
*E

J. theor. Biol. (2000) 204, 289}298
doi:10.1006/jtbi.2000.2017, available online at http://www.idealibrary.com on

0022}
Resource Competition in Stage-structured Populations
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Two models are made to account for the dynamics of a consumer}resource system in which the
consumers are divided into juveniles and adults. The resource grows logistically and a type II
functional response is assumed for consumers. Resource levels determine fecundity and
maturation rates in one model, and mortality rates in the other. The analysis of the models
shows that the condition for establishment of consumers is that the product of per capita
fecundity rate and maturation rates is higher than the product of juvenile and adult per capita
decay rates at a resource level equal to its carrying capacity. This result imposes a minimal
abundance of resource able to maintain the consumers. A second result shows an equilibrium
stage structure, with a small instability when juveniles and adults mean saturation constants
are di!erent. The implications of these results for community dynamics are discussed.
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Introduction

If two or more age classes or stages exploit a
limited resource, competition occurs (Cushing,
1994; Franke & Yakubu, 1996; Tschumy, 1982).
The magnitude of competition between stages
can change depending on the stage of the life
cycle as well as the type of cycle (Ebenman, 1988).
For example, in those animals that undergo
metamorphosis as the endopterigote insects (#ies,
beetles) and the amphibians, the magnitude of
competition is weak or none because the ana-
tomic and morphologic di!erences make the use
of a common resource di$cult. On the other
hand, in organisms that do not undergo meta-
morphosis like the exopterigote insects (aphids,
grasshoppers), or in those that have an incom-
plete metamorphosis (hemipterans) the consump-
tion of common resources between classes is
-mail: trevilla@strix.ciens.ucv.ve
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usual. Individuals of distinct age groups will re-
spond di!erentially either to the e!ects of total
density or to the population composition because
of their anatomic, morphologic and physiologic
di!erences.

In contrast with two-species competition, in
inter-stage competition there cannot be elimina-
tion of one competitor by the other, because the
two depend on each other. Most models of inter-
stage competition (Leslie, 1959; Cooke & LeH on,
1976; Guckenheimer et al., 1977; Tschumy, 1982;
Ebenman, 1987, 1988) are discrete, and assume
two stages: pre-reproductive and post-reproduc-
tive, or juveniles and adults. The majority of these
matrix models, however, do not take into ac-
count in an explicit way the competition for re-
sources, that is, they do not include resource
density as a variable. An exception is the model of
Maynard Smith & Slatkin (1973) which includes
this in a study of the stability of predator}prey
systems, using a discrete time model. In it, the
( 2000 Academic Press
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e!ect of the predator's age structure on the dy-
namics is the consequence of the di!erences in
hunting ability between juveniles and adults, dif-
ferences that can permit the coexistence in spite
of the competition for only one resource. This
approach of including prey or resource density in
models can also be used by ordinary di!erential
equations (ODE) systems. As an example, Pimm
& Rice (1987) study a trophic web with structure.
In this study, the dynamic equations consider the
instantaneous and coupled changes of the densit-
ies of resource, juvenile consumers and adult con-
sumers. Prey densities increase maturation and
fecundity rates and/or decrease mortality rates.

In this work I use ODE systems to describe
a resource}consumer interaction. The consumer
population is subdivided in juveniles and adults.
It is assumed that the interaction with the re-
sources increases the per capita rates of matura-
tion and fecundity or decreases the mortality
rates. Thus, the competition consists in the nega-
tive e!ect one class has upon the increase of the
other when resource level decreases. The objec-
tive is to "nd conditions that warrant the coexist-
ence in the presence of only one resource, and
also to study the dynamics of this type of system.

The Models

There are two models. In the "rst one, it is
assumed that maturation and fecundity rates in-
crease with resource consumption. In the second
one, mortality rates decrease with consumption.

