isbn: 978-1-4503-
1120-5. doi: 10.1145/2103786.2103788 (cit. on p. 271).

[Cro93] Roy L. Crole. Categories for Types. Cambridge, United Kingdom: Cambridge Uni-
versity Press, 1993. xvii+335 pp. isbn: 0-521-45701-7 (cit. on pp. 63, 179, 199).

[CS09] Iliano Cervesato and Andre Scedrov. “Relating State-Based and Process-Based
Concurrency Through Linear Logic (Full-Version)”. In: Information and Compu-

tation 207.10 (Oct. 2009): Special Issue: 13thWorkshop on Logic, Language, Infor-

mation and Computation (WoLLIC 2006), pp. 1044–1077. issn: 0890-5401. doi:
10.1016/j.ic.2008.11.006 (cit. on pp. 2, 39, 41, 42, 45, 60). “Relating State-
Based and Process-Based Concurrency Through Linear Logic”. In: Electronic Notes

in Theoretical Computer Science 165 (Nov. 22, 2006): Proceedings of the 13thWork-

shop on Logic, Language, Information and Computation (WoLLIC 2006), pp. 145–176.
issn: 1571-0661. doi: 10.1016/j.entcs.2006.05.043.

[CS87] Gerardo Costa and Colin Stirling. “Weak and Strong Fairness in CCS”. In: In-
formation and Computation 73.3 (June 1987), pp. 207–244. issn: 0890-5401. doi:
10.1016/0890-5401(87)90013-7 (cit. on p. 61).

[CŞ90] Virgil Emil Căzănescu and Gheorghe Ştefănescu. “Towards a New Algebraic Foun-
dation of Flowchart SchemeTheory”. In: Fundamenta Informaticae 13.2 (June 1990),
pp. 171–210 (cit. on p. 28). Repr. ofVirgil-Emil Căzănescu andGheorghe Ştefănescu.
“Towards aNew Algebraic Foundation of Flowchart SchemeTheory”. In: INCREST
Preprint Series in Mathematics 43 (Dec. 1987). issn: 0250-3638.

[CY19] Simon Castellan and Nobuko Yoshida. “Two Sides of the Same Coin: Session
Types and Game Semantics. A Synchronous Side and an Asynchronous Side”. In:
Proceedings of the ACM on Programming Languages 3.POPL, 27 (Jan. 2019), p. 27.
doi: 10.1145/3290340 (cit. on pp. iii, 3, 243).

[Dar82] Ph. Darondeau. “An Enlarged Definition and Complete Axiomatization of Ob-
servational Congruence of Finite Processes”. In: International Symposium on Pro-

gramming. Fifth International Symposium on Programming (Turin, Italy, Apr. 6–8,
1982). Ed. byMariangiola Dezani-Ciancaglini and Ugo Montanari. Lecture Notes
in Computer Science 137. Springer-Verlag Berlin Heidelberg, 1982, pp. 47–62. isbn:
9783540391845. doi: 10.1007/3-540-11494-7_5 (cit. on pp. 4, 154).

[De 85] Rocco De Nicola. “Testing Equivalences and Fully Abstract Models for Commu-
nication Processes”. PhD thesis. University of Edinburgh, 1985. vi+213 pp. HDL:
1842/16979 (cit. on pp. iii, 2–4, 153, 283).

[DH84] R. De Nicola and M. C. B. Hennessy. “Testing Equivalences for Processes”. In:
Theoretical Computer Science 34.1-2 (1984), pp. 83–133. issn: 0304-3975. doi: 10.
1016/0304-3975(84)90113-0 (cit. on pp. iii, 2–4, 153, 283).

https://doi.org/10.1007/3-540-19020-1_18
https://doi.org/10.2307/2266170
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1145/2103786.2103788
https://doi.org/10.1016/j.ic.2008.11.006
https://doi.org/10.1016/j.entcs.2006.05.043
https://doi.org/10.1016/0890-5401(87)90013-7
https://doi.org/10.1145/3290340
https://doi.org/10.1007/3-540-11494-7_5
http://hdl.handle.net/1842/16979
https://doi.org/10.1016/0304-3975(84)90113-0
https://doi.org/10.1016/0304-3975(84)90113-0

BIBLIOGRAPHY 291

[DJP03] NachumDershowitz, D. N. Jayasimha, and Seungjoon Park. “Bounded Fairness”. In:
Verification: Theory and Practice. Essays Dedicated to Zohar Manna on the Occasion

of His 64th Birthday. Ed. by Nachum Dershowitz. 2772. Springer-Verlag Berlin
Heidelberg, 2003, pp. 304–317. isbn: 9783540399100. doi: 10.1007/978-3-540-
39910-0_14 (cit. on p. 61).

[DK19] Joshua Dunfield andNeel Krishnaswami. Bidirectional Typing. Aug. 16, 2019. arXiv:
1908.05839v1 [cs.PL] (cit. on p. 38).

[DP19] Farzaneh Derakhshan and Frank Pfenning. Circular Proofs as Session-Typed Pro-

cesses: A Local Validity Condition. Aug. 6, 2019. arXiv: 1908.01909v1 [cs.LO]
(cit. on p. iii).

[DP20] Ankush Das and Frank Pfenning. Session Types with Arithmetic Refinements and

Their Application toWork Analysis. Jan. 23, 2020. arXiv: 2001.04439v3 [cs.PL]
(cit. on p. 285).

[Dur+14] Zakir Durumeric et al. “TheMatter ofHeartbleed”. In: IMC’14. 2014 ACM Internet
Measurement Conference. IMC’14 (Vancouver, British Columbia, Nov. 5–7, 2014).
ACM SIGCOMM and ACM SIGMETRICS. New York, New York: The Association
for Computing Machinery, Inc., 2014, pp. 475–488. isbn: 9781450332132. doi: 10.
1145/2663716.2663755 (cit. on p. 1).

[Egg21] L.C. Eggan. “Rev. ofANewApproach To the Real Numbers (Motivated ByContinued

Fractions).” In: Mathematical Reviews MR693180 (2021) (cit. on p. 199). Rev. of
G. J. Rieger. “ANewApproach To the Real Numbers (Motivated By Continued frac-
tions)”. In: Abhandlungen der BraunschweigischenWissenschaftlichen Gesellschaft

33 (1982), pp. 205–217. issn: 0068-0737.
[Esc93] Martín Hötzel Escardó. “On Lazy Natural Numbers With Applications To Com-

putability Theory and Functional Programming”. In: ACM SIGACT News 24.1 (Jan.
1993), pp. 61–67. doi: 10.1145/152992.153008 (cit. on p. 138).

[Eti+15] Pavel Etingof et al. Tensor Categories. Mathematical Surveys andMonographs 2015.
Providence, Rhode Island: American Mathematical Society, 2015. xvi+343 pp. isbn:
978-1-4704-2024-6 (cit. on p. 13).

[Fio94] Marcelo P. Fiore. “Axiomatic Domain Theory in Categories of Partial Maps”. PhD
thesis. The University of Edinburgh Department of Computer Science, Oct. 1994.
v+282 pp. (cit. on pp. 11, 12, 27, 82, 87, 88).

[FOCS’7777] 18th Annual Symposium on Foundations of Computer Science. Formerly called the
Annual Symposium on Switching and Automata Theory. 18th Annual Symposium
on Foundations of Computer Science. FOCS’77 (Providence, Rhode Island,Oct. 31–
Nov. 2, 1977). IEEE 77 CH1278-1 C. IEEE Computer Society’s Technical Committee
on Mathematical Foundations of Computing. Long Beach, California: Institute of
Electrical and Electronics Engineers, 1977. v+269 pp.

[Fra86] Nissim Francez. Fairness. Texts andMonographs in Computer Science. Springer-
Verlag New York Inc., 1986. xiii+295 pp. isbn: 978-1-4612-4886-6. doi: 10.1007/
978-1-4612-4886-6 (cit. on pp. 47, 60).

[Fre90] P. Freyd. “Recursive Types Reduced To Inductive Types”. In: Proceedings of the

Fifth Annual IEEE Symposium on Logic in Computer Science. Fifth Annual IEEE
Symposium on Logic in Computer Science. LICS’90 (Philadelphia, Pennsylvania,
June 4–7, 1990). IEEE Computer Society Press, 1990, pp. 498–507. doi: 10.1109/
LICS.1990.113772 (cit. on p. 138).

[Fre91] Peter Freyd. “Algebraically Complete Categories”. In: Category Theory. Category
Theory ’90 (Como, Italy, July 22–28, 1990). Ed. by Aurelio Carboni,Maria Cristina
Pedicchio, and Giuseppe Rosolini. LectureNotes in Mathematics 1488. Springer-
Verlag Berlin Heidelberg, 1991, pp. 95–104. isbn: 978-3-540-46435-8. doi: 10.1007/
BFb0084215 (cit. on p. 88).

https://doi.org/10.1007/978-3-540-39910-0_14
https://doi.org/10.1007/978-3-540-39910-0_14
https://arxiv.org/abs/1908.05839v1
https://arxiv.org/abs/1908.01909v1
https://arxiv.org/abs/2001.04439v3
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/152992.153008
https://doi.org/10.1007/978-1-4612-4886-6
https://doi.org/10.1007/978-1-4612-4886-6
https://doi.org/10.1109/LICS.1990.113772
https://doi.org/10.1109/LICS.1990.113772
https://doi.org/10.1007/BFb0084215
https://doi.org/10.1007/BFb0084215

292 BIBLIOGRAPHY

[Fre92] Peter Freyd. “Remarks on Algebraically Compact Categories”. In: Applications of

Categories in Computer Science (Durham, United Kingdom). Ed. byM. P. Fourman,
P. T. Johnstone, and A. M. Pitts. London Mathematical Society Lecture Note Series
177. Cambridge, United Kingdom: Cambridge University Press, 1992, pp. 95–106.
isbn: 0-521-42726-6. doi: 10.1017/CBO9780511525902.006 (cit. on p. 88).

[GFK84] Orna Grumberg, Nissim Francez, and Shmuel Katz. “Fair Termination of Com-
municating Processes”. In: Proceedings of the Third Annual Acm Symposium on

Principles of Distributed Computing. Third Annual ACM Symposium on Principles
of Distributed Computing. PODC’84 (Vancouver, British-Columbia, Aug. 27–29,
1984). New York, New York: Association for Computing Machinery, 1984, pp. 254–
265. isbn: 0-89791-143-1. doi: 10.1145/800222.806752 (cit. on p. 61).

[Gie+03] G. Gierz et al. Continuous Lattices and Domains. Encyclopedia of Mathematics
and its Applications 93. Cambridge, United Kingdom: Cambridge University Press,
2003. xxxvi+591 pp. isbn: 0-521-80338-1. doi: 10.1017/CBO9780511542725 (cit.
on pp. 18, 21).

