
Lesson 5 – Hardware architecture for security 
& Malicious Code



Risk matrix review

• It is a tool to manage security risks
– What could happen

• Brainstorm potential incidents
– How likely it is to happen

• How often we expect those incidents
– What to do when it happen

• Plan of action



Managing risk with a “risk matrix” -- Review

1. Identify possible incidents and consequences
• Brainstorm what incidents could happen and how serious 

are those incidents

• Use a risk impact matrix

2. Identify likelihood of the events
• Use a likelihood score matrix

3. Use a 5x5 scoring matrix to calculate risk

4. Identify the appropriate action based on the risk
• Describe what to do when an incident happen

• Use a mitigation/action matrix



Risk impact matrix

• Risk impact matrixes are easy to understand

• Columns represent severity of a security incident

• Rows represent the affected area 



Likelihood Score

• Likelihood Scores indicates how often an incident is 
expected

• Should be based on probability or frequency

Likelihood Score Description

1 - Rare The event may never occur.  The event is not expected for years.

2 - Unlikely The event is not expected, but it may happen.  Expected at least yearly.

3 - Possible The event will occasionally happen.  Expected at least every semester.

4 - Likely The event will probably happen.  Expected at least monthly.

5 - Almost certain The event will certainly happen.  Expected at least weekly.



5x5 Risk scoring matrix
• Columns correspond to risk-impact scores

• Rows correspond to likelihood scores

• The risk score is calculated by multiplying the column 
impact score with the row likelihood score
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Mitigation/Action matrix
• Describes what to do when a security incident occurs

• Scores come from the 5x5 risk scoring matrix

• Risk is a categorization of the scores



Hardware architecture for security



Operating System (OS) definitions

• Users:  
– Are materialized in the system by programs executed on their 

behalf.

• Data:  
– Information or instructions encoded in memory. Data should 

remain related to their owners via a pointer.

• Programs:  
– Are actually data, and should be considers as such until they are 

fed into memory for execution.  



Program memory isolation

• Modern architectures
– Map program memory space to the physical memory space

– Protect a process memory space from being accessed by 
another process

• A pointer from one process cannot access outside its memory 
space
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Cross application memory access vulnerability

• Exploiting a system flaw to access other process memory 
space

ARM, ARM Security Technology: Building a Secure System using TrustZone Technology. PRD29-GENC-009492C



Hardware instructions

• User mode or general instructions:  

– Instructions that can be executed by any program.

• Kernel mode or control instructions:  
– Have the capability of affecting the user execution environment.

– Should be made available to the OS only



zOS Instruction Execution



Multiprocessing zOS architecture



ARM processor TrustZone hardware architecture
• Two cores

– Non-secure core (normal world) can only access non-secure 
system resources

– Secured core (secured world) can access all the resources

• Entering monitor mode is tightly controlled

ARM, ARM Security Technology: Building a Secure System using TrustZone Technology. PRD29-GENC-009492C



Summary

• Hardware security protection is achieved by
– Memory isolation

– Segregating user mode and kernel mode instructions
• Only secure programs (operating system) get to execute 

kernel mode instruction
– Segregation of system resources into non-secured and 

secured

• In general, hardware security is based on preventing 
malicious code from accessing unauthorized resources



Malicious Code (Malware)

Some material was adapted from: Mihai Christodorescu, Malicious Code for Fun and Profit, 3/29/2007



Malicious code = Malware

• Malicious software, designed to secretly access a 
computer system without the owner's informed consent

• Code that breaks the security policies of the victim



Malware characteristics

• Delivers a payload
– How the malware affects its target

• Uses an attack vector
– How the malware infects or spread to its targets

• May use a replicating algorithm
– How the malware makes copies of itself



Payload

• The function or malicious action taken by the malware

• Examples
– Displaying a message in the screen

– Erasing files

– Damaging the boot sector

– Infecting other programs or data files



Attack Vectors

• Social engineering
– “Make them want to run it”

• Vulnerability exploitation
– “Force your way into the system”

• Piggybacking
– “Make it run when other programs run”



Social engineering

• Trick the user to execute the program

• Examples:
– Executable email attachment

– Make it look like a game, movie, important document, etc.



Vulnerability exploitation

• Exploit software design flaws

• Examples
– Buffer overflow

– SQL injection



Piggybacking

• Malicious code inserted into a program or data file

• Examples
– infecting an executable file

– Inserting a malicious macro into a document or spreadsheet



Replicating algorithm

• Not all malware replicates

• The malware that replicates depend on the attack vector
– Email based social engineering

• need email addresses
– Vulnerability-based

• need IP addresses of hosts running the vulnerable service
– Piggybacking

• need more files to infect



Virus

• Attaches itself to a program and executes secretly when 
the host is run
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Anatomy of a virus

• A virus may have four components
– Mark to prevent re-infection attempts (optional)

– Infection mechanism to spread to other files

– Trigger or condition to deliver the payload (optional)

– Payload is the malicious function (optional)
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Infection mechanism
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Virus



Virus lifecycle

• Most virus will evolve in four phases
– Dormant phase (optional phase)

• Idle waiting for an event to wakeup
– Propagation phase

• Replicate itself into other programs or system structures in 
disk

– Triggering phase
• Waits for an event to move into the execution phase 

– Execution phase
• Executes the function it was designed to do



Replicate

Malware taxonomy



Types of malicious code

• Backdoor
– Allows unauthorized access to a system or application

• Rootkit
– Allow remote access to a computer

– Hides itself from detection

• Logic bomb
– Trigger a malicious function when a specified condition is 

meet

– May be part of a virus, worm, or Trojan horse



Types of malicious code

• Trojan horse

– Appears to execute an useful function

• Adware

– Provide (play, display, or download) advertisement to the computer

• Spyware

– Collects information about the user without his or her knowledge

• Virus

– Self-replicating, infects program or document

• Worm

– Self-replicating, spreads across the network



Types of malicious code

• Zombie computer
– Self-replicating, performs controlled remote attacks

– Commonly used to send email spam
• It is cheaper for the spammers to use other computers, email 

accounts, and bandwidth
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The End
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