MODEL 1: WHEN MATURATION AND FECUNDITY

RATES DEPEND ON RESOURCE DENSITY

The interaction between juvenile consumers
(N) and resources (R) produces the transition of
juveniles to adults (M):

R#N bn
&" M (1)

at a rate b
n
. This interaction eliminates a juvenile

and creates an adult. The interaction between
resource and adult consumer creates n new ju-
veniles. Suppose that a fraction k of these events
is a cause of mortality in the adults. Then

R#M bm
&" nN, probability"k,

(2)

R#M bm
&" nN#M, probability"1!k.

This will be considered later to determine the
e!ects of a variable semelparity (k). From eqn (1),
following a &&law of mass action'' approach,
maturation rate is proportional to the product of
juvenile density and the resource quantity con-
sumed per juvenile individual. At saturation,
maturation rate can be expressed as

b
n
R

R
n
#R

N, (3)

using the type II functional response from
Holling (1959). Here b

n
is the maximal per capita

rate of maturation and R
n

the half-saturation
constant for resource consumed. This rate of
maturation should be subtracted in the dynamic
equation for juveniles and added in the corre-
sponding equation for adults. With a similar rea-
soning, the fecundity rate would be proportional
to the product of adult density, resource con-
sumed and the number of juveniles produced per
adult or clutch size n:

n
b
m
R

R
m
#R

M , (4)

where b
m

is the maximal per capita fecundity rate
to produce one recruit per consumed resource
and R

m
the half saturation constant for adults.

This expression is the sum of the two contribu-
tions described by eqns (2), and should be added
to the dynamical equation of juveniles and sub-
tracted from the adult equation weighted by
k (probability of death as a consequence of repro-
duction) instead of n.

The dynamical equations for resource, juvenile
and adult consumers are then

RQ "rR A1!
R
KB!

a
n
RN

R
n
#R

!

a
m
RM

R
m
#R

,
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NQ "n
b
m
RM

R
m
#R

!

b
n
RN

R
n
#R

!d
n
N, (5)

MQ "
b
n
RN

R
n
#R

!k
b
m
RM

R
m
#R

!d
m
M.

It is supposed that the resource grows logistically
in the absence of consumers. The consumption
rates are shown in the resource equation multi-
plied by the constants a

n
and a

m
. The per capita

death rates of juveniles and adults are d
n
and d

m
,

respectively.

MODEL II: WHEN MORTALITY RATES DEPEND

ON RESOURCE DENSITY

The di!erence with Model I is that juveniles
mature with a constant per capita rate equal to
m and that adult per capita fecundity rate is also
constant, but the per capita death rates are de-
creasing functions of the consumed resource.
Then

for juveniles: d@
n
!

c
n
R

R
n
#R

, (6)

for adults: d
m
!

c
m
R

R
m
#R

. (7)

The constants d@
n

and d
m

are the maximal per
capita mortality rates in the absence of resource,
c
n

and c
m

are conversion constants that relates
quantity of resource consumed to the decrease in
mortality. It is assumed that d@

n
'c

n
and d

m
'c

m
,

to avoid negative rates. As in model I, R
n

and
R

m
are half-saturation constants.

The dynamical system is

RQ "rR A1!
R
KB!

a
n
RN

R
n
#R

!

a
m
RM

R
m
#R

,

NQ "fM!Am#d@
n
!

c
n
R

R
n
#RB N, (8)

MQ "mN!Adm!
c
m
R

R
m
#RBM.

For the sake of simplicity, we de"ne d
n
"m#d@

n
,

as the maximal per capita rate of disappearance
of juveniles (maturation#death). Model II be-
comes

RQ "rR A1!
R
KB!

a
n
RN

R
n
#R

!

a
m
RM

R
m
#R

,

NQ "fM!Adn!
c
n
R

R
n
#RB N, (9)

MQ "mN!Adm!
c
m
R

R
m
#RBM.

Results

For Model I all the analysis were made with
k"1, that is, supposing that all the adults that
reproduce die, which means total semelparity.
Later, a general result for every k(1 is present-
ed. The expressions for internal equilibria involve
complicated parameter combinations make the
interpretation of the stability conditions di$cult
by means of the Jacobian matrix. So the local
stability analysis is applied to the trivial equilib-
ria (0, 0, 0) and (K, 0, 0). Local stability of these
points will determine if consumers can invade.