[Gie+80] G. Gierz et al. A Compendium of Continuous Lattices. Springer-Verlag Berlin Hei-
delberg, 1980. xix+371 pp. isbn: 978-3-642-67678-9. doi: 10.1007/978-3-642-
67678-9 (cit. on p. 18).

[Gir06] Jean-Yves Girard. Le Point Aveugle. Cours de logique. Vol. 1: Vers la perfection.
French. 2 vols. Visions des sciences. Paris, France:Hermann Éditeurs,May 2006.
xvi+280 pp. isbn: 2 7056 6633 X (cit. on pp. 24, 252).

[Gir86] Jean-Yves Girard. “The System F ofVariable Types, Fifteen Years Later”. In:Theoret-

ical Computer Science 45 (1986), pp. 159–192. issn: 0304-3975. doi: 10.1016/0304-
3975(86)90044-7 (cit. on pp. 23, 24).

[GJP18] Hannah Gommerstadt, Limin Jia, and Frank Pfenning. “Session-Typed Concurrent
Contracts”. In: Programming Languages and Systems. 27th European Symposium
on Programming. ESOP 2018 (Thessaloniki,Greece, Apr. 14–20, 2018). Ed. byAmal
Ahmed. Lecture Notes in Computer Science 10801. Cham: Springer, 2018, pp. 771–
798. isbn: 978-3-319-89884-1. doi: 10.1007/978-3-319-89884-1 (cit. on pp. iii,
60, 99, 133).

[GM89] Carl A. Gunter and Dana S. Mosses Peter D.and Scott. Semantic Domains and

Denotational Semantics. Tech. rep. MS-CIS-89-16. Philadelphia, Pennsylvania: Uni-
versity of Pennsylvania Department of Computer and Information Science, Feb.
1989 (cit. on p. 18).

[Gun92] Carl A. Gunter. Semantics of Programming Languages. Structures and Techniques.
Cambridge,Massachusetts: TheMIT Press, 1992. 419 pp. isbn: 0-262-07143-6 (cit.
on pp. 18, 22–24, 27, 179, 193, 228, 235, 237, 241).

[GV10] Simon J. Gay and Vasco T. Vasconcelos. “Linear Type Theory for Asynchronous
Session Types”. In: Journal of Functional Programming 20.1 (Jan. 2010), pp. 19–50.
issn: 1469-7653. doi: 10.1017/s0956796809990268 (cit. on p. 133).

[Har16] Robert Harper. Practical Foundations for Programming Languages. New York, New
York: CambridgeUniversity Press,Mar. 2016. xviii+494 pp. isbn: 978-1-107-15030-0.
doi: 10.1017/CBO9781316576892 (cit. on pp. 9, 31–33, 113).

[Has99] MasahitoHasegawa. “Recursion fromCyclic Sharing”. In:Models of Sharing Graphs.

A Categorical Semantics of let and letrec. Distinguished Dissertations. Springer-
Verlag London Limited, June 1999. Chap. 7, pp. 83–101. isbn: 978-1-4471-0865-8.
doi: 10.1007/978-1-4471-0865-8_7 (cit. on pp. 29, 64, 85).

[Hen83] M. Hennessy. “Synchronous and Asynchronous Experiments on Processes”. In:
Information and Control 59.1-3 (1983), pp. 36–83. issn: 0019-9958. doi: 10.1016/
s0019-9958(83)80029-1 (cit. on pp. iii, 2–4, 153, 162, 283).

https://doi.org/10.1017/CBO9780511525902.006
https://doi.org/10.1145/800222.806752
https://doi.org/10.1017/CBO9780511542725
https://doi.org/10.1007/978-3-642-67678-9
https://doi.org/10.1007/978-3-642-67678-9
https://doi.org/10.1016/0304-3975(86)90044-7
https://doi.org/10.1016/0304-3975(86)90044-7
https://doi.org/10.1007/978-3-319-89884-1
https://doi.org/10.1017/s0956796809990268
https://doi.org/10.1017/CBO9781316576892
https://doi.org/10.1007/978-1-4471-0865-8_7
https://doi.org/10.1016/s0019-9958(83)80029-1
https://doi.org/10.1016/s0019-9958(83)80029-1

BIBLIOGRAPHY 293

[Hen84] G. J. Henry. “The UNIX System: The Fair Share Scheduler”. In: AT&T Bell Lab-

oratories Technical Journal 63.8 (Oct. 1984), pp. 1845–1857. issn: 0748-612X. doi:
10.1002/j.1538-7305.1984.tb00068.x (cit. on p. 61).

[Hen87] MatthewHennessy. “An Algebraic Theory of Fair Asynchronous Communicating
Processes”. In: Theoretical Computer Science 49.2-3 (1987), pp. 121–143. issn: 0304-
3975. doi: 10.1016/0304-3975(87)90004-1 (cit. on p. 61).

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes.With a forew. by Edsger W.
Dijkstra. London, United Kingdom: Prentice-Hall International, UK, Ltd., 1985.
viii+256 pp. isbn: 0-13-153271-5 (cit. on pp. 1, 153).

[Hon93] Kohei Honda. “Types for Dyadic Interaction”. In: CONCUR’93. 4th International
Conference on Concurrency Theory (Hildesheim, Germany, Aug. 23–26, 1993).
Ed. by Eike Best. Lecture Notes in Computer Science 715. Berlin: Springer-Verlag
Berlin Heidelberg, 1993, pp. 509–523. isbn: 978-3-540-47968-0. doi: 10.1007/3-
540-57208-2_35 (cit. on pp. iii, 1, 97, 133).

[How96] Douglas J.Howe. “ProvingCongruence of Bisimulation inFunctional Programming
Languages”. In: Information and Computation 124.2 (Feb. 1, 1996), pp. 103–112. issn:
0890-5401. doi: 10.1006/inco.1996.0008 (cit. on pp. 170, 172, 284).

[Hun74] ThomasW. Hungerford.Algebra. GraduateTexts inMathematics 73. Springer-Verlag
New York, Inc., 1974. xxiii+502 pp. isbn: 978-0-387-90518-1. doi: 10.1007/978-
1-4612-6101-8 (cit. on p. 55).

[HVK98] Kohei Honda, Vasco T. Vasconcelos, andMakoto Kubo. “Language Primitives and
Type Discipline for Structured Communication-Based Programming”. In: Program-

ming Languages and Systems. 7th European Symposiumon Programming. ESOP’98
(Lisbon, Portugal,Mar. 28–Apr. 4, 1998). Ed. by Chris Hankin. Lecture Notes in
Computer Science 1381. Joint European Conferences on Theory and Practice of
Software, ETAPS’98. Springer-Verlag Berlin Heidelberg, 1998, pp. 122–138. isbn:
978-3-540-69722-0. doi: 10.1007/BFb0053567 (cit. on pp. iii, 1).

[JR12] Bart Jacobs and Jan Rutten. “An Introduction to (Co)algebra and (Co)induction”.
In: Advanced Topics in Bisimulation and Coinduction. Ed. by Davide Sangiorgi and
Jan Rutten. Cambridge Tracts in Theoretical Computer Science 52. Cambridge,
United Kingdom: Cambridge University Press, 2012, pp. 38–99. isbn: 978-1-107-
00497-9. doi: 10.1017/CBO9780511792588.003 (cit. on pp. 140, 144).

[JS91] André Joyal and Ross Street. “The Geometry of Tensor Calculus, I”. In: Advances
in Mathematics 88.1 (July 1991), pp. 55–112. issn: 0001-8708. doi: 10.1016/0001-
8708(91)90003-p (cit. on pp. 14, 112).

[JSV96] André Joyal, Ross Street, and Dominic Verity. “TracedMonoidal Categories”. In:
Mathematical Proceedings of the Cambridge Philosophical Society 119.3 (Apr. 1996),
pp. 447–468. issn: 1469-8064. doi: 10.1017/s0305004100074338 (cit. on pp. 14,
28, 64, 85).

[Kah74] Gilles Kahn. “The Semantics of a Simple Language for Parallel Programming”. In:
Information Processing 74. 6th IFIP Congress 1974 (Stockholm, Sweden, Aug. 5–10,
1974). Ed. by Jack L. Rosenfeld. International Federation for Information Processing.
North-Holland Publishing Company, 1974, pp. 471–475. isbn: 0-7204-2803-3 (cit.
on pp. iii, 3, 4, 175, 176, 243).

[Kav20a] Ryan Kavanagh. “Substructural Observed Communication Semantics”. In: Pro-

ceedings. Combined 27th InternationalWorkshop on Expressiveness in Concur-
rency and 17th Workshop on Structural Operational Semantics. EXPRESS/SOS
2020 (Online, Aug. 31, 2020). Ed. byOrnela Dardha and Jurriaan Rot. Electronic
Proceedings in Theoretical Computer Science 322. Aug. 27, 2020, pp. 69–87. doi:
10.4204/EPTCS.322.7 (cit. on pp. 3, 4, 39, 55, 99).

[Kav20b] Ryan Kavanagh. “Parametrized Fixed Points and Their Applications To Session
Types”. In: ElectronicNotes inTheoreticalComputer Science 352 (Oct. 2020):The 36th

https://doi.org/10.1002/j.1538-7305.1984.tb00068.x
https://doi.org/10.1016/0304-3975(87)90004-1
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1006/inco.1996.0008
https://doi.org/10.1007/978-1-4612-6101-8
https://doi.org/10.1007/978-1-4612-6101-8
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1017/CBO9780511792588.003
https://doi.org/10.1016/0001-8708(91)90003-p
https://doi.org/10.1016/0001-8708(91)90003-p
https://doi.org/10.1017/s0305004100074338
https://doi.org/10.4204/EPTCS.322.7

294 BIBLIOGRAPHY

Mathematical Foundations of Programming Semantics Conference, 2020, pp. 149–172.
issn: 1571-0661. doi: 10.1016/j.entcs.2020.09.008 (cit. on p. 4).

[Kel77] Robert M. Keller. Denotational Models for Parallel Programs With Indeterminate

Operators. Research rep. UUCS-77-103. School of Computing, University of Utah,
1977. 27 pp. (cit. on p. 243).

[Ker14] Sean Michael Kerner. Heartbleed SSL Flaw’s True Cost Will Take Time to Tally.
Apr. 19, 2014. url: https://www.eweek.com/security/heartbleed-ssl-
flaw-s-true-cost-will-take-time-to-tally (visited on 01/07/2021)
(cit. on p. 1).

[KMP19] Wen Kokke, Fabrizio Montesi, andMarco Peressotti. “Better Late Than Never. A
Fully-Abstract Semantics for Classical Processes”. In: Proceedings of the ACM on

Programming Languages 4.POPL, 24 (Jan. 2019), p. 24. doi: 10.1145/3290337
(cit. on pp. iii, 3, 133, 160, 243).

