
Lesson 6 – Cryptography



Hardware security review

• Hardware security protection is achieved by
– Memory isolation

– Segregating user mode and kernel mode instructions
• Only secure programs (operating system) get to execute 

kernel mode instruction
– Segregation of system resources into non-secured and 

secured

• In general, hardware security is based on preventing 
malicious code from accessing unauthorized resources



Malware characteristics

• Delivers a payload
– How the malware affects its target

• Uses an attack vector
– How the malware infects or spread to its targets

• May use a replicating algorithm
– How the malware makes copies of itself



Attack Vectors

• Social engineering
– “Make them want to run it”

• Vulnerability exploitation
– “Force your way into the system”

• Piggybacking
– “Make it run when other programs run”



Replicate

Malware taxonomy



Cryptography 



Symmetric encryption

• Same key to encrypt and decrypt

• Key is a shared secret



Asymmetric encryption

• Uses a mathematically related key pair
– Public key to encrypt

– Private key to decrypt

• Bob gives away the public key to all his friends so they 
can encrypt messages for him

• Are considered slow



Encryption using Asymmetric Key system



Authentication using Asymmetric Key System



Secure HASH Functions

• Purpose of the HASH function is to produce a ”fingerprint”.

• Properties of a HASH function
– can be applied to a block of data at any size

– produces a fixed length digest

– Should be easy to compute

– Closely related text should produce different hashes



Common hash functions

Function Digest size

RIPEMD 128

RIPEMD-160 160

MD2 128

MD4 128

MD5 128

SHA-0 160

SHA-1 160

SHA-256 256

SHA-512 512

GOST 256 

Tiger 192
cryptographic hash function (SHA-1) at work.

From: http://en.wikipedia.org/wiki/Cryptographic_hash_function



Signature

• Derived from the message content
– May sign part of the message

• Offer
– Guarantee the message has not been tamper with

– Non-repudiation



Digital signature using one-way hash functions



Signature

Source: http://en.wikipedia.org/wiki/File:Digital_Signature_diagram.svg



Diffie-Hellman Key Agreement

• Discovered by Whitfield Diffie and Martin Hellman
– “New Directions in Cryptography”, 1976

• Diffie-Hellman key agreement protocol
– Allows two users to exchange a secret key

– Requires no prior secrets

– Real-time over an untrusted network

• Based on the difficulty of computing discrete logarithms of 
large numbers

• Requires two large numbers, one prime (P), and (G), a 
primitive root of P



Diffie-Hellman Key Agreement Protocol 1/2

Public parameters:
g, p: two large primes, g < p 

p at least 512 bits
private parameters:

a: random number, selected by Alice
b: random number, selected by Bob 

Compute public values:
x = ga mod p, calculated by Alice
y = gb mod p, calculated by Bob 



Diffie-Hellman Key Agreement Protocol 2/2

Compute shared private key:
ka = ya mod p, calculated by Alice
kb = xb mod p, calculated by Bob 

They can now communicate using symmetric keys
Because Ka =Kb

Alice calculated KA =((gb mod p)a mod p), 
result is KA =(gab mod p)

Bob calculated KB =((ga mod p)b mod p), 
result is KB =(gab mod p)

Session key KA =KB = gab mod p



Diffie-Hellman Key Agreement Protocol

1: B -> A: g,p // g < p

2: A -> B : x=(ga mod p)   //a=Alice secret

3: B -> A : y=(gb mod p)   //b=Bob secret
=====Now Alice & Bob can start communicating=====

4: A -> B : { MA }KA

5: B -> A : { MB }KB

Session key KA =KB = gab mod p



Example

• Alice and Bob wish to have a secure conversation.  
– They decide to use symmetric encryption to communicate

– and Diffie-Hellman protocol to calculate the session key 



Example

• Alice and Bob interchange public numbers
– p = 23,  g = 9

• Alice and Bob select private secret
– a = 4
– b = 3

• Alice and Bob compute public values
– X  = ga mod p = 94 mod 23 =  6561 mod 23  =  6
– Y  = gb mod p = 93 mod 23  =  729 mod 23    =  16

• Alice and Bob exchange public numbers (6 & 16)



Example

• Alice and Bob compute symmetric keys
– ka = ya mod p = 164 mod 23 = 9

– kb = xb mod p =  63 mod 23 = 9

• Alice and Bob now can talk securely using K=9



The Computational Diffie-Hellman Assumption

• Eve, an eavesdropper
– Knows: g, p, x=(ga mod p) and y=(gb mod p)

– But, does not know a or b

• Assumption: it is very hard to calculate (gab mod p)



Applications

• Diffie-Hellman is currently used in many protocols, 
namely:
– Secure Sockets Layer (SSL / https)

– Transport Layer Security (TLS)

– Secure Shell (SSH)

– Internet Protocol Security (IPSec)

– Public Key Infrastructure (PKI)
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The End
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