MODEL I

System (5) has the nullclines that are shown in
Fig. 1, plotted with Mathematica 2.2 (Wolfram
Research Inc., 1991). The equations for nullclines
are presented in the Appendix. A condition for
a positive equilibrium is that R must be less than
the carrying capacity K, and

n'1#
d
n

b
n

#

d
m

b
m

#

d
n
d
n

b
n
b
m

, (10)

that is the clutch size must be greater than the
unity plus three terms, which are greater as the
relations between mortalities and conversion
rates are higher. The solutions for the internal
equilibrium are presented in the mathematical
Appendix, corresponding to the intersection of
the nullclines of Fig. 1.

The point (0, 0, 0) will be locally unstable
whenever a non-trivial equilibrium exists, and
that is easy to demonstrate. Suppose that R,



FIG. 1. Nullclines of Model I. r"0.5, K"250,
a
n
"a

m
"0.2, R

n
"R

m
"100, n"2, b

n
"b

n
"1,

d
n
"d

m
"0.1.

FIG. 2. Parameter space for Model I. a
n
"a

m
"0.2,

R
n
"R

m
"100, b

n
"b

n
"1, d

n
"d

m
"0.1.
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N and M tend to zero. This makes the second-
order terms RN, RM and R2 (from logistic) negli-
gible in system (5). Then the equations can be
linearly approximated by

RQ +rR, NQ +!d
n
N and

MQ +!d
m
M.

(11)

So the trajectory in the phase space RNM will
approach initially the point (0, 0, 0), and then go
away in the R direction. The trivial equilibrium is
a saddle point.

For the (K, 0, 0) point, the Jacobian of eqn (5)
has a positive eigenvalue when the following in-
equality is satis"ed (see Appendix):

An
b
m
K

R
m
#KB A

b
n
K

R
n
#KB'A

b
n
K

R
n
#K

#d
nB

]A
b
m
K

R
m
#K

#d
mB .

(12)
Establishment is possible when the product of the
fecundity and maturation per capita rates is high-
er than the product of the per capita rates of
disappearance of both stages at the resource den-
sity K. A parameter space that relates n and
K with this condition is shown in Fig. 2. In this
graph, the boundary between the stability regions
is a function that has a horizontal asymptote
equal to the l.h.s. of eqn (10). If 0(k(1, that is,
a fraction of the adults do not die as a result of
reproduction, this condition changes to
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K
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#K

#d
nB

]Ak
b
m
K

R
m
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#d
mB .

(13)

If conditions (12) and (13) are met, the (K, 0, 0)
point behaves as a saddle point. This detail is
important when examining the global dynamics
of the system.

MODEL II

System (9) has a positive equilibrium that
corresponds to the intersection of the nullclines
shown in Fig. 3 plotted with Mathematica 2.2
(Wolfram Research Inc., 1991). Nullcline equa-
tions are presented in the Appendix. A condition
for a positive equilibrium is that R must be less
than K (see the Appendix), and

mf'(d
n
!c

n
)(d

m
!c

m
) . (14)



FIG. 3. Nullclines of Model II. r"0.5, K"500,
a
n
"a

m
"0.2, R

n
"R

m
"200, m"f"1.5, d

n
"d
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"1.1,

c
n
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"1.

FIG. 4. Parameter space for Model II. a
n
"a

m
"0.2,

R
n
"R

m
"200, d

n
"d

m
"1.1, c

n
"c

m
"1.
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To analyse the stability of the trivial equilib-
rium (0, 0, 0) we consider that when R, N and
M approach zero, the higher order terms, RN,
RM and R2 will be negligible, and system (9) can
be linearly approximated by

RQ +rR, NQ +fM!d
n
N and

MQ +mN!d
m
M,

NQ #MQ +(m!d
n
)N#( f!d

m
)M. (15)

R tends to grow near (0, 0, 0) and N#M to
decrease, because this sum depends on R. The
point will be a saddle.