[KP85] Robert M. Keller and Prakash Panangaden. “Semantics ofNetworks Containing
Indeterminate Operators”. In: Seminar on Concurrency. Seminar on Semantics
of Concurrency (Carnegie-Mellon University, Pittsburgh, Pennsylvania, July 9–11,
1984). Ed. by Stephen D. Brookes, AndrewWilliam Roscoe, and GlynnWinskel.
LectureNotes in Computer Science 197. Springer-Verlag Berlin Heidelberg, 1985,
pp. 479–596. isbn: 978-3-540-39593-5. doi: 10.1007/3-540-15670-4_23 (cit. on
p. 243).

[KP93] G. Kahn and G.D. Plotkin. “Concrete Domains”. In: Theoretical Computer Science

121.1-2 (Dec. 6, 1993), pp. 187–277. issn: 0304-3975. doi: 10.1016/0304-3975(93)
90090-g (cit. on p. 26).

[KPY17] Dimitrios Kouzapas, Jorge A. Pérez, and Nobuko Yoshida. “Characteristic Bisimu-
lation for Higher-Order Session Processes”. In: Acta Informatica 54.3 (May 2017):
Selected Papers from the 26th InternationalConference onConcurrency Theory (CON-

CUR 2015) — Part 3, pp. 271–341. issn: 1432-0525. doi: 10.1007/s00236-016-
0289-7 (cit. on p. iii).

[KS74] G. M. Kelly and Ross Street. “Review of the Elements of 2-categories”. In: Category

Seminar. Sydney Category Theory Seminar (Sydney,NSW, Australia, 1972–1973).
Ed. byGregoryM. Kelly. LectureNotes in Mathematics 420. Springer-Verlag Berlin
Heidelberg, 1974, pp. 75–103. isbn: 978-3-540-37270-7. doi: 10.1007/BFb0063101
(cit. on p. 11).

[Kwi89] M.Z. Kwiatkowska. “Survey of Fairness Notions”. In: Information and Software

Technology 31.7 (Sept. 1989), pp. 371–386. issn: 0950-5849. doi: 10.1016/0950-
5849(89)90159-6 (cit. on pp. 47, 61).

[Lah+18] Shuvendu K. Lahiri et al. “Program Equivalence (Dagstuhl Seminar 18151)”. In:
Dagstuhl Reports 8.4 (Oct. 2, 2018). issn: 2192-5283. doi: 10.4230/DagRep.8.4.1
(cit. on p. 2).

[Lah+20] Ori Lahav et al. Making Weak Memory Models Fair. Dec. 2, 2020. arXiv: 2012.
01067 [cs.PL] (cit. on p. 61).

[Lam69] Joachim Lambek. “Deductive Systems and Categories II. Standard constructions
and closed categories”. In:CategoryTheory,HomologyTheory andTheirApplications.
Conference on Category Theory,Homology Theory andTheirApplications (Seattle
Research Center of the BattelleMemorial Institute, Seattle,Washington, June 24–
July 19, 1968). Ed. by Peter J. Hilton. Vol. 2. Lecture Notes in Mathematics 92.
Springer-Verlag Berlin Heidelberg, 1969, pp. 76–122. isbn: 978-3-540-36101-5. doi:
10.1007/BFb0079385 (cit. on p. 14).

[Lam77] L. Lamport. “Proving the Correctness ofMultiprocess Programs”. In: IEEE Trans-

actions on Software Engineering SE-3.2 (Mar. 1977), pp. 125–143. issn: 0098-5589.
doi: 10.1109/tse.1977.229904 (cit. on p. 60).

https://doi.org/10.1016/j.entcs.2020.09.008
https://www.eweek.com/security/heartbleed-ssl-flaw-s-true-cost-will-take-time-to-tally
https://www.eweek.com/security/heartbleed-ssl-flaw-s-true-cost-will-take-time-to-tally
https://doi.org/10.1145/3290337
https://doi.org/10.1007/3-540-15670-4_23
https://doi.org/10.1016/0304-3975(93)90090-g
https://doi.org/10.1016/0304-3975(93)90090-g
https://doi.org/10.1007/s00236-016-0289-7
https://doi.org/10.1007/s00236-016-0289-7
https://doi.org/10.1007/BFb0063101
https://doi.org/10.1016/0950-5849(89)90159-6
https://doi.org/10.1016/0950-5849(89)90159-6
https://doi.org/10.4230/DagRep.8.4.1
https://arxiv.org/abs/2012.01067
https://arxiv.org/abs/2012.01067
https://doi.org/10.1007/BFb0079385
https://doi.org/10.1109/tse.1977.229904

BIBLIOGRAPHY 295

[Leh76a] Daniel J. Lehmann. “Categories for Fixpoint Semantics”. PhD thesis. Coventry,
United Kingdom: Department of Computer Science, University ofWarwick, 1976.
75 pp. (cit. on pp. 64, 91, 93).

[Leh76b] Daniel J. Lehmann. “Categories for Fixpoint-Semantics”. In: 17th Annual Sympo-

sium on Foundations of Computer Science. Formerly called the Annual Symposium
on Switching and Automata Theory. 17th Annual Symposium on Foundations of
Computer Science. FOCS’76 (Houston, Texas, Oct. 25–27, 1976). IEEE CH1133-8 C.
IEEE Computer Society’s Technical Committee on Mathematical Foundations of
Computing. Long Beach, California: Institute of Electrical and Electronics Engi-
neers, 1976, pp. 122–126. doi: 10.1109/SFCS.1976.9 (cit. on p. 88).

[Lei04] TomLeinster.HigherOperads,HigherCategories. LondonMathematical Society Lec-
ture Note Series 298. Cambridge University Press, Aug. 2004. isbn: 9780521532150
(cit. on p. 14).

[Leu+88] D. Leu et al. “Interrelationships Among Various Concepts of Fairness for Petri
Nets”. In: 31st Midwest Symposium on Circuits and Systems (St. Louis,Missouri,
Aug. 9–12, 1988). IEEE Computer Society Press, 1988 (cit. on pp. 48, 61).

[LM16] Sam Lindley and J. Garrett Morris. “Talking Bananas: Structural Recursion for
Session Types”. In: ICFP’16. 21st ACM SIGPLAN International Conference on
Functional Programming (Nara, Japan, Sept. 18–24, 2016). Ed. by Jacques Garrigue,
Gabriele Keller, and Eijiro Sumii. ACM SIGPLAN. New York, New York: The
Association for Computing Machinery, Inc., 2016, pp. 434–447. isbn: 978-1-4503-
4219-3. doi: 10.1145/2951913.2951921 (cit. on p. iii).

[LMZ19] Bert Lindenhovius,Michael Mislove, and Vladimir Zamdzhiev. “Mixed Linear and
Non-Linear Recursive Types”. In: Proceedings of the ACM on Programming Lan-

guages 3.ICFP, 111 (Aug. 2019), pp. 1–29. issn: 2475-1421. doi: 10.1145/3341715
(cit. on pp. 81, 88).

[LPS81] D. Lehmann, A. Pnueli, and J. Stavi. “Impartiality, Justice and Fairness: The Ethics
of Concurrent Termination”. In: Automata, Languages and Programming. Eigth
International Colloquium on Automata, Languages and Programming. ICALP’81
(Acre (Akko), Israel, July 13–17, 1981). Ed. by Shimon Even andOded Kariv. Lecture
Notes in Computer Science 115. Springer-Verlag Berlin Heidelberg, 1981, pp. 264–
277. isbn: 978-3-540-38745-9. doi: 10.1007/3-540-10843-2_22 (cit. on p. 60).

[LS77] Daniel J. Lehmann andMichael B. Smyth. “Data Types”. Extended Abstract. In:
18th Annual Symposium on Foundations of Computer Science. Formerly called the
Annual Symposium on Switching and Automata Theory. 18th Annual Symposium
on Foundations of Computer Science. FOCS’77 (Providence, Rhode Island,Oct. 31–
Nov. 2, 1977). IEEE 77 CH1278-1 C. IEEE Computer Society’s Technical Committee
on Mathematical Foundations of Computing. Long Beach, California: Institute of
Electrical and Electronics Engineers, 1977, pp. 7–12. doi: 10.1109/SFCS.1977.10
(cit. on pp. 67, 76, 88).

[LS81] Daniel J. Lehmann andMichael B. Smyth. “Algebraic Specification of Data Types: a
Synthetic Approach”. In:Mathematical Systems Theory 14.1 (Dec. 1981), pp. 97–139.
issn: 1433-0490. doi: 10.1007/bf01752392 (cit. on pp. 64, 65, 67, 69, 71, 74, 88).

[Mac98] Saunders Mac Lane. Categories for theWorking Mathematician. 2nd ed. Graduate
Texts in Mathematics 5. New York, Berlin, andHeidelberg: Springer-Verlag New
York, Inc., 1998. xii+314 pp. isbn: 0-387-98403-8 (cit. on pp. 9, 91, 208).

[MAH18] Stefan K. Muller, Umut A. Acar, and Robert Harper. “Competitive Parallelism:Get-
ting Your Priorities Right”. In: Proceedings of the ACM on Programming Languages

2.ICFP, 95 (July 2018). issn: 2475-1421. doi: 10.1145/3236790 (cit. on p. 61).
[Mal10] Octavio Malherbe. “Categorical Models of Computation: Partially Traced Cat-

egories and Presheaf Models of Quantum Computation”. PhD thesis. Ottawa,

https://doi.org/10.1109/SFCS.1976.9
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1145/3341715
https://doi.org/10.1007/3-540-10843-2_22
https://doi.org/10.1109/SFCS.1977.10
https://doi.org/10.1007/bf01752392
https://doi.org/10.1145/3236790

296 BIBLIOGRAPHY

Ontario: Department ofMathematics and Statistics, University of Ottawa, 2010.
vii+205 pp. (cit. on pp. 14, 29).

[Mar96] Per Martin-Löf. “On theMeanings of the LogicalConstants and the Justifications of
the Logical Laws”. In:Nordic Journal of Philosophical Logic 1.1 (May 1996). Three lec-
tures given in the form of a short course at themeeting Teoria della Dimostrazione
e Filosofia della Logica, organized in Siena, 6–9 April 1983., pp. 11–60. url: https:
//www.hf.uio.no/ifikk/forskning/publikasjoner/tidsskrifter/

njpl/vol1no1/meaning.pdf (cit. on p. 34).
[Mil77] Robin Milner. “FullyAbstract Models of Typed λ-calculi”. In:Theoretical Computer

Science 4.1 (Feb. 1977), pp. 1–22. issn: 0304-3975. doi: 10.1016/0304-3975(77)
90053-6 (cit. on pp. 124, 155, 156).

[Mil80] Robin Milner. A Calculus of Communicating Systems. Lecture Notes in Computer
Science 92. Springer-Verlag Berlin Heidelberg, 1980. vi+171 pp. isbn: 978-3-662-
17142-4. doi: 10.1007/978-3-540-38311-6 (cit. on pp. 1, 99, 100, 124, 137,
153).

