
Lesson 5 – Hardware architecture for security
& Malicious Code

Risk matrix review

• It is a tool to manage security risks
– What could happen

• Brainstorm potential incidents
– How likely it is to happen

• How often we expect those incidents
– What to do when it happen

• Plan of action

Managing risk with a “risk matrix” -- Review

1. Identify possible incidents and consequences
• Brainstorm what incidents could happen and how serious

are those incidents

• Use a risk impact matrix

2. Identify likelihood of the events
• Use a likelihood score matrix

3. Use a 5x5 scoring matrix to calculate risk

4. Identify the appropriate action based on the risk
• Describe what to do when an incident happen

• Use a mitigation/action matrix

Risk impact matrix

• Risk impact matrixes are easy to understand

• Columns represent severity of a security incident

• Rows represent the affected area

Likelihood Score

• Likelihood Scores indicates how often an incident is
expected

• Should be based on probability or frequency

Likelihood Score Description

1 - Rare The event may never occur. The event is not expected for years.

2 - Unlikely The event is not expected, but it may happen. Expected at least yearly.

3 - Possible The event will occasionally happen. Expected at least every semester.

4 - Likely The event will probably happen. Expected at least monthly.

5 - Almost certain The event will certainly happen. Expected at least weekly.

5x5 Risk scoring matrix
• Columns correspond to risk-impact scores

• Rows correspond to likelihood scores

• The risk score is calculated by multiplying the column
impact score with the row likelihood score

Rare | Unlikely | Possible | Likely | Certain

Insignificant

Minor

Moderate

Major

Catastrophic

Mitigation/Action matrix
• Describes what to do when a security incident occurs

• Scores come from the 5x5 risk scoring matrix

• Risk is a categorization of the scores

Hardware architecture for security

Operating System (OS) definitions

• Users:
– Are materialized in the system by programs executed on their

behalf.

• Data:
– Information or instructions encoded in memory. Data should

remain related to their owners via a pointer.

• Programs:
– Are actually data, and should be considers as such until they are

fed into memory for execution.

Program memory isolation

• Modern architectures
– Map program memory space to the physical memory space

– Protect a process memory space from being accessed by
another process

• A pointer from one process cannot access outside its memory
space

Physical memory

Program memory space

Data
segment

Stack
segment

Code
segment

0x00000000 … 0xFFFFFFFF

Program memory space

Data
segment

Stack
segment

Code
segment

0x00000000 … 0xFFFFFFFF

Program memory space

Data
segment

Stack
segment

Code
segment

0x00000000 … 0xFFFFFFFF

Cross application memory access vulnerability

• Exploiting a system flaw to access other process memory
space

ARM, ARM Security Technology: Building a Secure System using TrustZone Technology. PRD29-GENC-009492C

Hardware instructions

• User mode or general instructions:

– Instructions that can be executed by any program.

• Kernel mode or control instructions:
– Have the capability of affecting the user execution environment.

– Should be made available to the OS only

zOS Instruction Execution

Multiprocessing zOS architecture

ARM processor TrustZone hardware architecture
• Two cores

– Non-secure core (normal world) can only access non-secure
system resources

– Secured core (secured world) can access all the resources

• Entering monitor mode is tightly controlled

ARM, ARM Security Technology: Building a Secure System using TrustZone Technology. PRD29-GENC-009492C

Summary

• Hardware security protection is achieved by
– Memory isolation

– Segregating user mode and kernel mode instructions
• Only secure programs (operating system) get to execute

kernel mode instruction
– Segregation of system resources into non-secured and

secured

• In general, hardware security is based on preventing
malicious code from accessing unauthorized resources

Malicious Code (Malware)

Some material was adapted from: Mihai Christodorescu, Malicious Code for Fun and Profit, 3/29/2007

Malicious code = Malware

• Malicious software, designed to secretly access a
computer system without the owner's informed consent

• Code that breaks the security policies of the victim

Malware characteristics

• Delivers a payload
– How the malware affects its target

• Uses an attack vector
– How the malware infects or spread to its targets

• May use a replicating algorithm
– How the malware makes copies of itself

Payload

• The function or malicious action taken by the malware

• Examples
– Displaying a message in the screen

– Erasing files

– Damaging the boot sector

– Infecting other programs or data files

Attack Vectors

• Social engineering
– “Make them want to run it”

• Vulnerability exploitation
– “Force your way into the system”

• Piggybacking
– “Make it run when other programs run”

Social engineering

• Trick the user to execute the program

• Examples:
– Executable email attachment

– Make it look like a game, movie, important document, etc.

Vulnerability exploitation

• Exploit software design flaws

• Examples
– Buffer overflow

– SQL injection

Piggybacking

• Malicious code inserted into a program or data file

• Examples
– infecting an executable file

– Inserting a malicious macro into a document or spreadsheet

Replicating algorithm

• Not all malware replicates

• The malware that replicates depend on the attack vector
– Email based social engineering

• need email addresses
– Vulnerability-based

• need IP addresses of hosts running the vulnerable service
– Piggybacking

• need more files to infect

Virus

• Attaches itself to a program and executes secretly when
the host is run

Host program

Virus code Program fragment

Host programVirus code

Host program Virus codeJump

Original program

Three

infected

programs

Anatomy of a virus

• A virus may have four components
– Mark to prevent re-infection attempts (optional)

– Infection mechanism to spread to other files

– Trigger or condition to deliver the payload (optional)

– Payload is the malicious function (optional)

Mark (optional)

Infection mechanism

Trigger (optional)

Payload (optional)

Virus

Virus lifecycle

• Most virus will evolve in four phases
– Dormant phase (optional phase)

• Idle waiting for an event to wakeup
– Propagation phase

• Replicate itself into other programs or system structures in
disk

– Triggering phase
• Waits for an event to move into the execution phase

– Execution phase
• Executes the function it was designed to do

Replicate

Malware taxonomy

Types of malicious code

• Backdoor
– Allows unauthorized access to a system or application

• Rootkit
– Allow remote access to a computer

– Hides itself from detection

• Logic bomb
– Trigger a malicious function when a specified condition is

meet

– May be part of a virus, worm, or Trojan horse

Types of malicious code

• Trojan horse

– Appears to execute an useful function

• Adware

– Provide (play, display, or download) advertisement to the computer

• Spyware

– Collects information about the user without his or her knowledge

• Virus

– Self-replicating, infects program or document

• Worm

– Self-replicating, spreads across the network

Types of malicious code

• Zombie computer
– Self-replicating, performs controlled remote attacks

– Commonly used to send email spam
• It is cheaper for the spammers to use other computers, email

accounts, and bandwidth

33

The End

	Slide Number 1
	Risk matrix review
	Managing risk with a “risk matrix” -- Review
	Risk impact matrix
	Likelihood Score
	5x5 Risk scoring matrix
	Mitigation/Action matrix
	Hardware architecture for security
	Operating System (OS) definitions
	Program memory isolation
	Cross application memory access vulnerability
	Hardware instructions
	zOS Instruction Execution
	Multiprocessing zOS architecture
	ARM processor TrustZone hardware architecture
	Summary
	Malicious Code (Malware)
	Malicious code = Malware
	Malware characteristics
	Payload
	Attack Vectors
	Social engineering
	Vulnerability exploitation
	Piggybacking
	Replicating algorithm
	Virus
	Anatomy of a virus
	Virus lifecycle
	Malware taxonomy
	Types of malicious code
	Types of malicious code
	Types of malicious code
	Slide Number 33