In relation to point (K, 0, 0), the Jacobian has
a positive eigenvalue (see Appendix) if

mf'Adn!
c
n
K

R
n
#KB Adm!

c
m
K

R
m
#KB . (16)

This result is similar to that of Model I. The
establishment, by instability of (K, 0, 0), is pos-
sible if the product of the fecundity and matura-
tion per capita rates is higher than the product of
the per capita rates of disappearance at resource
density K. A parameter space is shown in Fig. 4.
As in Model I, a function separates the regions of
stability, this function has a horizontal asymptote
equal to the l.h.s. of eqn (14).

In both models we have a condition for a posit-
ive equilibrium provided that R

e
(K and condi-

tions (10) (for Model I) and (14) (for Model II).
The l.h.s. of eqns (10) and (14) are the values of the
horizontal asymptotes for the functions that sep-
arates the conditions of invasion (Figs 2 and 4),
then as K becomes larger conditions (10) and (14)
becomes also invasibility conditions. But condi-
tions (12) and (16) are the more general because
states that if they meet, then a positive interior
equilibrium exists and invasion is possible.

GLOBAL STABILITY

Looking over the NM plane, the nullcline level
curves are straight lines [Figs 5(a)}(c)]. We can
graph nullclines for di!erent values of R between
0 and K. Signs of RQ , NQ and MQ result in vector
"eld directions. The rules are these: R increases in
the triangular region closed by RQ "0 and the
axes N and M; N increases between NQ "0 and
the M-axis; and M increases between MQ "0 and
the N-axis.

N and M decrease if R(R
e

[Fig. 5(a)], and
increase if R'R

e
[Fig. 5(c)]. At R"R

e
, the

straight lines of the N and M nullclines coincide
with the R nullcline and there is a positive equi-
librium [point e in Fig. 5(b)]; vector "elds tend to
move any trajectory to the nullclines of N and M.
Thus, combining Figs 5(a)}(c), we can conclude
that the dynamic is periodic, with (0, 0, 0) and



FIG. 5. (a)}(c) Nullclines of Model I or Model II in the
NM plane for increasing values of R: (a) R(R

e
, (b) R"R

e
,

(c) R'R
e
. (d) The R nullcline is drawn over the plane

formed by the R-axis and the point of equilibrium e. ( )
R increases; ( ) R decreases.

FIG. 6. Numerical solution of Model I. r"0.5, K"150,
a
n
"a

m
"0.2, R

n
"R

m
"100, n"2, b

n
"b

n
"1, d

n
"

d
m
"0.1. Initial conditions: R"150, N"100, M"100.

System converges to equilibrium passing through a regime
of damped oscillations, and a stable juvenile and adult
composition is approached (looking at the NM plane).
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(K, 0, 0) as saddle points. This is depicted in
Fig. 5(d), where the vector "eld is drawn over
a plane formed by the R-axis and the straight line
where the nullclines of N and M coincide [at
R"b in Fig. 5(d)].

To study the stability of the equilibrium point
(R

e
, N

e
, M

e
), a projection of the R nullcline is

made over the plane formed by the R-axis and
the straight line of coincidence for the nullclines
of N and M. Over this plane the projection of
the R nullcline is a parabola, as in the classic
predator}prey model (with logistic dynamics in
the prey, and type II functional response), and the
positive equilibrium is also on this plane [point
e in Fig. 5(d)]. If the half-saturation constants of
juveniles and adults are below the value of the
carrying capacity, then the parabola has
a &&hump'' in the positive octant, and the possibili-
ty of eigenvalues with positive real parts for the
interior point arises. The prediction is: if the posi-
tion of the hump in the R-axis is below R

e
, then

the interior point is stable [this case is depicted
in Fig. 5(d)], but if the hump is above R

e
, the
interior point is unstable and limit cycles appear.
If carrying capacity becomes larger, the hump
moves for larger values of R and the second
possibility is likely to occur.