[Mit90] John C. Mitchell. “Type Systems for Programming Languages”. In:Handbook of
Theoretical Computer Science. Vol. B: Formal Models and Semantics. Ed. by Jan van
Leeuwen. 2 vols. Amsterdam, The Netherlands and Cambridge, Massachusetts:
Elsevier Science Publishers B.V. and TheMIT Press,May 5, 1990, pp. 365–458. isbn:
0-262-22039-3 (cit. on p. 20).

[Mog91] Eugenio Moggi. “Notions of Computation and Monads”. In: Information and

Computation 93.1 (July 1991), pp. 55–92. issn: 0890-5401. doi: 10.1016/0890-
5401(91)90052-4 (cit. on p. 88).

[MPW92a] RobinMilner, Joachim Parrow, andDavidWalker. “ACalculus ofMobile Processes,
I”. In: Information and Computation 100.1 (Sept. 1992), pp. 1–40. issn: 0890-5401.
doi: 10.1016/0890-5401(92)90008-4 (cit. on p. 1).

[MPW92b] RobinMilner, Joachim Parrow, andDavidWalker. “ACalculus ofMobile Processes,
II”. In: Information and Computation 100.1 (Sept. 1992), pp. 41–77. issn: 0890-5401.
doi: 10.1016/0890-5401(92)90009-5 (cit. on p. 1).

[MS92] Robin Milner and David Sangiorgi. “Barbed Bisimulation”. In: Automata, Lan-

guages and Programming. 19th International Colloquium on Automata, Languages
and Programming (Wien, Austria, July 13–17, 1992). Ed. by Werner Kuich. Lecture
Notes in Computer Science 623. Springer-Verlag Berlin Heidelberg, 1992, pp. 685–
695. isbn: 978-3-540-47278-0. doi: 10.1007/3-540-55719-9_114 (cit. on pp. 2,
159, 160).

[MWA19] Stefan K. Muller, SamWestrick, and Umut A. Acar. “Fairness in Responsive Par-
allelism”. In: Proceedings of the ACM on Programming Languages 3.ICFP, 81 (July
2019). issn: 2475-1421. doi: 10.1145/3341685 (cit. on p. 61).

[Pan85] Prakash Panangaden. “Abstract Interpretation and Indeterminacy”. In: Seminar on

Concurrency. Seminar on Semantics of Concurrency (Carnegie-Mellon University,
Pittsburgh, Pennsylvania, July 9–11, 1984). Ed. by Stephen D. Brookes, Andrew
William Roscoe, and Glynn Winskel. Lecture Notes in Computer Science 197.
Springer-Verlag Berlin Heidelberg, 1985, pp. 495–511. isbn: 978-3-540-39593-5. doi:
10.1007/3-540-15670-4_24 (cit. on p. 243).

[Par80] David Park. “On the Semantics of Fair Parallelism”. In: Abstract Software Specifica-

tion.Winter School (Technical University of Denmark, Copenhagen, Denmark,
Jan. 22–Feb. 2, 1979). Ed. by Dines Bjørner. Lecture Notes in Computer Science 86.
Springer-Verlag Berlin Heidelberg, 1980. isbn: 978-3-540-38136-5. doi: 10.1007/3-
540-10007-5_47 (cit. on pp. 3, 60).

[Par82] David Park. “A PredicateTransformer forWeak Fair Iteration”. In:RIMSKôkyûroku

454 (Apr. 1982). Also appears in [81], pp. 211–228. issn: 1880-2818. HDL: 2433/
103001 (cit. on p. 61).

https://www.hf.uio.no/ifikk/forskning/publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf
https://www.hf.uio.no/ifikk/forskning/publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf
https://www.hf.uio.no/ifikk/forskning/publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf
https://doi.org/10.1016/0304-3975(77)90053-6
https://doi.org/10.1016/0304-3975(77)90053-6
https://doi.org/10.1007/978-3-540-38311-6
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(92)90009-5
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1145/3341685
https://doi.org/10.1007/3-540-15670-4_24
https://doi.org/10.1007/3-540-10007-5_47
https://doi.org/10.1007/3-540-10007-5_47
http://hdl.handle.net/2433/103001
http://hdl.handle.net/2433/103001

BIBLIOGRAPHY 297

[Pér+12] Jorge A. Pérez et al. “Linear Logical Relations for Session-Based Concurrency”. In:
Programming Languages and Systems. 21st European Symposium on Programming,
ESOP 2012 (Tallinn, Estonia,Mar. 24–Apr. 1, 2012). Ed. byHelmut Seidl. Lecture
Notes in Computer Science 7211. Heidelberg: Springer-Verlag Berlin Heidelberg,
2012, pp. 539–558. isbn: 978-3-642-28869-2. doi: 10.1007/978-3-642-28869-
2_27 (cit. on p. 3).

[Pér+14] Jorge A. Pérez et al. “Linear Logical Relations and Observational Equivalences for
Session-Based Concurrency”. In: Information and Computation 239 (Dec. 2014),
pp. 254–302. issn: 0890-5401. doi: 10.1016/j.ic.2014.08.001 (cit. on pp. iii,
3).

[Pet77] James L. Peterson. “Petri Nets”. In:ACMComputing Surveys 9.3 (Sept. 1977), pp. 223–
252. issn: 1557-7341. doi: 10.1145/356698.356702 (cit. on p. 47).

[Pet80] C. A. Petri. “Introduction To General Net Theory”. In: Net Theory and Applications.
Advanced Course on General Net Theory of Processes and Systems (Hamburg,
Federal Republic ofGermany,Oct. 8–19, 1979). LectureNotes in Computer Science
84. Springer-Verlag Berlin Heidelberg, 1980, pp. 1–19. isbn: 978-3-540-39322-1. doi:
10.1007/3-540-10001-6_21 (cit. on p. 47).

[Pfe95] Frank Pfenning. “StructuralCutElimination”. In:TenthAnnual IEEE Symposiumon

Logic in Computer Science. Tenth Annual IEEE Symposium on Logic in Computer
Science. LICS’95 (San Diego, California, June 26–29, 1995). 1995, pp. 156–166. isbn:
0-8186-7050-9. doi: 10.1109/LICS.1995.523253 (cit. on p. 42).

[PG15] Frank Pfenning and Dennis Griffith. “Polarized Substructural Session Types”. In:
Foundations of Software Science and Computation Structures. 18th International
Conference on Foundations of Software Science and Computation Structures.
FoSSaCS 2015 (London, United Kingdom, Apr. 11–18, 2015). Ed. by Andrew Pitts.
LectureNotes inComputer Science 9034. Springer-Verlag GmbH Berlin Heidelberg,
2015, pp. 3–32. isbn: 978-3-662-46678-0. doi: 10.1007/978-3-662-46678-0_1
(cit. on pp. iii, 2, 97, 105, 133).

[Pie02] Benjamin Pierce. Types and Programming Languages. Cambridge,Massachusetts:
TheMIT Press, 2002. xxi+623 pp. isbn: 0-262-16209-1 (cit. on p. 198).

[Pit94] AndrewM Pitts. “A Co-Induction Principle for Recursively Defined Domains”.
In: Theoretical Computer Science 124.2 (Feb. 28, 1994), pp. 195–219. issn: 0304-3975.
doi: 10.1016/0304-3975(94)90014-0 (cit. on p. 265).

[Pit96] AndrewM. Pitts. “Relational Properties of Domains”. In: Information and Com-

putation 127.2 (June 15, 1996), pp. 66–90. issn: 0890-5401. doi: 10.1006/inco.
1996.0052 (cit. on pp. 266, 267).

[PP19a] Klaas Pruiksma and Frank Pfenning. “AMessage-Passing Interpretation of Ad-
joint Logic”. In: Proceedings: Programming Language Approaches to Concurrency-

and Communication-cEntric Software. Programming Language Approaches to
Concurrency- and Communication-cEntric Software (PLACES) (Prague, Czech Re-
public, Apr. 7, 2019).Ed. by FranciscoMartins andDominicOrchard.ElectronicPro-
ceedings in Theoretical Computer Science 291. European Joint Conferences on The-
ory and Practice of Software.Apr. 2, 2019, pp. 60–79. doi: 10.4204/EPTCS.291.6.
arXiv: 1904.01290v1 [cs.PL] (cit. on p. 60).

[PP19b] Klaas Pruiksma and Frank Pfenning. “Back to Futures”. Oct. 25, 2019. url: https:
//www.cs.cmu.edu/~fp/papers/futures19.pdf (visited on 11/06/2019)
(cit. on p. 285).

[PP21] Klaas Pruiksma and Frank Pfenning. “AMessage-Passing Interpretation of Adjoint
Logic”. In: Journal of Logical and AlgebraicMethods in Programming 120, 100637
(Apr. 2021). issn: 2352-2208. doi: 10.1016/j.jlamp.2020.100637 (cit. on
pp. 133, 285).

https://doi.org/10.1007/978-3-642-28869-2_27
https://doi.org/10.1007/978-3-642-28869-2_27
https://doi.org/10.1016/j.ic.2014.08.001
https://doi.org/10.1145/356698.356702
https://doi.org/10.1007/3-540-10001-6_21
https://doi.org/10.1109/LICS.1995.523253
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.1016/0304-3975(94)90014-0
https://doi.org/10.1006/inco.1996.0052
https://doi.org/10.1006/inco.1996.0052
https://doi.org/10.4204/EPTCS.291.6
https://arxiv.org/abs/1904.01290v1
https://www.cs.cmu.edu/~fp/papers/futures19.pdf
https://www.cs.cmu.edu/~fp/papers/futures19.pdf
https://doi.org/10.1016/j.jlamp.2020.100637

298 BIBLIOGRAPHY

[Pru+18] Klaas Pruiksma et al. “Adjoint Logic”. Apr. 24, 2018. url: https://www.cs.cmu.
edu/~fp/papers/adjoint18b.pdf (visited on 11/11/2019) (cit. on p. 285).

[PS92] Prakash Panangaden and Vasant Shanbhogue. “The Expressive Power of Indeter-
minate Dataflow Primitives”. In: Information and Computation 98.1 (May 1992),
pp. 99–131. issn: 0890-5401. doi: 10.1016/0890-5401(92)90043-F (cit. on
p. 243).

[PT00] Benjamin C. Pierce and David N. Turner. “Local Type Inference”. In: ACM Trans-

actions on Programming Languages and Systems 22.1 (Jan. 2000), pp. 1–44. issn:
1558-4593. doi: 10.1145/345099.345100 (cit. on p. 38).

[Rey98] John C. Reynolds. Theories of Programming Languages. New York, New York: Cam-
bridge University Press, 1998. xii+500 pp. isbn: 978-0-521-10697-9 (cit. on pp. 166,
179).

[RFC793] Information Sciences Institute, University of Southern California. Transmission

Control Protocol. DARPA Internet Program Protocol Specification. RFC 793. Inter-
net Engineering Task Force, Sept. 1981. doi: 10.17487/RFC0793 (cit. on p. 285).

