
Lesson 6 – Cryptography

Hardware security review

• Hardware security protection is achieved by
– Memory isolation

– Segregating user mode and kernel mode instructions
• Only secure programs (operating system) get to execute

kernel mode instruction
– Segregation of system resources into non-secured and

secured

• In general, hardware security is based on preventing
malicious code from accessing unauthorized resources

Malware characteristics

• Delivers a payload
– How the malware affects its target

• Uses an attack vector
– How the malware infects or spread to its targets

• May use a replicating algorithm
– How the malware makes copies of itself

Attack Vectors

• Social engineering
– “Make them want to run it”

• Vulnerability exploitation
– “Force your way into the system”

• Piggybacking
– “Make it run when other programs run”

Replicate

Malware taxonomy

Cryptography

Symmetric encryption

• Same key to encrypt and decrypt

• Key is a shared secret

Asymmetric encryption

• Uses a mathematically related key pair
– Public key to encrypt

– Private key to decrypt

• Bob gives away the public key to all his friends so they
can encrypt messages for him

• Are considered slow

Encryption using Asymmetric Key system

Authentication using Asymmetric Key System

Secure HASH Functions

• Purpose of the HASH function is to produce a ”fingerprint”.

• Properties of a HASH function
– can be applied to a block of data at any size

– produces a fixed length digest

– Should be easy to compute

– Closely related text should produce different hashes

Common hash functions

Function Digest size

RIPEMD 128

RIPEMD-160 160

MD2 128

MD4 128

MD5 128

SHA-0 160

SHA-1 160

SHA-256 256

SHA-512 512

GOST 256

Tiger 192
cryptographic hash function (SHA-1) at work.

From: http://en.wikipedia.org/wiki/Cryptographic_hash_function

Signature

• Derived from the message content
– May sign part of the message

• Offer
– Guarantee the message has not been tamper with

– Non-repudiation

Digital signature using one-way hash functions

Signature

Source: http://en.wikipedia.org/wiki/File:Digital_Signature_diagram.svg

Diffie-Hellman Key Agreement

• Discovered by Whitfield Diffie and Martin Hellman
– “New Directions in Cryptography”, 1976

• Diffie-Hellman key agreement protocol
– Allows two users to exchange a secret key

– Requires no prior secrets

– Real-time over an untrusted network

• Based on the difficulty of computing discrete logarithms of
large numbers

• Requires two large numbers, one prime (P), and (G), a
primitive root of P

Diffie-Hellman Key Agreement Protocol 1/2

Public parameters:
g, p: two large primes, g < p

p at least 512 bits
private parameters:

a: random number, selected by Alice
b: random number, selected by Bob

Compute public values:
x = ga mod p, calculated by Alice
y = gb mod p, calculated by Bob

Diffie-Hellman Key Agreement Protocol 2/2

Compute shared private key:
ka = ya mod p, calculated by Alice
kb = xb mod p, calculated by Bob

They can now communicate using symmetric keys
Because Ka =Kb

Alice calculated KA =((gb mod p)a mod p),
result is KA =(gab mod p)

Bob calculated KB =((ga mod p)b mod p),
result is KB =(gab mod p)

Session key KA =KB = gab mod p

Diffie-Hellman Key Agreement Protocol

1: B -> A: g,p // g < p

2: A -> B : x=(ga mod p) //a=Alice secret

3: B -> A : y=(gb mod p) //b=Bob secret
=====Now Alice & Bob can start communicating=====

4: A -> B : { MA }KA

5: B -> A : { MB }KB

Session key KA =KB = gab mod p

Example

• Alice and Bob wish to have a secure conversation.
– They decide to use symmetric encryption to communicate

– and Diffie-Hellman protocol to calculate the session key

Example

• Alice and Bob interchange public numbers
– p = 23, g = 9

• Alice and Bob select private secret
– a = 4
– b = 3

• Alice and Bob compute public values
– X = ga mod p = 94 mod 23 = 6561 mod 23 = 6
– Y = gb mod p = 93 mod 23 = 729 mod 23 = 16

• Alice and Bob exchange public numbers (6 & 16)

Example

• Alice and Bob compute symmetric keys
– ka = ya mod p = 164 mod 23 = 9

– kb = xb mod p = 63 mod 23 = 9

• Alice and Bob now can talk securely using K=9

The Computational Diffie-Hellman Assumption

• Eve, an eavesdropper
– Knows: g, p, x=(ga mod p) and y=(gb mod p)

– But, does not know a or b

• Assumption: it is very hard to calculate (gab mod p)

Applications

• Diffie-Hellman is currently used in many protocols,
namely:
– Secure Sockets Layer (SSL / https)

– Transport Layer Security (TLS)

– Secure Shell (SSH)

– Internet Protocol Security (IPSec)

– Public Key Infrastructure (PKI)

25

The End

	Slide Number 1
	Hardware security review
	Malware characteristics
	Attack Vectors
	Malware taxonomy
	Cryptography
	Symmetric encryption
	Asymmetric encryption
	Encryption using Asymmetric Key system
	Authentication using Asymmetric Key System
	Secure HASH Functions
	Common hash functions
	Signature
	Digital signature using one-way hash functions
	Signature
	Diffie-Hellman Key Agreement
	Diffie-Hellman Key Agreement Protocol 1/2
	Diffie-Hellman Key Agreement Protocol 2/2
	Diffie-Hellman Key Agreement Protocol
	Example
	Example
	Example
	The Computational Diffie-Hellman Assumption
	Applications
	Slide Number 25