If the interior point is stable, then we hope
a stable stage structure. If it is not stable and limit
cycles appear, the trajectories must approach the
plane formed by the R-axis and the interior point
due to the in#uence of the vector "eld [Fig. 5(b)],
and there is a tendency for a stable stage struc-
ture, with a limit cycle bounded to a plane per-
pendicular to the NM plane.

Making numerical simulations of Model I with
a fourth-order Runge}Kutta algorithm using
MATLAB 5 (The Mathworks Inc., 1997), it is
found that the dynamic is periodic, there are
damped oscillations for a small value of K (Fig. 6)
and a limit cycle for a large K (Fig. 7). In Fig. 8,
there is a small deviation of a stable stage struc-
ture, that probably arises due to asymmetries in
the nullcline shapes.

Discussion

In both models the conditions for the estab-
lishment of consumers at low densities with re-
source level at carrying capacity is that the
product of the per capita rates of maturation and
fecundity has to be higher than the product of the



FIG. 7. Numerical solution of Model I. r"0.5, K"250,
a
n
"a

m
"0.2, R

n
"R

m
"100, n"2, b

n
"b

n
"1, d

n
"

d
m
"0.1. Initial conditions: R"250, N"150, M"150.

There is a limit cycle with a stable juvenile and adult com-
position (looking at the NM plane).

FIG. 8. Numerical solution of Model I. r"0.5, K"250,
a
n
"a

m
"0.2, R

n
"50, R

m
"100, n"3, b

n
"b

n
"1, d

n
"

d
m
"0.1. Initial condition: R"250, N"50, M"100. The

result is a limit cycle where the juvenile and adult composi-
tion also oscillates (looking at the NM plane).

STAGE-STRUCTURED COMPETITION 295
per capita rates of disappearance of juveniles
(that also include maturation) and adults. This is
stated in inequalities (12) and (16). This is a logi-
cal result, and is also in agreement with a former
result of the Tschumy (1982) discrete model with
two age classes. Tschumy (1982) found that ex-
tinction is avoided if the product of fecundity and
survivorship of juveniles is greater than unity.
The result does not depend on the stability of the
internal equilibrium, but depends on the exist-
ence of that equilibrium. This can be inferred
from Figs 2 and 4 provided that conditions for
positive equilibrium are the same as for invasibil-
ity at higher values of K. That is to say, n or m ) f is
over the horizontal asymptote. The invasibility
region de"nes also the regions of positive equilib-
rium.

In Model I, the possibilities for positive equi-
librium and for coexistence increase when the
ratio between maximal conversion rates and
mortalities (b

n
/d

n
and b

m
/d

m
) increases. The

same happens, when mean saturation densities
(R

n
, R

m
) decrease. In Model II this happens when

conversion e$ciencies (c
n
, c

m
) increase in relation

to mortality rates (d
n
, d

m
).

The most important e!ect of variable semel-
parity in Model I is to change the magnitude of
adult mortality. When semelparity (k) decreases
the product of maturation and fecundity rates is
higher, making invasion easier. This mean that
iteroparity favours invasion provided the fecund-
ity rates are not a!ected, that is to say, that
increasing survivorship does not decrease the
energy or resources allocated to reproduction.

Resource competition can be analysed by the
e!ect that di!erent parameters have on equilib-
rium densities. This is seen in eqns (A.6) or (A.13)
and (A.7) or (A.14), of the Appendix. They can be
written succinctly as

N
e
"

r (1!R
e
/K)

a
NN

#a
NM

,

M
e
"

r(1!R
e
/K)

a
MM

#a
MN

.