[Rie16] Emily Riehl. Category Theory in Context. Mineola, New York: Dover Publications,
Inc, 2016. isbn: 978-0-486-80903-8 (cit. on pp. 9–11, 13, 26, 71, 76, 208, 229).

[San12] Davide Sangiorgi. Introduction toBisimulation and Coinduction.Cambridge,United
Kingdom: Cambridge University Press, Aug. 2012. xii+247 pp. isbn: 9780511777110.
doi: 10.1017/CBO9780511777110 (cit. on pp. 20, 33–35, 139, 141, 144, 146).

[San92] Davide Sangiorgi. “Expressing Mobility in Process Algebras. First-Order and
Higher-Order Paradigms”. PhD thesis. University of Edinburgh, 1992. xii+206 pp.
HDL: 1842/6569 (cit. on pp. 1, 159, 160).

[Sch72] Horst Schubert. Categories. Trans. from the German by Eva Gray. Springer-Verlag
Berlin Heidelberg, 1972. xi+385 pp. isbn: 978-3-642-65364-3. doi: 10.1007/978-
3-642-65364-3 (cit. on p. 9).

[Sco72] Dana Scott. “Continuous Lattices”. In: Toposes, Algebraic Geometry and Logic.
Connections Between Category Theory and Algebraic Geometry & Intuitionistic
Logic (Dalhousie University, Halifax, Nova Scotia, Jan. 16–19, 1971). Ed. by F.W.
Lawvere. Lecture Notes in Mathematics 274. Springer Berlin Heidelberg, 1972,
pp. 97–136. isbn: 978-3-540-37609-5. doi: 10.1007/BFb0073967 (cit. on p. 87).

[SD78] Carl A. Sunshine and Yogen K. Datal. “Connection Management in Transport
Protocols”. In: Computer Networks 2.6 (Dec. 1978), pp. 454–473. issn: 0376-5075.
doi: 10.1016/0376-5075(78)90053-3 (cit. on p. 285).

[Sel11] P. Selinger. “A Survey of Graphical Languages for Monoidal Categories”. In: New
Structures for Physics. Ed. by Bob Coecke. Lecture Notes in Physics 813. Springer-
Verlag Berlin Heidelberg, 2011. Chap. 4, pp. 289–355. isbn: 978-3-642-12821-9. doi:
10.1007/978-3-642-12821-9_4 (cit. on pp. 14, 29).

[Sim12] Robert J. Simmons. “Substructural Logical Specifications”. PhD thesis. Pittsburgh,
Pennsylvania: Computer Science Department, CarnegieMellon University,Nov. 14,
2012. xvi+300 pp. (cit. on pp. 2, 60, 98).

[Sis83] Aravinda Prasad Sistla. “Theoretical Issues in the Design and Verification of Dis-
tributed Systems”. PhD thesis. Cambridge,Massachusetts:Harvard University, July
1983. v+140 pp. (cit. on p. 61).

[SP00] Alex Simpson and Gordon Plotkin. “Complete Axioms for Categorical Fixed-Point
Operators”. In: 15th Annual IEEE Symposium on Logic in Computer Science. 15thAn-
nual IEEE Symposium on Logic in Computer Science. LICS’00 (Santa Barbara, Cal-
ifornia, June 26–28, 2000). IEEE Computer Society Technical Committee on Math-
ematical Foundations of Computing. Los Alamitos, California: IEEE Computer
Society, 2000, pp. 30–41. isbn: 0-7695-0725-5. doi: 10.1109/LICS.2000.855753
(cit. on pp. 28, 85, 88).

https://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
https://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
https://doi.org/10.1016/0890-5401(92)90043-F
https://doi.org/10.1145/345099.345100
https://doi.org/10.17487/RFC0793
https://doi.org/10.1017/CBO9780511777110
http://hdl.handle.net/1842/6569
https://doi.org/10.1007/978-3-642-65364-3
https://doi.org/10.1007/978-3-642-65364-3
https://doi.org/10.1007/BFb0073967
https://doi.org/10.1016/0376-5075(78)90053-3
https://doi.org/10.1007/978-3-642-12821-9_4
https://doi.org/10.1109/LICS.2000.855753

BIBLIOGRAPHY 299

[SP77] M. B. Smyth and G. D. Plotkin. “The Category-Theoretic Solution of Recursive
Domain Equations”. ExtendedAbstract. In: 18thAnnual Symposiumon Foundations

of Computer Science. Formerly called the Annual Symposium on Switching and
Automata Theory. 18th Annual Symposium on Foundations of Computer Science.
FOCS’77 (Providence, Rhode Island,Oct. 31–Nov. 2, 1977). IEEE 77 CH1278-1 C.
IEEE Computer Society’s Technical Committee on Mathematical Foundations of
Computing. Long Beach, California: Institute of Electrical and Electronics Engi-
neers, 1977, pp. 13–17. doi: 10.1109/SFCS.1977.30 (cit. on p. 88).

[SP82] M. B. Smyth and G. D. Plotkin. “The Category-Theoretic Solution of Recursive
Domain Equations”. In: SIAM Journal on Computing 11.4 (1982), pp. 761–783. doi:
10.1137/0211062 (cit. on pp. 27, 64, 74, 76, 86, 88, 243).

[Sta87] EugeneW. Stark. “Concurrent Transition System Semantics of Process Networks”.
In: POPL’87. 14th ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages. POPL’87 (Munich,West Germany, Jan. 1987). ACM SIGPLAN.
New York, New York: Association for Computing Machinery, 1987, pp. 199–210.
isbn: 978-0-89791-215-0. doi: 10.1145/41625.41643 (cit. on p. 243).

[Sta90] EugeneW. Stark. “A Simple Generalization of Kahn’s Principle To Indeterminate
DataflowNetworks”. Extended Abstract. In: Semantics for Concurrency. Interna-
tional BCS-FACS Workshop (Leicester, United Kingdom, July 23–25, 1990). Ed. by
Marta Zofia Kwiatkowska,MichaelWilliam Shields, and RichardMonro Thomas.
Workshops in Computing. Logic for IT (S.E.R.C.) Springer-Verlag Berlin Heidel-
berg, 1990, pp. 157–174. isbn: 978-1-4471-3860-0. doi: 10.1007/978-1-4471-
3860-0_10 (cit. on p. 243).

[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-

ming Language Theory. MIT Press Series in Computer Science. Cambridge,Mas-
sachusetts: TheMIT Press, 1977. 414 pp. isbn: 0-262-19147-4 (cit. on p. 179).

[Str19] Tom Strickx. How Verizon and a BGP Optimizer Knocked Large Parts of the In-

ternet Offline Today. June 24, 2019. url: https://blog.cloudflare.com/
how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-

internet-offline-today/ (visited on 08/10/2021) (cit. on p. 1).
[Sza75] M. E. Szabo. “Polycategories”. In:Communications inAlgebra 3.8 (Jan. 1975), pp. 663–

689. issn: 1532-4125. doi: 10.1080/00927877508822067 (cit. on p. 15).
[Tar55] Alfred Tarski. “A Lattice-Theoretical Fixpoint Theorem and Its Applications”. In:

Pacific Journal ofMathematics 5.5 (June 1955), pp. 285–309. issn: 0030-8730 (cit. on
p. 19).

[TCP11] Bernardo Toninho, LuísCaires, and Frank Pfenning. “Dependent Session Types Via
Intuitionistic Linear Type Theory”. In: PPDP’11. 13th International ACM SIGPLAN
Symposium on Principles and Practices of Declarative Programming. PPDP’11
(Odense, Denmark, July 20–22, 2011). New York, New York: Association for Com-
puting Machinery, Inc., 2011, pp. 161–172. isbn: 978-1-4503-0776-5. doi: 10.1145/
2003476.2003499 (cit. on p. 285).

[TCP13] Bernardo Toninho, Luis Caires, and Frank Pfenning. “Higher-Order Processes,
Functions, and Sessions: AMonadic Integration”. In: Programming Languages and

Systems. 22nd European Symposium on Programming. ESOP 2013 (Rome, Italy,
Mar. 16–24, 2013). Ed. byMatthias Felleisen and Philippa Gardner. Lecture Notes
in Computer Science 7792. Springer-Verlag Berlin Heidelberg, 2013, pp. 350–369.
isbn: 978-3-642-37036-6. doi: 10.1007/978-3-642-37036-6_20 (cit. on pp. iii,
2, 60, 97, 102, 106, 133).

[Ten95] R. D. Tennent. “Denotational Semantics”. In: Handbook of Logic in Computer

Science.Vol. 3: Semantic Structures. Ed. by S.Abramsky, DovM. Gabbay, and T. S. E.
Maibaum. 5 vols. New York:OxfordUniversity Press Inc., June 15, 1995, pp. 169–322.
isbn: 0-19-853762-X (cit. on pp. 18, 179, 231).

https://doi.org/10.1109/SFCS.1977.30
https://doi.org/10.1137/0211062
https://doi.org/10.1145/41625.41643
https://doi.org/10.1007/978-1-4471-3860-0_10
https://doi.org/10.1007/978-1-4471-3860-0_10
https://blog.cloudflare.com/how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-today/
https://blog.cloudflare.com/how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-today/
https://blog.cloudflare.com/how-verizon-and-a-bgp-optimizer-knocked-large-parts-of-the-internet-offline-today/
https://doi.org/10.1080/00927877508822067
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1007/978-3-642-37036-6_20

300 BIBLIOGRAPHY

[THK94] Kaku Takeuchi, Kohei Honda, andMakoto Kubo. “An Interaction-Based Language
and Its Typing System”. In: PARLE’94. Parallel Architectures and Languages Europe.
6th International PARLEConference (Athens,Greece, July 4–8, 1994). Ed. byCostas
Halatsis et al. Lecture Notes in Computer Science 10201. Berlin: Springer-Verlag
Berlin Heidelberg, 1994, pp. 398–413. isbn: 978-3-540-48477-6. doi: 10.1007/3-
540-58184-7_118 (cit. on pp. 97, 133).

[Tom75] Raymond S. Tomlinson. “Selecting Sequence Numbers”. In: ACM SIGOPS Oper-

ating Systems Review 9.3 (July 1975), pp. 11–23. issn: 0163-5980. doi: 10.1145/
563905.810894 (cit. on p. 285).

[Ton15] Bernardo Parente Coutinho Fernandes Toninho. “A Logical Foundation for Session-
basedConcurrentComputation”.English andPortuguese. PhD thesis.Universidade
Nova de Lisboa,May 2015. xviii+178 pp. (cit. on pp. iii, 160).

[TV19] Peter Thiemann and Vasco T. Vasconcelos. “Label-Dependent Session Types”. In:
Proceedings of the ACM on Programming Languages 4.POPL, 67 (Dec. 2019). issn:
2475-1421. doi: 10.1145/3371135 (cit. on p. 285).

[TY18] Bernardo Toninho andNobuko Yoshida. “Depending on Session-Typed Processes”.
In: Foundations of Software Science and Computation Structures. 21st International
Conference, FOSSACS 2018 (Thessaloniki,Greece, Apr. 14–20, 2018).Ed. byChristel
Baier and UgoDal Lago. LectureNotes in Computer Science 10803. European Joint
Conferences onTheory andPractice of Software.Cham, Switzerland: SpringerOpen,
2018, pp. 128–145. isbn: 978-3-319-89366-2. doi: 10.1007/978-3-319-89366-
2_7 (cit. on p. 285).

[Wad14] PhilipWadler. “Propositions As Sessions”. In: Journal of Functional Programming

24.2-3 (Jan. 31, 2014),pp. 384–418. issn: 1469-7653.doi:10.1017/s095679681400001x
(cit. on pp. 133, 154).

[Wad15] PhilipWadler. “PropositionsAs Types”. In: Communications of the ACM 58.12 (Dec.
2015), pp. 75–84. issn: 0001-0782. doi: 10.1145/2699407 (cit. on p. 3).

[Wal05] DavidWalker. “Substructural Type Systems”. In: Advanced Topics in Types and

Programming Languages. Ed. by Benjamin C. Pierce. Cambridge,Massachusetts:
TheMIT Press, 2005, pp. 3–43. isbn: 0-262-16228-8 (cit. on p. 36).

[Wan77] MitchellWand. Fixed-Point Constructions In Order-Enriched Categories. Tech. rep.
23. Bloomington, Indiana: Computer Science Department, Indiana University, Oct.
1977. 32 pp. (cit. on p. 88).

[YHB07] Nobuko Yoshida, Kohei Honda, andMartin Berger. “Linearity and Bisimulation”.
In: The Journal of Logic and Algebraic Programming 72.2 (July 2007), pp. 207–238.
issn: 1567-8326. doi: 10.1016/j.jlap.2007.02.011 (cit. on p. 160).

[Zha91] Guo-Qiang Zhang. Logic of Domains. Progress in Theoretical Computer Science 4.
Springer Science+Business Media New York, 1991. x+260 pp. isbn: 9781461204459.
doi: 10.1007/978-1-4612-0445-9 (cit. on pp. 23, 24).

[Zha92] Guo-Qiang Zhang. “dI-Domains As Prime Information Systems”. In: Information

and Computation 100.2 (Oct. 1992), pp. 151–177. issn: 0890-5401. doi: 10.1016/
0890-5401(92)90011-4 (cit. on p. 26).

https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1145/563905.810894
https://doi.org/10.1145/563905.810894
https://doi.org/10.1145/3371135
https://doi.org/10.1007/978-3-319-89366-2_7
https://doi.org/10.1007/978-3-319-89366-2_7
https://doi.org/10.1017/s095679681400001x
https://doi.org/10.1145/2699407
https://doi.org/10.1016/j.jlap.2007.02.011
https://doi.org/10.1007/978-1-4612-0445-9
https://doi.org/10.1016/0890-5401(92)90011-4
https://doi.org/10.1016/0890-5401(92)90011-4

Symbols

Category Theory
Categories

IFP 2-category of small IFP-categories , 64
O 2-category of smallO-categories , 27
ω-Cat 2-category of small ω-categories , 64
CellC category of 2-cells of C , 11
DCPO category of dcpos , 20
Stabre category of dI-domains and rigid embeddings , 26
Stab category of dI-domains and stablemaps , 24
∫ F category of elements of F , 10
Ke category of embeddings , 27
CF category of F-algebras , 11
LinksK category of links over K , 64
OLinksK category of links over theO-category K , 86
CAT category of locally small categories , 9
Poset category of posets , 19
Set category of sets , 9
Cat category of small categories , 9
CYO(C) CYO pluricategory on C , 181
Cop opposite category of C , 9
P� subcategory of pointed posets , 19
P�! subcategory of strict maps , 19

α ∶ f ⇒ g ∶ A→ B 2-cell , 11
F ⊣ G adjunction , 10
CFIX canonical-fixed-point ω-functor , 87
g ○ f composition ofmorphisms , 11
Cone(F ,−) cone functor , 10
ConeF cone-generating functor , 74
⊕i A i coproduct , 11
diagC diagonal functor , 10
C(A, B) external hom , 10
Fold folding modification , 79
fold folding natural isomorphism , 72, 87
GFIX generalized-fixed-point ω-functor , 71, 87
α ∗ β horizontal composition , 11
η(n) horizontal iterate , 66
∏i A i indexed product , 11
(a1 ∶ A1) ×⋯ × (an ∶ An) indexed product , 11
�C initial object of C , 10
FIX initial-fixed-point ω-functor , 74
ι i injection into coproduct , 11
C [A→ B] internal hom , 10

301

302 Symbols

itern iteration functor , 197
⟨ f , g⟩ mediating morphism of products , 11
diag(f i)i∈I morphism from coproduct to product , 11
mor(C) morphisms of C , 9
η ∶ F ⇒ G ∶ C→ D natural transformation , 9
e− negative component of an object e in CYO(C) , 182
ob(C) objects of C , 9
f † parametrized fixed-point operator , 28, 76
e+ positive component of an object e in CYO(C) , 182
A× B product , 11
πI
J

projection out of product , 11
⊺C terminal object of C , 10
TrXA,B(f) trace operator , 28
Unfold unfolding modification , 79
unfold unfolding natural isomorphism , 72
UNF unfolding ω-functor , 71, 87
UNR unrolling 2-natural transformation , 78
α ⋅ β vertical composition , 11
0C zero object of C , 10
Ω ω-chain functor , 66, 86
colimω ω-colimit functor , 71

Order Theory
l ⊣ u adjunction , 21
� bottom element , 19
P ⊕ Q coalesced sum , 25
(d1 , . . . , dn) combination of embeddings d i , 181
x ↑ y consistent elements , 22
⊔↑A directed supremum , 20
P ⊎ Q disjoint union , 25
f e embedding associated with projection f , 21
δ expansion of lifting , 25
gfp(f) greatest fixed point , 19
[a] image of a ∈ A in A� , 24
⊓A infimum , 19
ι j injection into product of pointed posets , 25
lfp(f) least fixed point , 19
P� lifting , 24
↓A lower set , 19
≪ order of approximation , 22
f p projection associated with embedding f , 21
P ⊗ Q smash product , 25
f ⊑s g stable function ordering , 24
JFC [∆ → Ψ] stably ordered dcpo of junk-free, frugal, completemaps , 190
K(D) subset of compact elements , 22
∣D∣ subset of prime elements , 22
⊔A supremum , 19
⊺ top element , 19
↑A upper set , 19

General Judgments
▸U ;X
R J derivability , 35

Symbols 303

Y ∣ Γ ▸U ;X
R J generic derivability , 36

Y ∣ J generic judgment , 37
Γ ▸U ;X
R J hypothetical derivability , 35

Γ ⊢ L hypothetical judgment , 36
J (X ,Y) inputs and outputs of a judgment J , 38
V ∥ Γ ▸U ;X

R J parametric derivability , 36
V ∥ J parametric judgment , 37

Miscellanea
B[X] abstract binding trees , 31
[ρ]a application of renaming , 31, 33
σ ∶ Γ ↝ Γ′ context morphism , 38
∅ emptymultiset , 39
n finite cardinal , 40
X∗ freemonoid on X , 14
ρ∶Y ↔ Y ′ fresh renaming of abts , 31
ρ∶V ;Y ↔ V ′;Y ′ fresh renaming of gbts , 33
B[U ;X] general binding trees , 33
σ ∶B[X]↝ B[Y] morphism of abstract binding trees , 32
f ↾ A restriction of f to A , 178
[σ]a simultaneous capture-avoiding substitution , 32, 33
ε unit of a freemonoid , 14
U universal relation , 154
≡α α-equivalence , 32, 33

Multiset Rewriting Systems
σ ⋅ T action of permutation σ on trace T , 52
p ephemeral formula , 43
r1(θ1) ≡ r2(θ2) equivalent rule instantiations , 44
Σ ; M multiset-in-context , 41, 43
ΩM(M1 , . . . ,Mn) overlap ofM1 , . . . ,Mn in M , 53
R∗ parallel multiset rewriting system , 46
p persistent formula , 43
[η]T refreshing substitution , 45
r(θ) rule instantiations , 40
supp(M) support of themultiset M , 39
supp(T) support of the trace T , 40
(M0 , (r i ; δ i)i∈I) trace from M0 , 40

Polarized SILL
Interpretations

⟦Ξ ⊢ A type
p
s ⟧ complete communications satisfying A , 179

jΞ ⊢ A typeso decomposition embedding , 180
⟦Γ ⊢ C ∶∶ ∆⟧ denotation of configurations , 180, 236
⟦Ψ ⊩ M ∶ τ⟧ denotation of functional terms , 181
⟦Ξ ⊢ τ types⟧ denotation of functional types , 180
⟦⋅ ; ∆ ⊢ P ∶∶ a ∶ A⟧ denotation of processes , 181
⟦Ξ ⊢ A type

p
s ⟧
− negative communications satisfying A , 179

jΓ ∣ I ⊢ C ∶∶ ∆oΨ observed communications , 150
⟦Ξ ⊢ A type

p
s ⟧
+ positive communications satisfying A , 179

Judgments
T ⊢ c ∶ A channel c has type A in trace T , 130
Σ ∥ Γ ∣ I ⊢ C ∶∶ ∆ configuration typing judgment , 99

304 Symbols

M ⇓ v evaluation judgment , 98
τ typef functional type , 97
T ↝ v ε A / c observed communications on c , 142
Ψ ; ∆ ⊢ P ∶∶ a ∶ A process typing judgment , 97
A type

p
s session type of polarity p , 97

Ψ ⊩ M ∶ τ term typing judgment , 98
v val value judgment , 98

Relations
≐, ≐/≡ communication equivalence , 140
t, t/⩽ communication simulation , 138
Rc contextual interior , 123
≡ denotational equivalence , 236
tE external observational simulation , 155
tI internal observational simulation , 155
≐S observational S-equivalence , 153
tS observational S-simulation , 153
RO observationally contextual interior , 168
Rb simply branched contextual interior , 124
tT total observational simulation , 155
v R w ε A type-indexed relation on communications , 138
∆ ⊢ C R D ∶∶ Φ type-indexed relation on configurations , 122
Ψ ; ∆ ⊢ P R Q ∶∶ c ∶ A type-indexed relation on processes , 122
Ψ ⊩ M R N ∶ τ type-indexed relation on terms , 122
≈ weak barbed bisimilarity , 160
⪷ weak barbed similarity , 160

Types
&{l ∶ A l}l∈L external choice , 104
τ → σ function type , 102
⊕{l ∶ A l}l∈L internal choice , 104
nat natural numbers , 181
↓A polarity shift , 105
↑A polarity shift , 105
{a0 ∶ A0 ← a1 ∶ A1 , . . . , an ∶ An} quoted processes , 102
ρα.A recursive type , 105
1 unit type , 101
τ ∧ A value transmission , 103
τ ⊃ A value transmission , 104

(⋅) ↓a barb , 160
cc(msg(a,m)) carrier channel , 109
Γ̌ channel names in context Γ , 99
C[⋅]ΛΞ configuration context , 123
kc(msg(a,m)) continuation channel , 109
Ω divergent process , 103
eval(M , v) evaluation fact , 98
fc(P), fc(C) free channel names , 106, 108
σ ∶f Φ ↝ Ψ functional context morphism , 106
⌊w⌋n height n approximation , 141
ic(P), ic(C) input channel names , 107, 108
msg(c,m) message fact , 98
m−

b ,c negativemessage , 100
oc(P), oc(C) output channel names , 107, 108
m+ positivemessage , 100

Glossary 305

⟪A⟫⩽ preorder of communications , 141
C[⋅]Γ;Λ

b∶B process context , 123
proc(c, P) process fact , 98
v ε A session-typed communication , 138
ics(P) static input channel names , 108
ocs(P) static output channel names , 107
C[⋅]Γσ term context , 123
σ ∶s Θ ↝ Ξ type context morphism , 106
(⋅) ⇓

a
weak barb or denotational barb , 160, 236

Index

Page references for definitions and results are given in bold sans-serif font.