Equilibrium densities of both classes are always
proportional to the resource per capita rate of
renewal. The denominators of both expressions
are composed of terms that can be considered as
competition coe$cients. Thus, a

NN
and a

MM
ex-

press the intraclass e!ects and a
NM

and a
MN

the
interclass e!ects. Intra- and interclass e!ects are
proportional to the maximal rates of consump-
tion a

n
and a

m
, since a higher consumption means

a lower availability of resource. But interclass
e!ects include also conversion parameters, mor-
talities and the clutch size. Thus, an increase of
mortality in relation to conversion in one class
favours the other class. Finally, the relations be-
tween the coe$cients determine the equilibrium
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composition:

N
e

N
e
#M

e

"

a
MM

#a
MN

a
NN

#a
NM

#a
MM

#a
MN

, (17)

M
e

N
e
#M

e

"

a
NN

#a
NM

a
NN

#a
NM

#a
MM

#a
MN

. (18)

Nullcline analysis reveals that the dynamics of
both models are periodic, and that (0, 0, 0) and
(K, 0, 0) are saddle points, which is typically in
predator-prey models. Numerical results show
that the regimes can pass from damped oscilla-
tions to limit cycles when carrying capacity is
increased. (Figs 6 and 7), which is similar to the
&&paradox of enrichment'' (Rosenzweig, 1971). It is
also found that if saturation parameters (R

n
and

R
m
) di!er substantially between juveniles and

adults, a temporal variation in stage composition
can occur (Fig. 8, see the NM plane). This result is
similar to that encountered by Hsu et al. (1978)
for a system of two predators with type II func-
tional response. If this does not happen the com-
position becomes stable according to eqns (17)
and (18).

The fact that limit cycles are possible perhaps
is due to the existence of an implicit lag because
of maturation time.

The results of this study can be related to those
of inter-speci"c competition. Mc Arthur & Levins
(1964) demonstrated that two-competitors co-
existence is possible when there are at least as
many distinct resources as consumers. Hsu et al.
(1978) found that, with type II functional re-
sponse, coexistence on one resource is possible
when one consumer is a r-strategist while the
other is a K-strategist. In a population with age
structure, permanent exclusion for one class is
impossible because coexistence is hold by a
mutual dependence between classes (one class
gives rise to the other) which can be called
&&facilitation'' of one class by the other. This leads
to the idea that some type of facilitation between
competitors can hold coexistence at low diversity
of resources. An example of this are the dynam-
ical systems called hypercycles (Eigen & Schuster,
1979), in which mutual cooperation, although
&&sel"sh'', can be able to maintain coexistence
between his elements (RNA replicators).
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APPENDIX

Nullclines and Equilibrium Points of Model I

Setting RQ "NQ "MQ "0 in system (5) gives the
nullclines:
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Combining eqns (A.2) and (A.3) gives a quadratic
equation for resource at equilibrium R

e
:
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For a positive R
e

to exist the second-order
coe$cient must be positive, which means that
(by Descarte's rule of signs)
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Expressions for N
e
and M

e
are obtained substitut-

ing eqns (A.3) and (A.4) into eqn (A.1), and are
shown as functions of R

e
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Nullclines and Equilibrium Points of Model II

Setting RQ "NQ "MQ "0 in system (9) gives the
nullclines:
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Combining eqns (A.9) and (A.10) gives a quad-
ratic equation for resource at equilibrium R

e
:
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For a positive R
e

to exist the second-order co-
e$cient must be positive, and the zero-order
negative, which means that
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Expressions for N
e
and M

e
are obtained substitut-

ing eqns (A.10) and (A.11) into eqn (A.8), and are
shown as functions of R
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Local Stability of the (K, 0, 0) Point

Models I and II have the same basic structure
for the Jacobian matrix evaluated at (K, 0, 0):
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r is the maximal per capita rate of growth for
resource, A

n
and A

m
are consumption rates of

resource per juvenile and adult, respectively, at
resource density of K. They are the same in both
models:
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and D
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are per capita rates of disappearance
for both classes at a resource density of K. In
Model I they are equal to d

n
and d

m
, but in

Model II they are
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respectively. M and U are per capita rates of
maturation and fecundity, respectively. In Model
I they are, at resource level K:
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In model II they coincide with m and f . The
characteristic equation for the Jacobian is
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A "rst eigenvalue is always j"r. The matrix of
rank 2 formed by the second and third rows of C1
gives the second and third eigenvalues, of which
at least one is positive if

MU'D
n
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m
. (A.20)

Substituting the greek symbols by his equiva-
lents, the invasibility conditions (12) and (16) are
obtained.
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