2-
2-cartesian closed, 12
2-category, 11
2-cell, 11
2-exponential object, 12
2-functor, 12
2-natural transformation, 12
2-product, 12
opposite 2-category, 12

abstract binding tree, 31
α-equivalence, 32
arity, 31
fresh renaming, 31
morphism, 32
operator, 31
sort, 31
substitution, 32
valency, 31
variable, 31

adjoint, see adjunction
adjunction
counit of ∼, 10
∼ of functors, 10
left and right adjoints, 10
∼ ofmonotone functions, 21
two-variable ∼, 10
unit of ∼, 10
upper and lower adjoints, 21

algebra
functor ∼, 11, 74, 76
horizontal morphism ∼, 82
∼ of horizontal morphisms, 12

α-equivalence
∼ of abstract binding trees, 32
∼ of general binding trees, 33

arity, 31, 32
axiom, 34

basis
∼ of compact elements, 22
∼ of a dcpo, 22

binding tree
abstract ∼, see abstract binding tree
α-equivalence
≈ of abstract ∼, 32
≈ of general ∼, 33

arity, 31, 32

fresh renaming
≈ for abstract ∼, 31
≈ for general ∼, 33

general ∼, see general binding tree
morphism
≈ of abstract ∼, 32
≈ of general ∼, 33

operator, 31, 32
sort, 31, 32
substitution
≈ of abstract ∼, 32
≈ of general ∼, 33

symbol, 32
valency, 31, 32
variable, 31, 32

bottom element, 19
bound
∼ channel, 108
directed supremum, 20
greatest lower ∼, 19
least upper ∼, 19
lower ∼, 19
upper ∼, 19

canonical forms property, 124
category

2-category theory, see 2-
∼ of bounded-complete dcpos, 22
cartesian ∼, 11
cartesian closed ∼, 11
∼ of cocones, 10
∼ of cones, 10
∼ of dcpos, 20
diagram ∼, 10
discrete ∼, 11
∼ of elements, 10
full subcategory, 9
∼ of functor algebras, 11
IFP-∼, 64
∼ of links, 64
locally small ∼, 9
monoidal ∼, 12
multicategory, 14
O-category, 27
ω-∼, 64
opposite ∼, 9
pluricategory, 17
polycategory, 15

307

308 INDEX

∼ of posets, 19
small ∼, 9
symmetricmonoidal ∼, 13
wide subcategory, 9

channel, 97
bound ∼, 106, 108
carrier ∼, 109
continuation ∼, 109
free ∼, 106, 108
input ∼, 107, 108
internal ∼, 99
∼ names are symbols, 98
output ∼, 107, 108
provided ∼, 97, 99
session-typed ∼, 97, 130
used ∼, 97, 99

closed
∼ functional term, 98
∼ functional type, 98
∼ process, 97
∼ session type, 97

coalesced sum, see poset, coalesced sum
cocone, 10, see cone, 74
category of cocones, 10
∼ functor, 10

colimit, 10
limit-colimit coincidence theorem, 26
O-colimit, 27
ω-colimit, 26

compact
basis of ∼ elements, 22
∼ element, 22

complete
∼ function, 178

composition
∼ of arrows, 11
configuration ∼, 99
horizontal ∼, 11
middle four interchange law, 11
∼ in multicategories, 15
∼ in pluricategories, 17
∼ in polycategories, 16
process ∼, 100
vertical ∼, 11

cone, 10
category of cones, 10

configuration, 98
∼ composition, 99
∼ context, 123, 125

simply branched ≈, 124
initial ∼, 98
∼ interface, 99
intersection property, 115
inversion principle, 113
LMR derivation, 119
preservation property, 125
replacement property, 121
simply branched ∼, 121
subformula property, 113
type-indexed relation ∼, 122
∼ typing judgment, 99

congruence

relation, 124
context
∼ of channels, 97
configuration ∼, 123, 125

simply branched ≈, 124
contextual interior, 123

simply-branched ≈, 124
contextual relation, 123
functional term ∼, 123
∼ of functional variables, 98
∼ of hypotheses, 35
linear ∼, 36, 97, 99
∼morphism, 38, 106
multiset-in-context, seemultiset,multiset-in-context
process ∼, 123
∼ of session-typed variables, 97
structural ∼, 36, 97
structural properties of ∼, see structural property
substructural ∼, 36

continuous
∼ function, 20
locally ∼ functor, 27
ω-∼ function, 19

Conway identities, 85
coproduct, 11

injection, 11
counit
∼ of adjunction, 10

dagger operation, 78
dcpo, 20
basis, 22
bounded-complete ∼, 22
category of ∼, 20
category of bounded-complete ∼, 22
consistent elements, 22
d-property, 23
domain
algebraic ≈, 22
dI-≈, 23
ω-algebraic ≈, 22

I-property, 23
ω-colimit, 26
prime algebraic, 22

derivability, see derivation
derivation, 35
derivability
generic ≈, 36
hypothetical ≈, 35
linear ≈, 36
parametric ≈, 36
structural ≈, 36
substructural ≈, 36

generic ∼, 36
hypothetical ∼, 35
LMR ∼, 119
parametric ∼, 36
structural properties of ∼, see structural property

diagram
∼ category, 10
string ∼, 13
string ∼ for trace operators, 29

INDEX 309

directed
∼ set, 20
∼ supremum, 20

domain
algebraic ∼, 22
dI-∼, 23
ω-algebraic ∼, 22

e-p-pair, see embedding-projection pair
element
bottom ∼, 19
category of elements, 10
compact ∼, 22
consistent ∼, 22
prime ∼, 22
top ∼, 19

embedding-projection pair, 21
rigid ∼, 26

equivalence
α-equivalence
≈ of abstract binding trees, 32
≈ of general binding trees, 33

evaluation
∼ fact, 98
∼ judgment, 98

exchange
structural property, 35, 36

execution, seemultiset rewriting system, execution
fair process ∼, 99

exponential
2-exponential object, 12
∼ object, 11

external choice, see session type, choice type

fact, 40
enabled, 50
ephemeral ∼, 43
evaluation ∼, 98
∼ fairness, 50
message ∼, 98
persistent ∼, 43
process ∼, 98

fairness
effects of permutation, 59
equivalence under interference-freedom, 55
fact ∼, 50
fair concatenation property, 52, 56
fair execution, 133
fair scheduling, 52
fair tail property, 51
instantiation ∼, 50
rule ∼, 49
strong ∼, 47
weak ∼, 47
über ∼, 51

fixed
∼ point, 102

fixed point, 19
Conway operator, 28
generalized ∼ functor, 71
∼ identity, 79
initial ∼ functor, 74
Kleene ∼ theorem, 20, 20, 28, 29

Knaster-Tarski ∼ theorem, 19, 20, 28, 29
parametrized ∼, 79
parametrized ∼ functor, 76
parametrized ∼ operator, 28
post-∼, 19
pre-∼, 19
trace operator, 28

fold
∼modification, 79
∼ natural transformation, 72

free
∼ channel, 108

fresh
∼ renaming
≈ for abstract binding trees, 31
≈ for general binding trees, 33

∼ variable, 31
function
complete ∼, 178
continuous ∼, 20
embedding, 21
embedding-projection pair, 21

rigid ≈, 26
∼ junk-free, 178
monotone ∼, 19
ω-cocontinuous ∼, 20
ω-continuous ∼, 19
projection between posets, 21
Scott-continuous, see function, continuous
stable ∼, 23
stable ∼ order, 24
strict ∼, 19

functional
rule ∼, 34

functional term
canonical forms property, 124
closed ∼, 98
∼ context, 123
context morphism, 106
introduction and elimination rules, 102
preservation property, 124
substitution

semantic, 234
syntactic, 106

type-indexed relation ∼, 122
∼ typing judgment, 98
∼ variable, 98

functional type
closed ∼, 98
function type, 102
∼ judgment, 98
quoted process type, 102

functor
2-functor, 12
adjunction, 10
∼ algebra, 11, 74, 76
closed ∼, 10
cocone ∼, 10
diagonal ∼, 10
generalized fixed-point ∼, 71
hom 2-functor, 12
hom set ∼, 10

310 INDEX

initial-fixed-point ∼, 74
internal hom ∼, 10
left and right closures, 10
locally continuous ∼, 27
ω-chain ∼, 69
ω-colimit ∼, 71
ω-functor, 64
parametrized ≈, 64, 76

parametrized fixed-point ∼, 76
unfolding ∼, 71, 78

Galois connection, see adjunction ofmonotone
functions

general binding tree, 33
α-equivalence, 33
arity, 32
fresh renaming, 33
morphism, 33
operator, 32
sort, 32
substitution, 33
symbol, 32
valency, 32
variable, 32

generic
∼ derivation, 36
∼ judgment, 37, 97

inductively defined ≈, 37
∼ rule, 37

Hasegawa-Hyland theorem, 29, 85
hom
∼ 2-functor, 12
internal ∼ functor, 10
∼ set functor, 10

horizontal
∼ composition, 11
∼morphism, 11

hypothesis
context of ∼, 35

hypothetical
∼ derivation, 35
∼ judgment, 36
inductively defined ≈, 37
linear ≈, 36
structural ≈, 36
substructural ≈, 36
∼ rule, 37

identity
abstraction ∼, 85
composition ∼, 85
Conway ∼, 85
double dagger ∼, 85
fixed-point ∼, 79
parameter, 81, 85
power ∼, 85

IFP-category, 64
infimum, see bound, greatest lower
injection
∼ of coproducts, 11

interface, see configuration, interface
internal choice, see session type, choice type

judgment, 34
basic ∼, 34
closure under rules, 34
coinductively defined ∼, 34
configuration typing ∼, 99
derivability ∼, see derivation, derivability
derivation of a ∼, see derivation
evaluation ∼, 98
functional term typing ∼, 98
functional type ∼, 98
generic ∼, 37, 97
holding, 34
hypothetical ∼, 36

linear ≈, 36
structural ≈, 36
substructural ≈, 36

inductively defined ∼, 34, 37, 38
mode of use, 38
parametric ∼, 37, 97
process typing ∼, 97
session-type ∼, 97
typing, 38

junk-free
function ∼, 178

Kleene fixed-point theorem, 20, 20, 28, 29
Knaster-Tarski fixed-point theorem, 19, 20, 28, 29

lattice, 19
complete ∼, 19

linear
∼ context, 36, 97, 99

linearity, 36
linear hypothetical judgment, 36

link
category of ∼, 64

lower
∼ bound, 19
greatest ∼ bound, 19
∼ set, 19

matrix notation for morphisms, 11
message
∼ fact, 98
∼ process, 100

mode, 38
modification, 12
fold ∼, 79
unfold ∼, 79

morphism
∼ of abstract binding tree, 32
context ∼, 38, 106
∼ of general binding tree, 33
horizontal ∼, 11
≈ algebra, 82

vertical ∼, 11
zero ∼, 10

MRS, seemultiset rewriting system
multicategory, 14
multiset, 39
active ∼, 40, 43
difference, 39
element, 39

INDEX 311

empty ∼, 39
inclusion, 39
intersection, 39
multiset-in-context, 41, 43
overlap, 53
stationary ∼, 40, 43
sum, 39
support, 39
union, 39

multiset rewrite rule, 40, 43
applicable ∼, 40, 41, 43
∼ fairness, 49
∼ instantiation, 40, 41, 43
distinct ≈, 44
equivalent ≈, 44
≈ fairness, 50

substitution
fresh-constant ≈, 40
instantiating ≈, 40
matching ≈, 40

multiset rewriting system, 40
activemultiset, 40, 43
commuting ∼, 52
execution, 40, 133
fairness, see fairness
interference-free ∼, 52
∼ for multisets-in-context, 41
non-determinism, 41
non-overlapping ∼, 53, 132
parallel ∼, 46
relation to linear logic, 42, 45
result
as amultiset, 40, 43
as amultiset-in-context, 41, 43

stationarymultiset, 40, 43
trace, 40
permutation, 52
union-equivalence, 60

multiset-in-context
∼ configuration, 98

nadir, see cocone
name, 31
natural

2-∼ transformation, 12
∼ transformation, 9

natural transformation
fold ∼, 72
horizontal iterate, 66
unfold ∼, 72

O-category, 27
locally continuous functor, 27
O-cocomplete, 27
O-colimit, 27

object
2-exponential ∼, 12
exponential ∼, 11
initial ∼, 10
terminal ∼, 10, 12
zero ∼, 10

ω-
ω-category, 64

ω-chain, 26, 64
ω-chain functor, 69
ω-colimit functor, 71
ω-functor, 64
parametrized ≈, 64, 76

ω-cocontinuous
∼ function, 20

ω-continuous
∼ function, 19

operator
abstract binding tree ∼, 31
arity, 31, 32
Conway ∼, 28
dagger ∼, 78
general binding tree ∼, 32
parametrized fixed-point ∼, 28
trace, see trace operator
valency, 31, 32

opposite
∼ 2-category, 12
∼ category, 9

order
approximation ∼, 22
partial ∼, 18
stable function ∼, 24
way-below ∼, 22

parametric
∼ derivation, 36
∼ judgment, 37, 97

inductively defined ≈, 38
∼ rule, 38

partial order, 18
directed-complete, see dcpo

permutation, 52
effects on fairness, 59

pluricategory, 17, 99
point
fixed ∼, 102

polarity, see session type, polarity
polycategory, 15
poset, 18
category of ∼, 19
coalesced sum, 25
directed-complete, see dcpo
disjoint union, 25
lifting, 24
pointed ∼, 19
product of ∼, 25
smash product, 25

precongruence
relation, 124

preservation property
∼ for configurations, 125
∼ for functional terms, 124

prime
∼ algebraic dcpo, 22
∼ element, 22

process
closed ∼, 97
∼ composition, 100
∼ context, 123

312 INDEX

divergent ∼, 103
∼ fact, 98
fair ∼ execution, 99
forwarding ∼, 100
message ∼, 100
∼ quoted type, 102
receiving ∼, 107
recursive ∼, 103
sending ∼, 107
structural ∼, 107
∼ trace, 98
type-indexed relation ∼, 122
∼ typing judgment, 97

product
∼ of 2-categories, 12
2-product, 12
∼ bifunctor, 11, 25
categorical ∼, 11
∼ of posets, 25
projection, 11
smash ∼, 25

projection
∼ between posets, 21
∼ of products, 11

proliferation, 36, 99

recursive
∼ process, 103
∼ session type, 105

relation
antisymmetric ∼, 19
congruence ∼, 124
contextual ∼, 123
contextual interior, 123

simply-branched ≈, 124
precongruence ∼, 124
reflexive ∼, 19
transitive ∼, 19
type-indexed ∼, 122

renaming
fresh ∼
≈ for abstract binding trees, 31
≈ for general binding trees, 33

structural property, 36, 99, 122
rule
axiom, 34
∼ conclusion, 34
∼ functional, 34
generic ∼, 37
hypothetical ∼, 37
inference ∼, 34
parametric ∼, 38
∼ premise, 34
uniform ∼, 37

service, see session type
session type, 97
∼ of a channel, 97, 130
choice type, 104
closed ∼, 97
context morphism, 106
∼ judgment, 97
negative ∼, 97

polarity, 97
polarity shift, 105
positive ∼, 97
purely negative ∼, 264
purely positive ∼, 264
recursive ∼, 105
substitution

semantic, 233
syntactic, 106

unit type, 101
value transmission, 103
∼ variable, 97

set
directed ∼, 20
lower ∼, 19
partially ordered, see poset
upper ∼, 19

sort
∼ of abstract binding tree, 31
∼ of general binding tree, 32
∼ of variable, 31

stable
∼ function, 23
∼ function order, 24

strict
∼ function, 19

string
∼ diagram, 13
∼ diagrams for trace operators, 29

structural
∼ context, 36, 97

structural property, 35
∼ of contexts, 36
contraction, 36
exchange, 35, 36
linearity, 36
proliferation, 36, 99
reflexivity, 35, 37
renaming, 36, 99, 122
substitution, 36
transitivity, 35, 37
weakening, 36

subcategory
full ∼, 9
wide ∼, 9

subformula property, 113
substitution
∼ of abstract binding trees, 32
∼ as a context morphism, 38
fresh-constant ∼, 40
functional term, 234
functional term ∼, 106
∼ of general binding trees, 33
instantiating ∼, 40
matching ∼, 40
session type, 233
session type ∼, 106
structural property, 36

substructural
∼ context, 36
derivability, 36
∼ hypothetical judgment, 36

INDEX 313

support
∼ of amultiset, 39
∼ of a trace, 40

supremum, see bound, least upper
directed ∼, 20

symbol
channel names, 98
general binding tree ∼, 32

synchronization, see session type, polarity shift

theorem
Hasegawa-Hyland ∼, 29, 85
Kleene fixed-point ∼, 20, 20, 28, 29
Knaster-Tarski fixed-point ∼, 19, 20, 28, 29
limit-colimit coincidence ∼, 26

top element, 19
trace
for multiset rewriting systems, seemultiset rewriting

system, trace
process ∼, 98
support, 40

trace operator, 28
string diagrams, 29

transformation
2-natural ∼, 12
natural ∼, 9

transposition, see permutation

unfold
∼ functor, 71, 78
∼modification, 79
∼ natural transformation, 72

union-equivalence, 60
unit
∼ of adjunction, 10

upper
∼ bound, 19
least ∼ bound, 19
∼ set, 19

valency, 31, 32
variable, 31
abstract binding tree ∼, 31
fresh ∼, 31
functional term ∼, 98
general binding tree ∼, 32
session-type ∼, 97
sort of ∼, 31

vertical
∼ composition, 11
∼morphism, 11

weakening
structural property, 36

zero
∼morphism, 10
∼ object, 10

	List of Figures
	Chapter 1. Introduction
	1.1. Outline of Dissertation
	Notational Conventions

	Part 1. Mathematical Foundations
	Chapter 2. Mathematical Preliminaries
	2.1. Category Theory
	2.2. Order Theory
	2.3. Properties of Parametrized Fixed-Point and Trace Operators
	2.4. Generalized Abstract Binding Trees
	2.5. Inductively and Coinductively Defined Judgments

	Chapter 3. Fairness for Multiset Rewriting Systems
	3.1. Multiset Rewriting Systems
	3.2. Three Varieties of Fairness
	3.3. Properties of Fair Traces
	3.4. Related Work

	Chapter 4. Fixed Points of Functors
	4.1. Background
	4.2. Functoriality of Fixed Points
	4.3. 2-Categorical Structure of Parametrized Fixed Points
	4.4. Conway Identities
	4.5. Canonical and Parametrized Fixed Points for O-Categories
	4.6. Related Work
	4.A. General Results on -Categories

	Part 2. Polarized SILL
	Chapter 5. Statics and Dynamics
	5.1. Overview of Statics
	5.2. Overview of Dynamics
	5.3. Typing and Multiset-Rewriting Rules
	5.4. Static Properties of Session Types
	5.5. Static Properties of Terms and Processes
	5.6. Static Properties of Typed Configurations
	5.7. Type-Indexed Relations
	5.8. Dynamic Properties of Terms
	5.9. Dynamic Properties of Typed Configurations
	5.10. Related Work
	5.A. Complete Listing of Typing Rules for Polarized SILL
	5.B. Complete Listing of Multiset-Rewriting Rules for Polarized SILL

	Chapter 6. Observed Communication Semantics
	6.1. Session-Typed Communications qua Communications
	6.2. Session-Typed Communications on Single Channels
	6.3. Observed Communications of Configurations

	Chapter 7. Observational Preorders and Equivalences
	7.1. Total Observations for Configurations
	7.2. Internal Observations for Configurations
	7.3. External Observations for Configurations
	7.4. Summary of Relations
	7.5. Precongruences for Processes

	Chapter 8. Denotational Approaches to Equivalence
	8.1. Overview of the Semantics
	8.2. Choose Your Own Categories
	8.3. Semantic Clauses
	8.4. Well-Definedness of Interpretations
	8.5. Semantic Properties
	8.6. Soundness
	8.7. Related Work
	8.8. Summary of Interpretations

	Chapter 9. Equivalence, Applied
	9.1. -Style Properties
	9.2. Purely Polarized Session Types
	9.3. Flipping Bit Streams
	9.4. Identity Expansion
	9.5. Binary Arithmetic

	Chapter 10. Summary and Future Research
	Bibliography
	Symbols
	Index

